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A B S T R A C T

Kinetic models offer incomparable insight on cellular mechanisms controlling protein glycosylation. However,
their ability to reproduce site-specific glycoform distributions depends on accurate estimation of a large number
of protein-specific kinetic parameters and prior knowledge of enzyme and transport protein levels in the Golgi
membrane. Herein we propose an artificial neural network (ANN) for protein glycosylation and apply this to four
recombinant glycoproteins produced in Chinese hamster ovary (CHO) cells, two monoclonal antibodies and two
fusion proteins. We demonstrate that the ANN model accurately predicts site-specific glycoform distributions of
up to eighteen glycan species with an average absolute error of 1.1%, correctly reproducing the effect of metabolic
perturbations as part of a hybrid, kinetic/ANN, glycosylation model (HyGlycoM), as well as the impact of man-
ganese supplementation and glycosyltransferase knock out experiments as a stand-alone machine learning al-
gorithm. These results showcase the potential of machine learning and hybrid approaches for rapidly developing
performance-driven models of protein glycosylation.
1. Introduction

N-linked glycosylation is a post-translational modification of para-
mount importance for protein function, folding and activity (Lee et al.,
2015; Shental-Bechor and Levy, 2008; Sol�a and Griebenow, 2009; Li
et al., 2016) and a critical quality attribute of glycoprotein therapeutics.
Glycosylation includes the attachment and further modification of an
oligosaccharide molecule in an Asn (N-linked glycosylation) or Ser/Thr
(O-linked glycosylation) residue of the protein. Specific structural vari-
ations such as the lack of core fucose or increased levels of terminal
galactose in the N-linked oligosaccharide have been found to notably
increase either the complement-dependent cytotoxicity (CDC) or the
antibody-dependent cellular cytotoxicity (ADCC) activity of monoclonal
antibody drugs (Shields et al., 2002; Shinkawa et al., 2003; Thomann
et al., 2016; Houde et al., 2010). Moreover, the glycosylation profile of
cell membrane proteins has been found to differ between healthy and
diseased human cells and has been identified as a qualitative diagnosis
attribute of specific diseases (Varki, 2016; Reily et al., 2019; Ohtsubo and
Marth, 2006). For example, patients with rheumatoid arthritis have been
found to produce immunoglobulin G and A (IgG& IgA, respectively) with
low levels of galactose in the crystallizable fragment (Fc) and high
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content of core fucosylated and bisected glycans in the antigen-binding
fragment (Fab) (Ercan et al., 2010; Youings et al., 1996). N-glyco-
proteomics of the ovarian cell serum has been recently proposed as a
robust biomarker to indicate the stage of the high-grade serous ovarian
carcinoma (HGSC) in women (Sinha et al., 2019), while the upregulation
of sialyltransferases and high levels of α2,6 sialic acid in N-glycoproteins
of the cell surface have been positively correlated to tumour cells (Schultz
et al., 2012, 2013).

The glycosylation process initiates in the Endoplasmic Reticulum
with the addition of the precursor oligosaccharide in the targeted poly-
peptide backbone site (Aebi, 2013) and further processing occurs in the
Golgi apparatus, where the oligosaccharide chain is trimmed and deco-
rated with additional sugar residues (Stanley, 2011; Dalziel et al., 2014).
N-linked glycosylation is completed with the addition of either terminal
galactose or sialic acid residues. The glycosylation enzymes, embedded in
the intra-Golgi membrane, mainly consist of glucosidases and glycosyl-
transferases with diverse functions (Stanley, 2011; Spiro, 2002). Apart
from enzyme availability, glycans conformation is greatly dependent on
the levels of nucleotide sugar donors (NSDs) in the Golgi. NSDs are
metabolic products consisting of a nucleotide mono-/di-phosphate and a
sugar molecule and act as co-substrates for the glycosyltransferases
rial.ac.uk (C. Kontoravdi).
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(Gerardy-Schahn et al., 2001; Hadley et al., 2014). NSD availability in the
Golgi is regulated by nucleotide sugar transporters (NSTs) that reside in
the Golgi membrane and are responsible for NSD translocation from the
cytoplasm to the Golgi environment through a widely studied antiport
mechanism (Parker and Newstead, 2019; Ishida and Kawakita, 2004;
Blondeel and Aucoin, 2018).

Normally, there are two levels of glycosylation regulation in the cell:
a) the glycosylation machinery and b) the glycoprotein structure. The
glycosylationmachinery includes all the enzymes and proteins associated
with glycosylation as mentioned above. However, the extent of N-linked
glycosylation is strongly dependent on the glycoprotein structure. Steric
hindrance can restrict enzyme access to the oligosaccharide chain and
therefore significantly affect the glycoprofile. For example, monoclonal
antibodies (mAbs) present a relatively simple glycosylation profile with
no tri- and tetra-antennary glycans and minor levels of sialylation due to
steric hindrance in the Fc region. In contrast, erythropoietin (EPO) - a
much smaller in size protein - has numerous exposed glycosites with
versatile and complex glycan structures, most of which are heavily sia-
lylated (Zhang et al., 2016).

The multi-level nature of glycosylation control makes it difficult to
predict the glycoprofile of recombinantly produced proteins, with site-
specific predictions being particularly challenging. Several genetic or
cell culturing modifications have been proposed in order to better control
the glycosylation process (Gupta and Shukla, 2018; Hossler et al., 2012;
del Val et al., 2010). Kinetic and genome-scale models have been used
with some success to describe it (Uma~na and Bailey, 1997; Krambeck and
Betenbaugh, 2005; Jimenez del Val et al., 2011; Kremkow and
LeeGlyco-Mapper, 2018) and additionally describe/predict the effects of
multiple culture parameters on glycosylation, such as temperature vari-
ation and addition of metabolic precursors (Zhang et al., 2020; Sou et al.,
2017; Kotidis et al., 2019) or genetic engineering (McDonald et al., 2014)
over the last two decades. Recently, a kinetic glycosylation model was
extended to include protein folding, ER degradation and aggregation and
thus describing the entire secretion pathway of the glycoprotein (Ari-
goni-Affolter et al., 2019). Moreover, low-parameter approaches
involving probabilistic modelling frameworks representing the glyco-
sylation network and predicting the effects of gene engineering have
been recently developed (Spahn et al., 2016; Liang et al., 2020). Model
development has been supported by advances in analytical methods for
identifying and quantifying the glycoform distribution, like the use of
NMR, LC-MS, MALDI-TOF-MS, MS/MS, HPLC and capillary electropho-
resis (Zhang et al., 2016; Everest-Dass et al., 2018; Gaunitz et al., 2017).

However, all the aforementioned modelling frameworks demand a
significant level of background knowledge of both the computational
tools and the glycosylation process. In addition, they require consider-
able time for parameterization and training, particularly the mechanistic
kinetic models (Medlock and Papin, 2020). Several assumptions usually
accompany the selection of nominal values for model parameters, such
as: a) enzyme concentration in the Golgi membrane, b) distribution of the
enzymes along the Golgi and c) inhibition constants for the reaction
rates. Nominal values for parameterization are usually adapted from in
vitro studies of the respective enzymes in comparable organisms, which
could be misleading as in vivo enzymatic behaviour and conditions might
differ substantially from in vitro experiments (García-Contreras et al.,
2012). Hence, as the results of the parameter estimation are strongly
dependent on the initial values, they are usually not the global solution of
the optimization problem but just one of potentially many sets of values
that could describe the system. Additionally, the construction of the re-
action network requires detailed knowledge of the reaction rules and
constraints and could have a notable effect on the predictive performance
of the model, especially in genetic modification experiments.

In contrast, the use of machine learningmethods for the description of
glycosylation requires minimum knowledge of the biological back-
ground, no construction of reaction networks and can be parameterized
within a few hours. Data-driven models, like Artificial Neural Networks
(ANNs), have been widely used for the description of several biological
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processes with the biotic phase treated as a black box (Lancashire et al.,
2009; Darsey et al., 2015; Shahid et al., 2019). ANNs require minimal
manual parameter estimation and can be readily adapted to each desired
application. However, it should be noted that neural network parameters
such as weights and biases, cannot be adequately controlled by the user.
Initial parameter values are usually seeded from the library in use and the
user has limited choice over their values. Nonetheless, this limitation can
be tackled with the manipulation of the learning rate or the optimizer of
the network. ANNs have been used to predict the location of glycosites
based on the amino acid sequence of proteins (Julenius et al., 2004;
Senger and Karim, 2005, 2008) and to describe cell culture processes of
both mammalian (Narayanan et al., 2019; Senger and Karim, 2003) and
algal cells (Del Rio-Chanona et al., 2019; Zhang et al., 2019). However,
there has been no effort to utilize the ANNs in order to predict the gly-
coform distribution of proteins despite presenting clear advantages in
terms of low parameter estimation burden.

We propose the use of ANNs to describe N-linked glycosylation of
recombinant glycoproteins. We first show that ANNs can reliably
describe the antibody glycosylation process subject to perturbations in
metabolism using intracellular NSD concentrations as inputs. The ANN
model also correctly captures the effect of manganese supplementation,
the metal ion co-factor of β-1,4-galactosyltransferase, on IgG glycosyla-
tion. When the ANN is incorporated in an overarching cell culture
modelling framework, the resulting hybrid, kinetic/ANN, glycosylation
model (HyGlycoM) shows a notably higher degree of agreement with
experimental data with a significantly reduced development and
parameterization effort compared to the fully kinetic platform. Crucially,
the hybrid model uses only information from the extracellular environ-
ment as input, i.e. it is better suited for online applications such as pro-
cess control. Moving to more complex glycoproteins, we demonstrate
that the ANN can accurately reproduce the outcome of glycoengineering
on the glycoform distribution of two fusion proteins with 4 and 5 gly-
cosites using glycosyltransferase concentrations as inputs. Having been
trained on datasets for triple knockouts, the ANN model can further
successfully predict the outcome of a quadruple knockout experiment.
Thus, the stand-alone ANN and the hybrid ANN/kinetic models can make
use of a versatile list of inputs such as the intracellular NSD concentra-
tions, extracellular metabolite concentrations and glycosyltransferase
expression levels to closely predict protein glycosylation.

2. Results

The ANN approach was applied to four different recombinantly pro-
duced proteins. The dataset for the IgG-producing cells supplemented
with galactose and uridine was generated in-house as described in the
Material & Methods section and in Kotidis et al. (2019). The datasets for
manganese chloride, galactose and fucose addition were obtained from
Villiger et al. (2016a). The datasets for the two fusion proteins, Fc-DAO
and EPO-Fc, were obtained from Bydlinski et al. (2018). The inputs of
the ANN model were either the experimental or calculated intracellular
concentrations of nucleotides and NSDs or the extracellular metabolites
concentrations in the case of the IgG products or the gene expression
levels of specific glycosylation enzymes for the two fusion proteins. The
output for all neural networks was the glycoform distribution profile of
the produced recombinant protein. The examined fusion proteins,
Fc-DAO and EPO-Fc have 5 and 4 glycosites, respectively, and therefore
the output of the ANN in the knockout experiments was the site-specific
glycosylation profile.

2.1. Construction of a hybrid model that describes cell metabolism and N-
linked glycosylation

2.1.1. Establishing an ANN model to describe IgG N-linked glycosylation
NSD levels are known to strongly affect the glycosylation profile of

the recombinant protein (Naik et al., 2018; Wong et al., 2010; Grainger
and James, 2013; Sha and Yoon, 2019; Sou et al., 2015). For this reason,
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the experimentally determined intracellular concentrations of nucleo-
tides and NSDs were used as inputs of the neural network. The neural
network was trained with the nucleotide and NSD concentrations of four
feeding experiments (P1, P2, P4 and P5, with P1 being the control
experiment) and the respective glycoform distribution on days 7, 9, 11
and 12 of cell culture, when available. In total, 11 datasets were used for
model training and validation, with each dataset including the profile of
12 different variables (132 points in total): intracellular concentration of
AMP, ADP, ATP, CTP, UTP, GTP, UDPGalNAc, UDPGlcNAc, UDPGal,
UDPGlc, GDPMan and GDPFuc. The fifth experiment (P3) was used for
ANN model validation. The validation results were compared against the
P3 experimental dataset in order to verify model capabilities by tuning
the network hyperparameters.

The results of the ANN glycosylation model validation for the P3
experiment are compared with the experimental data in Fig. 1. ANN
model simulations closely describe the experimental data with the
maximum error found on day 11 measurement of the GnGnF glycan (ffi
4.1%) due to the unexpected increase of the GnGnF relative abundance.
The validation of the ANN resulted in 2 hidden layers with 22 and 18
neurons in the first and second hidden layer, respectively. The inclusion
of three hidden layers was found to only marginally improve the model
results and was therefore dismissed. The ANN model closely describes
the glycoform distribution of the IgG for all time points with an average
absolute error of 0.87%. When we trained the model with a different
combination of the training and testing datasets but the same hyper-
parameters configuration, it remained in good agreement with experi-
mental results (Supplementary Fig. S1).

Several kinetic models have attempted to describe the complex
network of nucleotides and NSD synthesis, either accounting for the
entire synthesis network (Jedrzejewski et al., 2014) or reduced networks
(Sou et al., 2017; Kotidis et al., 2019), while other efforts have been
undertaken in order to calculate the fluxes of the NSDs towards the Golgi
apparatus and the glycosylation model (Sha et al., 2019). However, the
Monod-type equations used in kinetic mechanistic models to describe
NSD synthesis and protein glycosylation do not account for more com-
plex phenomena that occur during protein synthesis, such as variations in
the expression levels of NSTs and glycosylation enzymes, which could
significantly affect the resulting glycosylation profile (Wong et al., 2010;
Grainger and James, 2013). Moreover, the assumption of a linear
Fig. 1. Comparison of the ANN validation to the experimental data for four d
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relationship between the intracellular concentration of NSDs (Krambeck
and Betenbaugh, 2005) or the flux of the NSD towards the Golgi (Sha
et al., 2019) and the intra-Golgi NSD concentration neglects the regula-
tion exerted by NSTs (i.e. SLC35), which determine and control the flow
of NSDs to the Golgi apparatus. The proposed data-driven ANNmodel, on
the other hand, has been demonstrated to tackle these problems by
applying complex non-linear relationships between the inputs (nucleo-
tides and NSDs) and the outputs (recombinant protein glycoform distri-
bution) subject to sufficiently informative training datasets. The use of
ANNs avoids the need to mechanistically describe the complicated
regulation of NSD transport and gene expression. The accurate descrip-
tion of the IgG glycoform distribution, in this case, confirms that the
concentrations of NSDs and nucleotides were appropriate inputs for this
network and can reliably capture the impact of galactose and uridine
addition on glycosylation.

The robustness of the ANN model was examined by excluding each of
the inputs one by one. As shown in Supplementary Fig. S2, the average
absolute error remains minimal, ranging from 0.87% for the full dataset
to 1.25% for the case where ADP is excluded. This indicates that the ANN
captures the overall trend of the input set, without being excessively
dependent on any of them. The training results of the ANN are shown in
Supplementary Fig. S3. In order to further evaluate the performance of
the ANN, the statistical-based multivariate method of Partial Least
Square Regression (PLS) that has been previously found useful for the
description of monoclonal antibody glycans (Sokolov et al., 2017) was
applied to the relevant dataset. PLS requires reduced parameter tuning
from the user and is considerably less computationally intensive. How-
ever, the ANN model outperformed the PLS prediction (Supplementary
Fig. S4A) at all time points apart from the day 11 predictions of GnGnF
and AGnF. The average absolute error of the PLS model prediction was
1.66%, almost double the error of the ANN prediction.

2.1.2. Hybrid glycosylation model (HyGlycoM) - coupling ANN
glycosylation model with a kinetic metabolism cell model

The ANN model was coupled with the Chinese hamster ovary (CHO)
cell metabolism, antibody synthesis and NSD synthesis modules of the
framework presented in Kotidis et al. (2019), replacing the mechanistic
glycosylation module, as shown in Fig. 2A. The resulting hybrid model
utilizes the concentration of metabolites and certain amino acids in the
ifferent time points during the cell culture period for the P3 experiment.



Fig. 2. (A) Representation of the HyGlycoM, composed of a CHO metabolism kinetic model, an NSD synthesis kinetic model and an Artificial Neural Network that
describes the N-linked glycosylation of the recombinant protein (IgG) in the Golgi, (B) Comparison of the kinetic module simulations for the nucleotide sugars of the
P3 experiment with the experimental data. The estimated nucleotide sugars are the output of the kinetic module that is then fed as input to the ANN module, (C)
Comparison of the HyGlycoM simulations for the glycans of the P3 experiment with the experimental data.
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cell culture environment as inputs. The CHO metabolism module calcu-
lates the specific growth rate and the specific antibody production rate,
which are then fed to the NSD synthesis module. The latter, in turn,
calculates the concentration of the NSDs in the intracellular environment
that are subsequently used as an input for the ANN model.

The training datasets of HyGlycoM included the P1, P2, P4 and P5
experiments. The neural network of the HyGlycoM was re-trained using
the NSD concentrations calculated from the mechanistic modules of the
model as inputs. Subsequently, the model was validated against the P3
experiment. The ANN module was able to absorb the inaccuracies of the
kinetic modules in the estimation of the nucleotide sugars due to the
correct description of the qualitative changes between the different ex-
periments and time points from the latter, as shown in Fig. 2B. A crucial
advantage of neural networks is the tolerance of inaccuracy in the input
values, as long as the qualitative differences of the points are correctly
described. The average absolute error between the experimental data of
the P3 experiment and the HyGlycoM simulation (Fig. 2C) is 0.98%.

2.1.3. HyGlycoM outperforms the fully kinetic model
In order to further investigate the predictive capabilities of the

HyGlycoM and compare the performance of the hybrid model with the
respective holistic kinetic model described in Kotidis et al. (2019), both
the hybrid and the kinetic model were evaluated by comparison against a
4

sixth (P6), independent experiment also described in Kotidis et al.
(2019). Results of the comparison of model predictions with the exper-
imental data are presented in Fig. 3. The glycoprofile of the produced IgG
consists mainly of the non-galactosylated GnGnF and the
mono-galactosylated AGnF glycans. Within the experiments used for
ANN model training, test and validation, the abundance of the GnGnF
structure varies within a range from 37.6% to 53.7% and for AGnF from
34% to 44.4%

The kinetic model correctly captures the profile of GnGnF on days 7
and 9 of the culture compared to the ANN prediction. However, the ANN
better describes GnGnF concentration for the following two time points
and for almost all the time points for the remaining glycans, reducing that
way the average absolute error by 30% compared to the kinetic model.
The HyGlycoM predictions presented an average of ffi 1.25% absolute
error when compared to the experimental data. More specifically, the
predictions of the galactosylated glycans for the hybridmodel are notably
closer to the respective experimental measurements than the kinetic
model. The shortcoming of the kinetic glycosylation module being
insensitive to moderate changes in NSD concentrations is therefore effi-
ciently tackled by its replacement with the ANN glycosylation model.
However, this reduced sensitivity of kinetic models can be proven useful
for the reliable description of cellular processes that carry a high degree
of inherent variability and show different profiles from batch to batch.



Fig. 3. Comparison of the HyGlycoM prediction for an independent experiment (P6) with the experimental data and the prediction of the kinetic glycosylation model.
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Unlike kinetic models, ANNs can be unpredictably sensitive to slight
changes in inputs, which can lead to dramatic loss of accuracy. In order to
further evaluate the HyGlycoM predictive capabilities compared to other
multivariate methods, a PLS model was trained on the P1–P5 data. The
HyGlycoM significantly outperformed the PLS predictions for the P6
experiment, as shown in Supplementary Fig. S4B.
2.2. Extending the ANN to predicting the effect of metal ion addition on
IgG glycosylation

Metal ions are critical co-factors of glycosyltransferases and can
significantly affect enzyme activity (Lairson et al., 2008). More specif-
ically, manganese (in the form of MnCl2) acts as a co-factor for the
Fig. 4. ANN model fitting to: (A) the experimental data used for model training, (B) t
for testing the model’s predictive capabilities. In graph C the control experiment (M0
and fucose addition to antibody glycosylation. (D) PCA performed on the available d
manganese; G: galactose; F: fucose.
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N-acetylglucosaminyltransferases and β-1,4-galactosyltransferases and is
usually included in culture media in order to enhance protein gal-
actosylation. Efforts to incorporate extracellular manganese concentra-
tion in mechanistic glycosylation models have been previously described
(Karst et al., 2017; Villiger et al., 2016b). Herein, we propose an ANN
configuration with the additional inclusion of the cumulative manganese
concentration in the inputs set to describe the effects of the co-factor on
IgG glycosylation.

In Villiger et al. (2016a), the authors examine the effect of different
levels of manganese, galactose and fucose addition to fed-batch CHO cell
cultures. Briefly, an IgG-producing CHO–S cell line was cultured in 10mL
bioreactors with a downwards shift in pH and temperature introduced on
day 5. Cells were harvested on day 17 and glycans of the Fc-region were
he experiment used for model validation and (C) the experimental data reserved
G0F0) was included as well in order to show the effect of manganese, galactose
atasets in order to identify correlations between experiments. Abbreviation: M:
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quantified. The cumulative concentrations of manganese, galactose and
fucose added in each experiment can be found in Supplementary
Table S1. For the ANN training, the cumulative concentration of man-
ganese was included in the inputs in addition to the intracellular nucle-
otides and NSD concentrations at day 17. The effect of galactose and
fucose addition was reflected in the NSD levels and therefore the me-
tabolites were not included in the inputs. The ANN was trained in eight
Figure 5. (A), (C–G): ANN glycosylation model fitting for three different glycosites
three hidden layers was examined. (B): Expression of each b4GalT isoform in each en
(REF). The experimental data for A, C-G graphs are the average of the quadruple knoc
for all graphs (A–G) are taken from Bydlinski et al. (2018). The glycans included in th
knockout clones but were not detected in the quadruple knockout cell lines. Glycans
included in the analysis.

6

experiments and validated against a ninth experiment (M0G6F1). For the
selection of the validation experiment, a principal component analysis
(PCA) was performed on the available dataset. The M0G6F1 was chosen
for validation as it was found not to cluster with any other experiments
(Fig. 4D). The ANN predictive capability was then tested against an in-
dependent experiment outside the training space (M2.5G6F8).

As presented in Fig. 4A and B the ANNwas accurately trained with the
in the Fc-DAO and EPO-Fc proteins. The performance of networks with two and
gineered cell line with respect to the expression of the enzyme in the wild type
kout b4GalT1/2/3/4 cell lines (D-1C3, D-1E1 and D-2E7). The experimental data
e graphs were present in the glycoform distributions of at least three of the triple
measured in low abundances (<1%) in one or two knockout cell lines were not
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training and validation sets in order to adequately describe the effect of
manganese, galactose and fucose addition on IgG glycoprofile. Only
when 2.5 μMmanganese is added in combination with galactose does the
shift from the non-galactosylated GnGnF to the mono-galactosylated
AGnF glycan become prominent. The predictive capabilities of the
ANN model were then evaluated against an independent experiment and
the results are shown in Fig. 4C. The ANN accurately describes the glycan
distribution and the changes in AAF and AGnF levels between the control
(M0G0F) and the feeding experiment (M2.5G6F8).
2.3. Application of an ANN model to predict the outcome of gene
knockouts

When the experimental objective is a radical change of the glycoform
distribution of the recombinant protein, host cell lines are genetically
engineered in order to favour specific pathways of glycosylation (Yang
et al., 2015;Wang et al., 2018; Yin et al., 2015). In Bydlinski et al. (2018),
the authors examine the contribution of four different β-1,4 galactosyl-
transferases (b4GalT1, b4GalT2, b4GalT3, b4GalT4) to the site-specific
glycosylation of an EPO-Fc and an Fc-DAO protein, by creating stable
cell lines with triple and ultimately quadruple knockouts, while the re-
combinant proteins are transiently expressed.

The expression levels of the four enzymes reported for each cell line in
Bydlinski et al. (2018) were used as the input for the ANN, while the
site-specific glycoform distribution of either the EPO-Fc or Fc-DAO was
considered as the output. In order to examine both the fitting and pre-
dictive capabilities of the configured ANN model, two studies were
performed: a) in the fitting study, the three triple knockout experiments
were used as the training set and the quadruple knockout experiments as
the validation set, b) in the predictive study, two of the three knockout
experiments were used as the training set, the third triple knockout
experiment as the validation set and finally the ANN model was used to
predict the glycoform distribution of the quadruple knockout experiment
de novo (test set). A 3% error with normal distribution around the
Fig. 6. ANN glycosylation model predictions for the Fc-site of EPO-Fc (A), Fc-site o
quadruple knockout cell lines. The experimental data of the wildtype cell line are d
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measured values was introduced in the inputs and outputs in order to
generate 16 artificial points for each experiment and therefore increase
the robustness of the ANN model training step and reduce the risk of
overfitting (Zhang et al., 2019; Tulsyan et al., 2018).

In order to account for the variability in enzymatic expression in the
different clones with the same gene knockouts (Fig. 5B), the glycoform
distribution of each clone was individually included in the training and
validation datasets. The fitting of the ANN model to the experimental
data is presented in Fig. 5A,5C-G. A configuration of three hidden layers
examined Asn38 EPO-Fc and Asn538 Fc-DAO residues (Fig. 5E, G),
resulted in a slightly improved fitting compared to the two hidden layers
ANN model. On the other hand, the inclusion of a third hidden layer for
the rest of the examined asparagine residues did not improve model
fitting (Fig. 5A, C, D, F). Thus, considering the excessive computational
time required for training and validation of the three hidden layers model
and the minor improvements achieved, the rest of the experiments were
only represented with a two hidden layer ANN. With the exception of the
Asn538 glycosite of Fc-DAO (Fig. 5G) that presented a variety of 18
different glycans, the rest of the residues in Fig. 5 showed an even more
complex glycoform distribution with 26–34 glycans measured across the
different clones. Despite this, the model closely tracked the glycoform
distribution of the knockout cell lines for most of the glycosites and for
both proteins, with the exception of the Asn24 EPO-Fc that presented the
highest number of different glycan species (34). As shown in Fig. 5, the
ANN model is, in some cases, unable to capture the complete disap-
pearance of glycans that were present in the wild type and triple gene
knockouts. However, the fitting of the model for the most abundant
glycans accurately matched the experimental data. The discrepancies for
the GnGnF distribution in Fig. 5A and D are due to the overestimation of
the low abundant glycans that correspond to more complex structures.

The ANN model was subsequently used for predicting the glycans
present in glycosites on both EPO-Fc and Fc-DAO (Fig. 6). The neural
network presented an average absolute error of 1.1% compared to the
experimental data of the quadruple knockouts. The Asn110 residue of Fc-
f Fc DAO (B), Asn110 residue of Fc-DAO (C) and Asn538 of Fc-DAO (D) for the
isplayed for reference.
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DAO (Fig. 6C) showed minor changes between the wildtype and the
quadruple knockout cell lines as the wildtype concentration of gal-
actosylated glycans in this specific site was negligible. However, the
mutation of all four galactosyltransferases resulted in an immense
alteration of the glycoform distribution in the Fc-site of both EPO-Fc and
Fc-DAO proteins and the Asn538 site of Fc-DAO. The ANN model was
correctly trained on the contribution of each galactosyltransferase from
the triple knockout data and was therefore successful in predicting the
glycoform distribution of the quadruple knockout experiment. Although
technically an extrapolation, the prediction of the quadruple knockout
glycoform distribution was based on the assumption that the ANN was
provided with enough data to accurately weigh the contribution of each
individual β-1,4-galactosyltransferase towards the synthesis of each in-
dividual glycan.

3. Discussion

A data-driven ANN model was proposed to accurately describe the N-
linked glycosylation profile of IgG monoclonal antibodies, EPO-Fc and
Fc-DAO proteins expressed in CHO cells. Initially, the ANN model was
trained with experimental data for the intracellular concentration of
nucleotides and NSDs from five different fed-batch experiments that
included the addition of galactose and uridine to increase monoclonal
antibody galactosylation. The construction and fitting of the ANN
resulted in a system with 2 hidden layers and 22 and 18 neurons in the
first and second layer, respectively, which presented an absolute error of
0.87% against the experimental data used for model validation. The ANN
model was additionally trained on a dataset including manganese,
galactose and fucose supplementation in an effort to specifically evaluate
the effect of manganese on the activity of β-1,4-galactosyltransferase and
therefore on the IgG glycosylation. As shown in Fig. 4C, the model was
able to closely predict the changes in glycans distribution in an inde-
pendent experiment of manganese, galactose and fucose feeding.

An advantage of the ANN over kinetic-mechanistic models is that the
parameterization (including the estimation of the hyperparameters) is
automatically performed during network training and validation and
usually takes only a few hours. In contrast, the parameterization of a
kinetic glycosylation model requires concise understanding of the
glycosylation process and advanced know-how of parameter estimation
methodologies. Sophisticated methods for parameter estimation of such
models have been extensively applied in order to accelerate and
strengthen the parameter estimation process (Jimenez del Val et al.,
2011; Kotidis et al., 2019; Jimenez del Val et al., 2016; Hossler et al.,
2007). Moreover, mechanistic glycosylation models are usually devel-
oped for a specific product of interest and the expansion or alteration of
the reaction network for the description of other proteins demands a
detailed knowledge of the cell line (e.g. genetic modifications) and
glycosylation enzymes preferences. Even in the work presented by
Krambeck et al. (2009) where the reaction network is automatically
generated to describe complex protein glycoform distributions, the user
has to define the necessary enzymatic and reaction rules and constraints
for network construction.

In an effort to utilize extracellular data for predicting IgG glycosyla-
tion with the use of neural networks, the ANNmodel replaced the kinetic
glycosylation module in the mechanistic modelling framework presented
in Kotidis et al. (2019). The resulting hybrid HyGlycoM model consisted
of two kinetic modules describing CHO cell metabolism and NSD syn-
thesis, feeding the ANN glycosylation model with the estimated levels of
the NSDs in the intracellular environment. The use of the kinetic modules
for the description of the extracellular and intracellular metabolic profile,
instead of an additional ANN, provides HyGlycoM with the flexibility to
adapt to alternative culture conditions in terms of the feeding schedule
and medium/feed composition. A reliable kinetic model can additionally
calculate the NSD concentrations and feed them to the glycosylation
ANN, thereby reducing the number of experimental measurements
required for glycoform prediction. The HyGlycoMwas used to predict the
8

glycoform distribution of an IgG monoclonal antibody in a series of
feeding experiments, demonstrating the ability of the ANN model to
absorb the inaccuracies of the kinetic modules that were used to estimate
the model inputs (Fig. 2B). The HyGlycoM error on the predicted gly-
coform distribution was calculated at 1.25%, slightly higher than the
standard deviation of the experimental measurements which was 0.93%.
Finally, when compared with the fully mechanistic framework that in-
cludes the kinetic glycosylation module, HyGlycoM improved the
average absolute error by 30%. The HyGlycoM adaption to new process
conditions such alternative cell lines or mild hypothermia is limited by
the necessary re-estimation of kinetic parameters and the inclusion of the
appropriate metabolic pathways in the kinetic modules. In a similar
manner, the ANN module could require re-training on new control
datasets when the process conditions differ significantly from the initial
training sets.

Finally, the ANN glycosylation model was trained in triple β-1,4-
galactosyltransferase isoforms knockout experiments and used to either
simulate or predict the effect of a quadruple b4GalT knockout experiment
on the site-specific glycosylation profile of recombinant EPO-Fc and Fc-
DAO (Figs. 5 and 6) with a 1.1% absolute average error. Significantly,
and despite not usually being reliable for extrapolation, the ANN model
presented herein closely predicts the protein glycoform distribution
outside the training space (Figs. 2C, 3 and 4C and 6) for networks with up
to 18 different glycan species, when it is supplemented with appropriate
data for training. The glycoform distribution of these fusion proteins is
akin to that found on host cell proteins of CHO cells. Efforts to describe
the greatly complex glycoform distribution of the host cell proteins of
CHO cells using kinetic models have been recently undertaken (Kram-
beck et al., 2017). Krambeck et al., (2017) first constructed a vast reac-
tion network of up to 15,000 oligosaccharides and 50,000 reactions to
describe the complex glycoform distribution of the CHO cell proteome
and then trained the kinetic model to the experimental data of several
mutant CHO cell lines (knockouts of glycosylation enzymes and nucle-
otide sugar transporters) by varying the concentration of glycosylation
enzymes in the Golgi. However, it was shown that acquiring satisfying
fitting demanded the simultaneous estimation of all the enzyme con-
centrations included in the study, unlike the current work where no
further assumptions on the behaviour of the rest of the enzymes were
considered.

Whilst the implementation of neural networks requires minimal
knowledge of the biological background of the described system, be it
glycosylation or another cellular mechanism, the construction of such a
network requires great caution. In order for an ANN to be predictive,
apart from the large amount of data required for its adequate training, the
user needs to correctly choose the inputs of the network. It is essential
that these inputs have a biological connection to the requested outputs
and that there are cellular mechanisms underlying these connections, in
order for the ANN to accurately predict independent experiments.
Moreover, different analytical methods for the quantification of NSDs
(i.e. MALDI-TOF-MS or HPAEC), enzyme levels (i.e. RNA-seq, qRT-PCR,
WB) and glycan distribution (i.e. LC-MS, MALDI-TOF-MS, gel or capillary
electrophoresis) are available. Similarly to kinetic models, the experi-
mental method used for inputs and outputs quantification should be
consistent amongst the training, validation and test sets.

The availability of a wider range of data would enable the application
of the ANN or hybrid model in more versatile conditions. More specif-
ically, the combination of data for both glycosylation and metabolic gene
expression (i.e. RNA-seq) and nucleotide sugar intracellular availability
would constitute a more comprehensive input dataset. The adaptability
of neural networks in combination with the current capabilities for deep
analysis of cellular profile could contribute towards the development of a
model that is translatable between different cell lines (i.e. CHO–K,
CHO–S, CHO-DG44) and could be used for the identification of the
optimal host for recombinant protein expression. Beyond recombinant
protein synthesis, ANNs can prove useful in identifying metabolic
markers for human disorders that involve alternations in protein
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glycosylation.

4. Conclusions

An alternative modelling framework of describing N-linked glyco-
sylation of recombinant proteins that makes use of Artificial Neural
Networks was proposed herein. The model, either as a stand-alone ANN
or as part of a hybrid model combining both kinetic relationships
describing CHO cell metabolism and the data-driven network describing
glycosylation, was successful in simulating and predicting the glycoform
distribution of four different recombinant proteins expressed in three
different CHO cell lines (GS-CHO, CHO–K1, CHO–S), two IgG mono-
clonal antibodies and two fusion proteins (EPO-Fc and Fc-DAO). It used
inputs at either the metabolite or enzyme levels to accurately describe the
glycoform distribution of all four products, giving accurate site-specific
predictions for the effect of quadruple glycosyltransferase knockouts on
the glycoforms of EPO-Fc and Fc-DAO. Being less computationally
demanding than kinetic models, the ANN glycosylation model could
greatly assist the design of glycoengineering strategies or application of
glycosylation control during cell culture.

5. Materials & methods

5.1. Cell culture

All the experimental data used for model construction, training and
validation were taken from literature (Kotidis et al., 2019; Villiger et al.,
2016a; Bydlinski et al., 2018). Six different fed-batch experiments were
used for the training and validation of the HyGlycoM model. Briefly,
IgG1-producing CHO cells (kindly donated by MedImmune, Cambridge,
UK) were cultured in 500 mL vented Erlenmeyer flasks with a working
volume of 100 mL using CD CHO medium (Life Technologies). 10 %v/v
CD EfficientFeedM C AGT™ (Feed C) Nutrient Supplement (Life Tech-
nologies) was added every other day starting from day 2 of the culture.
Six feeding experiments (P1-6) were conducted: a negative control which
was only supplemented with Feed C (P1), four experiments supple-
mented with galactose and uridine on days 4, and 8 of the cell culture in
addition to Feed C and one experiment (P6) supplemented with galactose
and uridine on days 4, 6, 8 and 10 in addition to Feed C. The amount of
galactose and uridine supplemented in each time point can be found in
Table 1. All cultures were maintained at 36.5 �C, 150 rpm and 5% CO2.
Full details of the cell culture process and samples analysis can be found
in Kotidis et al. (2019). All cultures were conducted in biological
duplicates.

5.2. Mechanistic-kinetic mathematical model

The kinetic model used in this study has been previously presented in
Kotidis et al. (2019) and was simulated using the gPROMS 5.1.1
modelling environment (Process System Enterprise Ltd, London, U.K.,
www.psenterprise.com/gproms). The model consists of three modules
that describe CHO cell metabolism and antibody synthesis, NSD synthesis
and IgG glycosylation. The latter has been adapted from Jimenez del Val
Table 1
Amount of galactose and uridine added at each feeding time point and in each exper

Experiment Galactose (mmol)

Day 4 Day 6 Day 8 Day

P1 0 0 0 0
P2 1 0 1 0
P3 1 0 1 0
P4 1 0 1 0
P5 5 0 5 0
P6 0.65 0.93 0.90 0.87
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et al. (2011) by re-estimating the distribution and inhibition constants of
the Golgi enzymes for the IgG product used herein and replacing NSD
transport with a constant ratio (20:1) between intra-Golgi NSD and
cytosolic concentrations. The inputs of the dynamic model are the con-
centrations of specific metabolites and amino acids (glucose, lactate,
ammonia, glutamine, glutamate, asparagine, aspartate, galactose and
uridine) in the media and feed. The metabolic model calculates the
extracellular concentration of the metabolites and amino acids over the
cell culture period and the specific cell growth and protein production
rates, which are then fed to the secondmodule of NSD synthesis. The NSD
synthesis module calculates the dynamic profile of the intracellular
concentration of NSDs and the fluxes of the NSDs towards the Golgi. The
calculated NSD concentrations are used as inputs for the third module
that describes IgG glycosylation and results in the glycoform distribution
profile of the protein of interest. This modelling framework as presented
in Kotidis et al. (2019) results in �5% error range for the distribution of
IgG glycans.
5.3. Artificial Neural Networks model construction

Python 3.7 was used for the construction, training and validation of
the ANNs. A general representation of the ANNs used in this work is
shown in Fig. 7. A typical neural network (McCulloch and Pitts, 1943)
consists of one or more hidden layers, each of which includes a number of
neurons or nodes . The output of the neural network is the glycan dis-
tribution of the protein of interest. The list of different glycoforms has to
be pre-defined by the user. The neurons of the first hidden layer are
connected to the inputs of the network through the weight of each input
towards each neuron. Hence, every input has a potential impact on the
value of each neuron depending on the weight of their in-between
connection. In turn, the neurons of the first hidden layer (and each
hidden layer thereafter) are used to estimate the value of the neurons in
the subsequent hidden layer using an activation function and the
respective weight, until the values of the final layer neurons (outputs) are
estimated. Then, the difference between the network outputs and the
provided data is calculated and through the backpropagation method the
weights of each connection are re-estimated until the number of training
iterations has been reached. In the work presented herein, the sigmoid
activation function was chosen as it has been successfully applied in
relevant works for bioprocess modelling (del Rio-Chanona et al., 2016).
The number of training iterations was set to 20,000, apart from themodel
used for the manganese experiments that included 2000 epochs as they
were found to be sufficient for error minimization. The examined ANN
configurations included two or three hidden layers.

Including more than three hidden layers bears the risk of overfitting
and was found to significantly increase parameter estimation time
without improving model accuracy in this particular application. Apart
from keeping the network as “shallow” as possible by using the minimum
number of hidden layers and neurons required to adequately describe the
system, common methods used for avoiding overfitting, include the
dropout, noise introduction and weight constraint methods. More spe-
cifically, in the dropout method, inputs and neurons are removed during
training in a probabilistic manner, while in noise introduction the user
iment.

Uridine (mmol)

10 Day 4 Day 6 Day 8 Day 10

0 0 0 0
0 0 0 0
0.50 0 0.50 0
2 2 2 2
0.50 0.50 0.50 0.50
0.076 0.13 0.28 1

http://www.psenterprise.com/gproms


Fig. 7. (A) Schematic diagram of an Artifi-
cial Neural Network (ANN): The depicted
ANN consists of 3 inputs, 3 outputs, f hidden
layers (HL) and a variable number of nodes
(neurons) for each HL. The output in the
studies presented herein was the glycoform
distribution. The dashed lines are used to
show the connections between and with the
neurons that are not depicted in the graph.
(B) Graphical representation of the N-linked
glycosylation process in the Golgi apparatus.
Arrows of different colour indicate the re-
actions taking place in different Golgi com-
partments and dashed arrows indicate
protein transfer or secretion: cis (orange),
medial (purple), trans (blue) and TGN
(green). (For interpretation of the references
to colour in this figure legend, the reader is
referred to the Web version of this article.)

P. Kotidis, C. Kontoravdi Metabolic Engineering Communications 10 (2020) e00131
creates artificial points by adding an error distribution to the inputs. Bias
was set to zero as it was found to not contribute to the predictive capa-
bilities of the neural networks. Additionally, the hidden layers of the
ANN model should not be considered a representation of the Golgi
apparatus compartments in the current study.

After training, the ANNwas subjected to validation where the number
of neurons and hidden layers (hyperparameters) were tuned in order to
minimize error betweenmodel simulations and the experimental data for
the dataset of interest (validation set), based on the strategy proposed in
Del Rio-Chanona et al. (2019). For the validation simulations, the
objective function was set as the minimization of the sum of the absolute
difference between the experimental measurements and the simulation
results for the examined dataset (Eq. (1)).

OF¼min
X

i

��EGi � NGm;h1;h2;…;hm
i

�� (1)

where, OF is the value of the objective function, i are the different gly-
cans, EGi is the experimentally measured value of each glycoform and

NGm;h1;h2;…hm
i is the simulated value of the ith glycan for an ANN with m

hidden layers and with h1; h2;…; hm number of neurons for hidden
layers 1; 2; …;m respectively.

The average absolute error for each set of model predictions was
calculated using Eq. (2):

AAE¼
P

i

��EGi;k � NGi;k

��
n

(2)

where, AAE is the value of the average absolute error, EGi;k is the
experimentally measured value of the ith glycoform in the kth set
considered for training or prediction, NGi;k is the simulated or predicted
value of the ANN for the ith glycoform in the kth point and n is the total
number of points considered, calculated as the product of the total
number of glycans and the total number of sets.

The ANN predictive capabilities were verified: a) against an inde-
pendent experiment (P6 or M2.5G6F8) of interest that was not used for
either training or validation for the cell culturing experiments and b)
against the quadruple knockout of β-1,4-galactosyltransferase isoforms
for the gene engineering experiments. All the data and models that
10
support this study can be found in: https://github.com/PK161
7/ANN-glycosylation.
5.4. Multivariate analysis methods

OriginPro 2020 (OriginLab, Northampton, MA, USA) was used for the
implementation of the PCA and PLS methods.
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