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Declarative Experimentation in
Information Retrieval using PyTerrier
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University of Glasgow
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ABSTRACT
The advent of deep machine learning platforms such as Tensor-
flow and Pytorch, developed in expressive high-level languages
such as Python, have allowed more expressive representations of
deep neural network architectures. We argue that such a powerful
formalism is missing in information retrieval (IR), and propose a
framework called PyTerrier that allows advanced retrieval pipelines
to be expressed, and evaluated, in a declarative manner close to their
conceptual design. Like the aforementioned frameworks that com-
pile deep learning experiments into primitive GPU operations, our
framework targets IR platforms as backends in order to execute and
evaluate retrieval pipelines. Further, we can automatically optimise
the retrieval pipelines to increase their efficiency to suite a partic-
ular IR platform backend. Our experiments, conducted on TREC
Robust and ClueWeb09 test collections, demonstrate the efficiency
benefits of these optimisations for retrieval pipelines involving both
the Anserini and Terrier IR platforms.
ACM Reference Format:
Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimentation
in Information Retrieval using PyTerrier. In 2020 ACM SIGIR International
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1 INTRODUCTION
2 Information retrieval (IR) is classically an empirical science. Offline

experiments towards enhancing retrieval effectiveness have been
easily made possible through use of test collections with documents
judged for relevance by human assessors, as typified by the TREC,
CLEF, NCTIR evaluation forums.

On the other hand, machine learning has experienced even
greater growth, with applications to many areas of science, driven
by the availability of good datasets [9], as well as platforms that
allow easy development and application of machine learned models.
In recent years, there has been a focus on the development and
application of deep learning frameworks written in high-level lan-
guages, including Lua (Torch), but particularly Python (Tensorflow
and Pytorch). Using such expressive high-level languages allow
complex deep neural network architectures with various matrix
operations to be expressed using familiar programming paradigms,
for instance, adding matrices using a + operator, or adding several
hidden layers using a for loop to add objects to a list.

We argue that adoption of such an expressive high-level lan-
guages are missing from many of the available IR platforms, and
hence we are unable to perform wide-ranging experiments with the
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Figure 1: An experiment comparing two complex retrieval
pipelines, with learning-to-rank and neural re-ranking.

ease of our machine learning compatriots. End-to-end retrieval eval-
uation is not easy to perform. For example, Figure 1 depicts, in the
form of a directed acyclic graph (DAG), an example IR experimental
workflow to compare the effectiveness of two IR systems involv-
ing the setup and execution of different classical IR techniques,
including ranked retrieval with different weighting models, fusion,
features extraction, learning to rank (LTR) algorithms and neural re-
ranking. Typically, conducting such experiments involves editing
several configuration files, running various commands to generate
result files to be fed to the following stages, and eventually invoking
trec_eval to evaluate the experimental outcomes. Configuration
is spread across several files making reproducibility difficult.

Yet reproducibility is key to impactful science. Ferro & Kelly [10]
define reproducibility as the ability for a different team to repro-
duce the measurement in a different experimental setup. Therefore,
focussing evaluation solely on datasets that extract key aspects of
a problem using a standard dataset – for instance, evaluating LTR
techniques solely on LETOR datasets [25] with common features
– does not allow us to understand the wider context, such as how
an approach will fare when integrated into a fully-fledged search
engine’s retrieval stack. This highlights the importance of end-to-
end retrieval experiments – understanding what data are needed
for a given approach, and how it interacts with others components
(e.g., how many documents should be re-ranked [19] for a LTR
approach), reduces the uncertainties when a technique should be
deployed to an operational search engine.

2Thus, we argue that a succinct manner of describing a retrieval
experiment, in a conceptual yet familiar way, should allow more IR
researchers with increased ability to develop techniques that can be
easily integrated, and evaluated, in an end-to-end fashion. Hence,
in this paper, we describe a new framework called PyTerrier1 for
expressing IR experiments with composable pipelines. Similar to
Tensorflow and Pytorch, it uses Python as a high-level language for
operationalising of experiments. Moreover, we use standard opera-
tors to combine objects representing retrieval building blocks called
transformers, allowing advanced retrieval pipelines to be specified
in a declarative rather than procedural fashion. We have initially
instantiated PyTerrier on two existing IR platforms (Anserini and

1 https://github.com/terrier-org/pyterrier
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Terrier), and demonstrate that the transformers and operators can
be used to retrieve from, and even combine, multiple systems.

Moreover, the expression of a retrieval pipeline in a high-level
language using transformers and operators, forms a DAG of basic
IR operations (retrieve, re-rank, combine results, rewrite query,
etc). This DAG can be rewritten, optimised and/or passed to the
underlying search engine. Hence, a complex retrieval architecture
trialled in PyTerrier might be compiled down to an optimized con-
figuration of the underlying search engine(s). Indeed, we show how
simple optimisations steps on the DAG result in markedly enhanced
efficiency when such system-specific optimisations are employed.

Therefore, this paper contributes a conceptual framework for
a different way of envisaging and executing information retrieval
experiments. We propose a clear semantics for different IR experi-
ment’s building blocks and their composition. The proposed frame-
work is easily extensible, since it allows the definition and inclusion
of new IR activities. Moreover, we provide an implementation of
our proposed framework in Python, supporting the compilation
of IR pipelines on top of two widely-used Java-based IR platforms
to conduct fast retrieval operations. Finally, we show how these
operations can be optimised – while retaining their semantics –
by applying graph rewriting patterns targetting the underlying IR
platform operations. Moreover, it allows easy integration of deep
learning techniques into the retrieval pipeline, thereby allowing to
enhance the reproducibilty of retrieval technologies.

The remainder of this paper is structured as follows: Section 2
positions our framework with respect to different standard toolkits,
for data science, big data, machine learning and information re-
trieval; In Section 3, we formally describe our framework in terms of
transformers, operators, and experiments. Section 4 discusses how
pipelines can be compiled and optimised through graph rewriting
to be efficiently implemented using less calls to the underlying IR
platforms. Section 5 demonstrates the empirical efficiency in these
pipeline rewrites through experiments using PyTerrier based on two
underlying search engines, namely Anserini and Terrier.We provide
concluding remarks and detail future improvements in Section 6.

2

2 RELATEDWORK
IR platforms have a long history, dating back to at least SMART [2].
These days, among the open source platforms, Apache Lucene is
widely deployed. Implemented in Java, it provides indexing and
single-search APIs, and in recent years has adopted BM25 along
with LTR [7] and dynamic pruning techniques [11]. However, its
ability to handle standard test collections was for many years a
known limitation [8], and has been advanced by efforts such as
Anserini [29]. Indeed Anserini facilitates the deployment of a num-
ber of replicable information retrieval techniques, on standard test
collection, on top of the Lucene backend.

Among the other commonly used academic platform are Lemur/In-
dri (implemented in C) – along the closely related Galago (imple-
mented in Java) [4] – as well as Terrier (implemented in Java) [18]
and PISA [21] (implemented in C++). We note that while Python
“bindings” exist for various platforms, including Indri, Galago and
Anserini, there are no serious contenders for IR platforms written
natively in Python. We believe there are several reasons for this, in-
cluding the challenge of indexing and retrieving from corpora that
contains 1-10 million documents, as well as the more recent matu-
rity of Python. Indri and its modern replacement Galago also have

rich (domain-specific) query languages that allow the expression
of complex retrieval operations.

All of the discussed IR platforms mix the design of experimen-
tal retrieval activities with the implementation and optimisations
required to make such activities efficient. This approach has been
shown to limit the reproducibility of IR experiments. For example,
Mühlisen et al. [23] show that different implementations of the
same BM25 weighting models in different IR platforms result in
different values for the same effectiveness metric. They propose to
decouple the IR experiments from the IR platform implementation
by storing the inverted index in a column-oriented relational data-
base and by implementing ranking models using SQL. Kamphuis &
de Vries [12] take a step forward and propose the adoption of an
IR-specific declarative language to provide higher level abstractions
in the implementation of the IR experiments based on a graph query
language. In contrast to this and the Indri/Galago domain-specific
query language, we propose a declarative framework to express
basic retrieval operations and their composition using queries and
documents as inputs and outputs. It is built upon Python, which
is expressive, readily accessible and allows integration with other
modern Python toolkits such as those for deep learning. Together,
this allows for rapid prototyping and improved reproducibility in
IR. We then show how the elements of the proposed declarative
language can be compiled into a DAG representation, which can
be efficiently implemented on specific IR platforms.

More generally, Python is popular among other branches of data
science and machine learning – it has no need to compile, and
hence allows researchers/developers to easily adjust their code and
re-run, in an agile manner, often using notebook environments such
as Jupyter or Google Colab; Standard toolkits such as Pandas (for
structured data processing in relational dataframes) and scikit-learn
(for machine learning) exemplify this approach to data science.

To allow the efficient application of data processing and machine
learning at scale, Apache Spark overcame some of the disadvan-
tages of the store-then-compute MapReduce programming para-
digm; Apache Spark, which has bindings in Java, Scala and Python,
allows structured data processing operations to be vastly paral-
lelised across a cluster of machines [30]. As a functional language,
expressions in Apache Spark, even in Python, are compiled into
an execution plan, which is then distributed to different compute
machines. We are inspired by this notion of an execution plan.

2In recent times, Tensorflow [9] and PyTorch have been the dom-
inant frameworks for neural machine learning. Both are based on
primitive operations (add, multiple, concatenate) on tensors, which
are expressed in Python by overloading the math operators in the
language for the tensor objects; higher level tensor operations such
as recurrent units, attention etc., can be achieved using higher level
objects. Thus a domain-specific programming environment is cre-
ated in Python. The object graph instantiated by the tensor objects
and operators creates a dataflow DAG, which can be compiled into
GPU operations for efficient computation.

In this work, we are inspired by these existing deep learning
frameworks, as we both instantiate a domain-specific programming
environment in Python, but this time suited for IR experiments.
Moreover, similar to deep learning, we observe that search pipelines
expressed in this manner form DAGs, which can be compiled into
more efficient low-level search engine operations.

Themost similar work to our own is that in Terrier-Spark [16, 17],
where retrieval pipelines for the Terrier platform were created in



Scala using Apache Spark. In that work, retrieval operation were
expressed as operations on dataframes (relations). However, adop-
tion of that framework was hindered by two factors: firstly, the use
of Apache Spark, which is designed for processing massive scale
datasets, and introduces significant interactive overheads making
Terrier-Spark unsuitable for notebook-style agile development; sec-
ondly, the use of the Scala programming language, which is not as
popular as Python. In this paper, we extend the notion of retrieval
operations on dataframes, but instead, operate on Python, and cre-
ate a domain-specific programming environment where complex re-
trieval pipelines can be formulated as operations on Python objects.

2

3 DECLARATIVE RETRIEVAL OPERATIONS
In this section we discuss the IR data model we use to represent
queries and documents (Sec. 3.1), we introduce IR transformers to
express IR operation as the basic element of our declarative IR
language (Sec. 3.2) and operators to compose transformers into
more complex IR pipelines (Sec. 3.3), and finally we discuss how to
design IR experiments with our declarative IR language (Sec. 3.4).

3.1 IR Data Model
The basic elements of an IR systems are queries and documents. A
query 𝑞 is a textual representation of an information need, while
a document 𝑑 is a textual source of information. From an object
relational model perspective, 𝑞 and 𝑑 are tuples, i.e., finite sequences
of attributes, whose domains and values depends on their associated
metadata. These metadata can vary, but in the following we will
assume a query 𝑞 encapsulates at least the query text 𝑞.𝑡𝑒𝑥𝑡 and
the query identifier 𝑞.𝑖𝑑 , which also constitutes the primary key.
Similarly, we will assume a document 𝑑 encapsulates at least its full
text 𝑑.𝑡𝑒𝑥𝑡 , and the document identifier 𝑑.𝑖𝑑 , which also represents
the primary key. Both queries and documents may have additional
attributes, such as the number of unique terms, the document’s
URL, title and TREC docno, title, and so on. We denote with 𝑄 =

[𝑞1, 𝑞2, . . .] a finite ordered list of queries, and with 𝐷 = [𝑑1, 𝑑2, . . .]
a finite ordered list of documents. From an object relational model
perspective, both 𝑄 and 𝐷 are relations.

Further, to allow evaluation, we formally define relevance as-
sessments (in TREC parlance, qrels). A relevance assessment 𝑟𝑎 is a
tuple whose attributes include a query id, a document id (together
forming the primary key) and a relevance label. A finite set of rele-
vance assessments is denoted as 𝑅𝐴 = {𝑟𝑎1, 𝑟𝑎2, . . .}. Finally, given
a list of queries𝑄 , we denote with 𝑅 = [𝑟1, 𝑟2, . . .] the list of ranked
results for the queries. Each retrieved result 𝑟 associates a query
𝑟 .𝑞 and a document 𝑟 .𝑑 with a relevance score 𝑟 .𝑠 that defines the
ranking order. The primary key of a retrieved results list is the pair
(𝑞.𝑖𝑑, 𝑑.𝑖𝑑). Moreover, a retrieved results list may exhibit additional
metadata such as the query-document features commonly exploited
in LTR scenarios [14].

3.2 IR Transformers
We exploit the IR data model discussed above to express retrieval
operations in an IR system as transformations between queries and
document. To this end, we leverage function objects. A function
object is a construct allowing an object to be invoked or called
as if it were an ordinary function. A function object has proper-
ties depending on the function object’s specific implementation.

These properties allow the explicit declaration of the configuration
parameters of each instantiated function object.

We build our declarative IR language on a generic function object
we call a transformer. In general, a transformer 𝑓 : 𝑄 × 𝑅 ↦→ 𝑄 × 𝑅
takes as input a list of queries𝑄 and a list of retrieved documents 𝑅,
and returns another list of queries𝑄 ′ and another list of documents
𝑅′. Depending on the specific implementation of a transformer, both
inputs and output can be partially specified, i.e., input can be just
𝑄 or 𝑅 and/or output can be just𝑄 ′ or 𝑅′. An optional input can be
omitted, i.e., the input is assumed to be an empty list, or, if present, it
is ignored by the transformer. An optional output is ignored by the
transformer, and it is a verbatim copy of the corresponding input.
As we will see, this definition of transformer is general enough to
allow the composition of transformers.

In the following, we describe some classes of transformers to
show how commonly deployed operations in IR experiments can
be implemented as transformers.

Basic retrieval. A classical search operation can be expressed as
a function Retrieve : 𝑄 ↦→ 𝑅:

𝑅′ = Retrieve().transform(𝑄). (1)

In doing so, the Retrieve function transforms a list of queries𝑄 in a
list of retrieved results 𝑅, i.e., a set of documents 𝐷 for each query
𝑞 in 𝑄 . We may instantiate the Retrieve operation in many ways,
for instance using different weighting models (selecting e.g., BM25,
TF.IDF, language modelling and their parameters as properties of
the transformer) or even using different retrieval systems (Indri,
Terrier, Anserini, etc.).

𝑅′ = Retrieve("BM25") .transform(𝑄). (2)

Moreover, we assume that transform() is the default method in our
transformer objects, and hence need not be specified, i.e., Equa-
tion (2) is equivalent to:

𝑅′ = Retrieve("BM25") (𝑄) (3)

Note that, in the following, if no properties are specified, we
suppress the empty () to improve readability.

2
Query Rewriting. In many cases, a query might be rewritten

by the IR system before passing to the ranking component. For
instance, the sequential dependence proximity model [22] adds
operators such as the Indri #1 and #uw8 operators containing pairs
and sequences of query terms, in order to boost the scores of docu-
ments where the query terms appear in close proximity. Similarly,
Peng et al. [24] describe a query rewriting operation, known as
context-sensitive stemming, where for some query terms, alter-
native inflections are added to the query. Rewriting can easily be
expressed as a transformer like Rewrite : 𝑄 ↦→ 𝑄 , e.g.,:

𝑄 ′ = Rewrite(𝑄). (4)

Query Expansion. In pseudo-relevance feedback (PRF) query ex-
pansion, additional query terms can be added to the query based on
how they occur in documents highly-ranked for the initial query.
The identification of the refined query, can be expressed as a trans-
former, Expand : 𝑄 × 𝑅 ↦→ 𝑄 , e.g.:

𝑄 ′ = Expand(𝑄, 𝑅). (5)

The reweighted query should then be re-executed on the origi-
nal index. Hence, the whole PRF process can be expressed as a
combination of three transformers: a first Retrieve transformer,



a Expand transformer, which takes the queries 𝑄 and retrieved
documents 𝑅, and calculates reformulated queries 𝑄 ′ by examina-
tion of the top-ranked documents for each query, and a second
Retrieve transformer, to process the reformulated queries, e.g.,

𝑅′ = Retrieve(Expand(Retrieve(𝑄))) . (6)

Feature extraction. With the advent of LTR, multi-stage ranking
pipelines have become commonplace in IR experiments. In the
classical LTR paradigm, for a given query, 𝑘 documents are ranked
by an initial retrieval approach to form a candidate set; 𝑘 = 1000 and
BM25 form a typical setup [19]. Upon this candidate set, a number of
additional retrieval features are extracted or calculated. For instance,
PageRank or URL length are examples of query independent features
that might be used in web search settings; proximity, field-based
weighting models [20] are examples query dependent features. Both
query-independent and query-dependent feature extraction can be
expressed as transformers. Without loss of generality, we can use
a single transformer Extract : 𝑄 × 𝑅 ↦→ 𝑄 × 𝑅 to encompass all
feature extraction processes, e.g.,

𝑄 ′, 𝑅′ = Extract(𝑄, 𝑅), (7)

where 𝑄 is optional when extracting query-independent features.

Reranking. In multi-stage ranking pipelines, after feature extrac-
tion a candidate set of documents is re-ranked to boost effectiveness.
Beside reranking using a LTR technique such as LambdaMART,
more recently neural re-rankers such as BERT (e.g., [15]) are being
increasingly widely used for improved effectiveness. In all cases,
a re-ranker takes an input set of documents, and computes a new
score for that set of documents, and hence a reranker can be ex-
pressed as the transformer Rerank : 𝑄 × 𝑅 ↦→ 𝑅, and a two-stage
retrieval pipeline with feature extraction can be expressed as a
combination of transformers, e.g.,

𝑅′ = Rerank(Extract(Retrieve(𝑄))). (8)

Most re-rankers exploit machine learning techniques, hence they
must be trained on some test data. To trigger the training of a re-
ranker, this transformer exposes a method to estimate the model
parameters to be used in subsequent IR experiments:

Rerank.fit(𝑄𝑡𝑟𝑎𝑖𝑛, 𝑅𝐴𝑡𝑟𝑎𝑖𝑛, 𝑄𝑣𝑎𝑙𝑖𝑑 , 𝑅𝐴𝑣𝑎𝑙𝑖𝑑 ), (9)

where the parameters 𝑄𝑡𝑟𝑎𝑖𝑛, 𝑅𝐴𝑡𝑟𝑎𝑖𝑛, 𝑄𝑣𝑎𝑙𝑖𝑑 , and 𝑅𝐴𝑣𝑎𝑙𝑖𝑑 denote
the training queries and qrels, and the validation queries and qrels,
respectively, used to train the underlying machine-learned model.

Table 1 summarises the transformer classes presented. The op-
tional input/output queries/retrieved documents are in parenthesis.
Finally, we note that any arbitrary function that takes 𝑄 and/or
𝑅 and returns 𝑄 and/or 𝑅 can be used as a transformer, thereby
allowing easy extensibility.

2
3.3 Operators for Transformers
The notation for nested transformers calls in Equation (8) is difficult
to write and hides the fact that a first-stage retrieval occurs before
a second-stage re-ranking. To make it easy to combine different
transformers in a succinct and easily understandable manner, we
are inspired by deep learning frameworks towards creating succinct
pipelines of IR transformations by operator overloading. In this way,
we can use Python-like operators to allow simple notations for
retrieval pipelines. In the following, we leverage some notations
from relational algebra to describe these operators, as follows:

Table 1: Classes of Transformers. The optional input/output
queries/retrieved documents are in parentheses.

Input Output Transformer
𝑄 (× 𝑅) 𝑄 ′ (× 𝑅) Query rewriting
𝑄 (× 𝑅) (𝑄 ×) 𝑅′ Basic Retrieval
𝑄 × 𝑅 𝑄 ′ (× 𝑅) Query expansion
𝑄 × 𝑅 (𝑄 ×) 𝑅′ Re-ranking
𝑄 × 𝑅 𝑄 ′ × 𝑅′ Feature extraction

Table 2: PyTerrier operators for combining transformers.

Op. Name Description

>> then Pass the output from one transformer
to the next transformer

+ linear combine Sum the query-document scores of the
two retrieved results lists

* scalar product Multiply the query-document scores of
a retrieved results list by a scalar

** feature union Combine two retrieved results lists as
features

| set union Make the set union of documents from
the two retrieved results lists

& set intersection Make the set intersection of the two re-
trieved results lists

% rank cutoff Shorten a retrieved results list to the
first 𝐾 elements

^ concatenate Add the retrieved results list from one
transformer to the bottom of the other

• Let 𝑅1 ⊲⊳ 𝑅2 denote the natural join between two retrieved
results lists. The result of the natural join is the set of all
combinations of retrieved results in 𝑅1 and 𝑅2 that are equal
on both of their composite (𝑞.𝑖𝑑, 𝑑.𝑖𝑑) primary key attributes;

• Let 𝑎Γ𝑏 (𝑅) denote the sorting of tuples in 𝑅 according to the
ascending values of attribute 𝑏 after grouping by attribute 𝑎.

• Let 𝑎𝜎𝐾 (𝑅) denote the selection of the first 𝐾 tuples in 𝑅
after grouping by attribute 𝑎.

• Let 𝑅 [𝑓 (𝑎1, ..) → 𝑏] denote the transformation of one or
more attributes 𝑎1, .. of the tuples in 𝑅 to a new attribute 𝑏
according to function 𝑓 (·).

• Following [26, p.236], let 𝑎Gop(𝑏) (𝑅) denote the application
of operator op(·) to attribute 𝑏 of the tuples in 𝑅 after group-
ing by attribute 𝑎, i.e., equivalent to a SQL statement project-
ing an aggregate function on 𝑏 after a GROUP BY on 𝑎.

2We now describe the transformer operators we have defined. A
summary is provided in Table 2.

Linear combination (+). This operator allows two retrieval sets to
be linearly combined, to support CombSUM data fusion or linear
interpolation of relevance scores. If𝑇1 and𝑇2 represent transformers
returning the same set of queries 𝑄 as in input, then

𝑄, 𝑅′ = (𝑇1 +𝑇2) (𝑄, 𝑅) :=
𝑅1 = 𝑇1 (𝑄, 𝑅), 𝑅2 = 𝑇2 (𝑄, 𝑅)
𝑅′ = (𝑅1 ⊲⊳ 𝑅2) [𝑠1 + 𝑠2 → 𝑠]



Scalar product (*). This operator allows the scores of a retrieval
set to be multiplied by a scalar value 𝛼 :

𝑄 ′, 𝑅′ = (𝛼 * 𝑇 ) (𝑄, 𝑅) :=
𝑄 ′, 𝑅1 = 𝑇 (𝑄, 𝑅)
𝑅′ = 𝑅1 [𝛼𝑠 → 𝑠]

This permits the weighting of systems within a linear combination.
Set union (|) and intersection (&). These operators allow two

retrieval sets to be combined – for example, combining the docu-
ments obtained with and without PRF for use as a candidate set [5].
Due to their inherent set properties, the resulting document scores
are not defined, e.g., the scores assume the special value ⊥. Thus,
these operators are intended for use with further (re-)ranking. More
specifically, if 𝑇1 and 𝑇2 represent transformers returning the same
set of queries 𝑄 as in input, then the set union would be defined as:

𝑄, 𝑅′ = (𝑇1 | 𝑇2) (𝑄, 𝑅) :=
𝑅1 = 𝑇1 (𝑄, 𝑅), 𝑅2 = 𝑇2 (𝑄, 𝑅)
𝑅′ = (𝑅1 ∪ 𝑅2) [⊥→ 𝑠]

Rank cutoff (%). This operator allows a ranking to be truncated
at a given rank 𝐾 . Given a retrieval results list produced by the
transformer𝑇 , the result of the𝑇 % 𝐾 operation is a retrieval result
containing, for each query, the 𝐾 documents returned by 𝑇 with
the highest scores:

𝑄, 𝑅′ = (𝑄, 𝑅) % 𝐾 :=
𝑅1 =𝑞.𝑖𝑑 Γ−𝑠 (𝑅)
𝑅′ =𝑞.𝑖𝑑 𝜎𝐾 (𝑅1) .

2 Concatenate (^). This operator appends a second ranking after a
first one for each query. This is useful in cases where, for instance,
we may re-rank a few documents using an expensive approach,
such as BERT, then append the remainder of the ranking from the
baseline. Documents appearing in the first ranking for each query
are removed from the second ranking. Documents from the second
ranking have their scores adjusted such that the highest ranked
remaining document from the second ranking has a score just less
than the lowest ranked document from the first ranking. More
formally:

𝑄, 𝑅′ = (𝑇1 ^ 𝑇2) (𝑄, 𝑅) :=
𝑅1 = 𝑇1 (𝑄, 𝑅), 𝑅2 = 𝑇2 (𝑄, 𝑅)

𝑆 =𝑞.𝑖𝑑 Gmin(𝑠) (𝑅1), 𝑆 =𝑞.𝑖𝑑 Gmax(𝑠) (𝑅2 − 𝑅1)

𝑅′ = 𝑅1 ∪
(
(𝑅2 − 𝑅1) ⊲⊳ 𝑆 ⊲⊳ 𝑆

)
[𝑟2 .𝑠 − 𝑠 .𝑠 + 𝑠 .𝑠 − 𝜖 → 𝑟2 .𝑠]

where 𝜖 is a small constant, e.g., 𝜖 = 0.001, used to represent themin-
imum score difference between documents coming from 𝑅1 and 𝑅2.

Feature union (**). This operator is intended to allow different
retrieval systems to be composed as features for LTR. More specifi-
cally, if 𝑇1 and 𝑇2 represent transformers returning the same set of
queries 𝑄 and documents 𝑅 as is input, then

𝑄, 𝑅′ = (𝑇1 ** 𝑇2) (𝑄, 𝑅) :=
𝑅1 = 𝑇1 (𝑄, 𝑅), 𝑅2 = 𝑇2 (𝑄, 𝑅)
𝑅′ = (𝑅1 ⊲⊳ 𝑅2) [[𝑓1, 𝑓2] → 𝑓 ]

The resulting retrieved result list combines, for each (𝑞.𝑖𝑑, 𝑑.𝑖𝑑)
tuple, the features 𝑓1 and 𝑓2, e.g., the metadata, of the two input
retrieved result lists into a new list of features 𝑓 .

Composition (>>). This operator denotes that the output of an
IR transformer should be used as input to another IR transformer.
More specifically, if 𝑇1 and 𝑇2 represent transformers, then

𝑄 ′, 𝑅′ = (𝑇1 >> 𝑇2) (𝑄, 𝑅) :=
𝑄1, 𝑅1 = 𝑇1 (𝑄, 𝑅)
𝑄 ′, 𝑅′ = 𝑇2 (𝑄1, 𝑅1).

For brevity, we also describe the composition operator as then. This
operator allows to “chain” transformers and/or operator together,
to define experimental pipelines. As an illustration, use of the com-
position operator, allows Equation (8) to be succinctly written as:

Pipe = Retrieve >> Rerank

𝑅′ = Pipe(𝑄)
Note that the type of Pipe is also a transformer, and hence all
operators can be applied upon that transformer. Moreover, if at
least one of the composed transformers expose a fit method as
in Eq. (9), then the composed pipeline exposes a fit method as
well. This method triggers the training of all the machine-learned
Rerank transformers in the pipeline. Other transformers are applied
as necessary, in order to make the appropriate transformation of
the queries into the required inputs for the fit method.

2
3.4 Experiment Abstraction on Pipelines
Having defined the suite of transformers and operators available,
we now turn to actually running IR retrieval experiments. In a pro-
cedural fashion, a retrieval pipeline can be evaluated in three steps:

• obtain the queries𝑄 and corresponding relevance the assess-
ments 𝑅𝐴;

• transform those queries into results using the pipeline, let
say 𝑅 = Pipe(𝑄);

• apply an evaluation tool, such as the ubiquitous trec_eval
tools – or its Python bindings pytrec_eval [28] – on𝑅𝐴 and
𝑅, to obtain effectiveness measures such as MAP or NDCG.

Application of these three procedural steps might be considered
laborious. Besides a sound knowledge of the specific IR system
software to used, experiments are typically run using multiple
scripting tools generating a lot of output files to be evaluated and
compared to the outcomes of different experiments with similar but
different implementations. Instead, we are inspired by the Cornac
framework2 for conducting comparative recommender system ex-
periments. Cornac provides a succinct Experiment abstraction that
allows many recommender systems to be evaluated using the same
datasets for the same evaluationmeasures, while ensuring fair setup
across matter such as cross-validation splits.

To this end, we define an Experiment function in PyTerrier,
which can apply a list of retrieval pipelines upon a common set of
queries, and evaluates the resulting result set from each pipeline
to obtain a common set of evaluation measures. Our Experiment
function builds upon the pytrec_eval [28] tool. It is also of note
that Experiment acts as a trigger for the application of the pipelines
upon a query set. The syntax for our proposed implementation of
the Experiment abstraction is:

Experiment( [Pipe1, Pipe2], 𝑄, 𝑅𝐴, ["map", "ndcg"]).
The output of an Experiment execution is a table comparing the
specified retrieval pipelines side-by-side.
2 https://cornac.preferred.ai/

https://cornac.preferred.ai/


Listing 1: Example experiment for the document ranking task of the TREC 2019 Deep Learning track.
1 f i r s t _ p a s s = R e t r i e v e ( index , "BM25" ) # i n i t i a l r e t r i e v a l
2 # p r f d e f i n e s the cand ida t e documents to re−rank us ing the a d d i t i o n a l f e a t u r e s
3 p r f = f i r s t _ p a s s >> RM3( index ) >> R e t r i e v e ( index , "BM25" )
4 sdm = Sequent ia lDependence >> R e t r i e v e ( index , "BM25" ) # r ew r i t e s the query to use p r o x im i t y op e r a t o r s
5 b e r t = CEDRPipel ine ( " v a n i l l a _ b e r t " ) # a p p l i e s a BERT re−r anke r
6 l t r = x gBoo s t P i p e l i n e ( xgBoost ( { " rank " : " ndcg " } ) ) # d e f i n e s and c o n f i g u r e s the LambdaMART LTR s t ag e
7 # combine the f u l l p i p e l i n e , u s ing query expans ion s co r e s , p r o x im i t y and BERT as f e a t u r e s .
8 f u l l _ p i p e l i n e = p r f >> ( sdm ∗ ∗ b e r t ) >> l t r
9 f u l l _ p i p e l i n e . f i t ( t r _ t o p i c s , t r _ q r e l s , v a _ t op i c s , v a _ q r e l s ) # t r a i n the p i p e l i n e
10 # e v a l u a t e the p i p e l i n e s . Repor t MAP and NDCG@10
11 Exper iment ( [ f i r s t _ p a s s , p r f , f u l l _ p i p e l i n e ] , t e s t _ t o p i c s , t e s t _ q r e l s , me t r i c s =[ " ndcg_cut_10 " , "map " ] )

While an Experiment does not currently handle the fitting (train-
ing) of the pipeline, it is easy to consider variants that automatically
handle 𝑘-fold cross validation. A further variant might be the intro-
duction of a grid search functionality to determine the best settings
for different components in the pipeline. Due to the compositional
nature of a retrieval pipeline, the grid search would be able to
cache the outcomes of earlier stages in the pipeline, such that later
retrieval components could be varied without re-execution of all
pipeline stages.

0 Combined with the previously described transformers and op-
erators, our proposed Experiment function allows the researcher
to focus on what is being evaluated, i.e., the stages of the retrieval
pipeline, rather than on the order of execution. Indeed, through the
resulting domain-specific programming environment, researchers
can design IR pipelines in terms of the concepts of the approach
(combine these models to make a good candidate set; express these
models as re-rankers; combine and learn a LTR model using these
re-rankers as features). Each component can be simply implemented
as a transformer operating on queries and documents.

In essence, we believe that the aforementioned types of trans-
formers and operators allows to address a plethora of different IR
operations. We define primitive search operations, such as search,
rewrite, rerank, which can be easily implemented using standard
search engine toolkits - indeed, we already have implementations
for the Anserini and Terrier platforms. Moreover, instantiation of a
learned model can be easily achieved by appending final transform-
ers for learned methods for sci-kit Learn, (e.g., Random Forests)
or xgBoost [6] (e.g., the LambdaMART LTR algorithm [3]). We
have also implemented transformer objects for neural re-ranking
implementations such as CEDR [15].

Listing 1 provides an example instantiation of a retrieval exper-
iment, demonstrating how different retrieval transformers might
be combined into a comprehensive, yet easily understandable, re-
trieval pipeline. This particular example, which might be applied to
the TREC Deep Learning Track, demonstrates a composed pipeline
involving pseudo-relevance feedback, BERT and LambdaMART.

However, the capabilities of different search engine toolkits differ,
and hence there may be more efficient ways to instantiate the same
pipeline. In the next section, we further elaborate on this topic,
demonstrating how different toolkits can be used and optimised to
efficiently implement the same pipeline. This allows the conceptual
design of a retrieval pipeline – as expressed using transformers and
operators – to diverge from its logical implementation, as executed
upon the IR toolkits.

4 IMPLEMENTING TRANSFORMERS AND
OPERATORS

Our domain-specific declarative environment for IR search experi-
ments allows us to focus on the logical design of our experiments.
The output of this design activity is a computational data-flow
graph, with search operations as nodes, data dependencies between
search operations as edges, where queries and documents are passed
along edges. Some of these operations represent transformers for
primitive search operations such as search, rerank, rewrite (as sum-
marised in Table 1), while others represent operators to combine
these transformers in different ways (as summarised in Table 2).

0For the actual execution of IR retrieval experiments, the logical
design of the experiments, i.e., the composition of pipelines, must
be is compiled targeting a specific IR software platforms. Depending
on the execution platforms, transformer and operators can be com-
bined together to allow more efficient execution of the experiment.
To implement the notions of pipeline compilation and optimisation,
we use a pattern matching algorithm to identify patterns of pipeline
expressions on a given subject pipeline, and apply graph rewriting
patterns to create the optimised version of the subject pipeline for a
given IR platform. Each pattern applies equivalence rules [26, p.583]
leveraging the MatchPy pattern matching library [13], which takes
into account the associativity of operators. Since, as mentioned
in Section 3, we may instantiate transformers in many ways, for
instance using different weighting models or other static properties,
compiled pipelines can implement multiple transformers and/or
operators, and can optimise their runtime execution depending on
the IR software platform, as we illustrate in the following examples.

Dynamic pruning optimisations. By use of the rank cutoff opera-
tor (%), typically we are applying a rank cutoff to a list of retrieved
results generated by Retrieve transformer as a separate operation:

top10 = Retrieve(𝑖𝑛𝑑𝑒𝑥, "BM25") % 10. (10)

However, retrieval systems based on dynamic pruning tech-
niques – such as MaxScore, WAND or BlockMaxWAND – can
process queries and retrieve results faster when the number of doc-
uments to retrieve are reduced [27], as the higher scoring threshold
means that more documents can be pruned, i.e., skipped over dur-
ing retrieval. Hence the previous two-steps transformer can be
automatically compiled as follows:

top10 = AnseriniRetrieve(𝑖𝑛𝑑𝑒𝑥, "BM25", 10),

where AnseriniRetrieve is an Anserini-specific implementation of
the Retrieve transformer, which uses Lucene’s BlockMaxWAND-
based search backend [11].



Learning to rank optimisations. To compute additional query-
dependent features when re-ranking, the inverted index posting
lists must be scanned until the requested docids are identified.
This represents a large computational overhead even if skipping is
used [27]. Indeed, consider the following retrieval pipeline, which
computes two additional query dependent features (query likeli-
hood and TF.IDF):

first_pass = Retrieve(𝑖𝑛𝑑𝑒𝑥, "BM25")
tfidf = Retrieve(𝑖𝑛𝑑𝑒𝑥, "TFIDF")
ql = Retrieve(𝑖𝑛𝑑𝑒𝑥, "QL")
pipeline = first_pass >> (tfidf ** ql)

(11)

As written, both additional query dependent retrieval features
would result in additional access to the inverted index posting
lists for each query.

Instead, there have been two search architectures for computing
additional query dependent features proposed in the literature: (1)
the doc vectors approach [1], where the direct index (which records
the terms occurring in each document) is used for computing ad-
ditional features, and (2) the fat postings approach [20], where the
postings for the query terms of the documents that enter the final
retrieved set are cached in main memory, allowing the fast compu-
tation of additional query-dependent features for the documents in
the retrieved set. In both cases, when executing feature retrieval
pipelines involving multiple query-dependent features, instead of
computing the features one by one with multiple passes of the
doc vectors/fat postings, the pipeline can be rewritten to a single
Terrier retrieval operation that extracts the fat postings first, then
computes all other features on the fat postings, without executing
two expensive retrieval transformers:

pipeline = FeatureRetrieve(𝑖𝑛𝑑𝑒𝑥, "BM25", ["TFIDF", "QL"]).
In the next section, we demonstrate the efficiency benefits of us-
ing an optimised pipeline upon retrieval operations involving two
underlying IR platforms.

2
5 EXPERIMENTS
The aim of the following experiments is to show that the optimisa-
tion of retrieval pipelines, as proposed in Section 4, results in more
efficient search executions. These experiments demonstrate that
we can implement equivalent retrieval pipelines using multiple re-
trieval backends (Anserini and Terrier), which can be automatically
optimised in different ways. In particular, we address the following
research questions:
RQ 1. Does optimising the execution of rank cutoffs for dynamic

pruning enhance the efficiency of an Anserini retrieval?
RQ 2. Does optimising the execution of LTR to use the fat postings

for computing multiple query dependent features enhance
the efficiency of a Terrier retrieval?

5.1 Experimental Setup
We perform experiments on two standard TREC corpora, namely
TREC Disks 4&5, and ClueWeb09. We index each corpus using
both Anserini and Terrier, while recording position information
but otherwise using their default settings. This results in two in-
dices for each corpus, containing 528,155 and 50,220,423 documents,
respectively, for Disks 4& 5, and ClueWeb09. For queries, we use
corresponding TREC query sets: for Disks 4&5, 250 topics from

Table 3: Mean response time (MRT, in milliseconds) of Ter-
rier and Anserini for RQs 1 & 2. MRTs are shown before
(denoted Orig.) and after optimisation by rewriting (denoted
Opt.). Δ is the % improvement between original & optimised.

Formulation Robust’04 T Robust’04 TD Robust’04 TDN ClueWeb09
MRT Δ MRT Δ MRT Δ MRT Δ

RQ1 - Rank Cutoff Optimisation

Terrier 135.5 - 151.1 - 314.7 - 1040.4 -
Anserini Orig. 106.1 - 173.9 - 365.1 - 292.4 -
Anserini Opt. 4.95 -95% 24.65 -85.8% 104.85 -28.7% 107.4 -63%

RQ2 - Learning to Rank Optimisation

Anserini 1336.1 - 1740.2 - 2625.4 - 3101.2 -
Terrier Orig. 501.4 - 626.7 1032.9 - 2047.9 -
Terrier Opt. 33.8 -93% 116.1 -81% 350.8 -66% 1255.8 -39%

the TREC Robust track ’04, applying short (denoted T), medium
(TD) and long (TDN) topic formulations; for ClueWeb09, we use
200 query-only topics from the TREC Web track 2009-2012.

Experiments are conducted on a Centos Linux 7.2 server with
96GB RAM and 12-core Intel E5-2609 CPUs. We use a single thread
for all experiments, and report mean response time (MRT) in mil-
liseconds. All experiments are conducted on our proposed frame-
work PyTerrier.3 PyTerrier is implemented in Python, and targets
Anserini and Terrier backends, which are both written in Java –
indeed, we make use of the Pyjnius library4 that permits easy in-
teractions between Python and Java code.

2
5.2 RQ1 Results
In this experiment, we compare the response times of Terrier and
Anserini in implementing the retrieval pipeline contained in Eq. (10).
In particular, as Anserini uses Lucene’s search engine backend based
on BlockMaxWAND, the pipeline can be optimised. We further
measure the response times of Terrier – which does not deploy
any dynamic pruning techniques – for comparison. The top half of
Table 3 provides the mean response times for the Terrier pipeline,
and the unoptimised and optimised Anserini pipelines, on both the
TREC Robust ’04 and ClueWeb09 test collections.

From the results, it is apparent that for short title-only (T) queries
on the Robust ’04 index, Anserini benefits from use of the Block-
MaxWAND dynamic pruning technique, although the benefits are
less apparent for longer queries (TD and TDN), where Terrier out-
performs Anserini. This is expected, as document-at-a-time dy-
namic pruning techniques such as BlockMaxWAND are known to
be less efficient for longer queries [27].

Next, comparing Anserini Optimised and the Anserini Original
retrieval pipelines, we see that by informing the Anserini backend
of the number of documents required is 10 rather than 1000, mean
response times are improved by up to 95% on Robust ’04 (short
queries) and 63% on ClueWeb09. Therefore, we conclude that, in
answer to RQ1, applying the rank cutoff optimisation within the
framework can result in marked efficiency benefits for researchers.

5.3 RQ2 Results
Next, we experiment to evaluate the efficiency of Anserini and
Terrier in executing the retrieval pipeline contained in Eq. (11), i.e.,
retrieving a candidate set of documents for each query using BM25,
before calculating additional two query dependent features, namely
3 The source code for our experiments is at https://github.com/
cmacdonald/pyterrier_ictir2020. 4 https://github.com/kivy/pyjnius

https://github.com/
cmacdonald/pyterrier_ictir2020
https://github.com/kivy/pyjnius


TF.IDF and query likelihood with Dirichlet smoothing. Further, re-
call that such a retrieval pipeline can be optimised for Terrier, using
the fat framework [20] for calculating multiple query dependent
features. The bottom half of Table 3 reports the resulting response
times for the Anserini execution as well as the un-optimised and
optimised Terrier executions.

2 From the table, we note that the Terrier implementation is faster
at executing this complex retrieval pipeline than Anserini. This is
expected – at the time of writing, Anserini’s reranking implemen-
tation uses one “query” to the underlying Lucene index for every
document in the candidate set being re-scored. On the other hand,
Terrier’s original implementation is faster, but still requires one
backend retrieval operation for each pipeline component. Finally,
the optimised formulation only requires one backend fat retrieval
operation for each query. In doing so, this formulation makes use
of the fat framework to allow the efficient calculations of multi-
ple query dependent features in a single pass of the query term’s
posting lists. Finally, we note that the benefit of the fat framework
decreases as the length of the queries increase (T→ TD→ TDN);
this implies that the overheads of keeping the postings around
for lots of query terms causes additional memory pressures. The
alternative doc vectors approach [1] may be more efficient in such
situations. Therefore, in answer to RQ2, we find that automatic
optimisation of retrieval pipelines for LTR have the potential to
markedly enhance the efficiency of such experiments.

Finally, it is worth emphasising that the point of this experiment
is not to demonstrate a “bake-off”, but instead to show that a single
retrieval pipeline – expressed in a conceptual manner – can be
executed on PyTerrier using multiple different retrieval backends.
Moreover, that pipeline can be executed by those backends in dif-
ferent manners, with different efficiencies. The researcher need not
be knowledgeable about the capabilities of those backends.

6 CONCLUSIONS AND OUTLOOK
In this paper, we proposed a data model and framework for conduct-
ing IR experiments in a declarativemanner. Our framework includes
transformers representing standard retrieval operations, as well as
operators for combining those transformers into retrieval pipelines.
Further, we show how these pipelines can be automatically com-
piled and optimised, encoding knowledge of the capabilities of the
underlying information retrieval system, to benefit the efficiency
compared to semantically equivalent pipelines.

We believe that use of our framework can allow researchers to
focus on creating transformers, for integrating their techniqueswith
existing IR platforms – such as Anserini or Terrier – in end-to-end
evaluation. The resulting code can be easily distributed as Jupyter
notebooks, enhancing IR experiment reproducibility. In future, we
believe that the proposed framework can be easily extended to
support automatic parallelisation, by application of the pipeline
using separate threads for different queries, as well as support for
incremental querying, which would allow a neural re-ranker such
as BERT to start training on some batches of training queries while
the IR platform is still retrieving for further batches, rather than
the current sequential executing of the retrieval pipeline.
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