
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Reshape your layouts, not your programs: A safe
language extension for better cache locality

Alexandros Tasosa,1,∗, Juliana Francob, Sophia Drossopouloua,b, Tobias
Wrigstadc, Susan Eisenbacha

aImperial College London
bMicrosoft Research, United Kingdom

cUppsala University

Abstract

The vast divide between the speed of CPU and RAM means that effective use

of CPU caches is often a prerequisite for high performance on modern architec-

tures. Hence, developers need to consider how to place data in memory so as

to exploit spatial locality and achieve high memory bandwidth. Such manual

memory optimisations are common in unmanaged languages (e.g. C, C++), but

they sacrifice readability, maintainability, memory safety, and object abstrac-

tion. In managed languages, such as Java and C#, where the runtime abstracts

away the memory from the developer, such optimisations are almost impossible.

We present a language extension called SHAPES, which aims to offer devel-

opers more fine-grained control over the placement of data, without sacrificing

memory safety or object abstraction. In SHAPES, programmers group related

objects into pools, and specify how objects are laid out in these pools. Classes

and types are annotated by pool parameters, which allow placement aspects to

be changed orthogonally to the code that operates on the objects in the pool.

These design decisions disentangle business logic and memory concerns.

We give a formal model of SHAPES, present its type and memory safety

∗Corresponding author.
Email addresses: at1917@ic.ac.uk (Alexandros Tasos), juliana.franco@microsoft.com

(Juliana Franco), scd@doc.ic.ac.uk (Sophia Drossopoulou), tobias.wrigstad@it.uu.se
(Tobias Wrigstad), sue@doc.ic.ac.uk (Susan Eisenbach)

1Supported by an EPSRC Centre for Doctoral Training in High Performance Embedded
and Distributed Systems (HiPEDS) Grant (Reference EP/L016796/1).

Preprint submitted to Science of Computer Programming May 6, 2020

*Manuscript
Click here to view linked References

http://ees.elsevier.com/scico/viewRCResults.aspx?pdf=1&docID=4093&rev=2&fileID=145347&msid={0B2CE24F-08C3-4C8A-AC6F-757041F5590E}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

model, and present its translation to a low-level language. We argue why we

expect this translation to be efficient in terms of runtime representation of ob-

jects and access to their fields. We argue that SHAPES can be incorporated into

existing managed and unmanaged language runtimes and fit well with garbage

collection.

Keywords: Type systems, Cache utilisation, Data representation, Memory

safety

1. Introduction

Managed languages like Java, C#, R, Python, etc. present programmers

with an abstract view of memory. This is a choice driven by software engineering

issues – automatic memory management and garbage collection eliminate entire

classes of bugs and eliminates memory-specific security vulnerabilities. Due

to this abstract view, a programmer in Java, for example, can design, create,

and use arrays of objects without ever knowing that arrays are objects with

a final length field, that non-primitive array elements are probably not stored

contiguously in memory, and when or whether arrays and their elements are

garbage collected.

Deeper down the stack, the gap between the processing speed of CPUs and

the speed at which CPUs can be served with data from RAM is widening.

To hide this latency, increasingly large and complicated hierarchies of cache

memory are used. Caches exploit temporal and spatial locality in programs —

access to data close in time or memory — by keeping recently fetched data

in a small but order(s)-of-magnitude faster memory, and by fetching adjacent

data. In addition, memory systems monitor access patterns to fetch data into

cache ahead-of-time to cater for speculated future accesses. The net effect of

this is the increasing importance of how algorithms structure and access data

in memory ; “cache-unfriendly” implementations of an algorithm (that do not

exhibit spatial or temporal locality) can expect to see significant slowdowns over

equivalent “cache-friendly” implementations.

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 class Student {
2 � name: String;
3 � age: int;
4 � supervisor: Professor;
5 }
6 def avgAge(arr: Student[]){
7 var sum = 0;
8 for (i=0..arr.length())
9 sum += arr[i].age;

10 return sum/arr.length();
11 }
12
13
14
15

1 class StudentsSoA {
2 � name: String[];
3 � age: int[];
4 � supervisor: Professor[];
5 }
6 def avgAge(arr: StudentsSoA){
7 var sum = 0;
8 for (i=0..arr.age.length())
9 sum += arr.age[i];

10 return sum/arr.age.length();
11 }
12
13
14
15

1 class StudentsMixed {
2 �� clu1: StudentsCluster1[];
3 � clu2: Professor[];
4 }
5
6 def avgAge(arr: StudentsMixed){
7 var sum = 0;
8 for (i=0..arr.clu1.length())
9 sum += arr.clu1[i].age;

10 return sum/arr.clu1.length();
11 }
12 class StudentsCluster1 {
13 � name: String[];
14 � age: int[];
15 }

(a) AoS representation (b) SoA representation (c) Mixed representation
Figure 1: Language-based field clustering: In-memory representation of class Student, AoS,
SoA, and mixed

Writing cache-friendly programs tends to be more straightforward in un-

managed languages than in managed ones, as programmers have more control

over data placement. For example, a programmer can allocate a large chunk of

contiguous memory as a pool from which to “sub-allocate” objects that should

be close in memory. For improved cache utilisation when iterating over many

objects, programmers often split a single array of objects into multiple arrays

each holding the values of a specific field of the objects2. Depending on which

fields are being accessed together frequently, efficiency can be improved further

by clustering values of several object fields together in one of the split arrays.

Applying these techniques in managed languages is difficult and not always

possible; the memory allocator and garbage collector are not obliged to place

objects in an array sequentially in memory. Moreover, splitting an array of

objects into several arrays of fields destroys object integrity and identity (mean-

ing it is no longer possible to have a pointer to the object, or refer to it by

its name), is memory unsafe (non-existing values can be created by combining

fields of different objects), and loses automatic garbage collection of individual

2Commonly referred to as an Array-of-Structs (AoS) to Struct-of-Arrays (SoA) transfor-
mation.

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

objects. This affects managed and unmanaged languages alike: The authors of

the WAVE++ particle simulator (1990), for instance, express their desire for

the ability to automatically apply such techniques in C++ without having to

abandon OO programming[1].

To that extent, we present SHAPES, a language extension intended to allow

developers of managed languages to achieve such memory optimisations more

easily without having to deviate from the spirit of OO programming. SHAPES

uses a type-based approach to enable these memory optimisations without hav-

ing to sacrifice object integrity, memory safety, or garbage collection.

Contributions. This paper focuses on the design of SHAPES; an implementation

of SHAPES is currently underway. It makes the following contributions:

– Presentation of SHAPES, a language extension for implementing memory op-

timisations in managed languages via pooling and clustering (introduced in

§ 2).

– Justification of SHAPES through a sequence of preliminary case studies where

we evaluate claims regarding performance and code readability (§ 3).

– Formalisation of SHAPES in terms of SHAPESh, a high-level, user-facing lan-

guage with pooling and clustering (§ 4).

– A low-level intermediate representation, SHAPES`, translation of SHAPESh

into SHAPES` (§ 5), and the design decisions concerning SHAPES` which we

expect to allow translated SHAPESh code to be performant (§ 5).

– Meta-theoretic results for SHAPESh and SHAPES`: Type soundness, “mem-

ory safety” (§ 4), and bisimulation (§ 6).

2. A Gentle Introduction to SHAPES

2.1. Motivation

We now give an introduction to the design of the language extension SHAPES,

using a simple running example: A class Student, with fields name, age and

supervisor (pointing to a Professor, the student’s supervisor), as in Figure 1a.

Assume that a method needs to access the Students’ ages consecutively, as in

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

avgAge(). To improve cache performance, we can perform a manual transfor-

mation from what is called an Array-of-Structs representation (AoS), shown in

Figure 1a, into what is called a Struct-of-Arrays representation (SoA), shown

in Figure 1b: Instead of an array of Students, we group the students’ names,

ages, and supervisors (Lines 2–4), each into their own array. The in-memory

representation of the two (AoS and SoA) is depicted in Figure 1a and Figure 1b,

respectively.

The StudentsSoA transformation shown in Figure 1b, however, is a leaky and

error-prone abstraction. It sacrifices readability, maintainability and abstraction

for performance:

– The look-and-feel of OO is lost: We are now effectively processing arrays of

primitives instead of objects, e.g., arr.age[i]. We may accidentally fetch the

wrong parts of an object due to an off-by-one error (e.g., evaluating arr.name

[i++] and then arr.age[i++]), thus inadvertently “mixing” various unrelated

object parts into one. References to objects belonging to a pool have to be

explicitly represented as an index and not as a regular object reference.

– Switching to different layouts is tedious and error-prone (e.g., from Figure 1a

to Figure 1b). Moreover, it is sometimes beneficial to use mixed layouts

(§ 3), e.g., we might want to group the values for name and age in one cluster

(consisting of a chunk of allocated memory), and the values for supervisor in

another such cluster (Figure 1c). This would require additional boilerplate

code (Lines 12–15 of Figure 1c).

– There is no concept of automatic garbage collection of individual students in

StudentsSoA and StudentsMixed, as we now have arrays of integers or pointers.

We can retain the OO look-and-feel and achieve automatic layout changes

with a library. However, the state of the art of such libraries may require the

introduction of syntactical extensions that do not compose elegantly with the

rest of the underlying language and/or the sacrificial of core OO concepts such

as encapsulation and object identity. Moreover, any flexibility with respect

to automatic layout switching will be limited (e.g., layout switching can only

be performed on static arrays and/or will be limited to merely AoS vs SoA).

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Moreover, the issue of automatic garbage collection of pooled objects will still

persist. (More in § 8, Related Work). As such, we propose a language extension-

based solution to these issues with SHAPES.

SHAPES aims to support efficient cache use whilst enabling the program-

mer to write straightforward OO code and without having to abandon key OO

concepts. SHAPES programmers add pool parameters to class definitions which

allow objects to be flexibly placed in different pools; the business logic of classes

is thus oblivious to the layouts being used and imposing a specific layout is not

an onerous task. Programmers, who are aware of how they access the relevant

data, write layout annotations and declare pools of specific layouts to achieve

the best possible cache usage for the business logic in question.

2.2. Getting into SHAPES

We now give a gradual introduction to SHAPES, in six stages. Each stage

extends and refines the previous one.

1 layout: Student =
2 rec{name, age,
3 supervisor};

1 layout: Student =
2 rec{name}+{age}
3 +{supervisor};

1 layout: Student =
2 rec{name, age}
3 +{supervisor};

(a) AoS representation (b) SoA representation (c) Mixed representation
Figure 2: Stage 1: Language-based field clustering

Stage 1: Language-based field clustering. As a first approximation, we place all

class instances inside one unique, implicit pool for that class. That is, in Stage

1, constructing a Student object will allocate it inside the unique, implicit pool

corresponding to class Student.

An optional layout declaration specifies how class instances are laid out inside

that implicit pool. A layout declaration splits the class’ fields into clusters.

Each cluster specifies the fields’ values to be stored together and in what order.

Omitting a layout declaration implies an Array-of-Structs (AoS) layout. Thus,

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

using the “standard” code from Figure 1a and choosing one of the layouts from

Figure 2 we can obtain any of the respective representations as in Figure 2a,

2b, or 2c.

Stage 2: Use as many pools as needed. Not all objects of one class have to be

placed in the same pool: For example, the nodes of two different binary trees

would be better placed in different pools, and sometimes it is beneficial to use

different memory layouts for objects of the same class (Currency case study in

§ 3.3).

We add explicit declarations for pools and allow many named layout decla-

rations for each class. As an example, in Figure 3 (which builds on class Student

from Figure 1a), Lines 1–5 declare two layouts for Student: StudentL1 clusters

fields name and age together and places supervisor in its own cluster; StudentL2

is a Struct-of-Arrays (SoA) layout.

Pools are created at runtime—Line 9 creates two new pools: pStu1 with

layout StudentL1, and pStu2 with layout StudentL2. We must now specify the pool

to place a newly created object; Lines 12–13 construct two new Student objects,

s1 and s2 and place them inside pStu1 and pStu2, respectively, in accordance

with their respective pools’ layouts. Execution of Lines 9–13 will result in the

memory layout shown in Figures 3a, 3b.

Notice that SHAPES supports reference semantics and not copy semantics,

thus the concept of object identity is preserved. Even though pools contain the

fields of the objects they contain, all object identifiers are treated as references.

For example, s1 and s2 (Lines 12–13) are references to the newly constructed

objects in pools pStu1 and pStu2. Similar to languages such as Java [2], it is

possible for two variables to alias to the same object. Additionally, objects can

only be placed into a pool when they are constructed, but are not copied or

moved into and out of a pool. Implicit copy construction/assignment (a la e.g.,

C++ [3]) could be added as an extension to SHAPES.

Stage 3: Use pools only when you need them. In some cases, there is no in-

centive for using pools (e.g., rarely executed, non-performance-critical code).

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 layout StudentL1: Student =
2 rec{name, age} + rec{supervisor};
3
4 layout StudentL2: Student =
5 rec{name} + rec{age}
6 + rec{supervisor};
7

8 ...
9 pools pStu1: StudentL1,
10 pStu2: StudentL2;
11
12 s1 = new Student<pStu1>;
13 s2 = new Student<pStu2>;
14 ...

(a) s1 at pStu1 (b) s2 at pStu2
Figure 3: Stage 2: As many pools as needed

In most OO languages, objects are allocated on the heap, with no placement

guarantees. SHAPES supports this through the “special” pool none, which can

contain objects of any class, and no layout is applied to the objects. This allows

gradual introduction of pooling and clustering into a project. For example, in

the code of Figure 4, Student s3 is created “inside” the none pool, hence it will

be placed on the heap.

1 s3 = new Student<none>;
Figure 4: Stage 3: Pools only when needed

Stage 4: Flexible object placement. If we want to allow the creation of binary

trees whose Nodes are placed in per-tree pools, we will need to provide a way

so that functions manipulating these Nodes know the pool where to place newly

generated Nodes. To support this in SHAPES, we supply classes with pool pa-

rameters.

Consider, for example, binary trees of Professors; the relevant definitions

appear in Lines 1 and 2 in Figure 5. Class Professor has one pool parameter,

pProf, which stands for the pool which contains the corresponding Professor.

Class Node has two pool parameters: pNode is the pool of the corresponding Node,

and pProf is the pool which contains the Professors. That is, the first pool

parameter always corresponds to the pool where this is located (pool pNode for

Nodes and pProf for Professors, respectively, in our case).

Method addLeft() (Line 4 in Figure 5) now knows that the new Professor

(Line 6) is to be placed in pool pProf, and the new Node is to be placed in

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 class Professor<pProf> { ... }
2 class Node<pNode, pProf> {
3 ...
4 def addLeft(...) {
5 ...

6 p = new Professor<pProf>;
7 this.left = new Node<pNode, ...>;
8 ...
9 }
10 }

Figure 5: Stage 4: Flexible Object Placement

pool pNode (Line 7). This allows the developer to ensure that all Nodes and all

Professors in one tree are placed in exactly one Node and one Professor pool,

respectively.

Stage 5: Make it safe with uniform pools. Allowing code to specify the pool

where objects are placed in can be disastrous, because objects of different types

can be potentially placed inside the same pool, hence pools would no longer be

uniform.

We enforce pool uniformity by introducing the concept of pool bounds. A

pool bound consists of a class identifier, which specifies the type of objects a

pool can contain.

As an example, in Figure 6a, uniformity of pProf would be violated after

running Lines 3–4, because a Professor and a Node would be placed inside the

same pool, thus annihilating any semblance of type safety. We prevent this from

occurring by adding bounds in Line 1 of Figure 6b. These bounds specify that

pProf can only contain instances of Professors, hence we deduce that Line 4 in

Figure 6b is erroneous.

Pools created inside methods must always specify a layout, hence their bound

can be easily deduced.

1 class Node<pNode, pProf>{
2 def addLeft(...) {
3 ... new Professor<pProf> ... ; // OK!
4 ... new Node<pProf, ...> ... ; // BUG
5 }
6 }

1 class Node<pNode:[Node],pProf:[Professor]>{
2 def addLeft(...) {
3 ... new Professor<pProf> ... ; // OK!
4 ... new Node<pProf, ...> ... ; // ERR
5 }
6 }

(a) Non-uniform pool (b) Uniform pool

Figure 6: Stage 5: Pool bounds

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Stage 6: Make it fast with homogeneous pools. So far, all of our design decisions

have been uncontentious: They are either concerned with providing a reason-

able feature set to the developer or with preventing an unsound situation from

arising. Our decision to enforce the concept of pool homogeneity, however, is

done at a trade-off: We further restrict what constitutes a valid SHAPES pro-

gram on the expectation of gaining additional performance guarantees thanks

to these new restrictions.

A uniform pool is homogeneous if the corresponding fields of all its objects

point to objects in the same pool; that is, a pool p is homogeneous if for any

objects o1 and o2 belonging to p and for any field f, it holds that o1.f and o2.f

are either both in the same pool or on the heap (i.e., in pool none). A pool that

is not homogeneous is heterogeneous.

(a) Homogeneous Student pool (b) Heterogeneous Student pool

Figure 7: Homogeneous and heterogeneous Student pools

In Figure 7a, we see a homogeneous pool of Students whose supervisor fields

all point to objects in the same pool. In Figure 7b, we see a heterogeneous pool

of Students: The supervisors of the first two Students point to Professors in a

different pool to that of the last Student.

Such heterogeneity could be caused by the following code, wherein we have a

Student pool pStu1 and two Professor pools pProf1 and pProf2:

1 s1 = new Student<pStu1, ...>;
2 s2 = new Student<pStu1, ...>;

3 s1.supervisor = new Professor<pProf1>;
4 s2.supervisor = new Professor<pProf2>;

If we were to support heterogeneous pools, we would have to make the fol-

lowing design decisions regarding the runtime and suffer a performance penalty :

– In a naive implementation, a reference to a pooled object would consist of

a reference to the pool containing the object and a reference to the object

inside the pool itself. This would be rather wasteful on RAM and cache. In

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

§ 6, we show that a reference to a pooled object can have the same size as

that of a pointer.

– Heterogeneity would imply dynamically looking up the layout information of

the corresponding pool for a pooled object; this hampers performance and

requires the developer to not assume that x.f is a “cheap” operation. In

§ 6, we show that the layout of a pool can be statically known thanks to

homogeneity, hence such dynamic lookups are unnecessary.
1 class Professor<
2 pProf: [Professor<pProf>]> {
3 � name: String;
4 � ssn: String;
5 }
6 class Student<
7 pStu: [Student<pStu, pProf>],
8 pProf: [Professor<pProf>]> {
9 � name: String;

10 � age: int;
11 � supervisor: Professor<pProf>;
12 }
13 layout ProfL: Professor = ...;

14 layout StudentL: Student = ...;
15 ...
16 pools pStu1: StudentL<pStu1, pProf1>,
17 pProf1: ProfL<pProf1>;
18 pProf2: ProfL<pProf2>;
19 s1 = new Student<pStu1, pProf1>;// OK!
20 s2 = new Student<pStu1, pProf1>;// OK!
21 s3 = new Student<pStu1, pProf2>;// ERR
22 p1 = new Professor<pProf1>;
23 p2 = new Professor<pProf2>;
24 s1.supervisor = p1; // OK!
25 s2.supervisor = p2; // ERR
26 ...

Figure 8: Stage 6: Enforcing uniformity and homogeneity via pool bounds

To enforce pool homogeneity, we adapt ideas from C++ templates [3], Java

Generics [2], and Ownership types [4], as follows:

– As in Stages 4 and 5, classes have several formal pool parameters. These

correspond to the pools containing the objects pointed to by (some of) their

fields. The first pool parameter also corresponds to the pool where this is

stored.

– Object types, class instantiations, pool bounds, and pool creations must sup-

ply a pool argument per formal pool parameter of their respective class. Just

like formal pool parameters, the first pool parameter specifies the object the

pool is allocated into; during pool creation, the first pool parameter is the

pool itself being created.

– If a pool p1 has a bound of the form [C<p1, ..., pn>], then all objects residing

in p1 must also have the type C<p1, ..., pn>. In § 4.4, we show how we use

this restriction to enforce homogeneity in a static manner.

As an example, consider the code of Figure 8. Similar to Figure 5, class

Professor has one pool parameter, pProf, and class Student has two pool pa-

rameters, pStu and pProf. The bounds of these classes (Lines 2, 7–8) are now

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

decorated with pool arguments. Pool arguments are supplied at pool creation

(Lines 16–18), as well as at object creation (Lines 19–23).

For Figure 8, the pool bounds help enforce pool homogeneity as follows:

Line 11 mandates that the supervisor must belong to the pool referenced by the

formal pool parameter pProf. Thus, when constructing pool pStu1 (Line 16), we

substitute the formal pool parameters of Student with pStu1, pProf1 and deduce

that the supervisor of any Student placed in pStu1 must have type Professor

<pProf1>, i.e., the supervisor must reside in pool pProf1. However, Line 21

specifies that the supervisor of s3 has type Professor<pProf2>, hence it must

reside in pProf2. This would break homogeneity and is flagged as an error by

our type system.

By using similar reasoning, we deduce that Line 25 would also break homo-

geneity, given that p2 was constructed in pool pProf2 and we mandate that the

supervisor of s2 be located inside pool pProf1.

Thus, we have reached a design which is sound (§ 4), supports pools and

goes beyond AoS/SoA, and we argue that is flexible, transparent, and results

in efficient runtime execution (§ 3, § 5).

Pool parametricity is, as mentioned, similar to Java Generics[2] in that pool

parameters have bounds, and these bounds are types which may contain pool

arguments. It differs from Java Generics in that the pool arguments are not

types; instead, they are entities generated at runtime. It also differs as SHAPES

supports three kinds of types: Object types determine the class of the object,

and the pools of the object and its fields; layout types determine the class of

objects stored in pools of that layout and how the objects in the pool are split

into clusters; pool bounds characterise pool parameters to classes and specify

the pool an object referenced by field f will reside in (if any). Finally, SHAPES

enforces homogeneity, a concept that is not found in Generics. For the rest of

this paper, when we talk about pools, we will refer to homogeneous pools.

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Name CPU (Intel) L3 size RAM size - type - MHz OS Compiler
laptop i5-3230M 3 MB 8 GB - DDR3 - 1333 Ubuntu 16.04 gcc 5.4.0
desktop i7-6700K 8 MB 16 GB - DDR3 - 2133 Ubuntu 16.04 gcc 5.4.0
graphic Xeon E5-1620 v2 10 MB 16 GB - DDR3 - 1866 Ubuntu 18.04 gcc 7.4.0
voxel i7-4790 8 MB 16 GB - DDR3 - 1600 Ubuntu 18.04 gcc 7.4.0
ray i7-7700K 8 MB 16 GB - DDR4 - 2400 Ubuntu 18.04 gcc 7.4.0

Figure 9: Machine specifications

3. Experimental Justification

We now investigate the usefulness of the concepts of SHAPES; we consider

a sequence of preliminary examples and discuss whether the use of SHAPES

would be beneficial for readability, maintainability, and performance. To that

extent, we implemented five case studies, two of which are located in § Appendix

G. For our case studies, we selected examples that should ideally consist of a

non-trivial SLoC count and/or correspond to real-world use cases. We group

these case studies into 2 categories:

– Different layouts: Case studies OP2 and Skeletal Animation are mainly con-

cerned with switching between AoS, Mixed, and SoA layouts. In OP2, we

compare against an existing open source library that provides a more limited

form of pooling and clustering compared to what is achievable by SHAPES.

Skeletal Animation explores the use of different layouts to determine the

fastest layout for a specific algorithm, as does Traffic, located in § Appendix

G.3.

– Multiple pools: Case study Currency is mainly concerned with the useful-

ness of multiple pools. It reflects a query system with real-world data and

made-up queries, with observable performance improvements occurring from

using multiple pools of the same class and having each pool use a different

layout. Doors in § Appendix G.4 also partitions objects into pools to improve

performance.

We make the following claims regarding our case studies with respect to SHAPES:

C1 The use of SHAPES should make it easy for the developer to experiment

with various layouts to determine the most optimal one for each domain,

thus providing a potential improvement in readability and maintainability.

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

C2 This ease in development SHAPES provides means that a developer can

expect performance comparable (i.e., on par or better) to already existing

solutions with respect to pooling and clustering.

C3 There is merit in making SHAPES more flexible and allowing the devel-

oper to use Mixed layouts; that is, there are cases where Mixed layouts

outperform AoS and SoA.

C4 Partitioning objects of the same type into multiple pools can improve

cache utilisation and/or allow further algorithmic improvements.

As a SHAPES implementation is still underway, we coded these case stud-

ies in SHAPES++, a hypothetical version of C++ extended with the features

of SHAPES, and hand-compile them into equivalent C++ code; presents the

SHAPES++ code for all 5 case studies. We opted to use an unmanaged lan-

guage (C++) instead of a managed language in order to implement clustering:

We would certainly pick a managed language so as to implement case studies

where the GC is involved. However, embedding SHAPES into an existing man-

aged language runtime, let alone the respective garbage collector would turn

into a massive engineering project on its own. To that extent, and given the

fact that we wanted to implement clustering without having to resort to “hacks”

(e.g., by using ByteBuffers) and to eliminate any discrepancies/noise that could

be caused by the JIT and/or GC, we opted for C++. Our C++ implementa-

tions make use of C++-specific features not present in SHAPES (e.g., template

metaprogramming); this is intended to make our code more succinct, given the

absence of pools and layouts in C++.

Three of our case studies (Currency, Traffic, Doors) generate their datasets

randomly (fully or in part) by using the C++11 Mersenne Twister RNG [3].

To ensure that we are not introducing any accidental randomness bias, we use

100 seeds derived from the first 500 decimal digits of π (first 5 decimal digits

correspond to the first seed, next 5 correspond to the second seed, etc.).

We ran our case studies on five machines; Figure 9 lists their specifications.

We used CMake as our build system; all case studies were compiled as a Release

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 class Point<pPt: [Point<pPt>]>
2 {x: double; y: double;}
3 class Segment<
4 pSeg: [Segment<pSeg, pPt>],
5 pPt: [Point<pPt>]> {
6 p1: Point<pPt>; p2: Point<pPt>;
7 def len(): double {
8 var dx = p2.x - p1.x, dy = p2.y - p1.y;
9 return sqrt(dx * dx + dy * dy);

10 }
11 }
12 layout PointL: Point = rec{x} + rec{y};
13 layout SegmentL: Segment = rec{p1} + rec{p2};
14

15 def main() {
16 pools pPt1: PointL<pPt1>,
17 pSeg1: SegmentL<pSeg1, pPt1>;
18 ... // Create objects in pPt1, pSeg1
19 print(sum_lens_shapespp<pPt1, pSeg1>());
20 }
21 <ps: [Segment<ps, pp>], pp: [Point<pp>]>
22 def sum_lens_shapespp(): double {
23 var sum = 0;
24 foreach (var e: ps)
25 sum += e.len();
26 return len_sum;
27 }
28 ...

Figure 10: Example SHAPES++ code

build (which implies the -O3 -DNDEBUG flags). We used the Google C++ Bench-

mark library for our measurements3 except for OP2 ; its long running time

renders this library useless in this case. Instead, we measure wall clock time

(CLOCK_REALTIME), which is what both OP2 programs measure as well.

We now present the three of our case studies in detail:

3.1. OP2

OP2 [5] is a C++ library intended for computations on unstructured grids

and is mainly focused on easing parallelisation of such applications (via, e.g.,

MPI, OpenMP, CUDA). OP2 mainly attempts to tackle the issue of executing

a kernel over a set of data in parallel in a declarative manner. Moreover, it also

provides capabilities for pooling and clustering, albeit more limited compared

to those of SHAPES.

We will first introduce OP2 through an artificial example that calculates

the sum of the lengths of line Segments: Figure 10 presents the correspond-

ing SHAPES++ code. Lines 1–11 present the Point and Segment types, re-

spectively; we will be using an SoA layout for both (Lines 12–13). Method

sum_lens_shapespp (Line 22) calculates the length sum by traversing all objects

in pSeg1 (Line 24).

We present the equivalent OP2 code in Figure 11; In OP2, objects of the

same type can be grouped into sets (Lines 11–13). To perform clustering, the

3https://github.com/google/benchmark

15

https://github.com/google/benchmark

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 class Point { double x, y; };
2 class Segment { Point *p1, *p2; };
3
4 void sum_lens(double* acc,
5 double* x1, double* y1,
6 double* x2, double* y2) {
7 double dx = *x2 - *x1, dy = *y2 - *y1;
8 acc += sqrt(dx * dx + dy * dy);
9 }

10 ...
11 op_set segs = op_decl_set(NUM_SEGS, "segs");
12 op_set points =
13 op_decl_set(NUM_POINTS, "points");
14
15 double* x_data =
16 calloc(NUM_POINTS,sizeof(*x_data));
17 double* y_data =
18 calloc(NUM_POINTS,sizeof(*y_data));
19 double* p1_data =
20 calloc(NUM_SEGS, sizeof(*p1_data));
21 double* p2_data =
22 calloc(NUM_SEGS, sizeof(*p2_data));

23
24 ... // Fill x_data, y_data, p1_data, p2_data
25 op_dat x =
26 op_decl_dat(points, 1, "double", x_data ,"x");
27 op_dat y =
28 op_decl_dat(points, 1, "double", y_data ,"y");
29 op_map seg_p1 =
30 op_decl_map(segs,points,1,p1_data,"seg_p1");
31 op_map seg_p2 =
32 op_decl_map(segs,points,1,p2_data,"seg_p2");
33 ...
34
35 ...
36 double sum = 0;
37 op_par_loop(sum_lens, segs,
38 op_arg_gbl(&sum, 1, "double", OP_INC),
39 op_arg_dat(x,1,seg_p1,1,"double",OP_READ),
40 op_arg_dat(y,1,seg_p1,1,"double",OP_READ),
41 op_arg_dat(x,1,seg_p2,1,"double",OP_READ),
42 op_arg_dat(y,1,seg_p2,1,"double",OP_READ));
43 ...

Figure 11: Equivalent OP2 code for Figure 10

developer must allocate and fill in the data of the clusters manually (Lines 15–

24); OP2 will then keep track of the clusters (Lines 25–32) so as to access the

appropriate fields during kernel execution. Maps (Lines 29–32) correspond to

references to objects in other sets, but the developer has to manually use an

index to create a reference to an object in a set. As observed, clustering and

set creation have to be performed at runtime and in an ad-hoc and type-unsafe

manner.

Execution of kernel sum_lens will run over the line Segments in segs (Line 37).

OP2 will obtain pointers to the x, y components of p1 and p2 for each Segment

; these correspond to the parameters of sum_lens (Lines 4–6). The process

of obtaining pointers to the fields of Points is not automatic; the arguments

of Lines 39–42 specify how OP2 will obtain these pointers (in this case, by

dereferencing fields p1 and p2 of each point. It is easy to see that, compared to

SHAPES++, readability and type safety must be sacrificed in order to use OP2

and improve performance.

A more detailed discussion on OP2 is presented in § 8.

The OP2 project provides two example C++ case studies that make use of

parallelism (OpenMP). These are called airfoil and aero; we present aero here

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0 10 20 30 40 50 60 70

d
e
s
k
t
o
p

la
p
t
o
p

g
r
a
p
h
ic

r
a
y

v
o
x
e
l

Time (sec)

Figure 12: OP2 Aero results for the original OP2 implementation, and the AoS and Mixed
ports, respectively. (Bottom to top, lower times are better)

and airfoil in § Appendix G.2. aero consists of 408 SLoC4, out of which 311

SLoC correspond to the actual computations. We implemented aero, including

the exact original OpenMP directives being used, in SHAPES++ (§ Appendix

H.2) and compared the performance of our handwritten C++ code against the

original. Our SHAPES++ implementation amounts to 240 SLoC.

aero uses a Mixed layout. To test Claim C3, we compared it against an

equivalent handwritten AoS version. We run each implementation 20 times.

Results are presented in Figure 12. We observe that our handwritten Mixed im-

plementation is marginally faster (1.016x median-of-medians speedup) than the

original, whilst improving readability, usability, and type safety. This supports

Claim C2.

Moreover, we observe that SoA outperforms AoS (no loading of unrelated

fields in memory, hence no cache pollution), yet Mixed outperforms SoA. This

supports Claim C3. We speculate Mixed fares better for two reasons:

– When accessing a field f of an object in an SoA layout, it is possible that the

values corresponding to field f of adjacent objects are also loaded into the

cache due to spatial locality. If we are accessing objects laid out in SoA in a

random manner (in this case indirectly), this loading of adjacent values will

4All SLoC calculations throughout this paper were performed using sloccount [6].

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·108

d
e
s
k
t
o
p

la
p
t
o
p

g
r
a
p
h
ic

r
a
y

v
o
x
e
l

Time (msec)
Figure 13: Skeletal animation results for Scattered-AoS, Pooled-AoS, Scattered-Mixed,
Pooled-Mixed, Scattered-SoA, and Pooled-SoA layouts, respectively (where N = 5000). (Bot-
tom to top, lower times are better)

amount to cache pollution.

– The hardware prefetcher can only keep track of up to a specific number of

sequential access patterns [7]; the prefetcher cannot keep up with the excessive

clustering resulting from the SoA layout.

3.2. 3D skeletal animation

In the MD5Anim [8] skeletal animation format, a 3D model (“stickman”)

consists of joints, weights, and vertices. Joints are organised in a tree; there is

a 1-N relationship between joints and weights and a 1-N relationship between

vertices and weights. The equivalent SHAPES++ code for Skeletal Animation

is presented in § Appendix H.3.

Animation of the model includes the following 2 phases:

Phase 1 Calculate the joints’ new orientations in a top-down recursive manner.

Phase 2 Calculate the position of each weight from the weight’s current posi-

tion and the orientation of the joint it belongs to.

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Our case study consists of creating instances of such stickmen from given

data, then measuring the time taken to animate them.

It is not initially obvious how to layout our data in an optimal manner. We

decided to focus on the following two “axes” of data layouts:

– Joints are either Scattered in memory (i.e., none pool) or the joints for one

instance of a “stickman” are placed close to each other in memory in an array,

hence Pooled.

– Weights use an AoS, an SoA, or a Mixed layout. Line 150 of § Appendix H.3

presents how the Mixed layout is specified.

This results in 6 possible data layouts. It is not obvious at first which of

these data layouts is optimal for the animation algorithm. Unfortunately, since

we are handcoding our implementation in C++, we have to manually write all

6 versions of it (once per layout). This is a monotonous, time-consuming, and

error-prone task. With SHAPES++, however, we would only need to write the

two and three possible layouts for the joints and weights, respectively and since

model animation is oblivious to layouts of the pools we are using, we only need

to modify their layouts at the site they are defined, then measure. This supports

Claim C1.

Figure G.32 in § Appendix G presents the results of execution. To make

the differences in execution more visible, we ran our code 100 times where

N = 5000. We present these results in Figure 13. In Figure 13, we observe a

form of “tiering”: A couple of layouts have almost identical performance and

have consistently the best times (the “fast tier”), whereas the remaining pools

lag behind them, all close to each other (the “slow tier”).

We observe that Pooled joints outperform Scattered, irrespective of the layout

used for the weights. This is expected (better cache locality), but the speedup

is not significant (the number of joints is almost always expected to be much

smaller than the number of weights).

Additionally, we observe that, similar to OP2, the Mixed layout outperforms

both AoS and SoA. We speculate that this occurs for the exact same reasons as

the Mixed layout used in OP2. Therefore, the optimal layout for the animation

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0 0.5 1 1.5 2 2.5 3

·105

d
e
s
k
t
o
p
la

p
t
o
p
g
r
a
p
h
ic

r
a
y

v
o
x
e
l

Time (nsec)
Figure 14: Currency results for one AoS pool, one AoS and one Mixed pool, and one AoS
and one SoA pool, respectively. (Bottom to top, lower times are better)

algorithm is PooledMixed (and both Figure 13 and Figure G.32 support this).

This supports Claim C3.

3.3. Currency

The European Central Bank keeps a record of all daily exchange rates of 41

currencies against the Euro since 1st January 19995. As a case study, we imple-

mented a query system that looks up the exchange rate of a specific currency

against the Euro on a specific date. We assume the following:

– Most queries will refer to dates that are “recent”; we assume 80% of our

queries will reference exchange rates since 2018-01-01 and the remaining 20%

to reference older exchange rates.

– We assume most queries to be for exchange rates for “popular” currencies; we

assume that only two currencies will be looked up, the USD and GBP, each

at a 50% probability.

In our case study, we perform a number (N = 5000) of queries against

three different implementations of this query system. The differences in these

implementations are as follows:

– All exchange rates are placed in One Pool (in an AoS layout) or are partitioned

into Two Pools (“recent” and the remaining dates).

5 https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip, Wayback Machine URL:
https://web.archive.org/www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip

20

https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip
https://web.archive.org/www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

– In the case of Two Pools, either an SoA layout is used for the “recent” dates

or a Mixed layout. An AoS layout is used for the pool of not “recent” dates.

§ Appendix H.6 presents the “equivalent” SHAPES code.

We observe a speedup from 2.27x (desktop) to 3.03x (voxel) when com-

paring the respective median timings of the One Pool vs the Two pools, Mixed

approach; the mean of these comparisons of medians amounts to 2.63x and the

median amounts to 2.73x. Compared to having an SoA layout for the “recent

rates” pool, a Mixed layout gives a median-of-medians speedup of 1.007x. This

supports Claim C4.

Conclusion. We have taken examples from a range of applications; we claim

that SHAPES makes our code more readable compared to the version where

we perform these optimisations by hand (Claim C2). When the developer is

uncertain of what data structure to use, SHAPES makes it easier to experi-

ment with several and pick the most performant one for the use case at hand

(Claim C1). Finally, we have shown that layout/pool consideration, i.e., use

of Mixed layouts (Claim C3) and of multiple pools (Claim C4) can affect per-

formance significantly. We, therefore, believe that incorporating the concepts

of pooling and clustering as proposed by SHAPES into existing and/or new

languages is worth considering.

4. SHAPESh: High-level SHAPES

Until now, our focus has been on presenting high level language constructs

that simultaneously allow a high-level business logic and easier fine grained

control over data placement (§ 2). We have also demonstrated the possibility to

experiment with different layouts when the most performant layout for a specific

domain is not known a priori (§ 2, § 3), and that code making use of SHAPES

constructs is at least as performant as code that trades high level abstractions

for performance (§ 3).

To provide these constructs and ensure they can implemented in a manner

we expect to be efficient, we developed SHAPESh, a high-level calculus that

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

prog ::= cd∗ ld∗ Program
cd ::= class C〈(p : [C〈p+〉])+〉 { fd∗md∗ } ClassDecl
fd ::= f : t ; FieldDecl

md ::= def m(x : t) : t {localPools ; localVars ; stmts} MethodDecl
localPools ::= pools (p : L〈ps〉)∗; LocalPools
localVars ::= vars (x : t)∗ LocalVars

stmts ::= e | e ; stmts Statements
e ::= null | x | this | new t | x.m(x) | x.f | x.f = x | x = e Expression
t ::= C〈ps〉 ObjectType

ld ::= layout L : [C] = (rec {f+};)+ LayoutDecl
np ::= p | none PoolVariableOrNone
ps ::= np | np · ps PoolVariables

Figure 15: Syntax of SHAPESh where p ∈ PoolVariableId , x ∈ LocalVariableId , C ∈ ClassId ,
f ∈ FieldId , m ∈ MethodId , and L ∈ LayoutId . Differences from standard OO languages in
highlight.

provides the appropriate constructs (§ 4), and SHAPES`, a low-level language

designed with efficiency in mind for implementing these constructs (§ 5). § 6

presents the translation of SHAPESh code into SHAPES`.

SHAPESh is a minimal object-oriented calculus with no inheritance, and aug-

mented with pools. The most striking feature compared to other OO languages

is that SHAPESh types are parameterised with pool variables as parameters

(§ 4.3); it is thanks to these pool parameters that the SHAPESh type system

can statically enforce pool uniformity and homogeneity (§ 2, Stages 5, 6).

Representation of entities in SHAPESh also deviates from a typical OO calcu-

lus: Objects carry ghost information regarding pools, but the pools themselves

do not affect object placement or perform any sort of clustering. This seems

certainly inefficient, but it simplifies SHAPESh and demonstrates the argument

that regardless of the pooling and clustering scheme being used, developers can

write their business logic with a simpler, object-oriented mental model in mind,

where all objects (both standalone and pooled) are treated uniformly. More-

over, since we only use SHAPESh as a formalism and not as a runtime target,

such inefficiencies are of no concern; in § 5, we will demonstrate how SHAPES`

places objects in the same pool close to each other in memory and clusters them

according to a layout.

We now present the syntax, type system, and operational semantics of

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

X ∈ Heap = Address ⇀ (Object ∪ Pool)
Address = ObjectAddress] PoolAddress

Object = ClassId × PoolArg+ × Record
Pool = LayoutId × PoolArg+

π ∈ PoolArg = PoolAddress ∪ {none}
ρ ∈ Record = FieldId → Value
β ∈ Value = ObjectAddress ∪ {null}

Φ ∈ SFrame = VariableId ⇀ (Value ∪ PoolArg) ∪ ({none} → {none})
Σ ∈ Stack = SFrame∗

Figure 16: Dynamic Entities of SHAPESh where ω ∈ ObjectAddress.

SHAPESh.

4.1. The SHAPESh language

Figure 15 presents the syntax of SHAPESh; highlighted entities represent

the syntactic entities that are novel with respect to other object-oriented lan-

guages. Classes in SHAPESh are parameterised with pools. As usual, classes

contain field and method definitions. Field definitions consist of their identifier

and type. Method definitions consist of their identifier, a parameter and its

type, a return type, and a method body. Method bodies consist of a preamble

and statements. A preamble consists of declarations for local pools and local

variables. Statements and expressions are as usual with respect to OO.

A layout declaration has the form layout L : C = rec {fs1}; .. rec {fsn}.

It introduces a new layout L, which describes how objects of class C residing

in a pool with layout L are split into n clusters. The first cluster will contain

fields fs1, the second cluster will contain fields fs2, and so on.

Object types consist of the name of a class followed by a sequence of pool

arguments, some of which may be none. An object of type C〈p · ps〉 will belong

to class C, reside in pool p, and its fields will point to objects whose placement is

determined by the fields’ declarations and the pool arguments p · ps. An object

of type C〈none·ps〉 will belong to class C, will not reside in a pool, and its fields

will point to objects whose placement is determined by the fields’ declarations

and the pool arguments none · ps. Because the first pool parameter specifies

which pool an object will be allocated into, the first pool parameter of a class

definition corresponds to the pool this is allocated into.

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Pools are created dynamically upon execution of a method’s preamble. A

pool p created inside the preamble, e.g., via pools .. p : L〈p · ps〉, contains ob-

jects of type C〈p · ps〉, which are organised according to layout L, where C is

the class definition the layout L corresponds to. Objects are allocated inside a

pool p by executing the expression new C〈p · ps〉.

Notation. We will be using the following notation throughout the rest of this

paper:

We use several shorthand syntaxes in order to define maps. The syntax

[x1 .. xn 7→ y1 .. yn] is a shorthand for [x1 7→ y1, .. , xn 7→ yn]. Also, [x1 .. xn 7→

an] is a shorthand for [x1 7→ a, .. , xn 7→ a]. Similarly, if xs ≤ xe, then the syntax

[xs, .. , xe 7→ a] is a shorthand for [xs 7→ a, xs + 1 7→ a, .. , xe − 1 7→ a, xe 7→ a].

We append s to names to indicate sequences: xs is a sequence of x-s. We

use · for list concatenation: p · ps is a list where we prepend p into ps.

We use the notation p to indicate a pool variable, and np to indicate a pool

variable or none. For ease of notation, we use ps to indicate a sequence of np-s,

i.e., any elements in ps may be none.

We use the syntax F (x1 · .. · xn) as a shorthand for F (x1) · .. · F (xn).

4.2. Execution of SHAPESh Programs

The execution of SHAPESh corresponds to the execution of a typical OO

language when not taking the highlighted parts into account. The SHAPESh

heap adds pool entities to standard OO; these pool entities consist of the lay-

out L they adhere to. To express the correspondence between SHAPESh and

SHAPES`, we enrich the SHAPESh semantics with ghost information; this ghost

information consists of all the pool arguments passed into an object or pool at

the time of its creation (e.g., an object created through new C〈p1 .. pn〉 will

also contain the addresses of the pools p1 to pn).

The SHAPESh operational semantics is given in terms of large steps seman-

tics, and has the form X ,Σ, stmts X ′,Σ′, β. That is, a heap X , a stack of

frames Σ, and a sequence of statements stmts are reduced to a new heap X ′, a

new stack Σ′, and a value β.

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 layout StudentL: Student =
2 rec{�name, �age}
3 + rec{�supervisor};
4 ...
5 pools pStu: StudentL<pStu, none>;
6 at = new Student<pStu, none>;

7 ec = new Student<pStu, none>;
8 jf = new Student<pStu, none>;
9
10 sd = new Professor<none>;
11 jf.supervisor = sd;

Figure 17: SHAPES example used in § 4 and § 5

Figure 18: SHAPESh stack and heap representation for Figure 17

Figure 16 presents the definitions of the SHAPESh runtime entities. To

illustrate them and aid in their presentation, we will use the code presented

in Figure 17 (written in SHAPES), which builds on the definitions of classes

Professor and Student (Lines 1, 6, respectively, in Figure 8). Figure 18 depicts

the SHAPESh configuration (stack and heap) after execution of the code in

Figure 17.

SHAPESh runtime configurations consist of a stack (Σ) of frames (Φ) map-

ping identifiers to values, and heaps (X) mapping object and pool addresses to

objects (ω) or pools (π), respectively. In Figure 18, the stack consists of one

frame, with variables pStu, at, ec, jf, sd; the heap consists of the objects with

addresses π1, ω1, ω2, ω3, ω4. For convenience, if Σ = Φ · Σ′ we use Σ(x) and

Σ[x 7→ β] as shorthands for Φ(x) and Φ[x 7→ β] · Σ′, respectively. That is, ac-

cessing and modifying a variable through a stack only takes the top frame into

account.

Objects consist of a class identifier C (determining its type), a sequence

of pool arguments (i.e., pool addresses, some of which may be none), and a

record. A standalone object has none as its first pool parameter (e.g., Professor

at address ω4 in Figure 18); an object stored in a pool π has a pool address

π as its first parameter (e.g., Students at addresses ω1, ω2, ω3 belong to pool

with address π1. The fields’ values are stored as a record (ρ), which maps the

25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Value]

X ,Σ,null X ,Σ,null

[Variable]

X ,Σ, x X ,Σ,Σ(x)

[Assignment]

X ,Σ, e X ′,Σ′, β
X ,Σ, x = e X ′,Σ′[x 7→ β], β

[Statement sequence]

X ,Σ, e X ′,Σ′,
X ′,Σ′, stmts X ′′,Σ′′, β
X ,Σ, e ; stmts X ′′,Σ′′, β

[New Object]

Σ(ps) = πs ω /∈ X fs = Fs(C)

X ′ = X [ω 7→ (C, πs, [fs 7→ null|fs|])]
X ,Σ,new C〈ps〉 X ′,Σ, ω

[Object Read]

Σ(x) = ω
X (ω) = (C, , ρ)

X ,Σ, x.f X ,Σ, ρ(f)

[Object Write]

Σ(x) = ω Σ(x′) = ω′ X (ω) = (C, πs, ρ)
X ′ = X [ω 7→ (C, πs, ρ[f 7→ ω′])]
X ,Σ, x.f = x′ X ′,Σ, ω′

Figure 19: Operational semantics for pool-agnostic operations.

object’s fields to values.

Pools consist of a layout identifier L, and a sequence of pool arguments. The

layout identifier determines how the objects inside the pool are laid out and

Pools can only store instances of the class corresponding to layout identifier.

As mentioned, pools in SHAPESh do not control the placement or layout of

objects belonging to them; standalone and pooled objects have the exact same

representation, hence they are treated uniformly.

Values are either object addresses, or null. Because SHAPESh allows pools

to be referenced by variables, stack frames (Φ) map variables to either values,

pool addresses or none. SHAPESh uses sequences of stack frames (Σ). We

require for convenience that any frame maps none to none.

The operational semantics of SHAPESh (Figure 19) deviate from that of

typical OO in two ways: Firstly, we change the semantics so as to store our

ghost information (i.e., addresses of the pool parameters ps provided by the

new C〈ps〉 expression) into objects. Secondly, MethodCall is now also tasked

with the construction of the method-local pools. Nevertheless, the syntax for

constructing objects and accessing/mutating their fields is the same, regardless

of whether the object is standalone or pooled (i.e., these rules are pool-agnostic).

26

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[MethodCall]

Σ(x) = ω X (ω) = (C, πs,)
M(C,m) = (, x′ : , localPools; localVars ; stmts)

Σ′ = [this 7→ ω, x′ 7→ Σ(x′′),Ps(C) 7→ πs] · Σ
X ,Σ′, localPools; localVars ; stmts X ′, , β

X ,Σ, x.m(x′′) X ′,Σ, β
[MethodBody]

localPools = pools p1: L1〈ps1〉 .. pn: Ln〈psn〉
localVars = vars x1: .. xm:

π1, .. , πn /∈ X ∀i, j. [i 6= j → πi 6= πj]
Σ′ = Σ[p1 .. pn 7→ π1 .. πn][x1 .. xm 7→ nullm]

X ′ = X [π1 7→ (L1,Σ
′(ps1)), .. , πn 7→ (Ln,Σ

′(psn))]
X ′,Σ′, stmts X ′′,Σ′′, β

X ,Σ, localPools; localVars; stmts X ′′,Σ′′, β
Figure 20: Operational semantics for method call.

Method call. The operational semantics for method call are presented in Fig-

ure 20, in two different rules. The first, MethodCall, constructs the stack frame

corresponding to the method that is about to be called, and returns the value

yielded from evaluation of the method body back to its caller. Passing the value

of the implicit this parameter and the method parameter is done in the same

manner as in a typical OO calculus. It is also necessary, however, to set the

values of the class parameters. This is because the pool parameters of the class

can be used as parameters in type declarations inside a method body (more

specifically in new statements). We pass the pool addresses stored into the

object the method is invoked against and store them into the frame.

Evaluation of a method body is defined in the second rule, MethodBody.

Here, we must initialise the local variables defined in the method’s preamble.

Object variables are initialised to null. For pool variables, new (empty) pools

are constructed in a two-step manner: The pools are first reserved on the heap

and then they are actually constructed, along with the stack frame. This allows

us to have cycles among pools.

4.3. Type System

The type system has the remit of ensuring that at runtime:

A1 Objects’ fields point to objects of the appropriate class (as usual).

27

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A2 Objects are allocated in the appropriate pools and adhere to the layout of

that pool (hence ensuring memory safety).

A3 Pool homogeneity is preserved.

We will be using the lookup functions below. Full (unsurprising) definitions

are in § Appendix A.

Fun Used to Lookup

F The type of a field in a given class.

M The definition of a method in a given class.

B The bound type of the given class parameter in a given class.

Ps All parameters of a given class.

Cl The class corresponding to a given layout.

Typing takes place in the context of an environment Γ, which maps object

variables to object types (t), and pool variables to pool types (pt) or bounds

(pb). We define a typing environment as follows:

Definition 1 (Environment).

Γ ∈ TypingContext ::= x : t ,Γ | p : u,Γ | ε
u ∈ PoolTypeOrPoolBound ::= pt | pb

pt ∈ PoolType ::= L〈ps〉
pb ∈ PoolBound ::= [C〈ps〉] | None

T ::= t | u

We distinguish three kinds of types:

Object Types (C〈ps〉), where C is a class and ps are pool arguments, some

of which may be none. They specify objects of class C, and the arguments

ps specify the pools containing the object itself and the pools containing

the objects pointed by that object’s fields.

Pool Types (L〈ps〉) describe pools which store objects of type C and are

organised acccording to layout L. The arguments ps specify which pools

contain the objects pointed by the fields of the objects stored in this

pool. Pool types characterise pool values, i.e., pools allocated dynamically

through execution of a method’s preamble.

28

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Value]
Γ ` C〈ps〉

Γ ` null : C〈ps〉

[Variable]

Γ ` x : Γ(x)

[Assignment]
Γ ` x : t Γ ` e : t

Γ ` x = e : t

[Statements]
Γ ` e : t ′ Γ ` stmts : t

Γ ` e; stmts : t

[NewObject]
Γ ` C〈ps〉

Γ ` new C〈ps〉 : C〈ps〉

[FieldRead]

Γ ` x : C〈ps〉
t = F(C, f)[Ps(C)/ps]

Γ ` x.f : t

[FieldWrite]

Γ ` x.f : t
Γ ` x′ : t

Γ ` x.f = x′ : t

[MethodCall]
Γ ` x : C〈ps〉

M(C,m) = (t , : t ′, ,)
Γ ` x′′ : t ′[Ps(C)/ps]

Γ ` x.m(x′′) : t [Ps(C)/ps]
Figure 21: Typing Expressions and statements.

Pool Bounds ([C〈ps〉] and None) Pool bounds characterise both formal

pool parameters (whose layout is not necessarily known at that scope)

and pools instantiated inside a method (whose layout is explicitly spec-

ified). The type None is only needed when translating SHAPESh into

SHAPES`, specifically during method specialisation (§ 6).

Expression and Statement Types. Typing has the standard form Γ ` e : t and

Γ ` stmts : t . Notice that the type rules only return object types. Pool types

and pool bounds are only used in ascertaining that types are well-formed. The

type rules are presented in Figure 21. These are the type rules which ensure

that objectives A1–A3 hold.

The first five rules in Figure 21 are standard. null can have any well-formed

object type (Value). The type of a variable x is looked-up in Γ (Variable). As-

signment to a local variable is valid if both the variable and the right-hand-side

expression have the same type (Assignment). Notice that we do not model inher-

itance or subtyping. A sequence of expressions is well-typed if all expressions

in it are well-typed (Statements). Creation of a new object is valid and has type

C〈ps〉 if C〈ps〉 is a valid type (NewObject).

The following three rules are concerned with pool arguments, These rules are

similar to those in Featherweight Java [9], or Ownership Types [4] (in the sense

that classes are parameterised), the difference being that in SHAPESh, class

29

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[ObjTypeWF]

∀i. Γ ` ps[i] : : B(C,Ps(C)[i])[Ps(C)/ps]
Γ ` C〈ps〉

[BndWF]

Γ ` C〈ps〉
Γ ` [C〈ps〉]

[PoolTypWF]

Γ ` C〈ps〉 Cl(L) = C
Γ ` L〈ps〉

[PoolVar]

Γ ` p : : Γ(p)

[PoolBnd]
Γ ` p : : L〈ps〉
Cl(L) = C

Γ ` p : : [C〈ps〉]
[None1]

Γ ` none : : None

[None2]

Γ ` [C〈ps〉]
Γ ` none : : [C〈ps〉]

Figure 22: Well-formed Types

parameters are pools instead of types (as in Java) or objects (as in Ownership

Types).

Rule FieldRead looks up a field f from a receiver x of type C〈ps〉; the function

F(C, f) looks up the definition of f as found in class C. The formal parameters

from class C must be substituted by the pool arguments in ps, hence the substi-

tution [Ps(C)/ps]. For example, the term s1.supervisor in Line 19 of Figure 8

has type Professor<pProf1>.

Similar substitutions are applied in rules FieldWrite and MethodCall to trans-

late between the internal names of the class parameters and the arguments used

at the callsite. With these rules, the assignment s1.supervisor = new Professor<

pProf1> would be legal, while, given an otherStudent of type Student<none, none>,

the assignment otherStudent.supervisor = new Professor<pProf1> would be ille-

gal.

Well-formed Types. Figure 22 describes well-formedness of types, which is the

way we statically enforce homogeneity in SHAPESh. Rule ObjTypeWF mandates

that the type C〈ps〉 is well formed, if each of the arguments ps[i] adheres to the

bound of the i-th formal parameter of C, (i.e., B(C,Ps(C)[i])) when we have

substituted all formal parameters of C with ps.

The judgement for pool variables adhering to pool types and bounds has the

format Γ ` np : : u. By rule PoolBnd, a pool variable adheres to its bound as

30

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

given in Γ, and by PoolVar, a pool variable which adheres to L〈ps〉 also adheres

to [C〈ps〉], where C is the class of the layout L.

Thus, in Line 19 of Figure 8, the type Student<pStu1, pProf1> is well-formed

(as pStu1 adheres to the bound [Student<pStu1, pProf1>], and pProf1 adheres to

the bound [Professor<pProf1>]). However, in Line 21, the type Student<pStu1

, pProf2> is badly formed; for it to be well-formed, we would need for pStu1

to adhere to the bound [Student<pStu1, pProf2>], but this cannot be since the

bound of pStu1 is [Student<pStu1, pProf1>]. Therefore, Line 21 is rejected with

a typing error.

Pools are not first class objects. Pools are dynamic entities, as they are created

upon entry to a method preamble. However, pools are not first class entities, as

they cannot be the outcome of an execution, cannot be stored in fields, and the

same pool variable cannot be re-assigned within execution of the same scope.

All these restrictions are necessary because pool variables are used within types.

For instance, the creation of an object o with some type C<p1, p2> followed by

an assignment to pool p1 would “invalidate” the type of o.

4.4. Homogeneity and Type Safety

We will now discuss how the type system achieves homogeneity. We will see

that homogeneity leads to the introduction of some novel constraints on pool

bounds.

As we said in section § 2, homogeneity requires that for any two objects o1

and o2 allocated in the same pool π, and any sequence of field reads f1, · · · , fn,

if o1.f1. .. .fn and o2.f1. .. .fn are defined and not null, then they must reside

in the same pool π′. Through an inductive argument, we can convince ourselves

that homogeneity is equivalent to local homogeneity, where the latter requires

that for any pool π any objects o1 and o2 allocated in π, and any field f , if o1.f

and o2.f are defined and not null, then they must reside in the same pool π′.

It remains to think how to achieve local homogeneity:

Remember that the static type of an object (C〈p · ps〉) determines the pool

that object resides in, as well as the pools the object’s fields reside in. In

31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

particular, if Γ ` x : C〈p · ps〉, then Γ ` x : C ′〈p′ · 〉, where C ′ is some class,

and p′ = p, p′ = none or ∃i. p′ = ps[i], and the object pointed at by x.f resides

in p′. Uniformity ensures that all objects residing in the same pool p will have

the type C〈p · 〉. If, on top of uniformity, we can enforce pool consistency, i.e.,

all objects in the same pool will have identical types (same class and same pool

arguments), then we will have achieved local homogeneity.

To enforce pool consistency, we require that any types that coincide in the

first pool argument will coincide in all pool arguments and be of the same class.

That is, for types C〈p·ps〉 and C ′〈p·ps′〉 in the same scope, C = C ′ and ps = ps′.

This is guaranteed by well-formedness of environments, which is defined below:

Definition 2 (Well-formed environments).

` Γ iff ∀(: T) ∈ Γ. Γ ` T ∧ ∀p. [Γ ` p : : [C〈ps〉] −→ ps[0] = p]

In the definition above, the requirement from the first conjunct (well-formedness

of types) is standard, but the requirement from the second conjunct (i.e., the

type of a pool variable must have the variable itself as the first pool parameter)

is novel. Such well-formed environments ensure pool consistency, i.e., any types

which have the same first argument are identical in the remainder.

Lemma 1 (Derivation of well-formed types from other well-formed types).

If ` Γ, Γ ` C〈ps〉 and ΓC ` C ′〈ps′〉 (where ΓC is the environment used to type-

check the definition of class C, see § Appendix B), then Γ ` C ′〈ps′[Ps(C)/ps]〉.

Proof. See § Appendix F.

Lemma 2 (Well-formed expressions have well-formed types).

If ` Γ and Γ ` e : T , then Γ ` T .

Proof. By structural induction over the derivation of e and by using Lemma 1.

See § Appendix F.

Lemma 3 (Well-formed environments ensure pool consistency).

` Γ ∧ Γ ` C〈p · ps〉 ∧ Γ ` C ′〈p · qs〉 −→ ps=qs ∧ C=C ′.

32

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. If Γ ` C〈p · ps〉 and Γ ` C ′〈p · qs〉, then Γ ` p : : C〈p · ps〉 and Γ `

p : : C ′〈p · ps′〉 from ObjTypeWF and the fact that B(C,Ps(C)[0]) = Ps(C)

(Definition 8). However, because Γ is constructed so that p can only adhere to

one pool bound (Definition 8), then it must hold that C = C ′ and ps = ps′.

We now see that our system enforces homogeneity. Namely, given two objects

o1 and o2 in the same pool, and a field f , we will show that o1.f and o2.f

reside in the same pool. Since o1 and o2 are in the same pool, they have type

Γ ` o1 : C〈p · ps〉 and Γ ` o2 : C〈p · ps′〉, respectively. From the type system,

and ignoring the cases for p and none, we obtain there exists some class C ′ and

some i such that Γ ` o1.f : C ′〈p1 · 〉 and Γ ` o2.f : C ′〈p2 · 〉 where p1 = ps[i]

and p2 = ps[i]. All well-formed expressions have well-formed types, therefore

we can apply lemma 2, and obtain that pi = p′i, hence o1.f and o2.f will reside

in the same pool.

4.5. Well-formed Configurations

To prove soundness of the type system, we need the concepts of a well-formed

program and a well-formed configuration. A program prog is well-formed if all

of its class definitions and layout declarations are well-formed. For a class

definition to be well-formed, all class parameters must have bounds whose first

argument is that parameter, and a similar requirement must be made for all

local pools. For example, (expanding on the code of Figure 8) the statement

pools pProf2: ProfL<pStu1> would be illegal. The rest of the definitions are less

surprising. Full details in § Appendix B.

Defining well-formed configurations for SHAPESh must take into account the

fact that the pool parameters of the type of the same object may be different

in different environments: An object o passed through a function call may have

the type C〈p1 · p2〉 in the caller’s environment and the type C〈p3 · p4〉 in the

callee’s environment.

To overcome this limitation of pool parameters when defining well-formed

configurations, we use runtime types, wherein we replace each pool parameter

with a pool address π or none. That is, the pool parameters of static types are

33

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

variables (e.g., C〈p1 · p2〉), whereas the pool parameters of runtime types are

pool addresses (e.g., C〈π1 · π2〉). The benefit of runtime types is that object

and pool addresses do not change (barring isomorphism); the above object o

will have a fixed runtime type (e.g., C〈π1 · π2〉) throughout execution.

Definition 3 (Runtime types). A runtime type τ is defined as follows:

τ ∈ RunType ::= RunClassType ∪ RunPoolType ∪ RunBound

RunClassType ::= C〈π1 .. πn〉
RunPoolType ::= L〈π1 .. πn〉

RunBound ::= [C〈π1 .. πn〉]

In the context of a well-formed configuration, we can expect that an object

with runtime type C〈π · πs〉 belongs to the pool with address π and that the

pool at address π has a runtime type L〈π ·πs〉 such that Cl(L) = C. This implies

uniformity. Moreover, for two objects o1, o2 with runtime type C〈π · πs〉, we

require that o1.f, o2.f point to objects that belong to the same pool π′. π′ is

derived purely from the pool addresses π · πs and the type of field f in class C.

This implies homogeneity.

Additionally, if, in the environment of a stack frame Φ, an object, pool, or

class parameter adheres to the static type C〈ps〉, L〈ps〉, or, [C〈ps〉] respectively,

then we can expect the pool parameters to be Φ(ps) object, pool, or bound to

be C or L, respectively.

Given the above expectations, we now define the well-formedness of a run-

time configuration:

Definition 4 (Well-formed high-level configurations). Well-formedness is
defined as follows:
– Strong agreement for objects and pools:
• X � ω / C〈πs〉 iff X (ω) = (C, πs, ρ) ∧ X � πs[0] : [C〈πs〉] ∧

∀f. X � ρ(f) : F(C, f)[Ps(C)/πs]

• X � π / L〈πs〉 iff X � πs[0] : L〈πs〉 ∧ Cl(L) = C ∧
∀i. X � πs[i] : B(C,Ps(C)[i])[Ps(C)/πs]

– Weak agreement for objects, pools, and bounds:

34

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• X � ω : C〈πs〉 iff X (ω) = (C, πs,)
• X � null : C〈 〉
• X � π : L〈πs〉 iff X (π) = (L, πs) ∧ π = πs[0]
• X � π : [C〈πs〉] iff X (π) = (L, πs) ∧ π = πs[0] ∧ Cl(L) = C
• X � none : [C〈 〉]
• X � none : None

– Well-formed heap:
� X iff [∀ω ∈ dom(X). ∃τ. X � ω / τ] ∧ [∀π ∈ dom(X). ∃τ. X � π / τ]

– Well-formed stack frame and heap against an environment:
Γ � X ,Φ iff � X ∧

∀x ∈ dom(Φ). ∃C, ps. [Γ(x) = C〈ps〉 ∧ X � Φ(x) : C〈Φ(ps)〉] ∧
∀p ∈ dom(Φ). ∃L,C, ps. [

[Γ(p) = L〈ps〉 ∧ X � Φ(x) : L〈Φ(ps)〉] ∨
[Γ(p) = [C〈ps〉] ∧ X � Φ(x) : [C〈Φ(ps)〉]]

]

– Well-formed sequence of stack frames and heap against a sequence of envi-
ronments:
• ε � X , ε
• Γ · Γs � X ,Φ · Σ iff Γ � X ,Φ ∧ Γs � X ,Σ

�

Theorem 4 guarantees that if a well-formed configuration takes a reduction

step, then the resulting configuration is well-formed too, and the resulting value

agrees with the type of the statements.

Theorem 4 (Type Safety). For a well-formed program prog, given a heap X ,

stack frame sequence Σ, corresponding typing environment sequence Γs, and

sequence of statements stmts:

If Γs � X ,Σ ∧ Γs[0] ` stmts : C〈ps〉 ∧ X ,Σ, stmts X ′,Σ′, β

then Γs � X ′,Σ′ ∧ X ′ � β : C〈Σ′(ps)〉

Proof. By structural induction over the derivation X ,Σ, stmts X ′,Σ′, β.

More in § Appendix F.

4.6. SHAPES in the large

SHAPES has been conceived as a language extension and should be, ideally,

orthogonal to other features of OO languages. In particular: SHAPES:

– Can support the usual control flow structures (i.e., conditionals, loops, excep-

tions, return statements), quality-of-life features present in other languages

35

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

such as scoping and mixed declarations & code, as well as types present in

other languages (e.g., array types). Regarding the latter, inline arrays can be

currently emulated with multiple fields and getters/setters that receive an in-

dex and branch on it. Additionally, our work on [10] presents how pool-backed

dynamic arrays can be accommodated in SHAPES.

– Would support inheritance/polymorphism for standalone objects (in line with

other OO languages), but not for pools. The rationale is that if class Circle

inherits from class Shape, then being able to store an instance of Circle into

a pool of Shape objects would require us to consider schemes for storing the

values of the subclasses’ additional fields into a pool; this would complicate

the design of pools and possibly hinder performance. Additionally, we would

not be able to store an instance of Shape into a pool of type Circle (in a

manner similar to how we cannot store an instance of Shape into an array of

type Circle[]).

– Can support static trait dispatch (a la Rust [11]) with possibly minimal work;

this is thanks to the fact that we make use of method specialisation (§ 6) when

translating SHAPESh into SHAPES`. Dynamic trait dispatch, on the other

hand, could be supported, but at the expense of storing additional runtime

information (address of pool, if any, and its layout).

– Can support Java-style generics: A significant deviation from Java generics,

however, would be the fact that the upper bounds on the type parameters

would need to express the pools as well. We envisage that this can be achieved

in a manner similar to that of [12].

Moreover, in § 7, we present suggestions on how we can simplify the syntax

of SHAPES.

5. SHAPES`: Low-Level SHAPES

We now present SHAPES`, an untyped language with pool-aware instruc-

tions that operate on a flat memory model and which offers no explicit support

for either objects or pools. That is, despite not being standalone entities, pools

in SHAPES` are implicitly represented on the heap (similar to how objects in

36

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(a) Stack and heap representation for
Figure 17

(b) SHAPES` pool components and
nomenclature

Figure 23: Representation of objects and pools in SHAPES`

most language runtimes are implicitly represented as contiguous chunks of con-

tiguous memory). and objects allocated into SHAPES` pools are allocated con-

secutively. Moreover, SHAPES` instructions can be easily translated to existing

low-level intermediate representations such as LLVM [13] and/or invocations to

a standard memory allocation library (e.g., malloc()).

In § 6, we present how we translate SHAPESh into SHAPES`.

5.1. Runtime Configuration

Like SHAPESh, the SHAPES` runtime configuration consists of a heap (χ)

and a stack (σ) of frames (φ). These runtime entities are presented in Figure 24.

The heap is modelled as a sequence of memory cells that can grow infinitely;

each cell contains a value (γ). Values can be addresses (α), natural numbers, or

null. That is, we assume both numbers and references to be of the same size.

Frames map variable names to values.

Figure 23a shows a SHAPES` configuration that could occur after executing

the example of Figure 17. This configuration shows the stack values correspond-

ing to the pool pStu (Line 5) and the objects at, ec, jf, and sd (Lines 5–8), as

well as how these entities are represented on the SHAPES` heap. Figure 23b

lists the components of a SHAPES` pool and presents the nomenclature used

for SHAPES` pools throughout this section.

A standalone object (e.g., the Professor corresponding to sd, Line 10) is

modelled as a contiguous chunk of allocated memory. A reference to a stan-

dalone object consists of the address α to this chunk (e.g., variable sd on the

37

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

stack of Figure 23a).

A pool is modelled as several such chunks, with one being the header and

the rest being the clusters. The header consists of the size and capacity of the

pool, and the pointers to the pool’s clusters. A reference to a pool points to the

address of the pool’s header. At any given time, a pool can only contain up

to a finite number of objects; this number of objects is reflected in the pool’s

capacity. The pool’s size indicates the number of objects the pool currently

contains. As an example, the size and capacity of pool pStu (Line 5) is 3 and 5,

respectively. Note that the header contains no information regarding the pool’s

layout.

All pooled objects that belong to the same pool have the values of their fields

placed in chunks of contiguous memory that correspond to the pool’s clusters;

the pool header keeps a pointer to each of these clusters. A pool has the same

number of clusters as the layout it adheres to. In our example, pool pStu adheres

to layout StudentL (Line 1), hence it consists of two clusters: One corresponding

to fields name and age and another corresponding to field supervisor.

Different clusters store different fields of a pooled object, hence pooled ob-

jects are effectively subdivided into record splits, with each record split being

located on a specific cluster. For example, in Figure 23a, the objects at, ec, jf

(Lines 6–8) are each subdivided into one record split consisting of fields name

and age and another consisting of field supervisor. These record splits are each

placed in the first and second cluster, respectively, of pool pStu.

In a SHAPES` pool, the k-th record split from each cluster will store the

values for the respective fields of the k-th (zero-indexed) object in a pool. The

pool’s layout determines which record split contains which field of an object and

how the fields are ordered in a record split. For example, in Figure 23a, the

pooled object jf (Line 8) is the 2nd (zero-indexed) object in pool pStu, hence

the 2nd record split from each cluster will contain the values of jf for fields name

(for the first cluster), and age, supervisor (for the second cluster). The same

applies to objects at and ec (Lines 6–7), which are the 0th and 1st objects in

pStu, respectively.

38

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

χ ∈ Heap` = Address` → (Size` ∪ Capacity` ∪Value`)

φ ∈ SFrame` = Variable` → Value`

σ ∈ Stack ` = (SFrame`)∗

γ ∈ Value` = Address` ∪ Index ` ∪ {null}

α ∈ Address` = N
j ∈ Size` = N

M ∈ Capacity` = N
k ∈ Index ` = N

Figure 24: Low level runtime entities.

A pooled object is uniquely identified by the address of the pool it belongs

to and the index k indicating its position inside the pool. As an example, object

jf (Line 8) in Figure 23a, is uniquely identified by the address of pool pStu (i.e.,

0xC000) and its index inside pStu (i.e., 2). Despite that, references to pooled

objects in SHAPES` do not have to store the pool address. This is because we

rely on the pool storing that object to always be in scope. This is indeed the case

with SHAPESh: If Γ ` o : C〈p · ps〉, then o resides in pool p. As an example,

the references to objects at, ec, jf (Lines 6–8) need only store the index of them

inside pStu (i.e., 0, 1, and 2, respectively).

Since reference density can sometimes be non-trivial (e.g., two applications

on the SPECjvm98 benchmark used at least 40% of their allocated memory

to store references to objects [14]), we expect that by only storing the index

to bring immense improvements in cache utilisation and memory usage. It is

worth pointing out that some of the currently existing libraries for pooling and

clustering (e.g., [15]) also attempt to compress the reference to the pool and

the index in one machine word. However, this imposes an inherent limit on the

number of objects in a pool on these implementations; SHAPES` suffers from

no such constraints. In § 7, we discuss how SHAPES can be extended so that

developers can reduce the footprint of references even further.

5.2. Syntax of SHAPES`

Figure 25 presents the syntax of SHAPES`. A program consists of functions

(fun`), each with parameters, local variables, and a body. Unlike SHAPESh,

39

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

prog` ::= (fun`)+ Program

fun` ::= fun fn(this, p+, x) {vars`; stmts`} Function

stmts` ::= rhs` | rhs` ; stmts` Statements

rhs` ::= null | x = rhs` | x | fn(x+) Instruction
| alloc(N) | read(x, i) | write(x, x′, i)
| plalloc(p,N∗) | plread(p, x, i,N, j) | plwrite(p, x, x′, i, N, j)

vars` ::= locals (p = plcreate(N ∗)`)∗ x∗ LocalsDecl

Figure 25: SHAPES` syntax where x, p ∈ Variable`, fn ∈ FunctionId`, N, i, j ∈ N.

SHAPES` makes no distinction between object and pool variables.

SHAPES` provides instructions that construct new objects or pools and ac-

cess their fields. These come in pool-unaware (alloc, read, write) and pool-

aware variants (plalloc, plread, plwrite, plcreate).

5.3. Operational Semantics

SHAPES` execution has the format χ, σ, stmts` χ′, σ′, γ. Thus, a SHAPES`

configuration (heap χ and stack σ) is reduced to a new configuration and return

value γ.

Pool-agnostic operations. Pool-agnostic operations in SHAPES` are similar to

what we would expect from a typical intermediate representation:

– alloc constructs a new standalone object in memory (of size N). Construction

of a new standalone Professor object is performed with the instruction alloc

(2) (since Professors have 2 fields).

– read and write access an object’s field f given its address and the offset i of

f inside the object. Instruction read(sd, 1), for example, fetches the value of

field ssn (declared in Professor, Figure 8) from object sd.

Pool-aware operations. The SHAPES` pool-aware operations are as follows:

– plread and plwrite: Suppose that the pooled object o belongs to pool p

with layout L and at α and that it has an index k inside p. Then, to access

field f of o:

– We first determine the index i of the cluster field f belongs to in L, thus

obtaining address α′ = χ(α+ i+ 2).

40

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

– We then determine the address of the record split corresponding to o.

The size of each record split is N , with N being the number of fields in

the cluster f belongs to in L. Thus, our record split is located at address

α′′ = α′ + k ∗N .

– The address of the cell corresponding to field f of o is α′′+ j, where j is

the offset j of the field f inside the record split in question.

For example, to read field age of object jf in in pool pStu, we execute the

instruction plreadc(pStu, jf, 0, 2, 1). This is because for layout StudentL,

field age is placed in the 0-th cluster (i = 0), the size of a record split in that

cluster is N = 2 and age is the 1-st (zero-based) field in such a record split

(j = 1).

– plalloc constructs a new pooled object in pool p. Alongside p, it takes a

sequence N0 .. Nm−1 of parameters that specify the size of a record split in

each of the m clusters. These parameters will allow plalloc to initialise the

fields of the newly created object to null. As an example, plalloc(pStu, 2, 1)

will construct a new Student inside pool pStu.

Allocation of pooled objects is trivial when the underlying pool can still ac-

commodate objects (i.e., size less than capacity): We need to only increment

the pool’s size. For example, allocating a pool in pStu (Figure 23a) would

increase the size of pStu to 4 and yield 3 as the new object’s index. If the pool

cannot accommodate any more objects, then the garbage collector (§ 5.4) will

grow the pool in question beforehand.

– plcreate creates a new pool and returns its address. It takes the sizes of

record splits in each cluster. The runtime picks an initial capacity for the

pool, allocates the header and clusters and marks the pool as initially empty

(i.e., size of 0). For example, we use instruction plcreate(2, 1) to create

a pool that adheres to layout StudentL. We discuss possible strategies for

picking an initial pool capacity in § 7.

Method call. It behaves similar to method calls in imperative languages, with

the exception that pools are passed as arguments and pools are constructed

41

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

explicitly (by using plcreate) at the beginning of the method’s body.

The rules for pool-agnostic, pool-aware operations, and Method Call are

given in Figure C.29, Figure C.31, and Figure C.30, respectively (§ Appendix

C.2).

5.4. The Garbage Collection rule

As we mentioned in § 5.3, if a pool has exhausted its capacity before an

execution of a plalloc statement, the garbage collector is run so as to grow the

pool in question. Rule Garbage Collection (Figure C.30) dictates how a garbage

collector designed or retrofitted to accommodate SHAPES must operate.

Rule Garbage Collection states that the GC can only run inbetween SHAPES`

statements. During a GC cycle, both standalone and pool-allocated objects can

be garbage collected. Moreover, the GC can not only collect and reorganise

standalone objects in memory (as usual), but it can also relocate, grow, and

shrink pools as well as collect and reorder the objects belonging to a pool to

achieve compaction. Along with our pool representation, it is this compaction

of pooled objects that allows us to achieve spatial locality within pools.

The GC reorganises the current runtime configuration χ, σ into a new con-

figuration χ′, σ′ such that the two are equivalent (χ, σ 'σ χ′, σ′). That is, all

objects and pools reachable in χ, σ through must have an isomorphic counter-

part in χ′, σ′ and, additionally, pooled objects cannot be moved into another

pool. We present the definition of 'σ in § Appendix E.2.1.

Note that pool growth does not necessary imply a partial or full GC in-

vocation: The semantics of Rule Garbage Collection and the use of indices for

references to pooled objects do permit a pool to be grown by merely having each

of its clusters grown (e.g., a la realloc() in C); in fact, we expect this to be the

behaviour observed in the vast majority of cases in a future implementation.

Additionally, note that the pools themselves (as opposed to the objects in

them) need not be garbage collected — their lifetime is bound to the frame

where they are defined, allowing an entire pool to be released from memory in a

single hit at the return from such a frame. This will not cause dangling pointers

42

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

as the types necessary to point to objects in the pool are no longer nameable in

the system.

We do not expect the design of SHAPES` to rely on any particular garbage

collection technique or algorithm, hence we expect adding support for SHAPES`

to existing GCs to not be conceptually excruciating (i.e., modulo the amount

of engineering effort required). Considering our objective to have SHAPES sup-

port managed languages, it is natural to demand interoperability with existing

garbage collectors. For a discussion on movement and compaction in pools,

see [16].

6. Translation

We now describe the process of translatng SHAPESh into SHAPES`. The

most significant difference between SHAPESh and SHAPES` that we need to

take into account during translation is that SHAPESh classes are polymorphic

with respect to the layouts of pools (hence their member methods are also

polymorphic), whereas SHAPES` does not provide any functionality to imple-

ment any such polymorphism. This implies that when translating SHAPESh to

SHAPES`:

– We need to know whether an object is standalone or pool allocated so as to

emit the appropriate variant of an instruction (e.g., read vs plread).

– When dealing with a pooled object, we need to know the layout of the pool

it belongs to, so that we can specify the appropriate constant values for pa-

rameters such as cluster index, record split size, etc.

– When translating a method invocation, we need to propagate any layout

information we already know about the callee’s pool parameters (so that when

translating the called function, we will know the appropriate instructions to

emit) or the method itself should be able to obtain the layout information

regarding its pool parameters from scratch.

As an example, consider the translation of method clone() for class Student

(Figure 8):

43

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

def clone(): Student<pStu, pProf> {
var obj = new Student<pStu, pProf>;
obj.name = this.name;
obj.age = this.age;

obj.supervisor = this.supervisor;
obj

}

The SHAPES` code emitted for clone() needs to behave differently when

called on an object of type Student<none, none>, compared to when called on an

object of type Student<p, none>, where p is a pool of Students.

To tackle this, we can modify SHAPES` to provide features for polymorphism

and rely on the runtime to resolve layout information (e.g., to perform field

access) or we can assume that all layout information inside a method body

is already known at compile time (hence all layout information for e.g., field

access is known at compile time) and require method specialisation in the case

of method call. We decided to make use of specialisation in SHAPES`. We

use specialised environments (∆), where pool bounds are eliminated and pool

variables have layout types or None:

Definition 5. ∆ ::= x : t ,∆ | p : L〈np+〉,∆ | p : None,∆ | none : None

Definition 6 (Environment specialisation). We define that ∆ specialises Γ (Γ `
∆) as follows:

Γ ` ∆ iff dom(Γ) = dom(∆) ∧
∀x.[Γ(x) = C〈 〉 → ∆(x) = Γ(x)] ∧
∀p.[Γ(p) = L〈 〉 → ∆(p) = Γ(p)] ∧
∀p.[Γ(p) = [C〈ps〉] → ∆(p) = None ∨ ∃L.[Cl(L) = C ∧ ∆(p) = L〈ps〉]]

For two sequences of environments Γs, ∆s, we state that ∆s specialises Γs
(Γs ` ∆s) as follows:

Γs ` ∆s iff ∀i. Γs[i] ` ∆s[i]

In our examples, we shall be using two specialized environments, ∆1 and

∆2, such that:

∆1(s) = Student<pStu1, pProf1> ∆2(s) = Student<pStu1, pProf1>

∆1(pStu1) = StudentL<pStu1, pProf1> ∆2(pStu1) = None

∆1(pProf1) = ProfL<pProf1> ∆2(pProf1) = ProfL<pProf1>

We will be using the following definition of StudentL:

layout StudentL: Student = rec{name, age} + rec{supervisor};

Translation also makes use of lookup functions that provide information

about the various layouts – full definitions are in § Appendix A.

44

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Expression ∆1 ∆2

new Student<pStu1, pProf1> plalloc(p, 2, 1) alloc(3)
s.age plread(pStu1, s, 0, 1, 1) read(s, 1)
s.getAge() #Student_getAge_StudentL_ProfL(#Student_getAge_None_ProfL(

s, pStu1, pProf1) s, null, pProf1)

Figure 26: Example translations

Fun Used to Lookup

Fs All fields declared in a given class.

O Offset of a field identifier in a class; i.e., the cluster containing the field,

and the field’s position within that cluster.

Rs Clusters of a layout, represented as a nested sequence of field identifiers; the i-th

nested sequence describes which fields are stored in the i-th cluster and in what order.

Translating Expressions and statements. Figure 27 defines the translation of

SHAPESh expressions and statements in terms of rules of the form [[e]]∆ and

[[stmts]]∆, where e and stmts are SHAPESh expressions or statement sequences,

and ∆ is a specialised typing environment.

Translating Expressions and statements. The first five rules are not that sur-

prising: Variables and values are mapped to themselves; an assignment leaves

the left hand side unmodifed and translates the right hand side; a sequence of

expressions is translated into a sequence of their translations.

Translating Object Creation and Field Access. The next rule describes object

creation. For a non-pooled object, i.e., for an object of type C〈np · 〉 where

∆(np) = None, we emit the instruction alloc(N) where N is the number

of fields in class C. For a pooled object, i.e., an object of type C〈p · 〉 where

∆(p) = L〈 〉 we emit the instruction plalloc(p,N1 .. Nm) where m is the number

of clusters in L, and Ni is the number of fields in the i-th cluster of layout L.

Similarly, for field access x.f , we distinguish between standalone and pooled

objects. In the fist case, we emit read(x, k) where k is the offset of f in the

class of x. In the second case, we emit plread(p, x, i,N, j), where p is the pool

that contains x, and i is the cluster that contains f in the layout of p, and j

45

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[[x]]∆ , x [[this]]∆ , this [[null]]∆ , null

[[x = rhs`]]∆ , x = [[rhs`]]∆

[[e; stmts]]∆ , [[e]]∆; [[stmts]]∆

[[new C〈np · 〉]]∆ ,

alloc(|Fs(C)|) if ∆(np) = None

plalloc(p, |fs0| .. |fsn|) if np = p ∧ ∆(p) = L〈 〉
∧ fs0 .. fsn = Rs(L)

[[x.f]]∆ ,

read(x,O(C, f)) if ∆(x) = C〈np, 〉 ∧ ∆(np) = None

plread(p, x, i,N, j) if ∆(x) = C〈p, 〉 ∧ ∆(p) = L〈 〉
∧ O(L, f) = (i, j) ∧ N = |Rs(L)[i]|

[[x.f = x′]]∆ ,

write(x, x′,O(C, f)) if ∆(x) = C〈np, 〉 ∧ ∆(np) = None

plwrite(p, x, x′, i, N, j) if ∆(x) = C〈p, 〉 ∧ ∆(p) = L〈 〉
∧ O(L, f) = (i, j) ∧ N = |Rs(L)[i]|

[[x.m(x′)]]∆ , Name∆′(m)(x, np′1 .. np
′
k, x
′)

if ∆(x) = C〈np1 .. npk〉
∧ ∆′ = this : C〈np1 .. npk〉, p1 : ∆(np1), .. , pk : ∆(npk)

∧ ∀i ∈ 1..k. np′i =

{
null if ∆(npi) = None

npi otherwise

[[pools p1 : .. pn : ; locals x1 : .. xm: ; stmts]]∆
,

locals p1 = plcreate(Ns1); .. pn = plcreate(Nsn) x1 .. xm; [[stmts]]∆
where

∀i.[Rs(∆(pi)) = fs0 .. fsn → Nsi = |fs0| .. |fsn|]

Figure 27: Translation of Expressions

is the offset of f within that cluster’s corresponding record split, and N is the

number of cells in that record split. Similar ideas apply to field write.

Figure 26 shows how the SHAPESh expressions new Student<pStu1, pProf1>

and s.age are translated into SHAPES` under environments ∆1 and ∆2, respec-

tively.

Translating Method Call. For method call, we make use of name mangling to

determine the correct method to invoke, in a similar manner to what languages

such as C++ do[3]. The name of the method to be called is generated from

46

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Name. Name generates a mangled method name by combining the member

method’s name and the specialised typing environment ∆ being used.

Name∆(m) ≡ #C m G1 .. Gn

where ∆(this) = C〈p1, ..., pn〉 ∧ Gi =

None if ∆(pi) = None

L if ∆(pi) = L〈 〉

Figure 26 shows the translation of the method call s.getAge() under ∆1 and

∆2. Notice that in the case of ∆2, as the pool parameter pStu1 is of type None,

hence it will never be used inside getAge(), we set the argument corresponding

to pStu1 in getAge() to null.

Translating Methods and Classes. Specialisation of SHAPESh functions is per-

formed by enumerating all possible specialised environments. We obtain all such

environments through the SpecialiseClass function, which substitutes the types

of formal pool parameters with layout types or None.

SpecialiseClass(C) ≡

{∆ | dom(∆) = Ps(C) ∧

∀p ∈ Ps(C). [B(C, p) = [C ′〈ps〉]→ ∆(p) = None ∨ ∃L.Cl(L) = C ′ ∧ ∆(p) = L〈ps〉]}
Thus, we define translation of a method as:

SpecialiseMethod(C,m) ≡

{ Name∆′(m)(this, p1, .. , pn, x
′){[[localPools; localVars; stmts]]∆′} |

∆ ∈ SpecialiseClass(C) ∧

∆′ = ∆, this :C〈p1 .. pn〉, x′ : t ′, p′1: L1〈ps′1〉, .. , p′k: Lk〈ps′k〉,

x1: C
′
1〈ps′′1〉, .. , xm: C ′m〈ps′′m〉}

where M(C,m) = (, x′ : t ′, localPools; localVars, stmts),

and localPools = pools p′1 : L1〈ps′1〉 .. , p′k : Lk〈ps′k〉;

and localVars = vars x1: C
′
1〈ps′′1〉 .. xm: C ′m〈ps′′m〉

Specialisation will always terminate. This is because a specialisation replaces

the pool bound [C〈ps〉] of each formal pool parameter with a layout type L〈ps〉

(such that Cl(L) = C) or None and each class C has a finite number of layouts

and formal pool parameters.

47

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6.1. Correctness of Translation

We now show that translation is correct; that is, executing well-typed high-

level SHAPESh code in a high level configuration gives equivalent results as

executing the translation of that SHAPESh code in an equivalent specialised

low-level configuration and vice versa. We state soundness and completeness of

translation in Theorems 5 and 6. In both theorems, we use a utility predicate

(X ,Σ 'Γs,∆s,I,stmts χ, σ) to ensure that:

– We have an initial high-level configuration X ,Σ that is well-formed against a

specialised environment ∆s (otherwise we are dealing with the wrong method

specialisation).

– The high-level (X ,Σ) and low-level configurations (χ, σ) are equivalent.

– The SHAPESh statements stmts we are translating into SHAPES` are well-

typed under the typing environment Γs used for compilation.

We define X ,Σ 'Γs,∆s,I,stmts χ, σ as follows:

X ,Σ 'Γs,∆s,I,stmts χ, σ iff Γs ` ∆s ∧ ∆s � X ,Σ

∧ [[stmts]]∆s[0] = stmts` ∧ X ,Σ '∆s,I χ, σ

The relation X ,Σ '∆s,I χ, σ (defined in § Appendix E.2) asserts that the

high-level and low-level configurations X ,Σ and χ, σ are equivalent under the

typing environment ∆s modulo renaming; the renaming is defined by injection

I.

The theorems also use the relation β 'I′,ps,σ γ to express object equivalence

between the high and low-level configurations. That is, the object with address

β in the high level corresponds to the standalone object with address γ or the

pooled object with index γ in the low level. The pool the object belongs to in

the low-level (if any) is derived from the stack σ and the pool parameters ps.

Full definition of β 'I′,ps,σ γ in § Appendix E.1.

Theorem 5 (Sound Translation). For two well-formed and equivalent SHAPESh

and SHAPES` configurations, a sequence of well-typed SHAPESh statements will

48

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

yield SHAPESh configurations and return values equivalent to the SHAPES` con-

figurations and return values (respectively) yielded by the execution of a special-

isation of the SHAPESh statements into SHAPES`.

∀X ,Σ, χ, σ,Γs,∆s, I, stmts, stmts`, C, ps, χ′, σ′.

If X ,Σ 'Γs,∆s,I,stmts χ, σ ∧ Γs[0] ` stmts : C〈ps〉 ∧ χ, σ, stmts` χ′, σ′, γ

Then ∃I ′,X ′,Σ′, β.

X ,Σ, stmts X ′,Σ′, β ∧ X ′,Σ′ '∆s,I′ χ
′, σ′ ∧ β 'I′,ps,σ γ

Proof. By structural induction over the derivation χ, σ, stmts` χ′, σ′, γ.

See § Appendix F.

Theorem 6 (Translation is complete). For two well-formed and equivalent SHAPESh

and SHAPES` configurations, the specialised translation of a sequence of well-

typed SHAPESh statements will yield SHAPES` configurations and return val-

ues equivalent to the SHAPESh configurations and return values (respectively)

yielded by the execution of the SHAPESh statements.

∀X ,Σ, χ, σ,Γs,∆s, I, stmts, stmts`, C, ps,X ′,Σ′.

If X ,Σ 'Γs,∆s,I,stmts χ, σ ∧ Γs[0] ` stmts : C〈ps〉 ∧ X ,Σ, stmts X ′,Σ′, β

Then ∃I ′, χ′, σ′, γ.

χ, σ, stmts` χ′, σ′, γ ∧ X ′,Σ′ '∆s,I′ χ
′, σ′ ∧ β 'I′,ps,σ γ

Proof. By structural induction over the derivation X ,Σ, stmts X ′,Σ′, β.

See § Appendix F.

7. Reflections and Future Work

We have presented the design of a language extension which we argue it gives

the developer better control of how data is laid out in memory (and potentially

utilise the cache better), whilst keeping the business logic both high-level and

oblivious to the layout being used and retaining type safety.

49

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Our design allows fast type checking, as it only requires a simple substitution.

It is also “backwards compatible” with existing OO languages, because none

can always be used as a pool parameter.

We claim that our design results in a pool representation we expect to allow

the emission of efficient code. In particular, we do not need to retain pool param-

eters or any other additional runtime type information and calculating addresses

of fields only requires multiplications by a constant (which can sometimes be

reduced to more efficient computations, e.g., shift-and-add) and additions. As

mentioned in § 8, we can even provide more sophisticated layouts (e.g., AoSoA).

We believe that, thanks to our runtime design decisions with respect to pools,

SHAPES can be also implemented in unmanaged languages: Even if such mem-

ory optimisations can be performed manually in unmanaged languages, we argue

that being able to implement them in an easy-to-use manner is beneficial.

SHAPES is also capable of accommodating additional features concerning

performance: A layout can be extended to accommodate additional features,

such as padding (to address false sharing[17]), alignment, and placement of

auxuiliary fields (e.g., mark word and klass pointer on the HotSpot VM[18]).

Furthermore, the layout syntax can be extended to allow the developer to con-

strain the index of an object in a specific pool to a range smaller than the

machine word size (e.g., 16-bit or 32-bit indices on 64-bit machines) so as to

further improve on memory usage and cache utilisation. This can be achieved

thanks to the use of specialisation and it can be syntactically implemented by

e.g., adding annotations to the respective layout. Moreover, the syntax can

be extended to accommodate automatic layout selection in the future: An op-

tional advisory keyword in pool declarations would indicate that the compiler

is free to select a different layout; this could be determined via profile-guided

optimisation (e.g., data collected regarding cache misses via the perf tool in

Linux [19].

Type system extensions can be added to our design. Structural equality

could be added with minimal hassle: Two types would be structurally equal if

their classes were structurally equal, and their pool arguments were nominally

50

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

equal. Then pools could hold objects of structurally equal types. Existential

types could be added, but at the expense of homogeneity and a runtime lookup

of pools’ layouts.

1 class Professor {
2 � name: String;
3 � ssn: String;
4 }
5 class Student<pProf: [Professor<pProf>]> {
6 � name: String;
7 � age: int;
8 � supervisor: Professor<pProf>;
9 }

10 layout ProfL: Professor = ...;
11 layout StudentL: Student = ...;

12 ...
13 pools pStu1: StudentL<pStu1, pProf1>,
14 pProf1: ProfL<pProf1>;
15 pProf2: ProfL<pProf2>;
16 s1 = new Student<pStu1>;
17 s2 = new Student<pStu1>;
18 p1 = new Professor<pProf1>;
19 p2 = new Professor<pProf2>;
20 s1.supervisor = p1; // OK!
21 s2.supervisor = p2; // ERR
22 ...

Figure 28: Figure 8 with the suggested syntax simplifications applied

SHAPES can also become more succinct thanks to the guarantees provided

by homogeneity: If the first pool parameter of a type is not none, we can omit

the remaining pool parameters. For example, in Line 19 of Figure 8, one need

only write Student<pStu> instead of Student<pStu, pProf>. Additionally, the first

pool parameter of a class declaration can be replaced with a keyword (e.g.,

mine). For example, the definition of pool pStu in Line 7 of Figure 8 can be

replaced with the mine keyword (with the bound of mine being Student<mine,

pProf>. Figure 28 depicts how the example of Figure 8 would look like with the

above synax simplification proposals.

Our design does not specify how the initial capacity of a pool will be picked.

As possible options, we are currently envisaging either an implementation-

defined default, a user-specified initial capacity (e.g., via annotations) or a

capacity derived from profile-guided optimisation.

SHAPES does not currently address any issues regarding concurrency; we

leave this as future work.

Finally, we have presented how SHAPES can be integrated into a garbage

collector (§ 5.4). A possible extension on SHAPES GC would be to provide a

custom API for reordering objects in a pool. This would, for instance, allow

the nodes of a tree to be reordered sequentially in memory in the order that an

algorithm traverses the tree.

51

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8. Related Work

8.1. Frameworks and libraries

AoS to SoA. The C++ world is rich with libraries that transform an array of

an AoS to an SoA layout. Almost all of these libraries operate on fixed size

arrays (whereas pools in SHAPES can contain arbitrarily many objects). We

present some of these libraries:

ASX [20] is a C++ library that lets a developer switch between an AoS

and an SoA format for a static array. Use of the library imposes limitations,

e.g., fields of a struct must be of equal size; SHAPES will not impose such

limitations. SoAx [21] is a C++ library intended for HPC code. It lets the

developer declare a structure type via a template metaprogramming scheme

and then construct an SoA “array”. Apart from the objects themselves, their

fields can be accessed collectively and operations can be applied on them in a

collective manner. There is no plan for SHAPES to present such an API, but it

could be added via extensions (e.g., SHAPES++ in § 3).

Ikra-Cpp [22] is a C++/CUDA library that allows switching between AoS

and SoA for static arrays. It provides some object-oriented capabilities (con-

structors, object-specific methods); the developer needs to annotate their classes

and use Ikra-Cpp specific primitive types. Use of nonstandard primitive types

will be unnecessary in SHAPES. DynaSOAr [15] builds on top of Ikra-Cpp; it

implements dynamic object sets that use an SoA layout; like SHAPES pools, ar-

bitrarily many objects can now be allocated inside these object sets. Moreover,

SHAPES pools are implemented in a way we expect it will make them usable

in CUDA applications. We leave support for multithreaded allocation/garbage

collection as future work in SHAPES.

A package [23] for the Julia language allows transformation of a fixed size (at

runtime) array into an SoA structure via metaprogramming. It only supports

“isbits types”, i.e., immutable scalar types with no references to other objects;

SHAPES will not impose such limitations. Furthermore, objects in an SoA

structure are (certainly) not garbage collected; SHAPES is expected to handle

this.

52

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In the dynamic language world, [24] describe and implement an object layout

for column-based databases intended to be easily optimisable by the PyPy JIT.

Access and traversal of the objects in the database is achieved through an itera-

tor interface. Supporting such an iteration scheme can be achieved in SHAPES

via extensions (e.g., SHAPES++ in § 3). Moreover, thanks to specialisation, a

JIT is not necessary.

Clustering. As we showed in § 3, OP2 [5] allows the developer to perform a lim-

ited form of clustering (only fields of the same type can be clustered together)

whereas the SHAPES design has no such constraint. OP2 also features execu-

tion plans: The developer specifies what fields will be accessed in a kernel and

how. Then, during execution of a computational kernel, an execution plan will

partition objects so that when we run the kernel in question over two objects

residing in the same partition, then there will be no data races. The SHAPES

design will offer no such feature, considering its general purpose nature.

TALC [25] is a C language extension that allows the clustering of static, fixed

size arrays of type struct. The developer writes object schemas (similar in nature

to layout declarations) and their business logic in TALC. Then, by specifying

which schema to use, a TALC compiler generates C code in accordance to

the schema specified. This C code has to be manually generated anew when

switching to different layout. Later work [26] extends TALC with automatic

selection of the most efficient layout via a greedy algorithm. While SHAPES will

offer no automatic layout selection, it is not constrained to fixed size arrays.

Object representation transformations. For Scala, [27] proposed an extension for

automatic changes to the data layout where a developer defines transformations

and the compiler applies the transformation during code generation.

8.2. Automatic program transformation

Pooling. [28] attempt to reduce cache misses by automatically partitioning ob-

jects into pools of popular and unpopular objects. Later work by [29, 30] for C

and C++ leverages static analysis instead of profiling to partition objects into

pools.

53

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Clustering. Part of the work done by [31] consists of automatically determining

“hot” and “cold” fields of an object and clustering such objects in such a manner

that “hot” fields are placed in the same cluster. A SHAPES developer will have

to explicitly annotate their code; an analysis tool can then determine the “hot”

and “cold” fields and then produce the relevant layout (which the developer can

then use).

[32] present a greedy algorithm for determining an optimal clustering strat-

egy tuned for embedded applications. Such automatic clustering is performed

only on arrays of structures of a fixed size (at compile time). Clustering in

SHAPES will be performed manually, but, unlike fixed size arrays, the sizes of

pools is not fixed.

8.3. Programming languages

Class parameterisation. As mentioned, SHAPES types have been influenced by

Ownership types [4], using pool parameters instead of ownership contexts. Un-

like Ownership types, our type system allows cycles between pools.

The concept of bounds and well-formed types is drawn from Featherweight

Generic Java [9], although our formalism does not have any concepts of poly-

morphism.

Similar to pooling, Petersen et al [33] describe a model that uses ordered

type theory to allow a runtime to coalesce multiple calls to the allocator.

Class parameterisation has also been used in the context of region based

memory management, such as Cyclone [34], the Rust language [11], where types

are permitted to be parameterised over lifetimes, and Pony [35], where types

are permitted to be parameterised over reference capabilities.

Built-in support for clustering. The ISPC language [36] intends to make it eas-

ier for developers to exploit SIMD features. It provides the soa<N> modifier,

which converts an array that has an AoS layout into a “hybrid” layout called

Array-of-Structs-of-Arrays (AoSoA). In AoSoA, groups of N objects of an array

are transformed into an SoA layout, hence it is necessary to only allocate one

cluster. Sierra [37] is a language intended for writing code that better exploits

54

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

SIMD capabilities. Sierra provides a similar construct to ISPC’s soa<N>, but

the developer can also write code that is generic over the parameter N. Despite

not supporting them natively, we believe it is easy to extend SHAPES to sup-

port AoSoA layouts by exploiting specialisation and by providing instructions

specific to pools of such layouts.

Heap partitioning. IBM’s X10 language [38] partitions the object heap into

places, which are intended to assist the developer in taking better advantage of

memory locality, as well as provide future support for distributed and hetero-

geneous computing. In X10, the current continuation is associated with a place

and it can access objects from that place only. Objects can be copied between

places through a place-shifting operation, which, given a set of roots, it copies

a subset of the object graph into the designated place via serialisation.

In the realm of Ownership Types [4], some works have permitted splitting

data in the heap conceptually (hence they do affect in-memory representation),

to calculate the effects of reading and writing to data [39] or reason about

thread-local data [40].

Inference has been used successfully in this context e.g., by Jaber et al. [41]

for ownership-based heap partitioning.

Franco and Drossopoulou use annotations to control placement on a NUMA

node granularity [42] with the aim of improving program performance.

Our earlier work. The design of SHAPES builds on and extends prior work [43,

16, 44, 10]:

OHMM [43] is similar to Stage 4 in § 2. That is, pools are not uniform:

Objects of a specific type are placed in the class-specific subpool of that pool.

Moreover, similar to Stage 1, each class can have up to one layout; all subpools

corresponding to that class will adhere to the class’ layout.

SHAPES ideas were presented in [16], which corresponds to Stage 5. The

paper contains neither the complete language design, nor a formal model. Pools

are not homogeneous, hence runtime type information is necessary for field

access and object construction. [10] presents extensions to the SHAPES model to

55

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

add support for dynamically allocated pool-backed arrays with value semantics

and a SIMD environment similar to that of [36, 37].

9. Conclusion

We have presented SHAPES, a language extension that uses a type-based

approach to integrate memory optimisation in managed languages, which en-

ables greater control of the memory layout (hence potentially improving cache

utilisation), whilst keeping the business logic layout-oblivious. It relies on types

both to document and enforce aspects of data locality and to protect object

abstraction and combat high-level memory safety bugs which may arise when

manually deconstructing objects in structure-of-arrays transformations. Finally,

use of specialisation means that an ahead-of-time approach to compilation can

be used.

References

[1] D. W. Forslund, C. Wingate, P. Ford, J. S. Junkins, J. Jackson, S. C. Pope,

Experiences in writing a distributed particle simulation code in c++., in:

C++ Conference, 1990, pp. 177–190.

[2] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, The Java Language

Specification, Java SE 8 Edition (Java Series) (2014).

[3] I. ISO, IEC 14882: 2011 Information technology—Programming

languages—c++, International Organization for Standardization, Geneva,

Switzerland 27 (2012) 59.

[4] D. Clarke, J. Östlund, I. Sergey, T. Wrigstad, Ownership Types: A

Survey, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 15–58.

doi:10.1007/978-3-642-36946-9 3.

[5] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, P. H. Kelly, Performance

analysis of the op2 framework on many-core architectures, SIGMETRICS

Perform. Eval. Rev. 38 (4) (2011) 9–15. doi:10.1145/1964218.1964221.

56

https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1145/1964218.1964221

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[6] D. Wheeler, Sloccount, https://dwheeler.com/sloccount/, Wayback Ma-

chine URL: https://web.archive.org/web/20190621211304/https://dwhe

eler.com/sloccount/ (2001–2004).

[7] A. Fog, The microarchitecture of intel, amd and via cpus: An optimiza-

tion guide for assembly programmers and compiler makers, Copenhagen

University College of Engineering (2012) 02–29.

[8] D. Henry, Md5mesh and md5anim files formats, http://tf

c.duke.free.fr/coding/md5-specs-en.html, Wayback Machine:

https://web.archive.org/web/20180816101227/http://tfc.duke.fre

e.fr/coding/md5-specs-en.html (2005).

[9] A. Igarashi, B. C. Pierce, P. Wadler, Featherweight java: a minimal

core calculus for java and gj, ACM Transactions on Programming Lan-

guages and Systems (TOPLAS) 23 (3) (2001) 396–450. doi:10.1145/

503502.503505.

[10] A. Tasos, J. Franco, T. Wrigstad, S. Drossopoulou, S. Eisenbach, Extending

shapes for simd architectures: An approach to native support for struct of

arrays in languages, in: Proceedings of the 13th Workshop on Implementa-

tion, Compilation, Optimization of Object-Oriented Languages, Programs

and Systems, 2018, pp. 23–29.

[11] S. Klabnik, C. Nichols, The Rust Programming Language, No Starch Press,

2018.

[12] A. Potanin, J. Noble, D. Clarke, R. Biddle, Generic ownership, in: ACM

Conference on Object-Oriented Programming Languages, Applications,

Languages, and Systems (OOPSLA), 2004.

[13] C. Lattner, V. Adve, Llvm: A compilation framework for lifelong program

analysis & transformation, in: Proceedings of the international symposium

on Code generation and optimization: feedback-directed and runtime op-

timization, IEEE Computer Society, 2004, p. 75.

57

https://dwheeler.com/sloccount/
https://web.archive.org/web/20190621211304/https://dwheeler.com/sloccount/
https://web.archive.org/web/20190621211304/https://dwheeler.com/sloccount/
http://tfc.duke.free.fr/coding/md5-specs-en.html
http://tfc.duke.free.fr/coding/md5-specs-en.html
https://web.archive.org/web/20180816101227/http://tfc.duke.free.fr/coding/md5-specs-en.html
https://web.archive.org/web/20180816101227/http://tfc.duke.free.fr/coding/md5-specs-en.html
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[14] S. Dieckmann, U. Hölzle, A study of the allocation behavior of the

specjvm98 java benchmarks, in: R. Guerraoui (Ed.), ECOOP’ 99 —

Object-Oriented Programming, Springer Berlin Heidelberg, Berlin, Hei-

delberg, 1999, pp. 92–115.

[15] M. Springer, H. Masuhara, DynaSOAr: A Parallel Memory Allocator for

Object-Oriented Programming on GPUs with Efficient Memory Access,

in: A. F. Donaldson (Ed.), 33rd European Conference on Object-Oriented

Programming (ECOOP 2019), Vol. 134 of Leibniz International Proceed-

ings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-

matik, Dagstuhl, Germany, 2019, pp. 17:1–17:37. doi:10.4230/LIPIcs.ECO

OP.2019.17.

URL http://drops.dagstuhl.de/opus/volltexte/2019/10809

[16] J. Franco, M. Hagelin, T. Wrigstad, S. Drossopoulou, S. Eisenbach, You

can have it all: Abstraction and good cache performance, in: Pro-

ceedings of the 2017 ACM SIGPLAN International Symposium on New

Ideas, New Paradigms, and Reflections on Programming and Software,

Onward! 2017, ACM, New York, NY, USA, 2017, pp. 148–167. doi:

10.1145/3133850.3133861.

[17] J. Torrellas, H. Lam, J. L. Hennessy, False sharing and spatial locality

in multiprocessor caches, IEEE Transactions on Computers 43 (6) (1994)

651–663.

[18] Hotspot glossary of terms, https://web.archive.org/web

/20190927112007/http://openjdk.java.net/groups/hotspot/docs/H

otSpotGlossary.html (2006).

[19] B. Gregg, perf, http://www.brendangregg.com/perf.html, Wayback Ma-

chine URL: https://web.archive.org/web/20200207065027/http://www.b

rendangregg.com/perf.html (2009–2020).

[20] R. Strzodka, Abstraction for aos and soa layout in c++, in: GPU comput-

ing gems Jade edition, Elsevier, 2011, pp. 429–441.

58

http://drops.dagstuhl.de/opus/volltexte/2019/10809
http://drops.dagstuhl.de/opus/volltexte/2019/10809
https://doi.org/10.4230/LIPIcs.ECOOP.2019.17
https://doi.org/10.4230/LIPIcs.ECOOP.2019.17
http://drops.dagstuhl.de/opus/volltexte/2019/10809
https://doi.org/10.1145/3133850.3133861
https://doi.org/10.1145/3133850.3133861
https://web.archive.org/web/20190927112007/http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html
https://web.archive.org/web/20190927112007/http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html
https://web.archive.org/web/20190927112007/http://openjdk.java.net/groups/hotspot/docs/HotSpotGlossary.html
http://www.brendangregg.com/perf.html
https://web.archive.org/web/20200207065027/http://www.brendangregg.com/perf.html
https://web.archive.org/web/20200207065027/http://www.brendangregg.com/perf.html

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[21] H. Homann, F. Laenen, Soax: A generic c++ structure of arrays for han-

dling particles in hpc codes, Computer Physics Communications 224 (2018)

325–332.

[22] M. Springer, H. Masuhara, Ikra-cpp: A c++/cuda dsl for object-oriented

programming with structure-of-arrays layout, in: Proceedings of the 2018

4th Workshop on Programming Models for SIMD/Vector Processing, ACM,

2018, p. 6.

[23] S. Kornblith, Julia structs of arrays, https://github.com/simonster/str

uctsofarrays.jl/blob/v0.0.3/src/StructsOfArrays.jl (2015).

[24] T. Mattis, J. Henning, P. Rein, R. Hirschfeld, M. Appeltauer, Columnar ob-

jects: Improving the performance of analytical applications, in: 2015 ACM

International Symposium on New Ideas, New Paradigms, and Reflections

on Programming and Software (Onward!), ACM, 2015, pp. 197–210.

[25] J. Keasler, T. Jones, D. Quinlan, Talc: A simple c language extension for

improved performance and code maintainability, 2008.

[26] K. Sharma, I. Karlin, J. Keasler, J. McGraw, V. Sarkar, Data layout

optimization for portable performance, Vol. 9233, 2015, pp. 250–262.

doi:10.1007/978-3-662-48096-0 20.

[27] V. Ureche, A. Biboudis, Y. Smaragdakis, M. Odersky, Automating ad hoc

data representation transformations, in: Proceedings of the 2015 ACM SIG-

PLAN International Conference on Object-Oriented Programming, Sys-

tems, Languages, and Applications, OOPSLA 2015, ACM, New York, NY,

USA, 2015, pp. 801–820. doi:10.1145/2814270.2814271.

[28] B. Calder, C. Krintz, S. John, T. Austin, Cache-conscious data placement,

in: ASPLOS VIII, ACM, 1998, pp. 139–149.

[29] C. Lattner, V. Adve, Data structure analysis: A fast and scalable context-

sensitive heap analysis, Tech. rep., U. of Illinois (2003).

59

https://github.com/simonster/structsofarrays.jl/blob/v0.0.3/src/StructsOfArrays.jl
https://github.com/simonster/structsofarrays.jl/blob/v0.0.3/src/StructsOfArrays.jl
https://doi.org/10.1007/978-3-662-48096-0_20
https://doi.org/10.1145/2814270.2814271

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[30] C. Lattner, V. Adve, Automatic pool allocation: Improving performance

by controlling data structure layout in the heap, in: PLDI ’05, ACM, 2005,

pp. 129–142.

[31] X. Huang, S. M. Blackburn, K. S. Mckinley, J. Eliot, B. Moss, Z. Wang,

P. Cheng, The Garbage Collection Advantage: Improving Program Local-

ity, in: OOPSLA, 2004.

[32] P. R. Panda, P. R. Panda, L. Semeria, G. de Micheli, Cache-efficient mem-

ory layout of aggregate data structures, in: Proceedings of the 14th In-

ternational Symposium on Systems Synthesis, ISSS ’01, ACM, New York,

NY, USA, 2001, pp. 101–106. doi:10.1145/500001.500026.

URL http://doi.acm.org/10.1145/500001.500026

[33] L. Petersen, R. Harper, K. Crary, F. Pfenning, A type theory for memory

allocation and data layout, in: Proceedings of the 30th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL

’03, ACM, New York, NY, USA, 2003, pp. 172–184. doi:10.1145/

604131.604147.

[34] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, J. Cheney, Region-

based memory management in cyclone, in: ACM Sigplan Notices, Vol. 37,

ACM, 2002, pp. 282–293.

[35] S. Clebsch, S. Drossopoulou, S. Blessing, A. McNeil, Deny capabilities for

safe, fast actors, in: Proceedings of the 5th International Workshop on

Programming Based on Actors, Agents, and Decentralized Control, ACM,

2015, pp. 1–12.

[36] M. Pharr, W. R. Mark, ispc: A spmd compiler for high-performance cpu

programming, in: Innovative Parallel Computing (InPar), 2012, IEEE,

2012, pp. 1–13.

[37] R. Leißa, I. Haffner, S. Hack, Sierra: a simd extension for c++, in: Pro-

60

http://doi.acm.org/10.1145/500001.500026
http://doi.acm.org/10.1145/500001.500026
https://doi.org/10.1145/500001.500026
http://doi.acm.org/10.1145/500001.500026
https://doi.org/10.1145/604131.604147
https://doi.org/10.1145/604131.604147

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

ceedings of the 2014 Workshop on Programming models for SIMD/Vector

processing, ACM, 2014, pp. 17–24.

[38] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, D. Grove, X10 language

specification, Specification, IBM, janvier (2012).

[39] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komu-

ravelli, J. L. Overbey, P. Simmons, H. Sung, M. Vakilian, A type and effect

system for deterministic parallel java, in: OOPSLA, 2009, pp. 97–116.

[40] T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, J. Vitek, Loci: Simple thread-

locality for Java, in: ECOOP 2009, LNCS, Springer, 2009, pp. 445–469.

doi:10.1007/978-3-642-03013-0 21.

[41] N. Jaber, M. Kulkarni, Data structure-aware heap partitioning, in: Pro-

ceedings of the 26th International Conference on Compiler Construction,

CC 2017, ACM, New York, NY, USA, 2017, pp. 109–119. doi:10.1145/

3033019.3033030.

[42] J. Franco, S. Drossopoulou, Behavioural types for non-uniform memory

accesses, PLACES 2015 (2015) 39.

[43] J. Franco, T. Wrigstad, S. Drossopoulou, Towards Enabling Low-Level

Memory Optimisations at the High-Level with Ownership-like Annotations,

IWACO, International Workshop on Aliasing, Capabilities and Ownership

(2016).

[44] J. Franco, A. Tasos, S. Drossopoulou, T. Wrigstad, S. Eisenbach, Safely

Abstracting Memory Layouts, FTfJP, Formal Techniques for Java-like Pro-

grams (2018).

[45] M. Springer, Y. Sun, H. Masuhara, Inner array inlining for structure of

arrays layout, in: Proceedings of the 5th ACM SIGPLAN International

Workshop on Libraries, Languages, and Compilers for Array Programming,

ARRAY 2018, ACM, New York, NY, USA, 2018, pp. 50–58. doi:10.1145/

3219753.3219760.

61

https://doi.org/10.1007/978-3-642-03013-0_21
https://doi.org/10.1145/3033019.3033030
https://doi.org/10.1145/3033019.3033030
https://doi.org/10.1145/3219753.3219760
https://doi.org/10.1145/3219753.3219760

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[46] K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic,

Journal de physique I 2 (12) (1992) 2221–2229.

62

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Appendix

Appendix A. Lookup functions

We define the following lookup functions. For simplicity, we implicitly as-

sume that layout and class identifiers are unique within the same program, and

field and method identifiers are unique within the same class.

C(C) , (pds fds mds) iff (class C〈pds〉{fds mds}) ∈ prog [0]

Ps(C) , p1 .. pn iff C(C)[0] = (p1 : , ..., pn :)

Pb(C) , pbd1 .. pbdn iff C(C)[0] = (: pbd1 , ..., : pbdn)

B(C, p) , pbd iff (p : pbd) ∈ C(C)[0]

M(C,m) , (t , x : t ′, localPools; localVars, stmts) iff

(def m(x : t ′) : t {localPools; localVars; stmts}) ∈ C(C)[2]

F(C, f) , t iff (f : t) ∈ C(C)[1]

Fs(C) , f1 .. fn iff C(C)[1] = (f1 : .. fn :)

L(L) , (C, fs1 .. fsn) iff

(layout L : C = rec{fs1}; .. rec{fsn}) ∈ prog [1]

O(L, f) , (i, j) iff L(L) = (C, fss) ∧ fss[i, j] = f

O(C, f) , i iff Fs(C)[i] = f

Cl(L) , L(L)[0]

Rs(L) , L(L)[1]

Appendix B. SHAPESh

Given Definition 8 and Definition 9, we define well-formed (formal) SHAPESh

programs as follows:

Definition 7 (Well-formed program). A SHAPESh program is well-formed
if all its layout and all its class declarations are well-formed.

` prog iff (∀cd ∈ prog[0]. prog ` cd) ∧ (∀ld ∈ prog[1]. prog ` ld)

Definition 8 (Well-formed class declaration). A class C is well-formed if:

63

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

– Their first pool parameter has to be annotated with a bound that is of the
same class and its parameters are the same as in the class declaration (and
in the same order). That is, if the class pool parameters of the class C are
Ps(C) = p1 .. pn, then B(C, p1) = [C〈p1, . . . , pn〉].

– The parameter list of all pool types must only contain parameters from the
class’ pool parameter list (i.e. Ps(C)). This means that the none keyword
is disallowed as a pool parameter name.

– The fields must have class types that are well-formed against the typing
context Γ where the class’ formal pool parameters have their corresponding
bounds as types. Moreover, Γ is well-formed.

– All the methods have a parameter and return type that is well-formed against
the context Γ. Moreover, for each method, the corresponding method body
is typeable against a context Γ′ which is an augmentation of Γ and contains
the types of this variable, local pool, and object variables of the method.
Moreover Γ′ is well-formed. Finally, each method must use a variable for its
return method. This is necessary so as to ensure that the return value is not
considered eligible for garbage collection.

prog ` class C〈p1 : [C1〈ps1〉] .. pn : [Cn〈psn〉]〉 { fds mds } iff

` Γ ∧ C1 = C ∧ ps1 = p1 .. pn

∧ ∀i. psi[0] = pi

∧ ∀i, j. psi[j] 6= none

∧ ∀f : T ∈ fds. Γ ` T
∧ ∀def m(x : t) : t ′ {localPools; localVars ; stmts} ∈ mds.[

Γ ` t ∧ Γ ` t ′

∧ ` Γ′ ∧ Γ′ ` stmts : t ′] ∧ Γ ` stmts

where Γ′ = Γ, this :C〈p1 .. pn〉, x : t ,

p′1: L1〈ps′1〉, .. , p′k: Lk〈ps′k〉,
x1: C

′
1〈ps′′1〉, .. , xm: C ′m〈ps′′m〉

localPools = pools p′1 : L1〈ps′1〉 .. p′k : Lk〈ps′k〉
localVars = locals x1: C

′
1〈ps′′1〉 .. xm: C ′m〈ps′′m〉

where Γ = p1: [C1〈ps1〉] .. pn: [Cn〈psn〉]

We define Γ ` stmts as follows:
• Γ ` e; stmts iff Γ ` e ∧ Γ ` stmts
• Γ ` e iff (e = new t)→ Γ ` t

We now define well-formedness of layout declarations:

Definition 9 (Well-formed layout declaration). A layout declaration for
instances of a class C is well-formed iff the disjoint union of its clusters’ fields

64

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

is the set of the fields declared in C.

prog ` layout L : [C] = rec {fs1} .. rec {fsn} iff

{Fs(C)} =
⊎

i∈1 .. n

{fsi}

This definition excludes repeated or missing fields. For example, given the class

Student from Figure 8, the following two layout declarations are ill-formed:

// repeated field
layout BadStudentL1: Student = rec{name, age} + rec{age, supervisor};
// missing field
layout BadStudentL2: Student = rec{name} + rec{age};

Appendix C. SHAPES` definitions and operational semantics

Appendix C.1. Method lookup

SHAPES` method lookup is defined as follows:

Fun(fn) ≡ ((this, ps, x), vars`, stmts`) iff ∃fun` ∈ prog`.fun` = funfn(this, ps, x){vars`; stmts`}

Appendix C.2. Operational semantics

For simplicity and similar to § 4, we also use the convention that accessing

and modifying a variable through a stack of frames σ addresses only the variable

on the top-most stack frame φ. That is, if σ = φ · σ′, then σ(x) and σ[x 7→ γ]

are a shorthand for φ(x) and φ[x 7→ γ] · σ′, respectively.

Appendix D. Paths

In order to express the definition of reachable objects, we make use of paths.

We define paths as follows:

path ∈ Path ::= x | path.f

Given a specialised typing context ∆, we would like to require that our paths

are well-formed with respect to ∆. That is, ∃t. ∆ ` path : t for a given path

65

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Assignment]

χ, σ, rhs` χ′, σ′, γ

χ, σ, x = rhs` χ′, σ′[x 7→ γ], γ

[Var]

χ, σ, x χ, σ, σ(x)

[Val]

χ, σ,null χ, σ,null

[Sequence]

χ, σ, rhs` χ′′, σ′′,
χ′′, σ′′, stmts` χ′, σ′, γ

χ, σ, rhs`; stmts` χ′, σ′, γ

[Garbage Collection]

χ, σ 'σ χ′′, σ′′
χ′′, σ′′, stmts` χ′, σ′, γ

χ, σ, stmts` χ′, σ′, γ

[Alloc]

α = max{dom(χ)}+ 1
χ, σ,alloc(N) χ[α .. α+ (N − 1) 7→ null], σ, α

[Object Read]

α = σ(x) + i
χ, σ, read(x, i) χ, σ, χ(α)

[Object Write]

α = σ(x) + i γ = σ(x′)
χ, σ,write(x, x′, i) χ[α 7→ γ], σ, γ

Figure C.29: Operational semantics of SHAPES` of pool-agnostic operations.

[Fun]

Fun(fn) = (this · ps · x , vars`, stmts`)
vars` = locals p1 = plcreate(Ns1) .. pn = plcreate(Nsn) x1 .. xm

χi−1, ε,plcreate(Nsi) χi, ε, αi for i = 1 .. n
σ′ = [this 7→ σ(x), x 7→ σ(x), ps 7→ σ(ps)][p1 .. pn 7→ α1 .. αn, x1 .. xm 7→ null] · σ

χn, σ
′, stmts` χ′, , γ

χ0, σ, fn(x · ps · x) χ′, σ, γ

Figure C.30: Operational semantics of SHAPES` functions.

path. Because for simplicity reasons the syntax of SHAPESh as defined in § 4

does not permit complex paths, i.e., x.f.g, we define the following typing rules

for paths:

∆ ` x : ∆(x)

∆ ` path : C〈ps〉

∆ ` path.f : F(C, f)[Ps(C)/ps]

Appendix D.1. High-Level Paths

To evaluate paths, we define the following variant of the operational seman-

tics, wherein a specialised context, a high-level configuration and a path reduce

66

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[Pool Read]

σ(p) = α σ(x) = k
α′ = χ(α+ i+ 2) +N ∗ k + j

χ, σ,plread(p, x, i,N, j) χ, σ, χ(α′)

[Pool Write]

σ(p) = α σ(x) = k σ(x′) = γ
α′ = χ(α+ i+ 2) +N ∗ k + j

χ, σ,plwrite(p, x, x′, i, N, j) χ[α′ 7→ γ], σ, γ

[Pool Alloc]

σ(p) = α χ(α) = j j < χ(α+ 1) n = |Ns|
αi = χ(α+ i+ 2) +Ns[i] ∗ j for i = 0 .. n−1

α′i = αi +Ns[i]− 1 for i = 0 .. n−1
χ, σ,plalloc(p,Ns) χ[α+1 7→ j+1][α0 .. α

′
0 7→ null, .. , αn−1 .. α

′
n−1 7→ null], σ, j+1

[Pool Create]

α = max{dom(χ)}+ 1 n = |Ns| M ≥ 0
αi = (α+2)+i for i = 0 .. n−1

α′0 = αn−1 + 1
α′i = α′i−1 +Ns[i] ∗M for i = 1 .. n−1

α′e = α′n−1 +Ns[n− 1] ∗M − 1
χ′ = χ[α 7→ 0, α+ 1 7→M][α0 .. αn−1 7→ α′0 .. α

′
n−1][α′0, .. , α

′
e 7→ null]

χ, σ,plcreate(Ns) χ′, σ, α

Figure C.31: Pool-oriented operational semantics of SHAPES`.

to an object address. This variant is of the form ∆,X ,Φ, path β.

Variable Path (HL)

∆,X ,Φ, x Φ(x)

Null Path (HL)

∆,X ,Φ, path null

∆,X ,Φ, path.f null

Object Path (HL)

∆ ` path : C〈 〉 ∆,X ,Φ, path ω X (ω) = (C, , ρ)

∆,X ,Φ, path.f ρ(f)

Appendix D.2. Low-Level Paths

To evaluate paths in SHAPES`, we define the following variant of the oper-

ational semantics, wherein a specialised context, a low-level configuration and

a path reduce to either an address (in the case of a standalone object), or an

index (in the case of a pool-allocated object) corresponding to an object in the

pool (and we can determine the address of the pool in question by inferring the

type of path under ∆). This variant is, similarly, of the form ∆, χ, φ, path γ.

67

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Variable Path (LL)

∆, χ, φ, x σ(x)

Null Path (LL)

∆, χ, φ, path null

∆, χ, φ, path.f null

Heap Object Path (LL)

∆ ` path : C〈np · 〉 ∆ ` np : None

∆, χ, φ, path α O(C, f) = i

∆, χ, φ, path.f χ(α+ i)

Pool Object Path (LL)

∆ ` path : C〈np · 〉 ∆ ` np : L〈 〉

∆, χ, φ, path k O(L, f) = (i, j) N = |Cl(L)[i]|

∆, χ, φ, path.f χ(χ(φ(np) + i+ 2) +N ∗ k + j)

Apart from the Null Path, the rest of the rules are standard. The rationale

for Null Path is to handle the case of a possible null dereference whilst traversing

a path.

To define equivalence between a high-level and a low-level configuration, we

will make use of an injection I : Address → Address` ∪ (Address` × Index `)

For a given sequence of typing contexts ∆s, equivalence between a high level

and a low level configuration via an injection I is represented using the notation

X ,Σ '∆s,I χ, σ and is defined as follows:

Appendix E. Correctness of Compilation

Appendix E.1. Configuration equivalence

Definition 10 (Equivalence between low-level configurations). We define
χ, σ '∆s,J χ′, σ′ under an injection J : Address` ∪ (Address` × Index `) as fol-
lows:
χ, σ '∆s,J χ

′, σ′ iff
[∀i. ∀p ∈ dom(∆s[i]).[σ[i](p) = σ′[i](p) = null ∨ J (σ[i](p)) = σ′[i](p)] ∧
[∀i, path.[∆s[i] ` path : C〈p · 〉 ∧

∆s[i], χ, σ[i], path γ ∧
∆s[i], χ′, σ′[i], path γ′ → σ[0](p), γ 'J σ′[0](p), γ′]

]

We define α, γ 'J α′, γ′ as follows:

68

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

α, γ 'J α′, γ′ iff
[γ = γ′ = null] ∨ [α = α′ = null ∧ J (γ) = γ′] ∨
[α 6= null ∧ α′ 6= null ∧ I(α) = α′ ∧ I(α, γ) = (α′, γ′)]

Appendix E.2. Correctness of Compilation Theorems

We wiil now prove that translation is meaning preserving.

Definition 11. Equivalence between high-level and low-level addresses under
an injection I : Address 7→ Address` ∪ (Address` × Index `) is defined as:
β 'I,ps,σ γ iff

[β = γ = null] ∨ [σ(ps[0]) = null ∧ I(β) = γ] ∨ [σ(ps[0]) = α 6= null ∧ I(β) = (α, γ)]

Equivalence between a high-level and a low-level configuration is defined as:
X ,Σ '∆s,I χ, σ iff

[∀p, i. (Σ[i](p) = none ∧ σ[i](p) = null) ∨ I(Σ[i](p)) = σ[i](p)] ∧
[∀np, i, path, C, β, γ. [∆s[i] ` path : C〈np · 〉 ∧

∆s[i],X ,Σ[i], path β ∧ ∆s[i], χ, σ[i], path γ → β 'I,np,σ γ]

Appendix E.2.1. Garbage collection

We use the notation χ, σ '∆s,J χ
′, σ′ to indicate that two low-level configu-

rations χ, σ and χ′, σ′ are equivalent under the injection J for a given sequence

of specialised contexts. The definition of equivalence under J is presented in

Definition 10 (found in § Appendix E.1).

The definition ensures that if a path path yields two standalone or pool-

allocated object addresses in the two configurations, then a mapping between

them must exist and if both are allocated in a pool, then a mapping between the

corresponding pool addressess must also exist. Furthermore, we require that all

variables in a stack frame corresponding to pools must have a mapping between

them (assuming they point to pools).

We now define the following theorem, which states that evaluating the same

statement sequence under two equivalent low-level configurations reaches two

low-level configurations that are also equivalent. This theorem allows us to rea-

son that performing a GC on SHAPES` will preserve the execution semantics.

It shows that as long as two configurations are equivalent with respect to reach-

able objects, then the resulting configurations and values yielded will also be

equivalent.

69

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Theorem 7 (Equivalent low-level configurations will transition into new equivalent low-level configurations).

Let χ1, σ1 and χ2, σ2 be two low level configurations, let ∆s be their correspond-

ing typing contexts and let J be an injection such that χ1, σ1 '∆s,J χ2, σ2.

Then, for a sequence of statements stmts such that ∆s[0] ` stmts : C〈p1 .. pk〉,

if χ′1, σ
′
1, γ1 and χ′2, σ

′
2, γ2 exist such that:

χ1, σ1, [[stmts]]∆s[0] χ′1, σ
′
1, γ1 and χ2, σ2, [[stmts]]∆s[0] χ′2, σ

′
2, γ2

And ∆′ = this : C〈np1 .. npk〉, np1 : ∆s[0](np1), .. , npn : ∆s[0](npn), then there

exists an injection J ′ such that χ′1, φ
′
1 · σ′1 '∆′·∆s,J ′ χ

′
2, ·σ′2. where

φ′1 = [this 7→ γ1, np1 .. npk 7→ σ′1(np1 .. npk)]

φ′2 = [this 7→ γ2, np1 .. npk 7→ σ′2(np1 .. npk)]

Appendix F. Proof sketches

Proof (Proof of 1). For this proof, we will make use of the utility predicate

pbds1 ' pbds2 that is defined as follows:

pbds1 ' pbds2

pbds2 ' pbds1

pbds1 ' pbds2 pbd1 ' pbd2

pbd1 · pbds1 ' pbd2 · pbds2 ε ' ε

[C〈ps〉] ' [C〈ps〉] None ' None None ' [C〈ps〉]

Cl(L) = C

L〈ps〉 ' [C〈ps〉]

Thus we can redefine ∀i. Γ ` ps[i] : pbds[i] as Γ(ps) ' pbds. Let:

qs = Ps(C) qbs = Pb(C)

rs = Ps(C ′) rbs = Pb(C ′)

From Rule ObjTypeWF and from the above definition of ', in order to show

that Γ ` C ′〈ps′[qs/ps]〉, we need to show that:

Γ(ps′[qs/ps]) ' rbs[rs/ps′[qs/ps]] (F.1)

70

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Because Γ ` C〈ps〉, we have that

Γ(ps) ' qbs[qs/ps] (F.2)

Because our program prog is well-formed, if ΓC is the environment used to

compile class C, then:

ΓC(ps′) ' rbs[rs/ps′] (F.3)

We now define the following:

Qs = qs · none QBs = qbs ·None

Rs = rs · none RBs = rbs ·None

Ps = ps · none

Ps′ = ps′ · none

For convenience, let Γ(none) = None. Because none is the last pool pa-

rameter in Ps, Ps′, Qs, Rs (hence the substitution e.g., [Qs/Ps] will replace

none with none), it will also hold from (F.2), (F.3) that:

Γ(Ps) ' QBs[Qs/Ps] (F.4)

ΓC(Ps′) ' RBs[Rs/Ps′] (F.5)

Furthermore, if we can show that:

Γ(Ps′[Qs/Ps]) ' RBs[Rs/Ps′[Qs/Ps]] (F.6)

Then this suffices to show that (F.1) holds.

Let Im f be the image of function f .

Well-formedness of prog implies that each of the parameters in ps′ will

be either none or originate from rs, therefore there exists a function σ :

{0, . . . , |Ps′| − 1} 7→ {0, . . . , |Qs| − 1} such that ∀i. Ps′[i] = Qs[σ(i)].

71

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Because prog is well-formed, each pool parameter from Ps′ will also agree

to their pool bound defined in C, hence:

Γ(Ps′) ' QBs[Imσ]

Thus:

RBs[Rs/Ps′][dom(σ)] ' QBs[Imσ] (F.7)

Therefore:

Γ(Ps′[Qs/Ps]) = Γ(Ps[Imσ]) From the definition of σ

' QBs[Qs/Ps][Imσ] From (F.4)

' RBs[Rs/Ps′][dom(σ)][Qs/Ps] From (F.7)

= RBs[Rs/Ps′][Qs/Ps][dom(σ)] By structure

= RBs[Rs/Ps′][Qs/Ps] Since |dom(σ)| = |Ps′| = |Rs|

= RBs[Rs/Ps′[Qs/Ps]] By structure

Hence (F.6) holds.

Proof (Proof of 2). We prove this theorem by structural induction over the

derivation of e:

• Null (null): Trivial.

• Variable (x), This (this), New (new t): From the definition of well-formed

program (§ Appendix B).

• Field Read (x.f): Let Γ ` x : C〈ps〉. Then we apply Lemma 2 given that

` Γ, Γ ` C〈ps〉, and ΓC ` F(C, f), where ΓC is the typing environment

class C was typechecked against.

• Field Write (x.f = x): The type of the variable x is well-formed from the

definition of well-formed program (§ Appendix B).

• Method Call (x.m(x′′)): Shown in a manner similar to that of Field Read,

except with respect to the return type of method m in class C.

72

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Assignment (x = e): By structural induction over the derivation of e.

Proof (Proof of Theorem 4). We prove the theorem by cases:

• Rule Value: Configuration is not mutated and null weakly agrees with

any object type.

• Rule Variable: Configuration is not mutated and it holds that X � Σ(x) : C〈Σ(ps)〉

from the definition of well-formed configuration.

• Rule Assignment: By structural induction over the derivation of e, we

obtain a new well-formed configuration X ′,Σ′ and a value β such that

X ′ � β : C〈Σ′(ps)〉. Variable x corresponds to an object and from the def-

inition of well-formed configuration it holds that X ′ � Σ′(x) : C〈Σ′(ps)〉,

therefore assigning β to x will not break well-formedness of the configu-

ration or break the weak agreement requirement for β.

• Rule New Object: We augment the heap X with a new object ω; we only

need to show that X ′ � ω / C〈Σ(ps))〉 in the augmented heap X ′. Since

we set the object’s type to C, its pool parameters to Σ(ps)) and ini-

tialise its fields fs = Fs(C) to null, we only need to show that X �

Σ(ps[0]) : [C〈Σ(ps)〉].

Because Γs[0] ` C〈ps〉, it holds from ObjTypeWF that Γs[0] ` ps[0] : : [C〈ps〉],

hence from the definition of well-formed configuration, it will hold that

X � Σ(ps[0]) : [C〈Σ(ps)〉], regardless of whether ps[0] is none, corresponds

to a pool with layout L such that Cl(L) = C or a formal pool parameter

from Ps(C). And because X ′ is an augmentation of X , it will also hold

that X ′ � Σ(ps[0]) : [C〈Σ(ps)〉].

• Rule Object Read: Configuration is not mutated, hence well-formedness of

the configuration is preserved.

Suppose that Γ ` x : C ′〈ps′〉, hence Γ ` x.f : F(C ′, f)[Ps(C ′)/ps′] and

suppose that C〈ps〉 = F(C ′, f)[Ps(C ′)/ps′]. If X (ω) = (C, πs, ρ) and

ρ(f) = β, then we want to show that X ′ � β : C〈Σ(ps)〉.

73

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

From the definition of well-formed configuration, it holds that X � Σ(x) /

C ′〈Σ(ps′)〉, hence X � β : F(C ′, f)[Ps(C ′)/Σ(ps′)].

Because C〈ps〉 = F(C ′, f)[Ps(C ′)/ps′], each pool parameter ps[i] is either

none or it comes from ps′ (i.e., there exists j such that ps[i] = ps′[j]).

This is because each pool parameter of the type F(C ′, f) can be none or

come from Ps(C ′) and the pool parameters Ps(C ′) are substituted by ps′.

Therefore C〈Σ(ps)〉 = F(C ′, f)[Ps(C ′)/Σ(ps′)], hence X ′ � β : C〈Σ(ps)〉.

• Rule Object Write: Similar to Rule Object Read, it can be shown that if

Γ ` x.f : C〈ps〉, X (ω) = (C, πs, ρ), then X � ρ(f) : C〈Σ(ps)〉. From the

definition of well-formed configuration, it holds that X � Σ(x′) : C〈Σ(ps)〉.

Because ρ(f) and Σ(x′) have the same runtime type C〈Σ(ps)〉, the assign-

ment will maintain the well-formedness of the new configuration X ′,Σ and

it will hold that X ′ � Σ(x′) : C〈Σ(ps)〉.

• Rule Statement Sequence: By structural induction over the derivation of

stmts and, subsequently, the derivation of e.

• Rule Method Call: When invoking a method, we construct a new stack Σ′

and augment the heap X with new pools, thus resulting in the heap X ′.

We will show that Γ′ ·Γs � X ′,Σ′ (where Γ′ is the context of the function

being called); because we push a new stack frame and augment the heap,

we only need to show that all object and pool variables in the new stack

frame in Σ′ weakly agree to their “appropriate” runtime types and that

the new pools in X ′ strongly agree to their “appropriate” runtime types.

Let Φ and Φ′ be the top stack frame of Σ and Σ′, respectively, and that

Γ′ corresponds to the environment of Φ. Then, with respect to the local

variables of Φ′:

– For the this parameter, it holds that X ′ � Φ′(this) : C〈Φ′(Ps(C))〉,

given that it holds that Γ′ ` this : C〈Ps(C)〉. Suppose that the

variable x corresponding to this in Φ′ has the type C〈ps〉 under Γ.

Then, since X ′ augments X , it holds that X ′ � Φ(x) : C〈Φ(ps)〉.

74

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

From the operational semantics of Method Call, we have that Φ(x) =

Φ′(this) and Φ(ps) = Φ′(Ps(C)), hence we conclude that X ′ �

Φ′(this) : C〈Φ′(Ps(C))〉.

– For the method parameter x′′, let x, x′ be the arguments correspond-

ing to this, x′′, respectively, in the method call x.m(x′). Assume

that Γ ` x : C〈ps〉, Γ′ ` this : C〈Ps(C)〉, and Γ′ ` x′′ : C ′〈ps′〉.

Then, it holds that Γ ` x′ : C ′〈ps′〉[Ps(C)/ps].

Since our program is well-formed, each pool parameter ps′[i] can

be either none or originate from Ps(C) (i.e., there exists j such

that ps′[i] = Ps(C)[j]), each of the pool parameters of the type of

x′′ is either none or originates from ps, therefore it holds that X ′ �

Φ(x′) : C ′〈ps′〉[Ps(C)/Φ(ps)]. Thus, it holds that X ′ � Φ′(x′′) : C ′〈ps′〉[Ps(C)/Φ′(Ps(C))],

given that Φ(x′) = Φ′(x′′), Φ(ps) = Φ′(Ps(C)). And given the afore-

mentioned limitation on ps′, we reach the conclusion that it holds

that X ′ � Φ′(x′′) : C ′〈Φ′(ps′)〉.

– Weak agreement on pool bounds is shown in a manner similar to that

of the method argument.

– Object local variables (declared via locals) are initialised to null,

hence weak agreement holds.

– If a Pool local variable p (declared via pools) has type L〈ps〉 under

Γ′, then X ′ � Φ′(p) : C〈Φ′(ps)〉 holds by construction (we set the

pool’s pool parameters to Φ′(ps)).

We now show that � X ′. Let p be a pool variable such that Γ′ `

p : : L〈ps〉 and let C = Cl(L). We need to show that for every i it holds

that X ′ � Φ′(ps[i]) : B(C,Ps(C)[i])[Ps(C)/Φ′(ps)] in order to show that

X ′ � Φ′(p) / L〈Φ′(ps))〉,

If Φ′(ps[i]) = none, then weak agreement easily holds. Otherwise, since

Γ′ ` L〈ps〉, it holds that Γ′ ` ps[i] : : B(C,Ps(C)[i])[Ps(C)/ps]. Because

Φ′(ps[i]) 6= none, ps[i] 6= none, hence from the definition of Γ′, ps[i] can

only adhere to the bound B(C,Ps(C)[i])[Ps(C)/ps].

75

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Since we have shown that all variables in Φ′ weakly agree to their “appro-

priate” runtime type, it holds that X ′ � Φ′(ps[i]) : B(C,Ps(C)[i])[Ps(C)/Φ′(ps)].

Therefore Γ′ · Γs � X ′,Σ′. By structural induction over the statement

sequence stmts, we deduce that Γ′ · Γs � X ′′,Σ′′, where X ′′,Σ′′ is the

configuration resulting from the evaluation stmts.

Let β be the value yielded by evaluating stmts. Then if C ′〈ps′〉 is the re-

turn type of method m, then by structural induction over stmts it will

also hold that X ′′ � β : C ′〈Σ′′(ps′)〉. We want to show that if Γ `

x.m(x′′) : C ′〈ps′′〉, then X ′′ � β : C ′〈Σ′′[1](ps′′)〉.

Indeed, each pool parameter in ps′ can be either none or originate from

Ps(C). As such, each pool parameter in ps′′ can be either none or origi-

nate from ps. Following a similar reasoning to the one used in proving weak

agreement for method arguments and given that Σ′′(Ps(C)) = Σ′′(ps), we

conclude that X ′′ � β : C ′〈Σ′′[1](ps′′)〉.

We will use the following lemma to prove part of Theorem 6:

Lemma 8 (GC and high-level – low-level equivalence). If it holds that

X ,Σ '∆s,I χ, σ and it holds that χ, σ '∆s,J χ′, σ′, then X ,Σ '∆s,I′ χ, σ,

where I ′ = J ◦ I.

Proof. By structural induction over the paths that are well-typed under each

of the specialised contexts ∆s.

Proof (Proof of Theorem 5). We prove this theorem on a case-by-case ba-

sis:

• Rule Value: High-level configuration need not be altered, hence I ′ = I.

• Rule Variable: High-level configuration need not be altered, hence I ′ = I.

• Rule Assignment: We obtain a new high-level configuration and injection I ′′

by structural induction over the derivation of e. I ′′ will also map the high-

level value yielded (β) to its low-level counterpart (γ), thus assignment will

not violate equivalence, hence I ′ = I ′′.

76

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

• Rule New Object: Assume that p is the variable of the pool the object is

being allocated into. We distinguish two cases:

– New Standalone Object (i.e., p = none or ∆(p) = None): I ′ extends

I by mapping the address of the new high-level object to the address

of the low-level one.

– New Pooled Object (i.e., ∆(p) = L〈 〉): I ′ extends I by mapping the

address of the new high-level object to the low-level address of p and

the offset of the new low-level object.

• Rule Object Read: We assume no null dereference (which would cause

the low-level to get stuck). High-level configuration need not be altered,

hence I ′ = I. Equivalence between values yielded holds because x.f is a

reachable path from the top stack frame.

• Rule Object Write: We assume no null dereference (which would cause

the low-level to get stuck). Because the addresses of x, x′ are already

equivalent between the high-level and low-level, mutation of the object

pointed to by x will not break equivalence, hence it holds that I ′ = I.

• Rule Statement Sequence: Before the low-level statements are executed, it is

possible that the GC is invoked. In such a case, according to Lemma 8, we

will be able to obtain a new injection I ′ for the new low-level configuration.

Then the theorem holds, by structural induction over the derivation of e

and then by structural induction over the derivation of stmts.

• Rule Method Call: High-level configuration will have n new empty pools

constructed; I ′ will extend I to map them to their low-level counterparts.

Moreover, to obtain the new high-level configuration, we have to create

the new stack frame Φ and populate it with the method’s parameters and

initialise the local variables. The values of these variables are already

equivalent under I, hence I ′ as well. Then, by structural induction over

the body of the method, we obtain a new injection I ′′. I ′′ will also map

the high-level value yielded (β) to its low-level counterpart (γ).

77

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof (Proof of Theorem 6). Theorem 6 is proven in a manner similar to

that of Theorem 5, with the exception that we derive a new low-level configu-

ration instead. Two rules need to be considered in more detail:

• Rule New Object (when constructed inside a pool): Construction of a new

object in the high-level will never get “stuck”, regardless of whether this

object is standalone or pool-allocated. In the case of the low-level, how-

ever, if the capacity of a has been exhausted prior to allocation, execution

will get stuck.

Because pool allocation is an instruction, it is a statement, hence a state-

ment sequence, thus Rule Garbage collection can run before it and reduce

the low-level configuration to one where the pool’s capacity has not been

exhausted. Thus, there exists a low-level execution wherein the execution

will not have become stuck by the time we construct the object, hence

there exists an injection I ′, which we can derive in a manner similar to

the one given in Theorem 5 (Rule New Object).

• Rule Statement Sequence: Although the operational semantics allow the GC

to run infinitely many times before the execution of a statement sequence,

we can select one such configuration where the GC has run at most once

and permits statements such as New Pooled Object to not get stuck due

to the lack of capacity. Then, by Lemma 8, we will obtain an injection

I ′ from the high-level configuration to the configuration obtained by GC.

The proof is then followed by structural induction over the derivation of e

and then by structural induction over the derivation of stmts in a typical

fashion.

• Rule Method call: Translation of the method call x.m(x′′) into SHAPES`

involves invoking a specialisationm′ ofm. Suppose that ∆s[0] ` x : C〈ps〉.

Then, the types pool parameters ps will be specialised (i.e., they will

be L〈 〉 or None). Method m′ is compiled under an environment ∆

such that for all i, if ∆s[0](ps[i]) = L〈 〉 or ∆s[0](ps[i]) = None, then

78

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

∆(Ps(C)[i]) = L〈 〉 or ∆(Ps(C)[i]) = None, respectively. Therefore, if Φ

is the stack frame corresponding to m, then ∆ ·∆s � X ,Φ ·Σ. The proof

continues by structural induction on stmts, in a similar manner to that of

Theorem 5 for Rule Method call.

Proof (Proof of Theorem 7). We prove this theorem on a case-by-case ba-

sis:

• Rules Value, Rule Variable, Object Read: It holds that J ′ = J , since they

do not modify the configuration and the references returned are either

null or they both correspond to reachable objects.

• Rule Assignment: We obtain two new low-level configurations that are

equivalent over an injection J by structural induction over the derivation

of e. J will also map the reference to the object yielded for the first

configuration maps to its counterpart in the second configuration.

• Rule New Object: We distinguish two cases:

– New Standalone Object : We extend J to map the address of the

object in the first configuration to the one in the second configuration.

– New Pooled Object : We extend J to map the address of pool p and

the index of the object in the first configuration to the address of

pool p and the index of the object in the second configuration.

• Rule Object Write: It holds that J ′ = J . This is because J maps the

objects referenced by x, x′ in first configuration to their counterparts in the

second configuration, thus field assignment will not break the isomorphic

property of the configurations.

• Rule Statement Sequence: Garbage collection is performed on two initial

configurations, yielding two new configurations that are each equivalent

to the initial ones. Thus, the two new configurations are transitively

equivalent. The proof is then completed by structural induction over the

sequence of statements.

79

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0.5 1

·106

0
0
.5

1
1
.5

·1
0
8

T
im

e
(s
ec
)

desktop

0.5 1

·106

0
0
.5

1
1
.5

·1
0
8

laptop

ScatteredAoS

PooledAoS

ScatteredMixed

PooledMixed

ScatteredSoA

PooledSoA

0.5 1

·106

0
0
.5

1
1
.5

·1
0
8

Weight count

T
im

e
(s

ec
)

graphic

0.5 1

·106

0
0
.5

1

·1
0
8

Weight count

ray

0.5 1

·106

0
0
.5

1
1
.5

·1
0
8

Weight count

voxel

Figure G.32: Stickmen results

• Rule Method Call: n pools are created in each case; we extend J so

that it maps the newly constructed pools one by one (and according to

construction order). The proof is completed by structural induction over

the method’s body.

Appendix G. Case studies additional content

Appendix G.1. Skeletal animation

Figure G.32 presents the results of executing Skeletal Animation for different

number of “stickmen” duplicates.

Appendix G.2. OP2

airfoil consists of 321 SLoC, out of which 282 correspond to the actual cal-

culations. We implemented airfoil, in SHAPES++ and compare a Mixed, AoS,

and SoA version of our implementation against the original. Our implementa-

tion amounts to 240 SLoC.

Results for airfoil are presented in Figure G.33.

80

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0 50 100 150 200 250 300 350 400 450 500 550

d
e
s
k
t
o
p

la
p
t
o
p

g
r
a
p
h
ic

r
a
y

v
o
x
e
l

Time (sec)

Figure G.33: OP2 Airfoil results for the original OP2 implementation, and the AoS, Mixed,
and SoA ports, respectively. (Bottom to top, lower times are better)

We observe that our handwritten Mixed implementation is marginally slower

(1.03x median-of-medians slowdown), yet it improves readability, usability, and

type safety. Despite the small performance loss, we claim this is a worthwhile

tradeoff. This also supports Claim C2.

Appendix G.3. Traffic

We implement a case study [45] that simulates road traffic according to the

Nagel-Schreckenberg traffic model [46]. For our evaluation, we ported a version

of that benchmark6 into vanilla C++. The simulation consists of iterating over

a collection of cells and a collection of traffic lights.

Roads in this model are split into equally-sized cells; each cell contains up to

one car. Unidirectional edges between cells represent traffic flow; because cells

are equally-sized, edges are weightless. Cells also represent intersections; edges

from and to an intersection cell represent how traffic from and to adjacent cells

flows via this intersection. A street network is therefore represented as a graph

of cells.

Cells have a maximum velocity ; this is intended to represent speed limits.

Moreover, cells adjacent to intersections are controlled by traffic lights; these

dictate whose cell’s traffic can pass through the intersection at any given time.

6Hosted in https://github.com/prg-titech/dynasoar/blob/9dab3900c142aa8ee41966647b
d97ef3d035768c/example/traffic/baseline aos/traffic.cu

81

https://github.com/prg-titech/dynasoar/blob/9dab3900c142aa8ee41966647bd97ef3d035768c/example/traffic/baseline_aos/traffic.cu
https://github.com/prg-titech/dynasoar/blob/9dab3900c142aa8ee41966647bd97ef3d035768c/example/traffic/baseline_aos/traffic.cu

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The original implementation constructs a random street network, places cars

in random cells, then runs the simulation for 1000 iterations; we decided to follow

this approach as well. Each iteration consists of two steps:

– First, determine and store the path each car will take. The length of a path is

capped by the car’s velocity. A car’s velocity is mutable and it only affects the

path length for the current iteration. At an intersection, a random outgoing

cell is chosen. If a currently being calculated path would pass through an

occupied cell, the path will end on the current cell.

– Then, determine destination cells for all cars. The cars are then moved to

their respective cells.

SHAPES++ code is presented in § Appendix H.4. We implement an AoS and

a Mixed variant. The Mixed variant is a best-effort SoA layout for two reasons:

– Each Cell contains a random number generator state (to e.g., simulate random

car speedups/slowdowns, etc.) which is effectively a black box, hence it is not

transformed into SoA.

– Cells and traffic lights contain resizable arrays of a maximum size (to e.g.,

track incoming/outgoing cells, track the path the car (if any) on that cell is

going to take). An implementation of an array with a size capped at compile

time would consist of an array of a fixed size and a size field. Using such an

implementation would mean that we would use an abstraction, hence we do

not place the array size and contents in different clusters.

Results are presented in Figure G.34. We observe a speedup from 1.07x (desktop)

to 1.46x (voxel) when comparing the respective median timings of AoS vs

Mixed; the mean of these comparisons of medians amounts to 1.32x and the

median amounts to 1.40x. We attribute this to less cache pollution (as in OP2).

Thus, being able to easily switch from an AoS to an Mixed layout in SHAPES++

would easily result in an easy speedup. This supports Claims C3 and C1.

82

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0 0.2 0.4 0.6 0.8 1 1.2

·109

d
e
s
k
t
o
p
la

p
t
o
p
g
r
a
p
h
ic

r
a
y

v
o
x
e
l

Time (msec)
Figure G.34: Traffic results, for AoS and Mixed layouts, respectively. (Bottom to top, lower
times are better)

Appendix G.4. Doors

7 Consider a list of characters placed in a 2D space; each character be-

longs to one of two teams (Red team vs. Blue team). Now, consider a list

of automatic doors in the same space; doors also have an allegiance and they

can only open when a character of the same allegiance is in their proximity.

Given a list of characters and doors, we are tasked to find which doors must

be opened. § Appendix H.5 presents the SHAPES++ equivalent code for this

implementation.

An obvious optimisation is to partition doors and characters into allegiance-

specific pools (i.e., one red, one blue character pool, and one red, one blue door

pool), therefore allegiance checks can be eliminated (which is what we have done

in our code).

To that extent, we compare the performace of checking 100 randomly gener-

ated doors and characters. We run our case study with 50%, 70%, and 90% of

characters and doors belonging to the Red team. We assume an AoS layout in

both cases. Figure G.35 presents the relevant results. We observe the following

speedups of medians for each category:

7Inspired from material from the following URL: https://web.archive.org/web
/20190517194356/https://deplinenoise.files.wordpress.com/2015/03/gdc2015 afredriksso
n simd.pdf

83

https://web.archive.org/web/20190517194356/https://deplinenoise.files.wordpress.com/2015/03/gdc2015_afredriksson_simd.pdf
https://web.archive.org/web/20190517194356/https://deplinenoise.files.wordpress.com/2015/03/gdc2015_afredriksson_simd.pdf
https://web.archive.org/web/20190517194356/https://deplinenoise.files.wordpress.com/2015/03/gdc2015_afredriksson_simd.pdf

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

0 0.5 1 1.5 2

·104

d
e
s
k
t
o
p
la

p
t
o
p
g
r
a
p
h
ic

r
a
y

v
o
x
e
l

Time (msec)

50%

0 0.5 1 1.5 2

·104Time (msec)

70%

0 0.5 1 1.5 2

·104Time (msec)

90%

Figure G.35: Doors results for one and many pools, respectively. (Bottom to top, lower times
are better)

– 50%: Min 1.39x (laptop), max 1.99x (ray), mean 1.66x, median 1.59x.

– 70%: Min 1.34x (laptop), max 1.69 (graphic), mean 1.51x, median 1.42x.

– 90%: Min 1.14x (desktop), max 1.50x (graphic), mean 1.26x, median 1.21x.

As such, we observe that the use of multiple pools achieves non-trivial

speedups, even with 90% of characters and doors being red (which results in

fewer eliminated checks). This supports Claim C4.

Appendix H. Equivalent SHAPES++ code for case studies

In this section, we present the SHAPES++ implementations of our case

studies. Notice that we do not provide the main() method or any boilerplate

involving the setting up of our case studies (i.e., parsing an input file, randomly

generating the data, etc.).

Appendix H.1. OP2 Airfoil

This case study involves computations run over sets of Node, Edge, Backedge

and Cell objects (with each object being placed into one class-specific pool). It

involves 5 kernels: copy_oldq() adt_calc(), res_calc(), bres_calc(), and update()

(Lines 101, 112, 161, 227, 286). These are executed over many iterations (inside

method run() in Line 288).

84

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Our C++ rewrite of this case study consists of 3 versions: An AoS, a Mixed,

and an SoA version. Each version uses the AoS, Mixed, or SoA layouts (Lines 33,

50, 71, 94), respectively, for its Node, Edge, Backedge and Cell pools. The code

constructing and populating the pools is omitted.

The above OP2 kernels can be run in parallel by adding OpenMP directives;

we omit them from our SHAPES++ code. As discussed in § 8, OP2 allows the

partitioning of a pool of objects, so that no data races occur when accessing an

object from two different objects by two different threads in a kernel execution.

We implemented this exact partitioning (manually) in our C++ code.

Notice that individual array elements can be part of a layout declaration

(e.g., Line 38). SHAPES++ permits this as long as only expressions known to

be constant at compile time are used for the index.

The original case study amounts to 321 SLoC. If we do not count the code

that parses the input file data, then this amounts to 282 SLoC. Our SHAPES++

implementation amounts to 238 SLoC. These numbers were calculated using

SLOCCount [6]).

The SHAPES++ code is presented below:
1 // Corresponds to files:
2 // - op2reimpl/airfoil.cpp (Mixed)
3 // - op2reimpl/airfoil_aos.cpp (AoS)
4 // - op2reimpl/airfoil_soa.cpp (SoA)
5 // - OP2-Common/apps/c/airfoil
6 // (source code of the original OP2
7 // implementation)
8
9 // Constants used for computation, left as-is

10 const gam: double = 1.4f;
11 const gm1: double = gam - 1.0f;
12 const cfl: double = 0.9f;
13 const eps: double = 0.05f;
14
15 const mach: double = 0.4f;
16 const alpha: double = 3.0f * atan(1.0f) / 45.0f;
17 const p: double = 1.0f;
18 const r: double = 1.0f;
19 const u: double = sqrt(gam * p / r) * mach;
20 const e: double = p / (r * gm1) + 0.5f * u * u;
21
22 const qinf: double[4] = { r, r * u, 0.0f, r * e };
23
24 // Data structures present in all reimplementation
25 // files, each of the three layouts corresponds to
26 // the AoS, Mixed, and SoA layouts used in the
27 // actual C++ code
28 class Edge<pe: [Edge<pe, pc, pn>],
29 pc: [Cell<pc, pn>], pn: [Node<pn>]> {
30 pedge: Node<pn>[2];
31 pecell: Cell<pc, pn>[2];

85

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32 }
33 layout EdgeAos: Edge =
34 rec{pedge, pecell};
35 layout EdgeMixed: Edge =
36 rec{pedge} + rec{pecell};
37 layout EdgeSoa: Edge =
38 rec{pedge[0]}
39 + rec{pedge[1]}
40 + rec{pecell[0]}
41 + rec{pecell[1]};
42
43 class Backedge<pb: [Backedge<pb, pc, pn>],
44 pc: [Cell<pc, pn>],
45 pn: [Node<pn>]> {
46 pbedge: Node<pn>[2];
47 pbecell: Cell<pc, pn>;
48 p_bound: int;
49 }
50 layout BackedgeAos: Backedge =
51 rec{pbedge, pbecell, p_bound};
52 layout BackedgeMixed: Backedge =
53 rec{pbedge}
54 + rec{pbecell}
55 + rec{p_bound};
56 layout BackedgeSoa: Backedge =
57 rec{pbedge[0]}
58 + rec{pbedge[1]}
59 + rec{pbecell}
60 + rec{p_bound};
61
62 class Cell<pc: [Cell<pc, pn>],
63 pn: [Node<pn>]> {
64 pcell: Node<pn>[4];
65
66 p_q: double[4];
67 qold: double[4];
68 adt: double;
69 res: double[4];
70 }
71 layout CellAos: Cell =
72 rec{pcell, p_q, qold, adt, res};
73 layout CellMixed: Cell =
74 rec{pcell}
75 + rec{p_q}
76 + rec{qold}
77 + rec{adt}
78 + rec{res};
79 layout CellSoa: Cell =
80 rec{pcell[0]} + rec{pcell[1]}
81 + rec{pcell[2]} + rec{pcell[3]}
82 + rec{p_q[0]} + rec{p_q[1]}
83 + rec{p_q[2]} + rec{p_q[3]}
84 + rec{qold[0]} + rec{qold[1]}
85 + rec{qold[2]} + rec{qold[3]}
86 + rec{adt}
87 + rec{res[0]} + rec{res[1]}
88 + rec{res[2]} + rec{res[3]};
89
90 class Node<pn: [Node<pn>]> {
91 p_x: double[2];
92 }
93 layout NodeAos: Node =
94 rec{p_x[0], p_x[1]};
95 layout NodeMixed: Node =
96 rec{p_x[0], p_x[1]};
97 layout NodeSoa: Node =
98 rec{p_x[0]} + rec{p_x[1]};
99

86

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

100 <pc: [Cell<pc, pn>], pn: [Node<pn>]>
101 def copy_oldq() {
102 for (var e: pc) {
103 e.qold = e.p_q;
104 }
105 }
106
107 // Corresponds to the adt_calc() method used in all
108 // implementations, we use the overloaded adt_calc()
109 // method in our reimplementation that takes an
110 // std::vector<Color> as an argument.
111 <pc: [Cell<pc, pn>], pn: [Node<pn>]>
112 def adt_calc() {
113 for (var e: pc) {
114 var x10 = e.pcell[0][0], x11 = e.pcell[0][1];
115 var x20 = e.pcell[1][0], x21 = e.pcell[1][1];
116 var x30 = e.pcell[2][0], x31 = e.pcell[2][1];
117 var x40 = e.pcell[3][0], x41 = e.pcell[3][1];
118
119 var q1 = e.p_q[1];
120 var q2 = e.p_q[2];
121 var dx, dy: double;
122
123 var ri = 1.0f / q[0];
124 var u = ri * q1;
125 var v = ri * q2;
126 var c = sqrt(gam * gm1 *
127 (ri * q[3] - 0.5f * (u * u + v * v)));
128
129 dx = x20 - x10;
130 dy = x21 - x11;
131 e.adt = fabs(u * dy - v * dx)
132 + c * sqrt(dx * dx + dy * dy);
133
134 dx = x30 - x20;
135 dy = x31 - x21;
136 e.adt += fabs(u * dy - v * dx)
137 + c * sqrt(dx * dx + dy * dy);
138
139 dx = x40 - x30;
140 dy = x41 - x31;
141 e.adt += fabs(u * dy - v * dx)
142 + c * sqrt(dx * dx + dy * dy);
143
144 dx = x10 - x40;
145 dy = x11 - x41;
146 e.adt += fabs(u * dy - v * dx)
147 + c * sqrt(dx * dx + dy * dy);
148
149 e.adt /= cfl;
150 }
151 }
152
153 // Corresponds to the res_calc() method used in all
154 // implementations, we use the overloaded res_calc()
155 // method in our reimplementation that takes an
156 // std::vector<Color> as an argument.
157 <pe: [Edge<pe, pc, pn>],
158 pc: [Cell<pc, pn>],
159 pn: [Node<pn>]
160 >
161 void res_calc() {
162 for (var e: edges) {
163 var x10 = edges[i].pedge[0].p_x[0];
164 var x11 = edges[i].pedge[0].p_x[1];
165
166 var x20 = edges[i].pedge[1].p_x[0];
167 var x21 = edges[i].pedge[1].p_x[1];

87

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

168
169 var adt1 = e.pecell[0].adt;
170 var adt2 = e.pecell[1].adt;
171
172 var q1_0 = edges[i].pecell[0].p_q[0];
173 var q1_1 = edges[i].pecell[0].p_q[1];
174 var q1_2 = edges[i].pecell[0].p_q[2];
175 var q1_3 = edges[i].pecell[0].p_q[3];
176
177 var q2_0 = edges[i].pecell[1].p_q[0];
178 var q2_1 = edges[i].pecell[1].p_q[1];
179 var q2_2 = edges[i].pecell[1].p_q[2];
180 var q2_3 = edges[i].pecell[1].p_q[3];
181
182 var ri1 = 1.0f / q1_0;
183 var ri2 = 1.0f / q2_0;
184
185 var dx = x10 - x20;
186 var dy = x11 - x21;
187
188 var p1 = gm1 *
189 (q1_3 - 0.5f * ri1 * (q1_1 * q1_1 + q1_2 * q1_2));
190 var vol1 = ri1 * (q1_1 * dy - q1_2 * dx);
191
192 var p2 = gm1 *
193 (q2_3 - 0.5f * ri2 * (q2_1 * q2_1 + q2_2 * q2_2));
194 var vol2 = ri2 * (q2_1 * dy - q2_2 * dx);
195
196 var mu = 0.5f * (adt1 + adt2) * eps;
197
198 var f: double;
199
200 f = 0.5f * (vol1 * q1_0 + vol2 * q2_0)
201 + mu * (q1_0 - q2_0);
202 edges[i].pecell[0].res[0] += f;
203 edges[i].pecell[1].res[0] -= f;
204 f = 0.5f * (vol1 * q1_1 + p1 * dy + vol2 * q2_1 + p2 * dy)
205 + mu * (q1_1 - q2_1);
206 edges[i].pecell[0].res[1] += f;
207 edges[i].pecell[1].res[1] -= f;
208 f = 0.5f * (vol1 * q1_2 - p1 * dx + vol2 * q2_2 - p2 * dx)
209 + mu * (q1_2 - q2_2);
210 edges[i].pecell[0].res[2] += f;
211 edges[i].pecell[1].res[2] -= f;
212 f = 0.5f * (vol1 * (q1_3 + p1) + vol2 * (q2_3 + p2))
213 + mu * (q1_3 - q2_3);
214 edges[i].pecell[0].res[3] += f;
215 edges[i].pecell[1].res[3] -= f;
216 }
217 }
218
219 // Corresponds to the bres_calc() method used in all
220 // implementations, we use the overloaded bres_calc()
221 // method in our reimplementation that takes an
222 // std::vector<Color> as an argument.
223 <pb: [Backedge<pb, pc, pn>],
224 pc: [Cell<pc, pn>],
225 pn: [Node<pn>]
226 >
227 void bres_calc() {
228 for (var e: pb) {
229 var x10 = e.pbedge[0].p_x[0];
230 var x11 = e.pbedge[0].p_x[1];
231
232 var x20 = e.pbedge[1].p_x[0];
233 var x21 = e.pbedge[1].p_x[1];
234
235 var q1_0 = edges[i].pbecell.p_q[0];

88

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

236 var q1_1 = edges[i].pbecell.p_q[1];
237 var q1_2 = edges[i].pbecell.p_q[2];
238 var q1_3 = edges[i].pbecell.p_q[3];
239
240 var dx = x10 - x20;
241 var dy = x11 - x21;
242
243 var ri = 1.0f / q1_0;
244 var p1 = gm1 *
245 (q1_3 - 0.5f * ri * (q1_1 * q1_1 + q1_2 * q1_2));
246
247 if (e.bound == 1) {
248 edges[i].pbecell.res1[1] += +p1 * dy;
249 edges[i].pbecell.res1[2] += -p1 * dx;
250 } else {
251 var vol1 = ri * (q1_1 * dy - q1_2 * dx);
252
253 ri = 1.0f / qinf[0];
254 var p2 = gm1 *
255 (qinf[3] - 0.5f * ri *
256 (qinf[1] * qinf[1] + qinf[2] * qinf[2]));
257 var vol2 = ri * (qinf[1] * dy - qinf[2] * dx);
258
259 var mu = e.pbecell.adt * eps;
260
261 var f;
262 f = 0.5f * (vol1 * q1_0 + vol2 * qinf[0])
263 + mu * (q1_0 - qinf[0]);
264 edges[i].pbecell.res1[0] += f;
265 f = 0.5f * (vol1 * q1_1 + p1 * dy
266 + vol2 * qinf[1] + p2 * dy)
267 + mu * (q1_1 - qinf[1]);
268 edges[i].pbecell.res1[1] += f;
269 f = 0.5f * (vol1 * q1_2 - p1 * dx
270 + vol2 * qinf[2] - p2 * dx)
271 + mu * (q1_2 - qinf[2]);
272 edges[i].pbecell.res1[2] += f;
273 f = 0.5f * (vol1 * (q1_3 + p1)
274 + vol2 * (qinf[3] + p2))
275 + mu * (q1_3 - qinf[3]);
276 edges[i].pbecell.res1[3] += f;
277 }
278 }
279 }
280
281 // Corresponds to the update() method used in all
282 // implementations, we use the overloaded update()
283 // method in our reimplementation that takes an
284 // std::vector<Color> as an argument.
285 <pc: [Cell<pc, pn>], pn: [Node<pn>]>
286 def update(): double {
287 var rms: double = 0;
288 for (var e: pc) {
289 var adti = 1.0f / e.adt;
290
291 for (int n = 0; n < 4; n++) {
292 var del = adti * e.res[n];
293 e.p_q[n] = e.qold[n] - del;
294 e.res[n] = 0.0f;
295 rms += del * del;
296 }
297 }
298 return rms;
299 }
300
301 // Code that performs the simulation, this
302 // is part of main() in our reimplementations
303 <pe: [Edge<pe, pc, pn>],

89

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

304 pb: [Backedge<pb, pc, pn>],
305 pc: [Cell<pc, pn>, pn: Node<pn>]
306 >
307 def run(num_iter: int) {
308 var rms: double = 0;
309
310 for (var iter = 1; iter <= num_iter; iter++) {
311 <pc, pn>copy_oldq(cells);
312 for (var k = 0; k < 2; k++) {
313 <pc, pn>adt_calc();
314 <pe, pc, pn>res_calc();
315 <pb, pc, pn>bres_calc(bedges, nodes, cells);
316
317 rms += <pc, pn>update();
318 }
319
320 rms = sqrt(rms / (double) pc.size());
321 }
322 }

Appendix H.2. OP2 Aero

This case study involves computations run over sets of Node, Backnode, and

Cell objects (with each object being placed into one class-specific pool). It

involves 11 kernels: res_calc() dirichlet_resm(), dirichletPV(), init_cg(), spMV

(), dotPV(), updateUR(), dotR(), updateP(), and update() (Lines 67, 173, 181, 189,

205, 229, 240, 251, 263, 271). These are executed over many iterations (inside

method run() in Line 288).

Our C++ rewrite of this case study consists of 3 versions: An AoS, a Mixed,

and an SoA version. Each version uses the AoS, Mixed, or SoA layouts (Lines 36,

94, 60). respectively, for its Node, Cell, and Backnode pools. The code construct-

ing and populating the pools is omitted.

The above OP2 kernels can be run in parallel by adding OpenMP directives;

we omit them from our SHAPES++ code. As discussed in § 8, OP2 allows the

partitioning of a pool of objects, so that no data races occur when accessing an

object from two different objects by two different threads in a kernel execution.

We implemented this exact partitioning (manually) in our C++ code.

The original case study amounts to 408 SLoC. If we do not count the code

that parses the input file data and the code that sets up the arrays of constants,

(Lines 13–19), then this amounts to 311 SLoC. Our SHAPES++ implementation

amounts to 240 SLoC. Similar to § Appendix H.1, these numbers were also

calculated using SLOCCount [6]).

90

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The SHAPES++ code is presented below:
1 // Corresponds to files:
2 // - op2reimpl/aero.cpp (Mixed)
3 // - op2reimpl/aero_aos.cpp (AoS)
4 // - OP2-Common/apps/c/aero
5 // (source code of the original OP2
6 // implementation)
7
8 // Constants used for computation, some
9 // omitted for brevity

10 const gam: double = 1.4;
11 const gm1: double = gam - 1.0;
12 const gm1i: double = 1.0 / gm1;
13 const wtg1: double[2] = { ... };
14 const xi1: double[2] = { ... };
15 const Ng1: double[4] = { ... };
16 const Ng1_xi: double[4] = { ... };
17 const wtg2: double[4] = { ... };
18 const Ng2: double[16] = { ... };
19 const Ng2_xi: double[32] = { ... };
20 const minf: double = 0.1;
21 const m2: double = minf * minf;
22 const freq: double = 1;
23 const kappa: double = 1;
24 const nmode: double = 0;
25 const mfan: double = 1.0;
26
27 // Data structures present in all reimplementation
28 // files, each of the three layouts corresponds to
29 // the AoS and Mixed layouts used in the actual
30 // C++ code.
31 class Cell<pc: [Cell<pc, pn>],
32 pn: [Node<pn>]> {
33 pcell: Node<pn>[4];
34 p_K: double[16];
35 }
36 layout CellAos: Cell = rec{pcell, p_K};
37 layout CellMixed: Cell =
38 rec{pcell} + rec{p_K};
39
40 class Node<pn: [Node<pn>]> {
41 p_x: double[2];
42 p_phim: double = 0;
43 p_resm: double = 0;
44 p_V: double = 0;
45 p_P: double = 0;
46 p_U: double = 0;
47 }
48 layout NodeAos =
49 rec{p_x, p_phim, p_resm, p_V, p_P, p_U};
50 layout NodeMixed =
51 rec{p_x} + rec{p_phim} + rec{p_resm}
52 + rec{p_V} + rec{p_P} + rec{p_U};
53
54 class Backnode<pb: [Backnode<pb, pn>],
55 pn: [Node<pn>]> {
56 pbedge: Node<pn>;
57 }
58 // No need to define a mixed layout for
59 // Backnode (obviously)
60 layout BacknodeAos: Backnode = rec{pbedge};
61
62 // Corresponds to the res_calc() method used in all
63 // implementations, we use the overloaded res_calc()
64 // method in our reimplementation that takes an
65 // std::vector<Color> as an argument.
66 <pc: [Cell<pc, pn>], pn: [Node<pn>]>
67 def res_calc() {

91

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

68 for (var e: pc) {
69 for (int j = 0; j < 4; j++) {
70 for (int k = 0; k < 4; k++) {
71 e.K[j * 4 + k] = 0;
72 }
73 }
74 for (int i = 0; i < 4; i++) { // for each gauss point
75 var det_x_xi: double = 0;
76 var N_x: double[8];
77
78 var a: double = 0;
79
80 det_x_xi += Ng2_xi[4 * i + 16 + 0] * e.pcell[0].x[1];
81 det_x_xi += Ng2_xi[4 * i + 16 + 1] * e.pcell[1].x[1];
82 det_x_xi += Ng2_xi[4 * i + 16 + 2] * e.pcell[2].x[1];
83 det_x_xi += Ng2_xi[4 * i + 16 + 3] * e.pcell[3].x[1];
84
85 for (var m = 0; m < 4; m++)
86 N_x[m] = det_x_xi * Ng2_xi[4 * i + m];
87
88 a = 0;
89
90 a += Ng2_xi[4 * i + 0] * e.pcell[0].x[0];
91 a += Ng2_xi[4 * i + 1] * e.pcell[1].x[0];
92 a += Ng2_xi[4 * i + 2] * e.pcell[2].x[0];
93 a += Ng2_xi[4 * i + 3] * e.pcell[3].x[0];
94
95 for (var m = 0; m < 4; m++)
96 N_x[4 + m] = a * Ng2_xi[4 * i + 16 + m];
97
98 det_x_xi *= a;
99

100 a = 0;
101
102 a += Ng2_xi[4 * i + 0] * e.pcell[0].x[1];
103 a += Ng2_xi[4 * i + 1] * e.pcell[1].x[1];
104 a += Ng2_xi[4 * i + 2] * e.pcell[2].x[1];
105 a += Ng2_xi[4 * i + 3] * e.pcell[3].x[1];
106
107 for (var m = 0; m < 4; m++)
108 N_x[m] -= a * Ng2_xi[4 * i + 16 + m];
109
110 var b = 0;
111
112 b += Ng2_xi[4 * i + 16 + 0] * e.pcell[0].x[0];
113 b += Ng2_xi[4 * i + 16 + 1] * e.pcell[1].x[0];
114 b += Ng2_xi[4 * i + 16 + 2] * e.pcell[2].x[0];
115 b += Ng2_xi[4 * i + 16 + 3] * e.pcell[3].x[0];
116
117 for (var m = 0; m < 4; m++)
118 N_x[4 + m] -= b * Ng2_xi[4 * i + m];
119
120 det_x_xi -= a * b;
121
122 for (var j = 0; j < 8; j++)
123 N_x[j] /= det_x_xi;
124
125 var wt1 = wtg2[i] * det_x_xi;
126
127 var u: double[2] = {0.0, 0.0};
128
129 u[0] += N_x[0] * e.pcell[0].p_phim[0];
130 u[1] += N_x[4 + 0] * e.pcell[0].p_phim[0];
131
132 u[0] += N_x[1] * e.pcell[1].p_phim[0];
133 u[1] += N_x[4 + 1] * e.pcell[1].p_phim[0];
134
135 u[0] += N_x[2] * e.pcell[2].p_phim[0];

92

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

136 u[1] += N_x[4 + 2] * e.pcell[2].p_phim[0];
137
138 u[0] += N_x[3] * e.pcell[3].p_phim[0];
139 u[1] += N_x[4 + 3] * e.pcell[3].p_phim[0];
140
141
142 var Dk = 1.0 + 0.5 * gm1 *
143 (m2 - (u[0] * u[0] + u[1] * u[1]));
144 var rho = pow(Dk, gm1i);
145 var rc2 = rho / Dk;
146
147 e.cells[0].p_resm[0] +=
148 wt1 * rho * (u[0] * N_x[0] + u[1] * N_x[4 + 0]);
149 e.cells[1].p_resm[0] +=
150 wt1 * rho * (u[0] * N_x[1] + u[1] * N_x[4 + 1]);
151 e.cells[2].p_resm[0] +=
152 wt1 * rho * (u[0] * N_x[2] + u[1] * N_x[4 + 2]);
153 e.cells[3].p_resm[0] +=
154 wt1 * rho * (u[0] * N_x[3] + u[1] * N_x[4 + 3]);
155
156 for (var j = 0; j < 4; j++) {
157 for (var k = 0; k < 4; k++) {
158 e.K[j * 4 + k] +=
159 wt1 * rho *
160 (N_x[j] * N_x[k] + N_x[4 + j] * N_x[4 + k]);
161 e.K[j * 4 + k] -=
162 wt1 * rc2 * (u[0] * N_x[j] + u[1] * N_x[4 + j]) *
163 (u[0] * N_x[k] + u[1] * N_x[4 + k]);
164 }
165 }
166 }
167 }
168 }
169
170 // Corresponds to the dirichlet_resm() method used in all
171 // implementations.
172 <pb: [Backnode<pb, pn>], pn: [Node<pn>]>
173 def dirichlet_resm() {
174 for (var e: pb)
175 e.pbedge.p_resm = 0.0;
176 }
177
178 // Corresponds to the dirichletPV() method used in all
179 // implementations.
180 <pb: [Backnode<pb, pn>], pn: [Node<pn>]>
181 def dirichletPV() {
182 for (var e: pb)
183 e.pbedge.p_V = 0.0;
184 }
185
186 // Corresponds to the init_cg() method used in all
187 // implementations.
188 <pn: [Node<pn>]>
189 def init_cg(): double {
190 var c: double = 0;
191 for (var e: pn) {
192 c += e.p_resm * e.p_resm;
193 e.p_P = e.presm;
194 e.p_U = 0;
195 e.p_V = 0;
196 }
197 return c;
198 }
199
200 // Corresponds to the spMV() method used in all
201 // implementations, we use the overloaded spMV()
202 // method in our reimplementation that takes an
203 // std::vector<Color> as an argument.

93

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

204 <pc: [Cell<pc, pn>], pn: [Node<pn>]>
205 def spMV() {
206 for (var e: pc) {
207 e.pcell[0].p_V[0] += e.K[0] * e.pcell[0].p_P[0];
208 e.pcell[0].p_V[0] += e.K[1] * e.pcell[1].p_P[0];
209 e.pcell[1].p_V[0] += e.K[1] * e.pcell[0].p_P[0];
210 e.pcell[0].p_V[0] += e.K[2] * e.pcell[2].p_P[0];
211 e.pcell[2].p_V[0] += e.K[2] * e.pcell[0].p_P[0];
212 e.pcell[0].p_V[0] += e.K[3] * e.pcell[3].p_P[0];
213 e.pcell[3].p_V[0] += e.K[3] * e.pcell[0].p_P[0];
214 e.pcell[1].p_V[0] += e.K[4 + 1] * e.pcell[1].p_P[0];
215 e.pcell[1].p_V[0] += e.K[4 + 2] * e.pcell[2].p_P[0];
216 e.pcell[2].p_V[0] += e.K[4 + 2] * e.pcell[1].p_P[0];
217 e.pcell[1].p_V[0] += e.K[4 + 3] * e.pcell[3].p_P[0];
218 e.pcell[3].p_V[0] += e.K[4 + 3] * e.pcell[1].p_P[0];
219 e.pcell[2].p_V[0] += e.K[8 + 2] * e.pcell[2].p_P[0];
220 e.pcell[2].p_V[0] += e.K[8 + 3] * e.pcell[3].p_P[0];
221 e.pcell[3].p_V[0] += e.K[8 + 3] * e.pcell[2].p_P[0];
222 e.pcell[3].p_V[0] += e.K[15] * e.pcell[3].p_P[0];
223 }
224 }
225
226 // Corresponds to the dotPV() method used in all
227 // implementations.
228 <pn: [Node<pn>]>
229 def dotPV(): double {
230 var c: double = 0;
231 for (var e: pn)
232 c += e.p_P * e.p_V;
233
234 return c;
235 }
236
237 // Corresponds to the updateUR() method used in all
238 // implementations.
239 <pn: [Node<pn>]>
240 def updateUR(alpha: double) {
241 for (var e: pn) {
242 e.p_U += alpha * e.p_P;
243 e.p_resm -= alpha * e.p_V;
244 e.p_V = 0.0f;
245 }
246 }
247
248 // Corresponds to the dotR() method used in all
249 // implementations.
250 <pn: [Node<pn>]>
251 def dotR(): double {
252 var c: double = 0;
253
254 for (var e: pn)
255 c += e.p_resm * e.p_resm;
256
257 return c;
258 }
259
260 // Corresponds to the updateP() method used in all
261 // implementations.
262 <pn: [Node<pn>]>
263 void updateP(beta: double) {
264 for (var e: pn)
265 e.p_P = beta * (e.p_P) + (e.p_resm);
266 }
267
268 // Corresponds to the update() method used in all
269 // implementations.
270 <pn: [Node<pn>]>
271 def update(): double {

94

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

272 var rms: double = 0;
273 for (var e: pn) {
274 e.p_phim -= e.p_U;
275 e.p_resm = 0.0;
276 rms += e.p_U * e.p_U;
277 }
278
279 return rms;
280 }
281
282 // Code that performs the simulation, this
283 // is part of main() in our reimplementations
284 <pb: [Backnode<pb, pn>],
285 pc: [Cell<pc, pn>],
286 pn: [Node<pn>]
287 >
288 def run(num_iter: int) {
289 var rms: double = 1;
290 for (var iter = 1; iter <= num_iter; iter++) {
291 <pc, pn>res_calc();
292
293 <pb, pn>dirichlet_resm();
294
295 var c1 = <pn>init_cg();
296
297 var res0 = sqrt(c1);
298 var res = res0;
299 var inner_iter = 0;
300 var maxiter = 200;
301 while (res > 0.1 * res0 && inner_iter < maxiter) {
302 <pc, pn>spMV();
303
304 <pb, pn>dirichletPV();
305
306 var c2 = <pn>dotPV();
307
308 var alpha = c1 / c2;
309 <pn>updateUR(alpha);
310
311 var c3 = <pn>dotR();
312
313 var beta = c3 / c1;
314 <pn>updateP(beta);
315
316 c1 = c3;
317 res = sqrt(c1);
318 inner_iter++;
319 }
320
321 var rms = update(nodes);
322 if (iter % 100 == 0) {
323 print(rms);
324 }
325 }
326 }

Appendix H.3. Skeletal Animation

This case study involves animation of a “stickman”. Each “stickman” con-

sists of a tree of Joints and a list of Weights. Animation of a “stickman” involves

the invocation of method animate_from_root() (Line 79) on the root Joint and

then the invocation of method animate_weights() (Line 125).

95

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Our C++ rewrite of this case study consists of 6 versions, depending on

whether the Joints of a “stickman” are Scattered in memory (i.e., in an none

pool) or in a pool of layout JointAos (Line 146), and depending on whether we’re

using an AoS, Mixed, or SoA layout for the Weights (Line 149).

The code reading that reads the animation data from the disk and builds

the Joints’ tree and Weights’ list is omitted. This amounts to 122 SLoC of

SHAPES++ code [6].

Additionally, notice that we only need to write the two and three possible

layouts for the joints and weights, respectively (Lines 149–155 in § Appendix

H.3); because the method that animates the model (Line 125 in § Appendix

H.3) is oblivious to layouts of the pools we are using, we only need to modify

their layouts at the site they are defined, then measure.

Notice that while we permit the splitting of objects placed inside other ob-

jects (e.g., vec3 inside Weightss in Line 153), we do not yet know how we could

provide this feature seamlessly. As an example, if we allowed inline object split-

ting, we would have to devise a scheme so that the + operator override of vec3

(Line 4) can be still used on inline split objects.

The SHAPES++ code is presented below:

1 // Present in stickmen/include/anim/anim.h
2 class vec3 {
3 float x, y, z;
4 def operator+(rhs: vec3): vec3 {
5 var ret: vec3;
6 ret.x = x + rhs.x; ret.y = y + rhs.y; ret.z = z + rhs.z;
7 return ret;
8 }
9 }

10 class quaternion {
11 w, x, y, z: float;
12
13 def normalize() {
14 var mag = sqrt(x*x + y*y + z*z + w*w);
15 if (mag < 1e-9f)
16 return;
17 var rcp = 1.0f / mag;
18 x *= rcp;
19 y *= rcp;
20 z *= rcp;
21 w *= rcp;
22 }
23 def operator*(quat o) {
24 var r: quat;
25 r.w = o.w * w - o.x * x - o.y * y - o.z * z;
26 r.x = o.w * x + o.x * w - o.y * z + o.z * y;
27 r.y = o.w * y + o.x * z + o.y * w - o.z * x;
28 r.z = o.w * z + o.x * y + o.y * x - o.z * w;

96

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

29 return r;
30 }
31 def gen_w() {
32 w = 1 - x * x - y * y - z * z;
33 w = (w < 0.0f)
34 ? 0.0f
35 : -sqrt(w);
36 }
37 def rotate(v: vec3): vec3 {
38 var x2 = x + x, y2 = y + y, z2 = z + z;
39 float xx2 = x * x2, yy2 = y * y2, zz2 = z * z2;
40
41 var xy2 = x * y2, wz2 = w * z2, xz2 = x * z2;
42 var wy2 = w * y2, yz2 = y * z2, wx2 = w * x2;
43
44 var a11 = 1 - yy2 - zz2;
45 var a12 = xy2 + wz2;
46 var a13 = xz2 + wy2;
47
48 var a21 = xy2 - wz2;
49 var a22 = 1 - xx2 - zz2;
50 var a23 = yz2 + wx2;
51
52 var a31 = xz2 - wy2;
53 var a32 = yz2 - wx2;
54 var a33 = 1 - xx2 - yy2;
55
56 var r: vec3;
57 r.x = a11 * v.x + a12 * v.y + a13 * v.z;
58 r.y = a21 * v.x + a22 * v.y + a23 * v.z;
59 r.z = a31 * v.x + a32 * v.y + a33 * v.z;
60 return r;
61 }
62 }
63
64 // Corresponds to the JointAos, JointMixed, JointSoa
65 // JointOnePool definitions in
66 // stickmen/include/anim/anim.h
67 class Joint<jp: [Joint<jp, wp>],
68 wp: [Weight<wp>]> {
69 orient, glob_orient: quaternion;
70 pos: vec3;
71 parent: Joint<jp>;
72 begin: Weight<wp>;
73 end: Weight<wp>;
74
75 // Corresponds to animate_joints in
76 // stickmen/src/anim/anim.cpp
77 // (template instantiated to
78 // reduce code duplication)
79 def animate_from_root(info: JointInfo[]) {
80 const ANIM_XPOS = 1 << 0;
81 const ANIM_YPOS = 1 << 1;
82 const ANIM_ZPOS = 1 << 2;
83
84 const ANIM_XQUAT = 1 << 3;
85 const ANIM_YQUAT = 1 << 4;
86 const ANIM_ZQUAT = 1 << 5;
87
88 var i = 0, idx = 0;
89 for (var it = this; it != null; it = it.next, i++) {
90 var flags = info[i].flags;
91 var base_pos = info[i].base_pos;
92 var base_orient = info[i].base_quat;
93
94 if (flags & ANIM_XPOS)
95 base_pos.x = frame_components[idx++];
96 if (flags & ANIM_YPOS)

97

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

97 base_pos.y = frame_components[idx++];
98 if (flags & ANIM_ZPOS)
99 base_pos.z = frame_components[idx++];

100 if (flags & ANIM_XQUAT)
101 base_orient.x = frame_components[idx++];
102 if (flags & ANIM_YQUAT)
103 base_orient.y = frame_components[idx++];
104 if (flags & ANIM_ZQUAT)
105 base_orient.z = frame_components[idx++];
106 base_orient.gen_w();
107
108 var parent = it.parent;
109 if (parent == null) {
110 it.pos = base_pos;
111 it.orient = base_orient;
112 continue;
113 }
114
115 var rotated_pos = parent.orient.rotate(base_pos);
116 it.pos = rotated_pos + parent.pos;
117 it.orient = parent.orient * base_orient;
118 it.orient.normalize();
119 }
120 }
121
122 // Corresponds to animate_weights
123 // and Joint::animate_my_weights in
124 // stickmen/src/anim/anim.cpp.
125 def animate_weights() {
126 for (var j = this; j != null; j = j.next)
127 for (var it = j.begin; it != j.end; it++)
128 it.pos = j.orient.rotate(it.initialpos) + j.pos;
129 }
130 }
131 // Corresponds to JointInfo in
132 // stickmen/include/anim/anim.h
133 class JointInfo {
134 base_pos, base_quat: vec3;
135 flags: i8;
136 }
137 // Corresponds to WeightAos, WeightMixed,
138 // and WeightSoa in
139 // stickmen/include/anim/anim.h
140 class Weight<wp: [Weight<wp>]> {
141 next: Weight<wp>;
142 pos, initialpos: vec3;
143 bias: float;
144 }
145
146 layout JointAos: Joint =
147 rec{orient, glob_orient, pos, parent, next, first};
148
149 layout WeightAos: Weight = rec{next, pos, initialpos, bias};
150 layout WeightMixed: Weight = rec{next} + rec{pos}
151 + rec{initialpos} + rec{bias};
152 layout WeightSoa: Weight = rec{next}
153 + rec{pos.x} + rec{pos.y} + rec{pos.z}
154 + rec{initialpos.x} + rec{initialpos.y} + rec{initialpos.z}
155 + rec{bias};

Appendix H.4. Traffic

This case study simulates a traffic network based on the Nagel-Schreckenberg

traffic model [46] and is adapted from an implementation of this traffic model

98

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

in CUDA [22].

The simulation consists of a graph of Cell objects (Line 30) with edges to

other Cell objects and a list of TrafficLight objects (Line 71), each referencing

a Cell object.

The simulation runs over a number of specific iterations. Each iteration exe-

cutes 5 methods: create_cars() step_traffic_lights(), prepare_paths(), step_move

(), and commit_occupy() (Lines 110, 133, 156, 238, 261). Method run_traffic_simulation

() implements the simulation (Line 278).

Our C++ rewrite of this case study consists of 2 versions: An AoS and a

Mixed version. Each version uses the AoS or Mixed layouts (Lines 83, 101).

respectively, for its Cell and TrafficLight pools. The code constructing the

street network is omitted.

The original case study amounts to 539 SLoC. If we do not count the

code that generates the street network, then this amounts to 386 SLoC. Our

SHAPES++ implementation amounts to 219 SLoC. Similar to § Appendix H.1,

these numbers were also calculated using SLOCCount [6]).

1 // Corresponds to traffic/src/traffic.cpp
2
3 // Simulation constants
4 const MAX_VELOCITY: int = 10;
5 const MAX_DEGREE: int = 4;
6
7 const NUM_INTERSECTIONS: int = 20;
8 const CELL_LENGTH: float = 0.005f;
9 const PRODUCER_RATIO: float = 0.02f;

10 const TARGET_RATIO: float = 0.002f;
11 const CAR_ALLOCATION_RATIO: float = 0.02f;
12 const CELL_TARGET_RATIO: float = 0.002f;
13 const SLOW_DOWN_PROBABILITY: float = 0.2f;
14
15 var TRAFFIC_LIGHT_PHASE: int = 5;
16
17 // Enum used for cell flags (instead
18 // of explicit constants)
19 enum CellFlags: i8 {
20 Producer = 1 << 0,
21 HasCar = 1 << 1,
22 IsTarget = 1 << 2,
23 ShouldOccupy = 1 << 3,
24 };
25
26 // Corresponds to Cell and
27 // CellPool classes (former uses
28 // AoS, latter uses the CellMixed
29 // layout)
30 class Cell<cp: [Cell<cp>]>
31 {
32 rand_state: Rng;
33 car_rand_state: Rng;

99

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34
35 incoming: Cell<cp>[MAX_DEGREE];
36 num_incoming: int;
37
38 outgoing: Cell<cp>[MAX_DEGREE];
39 num_outgoing: int;
40
41 car_path: Cell<cp>[MAX_DEGREE];
42 num_car_path: int;
43
44 car_velocity, car_max_velocity: int;
45
46 curr_max_velocity, max_velocity: int;
47
48 x, y: float;
49 flags: i8;
50
51 Cell(max_vel: int, xpos: float, ypos: float,
52 car_flags: i8, rng: Rng) {
53 rand_state = rng;
54 car_rand_state = rng;
55 incoming = {}; num_incoming = 0;
56 outgoing = {}; num_outgoing = 0;
57 car_path = {}; num_car_path = 0;
58 car_velocity = 0;
59 car_max_velocity = 0;
60 curr_max_velocity = 0;
61 max_velocity = max_vel;
62 x = xpos; y = ypos;
63 flags = car_flags;
64 }
65 };
66
67 // Corresponds to TrafficLight and
68 // TrafficLightPool classes (former
69 // uses AoS, latter uses the CellMixed
70 // layout)
71 class TrafficLight<tp: [TrafficLight<tp, cp>],
72 cp: [Cell<cp>]
73 >
74 {
75 cells: Cell<cp>[MAX_DEGREE];
76 num_cells: int;
77
78 timer: int = 0;
79 phase_time: int = 5;
80 phase: int = 0;
81 };
82
83 layout CellAos: Cell =
84 rec{rand_state, car_rand_state, incoming, num_incoming,
85 outgoing, num_outgoing, car_path, num_car_path,
86 car_velocity, car_max_velocity,
87 curr_max_velocity, max_velocity, x, y, flags};
88 layout CellMixed: Cell = rec{rand_state}
89 + rec{car_rand_state}
90 + rec{incoming, num_incoming}
91 + rec{outgoing, num_outgoing}
92 + rec{car_path, num_car_path}
93 + rec{car_velocity}
94 + rec{car_max_velocity}
95 + rec{curr_max_velocity}
96 + rec{max_velocity}
97 + rec{x}
98 + rec{y}
99 + rec{flags};

100
101 layout TrafficLightAos: TrafficLight =

100

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

102 rec{cells, num_cells, timer, phase_time, phase};
103 layout TrafficLightMixed: TrafficLight = rec{cells, num_cells}
104 + rec{timer}
105 + rec{phase_time}
106 + rec{phase};
107
108 // Corresponds to create_cars() (both overloads)
109 <cp: [Cell<cp>]>
110 def create_cars()
111 {
112 for (var e: cp) {
113 var MASK = ((i8) CellFlags::Producer)
114 & ˜(i8) CellFlags::HasCar;
115
116 var can_create_car = (e.flags & MASK) != 0;
117 if (!can_create_car)
118 continue;
119
120 var must_create = probability_dist(e.rand_state) < PRODUCER_RATIO;
121 if (!must_create)
122 continue;
123
124 e.flags &= (i8) CellFlags::HasCar;
125 e.num_car_path = 0;
126 e.car_velocity = 0;
127 e.max_velocity = max_vel_dist(e.rand_state);
128 }
129 }
130
131 // Corresponds to step_traffic_lights() (both overloads)
132 <tp: [TrafficLight<tp, cp>], cp: [Cell<cp>]>
133 def step_traffic_lights()
134 {
135 for (auto& e: tp) {
136 if (e.num_cells == 0)
137 continue;
138
139 e.timer++;
140 e.timer = (e.timer == e.phase_time) ? 0 : e.timer;
141
142 if (e.timer == 0) {
143 e.cells[e.phase].curr_max_velocity = 0;
144
145 e.phase++;
146 e.phase = (e.phase == e.num_cells) ? 0 : e.phase;
147
148 e.cells[e.phase].curr_max_velocity =
149 e.cells[e.phase].max_velocity;
150 }
151 }
152 }
153
154 // Corresponds to prepare_paths() (both overloads)
155 <cp: [Cell<cp>]>
156 void prepare_paths()
157 {
158 var speedup_path_dist: uniform_distr<int>(1, 2);
159 for (var e: cp) {
160 if ((e.flags & (i8) CellFlags::HasCar) != 0)
161 continue;
162
163 e.num_car_path = 0;
164
165 var speedup = speedup_path_dist.generate(e.car_rand_state);
166 e.car_velocity = max(
167 e.car_max_velocity, e.car_velocity + speedup);
168
169 {

101

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

170 var curr_cell = e;
171 var next_cell = e;
172 var length = e.car_velocity;
173 for (var i = 0; i < length; i++) {
174 if ((curr_cell.flags & (i8) CellFlags::IsTarget)
175 || curr_cell.num_outgoing == 0) {
176 break;
177 }
178
179 if (curr_cell.num_outgoing > 1) {
180 var path_dist: uniform_distr<int>(
181 0, curr_cell.num_outgoing - 1);
182 var choice = path_dist.generate(e.car_rand_state);
183 next_cell = curr_cell.outgoing[choice];
184 } else {
185 next_cell = curr_cell.outgoing[0];
186 }
187
188 if ((next_cell.flags & (i8) CellFlags::HasCar) != 0) {
189 break;
190 }
191
192 curr_cell = next_cell;
193 e.car_path[e.num_car_path++] = curr_cell;
194 }
195
196 e.car_velocity = e.num_car_path;
197 }
198
199 {
200 e.car_velocity = max(
201 e.car_velocity, e.curr_max_velocity);
202 var path_index = 0;
203 var distance = 1;
204
205 while (distance <= e.car_velocity) {
206 var next_cell = e.car_path[path_index];
207
208 if ((next_cell.flags & (i8) CellFlags::HasCar) != 0) {
209 distance--;
210 e.car_velocity = distance;
211 break;
212 }
213
214 if (e.car_velocity > next_cell.curr_max_velocity) {
215 if (next_cell.curr_max_velocity > distance - 1) {
216 e.car_velocity = next_cell.curr_max_velocity;
217 } else {
218 distance--;
219 e.car_velocity = distance;
220 break;
221 }
222 }
223
224 distance++;
225 path_index++;
226 }
227 distance--;
228 }
229
230 if (probability_dist.generate(e.car_rand_state)
231 < SLOW_DOWN_PROBABILITY)
232 e.car_velocity--;
233 }
234 }
235
236 // Corresponds to step_move() (both overloads)
237 <cp: [Cell<cp>]>

102

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

238 def step_move()
239 {
240 for (var e: cp) {
241 if ((e.flags & (i8) CellFlags::HasCar) == 0)
242 continue;
243 if (e.car_velocity == 0)
244 continue;
245
246 var occupied = e.car_path[e.num_car_path - 1];
247 occupied.flags &= (i8) CellFlags::ShouldOccupy;
248 occupied.car_velocity = e.car_velocity;
249 occupied.car_max_velocity = e.car_max_velocity;
250 occupied.car_rand_state = e.car_rand_state;
251
252 array_copy(e.car_path, occupied.car_path, e.num_car_path);
253 occupied.num_car_path = e.num_car_path;
254
255 e.flags ˆ= (i8) CellFlags::HasCar;
256 }
257 }
258
259 // Corresponds to commit_occupy() (both overloads)
260 <cp: [Cell<cp>]>
261 def commit_occupy()
262 {
263 for (auto& e: cp) {
264 if ((e.flags & (i8) CellFlags::ShouldOccupy) != 0) {
265 e.flags ˆ= (i8) CellFlags::ShouldOccupy;
266 e.flags &= (i8) CellFlags::HasCar;
267 }
268
269 if (e.num_outgoing == 0
270 || (e.flags & (i8) CellFlags::IsTarget) != 0)
271 e.flags &= ˜((i8) CellFlags::HasCar);
272 }
273 }
274
275 // Code that runs the simulation, part
276 // of BM_TrafficAos() and BM_TrafficSoa()
277 <tp: [TrafficLight<tp, cp>], cp: [Cell<cp>]>
278 def run_traffic_simulation(num_iterations: int) {
279 for (var i = 0; i < num_iterations; i++) {
280 create_cars<cp>();
281 step_traffic_lights<tp, cp>();
282 prepare_paths<cp>();
283 step_move<cp>();
284 commit_occupy<cp>();
285 }
286 }

Appendix H.5. Doors

This case study determines which subset from a set of Doors must be opened.

Each Door has a specific Allegiance (Red or Blue team). A door is open if there is

a Character that is of the same Allegiance as the allegiance of that door and the

distance between that door and that character is smaller than a fixed threshold.

As mentioned in § 3, the naive version (calcAllegiance(), Line 24) assumes

Red and Blue entities are placed in the same Door and Character pools; the “smart”

version (calcAllegianceSmart(), Line 49) assume Red and Blue entities are placed

103

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

in different Door and Character pools, hence the allegiance check (Line 27) can

be omitted. The only tradeoff is that the code has to be changed so that

calcAllegianceSmart() is invoked twice (one per pair of Door and Character pools).

The code that randomly builds the Door and Character pools is omitted.

The SHAPES++ code is presented below:
1 // Corresponds to
2 // doors/src/main.cpp
3
4 // Corresponds to the Allegiance enum
5 enum Allegiance { Red, Blue };
6 class Character<pChr: [Character<pChr>]> {
7 x: double; y: double; allegiance: Allegiance;
8 }
9 // Corresponds to class Door

10 class Door<pDoor: [Door<pDoor>]> {
11 x: double; y: double; open: bool; allegiance: Allegiance;
12 }
13 layout DoorAos: Door = rec{x, y, open, allegiance};
14 layout CharAos: Character = rec{x, y, allegiance};
15
16 // Corresponds to open_doors()
17 // (std::vector<DoorOnePool> overload).
18 // Invoked once by BM_DoorsOnePool
19 // per iteration.
20 // Method num_open_doors() is used
21 // to prevent having open_doors()
22 // from being optimised out
23 <pc: [Character<pc>], pd: [Door<pd>]>
24 def calcAllegiance() {
25 foreach (var d: pd) {
26 foreach (var c: pc) {
27 if (c.allegiance != d.allegiance)
28 continue;
29
30 var dx = c.x - d.x; var dy = c.y - d.y;
31 var dist2 = dx * dx + dy * dy;
32 if (dist2 > DOOR_THRESH * DOOR_THRESH)
33 continue;
34
35 d.open = true;
36 break;
37 }
38 }
39 }
40
41 // Corresponds to open_doors()
42 // (std::vector<DoorManyPools> overload).
43 // Invoked twice by BM_DoorsManyPools
44 // per iteration.
45 // Method num_open_doors() is used
46 // to prevent having open_doors()
47 // from being optimised out
48 <pc: [Character<pc>], pd: [Door<pd>]>
49 def calcAllegianceTwoPools() {
50 foreach (var d: pd) {
51 foreach (var c: pc) {
52 var dx = c.x - d.x; var dy = c.y - d.y;
53 var dist2 = dx * dx + dy * dy;
54 if (dist2 > DOOR_THRESH * DOOR_THRESH)
55 continue;
56
57 d.open = true;
58 break;

104

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

59 }
60 }
61 }

Appendix H.6. Currency

This case study performs a number of queries to determine the exchange

rate of USD or GBP against the EUR on a specific date (beginning from 1999-

01-01). The exchange rates of currencies for a specific date are represented as

an instance of Rate (Line 6). Rates are sorted in ascending date order inside

the pool; a binary search algorihm (Line 88) looks up the exchange rates for a

specific date. Notice that SHAPES++ permits the k -th element inside a pool

to be looked up.

We run 3 different versions of our case study: A “one AoS pool” version

containing all exchange rates (method lookup_rate_one() in Line 53) and 2 “two

pools” versions that split up the exchange rates into “recent” and “historical”

(method lookup_rate() in Line 67). The 2 latter versions are split up on whether

we use a Mixed layout for the corresponding pool (Line 22) or an SoA layout

(Line 28).

The implementation in SHAPES++ is as follows:

1 // Corresponds to src/forex/main.cpp
2
3 // Rate class, layouts correspond to
4 // the 3 layouts used in our
5 // code (Aos, Mixed, Soa)
6 class Rate<rp: [Rate<rp>]> {
7 date: string;
8 USD, JPY, BGN, CYP, CZK, DKK, EEK, GBP, HUF, LTL,
9 LVL, MTL, PLN, ROL, RON, SEK, SIT, SKK, CHF, ISK,

10 NOK, HRK, RUB, TRL, TRY, AUD, BRL, CAD, CNY, HKD,
11 IDR, ILS, INR, KRW, MXN, MYR, NZD, PHP, SGD, THB,
12 ZAR: double;
13 }
14
15 layout RateAos: [Rate] = rec{date,
16 USD, JPY, BGN, CYP, CZK, DKK, EEK, GBP, HUF, LTL,
17 LVL, MTL, PLN, ROL, RON, SEK, SIT, SKK, CHF, ISK,
18 NOK, HRK, RUB, TRL, TRY, AUD, BRL, CAD, CNY, HKD,
19 IDR, ILS, INR, KRW, MXN, MYR, NZD, PHP, SGD, THB,
20 ZAR};
21
22 layout RateFreqInfreq: [Rate] = rec{date, USD, GBP}
23 + rec{JPY, BGN, CYP, CZK, DKK, EEK, HUF, LTL,
24 LVL, MTL, PLN, ROL, RON, SEK, SIT, SKK,
25 CHF, ISK, NOK, HRK, RUB, TRL, TRY, AUD,
26 BRL, CAD, CNY, HKD, IDR, ILS, INR, KRW,
27 MXN, MYR, NZD, PHP, SGD, THB, ZAR};
28 layout RateSoa: [Rate] = rec{date},
29 + rec{USD} + rec{GBP} + rec{JPY} + rec{BGN}

105

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30 + rec{CYP} + rec{CZK} + rec{DKK} + rec{EEK}
31 + rec{HUF} + rec{LTL} + rec{LVL} + rec{MTL}
32 + rec{PLN} + rec{ROL} + rec{RON} + rec{SEK}
33 + rec{SIT} + rec{SKK} + rec{CHF} + rec{ISK}
34 + rec{NOK} + rec{HRK} + rec{RUB} + rec{TRL}
35 + rec{TRY} + rec{AUD} + rec{BRL} + rec{CAD}
36 + rec{CNY} + rec{HKD} + rec{IDR} + rec{ILS}
37 + rec{INR} + rec{KRW} + rec{MXN} + rec{MYR}
38 + rec{NZD} + rec{PHP} + rec{SGD} + rec{THB}
39 + rec{ZAR};
40
41 // Currency and query classes used
42 // in our C++ code
43 enum Currency : i8 { USD, GBP }
44 class Query {
45 date: string;
46 currency: Currency;
47 }
48
49 // Code for lookup given one pool of rates,
50 // corresponds to the code in the
51 // AosOnePool fixture
52 <rates: [Rate<rates>]>
53 def lookup_rate_one(Query query): double {
54 var it = <rates>binary_search(q.date);
55 if (it != null)
56 return q.currency == Currency::USD
57 ? it->USD
58 : it->GBP;
59 return -1;
60 }
61
62 // Code for lookup given one pool of rates,
63 // corresponds to the code in the
64 // MixedManyPools, MixedManyPoolsSoa
65 // fixtures
66 <recent: [Rate<recent>], historical: [Rate<historical>]>
67 def lookup_rate(Query query, string date_threshold): double {
68 var rate: double;
69 if (q.date > DATE_RECENT) {
70 var recent_it = <recent>binary_search(q.date);
71 if (recent_it != null)
72 return q.currency == Currency::USD
73 ? recent_it->USD
74 : recent_it->GBP;
75 } else {
76 var historical_it = <historical>binary_search(q.date);
77 if (historical_it != null)
78 return q.currency == Currency::USD
79 ? historical_it->USD
80 : historical_it->GBP;
81 }
82 return -1;
83 }
84
85 // Implementation of binary search, we use
86 // std::lower_bound in our C++ code
87 <pl: [Rate<pl>]>
88 def binary_search(date: String): Rate<pl> {
89 var lo = 0, hi = pl.size();
90 while (lo <= hi) {
91 var mid = low + (high - low) / 2;
92 if (pl[mid].date < date)
93 lo = mid + 1;
94 else if (pl[mid.date] > date)
95 hi = mid - 1;
96 else
97 return pl[mid];

106

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

98 }
99 return null;

100 }

107

