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Abstract

In today’s world, a vast amount of data is being gener-
ated by edge devices that can be used as valuable training
data to improve the performance of machine learning algo-
rithms in terms of the achieved accuracy or to reduce the
compute requirements of the model. However, due to user
data privacy concerns as well as storage and communica-
tion bandwidth limitations, this data cannot be moved from
the device to the data centre for further improvement of the
model and subsequent deployment. As such there is a need
for increased edge intelligence, where the deployed models
can be fine-tuned on the edge, leading to improved accu-
racy and/or reducing the model’s workload as well as its
memory and power footprint. In the case of Convolutional
Neural Networks (CNNs), both the weights of the network
as well as its topology can be tuned to adapt to the data
that it processes. This paper provides a first step towards
enabling CNN finetuning on an edge device based on struc-
tured pruning. It explores the performance gains and costs
of doing so and presents an extensible open-source frame-
work that allows the deployment of such approaches on a
wide range of network architectures and devices. The re-
sults show that on average, data-aware pruning with re-
training can provide 10.2pp increased accuracy over a wide
range of subsets, networks and pruning levels with a maxi-
mum improvement of 42.0pp over pruning and retraining in
a manner agnostic to the data being processed by the net-
work.

1. Introduction

Modern CNN-based systems achieve unprecedented lev-
els of accuracy in various tasks such as image recognition
[35], segmentation [25], drone navigation [15], and object
detection [16, 6] due to the vast amounts of curated [2, 1]
data that is used to train them. This training is performed
on large data-centres and once deployed, the models remain
static. However the large quantities of domain specific data

that can help further improve the performance of these net-
works in terms of accuracy or inference time, reside on the
edge. This improvement can stem either from the availabil-
ity of more data samples or the realisation of a different
distribution of data at the deployment side. Nonetheless,
user data privacy concerns as well as limited storage and
communication bandwidths mean that this data cannot be
easily moved from the edge to these data-centres for up-
dating the deployed model through changes to the model’s
architecture (i.e. topology in the case of a CNN), and its pa-
rameters. Consequently, there has been a push to move the
required processing from data-centres to edge devices [40].

A widely adopted approach to tune the architecture of
the model to the input data distribution is through pruning
followed usually by a retraining stage. This paper will re-
fer to such approaches as data-aware pruning and retraining
(DaPR) approaches. The suitability of the above approach
is further supported by works such as [31, 26, 5, 21] which
have shown that the pruning levels are linked to the com-
plexity of the data the network is processing. Currently the
increased compute and memory capabilities of edge devices
such as NVIDIA’s Jetson TX2, NVIDIA’s Xavier GPUs and
Google’s Edge TPU [14], provide an opportunity to perform
such tuning on edge devices in a manner that does not in-
fringe on user data privacy and is within an acceptable time
frame.

With the goal to enable CNNs to improve and adapt their
performance to the data they are processing on the edge, the
contributions of this paper are as follows :

1. A methodology based on the L1-norm of the weights
that allows for on-device DaPR to be performed with-
out user intervention. In doing so, the paper explores
the accuracy gains of adapting a network to the data
it is processing as well as the cost of achieving these
gains on an edge device. The paper provides quantita-
tive results on the possible performance gains (i.e. in-
ference latency) and the associated costs (i.e. pruning
and retraining) of after-deployment tuning on a num-
ber of state-of-the-art models targeting an actual em-
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bedded device.

2. An open-source framework ADaPT (Automated Data-
aware Prunning and ReTraining) that allows rapid pro-
totyping and deployment of various structured pruning
techniques on a wide range of network architectures
on edge devices. To the best of our knowledge, it is the
only open-source tool that fully automates the process
of identifying filters to prune, shrinking the network to
obtain memory and performance gains, and perform-
ing retraining of the pruned network. In doing so, it
enables direct deployment of DaPR solutions on any
edge device.

The rest of the paper is organised as follows. Section 2
formally describes the field of research that this work ad-
dresses and states any assumptions made. Section 3 de-
scribes the metrics that are of interest when evaluating so-
lutions within this field. Section 4 discusses various state of
the art structured pruning techniques and frameworks that
allow for experimentation with pruning. Section 5 describes
the proposed L1-norm based DaPR solution. Section 6 de-
scribes the key features of ADaPT. Finally, Section 7 evalu-
ates the gains and costs of performing DaPR on an NVIDIA
Jetson TX2.

2. Motivation
Let us consider a training dataset D = {I, C}, where I

is the set of images in the dataset, and C is the set of classes
represented by the images. Let us define a model M as a
tuple (W,A), whereW represents the weights of the model
andA represents the topology of the model. After perform-
ing training onD, the resulting modelMD = (WD,AD) is
such that for class i ∈ C, ai is the accuracy that the model
predicts that class with, and c is the cost of the model.

Consider the case where this modelMD is going to be
deployed in an environment D′ = {I ′, C′}. In most prac-
tical scenarios the classes that are expected to be seen are
not completely known before deployment, but nonetheless
a reasonable assumption (Assumption 1) that is made is
that D′ ⊆ D, i.e. the classes encountered upon deployment
are a subset of the classes included in the training data. With
this in mind, the problem this work addresses is:

Given the dataset D′ and a provided compute
and memory capacity budget, find a modelMD

′,
such that a) its cost c′ is less than the cost c of the
initially deployed modelMD, and b)

∑
j∈C′ a

′
j

|D′| ≥∑
j∈C′ aj

|D′| , i.e. MD
′ performs at least as well as

MD on D′.

The transformation of a model can happen both through
changes to the weights of the model and/or the topology
of the model.

3. Metrics of interest
The following metrics are adopted in order to assess the

quality of various pruning strategies in this work:

1. The achieved accuracy of the produced model.

2. The cost c of the produced model, which entails:

• The number of operations per second for a single
inference (GOps). It is a widely adopted metric
in literature, as it provides a platform agnostic
way of comparing the inference time of various
pruned networks. It should be noted that depend-
ing on the architecture of the target hardware, this
is not always a good representation of the true la-
tency of the system.

• The latency of a single inference step using a spe-
cific device.

3. The memory footprint of M′
D as a percentage of the

memory footprint ofMD. This will be referred to as
the pruning level throughout the rest of this paper.

4. Background and Related Works
Consider a CNN with L layers, where layer l ∈ L has nl

convolutional filters of size (ml × kl × kl) each, where nl

are the number of output features, ml the number of input
features, and the convolutional filter is of size kl × kl. For
layer l ∈ L, the weight matrix Wl has size nl×ml×kl×kl,
and the output feature maps (OFM) are Xl.

Unstructured pruning [4, 23] removes individual neu-
rons within the network and induces sparsity, requiring cus-
tom hardware optimised for sparse operations [38, 28] in
order to transform these changes into actual performance
gains. Structured pruning focuses on removing entire con-
volutional filters and not just individual neurons. This al-
lows for realising runtime gains on commercial hardware
using off-the-shelf frameworks and is the approach to prun-
ing this paper will utilise.

Structured Pruning - The process of structured pruning
generally involves pruning a pre-trained network based on a
filter ranking criterion and then if possible performing fine-
tuning of the pruned network to regain the accuracy lost due
to pruning. A number of works have explored various filter
ranking criteria. [20] uses the L1-norm of the weights to
rank filters and obtains up to 64% memory footprint and up
to 38.6% Ops reduction for negligible accuracy loss across
networks on CIFAR-10. They also achieve up to 10.8%
memory and 24.2% Ops reduction for around 1% accuracy
loss on ResNet34 on ImageNet [1]. [24] use the weights
learnt by batch normalisation layers to rank channels and
obtain up to 29.7% reduction in memory and 50.6% reduc-
tion in Ops for ResNet164 on CIFAR100 and 82.5% mem-
ory and 30.4% Ops reduction for VGG on ImageNet for



negligible accuracy loss. [27, 19] use the concept of sensi-
tivity which ranks filters based on an approximation of the
impact on the loss that their omission has. [27] achieves
up to 66% memory and 2.5x latency reduction for VGG16
on ImageNet with an accuracy loss of 2.3%. Sensitivity-
based works require the gradient of each filter as well as the
weights and are more memory intensive than the weight-
based methods.

[12] perform entropy based pruning by estimating the av-
erage amount of information from weights to output. They
achieve up to 94% memory reduction with negligible loss in
accuracy on LeNet-5 on the MNIST[18] dataset. However,
such information-theoretic methods are compute intensive
and make them unfavourable for deployment in embedded
settings.

[31] uses a correlation based metric on the OFM (Xl) of
each layer in order to decide which filters to prune. Using
the feature maps makes this method input dependent, and
the paper also explores the difference in filters pruned when
shown only various subsets of the dataset that the original
network was trained on. They achieve memory reduction
of 8x, 3x and 1.4x on VGG-16 for CIFAR-10, CIFAR-100,
and ImageNet respectively and up to 85% memory reduc-
tion with no accuracy loss when tuned to random subsets of
CIFAR-100 with 2 classes in each subset.

The works mentioned above do not dynamically choose
the filters pruned based on the data that the network is pro-
cessing. There is a line of works that reduce the required
operations during inference by skipping convolution oper-
ations depending on the input image by introducing condi-
tional execution. However, these works do not reduce the
memory requirements of the model. [5, 10, 21] all pre-train
classifiers that, at run-time, can identify which filters are
important for the current input image. For VGG-16, [5]
achieves a 1.98x Ops reduction for a 2% decrease in accu-
racy on ImageNet and show that they outperform both [10]
and [21] on the same metric. [37] splits the network into
multiple sections and learns classifiers that allow for early
exit through the network depending on the input image pro-
cessed. They achieve on average 2.17x reduction in Ops
across networks on CIFAR-100 for no accuracy loss, and
1.99x reduction in Ops on ImageNet also for no accuracy
loss.

Frameworks - The various pruning techniques dis-
cussed above each have a unique set of hyperparameters
that relate to filter ranking metrics as well as the manner
in which the models are re-trained. For instance, [31] se-
quentially prunes and retrains on a per layer basis, while
works such as [37] have to add many auxiliary layers on top
of the chosen architecture in order to create and train their
early exit classifiers. Distiller [41] and Mayo [39] are two
state-of-the-art open-source frameworks that allow for ex-
perimentation with such pruning techniques. Mayo focuses

on automating search for hyperpameters related to pruning,
while Distiller focuses on implementing a wide variety of
pruning techniques discussed above. Distiller provides a
functionality called ”Thinning” for ResNet models only, but
does not allow for easy application to other networks as the
functionality is tailored to the ResNet architecture. More-
over, both frameworks do not automatically shrink the size
of the model after pruning, but instead mask the weights
of the model in order to allow for experimentation with the
pruned model. Consequently, they can only be used to as-
sess the impact of pruning on the accuracy and not on run-
time. In contrast, ADaPT addresses both these issues by
shrinking the model for a wide variety of architectures to
help realise run-time gains, as well as providing an extensi-
ble codebase to apply model shrinking to any new architec-
ture.

5. On-device DaPR Methodology
This section presents an approach to obtain a model

MD
′ fromMD as described in Section 2. It is assumed that

the inputs collected upon deployment of the system have
been correctly classified (Assumption 2). The assumption
enables training to be performed on the edge without uncer-
tainty of the class-labels, and thus focusing solely on gains
that can be made by adapting the network to the data it pro-
cesses upon deployment.

5.1. Search Methodology

Adapting the network architecture to the data it is pro-
cessing involves searching for a model M′

D that performs
at least as well as MD on D′, but with a reduced cost.
The proposed approach is shown in Algorithm ?? and per-
forms a binary search over a range of predefined pruning
levels. If progressively larger pruning levels are searched,
the time to perform this search and the memory footprint of
searched models decreases as progressively smaller models
are used. The algorithm converges when the pruning level
to be searched does not change over iterations of the binary
search.

6. ADaPT
In order to support the quick development and easy de-

ployment of DaPR methodologies on edge devices, the
ADaPT framework has been developed. In its current state
it implements, deploys and evaluates the methodology de-
scribed in Section 5, but its extensible nature allow the
deployment of other DaPR methodologies overcoming the
limitations of the existing tools described in Section 4. A
high-level description of its important features are presented
below, where further details on how to use it can be found
on the github 1. ADaPT’s functionality can be split into 4

1https://github.com/adityarajagopal/pytorch training.git

https://github.com/adityarajagopal/pytorch_training.git


Algorithm 1: Proposed DaPR Methodology
Inputs: Initial modelMD, Subset D′, First pruning

level to search p0, Set of pruning levels to
search P = {ipi|i ∈ [ pl

pi
, pu

pi
]}, Target

Accuracy atarget
Output:M′

D with test accuracy amax and pruning
level p0 ∈ P that is the highest pruning level
s.t. amax ≥ atarget

1 FinetuneMD for nf epochs on D′ to obtainMf
D

2 while p0 changes across iterations do
3 PruneMf

D to pruning level p0 according to
chosen pruning strategy

4 Retrain the pruned model for nr epochs on D′ and
record modelM′

D and corresponding test
accuracy amax for the model with highest
validation accuracy

5 if amax < atarget then
6 pu = p0

// Reduce pruning level to the nearest multiple
of pi to the midpoint between pl and p0

// Reduce pruning level to the nearest multiple
of pi to the midpoint between pl and p0

7 p0 = pi × d
b pl+p0

2 c
pi
e

8 else
9 pl = p0

// Increase pruning level to the nearest multiple
of pi to the midpoint between pu and p0

10 p0 = pi × d
b pu+p0

2 c
pi

e
11 end
12 end

stages; 1) pruning dependency calculation, 2) pruning, 3)
model writing, and 4) weight transfer.

6.1. Pruning Dependency Calculation (PDC)

Modern CNN networks are usually constructed through
a set of structural modules connected in a specific way.
Most of the networks are based on the modules found
in AlexNet [17], ResNet20 [9], MobileNetV2 [29], and
SqueezeNet [13]. These four networks incorporate amongst
them the most commonly used structural modules - Se-
quential connectivity in AlexNet, Residuals in ResNet20
and MobileNetV2, MBConv modules in MobileNetV2 and
Fire modules in SqueezeNet. For instance, EfficientNet [34]
uses the MBConv as its primary convolutional module.

Moreover, certain connectivity patterns result in pruning
dependencies that necessitate the pruning of identical filters
across dependent layers. The PDC automates the process
of recognising such dependencies within a network.

Networks with only Sequential connectivity patterns

(a) Residual Blocks [8]

(b) Depthwise Separable Unit [29]

Figure 1: Structural blocks that require consideration of de-
pendencies when pruning

such as AlexNet and VGG [30] do not have any pruning
dependencies. The same applies to Fire modules that make
up SqueezeNet.

ResNet variants are made of residual blocks as shown in
Fig.1a. Due to the residual connection and summation fol-
lowing it, the same filters need to be pruned in the last con-
volution (convfinal) of each residual block. Works such as
[22] choose to not prune the last convolutional layer while
others such as [20] choose to enforce this dependency. An-
other consideration with ResNet architectures is that the
network is split into groups of residuals where with every
new group, a downsampling 1x1 convolution (convdown) is
added to the residual connection which ensures the number
of channels output from the connection match those output
from convfinal. In these cases, the pruning dependency ex-
ists between convfinal and convdown. The PDC enforces
either a dependency across all convfinal layers within a
group of residual blocks or prunes convdown in line with
its corresponding convfinal.

MobileNetV2 is made of MbConv blocks which con-
tain depth-wise separable convolutions as shown in Fig.1b
where the blue blocks are input feature maps (IFM) and the
red blocks are convolutional filters. The 3x3 convolution in
the figure is the depth-wise convolution (convdw) and is dif-
ferent from regular convolutions in that each filter only acts
on one of the IFM, i.e. nl = 1. This means that the number
of filters in convdw must always match the number of IFM
to that layer, and consequently the same filters need to be
pruned in convdw and the layer(s) feeding it. This depen-
dency is also enforced by the PDC when MBConv modules
are present in the model.



The PDC takes a model description in PyTorch that the
user annotates with Python decorators to identify classes
that correspond to various structural modules and the names
of the convolutions within them. Based on this information,
the PDC automatically calculates all the dependent layers
and communicates this information to the pruning stage so
layers can be pruned in dependent groups if necessary. This
automation makes ADaPT very easy to use as tools such as
Distiller [41] require the user to manually identify each de-
pendent convolution in the entire network, which for larger
networks can be very tedious to list.

6.2. Pruning

Pruning the network once the dependencies have been
identified is performed by ranking all the filters based on
a customised metric, and then removing filters one-by-one
until the desired percentage of memory has been achieved.
The user could chose to rank filter globally or on a per layer
basis. The block utilises the PDC information about de-
pendencies between layers that need to be considered when
pruning. Removing a filter from one of the dependent lay-
ers removes one from all of the layers in that dependency
chain. Furthermore, the effect of removing a filter is prop-
agated through the network as each filter corresponds to an
IFM for the next layer. This stage computes the filters per
layer that need to be pruned and passes this information to
the Model Writing stage.

6.3. Model Writing

In order to effectively evaluate the solution described in
Section 5, a necessary ability of the tool is to produce a new
model that has a reduced runtime and memory footprint, so
when possible the nr epochs of retraining of a pruned model
can be accelerated. The Model Writing stage enables this
by creating a new shrunk PyTorch model description having
removed the filters that were pruned.

The Model Writer takes the channels to be pruned as in-
put, and provides the user with a description of a pruned
network which can be used in any PyTorch code-base. This
decouples model pruning from the model writing and al-
lows for easy access to pruned models.

6.4. Weight Transfer

The final stage transfers the relevant weights fromMD
toM′

D. This is necessary to minimise the drop in accuracy
that is seen once the network is pruned and thus minimise
the number of epochs nr in the retraining stage that are
necessary to reach the target performance. It takes the
pruned model description as input and returns a PyTorch
model that is ready for deployment with the transferred
weights.

It is important to note that the parts discussed in this

Structural Module Networks with Module
Sequential AlexNet[17], VGG[30]

Residuals
ResNet[8], MobileNetV2[29],
ResNeXt[36], DenseNet[11]

Depth-wise Separable
MobileNetV2[29],
Xception[3], EfficientNet[34]

Fire Module SqueezeNet[13], GoogLeNet[33]

Table 1: A summary of the structural modules implemented
along with networks that contain each module.

section are linked to structural modules and not networks.
This makes the tool more extendable as any network that
contains the above structural modules can be readily pruned
with the current version of the tool. Furthermore, it is built
for easy customisation of all the functions discussed above,
thus allowing for new architectures and different pruning
techniques to be experimented on with ease. A summary of
the supported structural modules, as well as the networks
that contain these modules and hence supported by ADaPT
are presented in Table 1.

7. Evaluation
A key contribution of this work is the analysis of the cost

reduction on model deployment obtained by performing on-
device DaPR as well as the associated costs of performing
such domain adaptation on an edge device. The method-
ology being evaluated is that presented in Section 5. The
results reported in this section are averages and standard
deviations across 5 independent runs of each experiment.

7.1. Setup and Hyperparameters

The chosen edge device was the NVIDIA Jetson TX2.
Through cross-validation, the values chosen for nf and
nr were 5 and 25 respectively to ensure that the accuracy
plateaus before retraining ends. The range of pruning levels
searched were from pl = 5% to pu = 95% in increments of
pi = 5%. The first pruning level searched p0 = 50%.

In order to explore the problem setup discussed in Sec-
tion 2, it is necessary to create subsets D′ ⊆ D. In this
case,D was the entire CIFAR-100 dataset, and five different
subsets D′ were tested. CIFAR-100 is categorised into 20
”coarse-classes” which contain 5 ”fine-classes” each. The
subsets created and the classes within them are described in
Table 2. The first four subsets were hand selected to have
coherent semantic meaning and across the four of them span
the entire CIFAR-100 dataset. The fifth subset was ran-
domly generated. The networks tested on were AlexNet,
ResNet20, MobiletNetV2, and SqueezeNet for all the sub-
sets listed in Table 2.

The chosen metric to rank filters was the L1-norm as
it has been established to show competitive performance



Subset
Name Coarse Classes # Fine

Classes
Aquatic aquatic mammals, fish 10
Indoor food containers, household electrical devices, household furniture 15

Outdoor
large man-made outdoor things, large natural outdoor scenes, vehicles 1, vehicles 2,
trees, small mammals, people 35

Natural
flowers, fruit and vegetables, insects, large omnivores and herbivores, medium mammals,
non-insect invertebrates, small mammals, reptiles 40

Random
aquatic mammals, fish, flowers, fruit and vegetables, household furniture,
large man-made outdoor things, large omnivores and herbivores, medium mammals,
non-insect invertebrates, people, reptiles, trees, vehicles 2

65

Table 2: Subsets tested along with the coarse classes that were included in the subset and the number of fine classes per subset

even against data-aware metrics [26] despite being rela-
tively computationally inexpensive.

The learning rate schedule was set to start at the final
learning rate employed when MD was trained on D. Af-
ter pruning the learning rate was increased to the second
highest learning rate that was employed when MD was
trained on D. Following this, the learning rate was decayed
at epochs 15 and 25 by the same gamma that was used when
MD was trained on D.

The batch size used was 128, and the training dataset
was split into a training and validation set in the 80:20 ratio.
The accuracy values reported in this section are the test set
accuracy corresponding to the model with the best valida-
tion accuracy. Standard data augmentation techniques for
CIFAR-100 were used for the training set such as random
crop, rotation and flip.

7.2. Performance Gains and Cost Analysis

Fig.2 shows the trade-off between the achieved test ac-
curacy and inference time for all pruning levels between 5%
and 95% on various subsets and networks. The red dot in
each of the figures (Unpruned) displays the performance of
MD on D′. The orange dots in the figures (Subset Agnos-
tic Pruning) display the performance of a model that was
pruned without any finetuning on D′ and retrained on the
entirety of D for nf + nr epochs. These sets of point serve
as baselines to compare the proposed DaPR methodology as
they do not finetune the network being deployed to the do-
main (D′) in any way, i.e. they are subset agnostic methods.
The green points (Subset Aware Pruning) display the per-
formance of a model that was finetuned for nf epochs on
the subset D′, then pruned and subsequently retrained on
D′ for nr epochs. Instead of performing a binary search as
proposed in Section 5, Fig.2 acts as an ”oracle” that for each
pruning level compares the performance of the data-aware
method (green points) with the data agnostic methods (or-
ange and red points).

Figs.2a-2d use errorbars to display the mean and stan-

dard deviation of the test accuracy across all 5 subsets for a
given pruning level and network. For many cases, the worst
performing subset aware strategy performs better than the
best performing subset agnostic strategy with an average
improvement in test accuracy of 10.2pp and maximum im-
provement of 42.0pp over all pruning levels, networks and
datasets. Furthermore, this improvement in test accuracy
tends to increase as more of the network is pruned (lower
inference time) thus further motivating the need to perform
data-aware pruning and retraining as better accuracy can be
achieved for smaller models.

Figs.2e-2f show the same trade-off but for specific com-
binations of network and subset. From left to right, the
size of the subset increases and intuitively the gap between
subset-aware and subset-agnostic pruning and retraining de-
creases as the subset D′ converges towards D. Nonetheless
for all pruning levels, the performance of the subset-aware
strategy outperforms subset-agnostic pruning and finetun-
ing.

The ”oracle” results discussed above show the gains that
can be obtained for a wide range of pruning levels, however
only some of the models perform better than the baseline
performance ofMD on D′ (red points). The methodology
proposed in Section 5 efficiently searches for the low infer-
ence time models that can perform better thanMD onD′ on
an edge device. Figs.3a-3d each form a pareto-frontier de-
scribing the trade-off between searching for a smaller model
and the inference time of this model upon deployment. The
labels next to the points show the relative improvement in
GOps compared to the unpruned model (-x times) and the
pruning level of the model (memory footprint reduction).

Across all subsets of the CIFAR-100 dataset, perform-
ing the search described in Section 5 results in sub-minute
search times per minibatch for up to 2.22x improvement
in inference times, 4.18x improvement in GOps and 90%
memory footprint reduction. Furthermore, the memory util-
isation of the GPU does not exceed 2GB which lies far be-
low the maximum memory availability of the TX2 of 8GB.



(a) AlexNet (b) ResNet20 (c) MobileNetV2 (d) SqueezeNet

(e) AlexNet - Aquatic (f) SqueezeNet - Indoor (g) MobileNetV2 - Outdoor (h) ResNet20 - Random

Figure 2: Trade-off of Test Accuracy vs Inference Time for various levels of pruning. The error bars show the mean and
standard deviation of test accuracy obtained per level of pruning across all the 5 subsets.

(a) AlexNet - Random (b) ResNet20 - Aquatic (c) MobileNetV2 - Outdoor (d) SqueezeNet - Natural

Figure 3: Trade-off between search time per minibatch and inference time performance of searched model. All models shown
here have no accuracy loss compared toMD infered on D′. The labels next to the points show (improvement in GOps (-x
times), pruning level (%)) of that model

The number of minibatches searched for will depend on
both the amount of data available and the time budget allo-
cated during deployment to perform finetuning. However,
the results presented here show that such DaPR methodolo-
gies can be performed on edge devices within a reasonable
time budget.

It should be noted that as the budget allocated for per-
forming the pruning in this work is much shorter than
the budget required by the current state-of-the-art pruning
methods described in Section 4, and as such a direct com-
parison to those works is not meaningful. The existing
methods perform pruning and retraining before deployment,
and do not actively adapt the network once deployed. Fur-
thermore, none of these works except [32] report results on
subsets of CIFAR-100. [32] however does not provide de-

tails of the classes present in each subset, making a direct
comparison infeasible.

7.3. Filter Selection

An investigation was carried out on the relationship be-
tween the type of the structural block and the impact of
finetuning to its parameters. Fig.4a shows the percentage
difference between the filters that were selected to prune if
pruning were to take place at epoch 0 and at epoch nf after
nf epochs of finetuning onD′. In this caseD′ is the Aquatic
subset. The results show that weights in ResNet20 and Mo-
bileNetV2 are highly sensitive to finetuning on a subset, but
AlexNet and SqueezeNet show negligible change in the fil-
ters selected to prune before and after the finetune stage.

To analyse if these changes in selected filters are due to



(a) Aquatic - Across networks (b) ResNet20 - Aquatic (c) MobileNetV2 - Indoor (d) MobileNetv2 - Random

Figure 4: Percentage difference in channels pruned at various points of DaPR for different network and subset combinations

the finetuning process or random variation of the weights
during training, ResNet20 and MobileNetV2 were further
explored. The blue bars in Figs.4b-4d show the difference in
channels pruned at epoch 0 versus epoch nf . The nf epochs
of finetuning was performed 5 times per network and subset
from the same starting point, thus resulting in 5 models at
epoch nf . The orange bars show the results for the average
difference in channels pruned across all

(
5
2

)
combinations

of models at epoch nf . Fig.4b shows that with ResNet ar-
chitectures, there is a large random variation due to training
(high percentage orange bars), and comparable percentages
between the orange and blue bars suggest that the effect of
the finetuning process in tuning the topology of the network
to the data processed is limited. However for the Mobilet-
NetV2 architecture, Figs.4c - 4d show that the finetuning
process effectively tunes the topology to the data processed.

These results suggest that Residual structural blocks
(common feature between ResNet and MobileNetV2) make
the weights sensitive to finetuning, but the depth-wise con-
volution (unique to MobileNetV2) allows for data-aware
discrimination between filters based on just their L1-norm.
However, further experiments need to be conducted to gen-
eralise such behaviour but the results also suggest that the
metric that needs to be used for data dependent tuning of
architectures may vary depending on the structural blocks
present.

8. Conclusion

Acknowledging the shift in paradigm from server based
compute to increased edge processing, this work provides a
solution that performs on-device DaPR, an analysis of the
accuracy gains achievable by performing such data-aware
retraining, the costs of performing this process on an em-
bedded device, and a tool that alows for rapid deployment
and research of on-device DaPR methodologies. The re-
sults show that the gains in accuracy obtained by retraining
to the subset are significant and on average 10.2pp across
a wide range of subsets, networks and pruning levels. In
terms of costs, the search for a pruned model that achieves

a given target accuracy can be performed on an NVIDIA
Jetson TX2 with sub-minute search times per minibatch for
up to a 2.22x improvement in inference latency and 90% re-
duction in memory footprint. Furthermore, analysis of the
selected filters show that for the MobileNetV2 architecture,
the L1-norm is an effective yet computationally inexpensive
metric to tune a network’s topology to the data being pro-
cessed and suggests that different architectures may require
different metrics to make pruning of the network dependent
on the data it is processing.

Additionally, the extensible and customisable tool
(ADaPT) developed to perform this on-device pruning and
retraining allows users to prune a wide range of CNN archi-
tectures and realise the memory and runtime gains imme-
diately on any platform of their choice in a fully automated
manner. To the best of our knowledge, this is the only open-
source tool that that allows the user to automatically shrink
(through pruning) and deploy a network for such a wide
variety of networks as well as target hardware. There are
commercial tools [7] that can perform this function, how-
ever tend to focus deployment on specific target hardware
architectures such as FPGAs. These combination of fea-
tures allow for rapid deployment of pruned models on any
device without user intervention and thus makes it a unique
open-source tool for pruning research.
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