

University of Dundee

Jeeves - A visual programming environment for mobile experience sampling

Rough, Daniel; Quigley, Aaron

Published in:
Proceedings - 2015 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2015

DOI:
10.1109/VLHCC.2015.7357206

Publication date:
2015

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Rough, D., & Quigley, A. (2015). Jeeves - A visual programming environment for mobile experience sampling. In
S. D. Fleming, Z. Li, & C. Ermel (Eds.), Proceedings - 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2015 (pp. 121-129). [7357206] (Proceedings of IEEE). IEEE Computer Society.
https://doi.org/10.1109/VLHCC.2015.7357206

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/326511645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/VLHCC.2015.7357206
https://discovery.dundee.ac.uk/en/publications/35384fe9-cff2-4e3a-b74f-e1f045c1e68b
https://doi.org/10.1109/VLHCC.2015.7357206

Jeeves – A Visual Programming Environment for
Mobile Experience Sampling

Daniel Rough
SACHI Research Group

School of Computer Science
University of St Andrews, UK

djr53@st-andrews.ac.uk

Aaron Quigley
SACHI Research Group

School of Computer Science
University of St Andrews, UK

aquigley@st-andrews.ac.uk

Abstract—The Experience Sampling Method (ESM) captures
participants’ thoughts and feelings in their everyday environ-
ments. Mobile and wearable technologies afford us opportunities
to reach people using ESM in varying contexts. However, a lack
of programming knowledge often hinders researchers in creating
ESM applications. In practice, they rely on specialised tools for
app creation. Our initial review of these tools indicates that
most are expensive commercial services, and none utilise the full
potential of sensors for creating context-aware applications. We
present “Jeeves”, a visual language to facilitate ESM application
creation. Inspired by successful visual languages in literature, our
block-based notation enables researchers to visually construct
ESM study specifications. We demonstrate its applicability by
replicating existing ESM studies found in medical and psychology
literature. Our preliminary study with 20 participants demon-
strates that both non-programmers and programmers are able
to successfully utilise Jeeves. We discuss future work in extending
Jeeves with alternative mobile technologies.

I. INTRODUCTION

The Experience Sampling Method (ESM), also defined as
Ecological Momentary Assessment (EMA), has long been used
by researchers in the fields of psychology and medicine to
collect information on study participants or patients “in the
field”, that is, outside the constraints of a laboratory setting [1].
By gathering people’s data as they go about their everyday
lives, results have a higher ecological validity and eliminate
the bias resulting from unfamiliar environments, as well as the
recall issues caused by collecting data in retrospect of an im-
portant event or situation. Traditionally, ESM studies have been
conducted using an external signalling device (such as a pager
or pre-programmed electronic watch) coupled with paper-
based forms for participants to fill out when the device emits a
signal [2]. This cumbersome and unreliable approach has been
greatly improved upon in recent years, where researchers have
recognised the potential of mobile applications for conducting
these types of studies with participants [3], [4], [5]. Along
with this, in the field of Human Computer Interaction (HCI)
study applications have been developed which allow both the
signalling and data collection to take place on a participant’s
personal device. MyExperience [6] and EmotionSense [7] are
two pertinent examples, which also collect data from mobile
phone sensors to enable context-aware ESM applications.

Despite the potential of tools to assist programmers in
creating context-aware ESM applications, a lack of program-
ming experience remains a major barrier to researchers in

fields such as psychology and medicine, where these ap-
plications would be of greatest use. MyExperience requires
researchers to configure applications by providing XML files
which may include complex embedded scripts. The researchers
behind EmotionSense have provided open-source libraries for
facilitating the creation of ESM applications, but utilising
these libraries still requires Android programming experience.
Instead, non-programmers must invest in commercial software
or hardware [3], [4], [5], hire professional developers [8],
employ manual methods such as telephoning participants [9]
or simply resort to providing paper-based logs [2], [10].

End-user programming is a research area where the focus
is on introducing software development into the hands of
its prospective users, rather than professional programmers.
However, the syntax and semantics of general-purpose, high
level programming languages, such as C or Java, can have
a steep learning curve. Visual programming is a research
topic that addresses this issue, encompassing applications that
are implemented through combining graphical components,
instead of code. Visual programming environments (VPEs)
exist for various end-users and goals, including beginner-
level environments for teaching students to program [11], and
professional development environments for engineers develop-
ing control systems [12]. To our knowledge, no such visual
language or environment has been created for researchers
who wish to create context-aware mobile applications such as
ESM studies. In this paper, we therefore make the following
contributions:

1) A survey of the current state-of-the-art in ESM study
creation applications and tools.

2) A presentation of Jeeves, a visual language for facil-
itating ESM study creation.

3) A feasibility study of Jeeves, conducted with 20
participants, with varying programming experience.

II. BACKGROUND REVIEW

To relieve researchers from the difficulty of learning a
programming language from scratch, commercial and open-
source software has been created that address at least some
of the issues faced by researchers in developing their own
ESM applications. Typically, this software consists of a web
interface that enables the specification of surveys, and timing
frameworks for the deployment of these surveys. Specifications
are then delivered to customised applications installed on

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Tool name UI In
te

rv
al

tr
ig

ge
r

Se
ns

or
tr

ig
ge

r
Se

ns
or

lo
gg

in
g

Us
er

ta
ilo

re
d

Dy
na

m
ic

up
da

te

Br
an

ch
lo

gi
c

Fr
ee

O
pe

n

movisensXS Visual

language
X X X X

PIEL Text

file
X X X

LifeData Forms X X X

mEMA Forms X X X X X

iPromptU Within

app
X X

MetricWire Forms X L X X X

Ohmage XML

file
L X X X X

PACO Forms X A X X X X

TABLE I: Features of ESM-focused apps currently available
on the iTunes App Store or Google Play Store in the UK
(L=Location-based trigger, A=Trigger based on app usage)

participants’ mobile devices. We selected systems, which have
apps that are currently available on the iTunes UK store or
the Google Play store, and are thus considered to be the
current state-of-the-art for iOS and Android app development.
Additionally, numerous applications exist for creating one-off
surveys, with no focus on ESM, and were not considered for
this comparison. Applications that run on bespoke or outdated
hardware were also not considered. In total, eight tools were
surveyed and their key properties and features are summarised
in Table I.

MovisensXS [13] has the most advanced specification user
interface, with a flowchart-based visual language for cus-
tomising study schedules. Four of the reviewed applications,
LifeData [14], mEMA [15], MetricWire [16] and Paco [17],
allow developers to create both the surveys and the distribution
schedules in similar forms-based interfaces, and these surveys
are then assigned to one or more schedules. Another alternative
interface employed by the PIEL [18] and Ohmage [19] tools, is
a configuration file written by the end-user. This file contains
the surveys and schedules in a textual representation, corre-
sponding to some syntactic rules, similar to the approach used
in MyExperience. Finally, iPromptU [20] has the survey and
schedule specification interface within the application itself.

While it’s clear from Table I that there are some sophis-
ticated tools and applications for researchers, there are also
clear deficiencies which we now detail.

1) Lack of free and open software: Applications that offer
more sophisticated functionality are commercial software that
require considerable financial investment from researchers.
This can be an issue if the proposed studies are large or if

the functionality required goes beyond what is provided in
cheaper versions of the software.

2) Lack of sensor utilisation: MetricWire and Ohmage
offer the possibility of triggering based on location, and Paco
can trigger surveys contingent on basic application usage.
However, none of these applications are making use of the
rich variety of sensors and participant information available
through the current generation of mobile devices. Omitting this
functionality is sacrificing valuable contextual information.

3) Lack of support for collaboration: Despite claims to
support academic research, none of the reviewed applications
allow simple sharing of ESM applications between researchers,
which would encourage collaboration, enabling simple study
replication or improvement on existing studies.

4) Lack of participant customisation: Few tools offer a
means to tailor apps based on an individual’s characteristics
and preferences. For example, it may be desirable to only
begin sending surveys after a participant’s pre-defined wake-
up time, which would undoubtedly reduce study attrition.
Instead, studies deployed to a group tend to be “one-size-fits-
all”, and do not take into account individuals’ characteristics.
The importance of survey timing depending on participant
characteristics was highlighted in additional work by Lathia et.
al [21]. They showed that a response bias caused by simplistic
trigger design gives rise to contextual dissonance. They explain
that trigger design will “affect the responses that are collected
and indeed paint differing pictures of participants’ moods,
locations, and social settings”.

From Table I, it would appear that PACO offers a feature-
rich application for no monetary investment. However, it is
limited to only allowing one survey and one trigger type
within an application. Ohmage’s triggering is very limited,
and can only be specified from the client-side application, so
remote distribution of trigger-based sampling is not possible.
In summary, these four areas of deficiency call for further
research into providing functionality for creating customised,
sensor-augmented studies, without compromising usability.

III. OUR SOLUTION: JEEVES

A number of factors influenced our initial design, including
previous successful visual languages, scientific theories of
visual notation, and domain-specific features of the Experience
Sampling Method. This section summarises the main influ-
ences, as well as the current features of the Jeeves environment.

A. Influences

1) Block-based programming: Block-based visual pro-
gramming has been popularised by languages such as
Scratch [22] and MIT App Inventor [23]. A key feature of
these systems are the construction “blocks”, which fit together
like jigsaw puzzle pieces. These blocks can provide different
levels of abstraction over concepts that would be consider-
ably more complex within a textual language. Their visual
appearance affords correct combinations, and the environment
implements constraints such that the language blocks can only
be combined in syntactically correct ways. This eliminates
issues caused by syntax errors which are a major problem
for novice programmers. It makes them an ideal platform

for creating domain-specific languages for ESM applications,
where adding functionality to, for example, send a survey every
hour between 9am and 5pm, or when the participant receives
an SMS, could be as simple as fitting two blocks together. This
would provide an immediate entry point for researchers into
creating potentially highly complex applications, and inspired
us to create our visual environment with a similar notation.

2) Structure of EmotionSense libraries: The featured com-
ponents of our language, namely sensors, triggers and actions
were directly influenced by the structure of the EmotionSense
libraries (see [24] for a full description). These libraries were
designed for the purpose of facilitating creation of social
sensing applications, and so their functionality is largely based
on requirements drawn from ESM literature. The libraries
provide a simple API for configuring the sampling intervals
and sampling duration of Android smartphone sensors, which
can be dynamically updated by periodically downloading a
JSON configuration file from a remote server. The libraries
implement time and sensor-initiated “triggers”, which allow
actions to be taken at given times of the day, or on given
values returned from polled sensors. Further constraint-based
logic can be imposed on trigger timings through a stored set
of participant preferences.

3) Physics of Notations: Moody defines nine principles for
the design of visual notations that are “optimised for human
understanding and problem solving”, titled the Physics of No-
tations [25]. These were developed in response to a lack of an
empirical basis for the evaluation of visual languages. Moody’s
principles are based on empirical evidence and theory, and
serve as both an evaluation framework for existing languages,
as well as clear guidelines for developing new languages. One
such example, which has informed our work, is the Principle
of Perceptual Discriminability, which states that “Different
symbols should be clearly distinguishable from each other”.
The other principles are similarly explicit, concise and directly
relevant to visual notations such as our environment, which is
described in the following section.

B. Features and Implementation of Jeeves

Our VPE is entitled “Jeeves” (Java End-User Environment
for Visual Experience Sampling). Components of Jeeves are
primarily represented by graphical primitives, which can be
dragged from menus in a sidebar onto a “canvas” pane. As
in other block-based languages, syntax is automatically dealt
with by allowing components to be nested within each other,
in combinations that adhere to the visual grammar of the
language, as illustrated in Fig. 1. By nesting and combining
components, an end-user specifies the behaviour of an ESM
application, and these combinations of components can addi-
tionally be saved to a library of custom combinations for reuse
in other applications. The sidebar containing these components
is shown in Fig. 2.

1) Triggers: Triggers (Fig. 1e) define the condition under
which to execute particular Actions. They are broadly divided
into “time-based” and “sensor-based” Triggers, with additional
domain-specific Triggers based on a participant’s answer to a
survey question, or whether a survey itself was completed or
ignored. They contain a receiver pane into which Actions can
be dropped.

Fig. 1: An example nesting of all different component types,
with the labeled type of each component

2) Actions: Actions (Fig. 1c) abstract over functions that
the application can perform, and are broadly divided into
three categories. “Prompting Actions” are those which com-
municate with a participant, or the contacts in a participant’s
phone/email directory, “App settings Actions” are used to dy-
namically change the sensing configuration of the application,
and “Phone settings Actions” passively update settings on the
participant’s device, such as display brightness. These Actions
are nested in the receiving panes of Triggers and are executed
as a sequence.

3) Conditionals: Conditionals (Fig. 1d) are visual compo-
nents which act like Actions in that they are nested within
Triggers, but also contain a receiving pane for nesting ad-
ditional Actions. The current three Conditionals in Jeeves
are analogous to if-then statements, for loops, and do-while
loops found in imperative programming languages, and the
Actions within them are executed once, multiple times, or
never, depending on whether the component’s condition holds
true.

4) Variables and Expressions: Jeeves supports Boolean
and numeric data types, which are represented by “Variable”
primitives (Fig. 1a), a means of representing permanent and
temporal information about a participant that maps conceptu-
ally to variables in imperative textual languages. Expressions
(Fig. 1b) also have a data type, which have panes for receiving
two Variables, and output either a Boolean or numeric result.
For example, a numeric “Add” Expression takes two numeric
Variables or values, and outputs a numeric value. Expressions
can be nested to create more complex Expressions.

Additional necessary components are not represented as
drag-and-drop primitives in the sidebar, but are instead con-
ceptualised as “abstract components”, the representations of
which are displayed in separate tabs of the sidebar. Jeeves’s
“Sensor” and “Survey” components fall into this category, and
are described below.

Fig. 2: The “Framework creator” sidebar of Jeeves, showing
the expanded submenu of the “prompting actions” group

5) Sensors: A mobile sensor is visualised as an information
pane containing a representative image, its enabled/disabled
status, and its sampling duration and interval where relevant.
The sensing configuration of an application can be adjusted
directly from these panes as shown in Fig. 3, allowing an
end-user to collect all necessary information, while minimising
drain on the battery.

Fig. 3: Screenshot of the “Sensors” pane, with the end-user
adjusting the Gyroscope sensor configuration

6) Surveys: Surveys are a key feature of ESM studies
and can be created in the Jeeves environment. Guided by
ESM literature, response types can be open-ended, multiple
choice, or along a numeric Likert-like scale. Additionally,
basic conditional logic allows a question to be presented if
a previous question was given a particular answer.

C. Architecture/Implementation

We briefly touch on the system architecture to justify the
choice of languages and frameworks used.

1) JavaFX: The end-user interface is implemented in Java
using the JavaFX API. This provides a number of graphical
features to support similar appearance and functionality of
other block-based programming languages. Open libraries such
as Blockly [26] exist for this purpose, but restrict the potential
for graphical customisation. Instead, we opted to implement
the Jeeves language from the ground up, to allow flexibility as
the language develops.

2) JSON/MongoDB: Each component of the language has
a JSON representation. This allows entire applications to be
stored as JSON objects, independent of the client-side appli-
cation that runs them. All saved applications and end-user-
defined component combinations are stored in a MongoDB
database. MongoDB allows simple, flexible storage of JSON
objects, and a key advantage of storing this information in a
central repository is that other applications, surveys or complex
components can be shared, recycled and augmented by other
end-users with similar requirements for their own ESM studies.
This idea has been inspired by Scratch’s highly successful
online community, in which end-users can share their work
with each other.

3) EmotionSense Libraries: The current version of Jeeves
includes a front-end client application, which is programmed
in Android and makes use of the EmotionSense libraries. The
libraries distinguish between “pull” sensors (those that can
be sampled at any time) and “push” sensors (those that only
return values on events, such as an SMS being received). The
Sensor, Trigger and Action configurations of an application
are acquired from the JSON application specification created
in Jeeves, which is periodically downloaded from our remote
server.

IV. USE CASE

To demonstrate the Jeeves language’s utility as a proof-of-
concept, we recreated experience sampling applications from
both psychology and medical research journals. Kramer et.
al [5] describe their ESM study as follows:

PsyMate was programmed to emit a beep 10 times
per day at random intervals in each of ten 90-min
time blocks between 7.30 and 22.30.

A Jeeves specification for such a study is shown in Fig. 4.
The left side of this figure shows the canvas with a “Random
Trigger” set to fire a survey within every 90-minute window
from 7.30 to 22.30. Also, the right side of the figure shows a
snapshot of the Survey creator pane. Kramer et. al explained
that their survey assessed various affects of the participant on
a Likert scale of 1 to 7. The state of this pane shows how such
a question can be specified in Jeeves.

A more complex example is described in a study by Steptoe
and Wardle [2]:

Affect measures were obtained at four time points
over the course of the day: on waking, 30 min after
waking, at 7:00 PM, and at bedtime.

(a) Random survey triggering (b) Likert scale survey question

Fig. 4: Replication of the ESM study from Kramer et. al [5]
(left) as a visual specification and an example question in the
“Survey creator” pane (right)

Fig. 5: Example specification for the ESM study in Steptoe
and Wardle [2]

The specification for this study is shown in Fig. 5. The left
Trigger is fired when the screen is activated. The context of
whether a participant is meant to be asleep or not is stored in
the Boolean Variable “UserWokenUp”. The idea behind this is
that a unique participant variable can be set based on a sensor
value. In this case, the participant has “woken up” when the
smartphone’s screen is interacted with.

V. EVALUATION

In order to evaluate the usability of the Jeeves environment,
and the feasibility of developing it further for use by non-
programmers, we conducted a preliminary user study. Our
aim was to acquire qualitative usability feedback, and to
quantitatively test three hypotheses:

• H1: There would be no significant difference in the us-
ability scores of programmers and non-programmers.

• H2: Non-programmers would not make significantly
more errors than programmers in performing the tasks.

• H3: Non-programmers would not take significantly
more time than programmers in completing the tasks.

A. Pilot study

A pilot study was conducted with three HCI researchers
in the computer science department, to highlight any flaws
in the original study script. This proved valuable as our initial
script consisted of three step-by-step guides, and it was pointed
out that this script, even if fully completed, only assessed the
usability of the environment and not the understandability or
readability of the language itself. The script was subsequently
adapted and will be described fully in this section.

B. Participants

We recruited 20 student participants from the university by
convenience sampling (age range 19-34). 11 had prior expe-
rience of programming, with self-assessed confidence varying
from beginner to advanced. All programming participants had
at least basic experience with imperative languages such as
Java, Python and MATLAB. The other nine participants had
no prior programming experience. Participants studied a wide
range of subjects, including computer science, physics, chem-
istry, history, English, management and international relations.
The environment was introduced as a tool to create self-
monitoring apps. As the ESM was not mentioned, participants’
subject of study has no relevance to real-world usage.

C. Procedure

Participants first completed an introductory questionnaire
to obtain demographic information, programming experience
and general usage of technology. They were then given an in-
troduction booklet explaining the components of the language,
and allowed a maximum of 10 minutes to read through this
and familiarise themselves with the user interface. They were
then issued a script explaining four tasks described in the next
section. Participants were given a maximum of 30 minutes to
work through this script. Finally, participants completed the
System Usability Scale questionnaire, and additional feedback
was acquired through the audio recording of informal discus-
sion. All participants were then debriefed and compensated
with a £5 Amazon voucher for their participation.

D. Tasks

The tasks presented to the participants were as follows: 1

Task 1, Step-by-step guide – The purpose of this task
was to familiarise participants with the layout of the environ-
ment, while isolating issues associated with the control and
navigation, thus no issues in language comprehension were
highlighted. Instead the task was designed to ensure coverage
of all testable features of the environment.

Task 2, Reading and explaining – This task was to assess
the readability and comprehensibility of the Jeeves language
itself, irrespective of the environment. Being able to read and
comprehend a program is necessary to promote collaboration
between researchers wishing to replicate or refine studies cre-
ated by others, and was a primary motivating factor in choosing
a visual language representation. In this task, participants
loaded a pre-created application and wrote down what they

1The full task script, Jeeves documentation, participant comments, and how
this paper addresses reviewers’ rebuttal comments, are available from http:
//sachi.cs.st-andrews.ac.uk/?p=5119

thought its function was.
Task 3, Modification – This task asked participants to aug-

ment the Task 2 application with two additional features from
high-level descriptions. This also assessed Jeeves’s feasibility
for real-world usage: given that a researcher has specific design
goals in mind, how simple is it for them to implement these
goals using Jeeves? This task took into account the usability
of both the environment and the language.

Task 4, Design – This task asked participants to design
and create an application from scratch, based on a paragraph
describing a use-case scenario. This task also assessed the
ease in which a design goal could be implemented using
the language and its environment, but with a more abstract
description, and no prior implementation given.

VI. RESULTS

In order to test our hypotheses and the general usability of
Jeeves, we performed quantitative and qualitative analysis.

A. Quantitative results

We collected errors made, time taken, and System Usabil-
ity Scale scores, to test each of our three hypotheses, per-
forming independent t-tests between programming participants
and non-programming participants with the SPSS statistical
analysis software package. Task 4 (the design task) was not
included in the analysis of time taken or errors made, as some
participants did not complete this task in the allotted study
time.

1) Usability: The System Usability Scale (SUS) is often
called a “quick and dirty” means of evaluating a product,
and consists of a simple 10-item Likert scale questionnaire,
which has been shown to be reliable in hundreds of usability
studies [27]. See Table II for the ten questions. In our study,
programmers and non-programmers reported numerically sim-
ilar scores (M = 71.8, SD = 10.7 for programmers, and M =
67.2, SD = 13.9 for non-programmers). An independent sam-
ples t-test also showed that there was no significant difference
in usability between the two groups, t(18) = 0.838, p = 0.413,
so we can accept our first hypothesis. Although SUS scores
are not normally distributed (in which case the Friedman test
would be appropriate), the sample mean of each group, which
was tested as the dependent variable, is normally distributed,
so the t-test is valid. Given that a previous survey computed the
mean SUS score across over 2000 studies to be 69.7 [28], and
an acceptable usability score is considered to be 70 or above,
this result suggests that the system is of average usability
to even those with no programming knowledge. Results are
shown in Fig. 6. In calculating the overall score out of 100,
each answer is converted to a score from 0-4 as shown
in the chart. Converting the values to a score out of 100
allows normalisation of the data. These scores are inverted for
negatively-worded questions, so that a higher score indicates
greater usability.

Research by Lewis and Sauro [29], has shown that the
SUS can also be used to separately evaluate “learnability”. As
the steep learning curve of high level programming languages
was another motivation for our design, the ease with which
researchers can learn to use Jeeves is critical to its adoption.
Learnability scores were computed as a score out of 100 based

on answers to Question 4 and Question 10 (see Table II) as
was demonstrated in [29]. The mean learnability was 77.3
(SD = 13.5) for programmers and 66.7 (SD = 21.7) for non-
programmers, suggesting it is acceptably learnable by users of
all experiences.

System Usability Scale (SUS) Questions
Q1. I think that I would like to use this system
frequently
Q2. I found the system unnecessarily complex
Q3. I thought the system was easy to use
Q4.. I think that I would need the support of a technical
person to be able to use this system
Q5. I found the various functions in this system
were well integrated
Q6. I thought there was too much inconsistency
in this system
Q7. I would imagine that most people would learn
to use this system very quickly
Q8. I found the system very cumbersome to use
Q9. I felt very confident using the system
Q10. I needed to learn a lot of things before I could
get going with this system

TABLE II: SUS questions

Fig. 6: SUS score for each question and 95% confidence
intervals. The dashed line highlights mean SUS score as
calculated in [28]. (Questions with inverted scores are in bold.)

2) Errors made: Errors were divided into three categories.
Presentation errors were all mistakes that were caused by
the presentation of information to the participant, including
instances where a participant misinterpreted a button’s function
or omitted a step in completing a survey. Navigation errors
were all attempts to find a component in the wrong menu, or a
navigation to the incorrect sidebar tab. (A sequence of incorrect
menu activations was counted as one error.) Control errors
were any mistakes in direct manipulation of components,
such as dragging immovable buttons, or accidentally removing

components from their nested location.

For Tasks 1, 2 and 3, programmers made an average of
8.9, 0.2 and 7.0 errors respectively, giving a mean total of
16.1 errors (SD = 4.3). Non-programmers made an average
of 10.2, 1.0 and 7.9 errors respectively, giving a mean total of
19.1 errors (SD = 8.7). An independent samples t-test showed
no significant difference between the two groups, t(11.174) =
−0.952, p = 0.351. This means that we can accept our second
hypothesis. As there is no upper bound on the number of errors
a user can make, this data is considered to be continuous,
justifying use of a t-test over a Chi-Square test, for example.
Results are shown in Fig. 7.

Fig. 7: Mean errors and 95% confidence interval

3) Task Time: For Tasks 1, 2 and 3, programmers took an
average of 576.2s, 208.1s and 276.3s respectively, for a mean
total of 1060.6s (SD = 176.8). Non-programmers took an
average of 713.4s, 239.2s and 427.4s respectively, for a mean
total of 1380.0s (SD = 315.7s). In this case, the independent
samples t-test showed a significant difference in time taken,
t(12.002) = −2.709, p = 0.019, meaning we reject our
third hypothesis. As this test involved one dependent variable
between two groups, the t-test is a valid measure. Results are
shown in Fig. 8.

Fig. 8: Mean time taken and 95% confidence interval

B. Qualitative results and Analysis

We analysed screen recordings and triangulated our insights
with participants’ quantitative results and verbal feedback. We
used a basic grounded theory approach, organising partici-
pant responses based on common concepts. Five main con-
cepts were identified, and representative participant comments,
phrased both positively and negatively towards each concept,
are presented in Table III. We now list additional insights
obtained from these recordings.

1) Task 4 designs: Participants who had enough time to
generate a partial solution tended to use a “programming by
bricolage” process, building from the ground up and deleting
erroneous components as necessary, identical to participants
in an analysis of Scratch user habits by Meerbaum-Salant et.
al [30]. Notable exceptions were the three participants who
considered themselves to be “advanced” programmers. All
three appeared to have a pre-conceived design, and constructed
their solutions without using any unnecessary components.

2) Copying/Pasting: It was interesting to note that use of
the copy/paste feature was exclusive to programmers. 10 of the
11 programmers used copy/paste during their task, but no non-
programmers did so. This may suggest a disinclination for non-
programmers to experiment with unfamiliar features. A study
by Brandt et. al [31] suggests that programmers endeavour
to engage in “rule-based performance” – to look for code
that performs that goal, and modify it to their specific needs.
Our results suggest that non-programmers may lack this rule,
and revert to “knowledge-based performance”, where more
conscious thought is required.

3) Hesitation: From the quantitative results, programmers
were significantly faster than non-programmers, but with a
similar number of errors. We hypothesised that this was due to
programmers having a greater recall of required components,
so we reviewed the recordings and counted “incorrect nav-
igations” – entering a menu then exiting immediately – and
divided this by the time taken to give a rate of incorrect clicks.
Surprisingly, programmers’ average rate of incorrect clicks was
1.06/min, and non-programmers’ average rate was 0.95/min,
with no statistically significant difference. From observation
it was notable that non-programmers would often hover over
menu buttons, whereas programmers would not hesitate in their
search and exploration process.

4) Subject mentality: Our non-programming participants
came from both scientific and humanities backgrounds. With
the exception of one outlier, the three humanities students
took the most time and made the most errors. This may
suggest that having a scientific background makes unfamiliar
programming concepts more intuitive, in line with a previous
study, which showed that student programming performance
is correlated with performance in science subjects [32]. Our
target demographic are researchers in scientific fields, so this
is an encouraging result in terms of Jeeves’s learnability, but
may have implications for VPEs intended for non-scientists.

VII. LIMITATIONS

We recruited students as participants rather than our target
demographic of researchers outside the field of computer
science, which could be interpreted as a threat to the validity of

Concept Positive
Comments

Negative
Comments Participant quote

Visual appeal 7 2 “I like that there are different colours, that’s quite important” (NP17); “It’s
clearly laid out” (P15)
“It’s really boxy and...I don’t find the aesthetics particularly pleasing” (P4)

Real-world usage 4 2 “I think it’s something my sister could use...also for me, I guess. Like, I
don’t wanna worry about making an app, right?” (P13); “I would love to have
something like this just to do your own app” (NP19)
“I’m a programmer, I’d rather just...write a loop myself” (P2)

Learnability 10 3 ‘You start feeling a bit more confident in it and like you can work it” (NP7);
“Once I read the instructions and familiarised myself it was really good” (NP11)
“Would I need the support of a technical person? Like for me, no, but for other
people, probably” (P15)

Control 4 11 “It was easy to kind of like build the trigger” (NP12)
“I notice that you need to click and then drag. I always try to just click and click
and then...expecting something to happen” (P16);“It didn’t handle the mouse
action very well sometimes” (P5)

Likeability 7 3 “It was quite interesting cause I haven’t done anything like this before” (NP8);“I
think it’s lots of fun” (P18)
“Reordering didn’t work as I wanted it to” (P16); “It’s a little annoying” (P6)

TABLE III: Selected comments related to the five main concepts (positive comments in green, negative comments in red,
programmer=P(x), non-programmer=NP(x)).

this study. Students were a much more accessible group than
external researchers, and given that this was an initial proof-
of-concept and usability study, a larger number of participants
with diverse subject backgrounds and programming knowledge
was considered to be of paramount importance. It allowed us
to collect a variety of feedback ranging from those with no
programming experience and limited computer use, to HCI
students who have studied interface usability as part of their
undergraduate or postgraduate work.

It could also be argued that students in general will have
little interest in the ESM, misrepresenting Jeeves’s real-world
use and rendering the study invalid. To prevent this, we
reconsidered how Jeeves could function for non-researchers,
and instead introduced it to our participants as an application
to create self-reminder and data collection apps. Given that
only one participant explicitly stated that they would not use
it in their daily lives, four explicitly stated that they would like
to use Jeeves in real life, and the average score for Question
1 of the SUS (“I think that I would like to use this system
frequently’) was 3.4 out of 5, it is apparent that participants
in general could imagine themselves as potential end-users.

VIII. DISCUSSION/FUTURE WORK

Through our experimental method we were able to empir-
ically test our three hypotheses, with screen capture analyses
and participant comments revealing specific insights and is-
sues. Participants, particularly non-programmers, gave positive
verbal feedback on the environment, reflecting the ease with
which they were able to generate specifications, and the major-
ity of issues reported were minor annoyances in the drag-and-
drop manipulation, rather than struggles with understanding
the Jeeves language itself.

A potential line of future research is to extend this language
beyond smartphones into other mobile technologies. There is
a growing prevalence of wearable technology through which
ESM studies could be administered. The JSON study specifica-
tion is agnostic to the client device, and study replication could
be performed with heterogeneous devices through bespoke
client-side apps.

Following a second iteration of the visual language’s de-
sign, we will refine the Android front-end to allow robust ESM
applications to be run, and to test usability and satisfaction with
end-users specific to the fields of psychology and medicine.
The application is of sufficient functionality to run basic
specifications, but further information is omitted as a future
publication will specifically cover this application.

IX. CONCLUSION

We have described Jeeves, a visual language and environ-
ment for the specification of Experience Sampling Method
applications for Android smartphones. We have also demon-
strated its utility by recreating ESM applications from the
literature, and conducted a study to determine usability by
end-users of varying programming knowledge, in which we
show that the language and environment can be feasibly used
by participants with no programming experience. In the more
general domain of end-user development, this initial evaluation
has shown that visual programming is a feasible direction of
research for enabling technology-supported studies by end-
users from various backgrounds.

ACKNOWLEDGMENT

The authors would like to thank Dr David Harris-Birtill for
his continuous feedback and assistance with testing.

REFERENCES

[1] M. Csikszentmihalyi and R. Larson, “Validity and reliability of the
Experience-Sampling Method.” The Journal of nervous and mental
disease, vol. 175, no. 9, pp. 526–36, Sep. 1987.

[2] A. Steptoe and J. Wardle, “Positive affect measured using ecological
momentary assessment and survival in older men and women.” Pro-
ceedings of the National Academy of Sciences of the United States of
America, vol. 108, no. 45, pp. 18 244–8, Nov. 2011.

[3] D. S. Bond, J. G. Thomas, B. A. Ryder, S. Vithiananthan, D. Pohl,
and R. R. Wing, “Ecological momentary assessment of the relationship
between intention and physical activity behavior in bariatric surgery
patients.” International journal of behavioral medicine, vol. 20, no. 1,
pp. 82–7, Mar. 2013.

[4] J. E. Spook, T. Paulussen, G. Kok, and P. Van Empelen, “Monitoring
dietary intake and physical activity electronically: feasibility, usability,
and ecological validity of a mobile-based Ecological Momentary As-
sessment tool.” Journal of medical Internet research, vol. 15, no. 9, p.
e214, Jan. 2013.

[5] I. Kramer, C. J. P. Simons, J. A. Hartmann, C. Menne-Lothmann,
W. Viechtbauer, F. Peeters, K. Schruers, A. L. van Bemmel, I. Myin-
Germeys, P. Delespaul, J. van Os, and M. Wichers, “A therapeutic
application of the experience sampling method in the treatment of
depression: a randomized controlled trial.” World psychiatry : official
journal of the World Psychiatric Association (WPA), vol. 13, no. 1, pp.
68–77, Feb. 2014.

[6] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay,
“MyExperience: a system for in situ tracing and capturing of user
feedback on mobile phones,” in Proceedings of the 5th international
conference on Mobile systems, applications and services. ACM, 2007,
pp. 57–70.

[7] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow, C. Longworth,
and A. Aucinas, “EmotionSense,” in Proceedings of the 12th ACM
international conference on Ubiquitous computing - Ubicomp ’10. New
York, New York, USA: ACM Press, Sep. 2010, p. 281.

[8] M. A. Moreno, L. A. Jelenchick, R. Koff, J. C. Eickhoff, N. Goniu,
A. Davis, H. N. Young, E. D. Cox, and D. A. Christakis, “Associations
between internet use and fitness among college students: an experience
sampling approach,” Journal of Interaction Science, vol. 1, no. 1, p. 4,
2013.

[9] D. L. Rofey, E. E. Hull, J. Phillips, K. Vogt, J. S. Silk, and R. E. Dahl,
“Utilizing Ecological Momentary Assessment in pediatric obesity to
quantify behavior, emotion, and sleep.” Obesity (Silver Spring, Md.),
vol. 18, no. 6, pp. 1270–2, Jun. 2010.

[10] G. A. Floridou and D. Müllensiefen, “Environmental and mental
conditions predicting the experience of involuntary musical imagery:
An experience sampling method study.” Consciousness and cognition,
vol. 33, pp. 472–86, May 2015.

[11] M. C. Carlisle, “Raptor: a visual programming environment for teach-
ing object-oriented programming,” Journal of Computing Sciences in
Colleges, vol. 24, no. 4, pp. 275–281, Apr. 2009.

[12] C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, “National Instru-
ments LabVIEW: A Programming Environment for Laboratory Au-
tomation and Measurement,” Journal of the Association for Laboratory
Automation, vol. 12, no. 1, pp. 17–24, Feb. 2007.

[13] movisens GmbH, “movisensXS - eXperience Sampling for Android!”
2015. [Online]. Available: https://xs.movisens.com/

[14] LifeData, “LifeData,” 2015. [Online]. Available: https://www.
lifedatacorp.com/

[15] Mema.ilumivu.com, “Mobile Ecological Momentary Assessment
Software,” 2015. [Online]. Available: http://mema.ilumivu.com/

[16] Metricwire.com, “MetricWire: Mobile Data Collection Made Easy,”
2015. [Online]. Available: https://metricwire.com/

[17] Pacoapp.com, “PACO Experiment Dashboard,” 2015. [Online].
Available: https://www.pacoapp.com/

[18] “Profile of the PIEL Survey — Free, easy to use
survey app.” [Online]. Available: http://pielsurvey.org/index/
survey-experience-sampling-method/

[19] Ohmage.org, “ohmage,” 2015. [Online]. Available: http://ohmage.org/
[20] Cogtherapy.com, “iPromptU,” 2015. [Online]. Available: http://www.

cogtherapy.com/ipromptu.htm
[21] N. Lathia, K. K. Rachuri, C. Mascolo, and P. J. Rentfrow, “Contextual

dissonance,” in Proceedings of the 2013 ACM international joint
conference on Pervasive and ubiquitous computing - UbiComp ’13.
New York, New York, USA: ACM Press, Sep. 2013, p. 183.

[22] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch Programming Language and Environment,” ACM Transactions
on Computing Education, vol. 10, no. 4, pp. 1–15, Nov. 2010.

[23] D. Wolber, “App inventor and real-world motivation,” in Proceedings
of the 42nd ACM technical symposium on Computer science education
- SIGCSE ’11. New York, New York, USA: ACM Press, Mar. 2011,
p. 601.

[24] N. Lathia, K. Rachuri, C. Mascolo, and G. Roussos, “Open source
smartphone libraries for computational social science,” in Proceedings
of the 2013 ACM conference on Pervasive and ubiquitous computing
adjunct publication - UbiComp ’13 Adjunct. New York, New York,
USA: ACM Press, Sep. 2013, pp. 911–920.

[25] D. Moody, “The Physics of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering,” IEEE
Transactions on Software Engineering, vol. 35, no. 6, pp. 756–779,
Nov. 2009.

[26] N. Fraser and Others, “Blockly: A visual programming editor,” 2013.
[Online]. Available: https://developers.google.com/blockly/

[27] J. Brooke, “SUS-A quick and dirty usability scale,” Usability evaluation
in industry, vol. 189, no. 194, pp. 4–7, 1996.

[28] A. Bangor, P. T. Kortum, and J. T. Miller, “An Empirical Evaluation of
the System Usability Scale,” International Journal of Human-Computer
Interaction, vol. 24, no. 6, pp. 574–594, Jul. 2008.

[29] J. R. Lewis and J. Sauro, Human Centered Design, ser. Lecture Notes
in Computer Science, M. Kurosu, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, Jul. 2009, vol. 5619.

[30] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, “Habits of program-
ming in scratch,” in Proceedings of the 16th annual joint conference
on Innovation and technology in computer science education - ITiCSE
’11. New York, New York, USA: ACM Press, Jun. 2011, p. 168.

[31] J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer, “Opportunistic
programming,” in Proceedings of the 4th international workshop on
End-user software engineering - WEUSE ’08. New York, New York,
USA: ACM Press, May 2008, pp. 1–5.

[32] S. Bergin and R. Reilly, “Programming: factors that influence success,”
ACM SIGCSE Bulletin, vol. 37, no. 1, p. 411, Feb. 2005.

