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A generic framework for the simulation of transient dynamics in nonlinear aeroelasticity

is presented that is suitable for flexible aircraft maneuver optimization. Aircraft are mod-

elled using a flexible multibody dynamics approach built on geometrically-nonlinear composite

beam elements, and the unsteady aerodynamics on their lifting surfaces is modelled using

vortex lattices with free or prescribed wakes. The open loop response to commanded inputs

and external constraints is then fed into a Bayesian optimization framework, which adaptively

samples the configuration space to identify optimal maneuvers. As a representative example,

we demonstrate the proposed approach on a catapult-assisted takeoff. The specific modelling

challenges associated to that problem are first discussed, including the effect of aircraft flexi-

bility. An optimality measure based on ground clearance and wing root loads is then defined.

It is finally shown that the link that ramp-length constraints introduce between acceleration,

release speed and wing root loads is the main driver in the optimal solution.

I. Introduction
Advances in energy storage and generation and carbon fibre manufacturing have enabled High Altitude Long-

Endurance (HALE) unmanned air vehicles whose stiffness is orders of magnitude lower than on conventional aircraft of

similar dimensions. They display strong couplings between their (in general, nonlinear) aeroelastic and flight dynamics

characteristics, which has brought about the development of suitable nonlinear aeroelastic simulation tools [1–5] and the

appearance (or re-emergence) of less conventional dynamic stability situations [6, 7]. Geometrically-nonlinear effects in

aeroelasticity are by now well known [8–10], specially in static analysis, and the dynamics of Very Flexible Aircraft

(VFA) have already been investigated under multiple loading environments, including “1–cos” deterministic gusts [11],

wake vortex encounters [12] and spanwise-varying low-altitude atmospheric turbulence [13].

A typical solar-powered HALE configuration has a large fraction of the total mass distributed along the wing span

in the form of battery packs. This results in load distributions under longitudinal gusts that greatly vary with respect

to conventional aircraft, where a large portion of the mass is in the fuselage or close to the wing root. Moreover, the
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centre of mass variation in position when wings undergo nonlinear deformations can be important, due to a large

ratio of the mass being attached to the wings. Finally, spanloaded lightweight airframes enhance the role of inertia

relief as a passive load alleviation mechanism. To date, most of the computational effort in the open literature has

focused on building nonlinear aeroelastic simulation strategies to capture those effects and, more recently, on designing

suitable feedback control strategies [14–19]. An additional challenge is brought about by the need to identify nominal

operation procedures, as recently explored by Maraniello and Palacios [20] for lateral maneuvers with very flexible

wings. A parameterization of the maneuver definition defines an optimization problem on a suitable metric of the

dynamic response of the vehicle. If the number of independent parameters used to define the maneuver is sufficient

small, gradient-less methods become competitive in the exploration of the complex design space of feasible maneuvers.

Many gradient-less algorithms, such as Powell [21] and Nelder-Mead [22] are still rather local and are designed to work

sequentially, that is, one single cost function can be evaluated at a time. A more suitable family of algorithms is Bayesian

Optimization (BO) [23, 24]. BO is now extensively used in machine learning for optimization of the hyperparameters

of a learning model. It is suited for expensive cost functions defined in continuous domains with a relatively small

dimensionality (typically less than 20). BO is based on the construction of a surrogate for the cost function and the

estimation of the uncertainty of that surrogate using Gaussian process regression. This information is then used to

determine where to sample next using a balanced trade-off between exploration versus exploitation.

As a working example, this paper will describe the modelling and implementation details, and the parameter

choices for simulating and optimising the Catapult-Assisted Takeoff (CATO) of a representative solar-powered HALE

aircraft. Robust and scalable launching procedures are of special interest as these vehicles evolve from experimental

to commercial products. Depending on the total mass and geometry, the launch procedures found in the different

prototypes under development include manual launch, a conventional runway takeoff or towing on a trailer. In particular,

CATO offers reliability, predictability and robustness, while the relatively small footprint of the catapult would allow

to easily modify the takeoff orientation. Importantly, takeoffs are good examples of aeroelastic simulation where no

linearization can be carried out. The instantaneous aircraft velocity evolves from rest to close to cruise speed, while the

structural deformation varies from a multiply-supported gravity-only loading condition to an aeroelastically trimmed

shape. This happens in a few seconds. Finally, low wing bending frequencies imply that, for short enough ramps, the

state of the aircraft on release might be highly dynamic and far from a steady climb condition.

This paper is divided in five sections, including this introduction. Section II describes the numerical methods used

in this work. The nonlinear aeroelastic solver is first described, followed by a brief introduction to the optimization

methods. Section III provides a description of the catapult-assisted takeoff problem. The aircraft model is first described,

followed by implementation details and optimal maneuver definition. Numerical results can be found in section IV,

which includes an assessment of elastic effects, an exploratory parametric study and the results from the optimization

process. Lastly, section V summarizes the main outcomes of this work.
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II. Numerical methods
For the aircraft simulations in this work a time-domain, geometrically-nonlinear aeroelastic solver has been built,

which has been embedded in a general purpose Bayesian optimization framework. Both are summarized next.

A. Nonlinear aeroelastic simulation

1. Structural solver – Geometrically-Exact Composite Beams

The structural model presented here is a finite element beam formulation based on nodal displacements and rotations

that uses quadratic elements for interpolation and Cartesian rotation vectors for the parameterization of finite rotations

[25]. This formulation is particularly suitable for VFA aeroelasticity due to the support for geometrical nonlinearities

and the ease of coupling with aerodynamic models and of implementation of boundary conditions and multibody

constraints. A short description is included next, while further details can be found in Ref. [5].

Figure 1 shows the frames of reference involved in the description of the structural problem, and their relationship

and parameterizations. The description of the deformation of the structure is given in a body-fixed, moving frame of

reference A. Its kinematics with respect to the inertial frame, G, are defined by the instantaneous translational velocity

vA(t) and angular velocity ωA(t) of its origin. Subindexes are used to express that vector magnitudes are projected

onto their components on a particular reference frame. We define the aggregated vector of rigid-body velocities

β =
{
v>Aω

>
A

}>
.

Fig. 1 T-Tail HALE configuration with frames of reference indicated.

The orientation of the body-attached frame of reference, A, with respect to the inertial frame, G, is parameterized

using quaternions q(t) =
{
q0(t) qv(t)>

}>, which gives a computationally efficient description of complex kinematics

while avoiding accumulated errors and gimbal locking. They are obtained using the attitude propagation equations,

Ûq0 = − 1
2ω
>
Aqv and Ûqv = −

1
2ωAq0 − 1

2 ω̃Aqv .

A coordinate transformation matrix is defined between each pair of reference frames. For the reference frame it can

be written as CAG(q), while for the i-th node of the finite-element discretization, it will be CBA(Ψ(si, t)), with Ψ the

local Cartesian rotation vector between the material frame B at position si and the aircraft frame A (see figure 1).
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Defining the elastic state vector η by concatenating all nodal displacements and rotations, with respect to the

body-attached reference frame A, the discretized equations of motion can be written as [5]

M(η)


Üη

Ûβ

 +

FS

gyr(η, Ûη, β)

FR
gyr(η, Ûη, β)

 +

Fstiff(η)

0

 = Fext(q, η, Ûη, Üη, β, Ûβ), (1)

whereM
(
η
)
is the discrete mass matrix, which in general includes couplings between the elastic and the rigid-body

degrees of freedom. The discrete gyroscopic and stiffness forces are represented by Fgyr and Fstiff, respectively, while

the discrete external forces, Fext, include gravitational, propulsion (modelled as point forces), and aerodynamic forces.

The latter ones are described below. The instantaneous position of the body-attached frame A with respect to the inertial

frame of reference is finally integrated in a postprocessing step.

Additional constraints may be needed on the flexible aircraft equations when modelling multibody problems (e.g.,

hinged winglets) or for problems with forced displacements (as in the catapult-assisted takeoff). This is done here

with an augmented Lagrangian formulation [26], which results in a better control of the conditioning number of the

constrained equations and a regularization of the Hessian to increase numerical robustness. Finally, the resulting system

is integrated in time using a conventional Newmark-β scheme with artificial dissipation [25].

2. Aerodynamic solver – The Unsteady Vortex-Lattice Method

As we consider problems driven by lifting forces, potential flow theory has been used. Lifting surfaces are modelled

by a structured lattice of rectilinear vortex ring elements. Every surface has a wake associated with it, idealized as a thin

vortex sheet that extends a certain distance downstream, or until infinity for static simulations with horseshoe vortex

wake modelling. Circulation is then computed at every vortex ring such that the normal velocity at the collocation points

is zero. Here, the collocation points are placed at the centre of vortex rings, which are further displaced one fourth of

their streamwise length downstream along the wing chord. This has been shown to improve the convergence of the

pitching moment [27]. Defining Γ and Γw as the vectors of the circulation on all bounded and wake panels, respectively,

the non-penetrating boundary conditions can be written as

(AΓ +AwΓw + v) = 0, (2)

where v is the vector with the instantaneous normal velocity (normalwash) at all the collocation points, which includes

structural velocities, rigid body motion contributions and background flow in a non-stationary atmosphere. Matrices A

andAw are the aerodynamic influence coefficient matrices, which are recomputed at each time step using Biot-Savart

law on the current geometry. Wake circulation is convected downstream at each time step and the Kutta condition is
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enforced by convecting the circulation at the trailing edge onto the adjacent wake panel at each time step. Finally, the

forces on the wet surfaces are calculated using the unsteady vector form of the Joukowski theorem [28], which includes

circulatory and non-circulatory effects and resolves all force components (in particular, induced drag) for arbitrary

kinematics.

(a) Definitions in the Biot-Savart law on a vortex segment.
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(b) Induced velocity for a vortex segment with different vor-
tex models.

Fig. 2 Geometry definition and effect of desingularization approach in the Biot-Savart law

The Biot-Savart law used in the UVLM requires a desingularization strategy when the distance d between the

collocation point and the vortex segment goes to zero (see figure 2a). Typically a vortex core radius is introduced [27],

whose value is dependent on the problem geometry and dynamics. For our problems of interest, a vortex core value that

is large enough to avoid numerical problems when d → 0 was found to influence the solution. The approach to solve

this has been to reformulate the Biot-Savart law while introducing a desingularization coefficient εv as

u1,2 =
Γ

4π
r1 × r2

|r1 × r2 |2 + εv
r0

(
r1

r1 + εv
− r2

r2 + εv

)
, (3)

which ensures ensures that limd→0 ‖u‖ = 0. The suitable value for it has been observed to be case independent if (3)

is written in dimensionless form. In our implementation, where distances are normalized by the wing root chord, its

value is fixed at εv = 10−8. Figure 2b shows the induced velocity variation with distance to the vortex segment for the

unmodified Biot-Savart law, as well as those obtained with a vortex-core cutoff the current desingularization strategy,

equation (3), which is referred to as Epsilon in the figure.

3. Aeroelastic coupling

The structural and aerodynamic solvers described above have been strongly coupled using a Block Gauss-Seidel

algorithm. Both solvers are therefore run once per FSI iteration. The mapping of forces and moments from the
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aerodynamic grid to the structural nodes (and of displacements in the inverse mapping) does not require any interpolation,

as the beam nodes define the spanwise discretization of the aerodynamic grid. The lifting surfaces cross section is

assumed to be rigid and aerodynamic forces in each vertex result in a force and moment pair at the associated structural

node. Having matching grids brings a small computational penalty but substantially simplifies the generation of

3D displacement fields derived from the beam model. The spatial resolution is determined through convergence of

aeroelastic results, although, in practice, a converged spanwise discretization of the aerodynamic grid is also often

suitable for the structural solver.

The convergence criterion for the subiterations in the time-marching aeroelastic simulations is based on two residuals,

one that depends on the structural displacements of all beam nodes, η, and a second on its time derivative, Ûη. For each

of them, the relative 2-norm between two subiterations is computed and normalized with the amplitude of the current

solution. Iteration is carried out to convergence, including an adaptive Aitken relaxation factor ω ∈ [0, 1) that acts on

the applied forces on the structure Fn
ext,k (for the k-th iteration of the n-th time step) such that

Fn
ext,k

���
relaxed

= (1 − ω) Fn
ext,k

���
original

+ ω Fn
ext,k−1

���
original

. (4)

A linear evolution of the relaxation factor has been chosen within each time step of the FSI loop. A typical initial value

is ω ' 0.3, while edge of the envelope conditions (specially close to overspeed cases) might require ω > 0.6.

Running a strongly-coupled simulation with the previously mentioned wake shedding procedure imposes a hard

constraint in the choice of time step. While the lifting surface chordwise discretization has some effect on it, the overall

cost of the simulation is ultimately driven by the number of vortex rings in the wake. A common workaround in

weakly coupled simulations is to run multiple time steps of the structural solver while maintaining the aerodynamic

loads constant. This effectively decouples both solvers time steps, provided that the relevant dynamics are slow

enough compared to the time step. However, in complex maneuvers, such as those considered here, assuming constant

aerodynamic forces between aerodynamic time steps often makes solutions to diverge. A custom formulation that

allows to run a strongly coupled simulation while providing a certain degree of decoupling has therefore been developed

and is outlined in figure 3: Structural sub-steps are run in the FSI iteration scheme, while aerodynamic loads, applied

forces and time-dependent constraints on the structural solver are linearly interpolated during FSI iterations between the

previous time step (Qs−1) and the last FSI iteration of the current aerodynamic time step (Qk
s ). Forces are introduced as

follower forces and their orientation is updated every structural sub-step. Flight dynamics variables are integrated every

structural time step.

An additional challenge in the aeroelastic simulation of vehicles with very low wing loading is associated to the

added mass in the unsteady aerodynamics. At low altitudes, added mass is comparable to the local inertia of the wing

sections and this can destabilize the convergence in the FSI loop. This is avoided here by ramping the added mass
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Fig. 3 Subiteration process in the strongly coupled FSI scheme.

during the first FSI subiterations, such that the first iteration is computed without added mass terms. Finally, to mitigate

for the slow relatively convergence in the time derivative of the circulation, which feeds through into the added mass

forces, a Wiener filter [29] has been included. In our implementation, the noise is estimated from all available time

history of the circulation rates and the only required input is the smoothing value, given as a window length.

4. Implementation

All simulations have been run in SHARPy (Simulation of High Aspect-Ratio aeroplanes in Python). SHARPy focuses

on efficiency, robustness and ease of use for developers and users. The main code of SHARPy is written in Python 3,

while some computationally expensive routines, such as the structural and aerodynamic solvers, are coded in modern

Fortran or C++. The code has been developed as a collaborative platform, and thus, it has been built in a modular way,

allowing for seamless expansion through user contributions. Hosted in GitHub, SHARPy is built in an environment

with version control, automatic documentation generation, continuous integration and code coverage monitoring. The

software is available under a BSD 3-Clause Open-Source License [30], and the distribution online includes multiple

fully-documented test cases used for verification of the implementation against the literature. Detailed code-to-code

verification on the X-HALE platform [31] has also been presented in Ref [32].

B. A Bayesian optimization framework for complex maneuver definition

Let x ∈ X ∈ Rn be a parameterization of the space of possible maneuvers under consideration. Here, X is the

specified domain and n is the dimensionality of x. An optimization problem is then defined with a cost function

J(x) ∈ R. Adding a set of unilateral constraints Φ(x), the problem can be written as

min
x∈X;
Φ(x)≤0

J(x). (5)
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1. Surrogate construction

A BO framework requires two components: first, a Bayesian statistical model of the objective function, and, second,

an acquisition function that decides where the cost function will be sampled next [23]. Typically, the model is first

initialized with a set of evaluations designed to cover the parametric space, such as a latin hypercube sampling. However,

since complex constraints are sought here, that structured initialization is not feasible and the points are taken instead at

random from inside the valid domain. After that initial sampling, the remainder of a budget of Neval function evaluations

is allocated iteratively following Algorithm 1.

while n ≤ Neval do
Update the posterior probability distribution on J using all the available data;
Let xn be a maximiser of the acquisition function over x, where the acquisition function is computed using the
current posterior distribution;

Observe yn = J(xn);
Increment n;

end
Return a solution: either the point evaluated with the largest J(x), or the point with the smallest posterior mean;

Algorithm 1: Simple pseudo-code for BO, adapted from [24].

The statistical model of the objective function is defined as a Gaussian process regression. It provides a posterior

probability distribution of potential values of J(x) at a candidate x. A posterior probability distribution is the assigned

conditional probability after the cost function has been evaluated. Every observation of J is introduced in the Gaussian

process, and the posterior probability distribution is updated. Finally, with the posterior distribution as input, the

acquisition function estimates the value of the function at a new point x. We use as acquisition function the Expected

Improvement, which offers a trade-off between expected mean value and model uncertainty. Once the BO has approached

the solution and the function has been evaluated around the global minimum, the uncertainty of the Gaussian-process

surrogate in that region is very low and therefore other points of the parametric space are sampled instead. This, which

is one of the strengths of BO, turns out to also slow down convergence in the final stages of the optimization process.

An alternative strategy for local refinement is therefore used and it is described next.

2. Local refinement of the solution

Once the global optimization described above has found a potential minimum, a local method is used to refine the

solution [33, 34]. Typical basin-hopping approaches require either a rather large number of additional function calls

or gradient/Hessian information. As evaluations to our cost function are expensive, we use instead the information

contained in the Gaussian process regression of the BO to construct a surrogate of the cost function. Moreover, the BO

framework is used as an adaptive sampling algorithm to increase the accuracy of the surrogate near the optimum.

After building this surrogate from the trained Gaussian process, we need to add the constraints so that the local

optimizer does not converge towards a point outside the domain. Local optimizers that allow to impose constraints are
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usually more expensive or present slower convergence rates. Instead, the bounds have been enforced here as a penalty.

The local optimizer used in this work is the Powell [21] implementation in SciPy. While gradient-based algorithms are

available, and usually outperform non-gradient based ones, enforcing constraints through a penalty approach generates

an artificially abrupt step in the value of the function in our problem. This then results in convergence problems as the

Jacobian is estimated through finite difference methods.

3. Implementation

The implementation of the optimizer used is the one distributed in GPyOpt [35]. This framework supports simple

bounds constraints in the parameters, as well as unilateral constraints expressed as inequalities based on the input

parameters. The call to SHARPy is done in a manner that avoids the race conditions that could potentially arise from

the parallel execution of the cost function evaluation. The input/output for every case is handled independently, from

separate folders, by parallel subprocesses running an instance of SHARPy each.

III. Vehicle and maneuver definition
To exemplify the previous approach we consider the optimization of a catapult-assisted takeoff on a representative

VFA model. This section covers the vehicle definition, the description and parameterization of the maneuver, and the

cost function definition.

A. The T-Tail HALE model

The vehicle used in this study is a simple single fuselage T-tailed very flexible aircraft. The geometry (figure 4) and

stiffness and mass data (table 1) have been previously used in Refs. [12, 13]. This aircraft features a large aspect ratio

and low structural weight, with the payload (50 kg) located at the fuselage-spar intersection. Longitudinal control is

provided by the all-moving horizontal stabilizer that deflects around the elastic axis location, while lateral control is

granted though a rudder in the vertical stabilizer with a chord of 50% of the fin chord. All the lifting surfaces in this

aircraft are assumed to be symmetric and they are modelled as flat plates in the UVLM. The elastic axis of the main

wing is located at 30% of the chord and it is coincident with the centre of mass of the cross-section. The tail control

surfaces have their elastic axis and cross-sectional centre of gravity located at 50%.

Stiffness at the elastic axis is shown in Table 1. These are given in material frame of reference (noted as B in figure

1). Isotropic properties are used with E A the axial stiffness, GJ the torsional stiffness, EIy the out-of-plane bending

stiffness, and EIz the in-plane stiffness. The shear stiffness constants, GAy and GAz , have been chosen high enough

to dismiss the effect of these degrees of freedom (in this case, 1 × 105 N m2). The cross-sectional moments of inertia

in the mass matrix diag
(
Ixx, Iyy, Izz

)
=

(
J̄, J̄/2, J̄/2

)
have been chosen such that Ixx = Iyy + Izz . This configuration

presents large wing deformations even in steady horizontal flight (∼ 24%). Due to the effective dihedral, there are strong
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Component E A [N m−1] GJ [N m2] EIy [N m2] EIz [N m2] m̄ [kg m−1] J̄ [kg m]
Flexible

Wing 1.5 × 107 1.5 × 104 3.0 × 104 6.0 × 105 0.75 0.075
Fuselage 1.5 × 108 1.5 × 105 3.0 × 105 6.0 × 106 0.2 0.08
Fin 1.5 × 108 1.5 × 105 3.0 × 105 6.0 × 106 0.3 0.08
Tail 1.5 × 108 1.5 × 105 3.0 × 105 6.0 × 106 0.3 0.08

Very Stiff
Wing 1.0 × 108 5.0 × 105 1 × 106 2.0 × 107 0.75 0.075
Fuselage 1.0 × 109 5.0 × 106 1 × 107 2.0 × 108 0.2 0.08
Fin 1.0 × 109 5.0 × 106 1 × 107 2.0 × 108 0.3 0.08
Tail 1.0 × 109 5.0 × 106 1 × 107 2.0 × 108 0.3 0.08

Table 1 Structural properties of the T-tail HALE model.

��

�
�

�

���

���

��

�������

������� �������

Fig. 4 Description of theT-tail HALEmodel. All units inmetres. Figure also includes theUVLMdiscretization.

couplings between in-plane bending and torsion.

variations of less than 2.5% in angle of attack, elevator deflection and thrust with respect to a model with 16

chordwise panels in all surfaces and twice as many spanwise elements. The aircraft is trimmed for level flight at 10 m s−1

and the trim parameters for this condition are given in table 2. All simulations are run using a prescribed wake for the

UVLM, that is, the wake is convected with the background flow and not by self-generated induced velocity. Finally, an

investigation onto ground effects showed that they are negligible for such light vehicle and they have not been included

in the simulations.

The mixed coupling formulation introduced in section II.A.3 increases the order of the approximation of the

aerodynamic loads and provides more accurate results for a given time step when compared to a weakly coupled

simulation. While the number of evaluations of the structural solver is increased, a coarser aerodynamic spatial
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Variable Flexible Very Stiff

Angle of attack, α [◦] 4.072 3.81
Control surface deflection, δ [◦] -1.27 -0.76
Rudder deflection, δr [◦] 0.00 0.00
Thrust, T [N] 3.87 3.76
Total mass [kg] 78.25
Wing surface [m2] 32.00
Wing loading [kg m−2] 2.44

Table 2 Trim values for the flexible and very stiff T-tail HALE model at 10 m s−1.

discretization and the increased accuracy of the strongly coupled simulations—specially when including rigid body

motions— result in substantial computational saving for highly dynamic cases. In particular, the model used in this work

has second in-plane bending mode frequency of around 14 Hz in its cruise shape. Based on the chordwise discretization

and the cruise speed, the FSI—and aerodynamic—time step for the simulation has been chosen ∆t = 2.5 × 10−2 s, which

equates to a Nyquist frequency of 20 Hz. While the second in-plane bending mode would be captured if the structural

solver was run with the same time step than the FSI, the accuracy of the beam dynamics would be compromised. With

the in-plane bending component of the dynamics being of such importance for this particular problem, this simulation

has been run with ∆tstruct = 0.5∆tFSI. This doubles the Nyquist frequency for the structural solver, which has been

deemed high enough to capture the relevant dynamics of the problem.

B. Catapult-assisted takeoff

Vehicles in this category are rarely designed to sustain its own weight in the ground. Consequently, the aircraft is

fist attached to the catapult in multiple points of the wings and fuselage (those attachment points are also assumed to be

rigidly linked among themselves, as they would be on a moving part of the catapult), then accelerated along a prescribed

trajectory (a ramp), and finally released when a certain speed is reached. Only displacement constraints are enforced at

the attachment points. A straight ramp is assumed, defined by its angle with respect to the ground, ΓR. The aircraft

is mounted on the catapult with an additional offset angle θo, as shown in figure 5. Its attitude angle with respect to

the horizontal is αcruise + θo, with αcruise the cruise angle of attack shown in table 2. A reference root angle of attack

is defined while in the ramp by subtracting the ramp angle, ΓR, to that attitude angle. A constant acceleration, a, is

assumed through the takeoff. Lastly, the release speed of the aircraft is also a parametric value identified as vr .

In addition to the previous four parameters and associated assumptions (straight takeoff trajectory, constant

acceleration), some constraints need to be imposed. Firstly, a maximum ramp length is defined by means of a unilateral

(inequality) constraint, as shown in figure 6. Secondly, the angle of attack of the aircraft during the launch is limited to

be under the stall limit. As our model is based on potential flow theory, this is enforced by a constraint on the incidence

angle, αcruise + θo − ΓR (figure 6). The parametric domain that is studied in this paper is therefore a combination of
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0

Fig. 5 Parameters in the catapult-assisted takeoff. The aircraft goes from rest on the left to level flight on the
right
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≤ `R

Γ−R Γ+
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∆θ−

∆θ+

αcruise + θ0 − ΓR ≤ αmax

Fig. 6 Parameter space with bounds in red and ramp length and angle of attack constraints in green and
purple, respectively.

bounds for the four parameters plus the added constraints of the ramp length and incidence angle.

During takeoff, the aircraft is subject to the reaction forces at the clamping points. These reaction forces depend on

the dynamics of the aircraft structure and the aerodynamic forces that change with the structural deformation and the

imposed acceleration. When the aircraft is at rest, the reaction forces only counteract the gravity. As the aircraft is

accelerated, the inertial and stiffness effects also need to be counteracted in order to enforce a smooth trajectory and

acceleration profile. In the final stages of the CATO, the aerodynamic effects are dominant and the clamping forces

act to keep the aircraft from deviating from the path by taking off too early, avoiding structural deformations between

clamping points, and potentially fighting the increase in drag due to the lift generation. To exemplify this, figure 7

shows the instantaneous shape of the aircraft on a baseline CATO (see table 3), together with the wing tip deflection (in

percentage of the semispan) with respect to the jig shape.

The clamping point location is therefore an important factor in a catapult-assisted takeoff. As a rule of thumb, a

catapult built with a shape which is close to that of the aircraft in the cruise state would results in smaller structural

loads and variations in altitude. This would not be however a practical solution, and our approach has been to study the

effects of large structural deflections throughout the whole maneuver. This requires a more challenging numerical setup
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Fig. 7 Snapshots of the aerodynamic grid and wing tip deflections at different stages of the baseline CATO.

Acceleration, a 4.10 m s−2

Release speed, vr 10.77 m s−1

Ramp angle, ΓR 7.26◦

Attitude offset, θo 4.87◦

Table 3 Baseline for parametric study

but a much smaller catapult. The results shown here are simulated with the aircraft supported in three points: on both

sides of the wing root, separated 1 m from the root, and the fuselage-fin intersection. The release occurs simultaneously

in all three points.

C. Simulation process

Simulation of the CATO is split in the three stages shown in figure 8: initial stage, launch stage and free flight.

During the initial and launch stages, the nodal velocity constraints are active, while the free-flight stage is a nonlinear

aeroelastic simulation including rigid body dynamics. The initial stage defines the equilibrium shape of the aircraft

on the catapult at rest under gravity loads. A background flow (incoming wind) velocity is assumed and 0.5 m s−1

has been set as a default. For convenience in our implementation, the initial equilibrium is found from a dynamic

aeroelastic solution starting with undeformed airframe. During the solution, the aerodynamic wake is convected using

the background flow velocity. As a result, the wake length during this stage (initial stage in figure 8) is sensibly shorter

than in free flight. The robustness of the vortex-induced velocity model, as described in section II.A.2, is critical here

because the distance between the wake vortex segments and the trailing edge can be small enough to cause numerical

instability.

Once the structural state of the configuration has approached the steady-state gravity-only deformation, the launch

stage is started. The three components of the velocity of the attachment points are prescribed based on the launch

parameters as a function of time. This stage is the most demanding from a numerical robustness point of view. The
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1) Initial stage 2) Release 3) Cruise

Fig. 8 Three steps of the CATO process, showing an increasing wake length as the aircraft velocity increases.

first part of the launch is dominated by inertia effects, where the mass distributed along the high aspect-ratio wing is

suddenly accelerated from a clamping point located near the wing root. In addition, as the wing generates more lift, its

geometry is modified, which can result in geometrical couplings that did not exist in the first stages of the launch, where

the low dynamic pressure and relatively fast acceleration, together with the generally slow dynamics of the wing, can

result in small deformations. As the CATO progresses, dynamic pressure increases, unsteady aerodynamics plays a

more important role, and the wake extends several chords downstream. Unsteady aerodynamics result in damped wing

out-of-plane bending dynamics, while in-plane and torsion dynamics are geometrically coupled due to the effective

dihedral and are relatively undamped. The release from the ramp is a critical point from a numerical stability point of

view. The structural solver goes from a constantly accelerated motion enforced through nodal constraints to an unsteady

free-flight simulation.

After the release, the aircraft dynamics are simulated in open-loop, with the trim parameters set for cruise flight.

This decision is due to two reasons: first, it reduces the complexity in the simulation and the analysis, and second,

existing solar-powered HALE configurations generally do not feature high-authority flight control systems due to their

very specific mission, payload and requirements. We note also that the typical climb rates are so small that optimizing

launch for initial level flight or climb fundamentally gives the same outcome.

D. Optimal maneuver definition

Once the problem has been defined, it is necessary to provide a way of quantifying the suitability of the different

maneuvers based on the values of the parameters. While multiple cost functions can be defined for this maneuver and

several were investigated in preparation of this work, the selected cost function will minimize 1) ground clearance after

takeoff and 2) structural root loads, for different (prescribed) available runway lengths.

The ground clearance is quantified as the minimum value of the body-attached frame of reference vertical coordinate

with respect to the z = 0 plane evaluated after release. While low—or negative—values of ground clearance can

14



zmin 0 zmax

0

Sground

2

Sground

C
os

t
fu

n
c.

co
n
tr

ib
u

ti
on

Ground clearance

0 ‖M/Mref‖ 2‖M/Mref‖
0

Sloads

2

Sloads

Wing root loads

Fig. 9 Cost function contributions associated to the ground clearance (left) and wing root loads (right).

obviously be considered bad performance, relatively high values of ground clearance past a certain point do not improve

the suitability of the maneuver anymore. Due to this, the function chosen to map the ground clearance to a penalty term

in the cost of the takeoff is a sigmoid such as

Jground =
Sground

1 + exp
(
z̃ − 1

2

) , (6)

with z̃ = (z − zmin)/(zmax − zmin), and zmin and zmax given constants with the minimum and maximum clearances

described previously (see figure 9). Finally, Sground is a scaling factor.

Three wing root loads are considered: torsion, out-of-plane bending and in-plane bending moment. Being Mref the

moments of the wing root in cruise at 10 m s−1, and M the instantaneous root moments at a time t, the contribution of

the wing root loading to the cost function is defined as

Jloads =
3∑

k=1
max
t

(����� Mk

Mk
ref

����� − 1

)
· Sk

loads (7)

where Sloads ∈ R3 is a scaling vector. The overall shape of this contribution is shown in figure 9. The final cost function

gives equal weight to both contributions, that is, J = Jground + Jloads.

IV. Numerical Results

A. Flexibility effects on a catapult-assisted takeoff

Baseline CATO parameters have been established after a preliminary numerical exploration and they are given

in table 3. It corresponds to a runway length `R = 14.15 m and incidence angle αcruise + θ0 − ΓR = 1.68°. For this

maneuver, two configurations are considered: a very flexible aircraft, defined as in table 1, and a stiff aircraft, obtained
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Fig. 10 Longitudinal trajectory during CATO of the T-tail HALE in its flexible and rigid variants. The
parameters of the launch can be found in table 3.

by multiplying all stiffness constants by a factor of 33. Figure 10 shows the longitudinal trajectory of the wing root

node as seen from an Earth system. From a ground clearance point of view, the very flexible aircraft presents good

performance, as its lowest point after release is effectively the release point. However, the differences with the stiff

aircraft are stark. With the given maneuver definition, the stiff aircraft is released near its steady-state condition, with

just a small pitch angle deviation from the cruise conditions and a slightly greater speed than the original cruise speed.

Shortly after release, the response of the stiff aircraft is dominated by its phugoid mode, which is slow enough that it

could be further damped using a very basic flight controller.

Figure 11 presents the three components of the wing root moments, normalized by the 10 m s−1 cruise root loads

of the very flexible aircraft (for the flexible and stiff aircraft results). The first 1.5 s in the simulation correspond to

the initial stage in figure 8, where the aircraft finds its equilibrium on a stationary catapult. The out-of-plane (OOP)

bending moment therefore drops for both configurations. During the launch stage this moment can be seen to increase

much faster on the stiff aircraft than on the very flexible one. This is mainly due to the fact that the rigid configuration

gravity-only shape is very similar to the jig and cruise shapes. It is also important to note the large damping of the

out-of-plane oscillations, together with its very limited coupling with the other degrees of freedom. The torsion and

in-plane (IP) dynamics oscillate at the same frequency with no phase delay due to geometrical coupling. In addition,

the oscillatory behavior of these two degrees of freedom is only lightly damped. This is due to the much smaller

aerodynamic damping in these motions when compared to the out-of-plane bending. It is important to note that, unlike

other common aerodynamic solvers such as DLM, the aerodynamic solver used in these results accounts for the incident

velocity contribution of the in-plane motion of the structure. This includes lift as well as induced drag variations. The

details on the process followed for obtaining the aerodynamic forces from the UVLM solutions in a more general

way than the usual method described in Ref. [27] can be found in Ref. [28]. Moreover, although the steady flight

deformations of the models are substantially different, the wing root bending loads are not dissimilar, as they are driven

16



by the total weight distribution, which is the same in both models. The differences in torsion loading are more marked

due to the large effective dihedral of the very flexible aircraft, which results in a different compensation of the induced

drag component of the aerodynamic forces. In fact, the wing tip structural element of the stiff configuration has a

dihedral angle of 20◦, the jig shape one, while the very flexible configuration presents an effective dihedral angle of 38◦.
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Fig. 11 Torsion, out-of-plane and in-plane wing root loads during CATO for the very flexible and the stiff T-tail
models. The parameters of the launch can be found in table 3. Dots indicate start/end of launch stage and values
are normalized with cruise wing root loads.
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Fig. 12 Position of the wing tip cross section of the flexible model at different stages of the CATO. Position for
the jig shape, aeroelastic shape and second vibration mode with the former as reference condition.

Lastly, in order to better understand the variation of the characteristics of the structure during the different stages of

the takeoff, the first natural vibration modes (without aerodynamics) of the very flexible aircraft have been calculated from

the tangent mass and stiffness corresponding to three different conditions, namely, the aircraft at rest (gravity only), at

the release point, and in cruise. The results at the release point have been calculated with the non-equilibrium conditions
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Mode Gravity-only Release Cruise

Freq [Hz] Type Freq [Hz] Type Freq [Hz] Type
1st mode 0.449 OOP (I) 0.438 OOP (I) 0.419 OOP (I)
2nd mode 1.83 IP/torsion 1.81 Torsion/IP 1.34 IP/Torsion
3rd mode 2.72 OOP (II) 2.71 OOP(II) 2.61 OOP (II)

Table 4 First three natural vibration frequencies of the very flexible model at different stages of the CATO.

as reference. Table 4 shows the frequencies of the first three vibration modes, together with their characterization. While

out-of-plane bending modes do not fundamentally change with the configuration, the second mode in the table, which

is a coupled in-plane/torsion mode, shows large changes. This is further investigated in Figure 12, which shows the

projection on the plane of symmetry of the aircraft of the wing tip section for this second vibration mode. A normalized

mode shape is superimposed on the tip deformed position, which is also included in the figure. As it can be seen, the

second natural vibration mode is dominated by the in-plane bending component at rest, becomes mostly a torsional

mode at the release point, and it clearly displays both contributions in cruise.

B. A parametric study

Prior to the actual optimization, the 4-dimensional parametric domain that describes the CATO of the very flexible

aircraft is first explored by modifying each parameter with respect to the baseline defined in table 3. Figures 13 and 14

show, respectively, the longitudinal trajectory and the wing root loads cost contribution calculated with the scaling

parameters Sloads = [0.2, 0.2, 0.2]>, when each parameter is independently modified from its reference value. The

four parameters used in this analysis (acceleration, release speed, attitude offset and ramp angle) are divided in two

groups: First, the parameters concerning the acceleration law—that is, acceleration and release speed—, and second,

the parameters affecting the spatial trajectory and orientation of the aircraft during the CATO, namely, the attitude offset

and ramp angle.

It can be observed how some parameters affect the scattering of the solutions in figure 13 much more than others.

For example, trajectories obtained by changing the ramp angle are close to overlapping, while the solutions with

changing attitude offset, θo, are essentially different. This might seem counterintuitive, as they both control the attitude

angle during the CATO, but the difference is that θo has direct control over the incidence angle of the wing during the

whole maneuver. The main effect of flexibility during takeoff is that the wing out-of-plane dynamics is relatively slow

compared to typical launch characteristic times. In this case, depending on ramp length constraints (we consider from 5

to 20 m), the typical time scale of the CATO is between ωCATO ∈ [2.5, 4.4] rad s−1—longer ramps typically result in

longer characteristic launch times—, while the first bending mode calculated with the release structural deformation

as reference conditions is ωOOP (I) = 2.75 rad s−1. In the cases shown here, the OOP bending dynamics are in general

slower than the characteristic time of the CATO launch for all but the longer ramp lengths, in which case, the time scales
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Fig. 13 Wing root trajectories of the very flexible aircraft for changes to takeoff parameters with respect to the
baseline (table 3). Dots indicate start/end of launch stage.

are similar. If the aerodynamic loads on the surfaces are not applied early enough, or they are too small, the wings might

not have reached a state close to the cruise flight at release time. The acceleration and release speed parametric study

shows that from a ground clearance point of view, the acceleration only affects the trajectory by a vertical offset, as the

longer an angled ramp is (i.e., lower acceleration for the same release speed), the higher the release point is. However,

the release speed affects noticeably the trajectory, as shown in figure 13. This is due to two factors. The most direct one

is that the aircraft is trimmed for cruise flight at 10 m s−1, and if it is released at a lower speed, it will lose altitude before

reaching cruise speed, and thus, the ground clearance will be reduced. Second, higher release velocities result in higher

dynamic pressure during takeoff, which deflects the wing to a close-to-cruise state faster. If at the release instant the

structural deformation is not close to the cruise shape, the centre of mass of the aircraft, which is near the fuselage-wing

intersection, will move downwards until the wings are generating enough lift and thus their shape is close to the steady

flight one. Figure 15 shows the deformed shapes at release for release velocities.

Figure 16 shows the values of the cost function for the four-parameter study. First, a visible difference in variability

of the cost can be observed. While the ramp angle ΓR has a reduced effect in ground clearance and minimal effect in
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Fig. 14 Instantaneous loads cost, Jloads(t), for changes to individual takeoff parameters from baseline. Dots
indicate start/end of launch stage.

loads, the release speed affects both contributions by a larger magnitude than any of the other parameters for the range

of parameters here considered. What this figure does not capture is the possibly more complex interaction of the attitude

offset angle with the ramp angle with respect to the loads contribution of the cost. A direct study such as this would

involve a large number of function evaluations, and this will be left to the optimization in the next section, which will

capture, and exploit, this potentially complex behavior.

The interplay between acceleration and release speed is of special interest here. Figure 16 shows that greater

release speed corresponds to a lower loads contribution to the cost function, but this is because, as the acceleration is

kept fixed, the ramp length also increases. Once a ramp length constraint is introduced, the release speed is linked to

the acceleration. This results in more abrupt accelerations for the high release speed cases, which increase the load

contribution and also potentially increase the ground clearance contribution, as the slow out-of-plane wing dynamics

might no have enough time to accommodate to the rapidly increasing dynamic pressure. Factoring this new coupling in

the results is more complex than for the interplays between the attitude offset and ramp angles due to the acceleration

effect on the loads. In addition, as the dynamic pressure increases—more or less rapidly depending on the acceleration

and release speed parameters—, the influence of the attitude offset increases, as the aerodynamic loads will be greater,

just as the damping introduced through added mass effects.
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C. Optimization results

After the previous exploration, the maneuver parameter bounds have been chosen as in table 5. These values

encompass a wide enough range so that the solution with a long ramp constraint is not bound by these limits. Optimal

maneuvers are obtained for three fixed ramp lengths of 5, 10 and 20 m. The stall constraint in the incidence angle was

active during the optimization. However, since it was not been a deciding factor in the preliminary studies, it has been

left fixed at 9◦.

The cost function in this work, given in equations (6) and (7), has a number of parameters that need to be selected.

First, zmin and zmax have been assigned -4 and 2 m, respectively. These values ensure that the slope of the cost function

is not too small in the z < 0 domain so that convergence is accelerated. The zmax parameter has been chosen so that
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Variable Domain

Acceleration, a [m s−2] [1.0, 7.0]
Release speed, vr [m s−1] [3.0, 15.0]
Ramp angle, Γr [◦] [-1.0, 8.0]
Attitude offset, θ0 [◦] [-1.0, 8.0]

Table 5 Bounds for parameters of the CATO optimization problem.

past 2 m there is not an important difference in cost function value to avoid the optimizer converging to solutions with

high ground clearance but high wing root loads. Interestingly, if this saturation of the ground clearance cost is not

implemented, the incidence angle constraint can be necessary to keep the simulation realistic. The ground clearance

cost scaling parameter has been fixed at Sground = 10 in order to obtain a cost of order one. Second, the wing root loads

contribution Sloads has been assumed to be of the shape Sloads = sloads[1, 1, 1]T with sloads ∈ R so that a single parameter

needs to be tuned. A value of sloads = 0.2 has been chosen to balance the ground clearance with the wing root loads

contributions. This means that both cost contributions are comparable in magnitude and thus a single contribution will

not dominate the optimization.

Figure 17 shows a scatter matrix representation of the domain sampling for the three ramp length constraints in

this work. The 4-dimensional parametric domain is represented as a 4 × 4 array of scatter plots. Each individual

plot summarizes the relation between two variables while omitting the rest. The domain sampling shown in figure

17 corresponds to the Bayesian Optimization framework being run for 30 iterations with 5 parallel function calls per

iteration, that is, 150 samples per figure. Dots in the scatter plot have a variable intensity that gives an indication

of the associated cost of that sample. Here, darker spots represent better solutions with lower associated cost. The

diagonal plots are a representation of the sampling density in the domain of the variable in the horizontal axis. From

this representation, some insight into the cost distribution and the constraints effect can be drawn. First, the ramp

length constraint, expressed as a function of a and vr can be identified in the a versus vr plots as a defined diagonal

line that divides the domain in sampled and non-sampled. The ramp length constraint has a strong effect in the overall

distribution of the samples and the optimum location in the domain. It is easy to see how the shorter the maximum ramp

length is, the more the optimum tends towards a corner of the domain. This is true for all the variables, however the

ramp angle ΓR behaves differently, with the darker sample dots, representing lower associated cost solutions, distributed

quite horizontally across its domain. The fact that the ramp angle does not have an important effect in the CATO

performance was already implied in section IV.B. The incidence angle constraint can be seen in the ΓR versus θo plot

of figure 17a. The visible trend concerning this constraint is that the optimum approaches it when the ramp length

constraint is very restrictive. From a physical point of view, it means that the aircraft increases the wing loading through

incidence angle, with a low ramp angle and a high angle of attack, such that the wing deforms and approaches the cruise

deformation as quickly as possible. When the ramp length is long enough, this constraint is not necessary, as a maneuver
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`R [m] a [m s−2] vr [m s−1] θo [◦] ΓR [◦] Cost

5 7.00 7.20 8.00 6.55 9.19
10 4.84 9.73 7.14 7.77 2.66
20 4.28 13.07 5.43 8.00 1.72

Table 6 Results of theCATOprocedure optimization for different ramp length constraints and loads-associated
cost scaling.

with such high incidence angle causes very large structural loads.

Figure 18 shows the longitudinal trajectories of the aircraft wing root node in the optimal takeoff corresponding

to each each ramp length, `R. Note that for ` = 5 m the minimum altitude in the trajectory is negative, which would

require a minimum height of the catapult to avoid having the aircraft touching the ground. Table 6 shows the CATO

parameters of these optimum cases, together with their cost. First, the clearest trend is the greater ground clearance

with longer ramps. As pointed previously, this is due to the longer launch times, which for a given release speed result

in slower acceleration parameters. The very slow out-of-plane dynamics of the wing structure, around 0.45 Hz (see

table 4) require long launch times. The constraint in ramp length, involving acceleration and release speed parameters

introduces a dependency with consequences not shown in the previous parametric study, where the acceleration could

be as low as possible with little change to the trajectory with respect to the release point (figure 13). The difference

between those results and the ones in figure 18 is the ramp length limitation (see figure 6).

One important point worth mentioning is the influence of the shape of the ground clearance cost contribution,

equation (6). Given that the function tends to zero when z > zmax, the influence of the ground clearance in the overall

result depends on the lowest altitude that the plane reaches from release until the end of the simulation. The `R = 20 m

case is released with z > zmax, and it never dips under that value. That essentially means that the optimization for this

problem is basically a loads minimization—as long as the plane never dips under zmax, a case that would be instantly
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Fig. 18 Longitudinal trajectories for the optimal solutions (table 6) given different ramp length constraint
values.

discarded by the optimizer—independently of the longitudinal trajectory that the aircraft follows. When the constraint

is more demanding, for example, `R = 5 m, the ground clearance is the driving criterium for the optimizer, as the

associated cost grows rapidly with low z values. The medium case, `R = 10 m is an interesting one, as the release point

is close enough to zmax to be affected with the flattening of the cost function, while at the same time, any dip under this

value will make the ground clearance contribution grow quickly. In figure 18 it can be seen how the optimum launch

for this case is one that never goes too far above or below zmax. The reason is that, if the trajectory went higher than

this point, there would be no benefit in terms of ground clearance cost, while the loads would most likely increase.

Likewise, if any point of the trajectory falls far below zmax, the ground clearance cost will start to increase, decreasing

the performance of the candidate.

From a loads point of view, the optimum launch procedures show a number of common features, which can be seen

in the root moments shown in figure 19. First, the normalized loads in OOP bending are much lower than the torsion

and IP bending ones. Given the mostly forwards acceleration suffered by the aircraft during the launch and the very low

frequency of the first OOP bending mode, this is predictable. The high-frequency content in the OOP signal is linked to

the second bending mode, which is excited in the initial transient. While conventional (linear) aeroelastic analysis does

not focus on IP dynamics, the characteristics of this maneuver, together with the geometric coupling between torsion

and IP that varies as the structure deforms during the launch, make the in-plane motion of the wing an important part of

the analysis. Second, from this geometric coupling, we can see how the torsion and IP loads present similar frequency

responses during the launch phase. The launch phase goes from t = 1.75 s to t = 2.6, 3.9 and 4.7 seconds respectively

for increasing ramp length, which can be easily seen on the time trace of all three root moments. Aerodynamic damping

however is very low on the in-plane bending dynamics of the wing and has a much more dominant effect on the torsional

24



−20

0

T
or

si
on

0

1

O
O

P
B

en
d

.

0 2 4 6 8 10 12

time [s]

−5

0

IP
B

en
d

.

`R = 5 m

`R = 10 m

`R = 20 m

Fig. 19 Wing root loads for the optimum cases (table 6) given different ramp lengths. Loads normalized with
cruise wing root loads.

response. This is due to the lack of first order aerodynamic effects acting on IP deformations, as they only generate an

increase in incidence velocity. The torsion loads instead are aerodynamically damped due to the effect on the rotational

velocity of the wing cross-sections, and their influence in the incidence angle of the wing has a coupling effect with the

very damped OOP dynamics. It is also important to note how quickly the loads converge to the cruise values. This is

due to the effect the long fuselage has on the damping of the longitudinal rigid body dynamics of the aircraft.

Amongst the differences between different ramp length cases, it is worth mentioning the different values of IP

bending peaks during the launch phase. While the difference between the 10 and 20 m cases is not too large, the 5 m

case has a peak IP bending loads value of up to 8 times the cruise IP bending loads. Despite this, up to release, the IP

oscillations are of the same frequency, which is the 2nd structural mode indicated in table 4 and depicted in figure 12.

However, past the release point, the motion becomes more damped and the frequency increases, which is consistent

with the change of frequency that the second structural mode suffers when the wings of the aircraft start deforming due

to the aerodynamic loading. Concerning the torsional dynamics, it is interesting to note how the peak value for all

the procedures, but specially for the shorter one, is more than 10 times the cruise loads. The release instant can be

identified in the torsion loads due to the higher frequency of the response, it shows an abrupt change of slope followed by

a high-frequency oscillation. This is the kind of high-frequency-driven dynamics that needs a finer time discretization

in the structural solver.
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V. Conclusion
A nonlinear aeroelastic simulation strategy has been presented that allows to simulate and optimize complex

maneuvers of very flexible aircraft. The most relevant modelling choices and numerical parameters have been identified

and discussed for each main component of the aeroelastic solver (structural and aerodynamic models and coupling

algorithm), as well as their effect on the simulation of highly flexible aeroelastic aircraft. Bayesian optimization has

been shown to provide a suitable strategy to define dynamic maneuvers that can be parameterized with relatively small

number of design variables. The resulting maneuver, which is defined under ideal conditions (e.g., calm air) can then be

used as the tracked reference for a closed-loop control scheme.

Catapult-assisted takeoff has been used as a representative example of a highly dynamical nonlinear aeroelastic

problem. In this problem, the aircraft is attached to the catapult on multiple nodes and the velocity of these nodes is

prescribed so that a trajectory and acceleration law is enforced. Once the release speed is reached, the aircraft is released

and left to fly in open loop. This problem features a high range of flight speeds (from zero to close to cruise speed),

high range of structural deformations (from gravity-only loading to aeroelastic equilibrium in cruise) and changing

driving mechanisms as the simulation progresses. Due to this, linear aeroelastic simulation methods would not be able

to capture the complex phenomena that arise from the interaction of structure, aerodynamics, prescribed rigid-body

motion and flight dynamics.

The proposed CATO procedure is described using 4 parameters, namely, the acceleration value, the release speed,

the ramp angle and the offset attitude of the aircraft. The ramp is also assumed to be straight, the pitch angle of the

aircraft constant and the acceleration rate constant until release. In order to define an optimum launch procedure, a cost

function that accounts for ground clearance and wing root loads has been defined. Constraints on ramp length and

effective incidence angle are also imposed to avoid physically unfeasible solutions.

A parametric investigation has shown that ground clearance is very sensitive to release speed and pitch angle.

Wing root loads are increased by large acceleration values while a high release speed reduces them. Longer ramps are

therefore preferred, and a ramp length constraint has been included in the optimization. Depending on the acceleration

and release speed combination, the characteristic time of the CATO is from 60 to 108% of the period of the first bending

mode of the wing. This, together with the large damping of out-of-plane motions, explains why larger ramps with higher

release speed perform well also from a ground clearance point of view. In limited length ramps, the CATO is too fast

for the wing to adopt the quasi-steady deflection for those instantaneous conditions. On release, the centre of mass,

which is located close to the wing root due to the payload, plunges due to the insufficient lift generated by the wings,

which then deform and achieve a deflection close to the corresponding steady one. This plunging and recovering motion

can excite rigid body modes such as the phugoid, and depending on the controllability of the aircraft and the ground

clearance it might be a limiting factor to consider when designing the CATO procedure.

The optimization studies have shown that, for a given model and constraints, there is a minimal ramp length under
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which the aircraft would hit the ground and that the parameter that has the strongest effect in the solution is the release

speed. Unsurprisingly, with greater release velocities the ground clearance is larger and the wing root loads are smaller,

as long as the ramp length constraints allow the acceleration to be small enough. More interestingly however, the ramp

angle parameter has a very small effect on the launch, unlike the pitch angle parameter. A large pitch angle parameter

encourages wing loading during the early stages of the CATO, which results in a closer to quasi-steady structural state at

release. However, a large incidence angle also increases the wing root loads. In our results the incidence angle is not

affected by the optimization constraints, as the increase of loads balances the ground clearance effect.

This paper has shown a procedure to determine nominal trajectories that can be input to a flight control system for

operation on realistic conditions. This would need to include the actual wind conditions in the atmospheric boundary

layer, which we have recently investigated in Ref. [13]. Future work will assess the requirements on the flight control

system for safe takeoff under acceptable levels of atmospheric turbulence.
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