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Abstract 
The paper looks at replacing the current top-down 
approach to modelling, predominantly used in dynamic 
simulation tools, with a nature inspired bottom-up 
approach based on principles of swarming. 
Computational fluid dynamics (CFD) is chosen for this 
research, as one of the most time-consuming processes 
under the traditional simulation approach. Generally 
based on Navier-Stokes simultaneous differential 
equations, CFD requires considerable user preparation 
time and considerable CPU execution time. The main 
reason is that the top-down equations represent the system 
as a whole and generate a large solution space, requiring 
a solver to find a solution. However, air and building 
materials do not have cognitive capabilities to solve 
systems of equations in order to ‘know’ how to transfer 
heat. Instead, heat transfer occurs through proximity 
interaction between molecules, leading to self-organised 
behaviour that is much faster than the behaviour modelled 
by the top-down systems of equations. The paper 
investigates how the bottom-up approach using the 
principles of swarming could improve the speed and 
interactivity of CFD simulation.  

Introduction 
Swarming is a term that describes collective behaviour of 
animals, characterised by self-organising patterns of 
astonishing complexity. Yet there is evidence that this 
complexity arises from the simplest of local rules applied 
on an individual level (Reynolds 1987). Swarming is used 
here as a generic term, which is named differently when 
applied to group formations of specific living species: 
flocking refers to swarming formations of birds, 
schooling or shoaling refers to formations of fish, herding 
refers to formations of four-legged animals, and swarm 
behaviour of insects is simply referred to as swarming. 
The research aim of this paper is to investigate whether 
swarming principles can be used as a starting point for 
bottom-up simulation of computational fluid dynamics 
(CFD) by developing a proof of concept model. 
The specific research objectives are: 
1. To develop particle swarming model using the rules 

of separation, alignment, and cohesion. 
2. To eliminate conscious actions associated with 

swarming rules as the first step towards CFD 
modelling. 

3. To implement principles of physics on each swarm 
particle, including Newton’s Second Law, thus 
creating the rules for CFD modelling. 

4. To qualitatively compare the swarming CFD 
approach with the traditional approach. 

5. To ascertain the steps towards further development 
requirements and towards experimental validation 
and integration into simulation tools. 

How CFD could benefit from this work? The current 
static approaches of representing computational fluid 
dynamics do not enable designers to fully explore 
complex interactions between the building, people and air 
movement. The main motivation for this work is an 
expectation that the nature inspired approach would 
provide new dynamic and interactive insights into CFD 
modelling in comparison with the traditional top-down 
approaches, whilst significantly reducing simulation time. 

Previous work 
Although there has been a notable development of 
swarming algorithms and related methods, and although 
swarm behaviour appears to be fluid-like, there is very 
little evidence of swarming methods being used for 
modelling of fluid flow.  
Pioneering work in the field of swarm modelling was first 
published by Craig Reynolds (Reynolds 1987). In his 
seminal paper entitled ‘Flocks, Herds, and Schools: A 
Distributed Behavioral Model’ he introduced simple rules 
on an individual level, that created realistic looking and 
dynamically changing swarm formations without a master 
controller in the model. These rules were further 
elaborated in a follow up paper (Reynolds 1999).  
Although Reynolds’s work was focused on applications 
for film animation, he influenced an entire new area in 
science and engineering. Adapted swarming principles 
were applied to modelling of civil engineering structures 
(Jankovic et al., 2000, Jankovic et al., 2003), leading to 
emergent models that represented more realistic dynamic 
behaviour of bridges, in comparison with top-down 
models based on the finite element method. Particle 
swarm optimisation was used in specialised aspects of the 
flow of traffic (Deng, Tong, and Zhang 2010), and also in 
fluid flow modelling of heat exchangers (Rao and Patel 
2010), in representation of river flow (Gupta and Ganti 
2011) and in other systems. Although principles of 
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emergence inspired by Reynolds’s work were applied to 
CFD modelling using cellular automata (Ljubomir 
Jankovic 2017), there is no evidence that swarm 
behaviour has been applied to CFD modelling before. 

Method 
At the start of this research a particle swarming model was 
developed using the rules published by Craig Reynolds 
(Reynolds 1999). These included: 
1. Separation, to handle particle to particle collision 

detection and avoidance.  
2. Cohesion, to target average position of the 

immediate neighbourhood within the swarm and thus 
form a group together with the other particles. 

3. Alignment, to adjust own speed and direction in 
order to match the speed and direction of the 
neighbouring particles. 

Whilst Separation from the above list was considered to 
be ‘sub-conscious’ action related to collision avoidance, 
the other two rules, Cohesion and Alignment, were 
considered to be ‘conscious’ actions as they involved a 
degree of decision making.  
In the first phase of the method development, all three of 
the above behaviours were embedded in each particle. 
There was no master controller in the model, ensuring that 
the resultant behaviour would be truly emergent. In order 
to optimise the speed of execution of the code, all loops 
were combined in the Separation rule, calculating 
general neighbourhood metrics such as average position 
and average velocity of the neighbours, and thus leaving 
the other two rules free from loops. 
The development environment for this research was Unity 
games engine, chosen for its 3D vector physics 
capabilities (Unity Technologies 2017). The model was 
placed in a rectangular room of width/depth/height of 
20m/20m/6m, with a 3.7m x 10m controllable roof 
opening, and with transparent front wall (Figure 1). 

Swarming model physics 
Following the rules by Craig Reynolds (Reynolds 1999), 
the swarming model physics was developed using 
pseudo-code introduced in Table 1 through to Table 3. 

 

Table 1: Separation pseudo-code 

Table 2: Cohesion pseudo-code 

Table 3: Alignment pseudo-code 

As the pseudo-code in the above tables represents three-
dimensional vector calculus, the operator referred to as 
‘normalized’ returns the operand vector with a 
magnitude of one.  
The speed of each particle was then processed by the 
Unity engine (Unity Technologies 2017) to determine 
three dimensional particle movement. 

CFD model physics 
After a realistic swarming behaviour was obtained from 
the model, the ‘conscious’ actions of Cohesion and 
Alignment were removed from the model and replaced 
by CFD calculations on a particle level. The overall 
solver, required in top down models, was replaced by 
particle to particle interaction, as in the initial swarming 
model. 
The particle level calculations included the calculations of 
thermal conductivity, density, specific heat and 
temperature for each particle. Heat balance for each cell 
was calculated as follows: 

 
where 
Q   – particle heat balance in the current time step (W) 
Qold – particle heat balance in the previous time step (W) 
Qa  – heat transferred between the particle and room air 

if the particle is in the room, or between the 
particle and external air if the particle has left the 
room (W) 

Qg  – heat transferred between the particle and its 
immediate neighbours (W) 

Qr  – heat transferred between the particle and the right 
wall of the room (W) 

 
 
 
 
 
 
 

 
Figure 1: Room in Unity engine with transparent 

front wall 

separation += (neignbour[i].position – 
myPosition).normalized; 
avgSeparation = 
separation/neighboursCount; 
mySpeed += avgSeparation x sepFactor; 

avgPosition += neignbour[i].position; 
totalAvgPosition = 
avgPosition/neighboursCount; 
desiredSpeed = (myPosition – 
totalAvgPosition).normalized; 
mySpeed += desiredSpeed x 
desSpeedFactor; 

avgSpeed += neignbour[i].speed; 
totalAvgSpeed = 
(avgSpeed/neighboursCount).normalized; 
mySpeed += totalAvgSpeed x 
avgSpeedFctor; 

𝑄 = 𝑄#$% + 
 

𝑄'+	𝑄)+	𝑄*+	𝑄$+	𝑄++	𝑄,+	𝑄-+	𝑄% 
(1) 
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Ql  – heat transferred between the particle and the left 
wall of the room (W) 

Qf  – heat transferred between the particle and the front 
wall of the room (W) 

Qb  – heat transferred between the particle and the back 
wall of the room (W) 

Qu  – heat transferred between the particle and the 
ceiling (W) 

Qd  – heat transferred between the particle and the floor 
(W). 

All of the above components of heat balance were 
modelled as convective heat transfers: 

where 
Qx  – heat transferred from source x, where x 

represented a, g, r, l, f, b, u, d in the notation from 
the previous equation 

Told  – particle temperature in the previous time step. 
 
Particle temperature T was subsequently calculated as 

where 
 𝜌	  – density (kg/m3) 
V – volume (m3) 
c – specific heat (J/(kg×K)). 
Density and specific heat for each particle were  
calculated in each time step as temperature-dependent, 
using standard formulae for moist air at 60% relative 
humidity. 
Newton’s Second Law was subsequently applied to 
determine the forces acting on each particle, in order to 
calculate particle acceleration, speed and movement. The 
force acting upon each cell particle was calculated as 

where 
Fg – gravitational force, applied in the vertical direction 

only  
Fb –  buoyancy force, applied in the vertical direction 

only 
Fw – wind force acting upon each particle 
Fp – pressure force Fp = S Δ𝑃1 × 𝐴 
Δ𝑃1 –  pressure difference between the particle and each of 

its i-th immediate neighbours 
Ff –  friction force, applied in the opposite direction of 

particle movement 
n – number of immediate neighbours for each particle, 

chosen to be a minimum between total number of 
particles and 32. 

Acceleration and velocity were then calculated for each 
particle as follows: 

 

where 
a – particle acceleration 
v – particle velocity in the current time step 
vold – particle velocity in the previous time step 
t – time step. 
Forces, acceleration and velocity were defined as three-
dimensional vectors and were handled by the vector 
calculus within the Unity engine (Unity Technologies 
2017), resulting in three-dimensional particle movement. 

Comparison with conventional CFD 
A conventional CFD model was created in IES Virtual 
Environment (IES 2017) for comparison purposes. The 
room dimensions used in this model were the same as in 
the CFD swarming simulation: width/depth/height of 
20m/20m/6m, with a 3.7x10m roof opening.  

Underfloor heating was set in this model using a radiant 
slab method (IES 2018), in order to have a comparative 
warm surface as in the swarming CFD model. The method 
involves a low height room underneath the main room 
representing radiant slab, so that low height room is 
heated and the main room is unheated. The floor/ceiling 
between these two rooms was set to high density concrete 
with very low surface resistances of 0.001 m2K/W on both 
sides. The temperature of the heated  radiant slab room is 
controlled by a sensor in the main room. The results of 
this comparative simulation  will be used to evaluate 
advantages and disadvantages of the swarming approach 
to CFD simulation. 

Simulation experiments 
Swarming experiments 
The swarming simulation starts with particles lined up 
along the base of the left and right wall, ready to be 
deployed in the simulation (Figure 3). These particles are 
launched 64 at a time on keyboard ‘key down’ command, 
so that multiples of 64 particles can be deployed in each 
simulation (Figure 4). 
Soon after the particles are launched into the room, 
collective behaviour is developed, and a swarm emerges 
as result of local rules on the particle level (Figure 5). The 
swarm subsequently explores the space driven by this 
collective behaviour (Figure 6). 
Swarming particles are equipped with trails proportional 
to their speed, to help with the observation of movement. 

𝑄4 = ℎ	(𝑇4 − 𝑇#$%) (2) 

𝑇 = 𝑇#$% +
𝑄

𝜌 × 𝑉 × 𝑐 (3) 

𝐹 =	𝐹) − 𝐹, + 𝐹=	 + 𝐹+	 + 𝐹> (4) 

𝑎 =
𝐹
𝜌	𝑉 (5) 

𝑣 = 	𝑣#$% + 𝑎 × 𝑡 (6) 

 
Figure 2: Room with radiant slab underneath 

(highlighted in red) in IES VE 
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When two vertical cylinders are inserted as obstacles into 
the room, the swarm reacts to these obstacles, breaking 
before them and re-joining after them (Figure 7). 

 

 

 

The images of swarm behaviour simulation shown here 
were taken during a period of less than a minute, and the 
simulation continued afterwards without set time limits. 

CFD experiments 
In these experiments the particles and the room walls, 
floor and ceiling are colour coded according to their 
respective temperatures, and the temperature scale with a 
range from 0 oC to 25 oC is shown to the right of each 
image. In this simulation the ‘sub-conscious’ swarming 
rule of Separation is kept and ‘conscious’ rules of 
Cohesion and Alignment are replaced with CFD 
calculations on a particle level. The room surface and air 
temperatures are pre-set in the model and kept constant 
throughout the simulation, and the air particle 
temperatures are calculated at each time step as specified 
in the Method section. 
At the start of simulation, the particles are lined up along 
the base of the left and right wall (Figure 8). 

Subsequently, a set of 128 particles is launched into the 
room (Figure 9). They quickly form a flow pattern (Figure 
10), where particles receive heat from the warm floor. As 
particles rise driven by the buoyancy force, their 
temperature changes through heat transfer with other 
particles and walls. When they reach the cold ceiling, they 
lose heat, buoyancy force becomes weaker than gravity, 
and particles start a downward movement. This flow 
pattern persists if no other interventions are taken in the 
model (Figure 11).  
An intervention that changes the flow pattern is the 
opening of the roof hatch. As the roof hatch is opened 
(Figure 12), the particles rapidly start escaping from the 
room, propelled by the buoyancy caused by the difference 
of densities between the warm inside air and the cold 
outside environment. On leaving the room, the 

 
Figure 3: Particles ready for swarming simulation 

 
Figure 4: Particles are launched into the room 64 at a 

time 

 
Figure 5: Collective swarming behaviour emerges 

 
Figure 6: Particles explore the space in a swarm 

 
Figure 7: The swarm breaks before an obstacle and re-

joins after the obstacle 

 
Figure 8: CFD simulation ready to start 
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temperature of each particle drops due to exposure to the 
cooler outside air. 

 

 

 

The entire simulation from Figure 8 through to Figure 12 
was completed in less than a minute, and the process 
continued until the simulation was terminated manually. 

Comparative CFD simulations 
As explained in the Method section, a comparative  CFD 
simulation was developed in IES Virtual environment 
(IES 2017). The results of hourly simulations were first 
produced, in order to find equivalent conditions to the 
swarming CFD simulation (Figure 13). These equivalent 
conditions were found in the simulation results file on 28th 
January at 8 am, and were exported into MicroFlo CFD 
module in IES VE. 

The results of MicroFlo simulation for the particular day 
and time  were subsequently used to produce 
representation of temperature distribution shown in 
Figure 14. Whilst the result indicates rising and falling 
movement of air represented by darker colours 
surrounded by brighter colours, the pattern obtained is 
essentially static and it lacks full representation of air 
movement. The overall duration of this simulation was 25 
minutes, with a result representing a static pattern for a 
single point in time during the simulation year. 
The comparison of results between swarming CFD and 
conventional CFD is discussed in the next section. 

Discussion and result analysis 
As a starting point, a swarming particles model was 
created using the rules of Separation, Cohesion and 
Alignment. After the swarming model exhibited realistic 
behaviour, the Cohesion and Alignment rules, which had 
been considered to be applied consciously by the 
swarming agents, were eliminated and replaced by CFD 
rules underpinned by heat transfer principles and 
Newtonian physics.  
Before the first CFD simulation was carried out, it was 
expected that the model would exhibit clear and 
continuous pattern formation, akin to the static patterns 

 
Figure 9: A set of 128 particles is launched into the 

room 

 
Figure 10: Flow pattern is formed 

 
Figure 11: Flow pattern persists 

 
Figure 12: Particles escape through the roof opening 

 
Figure 13: Time series results from IES VE simulation 

 
Figure 14: CFD result from IES VE simulation 
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observed in conventional CFD tools. However, much 
more complex dynamic behaviour occurred. The particles 
exhibited Brownian movement, colliding with each other 
and with the boundaries, while gaining heat from warm 
surfaces and losing heat to cold surfaces. As expected, the 
particles were rising when they gained sufficient amount 
of heat and they were falling when they lost heat.  
Although this paper does not claim that this proof of 
concept model fully represents air movement as it occurs 
in reality, these results show that reality could be far more 
complex than that represented by conventional CFD tools. 
The conventional CFD tool, MicroFlo within IES Virtual 
Environment that was used for comparison, produced 
detailed temperature distribution in the room volume for 
a single point in time within the simulation year. These 
results were static, and it took 25 minutes of simulation 
time to produce the results. 
In comparison, the swarming CFD simulation was almost 
instant, producing dynamic results within seconds. 
However, these results did not include the entire volume 
of the room, as the particles moved around the room while 
driven by real time heat gains and losses. 
This demonstrates the need for further development of the 
swarming CFD model, to cover the entire volume of 
internal spaces. That is not a simple matter of adding more 
particles, but it would require changes in the model that 
reduce the impact of colour rendering on the speed of 
simulation, as well as an introduction of simplified shapes 
that would render faster than the currently used cones, but 
would still indicate the direction of particle movement. 
Experimental validation of new CFD tools is normally 
carried out with previously tested software tools that can 
provide a reference point and a benchmark for the new 
CFD tool. However, the swarming CFD tool is 
significantly different from existing tools as it is dynamic, 
which rules out the static CFD validation tools found in 
standard simulation software. The validation will 
therefore need to be carried out in relation to an analogue 
facility, such as a wind tunnel, or using full scale testing, 
and/or using water models. This will require access to 
specialist laboratory facilities and the funding to pay for 
it. 
Assuming that the swarming CFD tool is validated, what 
would be required to integrate it into an existing building 
energy simulation tool? This question can be answered in 
two ways.  
First, the integration could be achieved in the form of a 
game, running as an external process but linked to a 
designated simulation tool. The advantage of this 
approach would be that all Unity infrastructure for 
physics modelling, and all 3D vector calculus, would be 
supported in their native mode, however this would be a 
loose integration with the building energy simulation tool 
and it would require a development of data exchange 
protocols between the two.  

Second, relevant parts of Unity engine infrastructure 
could be redeveloped in the target simulation tool. Thus, 
3D vector calculus and the physics engine would need to 
be built into the existing simulation tool. This would 
require more development time, but it would provide 
compact integration with the building energy simulation 
tool. 
The choice between these two different options will be 
down to the developer of the simulation tool. Whatever 
the choice, the integration process will require some 
development time to implement it. 
What opportunities might this approach create for 
building designers? Current CFD approaches offer 
detailed but static representation of air distribution in a 
building for a single point in time in the simulation year. 
This limits designers in the exploration of dynamically 
changing conditions in the building, and in running 
interactive what-if scenarios. For instance, what happens 
half way through the simulation if we open a window? 
There are also cases where an existing ventilation system 
does not fulfil its task and it needs to be improved by 
additional measures to eliminate overheating. The 
dynamic interaction of the existing and new ventilation 
system could be immensely complex and the static tools 
are not capable of giving sufficient insight into the overall 
behaviour of such system.  
The proposed dynamic approach is capable of 
reproducing interaction and complex behaviour, as it is 
based on fundamental principles of particle to particle 
interaction and laws of physics implemented on a particle 
level. Therefore, in comparison with the static approach, 
this dynamic approach will make it easier for building 
designers to solve complex air flow problems and achieve 
better thermal comfort for building users, as well as better 
performing buildings. It will reduce the discrepancy 
between our expectation of the building behaviour and its 
actual behaviour, thus reducing the performance gap. It 
will also give designers more confidence into the 
performance of their designs, and thus improve building 
design practice.  
The outcome will inevitably bring about a greater insight 
into the natural processes as they occur in buildings, 
rather than a ‘frozen’ static representation of these 
processes offered by the current tools. 

Conclusion 
The paper presented results of initial research into 
modelling computational fluid dynamics with swarm 
behaviour. Clear and nearly static flow pattern formation 
was expected before the simulation experiments were 
conducted. However, these experiments showed that flow 
pattern was dynamic with a high degree of Brownian 
movement in addition to heat driven flow.  
A comparison between the swarming CFD approach and 
traditional approach showed a dynamic pattern formation 
that occurred within seconds from the start in the former 
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approach, while the latter approach took 25 minutes of 
CPU time to create a static pattern. 
Considering that standard simulation tools use Navier-
Stokes equations, which describe the system as a whole 
from the top down, and which have solutions only for 
simplified cases, a question of trust into the outputs of 
these tools can legitimately be asked. When we want to 
fly to the moon, we cannot bring the moon closer to make 
it easier to get there. Likewise, we cannot legitimately 
simplify the problem definition just to be able to find a 
solution if this compromises the accuracy of that solution. 
The swarming CFD approach requires improvements in 
the speed of rendering. For instance, the cones used in the 
current model take longer to render than some simpler 
shapes such as cubes. Finding shapes that are less 
computationally intensive to render but still indicate 
direction of movement would make this model work 
faster and capable of using a greater number of particles. 
These improvements will help to create representation of 
air movement in the entire room volume. That will need 
to be followed by experimental validation process in a 
wind tunnel, water models or full scale tests. 
Although this approach requires further development, the 
proof of concept has been made: swarming principles can 
be used as a starting point for bottom-up modelling of 
computational fluid dynamics. 
It might be prudent to consider that we may be partially 
blinded by the conventional methods, which stand as an 
interface between nature and our understanding of nature. 
This paper makes a case for investigation of alternative 
methods for modelling nature that are more akin to the 
actual processes that occur, rather than to the convoluted 
mathematical description of these processes that removes 
certain aspects of representation of the genuine behaviour. 
Air does not do computation to solve Navier-Stokes 
equations in order to ‘know’ which way to flow, so why 
would we? 
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