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Abstract

FFA2 and FFAS are receptors for short-chain fatty acids which
are produced in prodigious amounts by fermentation of poorly
digested carbohydrates by gut bacteria. Understanding the
roles of these receptors in regulating enteroendocrine, meta-
bolic and immune functions has developed with the production
and use of novel pharmacological tools and animal models. A
complex (patho)physiological scenario is now emerging in
which strategic expression of FFA2 and FFAS in key cell types
and selective modulation of their signalling might regulate body
weight management, energy homoeostasis and inflammatory
disorders.
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Abbreviations

ALDH1A2, aldehyde dehydrogenase 1 family member; BAFF, B-cell
activating factor; CMTB, 4-chloro-o-(1-methylethyl)-N-2-
thiazolylbenzeneacetamide; DREADD, Designer Receptor Exclusively
Activated by Designer Drug; GSIS, glucose-stimulated insulin secre-
tion; GLP-1, glucagon-like peptide 1; GTT, glucose tolerance test; HFD,
high-fat diet; IgA, immunoglobulin A; IgG, immunoglobulin G; ILC3, type
3 innate lymphoid cell; KO, knock-out; PA, (S)-2-(4-chlorophenyl)-3,3-
dimethyl-N-(5-phenylthiazol-2-yl)butanamide; PNS, peripheral nervous
system; PYY, peptide YY; SCA, small carboxylic acid; SCFA, short-
chain fatty acid; SCG, superior cervical ganglion.

Introduction

Since their deorphanisation in 2003 as short-chain fatty
acid (SCFA) receptors FFA2 and FFA3 have been
viewed as potentially attractive drug targets for the
regulation of metabolic and related disorders [5].
However, because they share the same endogenous
SCFA ligands and are co-expressed in some tissues, and
the development of potent, selective and pan-species
active ligands has been frustratingly slow, detailed un-
derstanding of their contribution to (patho)physiolog-
ical conditions has been challenging. Despite this,
appreciation that the microbiota produce SCFAs in
abundance and that these influence many aspects of the
biology of metabolic and immune cell functions has
resulted in major efforts, including the development of a
number of novel preclinical models, to better under-
stand the roles of both of these G protein—coupled re-
ceptors. Herein, we summarise recent insights into the
functions of these SCFA receptors in relation to the
endocrine, metabolic and inflammatory systems and
consider whether they can currently be considered as
valid pharmacological targets.

Roles in enteroendocrine functions

Over the years, many reports have clearly shown func-
tions for SCFAs in enteroendocrine hormone release,
particularly of the anorectic hormones, glucagon-like
peptide 1 (GLP-1) and peptide YY (PYY) from the lower
gut of both mouse and human [45,12]. However, direct
roles of SCFA receptors, and which might be the major
contributor to these functions, has been less certain
because both FFA2 and FFA3 are expressed by enter-
oendocrine L cells at the mRNA [45] and protein level
[33]. Studies performed using tissue from conventional
mouse knock-out (KO) lines have been helpful, but not
definitive. In colonic crypts derived from FFA2 KO
mice, the effect of SCFAs on GLP-1 release is absent
[45,7,4], whereas in FFA3 KO mice the SCFA effect has
been reported to be moderately reduced [45]. By taking
a pharmacological route, selective activators of both
FFA2 and FFA3 have been reported to induce GLP-1
release from colonic crypts of wild-type mice [33].
However, the ligands used for these studies are allo-
steric, meaning that they bind at sites distinct from
SCFAs, and it is at least possible that although they do
indeed activate the relevant receptor they may not
generate entirely equivalent signals to those produced
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by SCFAs. Moreover, although high affinity antagonists
for human FFA2 have been described, these have poor if
any affinity for the mouse form of FFAZ [36,42]. To
attempt to overcome these limitations, Bolognini et al.
[6] recently used a chemogenetic approach in which
they generated and characterised a knock-in line of
transgenic mice where mouse FFA2 was replaced with a
modified form of the human FFA2 receptor which, as
well as maintaining effective blockade by human se-
lective antagonist drugs, was no longer activated by
SCFAs but instead by molecules related to sorbic acid
which were shown to have exactly the same signalling
profile and capacity as SCFAs at wild type FFA2. Using
this Designer Receptor Exclusively Activated by
Designer Drug (FFA2-DREADD) concept they showed
that activation of the FFAZ-DREADD induced GLP-1
release from primary colonic crypts, in colonic explants
and an #z vwo intracolonic stimulation model in which

GLP-1 release was sampled from the portal vein [6].
The magnitude of these effects was equivalent to those
produced by SCFAs in wild-type mice and were also
abolished by the human FFA2 selective antagonists,
thus demonstrating the exclusive role of FFA2-mediated
GLP-1 release without an obvious contribution from
FFA3 (Figure 1). Activation of FFA2 in enteroendocrine
cells promotes a Gg1-inositol phosphate—calcium
signalling pathway [45,33,4,6] that presumably pro-
motes hormone release, although a recent report also
suggests a role for an endosomal Go;/p38 signalling
pathway in FFAZ-mediated GLP-1 release [8]. FFA2
also appears to play an important role in the differenti-
ation of GLP-1" enteroendocrine cells during embry-
onic stages, where the receptor is detected in the
intestinal tract as early as E15.5 [22]. SCFAs may also
promote release of the orexigenic peptide Insl5 from a
subtype of colonic enteroendocrine L-cell in concert
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The physiological roles of FFA2 and FFA3. (a) SCFA-activated colonic FFA2 triggers increased gut motility and the release of anorectic hormones PYY
and GLP-1 from colonic crypts, which in turn decrease appetite by targeting the brain and affect multiple organ functions, respectively. In adipocytes,
FFA2 activation inhibits lipolysis, lipid accumulation and lowers insulin resistance in a Gj,-dependent manner. Activation of FFA2 in pancreatic beta cells
increases or decreases insulin release in a Gg/11 and Gyo-dependent manner, respectively. (b) Enteric neuronal FFA3 activation leads to a decrease in
anion secretion and gut motility, whereas the activation of FFA3 in pancreas decreases insulin release. FFA3 is expressed in the PNS, where its activation
leads to an increased heart rate, oxygen consumption and energy expenditure. All FFA3 functions reported are Gj,-mediated. CNS, central nervous
system; PNS, peripheral nervous system; GLP-1, glucagon-like peptide 1; PYY, peptide YY; SCFA, short-chain fatty acid. .
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with GLP-1 and PYY [2]. The specific involvement of
FFA2 in Insl5 release remains, however, to be fully
explored.

Roles in adipose tissue

FFA2 is highly expressed in adipose tissue, where it
appears to be present in both white adipose cells and
also in resident macrophages [5,32]. Although FFA3
expression was also initially reported in adipose, later
reports have largely discredited this [5]. In adipocytes,
activation of FFAZ inhibits lipolysis [4]; Figure 1. This
was recently re-assessed using the FFA2-DREADD
mouse model described earlier. Here, the FFA2-
DREADD agonist sorbic acid inhibited beta-adren-
ergic—stimulated lipolysis in a concentration-
dependent and pertussis toxin (PTX)—sensitive
manner, indicating that activation of Gj signalling
pathways were required [6]. It is interesting that
although in cell line-based studies FFAZ can activate a
diverse range of heterotrimeric G proteins [6], in
physiological settings different signalling mechanisms
are used in different cell types to specify function
because, as noted earlier, FFA2-mediated GLLP-1 release
reflects activation of Ggi1-linked signalling. The anti-
lipolytic effect of FFA2 activation suggests an opportu-
nity to target this receptor in weight management with
consequent implications for type 2 diabetes (Figure 1).
However, this subject is complex. Earlier studies sug-
gested a negative role of FFAZ on weight and metabolic
parameters in mice fed a high-fat diec (HFD) [3],
whereas Kimura et al. [23] (2013) noted that FFA2 KO
mice fed a HFD had a detrimental effect on fat accu-
mulation and body weight, but also on glucose tolerance
and energy expenditure, effects that were counter-
balanced in mice selectively overexpressing FFAZ in
adipocytes. Such outcomes were recently supported by
the same group using a HFD-fed wild-type mouse
model in which animals were treated with GCL2505, a
probiotic bacterial strain able to promote production of
SCFAs in the gut. Here, GCL2505 was found to increase
energy expenditure with a resultant decrease in fat
accumulation and improvement in insulin sensitivity,
effects that were absent in equivalently treated FFA2
KO mice [17]. The basis for the different outcomes
reported is unclear but may reflect differences in the
genetic background of the animals and the strategies
used to target FFA2Z expression.

A role of FFA2 in energy metabolism in mice has
recently also been shown under ketogenic conditions,
and the ketone body acetoacetate proposed as a novel
additional endogenous ligand for FFA2 [31]. In wild-
type mice subject to starvation or a ketogenic diet, a
contribution of an acetoacetate-FFA2 axis in weight
management, fat accumulation and energy expenditure
was postulated. Moreover, FFA2 KO mice were reported
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to have decreased levels of lipoprotein lipase in adipose
and liver tissues and hence decreased control of lipid
metabolism.

Although these rodent-based studies are of interest, it is
vital that human studies might confirm positive effects
of SCFAs on energy homoecostasis and potentially
explore if these reflect FFA2 receptor activation. Rectal
administration of SCFAs to obese individuals in a
randomised crossover trial showed an increase in fasting
lipid oxidation and resting energy expenditure, param-
eters that were positively correlated with an increase in
plasma levels of the SCFA acetate. In addition, a
decrease in whole body lipolysis was reported, support-
ing effects of SCFAs on adipose tissue [9], potentially
via activation of FFA2. Further studies have evaluated
acute effects of propionate administered orally to
healthy volunteers. Here, propionate increased resting
energy expenditure in overnight-fasted subjects, an
effect that was independent of changes in glucose and
insulin levels [10]. The authors found an increase in
whole body lipid oxidation, further strengthening pre-
vious studies conducted in human and murine models.
In addition, provision of inulin propionate ester to
nondiabetic overweight or obese individuals signifi-
cantly improved adipose tissue insulin resistance
compared with treatment with inulin alone [11].
Although it is tempting to speculate that the effects of
the SCFAs in these studies might reflect activation of a
SCFA receptor, potentially FFA2, by their nature these
studies were not designed to address this question
directly.

Roles in pancreas

The physiological functions of SCFA receptors in
pancreas are rather controversial. Although both re-
ceptors are expressed in beta cells, there are currently
opposing data in regard to the effect of SCFAs. Tang
et al. [44] reported an inhibitory effect of acetate on
glucose-stimulated insulin secretion (GSIS) on isolated
mouse and human islets, whereas more recently SCFAs
were indicated to have little or no effect in an isolated
pancreas infusion model [34]. The opposite was
observed in perifused murine and human islets where
both acetate and propionate increased GSIS [35]. While
this may reflect the expression of multiple targets for
SCFA action, the difference in experimental procedures
adopted to measure insulin release is also a plausible
explanation.

The diverse signalling pathways downstream of these
receptors should also be considered. Although FFA3
signalling in pancreatic beta cells is Gj-linked [38],
FFAZ appears to couple to both G; and Gy pathways
consistent with its promiscuous capacity to activate
multiple G protein families in transfected cell—based
studies [29,39]. Generally, G;j signalling in beta cells is
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considered to inhibit insulin release, whereas Gg11
signalling promotes this [4]. Accordingly, incubation of
wild-type—derived islets with either of a pair of FFA2-
selective small carboxylic acid ligands described origi-
nally by Schmidt et al. [40], small carboxylic acid 14 and
15 caused an increase in GSIS via Gg11-dependent
phospholipase C (PLC) activation, whereas incubation
with the FFAZ2 allosteric agonist ligand 4-chloro-o.-(1-
methylethyl)-N-2-thiazolylbenzeneacetamide caused a
decrease in GSIS in a PTX-sensitive and therefore G;j-
mediated manner [39]. Similarly, activation of FFA2
with the related allosteric agonist (S)-2-(4-
chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)

butanamide, but not acetate, was found to potentiate
GSIS in both mouse- and human-derived islets in a
PTX-insensitive manner [29]. It is plausible that se-
lective activation of FFAZ2 signalling pathways results in
opposing outcomes, and this should now be fully char-
acterised using known FFAZ2-selective biased ligands
such as AZ1729 [5]; Figure 1. Recently, a key role of
FFAZ was proposed for the ability of Leuconostoc mesen-
teroides EH-1—derived butyric acid to increase insulin
and decrease plasma glucose levels in a murine model of
type 1 diabetes [47]. The potential contribution of
FFA2 was defined based on a blockade by the antagonist
GLPG0974. However, it is known that although
GLPGO0974 is a high affinity antagonist for human FFA2,
as noted earlier it lacks affinity for murine FFAZ [42]. As
such, any effect of GLPG0974 in mouse models must
reflect off-target effects that are unrelated to FFAZ.
Results such as those reported by Traisaeng et al. [47]
must therefore be interpreted with caution and such
conclusions certainly require validation using other
pharmacological or genetic tools. FFAZ2 is also expressed
in the pancreas at embryonic stages [22]. Here, a SCFA-
FFAZ axis appears to control insulin secretion, with
FFA2 KO embryos showing reduced insulin and higher
plasma glucose levels compared with the wild type [22].
With regard to FFA3, data from transgenic mouse
models suggest a negative contribution of this receptor
on insulin release (Figure 1). Even though islets derived
from FFA3 KO mice showed higher levels of insulin than
the wild type when stimulated with high concentrations
of glucose, the opposite was found in islets isolated from
mice selectively overexpressing FFA3 in pancreatic beta
cells [48]. Similarly, in an 7 vivo glucose tolerance test
FFA3 KO mice showed lower glucose levels than the
wild type, whereas the opposite was observed in FFA3-
overexpressing mice [48]. Others have recently
supported such outcomes using a hyperglycaemic clamp
model, with FFA3 KO mice showing an improved insulin
profile compared with wild-type animals [37]. Although
FFA3 activation appears to be detrimental for insulin
release, no alteration in insulin sensitivity has been
detected in FFA3 KO animal models [48,37]; Figure 1.

In human trials, both fasting and postprandial glucose
and insulin profiles were found to be unchanged after

colonic infusion of SCFAs to overweight/obese male
subjects [9]. Similar data were obtained by acute oral
administration of propionate in fasted human subjects
[10]. Again, whether this is the result of FFA2 and FFA3
producing opposing effects in the pancreas is yet to be
fully defined. However, considering that both receptors
seem functional in this organ, selective inhibition of
FFA3 and/or activation of the FFAZ-dependent Gy
pathway might provide a key to selectively stimulate
insulin release.

Roles in the peripheral nervous system
Undoubtedly FFA3 is expressed in peripheral sympa-
thetic neurons as suggested initially by detection at
both mRNA [21] and protein levels [33,14], where the
receptor appears to be localised in a heterogeneous
population of cells. Kimura et al. [21] showed FFA3
expression and excitatory activity in superior cervical
ganglia neurons. Elimination of the receptor in mice
had a negative effect on heart rate and oxygen con-
sumption, suggesting a role in energy expenditure [21];
Figure 1. The same group recently confirmed the
expression, and physiological importance of FFA3 in
the sympathetic ganglia also at the embryonic stage,
where the receptor appears to play a role in sympa-
thetic nerve differentiation. Here, they observed a
decrease of innervation of the heart, heart rate, body
temperature and oxygen consumption in FFA3 KO
embryos, suggesting a contribution of a SCFA-FFA3
axis in energy metabolism [22]; Figure 1. These ef-
fects were also present in offspring derived from
mothers treated with antibiotics to dampen SCFA
levels, but reversed by treatment with propionate
during pregnancy [22].

Detection of the FFA3 receptor has been shown in
both superior cervical ganglia and coeliac-superior
mesenteric ganglion neurons in a transgenic mouse
model in which red fluorescent protein is expressed
from the FFA3 receptor promoter [14]. In both
neuronal populations, FFA3 activation had an inhibitory
effect on N-type calcium channel function [14].
However, its physiological significance is yet to be
determined and probably depends on the neuronal
subtypes expressing FFA3, with the majority being
noradrenergic and vasoconstrictor in nature [14]. Other
work has focused on FFA3 expression in the enteric
nervous system. Nohr et al.[33] showed the presence
of FFA3 in neurons of the mucosal, submucosal and
myenteric plexus in the small intestine (Figure 1).
Similar expression patterns have been shown in the rat
proximal colon, where activation of the receptor in-
hibits cholinergic-mediated anion secretion [20,19]. In
another report, FFA3 activation in distal regions of
mouse intestine caused a reduction of short—circuit
currents in a tetrodotoxin-sensitive manner, an effect
that was also replicated in human colonic tissues [46].
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Roles of FFA2 in immune cell populations. In neutrophils, activation of FFA2 triggers chemotaxis and potentially promotes neutrophil survival or apoptosis,
promotes superoxide production (in crosstalk with P2Y2R) and the production of the cytokine IL-13. Complementing this action, in ILC3 cells, activation of
FFA2 leads to an upregulation of IL-1R, which is in turn activated by IL-1B to produce IL-22. FFA2 activation also directly leads to IL-22 production via the
Akt/ERK1/2- signal transducer and activator of transcription 3— RAR-related orphan receptor y t axis in these cells. In dendritic cells, activation leads to
the production of BAFF and A2ALD1a2, the latter of which catalyses the production of retinoic acid, which along with BAFF promotes B-cell differentiation
into plasma cells. FFA2 may also be involved in IgA/IgG release via an unknown mechanism. Activation of FFA2 in type 2 macrophages promotes the
release of TNFa, as well as bacteriocidal activity through an unknown pathway. FFA2 may also function as a coreceptor for the influenza A virus, triggering
a B-arrestin-1-dependent internalisation of the virus. AKT, protein kinase B; ALDH1A2, aldehyde dehydrogenase 1 family, member A2; AP2B1, AP-2
complex subunit beta; BAFF, B-cell activating factor; Blimp1, B-lymphocyte-induced maturation protein-1; ERK, extracellular signal—regulated kinase; IAV,
influenza A virus; IgA, immunoglobulin A; IgG, immunoglobulin G; IL-1f, interleukin 1p; IL-22, interleukin-22; ILC3, type 3 innate lymphoid cells; IRF4,
interferon regulatory factor 4; NADPH, nicotinamide adenine dinucleotide phosphate; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; P2Y2,
P2Y purinoreceptor 2; RA, retinoic acid; ROS, reactive oxygen species; TNFa, tumour necrosis factor o; STAT3, signal transducer and activator of
transcription 3; RORYt, RAR-related orphan receptor y t; ROS, reactive oxygen species; SA, sialic acid; XBP1, X-box binding protein 1.

Although FFA3 expression in cholinergic neurons of the
intestinal mucosa and submucosal layer might play a
role in intestinal secretion [20], FFA3 in the myenteric
plexus might instead play a role in intestinal contrac-
tion and motility [19]. Acute activation of FFA3 has
been shown to block serotonin-induced intestinal
motility [19], but pharmacological tools to selectively
activate FFA3 are even more limited than for FFA2
[30], restricting interpretation. Similarly, a decrease in
gut motility has been observed ## vitro using mouse

colonic preparations acutely treated with potentially
selective  FFA2 and FFA3 agonists [46]. However,
Bolognini et al. [6] failed to observe a contribution of
FFA3 to gastric motility when hFFA2-DREADD mice,
in which SCFAs such as propionate are unable to
activate the modified FFA2 receptor, were provided
with propionate in the drinking water for 5 days.
Whether acute versus chronic administration of SCFAs
might have differential impacts on intestinal motility
warrants further investigation.
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Immune functions

There has been extensive research on the role of SCFA
receptors in immunity. They, and especially FFA2, may
contribute to immune homocostasis, tissue integrity and
responses to pathogens. In mouse, mRNA encoding
FFAZ is widely expressed by immune cells and the re-
ceptor seems to play roles in inflammatory tissue pro-
cesses associated with metabolic disorders. For example,
FFA2 expression has been reported on M;-type macro-
phages in isolated adipose tissue and stimulation of the
receptor is associated with the induction of TNFa, a
pro-inflammatory cytokine implicated in adipose tissue
homoeostasis, remodelling and fat accumulation. This
may contribute to the roles of FFA2 in energy
homoecostasis [32]; Figure 2. Undoubtedly, FFA2 is
highly expressed in neutrophils, including both blood-
and bone marrow—derived cells (immunological genome
project database (/1p:/fwww.immgen.orgldatabrowser/index.
hitml), whereas FFA3 is all but absent. In neutrophils,
FFAZ2 is involved in a variety of cellular processes. FFA2
promotes chemotaxis of isolated mouse and human
neutrophils [28,4], resulting in neutrophil recruitment
to the site of inflammation or infection, as well as sur-
vival of these cells [15]. Other studies conclude that
FFA2 plays a role in the resolution of inflammation,
leading to neutrophil apoptosis at infection sites, as
mice lacking the receptor were found to be more sus-
ceptible to Klebsiella pneumoniae infection, with increased
bacterial proliferation and uncontrolled inflammatory
responses [16]. Neutrophil activation results in the
formation of reactive oxygen species via FFAZ
(Figure 2). Although SCFAs in isolation are not highly
effective, co-addition of the types of allosteric activators
described earlier, including AZ1729 [4] and compounds
of the phenylacetamide class [24,43,30], were recently
shown to enhance SCFAs, resulting in potent activation
of NADPH-oxidase assembly [27,26]. In addition,
crosstalk of FFAZ with the ATP-sensing P2Y; receptor
has also been found to stimulate NADPH-oxidase as-
sembly, and thus superoxide production [25]. This may
have mixed outcomes: although superoxide is effective
in fighting bacterial pathogens, it is also associated with
tissue damage in inflammatory responses. Recently,
FFA2 expression has been reported in type 3 innate
lymphoid cells (ILLC3s), including retinoic acid receptor
(RAR)-related orphan receptor Y t—positive cells in
mouse intestinal tissues, where the modulation of the
receptor leads to augmented production and release of
IL-22, an important regulator of tissue integrity [13];
Figure 2). This has also been confirmed in another
report in which a crosstalk between FFA2 receptor
expression in neutrophils and ILC3s has emerged,
resulting in a protective effect against a Clostridium
difficile infection in a mouse model [15]. The interplay
between the pro- and anti-inflammatory effects of FFA2
activation on neutrophils and ILC3s highlights the
complexity of the involvement of this receptor in the

maintenance and resolution of the inflammatory
response in disease. Moreover, recent studies have
indicated key roles for SCFAs in limiting concomitant
pneumococcal infection during influenza A virus infec-
tion and that this was likely mediated via FFAZ [41].
However, a distinct report has suggested that FFA2 may
act as a coreceptor for influenza A virus entry [49].
Interestingly, as treatment with phenylacetamide-based
allosteric agonists restricted influenza A virus entry and
this potentially removed FFAZ from the cell surface,
then prophylactic enhancement of SCFA levels or the
rapid use of FFAZ2 selective agonists might usefully both
limit influenza A entry and replication and limit subse-
quent bacterial, for example, pneumococcal, superin-
fection. Similarly, viral load and pulmonary inflammation
induced by respiratory syncytial virus infection have
been reported to be reduced in mice by provision of a
high fibre diet and hence acetate, and that this is
defective in animals lacking FFA2 [1].

SCFA receptors have also been implicated in antibody
responses by inducing plasma cell differentiation.
Dendritic cell FFA2 activation leads to the release of the
cytokine B-cell activating factor (BAFF) and the reti-
noic acid—regulating protein aldehyde dehydrogenase 1
family, member ALDH1A2, which in turn trigger the
expression of plasma cell differentiation genes with
consequent production of immunoglobulin A and G (IgA
and IgG, respectively) [50,51], that are involved in in-
testinal integrity and immune homoeostasis (Figure 2).
Another report recently excluded the implication of
FFAZ in butyrate-induced IgA production in mouse
large intestine [18]. Whether FFA2 plays distinct roles
in small rather than large intestine is yet to be
determined.

Conclusions

A new scenario is emerging in which receptors for SCFAs
control energy homoecostasis and metabolic functions
through different mechanisms and the contribution of
key tissues/cell types expressing these receptors
(Figure 1). Hence, SCFA receptors might contribute to
the maintenance of energy homoeostasis in a steady
state, but their pharmacological modulation might also
underpin a novel strategy for the treatment of metabolic
and inflammatory disorders. Considering that FFAZ2 is
expressed in multiple tissues and that the receptor ap-
pears to favour specific downstream signalling pathways
in different settings, then ‘biased’ ligands at this re-
ceptor might offer a feasible approach to specifically
activate subsets of pathways. For example, an FFA2-G;
selective bias agonist might mainly target adipose tissue
and improve insulin resistance, whereas an FFA2-Gg11
bias agonist might improve the release of anorectic
hormones in the intestine and increase insulin release in
the pancreas. Although this has not been explored in a
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systematic manner, Bolognini et al. [4] identified and
characterised AZ1729 as such an FFA2-G; selective
ligand after initial studies indicating that it lacked ac-
tivity in Ca** elevation—based assays. Ideas that acti-
vators of FFA2 may be effective in limiting viral load and
subsequent bacterial infections are of course intriguing
in relation to the COVID-19 pandemic. Understanding
of the roles of FFA3 is emerging but lags behind FFAZ.
However, selective expression in specific cell types in
the pancreas and PNS might offer potential for novel
treatments.
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