
Modelling Computational Fluid Dynamics with Swarm Behaviour

Ljubomir Jankovic
Zero Carbon Lab, School of Creative Arts, University of Hertfordshire

College Lane, Hatfield, AL10 9AB, UK.
 L.Jankovic@herts.ac.uk

Abstract
The paper looks at replacing the current top-down
approach to modelling, predominantly used in dynamic
simulation tools, with a nature inspired bottom-up
approach based on principles of swarming.
Computational fluid dynamics (CFD) is chosen for this
research, as one of the most time-consuming processes
under the traditional simulation approach. Generally
based on Navier-Stokes simultaneous differential
equations, CFD requires considerable user preparation
time and considerable CPU execution time. The main
reason is that the top-down equations represent the system
as a whole and generate a large solution space, requiring
a solver to find a solution. However, air and building
materials do not have cognitive capabilities to solve
systems of equations in order to ‘know’ how to transfer
heat. Instead, heat transfer occurs through proximity
interaction between molecules, leading to self-organised
behaviour that is much faster than the behaviour modelled
by the top-down systems of equations. The paper
investigates how the bottom-up approach using the
principles of swarming could improve the speed and
interactivity of CFD simulation.

Introduction
Swarming is a term that describes collective behaviour of
animals, characterised by self-organising patterns of
astonishing complexity. Yet there is evidence that this
complexity arises from the simplest of local rules applied
on an individual level (Reynolds 1987). Swarming is used
here as a generic term, which is named differently when
applied to group formations of specific living species:
flocking refers to swarming formations of birds,
schooling or shoaling refers to formations of fish, herding
refers to formations of four-legged animals, and swarm
behaviour of insects is simply referred to as swarming.
The research aim of this paper is to investigate whether
swarming principles can be used as a starting point for
bottom-up simulation of computational fluid dynamics
(CFD) by developing a proof of concept model.
The specific research objectives are:
1. To develop particle swarming model using the rules

of separation, alignment, and cohesion.
2. To eliminate conscious actions associated with

swarming rules as the first step towards CFD
modelling.

3. To implement principles of physics on each swarm
particle, including Newton’s Second Law, thus
creating the rules for CFD modelling.

4. To qualitatively compare the swarming CFD
approach with the traditional approach.

5. To ascertain the steps towards further development
requirements and towards experimental validation
and integration into simulation tools.

How CFD could benefit from this work? The current
static approaches of representing computational fluid
dynamics do not enable designers to fully explore
complex interactions between the building, people and air
movement. The main motivation for this work is an
expectation that the nature inspired approach would
provide new dynamic and interactive insights into CFD
modelling in comparison with the traditional top-down
approaches, whilst significantly reducing simulation time.

Previous work
Although there has been a notable development of
swarming algorithms and related methods, and although
swarm behaviour appears to be fluid-like, there is very
little evidence of swarming methods being used for
modelling of fluid flow.
Pioneering work in the field of swarm modelling was first
published by Craig Reynolds (Reynolds 1987). In his
seminal paper entitled ‘Flocks, Herds, and Schools: A
Distributed Behavioral Model’ he introduced simple rules
on an individual level, that created realistic looking and
dynamically changing swarm formations without a master
controller in the model. These rules were further
elaborated in a follow up paper (Reynolds 1999).
Although Reynolds’s work was focused on applications
for film animation, he influenced an entire new area in
science and engineering. Adapted swarming principles
were applied to modelling of civil engineering structures
(Jankovic et al., 2000, Jankovic et al., 2003), leading to
emergent models that represented more realistic dynamic
behaviour of bridges, in comparison with top-down
models based on the finite element method. Particle
swarm optimisation was used in specialised aspects of the
flow of traffic (Deng, Tong, and Zhang 2010), and also in
fluid flow modelling of heat exchangers (Rao and Patel
2010), in representation of river flow (Gupta and Ganti
2011) and in other systems. Although principles of

Proceedings of BSO 2018:
4th Building Simulation and Optimization Conference, Cambridge, UK: 11-12 September 2018

112

emergence inspired by Reynolds’s work were applied to
CFD modelling using cellular automata (Ljubomir
Jankovic 2017), there is no evidence that swarm
behaviour has been applied to CFD modelling before.

Method
At the start of this research a particle swarming model was
developed using the rules published by Craig Reynolds
(Reynolds 1999). These included:
1. Separation, to handle particle to particle collision

detection and avoidance.
2. Cohesion, to target average position of the

immediate neighbourhood within the swarm and thus
form a group together with the other particles.

3. Alignment, to adjust own speed and direction in
order to match the speed and direction of the
neighbouring particles.

Whilst Separation from the above list was considered to
be ‘sub-conscious’ action related to collision avoidance,
the other two rules, Cohesion and Alignment, were
considered to be ‘conscious’ actions as they involved a
degree of decision making.
In the first phase of the method development, all three of
the above behaviours were embedded in each particle.
There was no master controller in the model, ensuring that
the resultant behaviour would be truly emergent. In order
to optimise the speed of execution of the code, all loops
were combined in the Separation rule, calculating
general neighbourhood metrics such as average position
and average velocity of the neighbours, and thus leaving
the other two rules free from loops.
The development environment for this research was Unity
games engine, chosen for its 3D vector physics
capabilities (Unity Technologies 2017). The model was
placed in a rectangular room of width/depth/height of
20m/20m/6m, with a 3.7m x 10m controllable roof
opening, and with transparent front wall (Figure 1).

Swarming model physics
Following the rules by Craig Reynolds (Reynolds 1999),
the swarming model physics was developed using
pseudo-code introduced in Table 1 through to Table 3.

Table 1: Separation pseudo-code

Table 2: Cohesion pseudo-code

Table 3: Alignment pseudo-code

As the pseudo-code in the above tables represents three-
dimensional vector calculus, the operator referred to as
‘normalized’ returns the operand vector with a
magnitude of one.
The speed of each particle was then processed by the
Unity engine (Unity Technologies 2017) to determine
three dimensional particle movement.

CFD model physics
After a realistic swarming behaviour was obtained from
the model, the ‘conscious’ actions of Cohesion and
Alignment were removed from the model and replaced
by CFD calculations on a particle level. The overall
solver, required in top down models, was replaced by
particle to particle interaction, as in the initial swarming
model.
The particle level calculations included the calculations of
thermal conductivity, density, specific heat and
temperature for each particle. Heat balance for each cell
was calculated as follows:

where
Q – particle heat balance in the current time step (W)
Qold – particle heat balance in the previous time step (W)
Qa – heat transferred between the particle and room air

if the particle is in the room, or between the
particle and external air if the particle has left the
room (W)

Qg – heat transferred between the particle and its
immediate neighbours (W)

Qr – heat transferred between the particle and the right
wall of the room (W)

Figure 1: Room in Unity engine with transparent

front wall

separation += (neignbour[i].position –
myPosition).normalized;
avgSeparation =
separation/neighboursCount;
mySpeed += avgSeparation x sepFactor;

avgPosition += neignbour[i].position;
totalAvgPosition =
avgPosition/neighboursCount;
desiredSpeed = (myPosition –
totalAvgPosition).normalized;
mySpeed += desiredSpeed x
desSpeedFactor;

avgSpeed += neignbour[i].speed;
totalAvgSpeed =
(avgSpeed/neighboursCount).normalized;
mySpeed += totalAvgSpeed x
avgSpeedFctor;

𝑄 = 𝑄#$% +

𝑄'+	𝑄)+	𝑄*+	𝑄$+	𝑄++	𝑄,+	𝑄-+	𝑄%
(1)

113

Ql – heat transferred between the particle and the left
wall of the room (W)

Qf – heat transferred between the particle and the front
wall of the room (W)

Qb – heat transferred between the particle and the back
wall of the room (W)

Qu – heat transferred between the particle and the
ceiling (W)

Qd – heat transferred between the particle and the floor
(W).

All of the above components of heat balance were
modelled as convective heat transfers:

where
Qx – heat transferred from source x, where x

represented a, g, r, l, f, b, u, d in the notation from
the previous equation

Told – particle temperature in the previous time step.

Particle temperature T was subsequently calculated as

where
 𝜌	 – density (kg/m3)
V – volume (m3)
c – specific heat (J/(kg×K)).
Density and specific heat for each particle were
calculated in each time step as temperature-dependent,
using standard formulae for moist air at 60% relative
humidity.
Newton’s Second Law was subsequently applied to
determine the forces acting on each particle, in order to
calculate particle acceleration, speed and movement. The
force acting upon each cell particle was calculated as

where
Fg – gravitational force, applied in the vertical direction

only
Fb – buoyancy force, applied in the vertical direction

only
Fw – wind force acting upon each particle
Fp – pressure force Fp = S Δ𝑃1 × 𝐴
Δ𝑃1 – pressure difference between the particle and each of

its i-th immediate neighbours
Ff – friction force, applied in the opposite direction of

particle movement
n – number of immediate neighbours for each particle,

chosen to be a minimum between total number of
particles and 32.

Acceleration and velocity were then calculated for each
particle as follows:

where
a – particle acceleration
v – particle velocity in the current time step
vold – particle velocity in the previous time step
t – time step.
Forces, acceleration and velocity were defined as three-
dimensional vectors and were handled by the vector
calculus within the Unity engine (Unity Technologies
2017), resulting in three-dimensional particle movement.

Comparison with conventional CFD
A conventional CFD model was created in IES Virtual
Environment (IES 2017) for comparison purposes. The
room dimensions used in this model were the same as in
the CFD swarming simulation: width/depth/height of
20m/20m/6m, with a 3.7x10m roof opening.

Underfloor heating was set in this model using a radiant
slab method (IES 2018), in order to have a comparative
warm surface as in the swarming CFD model. The method
involves a low height room underneath the main room
representing radiant slab, so that low height room is
heated and the main room is unheated. The floor/ceiling
between these two rooms was set to high density concrete
with very low surface resistances of 0.001 m2K/W on both
sides. The temperature of the heated radiant slab room is
controlled by a sensor in the main room. The results of
this comparative simulation will be used to evaluate
advantages and disadvantages of the swarming approach
to CFD simulation.

Simulation experiments
Swarming experiments
The swarming simulation starts with particles lined up
along the base of the left and right wall, ready to be
deployed in the simulation (Figure 3). These particles are
launched 64 at a time on keyboard ‘key down’ command,
so that multiples of 64 particles can be deployed in each
simulation (Figure 4).
Soon after the particles are launched into the room,
collective behaviour is developed, and a swarm emerges
as result of local rules on the particle level (Figure 5). The
swarm subsequently explores the space driven by this
collective behaviour (Figure 6).
Swarming particles are equipped with trails proportional
to their speed, to help with the observation of movement.

𝑄4 = ℎ	(𝑇4 − 𝑇#$%) (2)

𝑇 = 𝑇#$% +
𝑄

𝜌 × 𝑉 × 𝑐 (3)

𝐹 =	𝐹) − 𝐹, + 𝐹=	 + 𝐹+	 + 𝐹> (4)

𝑎 =
𝐹
𝜌	𝑉 (5)

𝑣 = 	𝑣#$% + 𝑎 × 𝑡 (6)

Figure 2: Room with radiant slab underneath

(highlighted in red) in IES VE

114

When two vertical cylinders are inserted as obstacles into
the room, the swarm reacts to these obstacles, breaking
before them and re-joining after them (Figure 7).

The images of swarm behaviour simulation shown here
were taken during a period of less than a minute, and the
simulation continued afterwards without set time limits.

CFD experiments
In these experiments the particles and the room walls,
floor and ceiling are colour coded according to their
respective temperatures, and the temperature scale with a
range from 0 oC to 25 oC is shown to the right of each
image. In this simulation the ‘sub-conscious’ swarming
rule of Separation is kept and ‘conscious’ rules of
Cohesion and Alignment are replaced with CFD
calculations on a particle level. The room surface and air
temperatures are pre-set in the model and kept constant
throughout the simulation, and the air particle
temperatures are calculated at each time step as specified
in the Method section.
At the start of simulation, the particles are lined up along
the base of the left and right wall (Figure 8).

Subsequently, a set of 128 particles is launched into the
room (Figure 9). They quickly form a flow pattern (Figure
10), where particles receive heat from the warm floor. As
particles rise driven by the buoyancy force, their
temperature changes through heat transfer with other
particles and walls. When they reach the cold ceiling, they
lose heat, buoyancy force becomes weaker than gravity,
and particles start a downward movement. This flow
pattern persists if no other interventions are taken in the
model (Figure 11).
An intervention that changes the flow pattern is the
opening of the roof hatch. As the roof hatch is opened
(Figure 12), the particles rapidly start escaping from the
room, propelled by the buoyancy caused by the difference
of densities between the warm inside air and the cold
outside environment. On leaving the room, the

Figure 3: Particles ready for swarming simulation

Figure 4: Particles are launched into the room 64 at a

time

Figure 5: Collective swarming behaviour emerges

Figure 6: Particles explore the space in a swarm

Figure 7: The swarm breaks before an obstacle and re-

joins after the obstacle

Figure 8: CFD simulation ready to start

115

temperature of each particle drops due to exposure to the
cooler outside air.

The entire simulation from Figure 8 through to Figure 12
was completed in less than a minute, and the process
continued until the simulation was terminated manually.

Comparative CFD simulations
As explained in the Method section, a comparative CFD
simulation was developed in IES Virtual environment
(IES 2017). The results of hourly simulations were first
produced, in order to find equivalent conditions to the
swarming CFD simulation (Figure 13). These equivalent
conditions were found in the simulation results file on 28th
January at 8 am, and were exported into MicroFlo CFD
module in IES VE.

The results of MicroFlo simulation for the particular day
and time were subsequently used to produce
representation of temperature distribution shown in
Figure 14. Whilst the result indicates rising and falling
movement of air represented by darker colours
surrounded by brighter colours, the pattern obtained is
essentially static and it lacks full representation of air
movement. The overall duration of this simulation was 25
minutes, with a result representing a static pattern for a
single point in time during the simulation year.
The comparison of results between swarming CFD and
conventional CFD is discussed in the next section.

Discussion and result analysis
As a starting point, a swarming particles model was
created using the rules of Separation, Cohesion and
Alignment. After the swarming model exhibited realistic
behaviour, the Cohesion and Alignment rules, which had
been considered to be applied consciously by the
swarming agents, were eliminated and replaced by CFD
rules underpinned by heat transfer principles and
Newtonian physics.
Before the first CFD simulation was carried out, it was
expected that the model would exhibit clear and
continuous pattern formation, akin to the static patterns

Figure 9: A set of 128 particles is launched into the

room

Figure 10: Flow pattern is formed

Figure 11: Flow pattern persists

Figure 12: Particles escape through the roof opening

Figure 13: Time series results from IES VE simulation

Figure 14: CFD result from IES VE simulation

116

observed in conventional CFD tools. However, much
more complex dynamic behaviour occurred. The particles
exhibited Brownian movement, colliding with each other
and with the boundaries, while gaining heat from warm
surfaces and losing heat to cold surfaces. As expected, the
particles were rising when they gained sufficient amount
of heat and they were falling when they lost heat.
Although this paper does not claim that this proof of
concept model fully represents air movement as it occurs
in reality, these results show that reality could be far more
complex than that represented by conventional CFD tools.
The conventional CFD tool, MicroFlo within IES Virtual
Environment that was used for comparison, produced
detailed temperature distribution in the room volume for
a single point in time within the simulation year. These
results were static, and it took 25 minutes of simulation
time to produce the results.
In comparison, the swarming CFD simulation was almost
instant, producing dynamic results within seconds.
However, these results did not include the entire volume
of the room, as the particles moved around the room while
driven by real time heat gains and losses.
This demonstrates the need for further development of the
swarming CFD model, to cover the entire volume of
internal spaces. That is not a simple matter of adding more
particles, but it would require changes in the model that
reduce the impact of colour rendering on the speed of
simulation, as well as an introduction of simplified shapes
that would render faster than the currently used cones, but
would still indicate the direction of particle movement.
Experimental validation of new CFD tools is normally
carried out with previously tested software tools that can
provide a reference point and a benchmark for the new
CFD tool. However, the swarming CFD tool is
significantly different from existing tools as it is dynamic,
which rules out the static CFD validation tools found in
standard simulation software. The validation will
therefore need to be carried out in relation to an analogue
facility, such as a wind tunnel, or using full scale testing,
and/or using water models. This will require access to
specialist laboratory facilities and the funding to pay for
it.
Assuming that the swarming CFD tool is validated, what
would be required to integrate it into an existing building
energy simulation tool? This question can be answered in
two ways.
First, the integration could be achieved in the form of a
game, running as an external process but linked to a
designated simulation tool. The advantage of this
approach would be that all Unity infrastructure for
physics modelling, and all 3D vector calculus, would be
supported in their native mode, however this would be a
loose integration with the building energy simulation tool
and it would require a development of data exchange
protocols between the two.

Second, relevant parts of Unity engine infrastructure
could be redeveloped in the target simulation tool. Thus,
3D vector calculus and the physics engine would need to
be built into the existing simulation tool. This would
require more development time, but it would provide
compact integration with the building energy simulation
tool.
The choice between these two different options will be
down to the developer of the simulation tool. Whatever
the choice, the integration process will require some
development time to implement it.
What opportunities might this approach create for
building designers? Current CFD approaches offer
detailed but static representation of air distribution in a
building for a single point in time in the simulation year.
This limits designers in the exploration of dynamically
changing conditions in the building, and in running
interactive what-if scenarios. For instance, what happens
half way through the simulation if we open a window?
There are also cases where an existing ventilation system
does not fulfil its task and it needs to be improved by
additional measures to eliminate overheating. The
dynamic interaction of the existing and new ventilation
system could be immensely complex and the static tools
are not capable of giving sufficient insight into the overall
behaviour of such system.
The proposed dynamic approach is capable of
reproducing interaction and complex behaviour, as it is
based on fundamental principles of particle to particle
interaction and laws of physics implemented on a particle
level. Therefore, in comparison with the static approach,
this dynamic approach will make it easier for building
designers to solve complex air flow problems and achieve
better thermal comfort for building users, as well as better
performing buildings. It will reduce the discrepancy
between our expectation of the building behaviour and its
actual behaviour, thus reducing the performance gap. It
will also give designers more confidence into the
performance of their designs, and thus improve building
design practice.
The outcome will inevitably bring about a greater insight
into the natural processes as they occur in buildings,
rather than a ‘frozen’ static representation of these
processes offered by the current tools.

Conclusion
The paper presented results of initial research into
modelling computational fluid dynamics with swarm
behaviour. Clear and nearly static flow pattern formation
was expected before the simulation experiments were
conducted. However, these experiments showed that flow
pattern was dynamic with a high degree of Brownian
movement in addition to heat driven flow.
A comparison between the swarming CFD approach and
traditional approach showed a dynamic pattern formation
that occurred within seconds from the start in the former

117

approach, while the latter approach took 25 minutes of
CPU time to create a static pattern.
Considering that standard simulation tools use Navier-
Stokes equations, which describe the system as a whole
from the top down, and which have solutions only for
simplified cases, a question of trust into the outputs of
these tools can legitimately be asked. When we want to
fly to the moon, we cannot bring the moon closer to make
it easier to get there. Likewise, we cannot legitimately
simplify the problem definition just to be able to find a
solution if this compromises the accuracy of that solution.
The swarming CFD approach requires improvements in
the speed of rendering. For instance, the cones used in the
current model take longer to render than some simpler
shapes such as cubes. Finding shapes that are less
computationally intensive to render but still indicate
direction of movement would make this model work
faster and capable of using a greater number of particles.
These improvements will help to create representation of
air movement in the entire room volume. That will need
to be followed by experimental validation process in a
wind tunnel, water models or full scale tests.
Although this approach requires further development, the
proof of concept has been made: swarming principles can
be used as a starting point for bottom-up modelling of
computational fluid dynamics.
It might be prudent to consider that we may be partially
blinded by the conventional methods, which stand as an
interface between nature and our understanding of nature.
This paper makes a case for investigation of alternative
methods for modelling nature that are more akin to the
actual processes that occur, rather than to the convoluted
mathematical description of these processes that removes
certain aspects of representation of the genuine behaviour.
Air does not do computation to solve Navier-Stokes
equations in order to ‘know’ which way to flow, so why
would we?

References
Deng, Y., H. Tong, and X. Zhang. (2010). Dynamic

Shortest Path in Stochastic Traffic Networks Based
on Fluid Neural Network and Particle Swarm

Optimization. In 2010 Sixth International
Conference on Natural Computation, 5:2325–2329.
doi:10.1109/ICNC.2010.5584513.

Gupta, A., and R. Ganti. (2011). Development of ANN
River Flow Model Using Particle Swarm
Optimization. In National Conference on Hydraulics
and Water Resources-2011, At Surat, India.

IES. (2017). VE 2017. https://www.iesve.com/VE2017.
IES. (2018). Radiant Slabs in ApacheHVAC.

https://www.iesve.com/support/faq/pdf/radiantslabs
_faq252.pdf.

Jankovic, L., S. Jankovic, A. H. C. Chan, and G. H. Little.
(2000). Structural Simulation Models That Build
Themselves. International Journal of Simulation 1
(1): 9.

Jankovic, L., S. Jankovic, A. H. C. Chan, and G. H. Little.
(2003). Can Bottom-up Modelling in Virtual Reality
Replace Conventional Structural Analysis Methods?
Automation in Construction 12 (2): 133–138.
doi:10.1016/S0926-5805(02)00046-8.

Jankovic, L. (2017). Changing the Culture of Building
Simulation with Emergent Modelling. In Building
Simulation 2017 - Proceedings of the 15th IBPSA
Conference, 8. San Francisco: IBPSA.
doi:10.26868/25222708.2017.062.

Rao, R. V., and V. K. Patel. (2010). Thermodynamic
Optimization of Cross Flow Plate-Fin Heat
Exchanger Using a Particle Swarm Optimization
Algorithm. International Journal of Thermal
Sciences 49 (9): 1712–1721.
doi:10.1016/j.ijthermalsci.2010.04.001.

Reynolds, C. (1987). Flocks, Herds, and Schools: A
Distributed Behavioral Model. Computer Graphics
21 (4): 24–34.
http://www.cs.toronto.edu/~dt/siggraph97-
course/cwr87/.

Reynolds, C. (1999). Steering Behaviors For Autonomous
Characters. http://www.red3d.com/cwr/steer/gdc99/.

Unity Technologies. (2017). Unity Game Development
Platform. Unity. https://unity3d.com.

118

