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SUMMARY 

Widely distributed in natural deposits, the overconsolidated (OC) clays have attracted 

extensive experimental investigations on their mechanical behaviors, especially in the 

1960s and 1970s. Based on these results, numerous constitutive models have also been 

established. These models generally fall into two categories: one based on the classical 

plasticity theory and the other the bounding surface (BS) plasticity theory, with the latter 

being more popular and successful. The BS concept and the subloading surface (SS) 

concept are the two major BS plasticity theories. The features of these two concepts and 

the representative models based on them are introduced respectively. The unified 

hardening (UH) model for OC clays is also based on the BS plasticity theory but 

distinguishes itself from other models by the integration of the reference yield surface, 

unified hardening parameter, potential failure stress ratio and transformed stress tensor. 

Modification is made to the Hvorslev envelop employed in the UH model to improve its 

capability of describing the behaviors of clays with extremely high overconsolidation ratio 

(OCR) in this paper. The comparison among the BS model, SS model and UH model is 

performed. Evidence shows that all these three models can characterize the fundamental 

behaviors of OC clays, such as the stress dilatancy, strain softening and attainment of the 



critical state. The UH model with the revised Hvorslev envelop has the fewest parameters 

which are identical to those of the modified Cam-Clay model. 

KEY WORDS:  Clay, Overconsolidation, Critical state, Bounding surface, Subloading 

surface, Unified hardening model  

 

1. Introduction 

Most naturally deposited clays involve some degree of overconsolidation due to processes 

of loading and unloading such as tamping, cyclic loading, erosion, excavations, and 

changes in ground-water tables. OC clays behave distinctively from the normally 

consolidated (NC) clays, like strain softening and shear dilatancy. The research on 

constitutive models for OC clays has always been a hot topic and the achievements are 

abundant. These models generally fall into two categories: one based on the classical 

plasticity theory and the other the BS theory, with the latter being more successful and 

popular. The models of the first category will be briefly reviewed and three representative 

models of the second type will be introduced in detail and compared in this paper. 

The original and modified Cam-Clay models are the most fundamental models for clays, 

which are developed based on the classical incremental plasticity theory and the critical 

state soil mechanics [1-3]. The two models can describe behaviors of the NC and lightly 

OC clays but fail to capture those of the highly OC clays quite satisfactorily. Nevertheless, 

they, together with the critical state soil mechanics [4-5], laid a solid foundation for future 

research on the constitutive models for OC clays.  

Some other researchers have also developed models for OC clays based on the classical 



plasticity theory and the critical state soil mechanics. Pender [6] proposed an elastoplastic 

model to characterize behaviors of OC clays on the basis of the conventional triaxial 

compression test results and the critical state soil mechanics by introducing some 

assumptions for different stress paths. This model has only four parameters and can 

describe the fundamental behaviors of OC clays. However, it is concerned only with the 

behaviors of clays under an applied stress system such that the intermediate and minor 

principal stresses are equal and thus the influence of the intermediate principal stress on 

the behaviors of OC clays is not taken into account. Through studying the response of 

clays subjected to undrained shear conditions, Banerjee et al. [7, 8] derived both 

associated and non-associated stress-strain relations using the incremental plasticity theory. 

A unified state parameter model for clay and sand was developed by Yu [9] based on the 

critical state soil mechanics. The behavior of OC clays can also be modeled by it. But the 

classical plasticity theory has its own restriction that no plastic strain can occur inside the 

yield surface and it always gives an abrupt transition from being elastic to being 

elastoplastic for the stress-strain relations of OC clays.  

Mroz proposed a workhardening model for metals by introducing the concept of a field 

of hardening moduli featured by a series of nested configuration surfaces associated with a 

large number of state variables [10]. This concept can overcome the restriction of the 

classical plasticity theory mentioned above to some extent. Following the work by Mroz, 

Prévost developed a model to describe behaviors of clays subjected to different stress 

paths, such as monotonic and cyclic undrained loading [11]. The performance of such 

models are generally better than those based on the classical plasticity theory, but more 



configuration surfaces are required in order to get better accuracy. Complexity arises from 

the memory of a large number of configuration surfaces and the corresponding state 

variables. However, this concept inspired the development of the BS plasticity theory. The 

distinctive feature of the BS theory is that plastic deformation can occur inside a 

“reference” yield surface.  

Despite the different names given, the BS concept [12-13] and subloading surface (SS) 

concept [14-16] are the two major BS plasticity theories. Explicit definition of the loading 

surface is unnecessary when using the BS concept, while for the SS concept, a normal 

yield surface is defined explicitly and the subloading surface is assumed to be 

geometrically similar to it. The BS model was originally developed for metals subjected to 

cyclic loading and later applied to the constitutive modeling for OC clays by Dafalias et al. 

[17-20]. Other researchers have also used the BS concept to model the behaviors of OC 

clays. A general model for OC clays was developed by Mroz et al. by incorporating the 

BS concept [21-22]. The MIT-E3 constitutive model for OC clays proposed by Whittle et 

al. was also based on the BS concept [23]. Within the framework of the BS plasticity 

theory, Rouainia and Wood developed a kinematic hardening structure model by 

integrating the reference surface, the bubble surface, and the structural surface [24]. This 

model is able to characterize the behaviors of both structural and OC clays. Hashiguchi et 

al. developed the SS concept to describe the behaviors of materials with elastic-plastic 

transition and also applied it to the constitutive modeling for both sand and OC clays 

[25-26]. Subsequently, some further applications of the SS concept in the constitutive 

models for clays appeared. Nakai et al. developed the subloading tij model for OC clays by 



integrating the tij model for NC clays and the SS concept [27-28]. By introducing the 

superloading surface to describe the structural evolution of clays, Asaoka proposed the 

superloading surface model for structural clays which can also describe the behaviors of 

OC clays [29-31]. For OC clays, the superloading surface model is the same as the SS 

model. 

Recently, Yao et al. proposed the UH model for OC clays by integrating the current 

yield surface, reference yield surface, potential failure stress ratio and unified hardening 

parameter as well as employing the transformed stress tensor based on the spatial 

mobilized plane (SMP) criterion [32]. The BS concept and SS concept opened up new 

avenues for the development of constitutive models for OC clays, and various models 

have been established based on them. The unified hardening parameter, potential failure 

stress ratio and transformed stress tensor make the UH model distinct from other models 

for OC clays, although it is also based on the BS plasticity theory. In the following 

sections, two models for OC clays as representatives for those based on the BS and SS 

concepts respectively and the UH model will be introduced. Modification is made to the 

Hvorslev envelop employed in the UH model to improve its capability of describing the 

peak strength characteristics of highly OC clays. Capabilities of these models in 

describing the behaviors of OC clays will be analyzed by comparing the model predictions 

with the test results on the Fujinomori clay subjected to constant mean stress triaxial 

compressions. The predicted undrained effective stress paths of the models in the q-p 

plane and the corresponding projections in the e-p plane will be illustrated to investigate 

the model capabilities in describing the critical state characteristics of OC clays.  



2. Bounding Surface Model 

The BS model for OC clays developed by Dafalias and Herrmann [19] is a representative 

for those based on the BS concept. This model is in the premise of the critical state soil 

mechanics, and the critical state characteristics for OC clays can be readily described. 

In this model, the stress variables p, q , S and Lode’s angle α are employed: 
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where ij  is the Cauchy stress tensor, ijijij ps  −= , p is the mean stress and q is the 

general deviatoric stress.  

As the employment of the yield surface of the modified Cam-Clay model over-predicts 

the peak strength of highly OC clays, a BS consisting of two ellipses and one hyperbola is 

proposed to overcome this shortcoming. The hardening rule is the same as that for the 

modified Cam-Clay model, which is expressed as  
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where 0p  is the intersection of the BS and the p-axis, pe  is interpreted as the plastic 

void ratio related to the plastic volumetric strain p

v , pl is a model constant to ensure that 

the elastic bulk modulus will not become zero when the mean stress is zero,   and   

are the compression index and swelling index, respectively, and 0e  is the initial void 

ratio. 

The radial mapping rule is adopted in the BS model and can be expressed as 

( ) ; ; ; = − + = = =c cp b p p p q bq S bS                    (3) 

where pc represents the location of the mapping center on the p-axis, the stress invariants 



with an upper bar are associated with the BS, b  is an intermediate variable 

characterizing the distance between the current stress point and the “image” stress point, 

which can be solved by substituting the radial mapping rule equations into the functions of 

the BS on condition that the current stresses and p0 are known. The mapping rule plays an 

important role in the BS model as it affects both the dilatancy and hardening. The 

associated flow rule is adopted on the BS, and the plastic flow direction is determined at 

the “image” stress point.  

The bounding plastic modulus pK  corresponding to the “image” stress state can be 

obtained based on the condition of consistency 
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The plastic modulus pK  of the current stress state is defined as a function of pK  and 

the shape hardening function Ĥ  
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in which F  is the function of the BS, ap  is the atmospheric pressure, m , s ,  eh , ch , 

eN  and cN  are the model parameters,  is the Macauley bracket, and ij  is the 

Kronecker delta. Equations (9)-(12) are actually interpolation functions for the parameters, 

which can make the BS model reproduce more realistic behaviors of OC clays in the 

three-dimensional stress space. When the clay is overconsolidated, the current stress state 

lies inside the BS, b>1 and pK > pK . As the plastic deformation proceeds, the distance 

between the current stress state and the “image” stress state becomes smaller and smaller 

and finally approaches zero at the critical state. The OCR is gradually lost during this 

process. When the clay is normally consolidated or at the critical state, the current stress 

state lies on the BS, b=1 and pK = pK . 

 

3. Subloading Surface Model 

The SS concept was originally developed for the materials exhibiting a gradual transition 

from the elastic to fully plastic state, like metals. The salient feature of the SS concept is 

that the current stress state always lies on the SS, which retains a geometrical similarity to 

the normal yield surface. The plastic modulus at the current stress state is described by the 

ratio of the size of the SS to that of the normal yield surface. For OC clays, this ratio also 

reflects the OCR, and the behavior of NC clays can be described when it is equal to unity. 

The SS model is also based on the critical state soil mechanics. The associated flow rule is 

adopted to both the subloading surface and normal yield surface, and the plastic flow 



direction is determined at the current stress state. 

The model proposed by Hashiguchi and Collins [26] will be introduced here. For the 

isotropic OC clays under monotonic loading conditions, it can be assumed that 

0ij ij ij ijs  = = = =  [26]. So the formulation of the subloading surface can be written as 
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where ij  and ij  are reference points, ijs  is the similarity center, ij  is the rotational 

hardening variable,   is the friction angle, R  is the similarity-ratio, H is the hardening 

variable for the normal yield surface, and ( )F H  represents the size of the normal yield 

surface, which is the same as that of the modified Cam-Clay model here. 

The evolution law of the similarity-ratio is given by 

p
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lnU u R= −                                 (17) 

where ijD  is the plastic stretching,  stands for the magnitude, and u  is a material 

constant. It can be seen that R decreases due to plastic deformation and reaches unity at 

the critical state. 

The elastic bulk modulus K and shear modulus G change with not only the mean stress 

but also the magnitude of the hardening function F in the SS model introduced here. Such 

definitions are more reasonable from the perspective of thermodynamics and can 

overcome some of the intrinsic irrationality of those employed in the BS and UH models 

[26]. However, the intention of this paper is to analyze how the SS model describes the 



behavior of OC clays and thus its plastic property is of more significance. So the classical 

definitions based on the e-lnp linear relation will be adopted to the SS model 
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where   is the Poisson’s ratio. This can also facilitate the comparison among the models. 

 

4. Unified Hardening Model 

Both the BS model and SS model are capable of modeling the characteristic behaviors of 

OC clays, but some parameters without clear physical significances are introduced. An 

appropriate constitutive model for soil should be able to capture the characteristic 

behaviors of soil, but its accuracy is of less importance [6]. An ideal situation is that all the 

parameters have clear physical significances and can be determined from the conventional 

laboratory tests directly. The UH model for OC clays with the revised Hvorslev envelop 

has the same parameters as the modified Cam-Clay model and can capture the 

characteristic behaviors of OC clays. The main features of this model will be elaborated in 

the following section. 

    The UH model is similar to the SS model. The current stress state lies on the current 

yield surface, the hardening parameter of which is the unified hardening parameter H, and 

the reference stress point lies on the reference yield surface, which is identical to that of 

the modified Cam-Clay model. The similarity center of these two surfaces is the origin of 

the p-q space. The ratio of the size of the current yield surface to that of the reference yield 

surface reflects the OCR. When the clay is normally consolidated or at the critical state, 



the current yield surface coincides with the reference yield surface. The Hvorslev 

envelope, which is widely used to determine the peak strength of OC clays, is adopted in 

this model. The transformed stress tensor based on the SMP criterion is employed in the 

model to describe the behavior of overconsolidated clays in the three-dimensional stress 

space. 

The reference yield surface is the same as that of the modified Cam-Clay model 
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where p  is the mean principal stress of the reference stress point, q  is the deviator 

stress corresponding to the reference stress point, 0p  is the initial intersect of the 

reference yield surface and the p -axis, ( ) ( )01 ec p +−=  , and M  is the stress ratio 

at the critical state in triaxial compression. 

The current yield surface and the unified hardening parameter can be written as 
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where 
0

p  is the initial mean principal stress, hM  is the slope of the Hvorslev envelope 

in the qp −  plane, fM  is defined as the potential failure stress ratio, and R  is the OC 

parameter which increases as the OCR decreases. For OC clays, the potential stress ratio 

fM  is larger than the critical state stress ratio at the initial stage. It decreases as the 



plastic deformation proceeds and finally becomes equal to the critical state stress ratio at 

the critical state. The associated flow rule is adopted to the current yield surface and the 

plastic flow direction is determined at the current stress state. 

The hardening parameter H controls the hardening and softening of the current yield 

surface and has the following features: 

In the hardening region, dH  is always non-negative. The following conclusions can 

be drawn from Equation (22): 

(1) Under isotropic compression condition, 0= , we have dHd p

v =  for NC 

clay and ( )dHMMd f

p

v

44=  for OC clay with 1
44
fMM , which reflects 

the fact that the compressibility of OC clay under isotropic compression state 

is smaller than that of the corresponding NC clay. 

(2) When M0 , 0p

vd , which describes positive dilatancy. 

(3) When M= , 0=p

vd , which corresponds to the point of characteristic state. 

Note that at this state, as 44 −M =0, 44 −fM >0 and p

vd =0, thus 
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= >0. So the current yield surface still expands. 

(4) When fMM  , 0p

vd , which means negative dilatancy and strain 

hardening.  

With the stress ratio   increasing and the potential stress ratio fM  decreasing 

continuously,   will catch up with fM  and finally exceeds it at a certain time. After 

that, the strain softening process commences. In the softening region, since MM f  , 

0p

vd , 0dH . At the critical state, fMM ==  and 0== dHd p

v . 

As can be seen, the potential stress ratio fM  related to the OC parameter R and the 



slope of the Hvorslev envelope controls both the hardening of the current yield surface 

and the predicted peak strength of OC clays. So it plays a cardinal role in the UH model. 

However, the Hvorslev envelope overestimates the strength of OC clays with high OCRs, 

as it gives non-zero strength even when the mean effective stress is zero. So the UH model 

over-predicts the peak strength of highly OC clays. It is reasonable to incorporate both the 

zero-tension line and the Hvorslev envelope to describe the peak strength of highly OC 

clays. But it is not convenient to employ them in the constitutive modeling as they are not 

continuous. Actually, Dafalias and Herrmann [19] have used a BS consisting of two 

ellipses and one hyperbola with continuous tangents at the connecting points in stead of a 

single one to control the predicted peak strength of highly OC clays. But the predicted 

peak stress ratio may still be larger than 3, which means the clay can sustain tensile stress. 

An appropriate strength locus for OC clays should approach the zero-tension line as the 

OCR increases to infinite and lies between the critical state line (CSL) and yield surface 

passing point C in the q-p space as shown in Figure 1. A parabola-shaped Hvorslev 

envelop satisfying such requirements can be proposed  
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where point ( )00 ,qp  is the vertex of the parabola,   is a parameter for the parabola 

controlling the curvature, and point ),( fqp  lies on the parabola.  



 

Fig. 1. Current yield surface, reference yield surface and the Hvorslev envelop 

When R=1, the revised Hvorslev envelope intersects with the CSL at point C ),( pMp . 

So 
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The parabola also goes through the origin, thus 
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When the OCR is equal to infinite, the slope of the parabola should be equal to 3. So the 

following equation can be obtained by differentiating Equation (25) 
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The values of 0p , 0q  and   can be solved by combing Equations (26)-(28). And 

finally the expression for the parabola can be obtained 
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So the potential failure stress ratio is expressed as 
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The responses of UH model with the original and revised Hvorslev envelops are 

compared in Figure 2. Simulations are conducted under drained constant-p triaxial 

compression conditions with the model parameters obtained by Yao et al. [32]. For the UH 

model with the original Hvorslev envelope, when the OCR is 100 or 200, the peak stress 

ratio is greater than 3. Higher peak stress ratio can be predicted when the OCR is even 

larger. This is obviously not realistic. The UH model with the modified Hvorslev envelop 

can reproduce more reasonable results in regard to the peak strength. The predicted peak 

stress ratio can never exceed 3. 
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Fig. 2. Responses of the UH model with (a) the original Hvorslev envelope and (b) the 



revised Hvorslev envelop under constant-p compression conditions 

The SMP criterion [33, 34] is one of the best in describing both the shear yield and 

failure behaviors of soils in the three-dimensional stress space, but its irregular geometry 

in the π-plane makes it difficult to be applied to constitutive models like the modified 

Cam-Clay model. The transformed stress tensor deduced by Yao et al. can solve this 

problem satisfactorily [35, 36]. The transformed stress tensor is deduced by making the 

SMP curve in the π-plane a circle, as displayed by the dotted line of Figure 3 with the 

center being the origin in the transformed π-plane. The transformed stress tensor has 

already been applied to the constitutive modeling for both sand and clay, and satisfactory 

results have been obtained [37-39].  

 

Fig. 3. Transformed relationships based on the SMP criterion 

The transformed stress tensor ij~  can be written as [32] 
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The UH model can be easily generalized to the three-dimensional stress space by using 

the transformed stress tensors [32]. 

 

5. Model Comparisons and Test Verification 

In this section, the capabilities of three models are compared and analyzed. The analysis 

process is carried out according to the three typical models in detail. 

5.1. Analysis of Model Principle 

(1) BS model 

The operating principle of the boundary surface model is that in the p-q space, the 

boundary surface is composed of two ellipses and a hyperbola, and the overall shape is 

close to an ellipse. By observing the cyclic tensile and compressive test curves of metal 

materials, it is found that there is a hidden boundary curve in the stress-strain relation 

curve of metal, which is extended to the principal stress space, and then there should be a 

boundary surface in the principal stress space. The material stress cannot cross the 

boundary surface, but can only be inside or reach the boundary surface. Compared with 

other models, the mapping method is used to correlate the current stress point with the 

image point on the boundary surface. Using the projection center, an image point is 

projected on the boundary surface through the current stress point. The function of the 

distance between the current stress point and the image point is used to reflect the plastic 

modulus, as well as the hardness of the soil. 



 

Fig. 4. Typical stress-strain relationship of soils calculated by the BS model (a) 

stress-strain curve under hardening process; (b) stress-strain curve under softening 

process 

 

Figure 4 has three main features: 

① No matter it’s the hardening or softening process, the current stress point is always 

inside the boundary surface or reaches the boundary surface, and cannot exceed the 

boundary surface. For soil materials dominated by plastic deformation, when the radius of 

the elastic domain is zero, the elastic domain degenerates to a point, indicating the current 

loading point. 

② Selection of a reasonable interpolation function of the distance between the current 

point and the image point can ensure the convergence of the stress-strain curve in the 

hardening or softening process. 

③ The plastic modulus of a material depends on the distance from the current point to the 

image point where it evolves. When the distance is large, the plastic modulus is large. The 

smaller is the distance, the smaller is the plastic modulus. When the stress point reaches 

the boundary surface and coincides with the image point, the plastic modulus degenerates 

to the one of the boundary surface. 



④ The boundary surface acts as an attractor, maintaining a gravitational effect on the 

current point until it reaches the boundary surface. 

(2) SS model 

An ellipse is adopted as the yield surface reflecting the normal remolded clay, while a 

small ellipse with a geometric similarity ratio of R is introduced as the loading surface. 

The current stress point is always on the loading surface. Different from the boundary 

surface, the subloading surface directly defines the plastic modulus as the interpolation 

function of the distance between the current point and the boundary surface. While in the 

SS model, the incremental evolution relation of geometric similarity ratio R is given, and 

the increment of R is expressed as the minus function of the incremental plastic strain 

modulus. The elastoplastic stiffness matrix can be obtained analytically by using the 

related flow rule. Another feature of the SS model is that there is no elastic domain. When 

the stress point moves in the normal direction outside the lower loading surface, it is 

judged as the elastic-plastic loading stage. When it moves normally in the yield plane, it is 

judged as the elastic unloading stage. Therefore, the SS model can be used to describe the 

plastic deformation behavior of loading inside the yield surface. 

(3) UH model 

In the UH model, the yield surface exactly the same as the modified Cambridge model is 

used as the reference yield surface, while the yield surface with uniform hardening 

parameters is used as the current yield surface. Similar to the SS model, the current yield 

surface behaves the same as the lower loading surface. The current stress point is always 

on the current yield surface. As a state parameter, the similarity ratio R between the current 

yield surface and the reference yield surface is expressed as a parabolic function of the 



potential strength Mf in the uniform hardening parameters. Compared with the SS model, 

the incremental formula of R in the SS model is directly given according to the 

experimental rules, with subjective factors; while the evolution formula of R in the UH 

model is a full expression, which is directly expressed by the reference yield surface. 

For the above three models, the following differences exist: 

① The definitions of elastoplastic behavior are different. All three models are 

elastic-plastic models. The boundary surface model is still within the framework of 

classical elastic-plastic theory, and there is always a pure elastic domain. Only when the 

stress point crosses the elastic domain, it enters the elastoplastic stage. However, the SS 

model and UH model do not belong to the classical elastic-plastic theory. The loading 

stage belongs to the elastic-plastic behavior stage, while the unloading stage belongs to the 

elastic behavior. 

② The expressions of elastic-plastic modulus are different. The plastic modulus of BS 

model is the interpolation function constructed by the distance between the stress point 

and its image point. And the boundary surface is the yield surface that obeys the related 

flow law. Therefore, the plastic modulus of the current stress point is an interpolation 

function reflecting the modulus of the boundary surface. The SS model and UH model are 

based on the lower loading surface or the current yield surface, subject to the associated 

flow rule, to calculate the incremental plastic modulus. 

③ Regardless of whether the BS model or the SS model simulates the model under true 

three-dimensional stress condition, it adopts the g(θ) method; that is, it adopts the shape 

function to modify the coefficient of critical state strength parameters. The UH model 



adopts the method of transforming stress, based on the strength criterion of SMP. The 

difference between the two generalization methods is that taking the g(θ) method is only a 

numerical correction of the strength parameters in the critical state; while taking the 

transformation stress method, the yield surface takes the shape of SMP in the offset plane 

at each increment step. And the main differences are as follows: with the increase of 

hydrostatic pressure, the stress-induced anisotropy will occur in geotechnical materials 

under the influence of hydrostatic pressure. In the small spherical stress range, the 

off-plane shape is close to the sharp curvilinear triangle. In the large spherical stress range, 

the off-plane shape is close to the circle. However, as the g(θ) method is only adopted to 

modify the size of the critical state parameter M, the stress-induced anisotropy caused by 

the above hydrostatic pressure cannot be properly reflected.  

④ When the initial axis of symmetry of the yield surface is not the p-axis, but in the line 

of K0 consolidation, namely for the initial anisotropy model, then if the g(θ) method is still 

applied, due to the yield surface axis of symmetry in the principal stress deflection angle 

of a space, at this point, the g(θ)-method-modified yield surface in the principal stress 

space will be outside the closed form of convex. The convexity of the yield surface is still 

guaranteed by the method of transformation stress. 

5.2. Parameters for the Models and Their Determination Techniques 

In this section, the capabilities of addressing the behavior of OC clays of the BS model, 

SS model and UH model are analyzed by comparing their predictions with the test results. 

The tests were carried out by Shimizu [40] on the saturated Fujinomori clay under 

constant mean effective stress paths to investigate the dilatancy of OC clays. All the 



samples were first isotropically consolidated to pc=588 kPa and then unloaded to achieve 

different OCRs. The physical properties of the clay are described in [40].  

The equivalent mean normal stress pe is defined as 

expe u

N e
p p



− 
=  

 
                             (35) 

where up (=100 kPa) is the reference mean stress, N is the void ratio at the point on the 

normal consolidation line (NCL) for the reference stress up , and e  is the current void 

ratio. The value of N is 0.9108 for the Fujinomori clay [40]. The CSL in the e-p space is  

( )ln /c ue p p = −                              (36) 

where   is the void ratio at the point on the CSL for the reference stress up , and ce  is 

the critical state void ratio at mean stress p. The value of   is 0.8448 for the Fujinomori 

Clay [40]. 

The common material parameters for the three models are shown in Table 1. The 

parameters λ, κ, and M are determined from the test data directly. The Poisson’s ratio   

is determined empirically as it does not affect the overall responses of these models 

significantly. 

There are totally sixteen parameters for the BS model. The parameters lI ，m ， and s  

can be assumed constant, so their values are the same as those proposed by Dafalias and 

Herrmann [19]. The parameters cR ， cA ，T ，C  and ch  are determined from the drained 

triaxial compression test data using the trial-and-error method. Since the triaxial extension 

test data on the Fujinomori clay are not available here, the parameters for triaxial 

extension ( eR , eA , eh , and eN ) are not determined. So, only twelve of the model 

parameters are listed in this paper. 



There are five parameters for the SS model. The parameter   is the friction angle of 

the Fujinomori clay, which can be back calculated from the value of M. The parameter u is 

determined by trial-and-error to best fit the test data. 

The four parameters for the unified UH model are just the common ones. 

5.3. Predictions and Test Results 

There are three groups of data, the p/pe-q/pe relation, / vq p − relation and / qq p −  

relation, where 
v  and q  are the volumetric and deviatoric strains, respectively. The 

OCRs for these tests are 1, 1.5, 2, 4, 8 and 20. All these relations will be compared with 

the model predictions in the following section. 

The comparisons between the predictions and test data are shown in Figures 5-7. The 

solid lines are the model predictions and the hollow marks are the test data. The 

comparisons indicate that all the three models can generally describe the behavior of OC 

clays. It should be noted that the peak deviatoric stress q predicted by the BS model is 

very  

Table 1. Common material parameters for the BS model, SS model and UH model 

λ κ M   

0.1146 0.0247 1.4 0.1 

Table 2. Parameters for the BS model 

Nc Rc Ac T=C 

0.2694 2 0.02 0 

hc Il m s 

6.0 10 kPa 0.02 1 



Table 3. Parameters for the SS model  
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(c) 

Fig. 5. Predictions of the BS model and test data: (a) p/pe-q/pe relation; (b) / vq p −  

relation and (c) / qq p −  relation 
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(c) 

Fig. 6. Predictions of the SS model and test data: (a) p/pe-q/pe relation; (b) / vq p −  

relation and (c) / qq p −  relation 
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(c) 

Fig. 7. Predictions of the UH model and test data: (a) p/pe-q/pe relation; (b) / vq p −  

relation and (c) / qq p −  relation 

close to the test data, but the predicted peak strength ratio is higher. The SS model also 

over-predicts the peak stress ratio. This is due to the shapes of the BS for the BS model 

and the normal yield surface for the SS model, respectively. The UH model has a better 

control over both the peak deviatoric stress and peak stress ratio, which is because of the 

employment of the revised Hvorslev envelop. Figures 8(a)-(c) show the responses of the 

three models under undrained triaxial compression conditions. The upper parts of the 

figures show the predicted effective stress paths normalized by the pre-consolidation 

pressure p0. The lower parts show the predicted relations between p/p0 and void ratio e. 

These figures clearly demonstrate that all the three models can describe the attainment of 

the critical state of OC clays, at which both the stress and volume remain constant while 

the plastic deviatoric strain keeps increasing. 
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Fig. 8. Illustration of the responses of the (a) BS model; (b) SS model and (c) UH model 

under undrained triaxial compression conditions 

The employment of the transformed stress tensor based on the SMP criterion is a very 

important feature of the UH model, which is discussed in detail by Yao et al. [32] Both the 

strength characteristics and plastic flow directions can be described by the UH model in 

the three-dimensional stress space through employing the transformed stress tensor. 

Different ( )g   methods are adopted to generalize the BS and SS models to the 

three-dimensional stress space. But using such methods always needs introduction of 

additional parameters or new interpolation functions. In fact, the transformed stress tensor 

can also be used to generalize other models like the BS and SS models for isotropic 

materials into the three-dimensional stress space. 

In order to reflect the deformation and strength characteristics of clay under general stress 

conditions, and to show the influence of intermediate principal stress on strength and 



deformation, the test results of three models under the true triaxial stress paths shown in 

Figure 9 were selected for prediction and comparison. The loading stress paths with the  

Lode angle being 0°, 15°, 30°, 45°, and 60°, respectively, are shown in Figure 9. The 

experimental results are the test data of true triaxial stress loading carried out by 

Chowdhury et al. on saturated Fujinomori clay. The spherical stress remains constant at 

196 kPa. The initial void ratio is 0.786, and the parameters used in the model are shown in 

Tables 4-6. 

Table 4. Common material parameters for the BS model, SS model and UH model 

λ κ M   

0.09 0.02 1.38 0.3 

Table 5. Parameters for the BS model 

Nc Rc Ac T    C 

0.2617 2 0.04 0.04  0.02 

hc Il m s 

79 10 kPa 0.02 1 

Table 6. Parameters for the SS model  

φ u 

34o 5 



 

Fig. 9. The true triaxial stress paths on a deviated plane 
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Fig. 10. Comparison of prediction and test results of SS model and UH model under 

triaxial compression test 

In Figure 10, the test results under the constant-p triaxial compression of SS model and 

UH model are used for predictive comparison. As can be seen from the comparison, for 

the prediction results of the relationship curve between major principal strain and minor 

principal strain and stress ratio, the SS model slightly underestimates the stress ratio, while 

the UH model well predicts the strain and stress ratio curve. For the prediction of volume 
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strain, the SS model is slightly better than the UH model. 
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Fig. 11. Comparison of prediction and test results of SS model and UH model under 

triaxial extension test 

Figure 11 shows comparison of the predicted results under triaxial extension. As for the 

predicted results of major principal strain and minor principal strain to stress ratio, the 

predicted results of SS model are lower than those of the test results, while the predicted 

results of UH model well conform to the stress ratio curve, but are still slightly lower than 

the tested value of peak stress ratio. As for the prediction of volume strain, the results of 

the SS model and UH model are both larger than those of the test. 
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Fig. 12. Comparison of prediction and test results of SS model and UH model under 

true triaxial test under the SS model with the UH model (θ=15°) 

Figure 12 is the prediction comparison results under the condition of Lode angle θ=15°. It 

can be seen from the comparison results that the SS model still slightly underestimates the 

stress ratio in the main strain and the stress ratio curves of large and small size. While the 

UH model well conforms to the stress ratio curve. In the comparison of prediction of 

volume strain, the predicted results of UH model are basically consistent with the test 

results, while the predicted results of SS model are slightly smaller. 
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Fig. 13. Comparison of prediction and test results of SS model and UH model under 

true triaxial test under the SS model with the UH model (θ=30°) 

Figure 13 is the prediction comparison results under the condition of Lode angle θ=30°. 

For strain to stress ratio curves, the UH model still has better prediction results than the SS 

model. As for the prediction results of the relationship curve of major principal strain and 

volume strain, both models overestimate the volume strain, but the prediction results of SS 

model are slightly smaller than those of the UH model. 
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Fig. 14. Comparison of prediction and test results of SS model and UH model under 

true triaxial test under the SS model with the UH model (θ=45°) 

Figure 14 is the prediction comparison results under the condition of Lode angle θ=45°. 

For the curves of principal strains vs. stress ratio, the UH model results are more 

consistent with the test results. For the relationship curves of major principal strain and 

volume strain, both models underestimate the volume strain, but the prediction results of 

UH model are closer to the test data. 
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Fig. 15. Comparison of prediction and test results of BS model and UH model under 

triaxial compression test 

Figure 15 shows the comparison of predicted results under triaxial compression. For the 

curves of principal strains vs. stress ratio, the predicted value of BS model is slightly 

higher than the result of UH model, and the result of UH model is more consistent with 

the test result of stress ratio. For the prediction comparison of the relationship curve 

between major principal strain and volume strain, both models overestimate the volume 

strain, and the prediction of BS model is closer to the test result of volume strain. 
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Fig. 16. Comparison of prediction and test results of BS model and UH model under 

triaxial extension test 

Figure 16 shows the test comparison results under the condition of triaxial extension. For 

the stress ratio curve, the prediction results of BS model are closer to the test data. For the 

prediction of the relationship between major principal strain and volume strain, the 

volume strain predicted by the BS model is too low, while the volume strain predicted by 

the UH model is too high. 
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Fig. 17. Comparison of prediction and test results of BS model and UH model under 

true triaxial test under the SS model with the UH model (θ=15°) 

Figure 17 gives the prediction comparison results under the condition of Lode angle θ=15°. 

The prediction results of UH model accord with the experimental results better. It is 

particularly noteworthy that, in the prediction of the relationship between the medium 

principal strain and the stress ratio curve, the medium principal strain is close to zero, but 

still negative. However, the medium principal strain predicted by the BS model is positive, 

which is contradictory to the measured results. The prediction results of UH model are 

negative, which better reproduce the characteristics of medium principal strain. 
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Fig. 18. Comparison of prediction and test results of BS model and UH model under 

true triaxial test under the SS model with the UH model (θ=30°) 

Figure 18 gives the prediction comparison results under the condition of Lode angle θ=30°. 

The BS model is adopted to compare the relationship curves of strain vs. stress ratio of 

large, medium and small values. It can be seen that the strength value predicted by BS is 

slightly higher than the measured value, while the UH model is basically consistent with 

the measured value. The BS and UH models are used to predict the results of the 

relationship between major principal strain and volume strain. The prediction results of BS 

model are closer to the measured values. 
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Fig. 19. Comparison of prediction and test results of BS model and UH model under 

true triaxial test under the SS model with the UH model (θ=45°) 

Figure 19 shows the prediction comparison results under the condition of Lode angle 

θ=45°. As can be seen from the figure, the UH model and BS model are basically 

consistent with the strength curves of large, medium and small strain and stress ratio. As 

for the relationship between major principal strain and volume strain, both models 

underestimate the volume strain, while the prediction of UH model is more consistent with 

the measured value. 

6. Conclusions 

In this paper, representative models for OC clays are reviewed. The features of the BS 

model, SS model and UH model are introduced. Modification is made to the Hvorslev 

envelop adopted in the UH model to improve its capability of describing the peak strength 

of highly OC clays. Then the capabilities of describing the behavior for OC clays of three 

models are analyzed by comparing their predictions for the test data on Fujinomori clay. 

The following conclusions can be drawn: 

(1)  These models for OC clays generally fall into two categories, one based on the 



classical plasticity theory, and the other the bounding plasticity theory. The classical 

plasticity theory has its own limitation that no plastic deformation can occur inside the 

yield surface. The BS plasticity can overcome this deficiency. The BS model, SS 

model and UH model are representatives for the second type. 

(2)  The comparison among these three representative models demonstrates that all of 

them are adequate to describe the main characteristic behaviors of OC clays like strain 

softening and dilatancy.  

(3)  The UH model has the fewest parameters with clear physical meanings. 
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