1	Material type and position determines the insulative properties of simulated nest walls
2	
3	D. Charles Deeming ^{1,*} , Jonathan D. Griffiths ² and Lucia E. Biddle ¹
4	
5	¹ School of Life Sciences, and ² School of Engineering, University of Lincoln, Lincoln, LN6 7TS, UK
6	*Corresponding author email: cdeeming@lincoln.ac.uk
7	
8	
9	Keywords – feathers; hair; insulation; nest materials; plant materials; thermal conductivity
10	Reading header – Thermal properties of artificial nest walls
11	Word count – 4117
12	Type of article – Short Communication
13	[©] DCD, 0000-0002-9587-6149; JDG, 0000-0003-0038-6313, LEB, 0000-0001-7876-6290
14	$\label{eq:author} Author \ contributions - DCD \ and \ LEB \ devised \ the \ study; \ LEB \ collected \ data; \ All \ authors \ analysed \ and \ authors \ analysed \ and \ authors \ analysed \ authors \ a$
15	interpreted data and contributed to writing the manuscript.
16	

17 Summary

18 Incubation in birds takes place within a nest that is often assumed to confer a degree of thermal 19 insulation. The range, amounts and organisation of materials used to construct nest walls hampers 20 our understanding of the degree to which they provide insulation during incubation. This 21 experimental study used temperature loggers in a model system to test the insulative properties of 22 materials extracted from bird nests to determine: 1) whether differences existed in terms of 23 insulation, and, 2) if the position of a material mattered when two materials were tested in 24 combination. Animal-derived materials had better insulation than plant-derived materials, whether 25 tested singly or in combination. Halving the mass of each material did not affect insulation 26 conferred by the material proximal to the temperature logger. Differing thermal conductivities of the 27 materials in contact with the temperature logger may explain these results. If a bird strategically 28 places an animal-derived material only into a nest cup lining then it may be sufficient to provide 29 good insulation for the whole nest. More research is needed to generate thermal conductivity data 30 for commonly used nest materials to test this idea more rigorously in finite element heat transfer 31 models.

32

33

34 Bird nests can be considered an extended phenotype that can affect fitness (i.e., overall lifetime 35 reproductive success) because, among other things, the nest wall confers thermal insulation to the 36 adult and incubating eggs (Deeming, 2016). Nest building is an energetically expensive process 37 (Smith et al., 2012) and so the choice and placement of nest building material may be important in 38 minimising the energetics of nest construction and maintenance. Contact incubation in birds is also an 39 energetically expensive behaviour and factors that minimise energy loss from the eggs will help 40 reduce the energetic impact on the incubating adult (Nord & Williams, 2015). Nest insulation 41 increases with nest mass and wall thickness (also in mammals, e.g. Redman et al., 1999), and is 42 affected by nest composition (Rohwer & Law, 2010; Mainwaring et al., 2014a; Gray & Deeming, 2017; 43 Dickinson et al., 2019). Within a species, environmental temperatures during nest construction, due to 44 latitude or altitude, negatively correlate with nest wall thickness and composition in birds (Kern, 1984; 45 Rohwer & Law, 2010; Crossman et al., 2011; Mainwaring et al., 2012, 2014a; Altamirano et al., 46 2019) and mammals (Altamirano et al., 2019). 47 Our understanding of the roles different materials play in determining nest wall insulation is 48 hampered by inter-species variation in constructing a nest that is typically a composite structure with a

49 variety of materials (Deeming & Mainwaring, 2015; Biddle et al., 2018a). It is further complicated by

50 intra-specific plasticity in nest construction as influenced by, for instance, environmental temperature

51 (Mainwaring et al., 2014a). This high level of variation is making it difficult to tease apart those factors

52 that are important in determining nest construction behaviour. Nests constructed using very different

53 materials often have very similar insulative properties (Crossman et al., 2011; Biddle, 2018; Dickinson

et al., 2019). Materials commonly used in nests have differing insulative properties, with animal-

derived materials, e.g. feathers, being better insulators than plant-derived materials, e.g. dry grass

56 (Hilton et al., 2004). Nest construction in small passerine species is not a random process because

57 animal-derived materials are more often found in the cup lining, rather than the outer wall (Møller,

- 58 1984; Hansell & Ruxton, 2002; Biddle et al., 2018a; Dickinson, 2018). However, it is unclear to what
- 59 extent this spatial distribution of materials has upon the insulation of the nest wall as a whole, and
- 60 thus its adaptive nature. We do not know how nest wall insulation is affected, if at all, by the relative
- 61 position of materials in the nest; if all other things are equal, is there an additive effect on nest
- 62 insulation such that it doesn't matter if, for instance, feathers line the cup or the outer nest surface?
- 63 The physical complexity of the materials used in the nest is not the only issue in better 64 understanding nest insulation. During incubation (or experimental testing) the flow of heat in nest 65 materials could occur by a variety of mechanisms including conduction, convective heat transfer from 66 the cup, direct radiation, and evaporation-condensation in the presence of moisture (Heenan & 67 Seymour 2012). In an attempt to disentangle the role of various materials, and the different 68 mechanisms of heat movement, in determining nest insulation, this study sought to simplify the nest 69 by creating standardised artificial nest walls comprising of either one or two materials. This 70 experimental manipulation sought to focus on assessing heat flux by conduction through direct 71 contact with dry nest materials.
- 72 This study used materials previously collected from deconstructed passerine nests to 73 determine the individual thermal characteristics of each material in a standardised, simulated nest 74 wall. Thereafter, to investigate whether stratification of materials in a nest wall has any functional role 75 in insulation, two different nest materials were tested in equal masses to determine whether the 76 position of the material relative to a temperature measuring device was important in determining 77 thermal properties of the whole structure. We predicted that the experiment would confirm that 78 animal-derived materials are better insulators than plant-derived materials. Given that bird nests are 79 layered structures, we also predicted that the proximity of a material to the temperature logger would 80 be important.
- 81 Several previously deconstructed nests, of a variety of passerine species (e.g. thrushes 82 [Turdidae], and finches [Fringillidae]), yielded feathers, hair, moss, grass, leaves, lichen and roots, 83 which are the most common components of nests of small passerines (Deeming & Mainwaring, 2015; 84 Biddle et al., 2018a; Dickinson, 2018). These materials were derived from numerous (at least 5 and up to 10-15 nests for some materials, such as feathers) nests, and were stored dry, irrespective of 85 86 species, in paper bags at room temperature. To create a simulated nest wall, 5 g of material was 87 loosely placed so that it completely filled a cardboard tube (102 mm long and 46 mm diameter) with 88 an open plastic mesh attached to the bottom end to prevent the material from being lost. 89 Twelve, 5 mm deep, 16 mm diameter circular wells, each accommodating an iButton® 90 temperature logger (with an accuracy of $\pm 0.5^{\circ}$ C), were drilled spaced 55 mm apart in a sheet of 10 91 mm thick expanded polystyrene (Figure 1), measuring 345 by 255 mm. Temperature loggers were set
- 92 to record the temperature (°C) every minute prior to being heated to 80°C in a water bath and then
- 93 dried with a paper towel before being placed in the wells. A cardboard tube filled with nest material
- 94 was placed centrally on top of each of 11 temperature loggers and the twelfth was left open to the air.
- 95 The cardboard tubes were weighed down using a 1 Kg metal grid and the experimental set up was

96 left for 20 minutes for the temperature loggers to cool down. This procedure was repeated three times
97 for each tube of material and there were 10 tubes per material type or combination of two materials.

98 The procedure took place within the closed test chamber of a custom-built wind-tunnel (Gray & 99 Deeming, 2017) so as to minimise the effects of air movement on the cooling rate of the isolated 100 temperature logger (Deeming & Campion, 2018). There was a temperature logger placed on the 101 sidewall of the chamber to record the air temperature during the experiment.

102 Cooling rates were recorded in a similar way to that reported by previous authors (McGowan et 103 al., 2004; Mainwaring et al., 2012, 2014a). Cooling rates (°C·min⁻¹) of the pre-heated temperature 104 loggers were determined by fitting the temperature data to a logistic model (McGowan et al., 2004; 105 Mainwaring et al., 2012). The difference in cooling rate (Δ CR) of each artificial nest was the difference 106 in the rates of cooling (°C·min⁻¹) of the temperature logger under the material filled tube and of the 107 exposed control temperature logger (*sensu* McGowan et al., 2004; Mainwaring et al., 2012, 2014a), 108 with larger values indicating better insulation.

109 The first experiment used 5 g of an individual material in the tube placed over the temperature 110 logger. Each material was tested in 10 separate tubes with three repetitions per tube. Each test run 111 involved 11 tubes containing materials, and an exposed logger, which was always in the centre 112 position of the experimental set-up. In order to minimise trial effects, the materials in the tubes used in 113 each test run were randomly chosen. Thus, any one run had a mixture of materials being tested at the 114 same time.

115 The second experiment paired four combinations of materials based on the results of the first 116 experiment. Feathers were paired with grass, and with roots, and hair was tested with lichen, because 117 these materials exhibited significant differences in Δ CR. Hair and moss were also tested because 118 they did not show significant differences in mean Δ CR. For each pair of materials, 2.5 g of the one 119 material was placed in the lower half of the tube proximal to the temperature logger and 2.5 g of the 120 second material was used to fill up the rest of the tube. After three replicates to determine Δ CR, the 121 materials were carefully removed, their order reversed and the experiment was re-run.

122 The three repeat measurements for each tube were averaged and analysis was carried out on 123 the 10 mean values for Δ CR for each material type or combination. Anderson-Darling tests showed 124 that the datasets were normally distributed, so the effect of material on Δ CR was investigated using 125 one-way analysis of variance (ANOVA), with Tukey *post hoc* pairwise comparisons run in Minitab (ver. 126 17; www.minitab.com). For combinations of materials, the data were combined with the values for the 127 5 g samples of the relevant materials prior to one-way ANOVA tests.

128 Animal-derived materials had the highest Δ CR values (Figure 2), which were significantly 129 greater than all plant-derived materials (F_{6,63} = 11.34, P < 0.001, R² = 51.9%; Figure 2), except for the 130 differences between hair, moss and grass which were non-significant. The degree of insulation 131 offered by roots was approximately half that offered by feathers (Figure 2).

132 For combinations of materials, if the animal-derived material was proximal to the temperature 133 logger then the Δ CR was always significantly higher than when the plant-derived material was 134 proximal to the logger (Figure 3). Differences in cooling rates for the 2.5 g of the material proximal to

the temperature logger were not significantly different from the values for 5 g of the same material.

- 136 Therefore, the combination of material significantly affected differences in cooling rates for feathers
- and grass (Figure 3A; $F_{3,36}$ = 17.9, P < 0.001, R² = 59.9%), although whether there was 2.5 or 5 g of
- 138 feathers proximal to the temperature logger had no effect on Δ CR. This same pattern was observed
- for combinations of lichen and hair (Figure 3B $F_{3,36}$ = 9.8, P < 0.001, R² = 44.9%) and feathers and
- roots (Figure 3C, $F_{3,36}$ = 44.0, P < 0.001, R² = 78.45%). Differences in cooling rates for 5 g of either hair or moss were not significantly different (Figure 2), and the effect of switching these materials was
- much less than for other materials. However, having hair proximal to the temperature logger did
- 143 produce a significantly greater ΔCR than having moss proximal to the logger when the materials were
- 144 used in combination (Figure 3D; $F_{3,36} = 4.0$, P = 0.015, R² = 24.8%).
- 145 Nests are composite structures consisting of differing amounts of animal-derived and plantderived materials, depending on species (Hansell, 2000; Biddle et al., 2018a). Thermal insulation 146 147 varied between different materials used in avian nests with, as expected, animal-derived materials 148 having higher ΔCRs than plant-derived materials. We showed that halving the amounts of materials 149 adjacent to the temperature logger had no effect on insulation compared with 5 g of the same 150 material, although values were higher if the animal-derived material was proximal to the logger. 151 Therefore, the contribution of each material in a combination does not seem to be additive and, even 152 in a relatively simple combination, the effect on insulation is non-linear.
- 153 Differences in cooling rates for the different materials were lower than previously recorded 154 values for actual nest walls from which the materials were derived (Gray & Deeming, 2017; Dickinson 155 et al., 2019), which may reflect the fact that nests are much heavier than the 5 g of material used. The 156 material in the simulated nest walls was loosely packed and this low density does not directly relate to 157 how nest walls are constructed. Whilst differences in the insulative properties of materials used in 158 nests have been reported previously (Hilton et al., 2004), our study demonstrated that the positioning 159 of animal-derived materials relative to the heat source, i.e. the incubating bird sitting in the nest cup, 160 may be important in determining the insulation value of the nest wall. More importantly, the mass of the material adjacent to the heat source was not a determinant of the degree of insulation. In whole 161 162 nests, there seems to be variation in the significance of the intraspecific relationships between nest 163 mass and insulation, with some bird species exhibiting no relationship (Deeming & Campion, 2018), 164 whereas other species show significant positive relationships (Dickinson et al., 2019). Measures of 165 insulation also seem to correlate with base thickness but not with wall thickness (Gray & Deeming, 2017; Dickinson et al., 2019) but other studies do report significant relationships with wall thickness 166 167 (Heenan & Seymour, 2012; Akresh et al., 2017). Mass of Microtis vole nests also did not correlate 168 with insulation but their wall thickness did (Redman et al., 1999). These differences, may reflect 169 differences in the thermal inertia of the materials used in nests, or the mass range of the nests produced by a single species, but further research is required to better understand how nest mass 170 171 and dimensions contribute to thermal insulation.
- We know that birds place materials of differing structural characteristics in different parts of the nest according to their role (Biddle et al., 2017, 2018b). Eurasian bullfinches (*Pyrrhula pyrrhula*) position stronger woody stems in the base of their nest to help to support the nest built at the end of thin branches, while the hawfinch (*Coccothraustes coccothraustes*) builds its nest on top of a thick

branch so the stronger woody materials are in the side walls (Biddle et al., 2018b). Other species

- 177 have a predominance of animal-derived nest materials in their cup lining (Møller, 1984; Hansell &
- 178 Ruxton, 2002); in the common chaffinch (*Fringilla coelebs*) nest the cup lining has large amounts of 179 feathers and hair present (68% of cup lining by mass; Biddle et al., 2011a), whereas the nest of the
- 180 common linnet (*Linaria cannabina*) is lined with a lot of hair (39% of cup lining by mass; Biddle et al.,
- 181 2011a). Such differences in the distribution of materials may reflect the bird positioning particular
- materials within the cup that then may determine the insulative properties of the whole nest wall.
- 183 Simply lining a nest cup with feathers may provide sufficient insulation for the incubating bird. Whilst
- 184 feathers are assumed to be plentiful in the environment (Møller, 1984), limiting such animal-derived
- 185 materials to the nest cup may have a positive impact on the energetic demands of nest construction.
- 186 Further research should investigate the minimum amount of a well-insulating material before
- insulation is compromised in a model system, and then test whether this value reflects what is foundin real nests.
- 189 Nest materials confer a physical structure to the nest wall that can trap air, which can serve as 190 an insulator. Vacuum-packing whole bird nests reduces the insulation of the nest wall by 20-25% 191 despite a 90% reduction in volume (Deeming & Biddle, 2015). During incubation and particularly 192 nestling rearing the nest materials get compressed which may impact on the amount of insulation 193 provided by air gaps in the structure. Although materials density was controlled in this study, the 194 materials were relatively loosely packed and we can assume that the level of insulation provided by 195 air gaps was similar for all materials. Future research could explore the effects of reducing the density 196 and, hence the amount of air, on the insulation conferred by the materials.
- 197 We acknowledge that the material was dry and 'used', having been derived from nests, but this 198 did apply to all materials studied. It would be interesting to repeat this study with fresh materials from 199 nests under-going construction because some plant-derived materials, e.g. moss, leaves and grass, 200 will have a higher water content that could affect thermal conductivity. However, other materials, e.g. 201 feathers, hair, twigs, have little water content and so would not exhibit big differences to our results. 202 Not unsurprisingly, if nest materials are wet (Hilton et al., 2004), or a whole nest is wet after being 203 rained upon (Deeming & Campion, 2018), insulation is decreased compared to dry conditions. The 204 effects of air humidity on the insulative properties of dry materials can be assumed to change but to 205 date these effects have not been quantified.
- Given the standardised experimental design that minimised convection and cooling associated
 with evaporative-condensation (materials were dry), we have interpreted our results as primarily
 reflecting the differences in the thermal conductivity of the various materials tested. Those materials
- with low thermal conductivity, e.g. feathers (0.034 W·m⁻¹·K⁻¹; Fuller, 2015), will confer better insulation
- than those with higher values, e.g. dry leaves (0.27–0.50 $W \cdot m^{-1} \cdot K^{-1}$; Jayalakshmy & Philip, 2010).
- 211 Unfortunately, there is a general lack of data for thermal conductivity of the materials used in this
- study but the patterns of insulation shown here suggest that, when measured, thermal conductivity of
- 213 plant roots will be higher than that of moss. Knowledge of the thermal properties of nest materials will
- allow finite element heat transfer models to be developed to predict the rate of heat loss through the

215 nest wall. Such models can then be compared to empirical data to help us to understand the impact of 216 nest composition on insulating properties of the nest wall. 217 Further studies will allow a better understanding of the factors that have affected the evolution 218 of nest construction and function within passerines and non-passerines alike. It is unlikely that nest 219 construction is solely based on thermal considerations but will include the effects of other 220 environmental factors, such as precipitation (Biddle et al., 2019) and air movement (Gray & Deeming, 221 2017; Dickinson et al., 2019). There are likely to be other factors, such as minimising predation, and 222 possible signalling roles (Mainwaring et al., 2014b), that will impact upon nest construction and 223 thereafter individual reproductive performance and fitness. 224 225 Acknowledgements. 226 We thank Greg Sutton, Roger Jovani and anonymous reviewers for commenting on previous 227 drafts. 228 229 Conflict of interest 230 The authors declare that they have no conflict of interest. 231 232 References 233 Akresh, M.E., Ardia, D.R. & King, D.I. (2017). Effect of nest characteristics on thermal properties, 234 clutch size, and reproductive performance for an open-cup nesting songbird. Avian Biol. Res. 10, 235 107-118. 236 Altamirano, T.A., Honorato, M.T., Ibarra, J.T., de la Maza, M., de Zwaan, D.R., Bonacic, C., & Martin, 237 K. (2019). Elevation has contrasting effects on avian and mammalian nest traits in the Andean 238 temperate mountains. Austral Ecology, 44: 691-701. 239 Biddle, L.E. (2018). Functional properties of the nests of thrushes (Turdidae) and finches 240 (Fringillidae). PhD thesis, University of Lincoln, UK. 241 Biddle, L.E., Broughton, R.E., Goodman, A.M. & Deeming, D.C. (2018a). Composition of bird nests is 242 a species-specific characteristic. Avian Biology Research, 11: 132-153. Biddle, L.E., Deeming, D.C. & Goodman, A.M. (2018b). Birds use structural properties when selecting 243 244 materials for different parts of their nests. Journal of Ornithology, 159: 999–1008. Biddle, L.E., Dickinson, A.M., Broughton, R.E., Gray, L.A., Bennett, S.L., Goodman, A.M. & Deeming, 245 246 D.C. (2019). Construction materials affect the hydrological properties of bird nests. Journal of 247 Zoology, 309: 161-171. 248 Biddle, L.E., Goodman, A.M. & Deeming, D.C. (2017). Construction patterns of birds' nests provide 249 insight into nest-building behaviours. PeerJ, 5: e3010. 250 Crossman, C.A., Rohwer, V.G. & Martin, P.R. (2011). Variation in the structure of bird nests 251 between northern Manitoba and southeastern Ontario. PLoS ONE, 6: e19086. 252 Deeming, D.C. (2016). How does the bird-nest incubation unit work? Avian Biology Research 9: 103-253 113.

- Deeming, D.C. & Biddle, L.E. (2015). Thermal properties of bird nests depend on air-gaps between the
 materials. *Acta Ornithologica*, 50: 121-125.
- Deeming, D.C. & Campion, E. (2018). Simulated rainfall reduces the insulative properties of bird
 nests. *Acta Ornithologica*, 53: 91–97.
- Deeming, D.C. & Mainwaring, M.C. (2015). Functional properties of nests. In: Deeming, D.C. &
 Reynolds, S.J. (eds.). *Nests, Eggs & Incubation: New Ideas about Avian Reproduction*. pp. 29–49.
- 260 Oxford University Press, Oxford,
- Dickinson, A.M. (2018). *Investigating the morphology and functional properties of Sylviidae nests*.
 MSc thesis, University of Lincoln, UK.
- Dickinson, A.M., Goodman, A.M. & Deeming, D.C. (2019). Air movement affects insulatory behaviour
 of nests constructed by Old World warblers. *Journal of Thermal Biology*, 81: 194–200.
- Fuller, M.E. (2015). The structure and properties of down feathers and their use in the outdoor
 industry. PhD thesis, University of Leeds, UK.
- Gray, L.A. & Deeming, D.C. (2017). Effect of air movement on the thermal insulation of avian nests. *Bird Study*, 64: 494–501.
- Hansell, M.H. (2000). *Bird Nests and Construction Behaviour*. Cambridge University Press,
 Cambridge.
- Hansell, M. & Ruxton, G.D. (2002). An experimental study of the availability of feathers for avian nest
 building. *Journal of Avian Biology*, 33: 318–320.
- Heenan, C.B. & Seymour, R.S. (2012). The effect of wind on the rate of heat loss from avian cupshaped nests. *PLoS One*, 7: e32252.
- Hilton, G.M., Hansell, M.H., Ruxton, G.D., Reid, J.M. & Monaghan, P. (2004). Using artificial nests to
 test importance of nesting material and nest shelter for incubation energetics. *Auk*, 121: 777–787.
- Kern, M.D. (1984). Racial differences in nests of White-crowned Sparrows. *Condor*, 86: 455–466.
- Jayalakshmy, M.S. & Philip, J. (2010). Thermophysical properties of plant leaves and their influence
 on the environment temperature. *International Journal of Thermophysics*, 31: 2295–2304.
- 280 Mainwaring, M.C., Hartley, I.R., Bearhop, S., Brulez, K., du Feu, C.R., Murphy, G., Plummer, K.,
- 281 Webber, S.L., Reynolds, S.J., Deeming, D.C. (2012). Latitudinal variation in blue tit and great tit
- nest characteristics indicates environmental adaptation. *Journal of Biogeography*, 39: 1669–1677.
- Mainwaring, M.C., Hartley, I.R., Jones, C.I. & Deeming, D.C. (2014a). Adaptive latitudinal variation in
 common blackbird *Turdus merula* nest characteristics. *Ecology & Evolution*, 4: 841–851.
- Mainwaring, M.C., Hartley, I.R., Lambrechts, M.M. & Deeming, D.C. (2014b). The design and function
 of birds' nests. *Ecology & Evolution*, 4: 3909–3928.
- McGowan, A., Sharp, S.P. & Hatchwell, B.J. (2004). The structure and function of nests of long-tailed
 tits *Aegithalos caudatus*. *Functional Ecology*, 18: 578–583.
- Møller, A.P. (1984). On the use of feathers in birds' nests: predictions and tests. *Ornis Scandinavia*,
 15: 38–42.
- 291 Nord, A. & Williams, J.B. (2015). The energetic costs of incubation. In: Deeming, D.C. & Reynolds,
- 292 S.J. (Eds), Nests, Eggs and Incubation: New Ideas about Avian Reproduction. pp. 152–170.
- 293 Oxford University Press, Oxford.

- Redman, P., Selam, C. & Speakman, J.R., 1999. Male short-tailed field voles (*Microtis agrestis*) build
 better insulated nests. *Journal of Comparative Physiology B*, 169: 581-587.
- Rohwer, V.G. & Law, J.S.Y. (2010). Geographical variation in nests of yellow warblers breeding in
 Churchill, Manitoba, and Elgin, Ontario. *Condor*, 112: 596–604.
- Smith, J.A., Harrison, T.J.E., Martin, G.R. & Reynolds, S.J. (2012). Feathering the nest: food
- 299 supplementation influences nest construction by Blue (*Cyanistes caeruleus*) and Great Tits (*Parus*
- 300 *major*). Avian Biology Research, 6: 18-15.

303

304 Figure 1. Diagrammatic illustration of the experimental set to indicate the positioning of the cardboard

tube over the temperature logger. Each run of the experiment involved 11 tubes, containing a variety

306 of different materials tested simultaneously in a closed wind tunnel (no air flowing) to minimise effects

307 of extraneous air-flow.

311 Figure 2. Mean (± SD) values for differences in cooling rate between an isolated temperature logger

and a temperature logger covered with a cardboard tube filled with 5 g of the material shown.

```
313 Columns that do not share a common letter are significantly different at \alpha = 0.05.
```


Figure 3. Mean (\pm SD) values for differences in cooling rate between an isolated temperature logger and a temperature logger covered with a cardboard tube filled with the material(s) shown. The first

326 mentioned material was proximal to the logger. Grey columns indicate values from Figure 2. Columns

327 that do not share a common letter are significantly different at α = 0.05.