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Abstract 

This paper investigates heat and mass transport around a cylinder featuring non-isothermal homogenous and 

heterogeneous chemical reactions in a surrounding porous medium. The system is subject to an impinging flow 

while local thermal non-equilibrium, non-linear thermal radiation within the porous region and the temperature 

dependency of the reaction rates are considered. Further, non-equilibrium thermodynamics including Soret and 

Dufour effects are taken into account. The governing equations are numerically solved using a finite difference 

method after reducing them to a system of non-linear ordinary differential equations. Since the current problem 

contains a large number of parameters with complex inter-connections, low-cost models such as those based on 

artificial intelligence are desirable for conduction of extensive parametric studies. Therefore, the simulations are 

used to train an artificial neural network. Comparing various algorithms of artificial neural network, the radial 

basic function network is selected. The results show that variations in radiative heat transfer as well as those in 

Soret and Dufour effects can significantly change the heat and mass transfer responses. Within the investigated 

parametric range, it is found that the diffusion mechanism is dominantly responsible for heat and mass transfer. 

Importantly, it is noted that the developed predictor algorithm offers a considerable saving of the computational 

burden.         

Keywords: Machine learning; artificial neural network; Nonlinear thermal radiation, Forced convection, 

Homogenous and heterogeneous reactions, Porous Media. 

Nomenclature  

𝑎 cylinder radius 𝑞𝑚 mass flux on the wall 

𝑎𝑠𝑓 interfacial area per unit volume of porous media 𝑟 radial coordinate 

𝐵𝑖 Biot number 𝐵𝑖 =
ℎ𝑠𝑓𝑎𝑠𝑓.𝑎

4𝑘𝑠
 𝑅𝑒 Freestream Reynolds number  𝑅𝑒 =

𝑘̅.𝑎2

2𝜐
 

𝐶 fluid concentration 𝑅𝑑 radiation parameter  𝑅𝑑 =
16𝜎∗𝑇∞

3

3𝑘∗.𝑘𝑠
 

𝐶𝑝 specific heat at constant pressure 𝜇𝑖 center of  region 

𝐶𝑠 concentration 𝜎𝑖
  width of the receptive field 

𝐷 molecular diffusion coefficient 𝑆𝑟 Soret number  𝑆𝑟 =
𝐷.𝑘𝑓

𝑇∞

(𝑇𝑤−𝑇∞)

𝐶∞.𝛼
 

𝐷𝑓 
Dufour number 𝐷𝑓 =

𝐷.𝑘𝑓

𝐶𝑠.𝐶𝑝

𝐶∞

(𝑇𝑤−𝑇∞)𝜐
 𝑆ℎ Sherwood number 

𝐸 non-dimensional energy of activation 𝐸 =
𝐸𝑎

𝑘.𝑇∞
 𝑆ℎ𝑚 average Sherwood number 

𝐸𝑎 the activation energy 

 
𝑇 Temperature 

𝐸𝑖
 the estimated value 𝑇𝑚 mean fluid temperature 

𝑓(𝜂) function on  x component of flow velocity 𝑢 , 𝑤 flow velocity components  

𝑓́(𝜂) function on  z component of flow velocity 𝑧 axial coordinate 

ℎ heat convection coefficient Greek symbols 

ℎ𝑠𝑓 interstitial heat transfer coefficient 𝛼 thermal diffusivity 
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𝑘 thermal conductivity βℎ nonlinear heat source parameter 𝛽ℎ =
𝑄2.𝑇∞

𝑄1
 

𝑘∗ mean absorption coefficient 𝛾 modified conductivity ratio  𝛾 =
𝑘𝑓

𝑘𝑠
 

𝑘𝑐 chemical reaction rate constant 𝛾∗ Damköhler number 𝛾∗ =
𝑘𝑅.𝑎

2𝐷

1

𝐶∞
 

𝑘̅ freestream strain rate 𝑋 input vector 

𝑘1 permeability of the porous medium 𝜂 
similarity variable, 𝜂 = (

𝑟

𝑎
)

2

 

𝑘𝑚 mass transfer coefficient 𝜃(𝜂) non-dimensional temperature 

𝑘𝑅 Kinetic constant 𝜆 Permeability parameter, 𝜆 =
𝑎2

4𝑘1
 

𝑘𝑇 thermal diffusion ratio 𝜀 Porosity 

𝑚 unit less exponent 𝜎∗ Stefan-Boltzmann constant 

𝑄ℎ heat source parameter  𝑄ℎ =
𝑄1.𝑇∞.𝑎2

4𝑘𝑓
 θ𝑤 Wall temperature parameter θ𝑤 =

𝑇𝑤

𝑇∞
 

𝑀𝐴𝐸 Mean Absolute Error,  𝑀𝐴𝐸 =
1

𝑛
∑ (𝐸𝑖 − 𝑂𝑖)𝑛

𝑖=1  𝜇 dynamic viscosity 

𝑛 number of samples 𝜐 kinematic viscosity 

𝑁∗ dimensionless chemical reaction rate constant 𝑁∗ =
𝑘𝑐

2

2𝑘̅
 𝜌 fluid density 

𝑁𝑢 Nusselt number 𝜙 non-dimensional fluid concentration 

𝑁𝑢𝑚 average Nusselt number 𝜑 angular coordinate 

𝑂𝑖  the observed value for the ith sample Subscripts 

𝑝 fluid pressure 

𝑃 non-dimensional fluid pressure 𝑤 Relate to the external wall of the cylinder 

𝑃0 The initial fluid pressure ∞ far field 

𝑃𝑟 Prandtl number 𝑓 Fluid 

𝑞𝑤 heat flux on the wall 𝑠 Solid 

 

1. Introduction 

Fluid flow over a bluff body or on a stretching surface is widely encountered in nature and industry [1]. As a 

result, the stagnation point flow has received significant attention in classical hydrodynamics [2,3,4]. Polymer 

manufacturing [1], heat transfer and drying increment by impinging jets [5,6], subsiding zero-velocity regions of 

moving vehicles [7] and magnetorheological finishing process [8] are some technical instances of stagnation-point 

flow applications. There are, however, many situations that a stagnation-point flow is formed in porous media [9], 

such as packed bed heat exchangers, catalytic reactors and drying granular materials. Filling the porous media in 

micro-reactors containing highly exothermic reactions is a common way to increase heat transfer [10,11]. In 

particular, the chemical systems, including a stagnation-point flows over a curved body and surrounded by a 

porous material, are rarely touched. This could be because of the complex physics of this problem including solute 

diffusion, radiation and convection heat transfer, chemical reaction and hydrodynamics of stagnation flows [12]. 

Due to direct utilization of such systems in the industry, such as electrolysers [13] and thermochemical solar 

reactors [14], comprehensive understanding, optimization and simulation of them is an important necessity. 

Conventionally, porous-catalytic reactors are mostly modelled by assuming local thermal equilibrium [15,16], 

which treats a thermally homogenous mixture of fluid and solid [17]. However, existing strong heat source or sink 

and Soret and Dufour effects make this assumption invalid due to steep thermal gradients [18,19,20]. In the 

following, the limited existing works are briefly reviewed to demonstrate the-state-of-the-art in this field.  

         Chao et al. [21] took the first tangible steps in the problem including the stagnation-point flow, chemical 

reaction and catalytic porous bed. The governing equations were solved using conjugation of perturbation method 

and finite element approach. Higher temperature and lower reactant concentration were found as chemical 

reactivity increases or activation energy and solute diffusion rate decreased due to the higher conversion from 
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reactants to products. Sheri and Shamshudin [22] performed a boundary layer analysis on an unsteady chemically 

reactive flow past a plate made of porous materials. Radiation heat transfer, viscous dissipation and a magnetic 

field were assumed to be active. Increases in thermal radiative emissivity or absorption and viscous dissipation 

cause the thermal boundary layer to become thinner, while Prandtl number thickens it. Tlili et al. [23] analytically 

examined the velocity and thermal conditions of the non-Newtonian MHD flow on the stretching cylinder 

surrounded by the porous materials with chemical and thermal radiation effects. It was shown that convective heat 

transfer decreases with thermal slip, magnetic field, Reynolds number and solid volume fraction increment.  

        Pal and Biswas [24] analytically studied double-diffusive transport in an oscillatory flow over a plate in the 

porous medium using singular perturbation method. Increasing chemical reaction parameter led to concentration 

decrement and skin frictional coefficient increment. Convective and radiative heat transfer in an MHD stagnation-

point flow on a stretched sheet embedded in a porous medium was investigated by Khan et al. [25,26]. The 

chemical reaction was also considered in the domain and the governing equations were reduced by the similarity 

method and then numerically solved. The base velocity profile was reduced by increasing Hartmann number, 

inertia factor and porosity parameter. Further, the temperature and concentration profiles were found to be 

mitigated as chemical reactive species, Prandtl number or Lewis number rises. Recently, Alizadeh et al. [27,28] 

investigated double diffusion of impinging flow on the cylinder in catalytic, porous media. The mathematical 

modelling included mixed convection, non-linear radiation and non-equilibrium thermal conditions to approach 

the real physics of the problem. In keeping with earlier works [22], they emphasized the dominant effects of Biot 

number on the Nusselt and Bejan number. Further, the non-equilibrium approach was declared to be essential for 

precise prediction in this problem.  

        Artificial neural network (ANN) is a method that restores the human brain process [29]. The structure of this 

method is emanated from the neural system, which requires input data, training process and output data, 

interconnected through multi-layers of information processing. This technique has recently been turned into the 

modern tool for optimization, prediction and analysis of complex and multi-functional engineering systems [30]. 

Making a comprehensive model from massive amount of data through taking conventional approaches is too 

complicated and ANN is a novel remedy [31]. Multiphase flow [32], aeronautics [33], turbulence [34] and fuel 

cells are the complex problems for which ANN has been successfully utilised for energy management. 

         Thermal engineering includes the wide range of problems that have been studied by this technique; 

prediction of heat transfer coefficient in internal flows of various types of heat exchangers [29] and external flows 

on hot bluff bodies [29] are some examples. This technique has been used for the heat and fluid flow in porous 

media. The optimum dimensions and material of the porous fins connected to the shell or tube side of the heat 

exchanger was determined using ANN by Ahmad et al. [35]. In another study, the effects of baffles cuts, 

permeability and porosity (inner layer) on the heat transfer rate (outer layer) was investigated through ANN by 

Mohammadi et al. [36]. Dealing with a multiphase flow through a porous media, Liu et al. [37] predicted the 

capillary pressure loss by ANN. The output data for various layers of the network was compared and it was found 

that it is different for each outer parameter.  

        Many problems in fluid mechanics feature a large number of inter-related parameters and therefore a 

conventional approach to their analysis will be very laborious and computationally intensive task. In such cases, 

machine-learning methods, such as ANN, can be used to predict the behavior of the problem without resort to 

extensive computations [38]. Clearly, the current problem requires a tool for low-cost modelling. Introducing the 
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large number of parameters, such as Reynolds, Dufour, Biot and Soret number as well as radiation parameter, 

reaction rate, permeability and porosity with multi-connection among them confirm that applying a non-linear, 

deep network approximation like ANN is a very reasonable approach to affordably predict the required outputs. 

Various types of ANN are examined to find a high-performance algorithm for the current problem and finally the 

radial basic function network is chosen. Non-linear radiative heat transfer, which was proved to make the 

prediction more accurate and improve the analysis [27] is utilized. Further, thermal non-equilibrium hypothesis 

that models the local heat transfer more accurately is applied [28].            

 

2. Theoretical methods 

2.1. The studied configuration, governing equations and assumptions 

The schematic configuration of the current problem is shown in Fig. 1. An infinitely long cylinder coated by a 

layer of catalyst and surrounded by a fluid saturated porous medium is considered. The external surface of the 

cylinder is assumed to be made of the chemically reactive material of zeroth order and held at a fixed temperature. 

The fluid phase inside the porous medium hosts a homogenous, temperature dependent, chemical reaction. The  

uniform stagnation-point flow is formed on the cylinder, discussed later. Subscripts “s” and “f” in Eqs. (4) to (8) 

respectively indicate the solid and fluid phase. 

The fluid flow and transport phenomena in this problem is described by the conservation of the mass, radial and 

axial momentum and energy, correspondingly presented in the following.   

 
𝜕(𝑟𝑢)

𝜕𝑟
+ 𝑟

𝜕𝑤

𝜕𝑧
= 0, (1) 

 
1

𝜀2 (𝑢
𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) =  −

1

𝜌

𝜕𝑝

𝜕𝑟
+

𝜐

𝜀
(

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2 +
𝜕2𝑢

𝜕𝑧2 ) −
𝜐

𝑘1
𝑢, (2) 

 

1

𝜀2
(𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) =  −

1

𝜌

𝜕𝑝

𝜕𝑧
+

𝜐

𝜀
(

𝜕2𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟
+

𝜕2𝑤

𝜕𝑧2
 ) −

𝜐

𝑘1

𝑤, (3) 

𝑢
𝜕𝑇𝑓

𝜕𝑟
+ 𝑤

𝜕𝑇𝑓

𝜕𝑧
= 𝛼𝑓 (

𝜕2𝑇𝑓

𝜕𝑟2 +
1

𝑟

𝜕𝑇𝑓

𝜕𝑟
+

𝜕2𝑇𝑓

𝜕𝑧2  ) +
ℎ𝑠𝑓 .𝑎𝑠𝑓

𝜌.𝐶𝑝
(𝑇𝑠 − 𝑇𝑓) + [𝑄1(𝑇𝑓 − 𝑇∞) + 𝑄2(𝑇𝑓 − 𝑇∞)

2
] +

                               
𝐷 𝑘𝑇

𝐶𝑠 .𝐶𝑝
(

𝜕2𝐶

𝜕𝑟2 +
1

𝑟

𝜕𝐶

𝜕𝑟
+

𝜕2𝐶

𝜕𝑧2 ). 
(4) 

 

The last term on the right-hand side of the energy equation (Eq.(4))  indicates transport of energy by diffusion 

mechanism of the mass, called Dufour effect [27,39]. Further, the energy conservation in the solid phase of the 

porous medium is governed by  

𝑘𝑠 (
𝜕2𝑇𝑠

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑠

𝜕𝑟
+

𝜕2𝑇𝑠

𝜕𝑧2
 ) − ℎ𝑠𝑓 . 𝑎𝑠𝑓(𝑇𝑠 − 𝑇𝑓) −

1

𝑟

𝜕

𝜕𝑟
(𝑟. 𝑞𝑟) = 0. (5) 

 

Rosseland approximation [28,40] is used to determine the radiative heat flux as the following. 

 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇𝑠
4

𝜕𝑟
. (6) 

 

Applying Eq. (6),  Eq. (5) can be re-arranged in the following nonlinear form 

 

𝑘𝑠 (
𝜕2𝑇𝑠

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑠

𝜕𝑟
+

𝜕2𝑇𝑠

𝜕𝑧2
 ) − ℎ𝑠𝑓 . 𝑎𝑠𝑓(𝑇𝑠 − 𝑇𝑛𝑓) +

1

𝑟

𝜕

𝜕𝑟
(𝑟.

16𝜎∗

3𝑘∗
𝑇𝑠

3
𝜕𝑇𝑠

𝜕𝑟
) = 0. (7) 
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Considering a strongly temperature-dependent reaction rate and thermal diffusion of mass (Soret effects), the 

conservation of chemical species becomes [39,41,42]  

𝑢
𝜕𝐶

𝜕𝑟
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷 (

𝜕2𝐶

𝜕𝑟2
+

1

𝑟

𝜕𝐶

𝜕𝑟
+

𝜕2𝐶

𝜕𝑧2
 ) − 𝑘𝑐

2 (
𝑇𝑓

𝑇∞

)
𝑚

𝑒
−

𝐸𝑎
𝑘𝑇𝑓(𝐶 − 𝐶∞)

+
𝐷 𝑘𝑇

 𝑇𝑚

(
𝜕2𝑇𝑓

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑓

𝜕𝑟
+

𝜕2𝑇𝑓

𝜕𝑧2
 ). 

(8) 

 

The velocity boundary conditions applied to the momentum equations of (2) and (3) are presented as 

 

𝑟 = 𝑎:     𝑤 = 0 ,    𝑢 = 0, (9) 

𝑟 = ∞:     𝑤 = 2𝑘̅𝑧 ,   𝑢 = −𝑘̅ (𝑟 −
𝑎2

𝑟
), (10) 

 

The current viscous flow approaches to the classical potential flow at the limit of 𝑟 → ∞  in Eq. (10) [6].   

The thermal boundary conditions for the conservation of energy are presented by 

 

𝑟 = 𝑎:     𝑇𝑓 = 𝑇𝑤 = Constant, 

                𝑇𝑠 = 𝑇𝑤 = Constant, 

 

𝑟 = ∞:    𝑇𝑓 = 𝑇∞, 

                𝑇𝑠 = 𝑇∞, 

(11) 

 

where 𝑇𝑤 and 𝑇∞ are correspondingly the cylinder surface and the free-stream temperature. 

The mass transfer equation is closed by the following boundary conditions, 

 

𝑟 = 𝑎:     
𝜕𝐶

𝜕𝑟
= −

𝑘𝑅

𝐷
= Constant, 

𝑟 = ∞:     𝐶 → 𝐶∞, 
(12) 

 

in which, 𝑘𝑅 denotes the kinetic catalytic reaction constant of a zeroth order, 𝐷 denotes the coefficient of molecular 

diffusion [43,44], and 𝐶∞ is the mass concentration in the freestream flow.  

 

2.2. Self-similarity 

Applying the following similarity transformations,  

𝑢 = −
𝑘̅. 𝑎

√𝜂
𝑓(𝜂) ,          𝑤 = [2𝑘̅𝑓 ́(𝜂)]𝑧 ,          𝑝 = 𝜌𝑓𝑘̅2𝑎2𝑃, (13) 

where 𝜂 = (
𝑟

𝑎
)

2

 is the dimensionless radial coordinate, Eqs. (1) to (8) can be reduced to ordinary differential 

equations. Substituting Eq. (13) into the conservation of mass (Eq. (1)) directly satisfies it. This procedure for 

momentum equations of (2) and (3) leads to the following system of coupled differential equations. 

 

𝜀2 [𝜂𝑓 ́ ́ ́ + 𝑓 ́ ́ +
1

4𝜂

𝜕2𝑓 ́

𝜕𝜑2] + 𝑅𝑒 [1 + 𝑓𝑓 ́ − (𝑓 ́)
2

] + 𝜀2. 𝜆[1 − 𝑓 ́] = 0, (14) 

𝑃 − 𝑃0 = −
1

2𝜀2
(

𝑓2

𝜂
) −

1

𝜀
[(

𝑓́

𝑅𝑒
) +

𝜆

𝑅𝑒
∫

𝑓

𝜂
𝑑𝜂

𝜂

1

] − 2 [
1

𝜀2
+

𝜆

𝑅𝑒
] (

𝑧

𝑎
)

2

 (15) 
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In Eqs. (14) and (15), 𝑅𝑒 =
𝑘̅.𝑎2

2𝜐
 shows the Reynolds number of the freestream flow, 𝜆 =

𝑎2

4𝑘1
 denotes the 

permeability parameter and prime symbol indicates derivative with respect to 𝜂. Eqs. (14) and (15) are bounded 

by the following reduced boundary conditions, 

 

𝜂 = 1:          𝑓 ́(1) = 0 ,          𝑓(1) = 0, (16) 

 

𝜂 → ∞:          𝑓 ́(∞) = 1. (17) 

 

Aiding the following transformation [6, 27], 

𝜃𝑓(𝜂) =
𝑇𝑓(𝜂) − 𝑇∞

𝑇𝑤 − 𝑇∞

            ,                 𝜃𝑠(𝜂) =
𝑇𝑠(𝜂) − 𝑇∞

𝑇𝑤 − 𝑇∞

 (18) 

and substitution of Eq. (13) into Eq. (4), the energy equation can be rewritten in the non-dimensional form, which 

is   

 

𝜂𝜃 ́ ́𝑓 + 𝜃 ́𝑓 + 𝑅𝑒. 𝑃𝑟. (𝑓. 𝜃 ́𝑓) + 𝐵𝑖(𝜃𝑠 − 𝜃𝑓) + 𝑄ℎ. 𝜃𝑓[1 + 𝛽ℎ . (𝜃𝑤 − 1)𝜃𝑓] +
𝐷𝑓.𝑃𝑟

𝜃𝑤−1
[𝜂𝜙 ́ ́ + 𝜙 ́] = 0, (19) 

 

where 𝑄ℎ =
𝑄1.𝑇∞.𝑎2

4𝑘𝑓
 is the heat source parameter, 𝐷𝑓 =

𝐷.𝑘𝑇

𝐶𝑠.𝐶𝑝

𝐶∞

𝜐.𝑇∞
 is the Dufour number, 𝐵𝑖 =

ℎ𝑠𝑓𝑎𝑠𝑓.𝑎

4𝑘𝑓
 is the Biot 

number and 𝛽ℎ =
𝑄2.𝑇∞

𝑄1
 is the nonlinear heat source parameter. It should be noted that the dissipation terms are 

neglected in Eq. (19). The thermal boundary conditions reduce to 

 

𝜂 = 1:          𝜃𝑓(1) = 1 

 

𝜂 → ∞:          𝜃𝑓(∞) = 0 

(20) 

 

(21) 

 

Similar procedure of non-dimensionalizing of fluid energy equation is performed for that of the porous medium, 

which leads to Eq. (22). 

𝜂𝜃 ́ ́𝑠 + 𝜃 ́𝑠 − 𝐵𝑖. 𝛾(𝜃𝑠 − 𝜃𝑓) + 𝑅𝑑 .
𝜕

𝜕𝜂
[𝜂. (1 + (𝜃𝑤 − 1)𝜃𝑠)3. 𝜃́𝑠] = 0, (22) 

 

where 𝛾 =
𝑘𝑓

𝑘𝑠
 is the modified conductivity ratio. The corresponding boundary conditions take the form of 

𝜂 = 1:          𝜃𝑠(1) = 1, 
 

𝜂 → ∞:          𝜃𝑠(∞) = 0. 

(23) 

 

(24) 

Using the following transformation,  

𝜙(𝜂) =
𝐶(𝜂) − 𝐶∞

𝐶∞

, (25) 

the non-dimensional equation of mass transport (Eq. (8)) becomes  

𝑃𝑟 [𝜂𝜙́́ + 𝜙́] + 𝑆𝑟. 𝑆𝑐. (𝜃𝑤 − 1) [𝜂𝜃́́𝑓 + 𝜃́𝑓] + 𝑅𝑒. 𝑃𝑟. 𝑆𝑐(𝑓. 𝜙́) − 𝑁∗. 𝜙. 𝑅𝑒. 𝑆𝑐. 𝑃𝑟[1 +

(𝜃𝑊 − 1)𝜃𝑓]
𝑚

. 𝑒
−𝐸

1+(𝜃𝑤−1)𝜃𝑓 = 0  

(26) 

 

 

In Eq. (26),  𝑆𝑟 =
𝐷.𝑘𝑇

𝑇𝑚

𝑇∞

𝐶∞.𝛼
 is the Soret number, 𝑆𝑐 =

𝜐

𝐷
 is Schmidt number, 𝑁∗ =

𝑘𝑐
2

2𝑘̅
 means a dimensionless 

chemical reaction rate, 𝑘𝑐
2 denotes the reaction rate constant, (

𝑇𝑓

𝑇∞
)

𝑚

𝑒
−

𝐸𝑎
𝑘𝑇𝑓 indicates the modified Arrhenius 
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function, wherein 𝑘 is the Boltzmann constant and 𝑚 is a unitless exponent fitted rate constant and 𝐸 =
𝐸𝑎

𝑘.𝑇∞
 shows 

the non-dimensional activation energy. The non-dimensional mass boundary conditions are 

 

𝜂 = 1:          𝜙́(1) = −𝛾∗ =
𝑘𝑅 . 𝑎

2𝐷

1

𝐶∞

, 

 

𝜂 → ∞:        𝜙(∞) = 0. 

(27) 

 

(28) 

 

Eqs. (14), (19), (22) and (26), in conjugation with the boundary conditions of (16),(17), (20), (21), (23), (24), (27) 

and (28) are solved numerically by employing an implicit, iterative, tri-diagonal finite-difference method [45].  

 

2.3. Nusselt and Sherwood numbers 

As the wall temperature is constant in the current problem, the local coefficient of convective heat transfer and its 

rate for the fluid phase are respectively taken by 

 

ℎ =
𝑞𝑤

𝑇𝑤 − 𝑇∞

=
−𝑘𝑓 (

𝜕𝑇𝑓

𝜕𝑟
)

𝑟=𝑎

𝑇𝑤 − 𝑇∞

= −
2𝑘𝑓

𝑎

𝜕𝜃𝑓(1)

𝜕𝜂
, (29) 

 

and 

𝑞𝑤 = −
2𝑘𝑓

𝑎

𝜕𝜃𝑓(1)

𝜕𝜂
𝑇𝑤 − 𝑇∞. (30) 

 

Nusselt number on the external surface of the cylinder is then given by 

 

𝑁𝑢 =
ℎ. 𝑎

2𝑘𝑓

= −𝜃́(1). (31) 

 

In a similar way, the local coefficient of mass transfer and the its rate are calculated as 

 

𝑘𝑚 =
𝑞𝑚

𝐶𝑤 − 𝐶∞

=
−𝐷 (

𝜕𝐶

𝜕𝑟
)

𝑟=𝑎

𝐶𝑤 − 𝐶∞

= −
2𝐷

𝑎

𝜕𝜙(1)

𝜕𝜂
, (32) 

and 

𝑞𝑚 = −
2𝐷

𝑎

𝜕𝜙(1)

𝜕𝜂
𝐶𝑤 − 𝐶∞. 

(33) 

 

Sherwood number can be therefore determined by 

 

𝑆ℎ =
𝑘𝑚. 𝑎

2𝐷
= −𝜙́(1). 

(34) 

 

2.4. Validation and grid independency 
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Before applying ANN, it should be shown that the numerical method employed to solve the governing equations 

can capture the real physics of the problem. The computational results from the set of equations are then fed to 

the ANN algorithm to fulfil the training procedure. 

        In the limit of very large values of porosity and permeability, meaning no porous medium and considering 

no mass transfer, the current numerical results are reduced to those of Wang [46] and Gorla [47], who studied the 

stagnation flow over a cylinder without any porous media. The comparison of velocity components and non-

dimensional temperature is shown in Table 1. The average relative error between the results of the current study 

and those of Ref. [46] and [47] are lower than 0.1%. This is a confirmation to have a precise analysis in the current 

solution. In addition, though not shown here, it was concluded that in the limit of large value of Biot numbers in 

the porous medium, the results on the basis of current local thermal non-equilibrium (LTNE) and those of local 

thermal equilibrium (LTE) reported in Ref. [6], show no meaningful difference, as this is physically expected. 

These two comparisons present the validity of the chosen equations and numerical method. Further explanations 

of the employed numerical technique along with extensive validations can be found in the previous works of the 

authors [12,27,28].  

        To achieve the optimum grid size for performing the numerical solution, two non-dimensional dominant 

parameters, including the surface averaged values of Nusselt and Sherwood numbers were evaluated for different 

mesh sizes of 51 × 18, 102 × 36, 204 × 72, 408 × 144 and 816 × 288. The first and second number in mesh 

sizes indicate respectively the cells on the non-dimensional 𝜂 and 𝜑 direction. As Table 2 shows, there is no 

considerable change in the results of the mesh sizes of (204 × 72), (408 × 144) and (816 × 288). Keeping the 

accuracy and affordability of the used mesh size, a (408 × 144) grid in 𝜂 − 𝜑 directions was selected for the 

computations conducted in the current work. Capturing the strong thermal and mass gradients in vicinity of the 

cylinder body, a non-uniform grid was implemented. The numerical procedure was stopped at any iteration that 

the residuals of algebraically discretized, governing equations become less than 10−7, as the convergence 

criterion. All the discretization applied in the current numerical procedure is of accuracy of the second order, 

𝑂(∆𝜂)2 , recommended by the similar investigation [48]. 

2.5. Artificial Neural Network  

Multilayer perceptron ANN is used in this study to predict output parameters, such as non-dimensional 

temperature of solid (𝜃𝑠), fluid (𝜃𝑓) and concentration (𝜙). This network contains several layers, typically called 

input, hidden and output, each one with some neurones. Fig. 2 shows a general structure of an ANN with 𝑛 

inputs, 𝑘 hidden neurons and single output neuron. Every neurone connects to the other ones on the next layer 

through weight coefficient. The weights are optimized by back propagation of the error in the training stage across 

many iterations until the network is achieved to a desired accuracy. Here, an iteration or epoch indicates a 

complete forward-backward cycle and weight coefficient updates. The error of the algorithm prediction is 

evaluated through comparison against the benchmarking data [49].     

2.5.1. Radial Basic Function network 

Radial Basic Function (RBF) network is a type of neural network, specifically used for function estimation 

problems [50]. The RBF network, used in the current study, consists of three layers. Data are fed in the network 
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through the input layer. The second layer, or the hidden layer, contains the basic radial functions that the network 

name is derived from. The third layer is the output layer and contains sigmoid-like activation functions. 

The input layer sends the data to the hidden layer without making any changes to them. The Gaussian function 

with the following equation is often used for the hidden layer, 

ℎ𝑖 = 𝜙𝑖(𝑋 − 𝜇𝑖) = exp (−
‖𝑋 − 𝜇𝑖‖

2𝜎𝑖
2 ), (35) 

in which 𝑋 is the input vector (𝑥1, 𝑥2, … , 𝑥𝑛) to the neural network. 𝑖 is the hidden neuron index. 𝜇𝑖 and 𝜎𝑖
  are 

center of region and width of the receptive field of neuron 𝑖, respectively. 

The output layer is a linear combination of hidden functions. The connections between the hidden and output 

layers take weights that are actually the trainable parameters of the network. In other words, the input of the output 

layer neurons is the sum of the weighted radial basis functions shown in the following equation. 

𝑦 =  ∑ 𝑤𝑖

𝑘

𝑖=1

ℎ𝑖(𝑋). (36) 

There are two levels of learning for RBF network. Firstly, the center (𝜇) and spread (𝜎) of the middle layer neurons 

are determined. Different methods such as random [50], self-organized [51-52] and supervised [53-54] selection 

were tested to select centers. The self-organizing algorithm, which enables the RBF network to be automatically 

structured, is used in proposed models. Secondly, the weights of the output layer are learned. A common method 

for training RBF network weights is the error back propagation algorithm [51]. This algorithm simply updates the 

weights and biases in the direction in which the performance function strongly reduces. The algorithm iteration 

can be presented as 

 

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑔𝑘 , (37) 

 

where 𝑥𝑘 is the current weights, 𝑔𝑘 denotes the current gradient and 𝛼𝑘 indicates the current learning rate. 

2.5.2. Features methods  

A method called Minimum Redundancy Maximum Relevance (MRMR) [52] is used to prioritize features in this 

study. This algorithm calculates the priority of each attribute, based on the value of the dependency on the target 

parameter and each member of the selected attribute set. The goal is to maximize the statistical dependency 

criterion with the target parameter and minimize the Mutual-Information (𝑀𝐼) among the set of selected variables. 

𝑀𝐼 is calculated between the two features of 𝑥 and 𝑦 with the following equation, which is. 

𝑀𝐼(𝑥; 𝑦) = ∬ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔
𝑝(𝑥)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦. (38) 

 

In Eq. (38), 𝑝(𝑥), 𝑝(𝑦) and 𝑝(𝑥, 𝑦), respectively, are the probability density functions of the variables 𝑥, 𝑦, and 

their simultaneous occurrence. 
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One goal is maximizing the dependency of the set of selected features (𝑆) on the target feature (ℎ), mathematically 

meaning max (𝑉𝐼(𝑆, 𝑆)) and presented by the following relation. 

    max (𝑉𝐼) = max (
1

|𝑆|
∑ 𝐼(𝑖, ℎ))

𝑖∈𝑆

, (39) 

 

 

where 𝑉𝐼 represents the value of the dependence of 𝑆 on the ℎ. Another goal is to create a minimum of redundancy 

by selecting a subset of features with the least correlation with each other, mathematically presented as 

min (𝑊𝐼(𝑆)),. This is calculated by  

    min (𝑊𝐼) = min (
1

|𝑆|2
∑ 𝐼(𝑖, 𝑗))

𝑖,𝑗∈𝑆

, (40) 

 

 

in which 𝑊𝐼 is the average 𝑀𝐼 between the features in subset 𝑆. By combining the two recent relations by 𝜑(𝑉, 𝑊) 

operator, a concept is introduced as the Maximum Dependency Maximum Relationship (MRMR), which is 

max (𝜑(𝑉, 𝑊)), where 𝜑 is defined as 

   𝜑 = 𝑉 − 𝑊. 
(41) 

 

 

We used this method to prioritize features. In this regard, in each iteration of feature selection, the correlation 

value of each feature with the target feature is calculated. Also, the sum of the correlation value of each feature 

with the list of selected features before it is computed. Finally, by using the Eq. (41), the attribute, which has the 

highest correlation with the target and the least correlation with the previously selected features, is chosen. 

also Mean Absolute Error (MAE) is the absolute value of the difference between the estimated value and actual 

value on average. MAE is calculated by following equation: 

𝑀𝐴𝐸 =
1

𝑛
∑(𝐸𝑖 − 𝑂𝑖)

𝑛

𝑖=1

 
(42) 

 

in which 𝑛 is the number of samples, 𝐸𝑖 and 𝑂𝑖  are the estimated value and the observed value for the 𝑖th 

sample. 

 

3.  Results and discussion 

The default values of the parameters used in the simulations is presented in Table 3. Figure captions, however, 

may report any deviation from these values. To select the appropriate method for estimating target parameters of 

𝜙 and 𝜃𝑓 and 𝜃𝑠, different models including MLP, Support Vector Regression (SVR) [53], Least Mean Square 

(LMS) [54] and RBF were tested. For this purpose, at first, the model inputs were prioritized by MRMR algorithm 

(see section 2.5.2). Then, the effect of increasing the number of features on the accuracy of the estimation model 

was measured using each model. The result of this experiment in estimating the parameter 𝜙 and 𝜃𝑓 are shown in 

Fig. 3. According to this figure, the RBF and MLP models present more accurate results. As the number of features 

increases, the accuracy of the RBF model is slightly improved compared with MLP model. Therefore, the RBF 

model was used in this research.  
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         Fig. 4 shows the effects of Biot and Reynolds number on the dimensionless temperature distribution in fluid 

and solid. Considering a constant radial position, increasing Biot number leads to lower solid non-dimensional 

temperature, demonstrating higher absolute solid temperature. However, at the high Biot number values, the fluid 

remains with higher non-dimensional temperature and thicker thermal boundary layer. This emanates from the 

extracted heat from the solid phase at the limit of high Biot numbers. The temperature variation in the solid caused 

by Biot number changes is not as strong as that in the fluid, showing the importance of the convention heat transfer 

through the flow field. Increasing Reynolds number remains qualitative similar but more pronounced quantitative 

effects of decreasing Biot number. This figure illustrates that increasing Reynolds number diminishes the thermal 

boundary layer thickness by increasing the convection heat transfer. The fluid temperature variations, therefore, 

terminate at lower radial positions. The thermal boundary layer is more sensitive to the Reynolds number than 

Biot number through the studied range. Narrow radial variation of the temperature at higher Reynolds number is 

a reason to demonstrate similar trend in the solid temperature.  

          Introduction of radiation in the flow field can modify the temperature distribution, shown in Fig. 5. 

Surprisingly, the fluid temperature represents no function of radiation. This results from non-equilibrium thermal 

condition, which distinguishes the temperature of the fluid and solid, where the radiation heat transfer is 

implemented (see Eq. (7)). The solid temperature, however, reaches at the freestream temperature at lower radial 

distance only for the highest values of radiation parameter. This proves that the radiation heat transfer holds a 

threshold to affect the porous domain.  The effect of wall temperature on the fluid and porous solid temperature 

distribution is depicted in Fig. 6. This figure shows that the temperature parameter plays a key role in the thermal 

response of the system. Increasing the wall temperature makes heat transfer stronger by forced convection and 

radiation. This causes the thermal boundary layer to become relatively thin by increasing the temperature 

parameter, such that 𝜂 is 3.0 and 2.4, respectively for 𝜃𝑤 = 1.2 and 𝜃𝑤 = 3.0. The heated porous solid, however, 

is thicker due to lower thermal conductivity of the solid in comparison with the fluid flow (see Table 3 for 𝛾 =

1.5).  

         In contrast to the temperature, concentration represents accented dependency on the reaction rate, as Fig. 7 

demonstrates. At the cylinder wall, increasing reaction rate leads to decreasing the non-dimensional concentration 

by one order of magnitude. This indicates that the higher reaction rate augments the generation of species on the 

surface of the catalyst [42], which is indicative of diminishing mass boundary layer. This figure also illustrates 

the effects of the Soret number values at different heat generation magnitudes on the mass distribution. Increasing 

heat generation aids the mass diffusion from the hot to the cold region at negative Soret number, as the mass 

boundary layer becomes finished at lower radial distances. This follows from the fact that heat transfer promotes 

the mass transfer for the negative Soret number values, while heat and mass transfer act in an opposite way for 

positive Soret numbers. The mass boundary layer, therefore, is thickened for the positive Soret numbers.  

        Fig. 8 shows the influences of Damköhler number and activation energy variation upon the concentration. 

Damköhler number increment leads to increasing the species production at non-zero activation energy. This is to 

be expected as the surface chemical kinetics accelerates by the increasing Damköhler number. Further away from 

the cylinder wall, the concentration approaches its value at the infinite radial position; however, this occurs at 

higher values of 𝜂 and larger activation energy. Enhancing activation energy and Damköhler number has the same 
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effect on concentration. Non-dimensional concentration raises by the factor of three as the activation energy grows 

from zero to 50.  

        A monotonic increase in Nusselt number due to increasing the reaction rate, regardless of the value of heat 

source parameter, is seen in Fig. 9a. The slope of this increment increases at higher values of heat source strengths. 

The growth in heat source parameter features a strong influence on the Nusselt number increasing. This denotes 

that an increase in either heat source or reaction rate strength supports the convective heat transfer by aiding 

temperature difference. Nusselt number is not significantly influenced by the changes in Damköhler number. Fig. 

9b shows that the Nusselt number increases with decreasing permeability of the porous medium, which has been 

reported in the previous works [56-61]. Soret number maximizes the Nusselt number at its negative value. 

Increasing the absolute value of Soret number can increase the thermal diffusion in comparison with the 

convection, resulting in decreasing the Nusselt number. Activation energy variation also holds the Nusselt number 

in a single-maximum trend. The Nusselt number shown in Fig. 9b and heat source parameter of 𝑄ℎ = 1 at Fig. 9a 

indicates lower strength of convection in comparison with the conduction, as 𝑁𝑢 < 1.  

        Figs. 10a and 10b depict the responses of Sherwood number to some functional parameters. Increasing heat 

source parameter increases heat convection (see Fig. 9) and subsequently enhances the mass transfer by the bulk 

flow, which can magnify Sherwood number. Increasing Damköhler number, indicating increasing the reaction 

rate, also magnifies the Sherwood number, gradually. Increasing activation energy of the chemical reaction 

intensifies the bulk mass transfer. Physically, increasing 𝐸 decreases the modified Arrhenius function, endorsing 

a generative chemical reaction. In all studied cases through this figure, the mass diffusion is of greater importance 

than bulk mass transfer, evident by 𝑆ℎ < 1.  

4. Conclusions  

Artificial neural network (ANN) was used in the current study to predict the responses of temperature, 

concentration, Nusselt number and Sherwood number to the variations in the governing parameters. The radial 

basic function (RBF) network was chosen as the more precise and affordable algorithm for the problem of the 

flow past a superficially reactive cylinder embedded in a porous medium. RBF was selected after comparing 

various ANN models, such as multi-layer perceptron, support vector regression and least mean square. 

Considering non-equilibrium thermodynamics as well as non-linear radiation heat transfer aids the numerical 

simulation toward actual conditions. The numerical solution of the governing equations, reduced by semi-

similarity technique, was performed through application of a finite difference technique. The obtained data were 

then employed to train the ANN. The key findings of the current study are in brief as follows: 

- Increasing Biot number or decreasing Reynolds number results in thickening of thermal boundary layer.  

- Dufour number increment postpones reaching the fluid temperature to the infinite temperature.  

- Fluid temperature represents no dependency on the radiation heat transfer, while the solid temperature holds a 

threshold to respond to thermal radiation.  

- No considerable temperature change is found through either chemical reaction rate or heat source variation.  

- In contrast to the temperature, concentration is strongly affected by the reaction rate. 
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- Soret number increasing leads to Nusselt number rising at its negative value. Increasing the absolute value of 

Soret number can decrease the Nusselt number. 

- Increasing Damköhler number, equivalently meaning increasing reaction rate, also magnifies the bulk mass 

transfer and Sherwood number. 

- Increasing activation energy of the chemical reaction or Damköhler number enhances species production and 

strengthens the bulk mass transfer. 

The current study demonstrated the capability of machine learning in aiding extensive parametric studies on the 

problems that involve a large number of parameters through reducing the required computation.  
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Figures 
 

 

 

 

 
Fig. 1. Schematic view of a stationary cylinder under radial stagnation flow in porous media. 

 

 

 

 

 

 

Fig. 2. Schematic view of a typical RBF network with n inputs, k hidden neurons and one output neuron. 
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(a) (b) 

  

 

 
Fig. 3 The effect of increasing the number of features on the estimation model (a) concentration (𝜙) (b) fluid 

temperature (𝜃𝑓).  

(a) (b) 

  
Fig. 4. Effects of Biot and Reynolds number on (a) 𝜃𝑓(𝜂) and (b) 𝜃𝑠(𝜂); 𝑅𝑑 = 10 , 𝐷𝑓 = 1.0, 𝑆𝑟 = 1.0 , 𝑆𝑐 =

0.1 , 𝜆 = 10, 𝛽ℎ = 0, 𝑁∗ = 10 , 𝑚 = 1.0, 𝛾∗ = 1.0, 𝜃𝑤 = 1.5. 
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(a) (b) 

  
Fig. 5. Effects of radiation parameter on (a) 𝜃𝑓(𝜂),(b) 𝜃𝑠(𝜂), 𝐷𝑓 = 1.0 , 𝑅𝑒 = 10, 𝑆𝑟 = 1.0 , 𝑆𝑐 = 0.1 , 𝜆 =

10, 𝛽ℎ = 0, 𝑄ℎ = 0, 𝑁∗ = 10 , 𝑚 = 1.0, 𝛾∗ = 1.0, 𝜃𝑤 = 1.5. 
 

 

 

 

 

 

 
(a) (b) 

  
Fig. 6. Effects of wall temperature parameter on (a) 𝜃𝑓(𝜂),(b) 𝜃𝑠(𝜂), 𝑅𝑑 = 10 , 𝑅𝑒 = 10, 𝑆𝑟 = 1.0 , 𝑆𝑐 =

0.1 , 𝜆 = 10, 𝛽ℎ = 0, 𝑄ℎ = 0, 𝑁∗ = 10 , 𝑚 = 1.0, 𝛾∗ = 1.0, 𝐷𝑓 = 1.0. 
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(a) (b) 

  
Fig. 7. Response of dimensionless concentration  𝜙(𝜂) to different values of (a) dimensionless chemical 

reaction rate constant,(b) Soret number, 𝑅𝑑 = 10 , 𝑅𝑒 = 10, 𝑆𝑐 = 0.1 , 𝜆 = 10, 𝛽ℎ = 0, 𝑄ℎ = 0 , 𝑚 =
1.0, 𝛾∗ = 1.0, 𝜃𝑤 = 1.5. 

 

 

 

 

 

 

 

 

 
Fig. 8. Effects of non-dimensional energy of activation on dimensionless concentration  𝜙(𝜂), 𝑅𝑑 =

10 , 𝑅𝑒 = 10, 𝑆𝑟 = 1.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10, 𝛽ℎ = 0, 𝑄ℎ = 0, 𝑁∗ = 10 , 𝑚 = 1.0, 𝜃𝑤 = 1.5. 
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(a) 

 
(b) 

 
 

Fig. 9. Variation of 𝑁𝑢 for different values of (a) heat source parameter (b) Permeability parameter 𝑅𝑑 =
10 , 𝑅𝑒 = 10, 𝑆𝑟 = 1.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10, 𝛽ℎ = 0, 𝑄ℎ = 0, 𝑁∗ = 10 , 𝑚 = 1.0, 𝜃𝑤 = 1.5. 
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(a) 

 
(b) 

 
Fig. 10. Variation of 𝑆ℎ for different values of (a) heat source parameter (b) non-dimensional energy of 

activation, 𝑅𝑑 = 10 , 𝑅𝑒 = 10, 𝑆𝑟 = 1.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10, 𝛽ℎ = 0, 𝑄ℎ = 0, 𝑁∗ = 10 , 𝑚 = 1.0, 𝜃𝑤 = 1.5. 
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Tables 
 

Table 1. Comparison between the current numerical results and those of Gorla [47] and Wang [46]   in the limit 

of infinitely large porosity and permeability. 

𝜃 𝑓 

𝑅𝑒 Relative 

Error (%) 

Current 

results 
Gorla [47] 

Relative 

Error (%) 

Current 

results 
Gorla [47] 

0.00 0.84557 0.84549 0.19 0.12051 0.12075 0.01 

0.01 0.73701 0.73715 0.03 0.22659 0.22652 0.1 

0.05 0.46045 0.46070 0.07 0.46683 0.46647 1.0 

0.43 0.02983 0.02970 0.00 0.78725 0.78731 10 

𝑓́ 𝑓 

𝜂 Relative 

Error (%) 

Current 

results 
Wang [46] 

Relative 

Error (%) 

Current 

results 
Wang [46] 

2.73 0.25993 0.25302 0.97 0.02693 0.02667 1.2 

0.03 0.43710 0.43724 0.13 0.09652 0.09665 1.4 

0.02 0.57329 0.57315 0.04 0.19828 0.19836 1.6 

0.00 0.67438 0.67444 0.01 0.32365 0.32361 1.8 

0.01 0.75046 0.75054 0.01 0.46683 0.46674 2.0 

 

 

 

 

 

 

Table 2. Surface mean Nusselt and Sherwood number for grid dependency test at 𝐷𝑓 = 1.0 , 𝐵𝑖 = 0.1 , 𝑆𝑟 =
0.5 , 𝑅𝑒 = 5.0 , 𝜆 = 10 , 𝑆𝑐 = 0.1. 

Mesh size 𝑁𝑢𝑚 𝑆ℎ𝑚 

51×18 0.691951 0.524891 

102×36 0.652345 0.481365 

204×72 0.614235 0.477389 

408×144 0.604992 0.475422 

816×288 0.604818 0.475290 

 

 

 

 

 

 

Table 3. Default values of the simulation parameters 

Simulation 

parameters 
𝜂 𝐸 𝜆 𝜀 𝑅𝑒 𝑄ℎ 𝐵𝑖 𝛽ℎ 𝑚 𝑅𝑑 𝜃𝑤 𝛾 𝛾∗ 𝑁∗ 𝑆𝑟 𝐷𝑓 

The default 

values 
1.5 1.0 10 1.0 10 0 0.1 0 1.0 10 1.5 1.5 1.0 10 1.0 1.0 
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