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Abstract
Determining the spatial distribution of geological heterogeneities and their petro-
physical properties is key to successful hydrocarbon production and carbon capture
and storage. Due to the sparse nature of direct observations of the earth’s interior
from borehole data, most inferences about the interior structure of the earth and
its properties have to be made by indirect observation such as seismic reflection or
dynamic data. Determining these property distributions from indirect observations
requires solving an ill-posed inverse problem which can be defined as a Bayesian
inference problem where we seek to obtain the posterior distribution of the subsurface
properties given the observed data.

Recently, deep generative modeling has enabled multi-modal probability distri-
butions of large three-dimensional natural images to be represented. Generative
Adversarial Networks (GANs) are deep generative models that learn a representation
of the probability distribution implicitly defined by a set of training images using
two competing neural networks.

This thesis introduces GANs as probabilistic models of geological features and
petrophysical properties at the reservoir scale and images of porous media at the pore-
scale. A GAN can be trained to represent pore-scale micro-CT images of segmented
and grayscale porous media. After training, the GAN generator is used to sample
large high-fidelity realizations that follow the same statistical and physical properties
as represented in the training images. Using GANs as a probabilistic generative
model allows them to be incorporated in a Bayesian inversion workflow. Based on
a synthetic test-case, two inverse problems were considered: inversion of acoustic
properties from seismic observations and reservoir history matching of a two-phase
flow problem at the reservoir-scale. In both cases, the posterior distribution of
the petrophysical property distributions was obtained using approximate Bayesian
inference over the latent variables. The samples obtained from the posterior match
the observed seismic or production data, and can be conditioned to direct observations
at wells.

This approach of deep stochastic inversion based on deep generative models
such as GANs opens new opportunities for geological modeling and solving ill-posed
inverse problems.
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Chapter 1

Introduction

1.1 Motivation

Modeling at the Pore-scale

The main motivation for this thesis is to find probabilistic representations of geo-
logical heterogeneities at the pore- and reservoir-scales. At the pore-scale, modern
micro-CT scanning allows three-dimensional images of porous media to be acquired at
high-resolution (Blunt, 2017). Petrophysical properties can be estimated from these
three-dimensional images using numerical solutions of flow and transport equations.
This allows critical flow related properties such as absolute and relative permeability
to be determined. Understanding the effect of pore structure is a key element to
understanding flow and transport at the pore-scale. Stochastic modeling of porous
media at the pore-scale allows flow and transport to be simulated using synthetic
realizations based on statistical properties of porous micro-structures, the sedimen-
tation and diagenetic history, or when possible from images of the pore and grain
space. Stochastic models of porous media at the pore-scale have been constructed
using object-based models which generate a grain arrangement using characteristic
geometric shapes such as ellipsoids or spheres. Simulated annealing methods (Yeong
and Torquato, 1998) reconstruct three-dimensional images of porous media from
two-point or higher-order statistical information at high computational cost (Pant,
2016). Process-based models aim to generate three-dimensional realizations of porous
media by emulating sedimentation and diagenesis processes (Øren and Bakke, 2002;
Øren and Bakke, 2003). Multiple-point statistical (MPS) methods use a training-
image of a porous medium to deduce multi-scale statistical properties from which
new realizations are generated in a sequential manner (Mariethoz and Caers, 2014).
MPS methods have been adapted to pore-scale stochastic reconstruction allowing
three-dimensional stochastic modeling from orthogonal cross-sections only (Okabe
and Blunt, 2004; Okabe and Blunt, 2007). Patch-based methods rearrange extracted
subdomains of a training image to form new stochastic realizations (Tahmasebi and
Sahimi, 2016). Many of these approaches suffer from high computational cost for
generating a single stochastic realization and when a large number of realizations are
required e.g. for uncertainty quantification, most of these approaches become pro-
hibitively computationally expensive because the computational cost is proportional
to the number of realizations.
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Modeling at the Reservoir-scale

Modeling the spatial distribution of petrophysical properties within the earth’s
subsurface is a key step in reservoir characterization. Traditionally, geostatistical
methods have been used to create continuous petrophysical property models and
categorical distributions for lithofacies modeling (Dubrule, 2003; Chiles and Delfiner,
2009). At the reservoir-scale, geostatistical methods for reservoir modeling can be
categorized into continuous and categorical random function modeling approaches.
Continuous properties can be represented by calculating variograms from well data
and fitting a variogram model to model their spatial distribution. Indicator variables
which are commonly used to represent rock-types or facies distributions have been
modeled using pixel-based approaches, such as sequential indicator simulation (SIS)
(Bierkens and Burrough, 1993), pluri-Gaussian simulation (PGS) (Armstrong et
al., 2011), multiple-point statistics (MPS)(Guardiano and Srivastava, 1993), and
object-based approaches, where discrete volumetric representations of geological
features such as fluvial channels are randomly placed within a reservoir model. While
object-based models allow characteristic geological features to be modeled discretely,
conditioning them to well data is computationally challenging when there are many
wells.

The Bayesian Framework

Limited direct observations of the earth’s interior from borehole data and uncer-
tainties affecting indirect observations such as seismic or dynamic data motivate a
Bayesian framework to quantify subsurface structures and petrophysical properties.
Furthermore, inferring subsurface structures and their petrophysical properties means
solving an ill-posed inverse problem i.e. there exist many solutions to the inverse
problem that match the observed data. Tarantola, (2005) set the geophysical inverse
problem in a Bayesian setting. The Bayesian framework requires a definition of a like-
lihood that characterizes the relationship between the underlying model parameters
and the observations. Furthermore a prior distribution of the model parameters that
quantifies the a priori knowledge about the model parameters and their uncertainty
needs to be defined. In many geophysical inverse problems the relationship between
the model parameters and the observed data is non-linear. Finding the posterior
distribution may therefore require Monte-Carlo methods where many evaluations
of the forward problem have to be performed. Simplifying the forward problem by
linearization can make Bayesian inversion feasible (Buland and Omre, 2003; Hansen
et al., 2006). Conditioning a reservoir model with historical dynamic production data
for the sake of production forecasting and reservoir management, so called history
matching, is a common non-linear inverse problem in petroleum engineering. The
changes to the petrophysical parameters obtained by manual and automated history
matching methods often cause non-geological changes which violate prior geological
and geophysical assumptions (Hoffman et al., 2005). Bissell et al., (1997) introduced
a method based on the pilot-point method (Marsily, 1978) that allows for history
matching under geostatistical constraints. Bayesian approaches to solve the reservoir
history matching problem, such as the Ensemble Kalman Filter (EnKF) (Evensen,
2003; Oliver and Chen, 2011) have been applied in numerous history matching case
studies (Lorentzen et al., 2005).

Chapter 1 Lukas J. Mosser 2
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Advances in Deep Learning and Generative Modeling

Recent algorithmic advances in automatic differentiation such as efficient back-
propagation (Rumelhart et al., 1988; LeCun et al., 1998) and optimization of
high-dimensional parametric functions using stochastic gradient-based optimization
techniques (Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952; Bottou, 2010),
combined with increased computational resources using graphics processing units
(GPUs) (Krizhevsky et al., 2012) and the availability of very large datasets (Deng
et al., 2009) have led to numerous advances in the field of machine learning (Bishop,
2006; Goodfellow et al., 2016). Specifically, training very deep neural networks has
been made feasible by these advances, which are finding successful applications in
many industrial sectors such as healthcare (Wang et al., 2017; Gómez-Bombarelli
et al., 2016). While many successful applications of machine learning rely on super-
vised training i.e. learning from pairs of data and corresponding labels, unsupervised
learning aims to classify data or reduce their dimensionality without any label in-
formation. Estimating the probability distribution associated with a given dataset
and possibly learning a model of how these data can be synthesized is referred to as
generative modeling. Using deep neural networks to parameterize generative models
has enabled modeling of multi-modal probability distributions of large natural images
(Bengio et al., 2014; Goodfellow et al., 2014) and making inferences about their
underlying factors (Kingma and Welling, 2013).

Thesis Aims

The aims of this thesis are therefore two-fold: first, I investigate the use of recent
advances in deep learning and specifically deep generative modeling to create proba-
bilistic representations of pore-scale images and reservoir-scale models which allow
fast sampling of new high-fidelity realizations. Second, I aim to leverage the proba-
bilistic definition of deep generative models to define a new set of prior distributions
over petrophysical model parameters that can be used to solve high-dimensional
subsurface inversion problems in a Bayesian context.

Chapter 1 Lukas J. Mosser 3
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1.2 Contributions
The papers published during this PhD and presented in this thesis are under the
names of myself, Lukas J. Mosser, and my supervisors Olivier Dubrule and Martin J.
Blunt. As the first author I have performed all research and code development myself.
All implementations in code, data and results, have been implemented in Python
and have been published as software packages under open-source licenses. (Github:
https://www.github.com/LukasMosser - references to the code repositories are in
the individual chapters). The contributions presented in this thesis and published as
journal papers have been written by myself first and were then proof-read by my
supervisors who helped me to improve my writing in style and structure.

Four papers have been submitted for peer-review in the course of this thesis which
form the main parts of this thesis. Two papers have been published in print, the first
in Physical Review E (Mosser et al., (2017), Chapter 3) and the second in Transport
in Porous Media (Mosser et al., (2018c), Chapter 4). Chapter 6 (Mosser et al.,
(2018d) has been accepted for publication in Mathematical Geosciences with minor
revisions, and has been resubmitted for publication. The final chapter of this thesis
(Chapter 7, Mosser et al., (2019)) has been submitted to the Journal of Computational
Physics and is currently under peer-review. All publications have been published
as a pre-print on ArXiv at time of submission and all journal publications have
been published under open licenses. This also includes the contribution presented
in Chapter 5 (Mosser et al., 2018a) which has been presented at the 80th EAGE
Annual Conference (2018).

During my PhD I have also presented my work at a number of conferences
including oral presentations at Interpore (Rotterdam 2017), the 80th and 81st EAGE
Annual Conferences(Copenhagen 2018, and London 2019), the PESGB/EAGE
Workshop on Machine Learning (London 2018), the IAMG Conference (Olumuc
2018), the IPTC Conference (Beijing 2019) and the Seminar for Deep Learning
in Inverse Problems 2019 held at KTH Stockholm . I was also fortunate to have
received a stipend by the Simons Foundation to attend the Math+X Seminar on
Data Science in Geophysics. Furthermore I was accepted to present a poster at the
Gordon Conference and Research Seminar on Flow and Transport in Porous Media.
Finally, I have also had the opportunity to present my work to colleagues in seminars
at the Department of Earth Sciences and Engineering and in industry at Total Paris,
Saclay and Houston.

1.3 Statement of Originality
The work contained in this thesis has not been previously submitted for a degree or
diploma at any other higher education institution. To the best of my knowledge and
belief, the thesis contains no material previously published or written by another
person except where due references are made.
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1.4 Thesis Outline
In Chapter 2, I present an overview of existing methods for inversion, geostatistical
simulation and deep generative modeling which serves as a basis to the methods and
concepts that are used in later chapters of this thesis. The end of Chapter 2 outlines
a number of research questions that motivate the presented research.

Chapter 3 introduces GANs as a method to create stochastic three-dimensional
samples of porous media at the pore-scale using a number of binary training images.

The method is then extended in Chapter 4 to grayscale images of porous media
and introduces an evaluation of generated samples based on morphological image
descriptors.

I then show in Chapter 5 that the same approach can be applied to three-
dimensional reservoir-scale training images and how generated realizations can be
conditioned to hard data such as wells.

By generalizing GANs as a probabilistic method to model distributions of im-
ages I incorporate trained GAN generators as prior distributions in a Bayesian
inversion framework and in Chapter 6 apply the proposed method to a synthetic
two-dimensional acoustic full-waveform inversion example.

In Chapter 7 I apply the proposed GAN-based inversion to infer spatial distribu-
tions of rock properties in the frame of reservoir history matching.

Chapter 8 is a discussion of the contributions presented in the individual chapters
and publications, highlighting some of the challenges and opportunities of using
GANs for pore and reservoir-scale modeling, and places the methods into a larger
context of using deep generative models for solving inverse problems.

Final conclusions of the thesis are presented in Chapter 9.

Chapter 1 Lukas J. Mosser 5



Chapter 2

Bayesian Inversion and Modeling

2.1 Inversion

2.1.1 Maximum Likelihood

Determining the structural and petrophysical properties of the earth’s interior is
a key step in hydrocarbon exploration and production, seismology and carbon
capture and sequestration (CCS). While observations of the geological features can
be made in analog outcrops on the surface, hard data from boreholes are expensive
to acquire and represent a sparse set of measurements. The geological properties
measured from borehole data are at a very different scale compared to larger geological
heterogeneities such as reservoirs bodies or fault complexes. Direct observation of
subsurface geological features and their petrophysical properties is impossible and
geoscientists must therefore rely on indirect observations such as seismic or dynamic
data. Determining the underlying petrophysical properties that govern these indirect
measurements is called inversion. To formalize this, it is commonly assumed that
the observed data dobs are related to a three-dimensional earth model m(x) by

dobs = F(m(x)) (2.1)

where F is the forward operator (Tarantola, 2005). Due to the heterogeneous nature
of the earth’s interior a common assumption is that the model parameters vary in
space m(x) and when dynamic forward operators are considered these parameters
may also be time-dependent m(x, t).

Indirect geophysical observations are often accompanied by large uncertainties
due to data acquisition and processing, as well as error regarding the conceptual
interpretation of the observed data and the forward model that is assumed to
generate them. Geological and petrophysical properties are often correlated spatially.
Knowledge about spatial correlation represents valuable information to deduce the
spatial distribution of geological heterogeneities given observed measurements under
uncertainty.

Due to the sparsity of hard data and the resolution of the observations dobs it
is possible to find numerous realizations of the model m(x) that can explain the
observed data dobs and hence inverse problems related to geoscience applications are
often ill-posed.

The simplest approach to finding a set of model parameters that match the
observed data is to perform maximum likelihood estimation (Tarantola, 2005). For
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a given set of observations dobs,i we seek to maximize the likelihood and assuming
conditional independence of the observations

mMLE = argmax
m

∏
i

p(dobs,i|m) = argmax
m

∑
i

log p(dobs,i|m) (2.2)

where in practise due to numerical precision issues we prefer to maximize the log-
likelihood (Eq. 2.2) (Murphy, 2012). Assuming the observed data are a sum of the
forward model and Gaussian uncorrelated noise with variance σ2

ϵ our representation
of the forward model becomes

dobs = F(m(x)) + ε, ε ∼ N (0, σ2
ϵ I) (2.3)

and hence to find the maximum likelihood estimator of the model parameters we
maximize the Gaussian log-likelihood of the observations given the parameters

mMLE = argmax
m

∑
i

log p(dobs,i|m) (2.4a)

= argmin
m

∑
i

∥dobs,i −Fi(m)∥22
σ2
ϵi

(2.4b)

When ideal measurements without noise are assumed the maximum likelihood
approach reduces to the least-squares method

mLS = argmin
m

∑
i

∥dobs,i −Fi(m)∥22 (2.5)

The maximum likelihood approach does not take into account any prior knowledge
of the distribution of model parameters and only provides a point estimate that
maximizes the match with the observations. Therefore, only maximizing the likelihood
may lead to models m(x) that are geologically unrealistic.

2.1.2 Posterior Distribution

Setting the inversion problem into a Bayesian context (Tarantola, 1987) allows prior
knowledge and uncertainties in observed and modeling parameters to be incorporated.
By treating the observations dobs and model parameters as random variables and
hence properties that follow an underlying stochastic process we can define the joint
distribution p(dobs,m). Factorizing the joint distribution leads to

p(dobs,m) = p(dobs|m)p(m) = p(m|dobs)p(dobs) (2.6)

which allows the conditional distribution of model parameters on the observed data
p(m|dobs) - also called the posterior distribution - to be expressed by rearranging
Eq. 2.6

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
=

p(dobs|m)p(m)∫
p(dobs|m)p(m) dm

(2.7)

which is Bayes’ law. To fully define Bayes’ law requires definition of the marginal or
prior distributions of the observations p(dobs) and model parameters p(m)

m ∼ p(m) (prior probability) (2.8a)
dobs ∼ p(dobs) (evidence) (2.8b)

Chapter 2 Lukas J. Mosser 7
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The use of conjugate probability distributions such as multi-Gaussian distributions
allow us to evaluate the posterior analytically, which in the case of a multi-Gaussian
prior and linear likelihood is also a multi-Gaussian distribution (Bishop, 2006).

In many applications the prior distribution of model parameters may be very
high-dimensional; a grid representation of the spatial distribution of lithological
facies, porosity and permeability in a hydrocarbon reservoir can easily exceed the
order of millions of individual grid blocks. While in many cases spatial correlations
are assumed to represent the prior distribution of model parameters p(m) exact
numerical integration of the marginal distribution of the observations p(dobs) quickly
becomes intractable as the number of parameters in m grows. Therefore other
approaches must be considered in the multivariate case to perform Bayesian inference
i.e. finding the posterior distribution of model parameters, without the need for
analytical integration of the model evidence p(dobs).

The model evidence in Eq. 2.7 is a constant and therefore we can determine the
posterior up to a scaling factor

p(m|dobs) ∝ p(dobs|m)p(m) (2.9)

This simplification allows us to find the maximum of the posterior distribution (MAP)

mMAP = argmax
m

p(dobs|m)p(m) (2.10a)

due to the fact that maxima of functions remain maxima under rescaling by a positive
constant. Therefore if we are only interested in finding a set of parameters that
maximize the posterior probability mMAP i.e. finding the mode of the posterior, it
is sufficient to maximize the product of the prior and the likelihood.

When the prior and likelihood distributions are conjugate we can find the maxi-
mum of the posterior analytically. Where gradients of the posterior can be obtained,
gradient-based optimization methods can be used to obtain the MAP estimate. When
the posterior is multi-modal finding the global MAP using gradient-based methods
can become challenging and even if the maximum can be found it may not provide a
good representation of the posterior distribution. This is further compounded in the
high-dimensional case where the mode i.e. the area of highest probability density is
far from the area of highest probability mass due to the curse of dimensionality.

2.1.3 Sampling from the Posterior

Posterior sampling methods, also called simulating from the posterior, allows samples
from the posterior to be obtained by first drawing samples from the prior and using
additional criteria to determine whether a sample should be accepted as being part
of the posterior distribution or rejected. The rejection sampling algorithm draws
samples from a known density g(m), the proposal or envelope distribution and
accepts samples with probability

pi =
p(dobs|m)p(m)

Mg(m)
(2.11)

where M is a scaling constant so that g(m) fully covers the posterior distribution
p(m|dobs). For high-dimensional distributions or complex posterior distributions
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with many modes this approach can be very inefficient as a large number of samples
have to be simulated for one sample to be accepted.

Importance sampling uses the ratio defined in Eq. 2.11 as a weight that determines
a sample’s contribution towards an estimate of the posterior mean. As such every
sample contributes, although possibly very small weight towards the posterior mean,
whereas rejection sampling considers samples in a purely binary fashion.

Approximate Bayesian Computation (ABC) relaxes the requirement of defining a
likelihood to perform sampling from the posterior (Beaumont et al., 2002; Csilléry
et al., 2010). This is useful when the exact likelihood is unknown. We first define a
scalar measure of mismatch ρ(·, ·) or distance between the observed and modeled
data ρ(dobs,F(m)) for a sample drawn from the prior m ∼ p(m). Samples from
the approximate posterior p(m|ρ(dobs,F(m)) ≤ ϵ) can be drawn by accepting
samples with mismatch less or equal to a threshold ϵ. Two limiting cases need to
be considered: first, when the threshold ϵ → 0 the true posterior is recovered and
second as ϵ → ∞ obtains samples from the prior. While ABC is a pragmatic way of
performing approximate Bayesian inference, choosing different values if ϵ allows us to
trade-off efficiently between accuracy of the approximate posterior and the necessary
computational effort. Small threshold values ε may require excessive computational
resources. When the compared observations are high-dimensional using a lower-
dimensional measure of mismatch ρ such as the cross-correlation or mean squared
difference should be preferred to accept and reject simulated realizations.

Rejection and importance sampling (Gelman et al., 2013) assumes independence
between individual simulated samples accepted as part of the posterior. To ex-
plore posterior distributions more effectively and hence be able to sample from
high-dimensional multi-modal posterior distributions, Markov-Chain Monte-Carlo
(MCMC) approaches assume a dependence between individual proposed samples
(Gilks et al., 1995). A Markov-Chain is a series of parameter states, where in its sim-
plest definition, the next state is only dependent on the current state. By performing
numerous and often millions or even billions of these correlated steps the series of
samples tends towards an equilibrium distribution corresponding to the posterior
distribution.

The Metropolis-Hastings (M-H) algorithm defines the most basic form of such a
Markov-Chain (Metropolis et al., 1953; Hastings, 1970). If the target density is the
unnormalized posterior distribution p(m|dobs) and q(mi|mi−1) defines a transition
probability that determines how the current state of parameters mi−1 transitions
to the next state mi, acceptance of a new proposed state mi+1 is given by the
probability

αi = min

{
p(dobs|mi)p(mi)q(mi|mi−1)

p(dobs|mi−1)p(mi−1)q(mi−1|mi)
, 1

}
(2.12)

If the proposed state is rejected a new proposal mi ∼ p(mi|mi−1) is drawn. Random-
walk Metropolis assumes the proposal distribution

mi = mi−1 + εm, εm ∼ N (0,Σm) (2.13)

where εm is sampled from a multi-Gaussian with variance-covariance matrix Σm.
The challenge with MCMC methods is to find good proposal strategies that allow
exploration of the target posterior while maintaining high acceptance rates. In the
case of the random-walk Metropolis algorithm the acceptance rate is high, but the
method suffers from poor exploration of the posterior and is equivalent to a random
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walk with a guide provided by the M-H criterion. The Gibbs-Sampling strategy
(Tanner and Wong, 1987; Gelfand and Smith, 1990) tries to improve exploration of
the posterior by alternating between multiple correlated Markov-Chains that propose
changes to a subset of the parameters at a time.

When gradients of the target posterior can be computed efficiently Hamiltonian-
Markov-Chain methods (Duane et al., 1987; Neal, 2011; Betancourt, 2017) are able
to leverage the underlying structure of the posterior distribution and in combination
with automatic step-size selection algorithms provided by methods such as the
No-U-Turn-Sampler (NUTS) (Hoffman and Gelman, 2014), this family of gradient-
based MCMC algorithms allows efficient sampling of high-dimensional posterior
distributions. In Chapter 6 I will use an approximation to a gradient-based MCMC
method, the so-called approximate Metropolis-adjusted Langevin Algorithm (Roberts
and Tweedie, 1996; Roberts and Rosenthal, 1998; Nguyen et al., 2016) to obtain
samples of the posterior distribution for a seismic full-waveform inversion problem
where gradients of the likelihood and prior are obtained by the adjoint-state method
and traditional neural network backpropagation.

2.1.4 Latent Variable Models

A common family of probabilistic models are latent variable models. These proba-
bilistic models are defined by a set of observations dobs and unobserved parameters
z. Together this defines a joint distribution p(dobs, z). We may wish to determine
the posterior distribution of the latent variables given the observations p(z|dobs).
Gaussian mixture models (GMM) are a member of the family of latent variable
models. A GMM can be represented as a combination of a discrete latent variables z
and continuous Gaussian distributions associated with the observations dobs. The
posterior distribution p(z|dobs) corresponds to finding the distribution of the initially
unknown parameters of a set of Gaussian distributions from a set of observed data.
This allows us to learn something about the hidden structure of the data e.g. forming
clusters under the GMM. In modern statistical learning (Bishop, 2006; Goodfellow et
al., 2016) probabilistic models (Koller and Friedman, 2009) can become very complex
and, with the availability of enormous datasets, using traditional sampling-based
approaches can quickly become intractable and we therefore need to expand our
toolkit of Bayesian inference methods to techniques that can overcome these hurdles.

Variational inference (VI) reformulates the problem of finding an approximation to
the true posterior distribution as one of optimization (Jordan et al., 1999; Wainwright
et al., 2008; Blei et al., 2017). To perform variational inference we choose a parametric
distribution qθ(z) and minimize a measure of similarity between two distributions,
the posterior p(z|dobs) and our parametric proposal distribution qθ(z). By optimizing
the parameters θ of our proposal distribution we seek to obtain an approximate
representation of the posterior. A common choice as a measure of dissimilarity
between distributions is the Kulback-Leibler divergence (KL) (Gelman et al., 2013)

θVI = argmin
θ

KL(qθ(z)∥p(z|dobs)) (2.14)

Computing the KL-divergence is intractable and therefore it is not possible to
formulate a direct minimization problem where we optimize the parameters of the
proposal distribution. Instead, we optimize a lower bound on the model evidence
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(Evidence Lower BOund - ELBO) which can be shown to be equivalent to minimizing
the KL-divergence.

For the mean-field family (Blei et al., 2017) where the proposal distribution is
factorized into independent distributions

q(z) =
∏
i

qi(zi) (2.15)

we can then perform coordinate descent to maximize the ELBO objective. I will
make use of variational inference methods later during this chapter to introduce a
very flexible family of methods to represent high-dimensional distributions that are
parameterized by neural networks.

2.2 Representing the Prior Distribution
In the first part of this chapter I have introduced how subsurface properties can be
inferred from measured data in a Bayesian setting. Bayes’ Law tells us how we can
derive knowledge about the subsurface from the observed data by combining our
prior understanding (formulated in a prior distribution) with the likelihood function.
I have introduced a number of deterministic and stochastic techniques that allow us
to derive knowledge about the posterior distribution of the subsurface properties. I
have previously assumed that a prior distribution has been formulated from which
we can obtain random samples. In the following I will give an overview of the most
important approaches that have been developed to create prior probabilistic models
of properties at the pore and reservoir-scale.

The first distinction I will make is based on the type of random function being
modeled; continuous or categorical. At the reservoir-scale continuous properties are
often associated to petrophysical parameters such as porosity and permeability or
the P-wave velocity of the subsurface lithologies, while categorical properties are
associated with lithologies or geological facies. In many cases we can obtain sparse
direct measurements of the subsurface properties at boreholes. These observations
should be honored by any random sample that we obtain from our prior distribution
and in the following I refer to these as hard data. Geostatistical conditional simulation
(GCS) allows us to draw realizations of multi-dimensional property distributions that
honor observed hard data while being statistically representative of the subsurface
heterogeneities. There are a number of differences between GCS and the simpler
spatial interpolation or Kriging approach. Kriging is a deterministic method that
while honoring hard data leads to very smooth representations of the properties away
from the observed data. Kriging represents the mean of all possible realizations that
match the data. This representation of subsurface properties is not reconcilable with
actual property distributions - where there is strong heterogeneity in a reservoir this
should be the case at the wells and between the wells. In contrast to Kriging, samples
created by GCS are stochastic i.e. we can draw random samples from a distribution
where each realization honors observed data while also statistically representing
heterogeneities.
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2.2.1 Continuous Random Functions

In the continuous random variable case, a number of approaches have been developed
to create realizations of stationary Gaussian random variables. Sequential Gaussian
simulation (SGS) (Deutsch and Journel, 1992) creates realizations of property distri-
butions by sequentially populating the simulation domain following a random path
with random samples. Each random value that is used to populate a new location is
drawn from a Gaussian distribution with a mean and standard deviation obtained by
kriging in a moving window neighborhood. Observed data and previously simulated
values act as conditioning locations through kriging and are left unchanged in the
simulation process. LU decomposition of the covariance matrix as introduced by
(Davis, 1987; Alabert, 1987) lends itself to simulation of Gaussian random variables
but can become computationally challenging for large grid sizes. Two-step itera-
tive methods create conditional realizations of Gaussian random variables by first
generating an unconditional realization using methods such as the Fourier Integral
method (Yao, 1999) or the moving average technique (Oliver, 1995; Doyen, 1988) and
then correct for the mismatch at the conditioning data (Chiles and Delfiner, 2009).
Non-Gaussian variables can be simulated either by first transforming non-Gaussian
distributions to a Gaussian distribution using the normal score transform or by
direct simulation i.e. for data that show close to Gaussian behavior performing SGS
from a local distribution (Deutsch and Journel, 1992) obtained by kriging. For the
case where data have been transformed using the normal score transform, these
Gaussian realizations usually obtained by SGS have to be transformed back to the
non-Gaussian case after simulation.

2.2.2 Pixel-based Approaches for Random Functions

Geological facies or lithologies at the reservoir-scale, as well as the pores and grains
of a pore-scale image after segmentation, can be represented by indicator variables.
Pixel-based methods consider each pixel value within an image or grid block in
the case of 3D reservoir models as a random variable and these methods generate
realizations on a per-pixel basis. Sequential indicator simulation (SIS) (Bierkens and
Burrough, 1993) represents a generalization of SGS to categorical random variables.
In the case where multiple indicator variables are present (e.g. 0-sand, 1-shale,
2-limestone) these are first transformed to separate binary indicator variables and
experimental variograms are fit by a model. Realizations are obtained analogous
to the SGS approach in a sequential manner along a random path where kriging in
the SIS case is used to obtain the probability of an indicator variable within a local
neighborhood. Truncated pluri-Gaussian simulation uses conditional simulations
of Gaussian variables which are thresholded using a truncation rule that allows
spatial dependence and chronological ordering of indicator variables to be modeled
(Rudkiewicz et al., 1990; Emery, 2007; Armstrong et al., 2011).The simulated
Gaussian variables are often called latent variables.

At the pore-scale, pixel-based approaches such as simulated annealing (Yeong and
Torquato, 1998; Jiao et al., 2008) allow high-quality three-dimensional reconstruc-
tion and incorporation of numerous statistical descriptors of porous media. Pant,
(2016) introduced a multi-scale simulated annealing algorithm allowing simulation
of three-dimensional porous media achieving a lower computational cost and higher
reconstruction quality than previous methods.
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Many pixel-based approaches use variograms as a measure of spatial variability,
whereas recent methods in geostatistics use training images as a basis for pixel-based
geostatistical simulation (Caers and Zhang, 2004; Mariethoz et al., 2010; Meerschman
et al., 2013). Training images are usually assumed to exhibit stationarity of the
probability distribution of the properties of interest and provide higher order multiple-
point statistics (MPS) to reconstruct stochastic random media. With MPS, the
probability distributions are represented by training images and are sampled using
a limited multi-scale neighborhood that captures the variation on a large scale, as
well as fine structural details on smaller scales (Tahmasebi et al., 2014). MPS-based
methods have been successfully applied in generating realistic three-dimensional
realizations of geological features (Guardiano and Srivastava, 1993; Caers, 2001;
Mariethoz and Caers, 2014). The computational complexity of these methods is
highly dependent on individual algorithms as well as the size of the domains used
to sample from the training images (Mariethoz and Caers, 2014). Parallelized
versions have been developed, reducing the computational time required to perform
reconstruction using MPS (Straubhaar et al., 2011; Huang et al., 2013). At the
pore-scale, micron-resolution X-ray tomography (micro-CT imaging) (Flannery et al.,
1987) provides training images for MPS-based simulation techniques that enable
stochastic reconstruction of three-dimensional porous media (Okabe and Blunt, 2004;
Okabe and Blunt, 2005; Okabe and Blunt, 2007).

Tahmasebi et al., (2012) have introduced a patch-based approach where sub-
domains are simulated along a predefined path and populated based on a cross-
correlation distance criterion (CCSIM) (Tahmasebi and Sahimi, 2012; Tahmasebi
and Sahimi, 2013). This approach is similar to the image quilting algorithm by Efros
and Freeman, (2001) but corrects mismatching patches in overlapping or neighboring
domains.

2.2.3 Object-based Methods

Object-based methods create random spatial arrangements of geological bodies that
represent the building blocks of the observed geology or porous media. Many
sedimentary rocks consist of granular siliciclastic or carbonate materials. Boolean
models use this fundamental characteristic of natural granular materials to emulate
the shape of the arising pore space, due to an underlying random process that controls
the distribution of the individual grains (Matheron, 1975; Serra, 1980). While for
the classical Boolean model, the centers of the grains are uniformly distributed in
space and grains can arbitrarily overlap, more complicated models with rigid hard
sphere grains and more complex grain interaction functions have been developed
(Matheron, 1971; Arns et al., 2009; Rikvold and Stell, 1985; Torquato, 2013). The
framework of Boolean models also allows extension beyond spherical particles and
enables derivation of the properties of material models as a function of the parameters
of the underlying random process (Bretheau and Jeulin, 1989; Jeulin, 2000; Lin and
Cohen, 1982; Yeong and Torquato, 1998). At the reservoir-scale, object-based models
have been successfully applied as representations of many geological structures such
as fluvial channels and conditioned to available seismic data in a Bayesian framework
(Holden et al., 1998) . However, their conditioning can be challenging when the data
spacing is smaller than the average size of the modeled objects (Dubrule, 2003).

While many of the presented approaches to represent continuous and categorical
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random functions rely on two-point or higher-order statistical information to obtain
samples from a prior distribution of spatial properties, more complex models may
allow more sophisticated models of random variable functions. In the following I
will introduce the family of neural network type functions and how we can use these
to build sophisticated models of probability distributions based on a set of training
data or images, from which we can sample new realizations.

2.3 Generative Modeling using Neural Networks
I will now address modeling distributions of data in a more general way. In the
following we will assume that we are modeling a distribution of images m ∼ pθ(m) -
geological training images at reservoir-scale or CT-images at pore-scale. As introduced
in Section 2.2 we represent the distribution of properties m that follow an unknown
distribution pθ(m)

m ∼ pθ(m) (2.16)

If we assume that our training data can be represented by a multi-Gaussian distri-
bution N (µ,Σ) then the set of model parameters θ correspond to the mean and
variance-covariance matrix. Without loss of generality the training data we are
modeling can be of any form, but for the sake of simplicity we consider here the
training data to be a set of geological training images. For a set of two-dimensional or
three-dimensional images m we may seek to find values of the parameters θ that allow
us to create a parametric probability density function pθ(m) that approximates the
probability distribution of the training images. This process is commonly referred to
as learning. Natural data often follow complex multi-modal and non-Gaussian distri-
butions and hence our models of the probability distributions need to be sufficiently
powerful to represent the training data.

2.3.1 Using Neural Networks for Supervised Learning

In recent years, neural networks have become a popular choice as parametric function
representations. One common application for neural networks today is for repre-
senting conditional distributions such as in the case of classification or regression
problems (Bishop, 2006). For example, in binary classification problems the class
probabilities of a Bernoulli distribution given the data can be parameterized by a
neural network. Neural networks have recently earned enormous attention thanks to
significant advances such as the development of efficient training algorithms using
backpropagation (Rumelhart et al., 1988). Backpropagation allows gradients of a
loss function with respect to the parameters of a neural network to be efficiently
computed. The availability of very large datasets and the ability of stochastic gradient
descent techniques (Bottou, 2010) to optimize the parameters of neural networks
by using noisy gradient estimates from small so-called batches of data have also
played a key role in the success of neural networks. Modern graphics processing
units (GPUs) are a specialized type of computational processors that allow fast
and parallel matrix-vector operations to be performed (Krizhevsky et al., 2012).
Efficient implementations of the backpropagation algorithm (LeCun et al., 1998) use
matrix-vector algorithms to evaluate the forward calculation which in the case of a
classification problem corresponds to predicting the class probabilities given the data,

Chapter 2 Lukas J. Mosser 14



Reservoir Modeling and Inversion using Generative Adversarial Network Priors

and to evaluate gradients of the mismatch from the true labels for a small batch of
training data with respect to all the parameters of the neural network.

The development of convolutional neural networks has sparked many successful
applications in the domain of computer vision, such as image recognition and
segmentation (LeCun et al., 1995). Convolutional neural networks extend the idea
of traditional kernel-based computer vision, where an image is convolved by a small
kernel of parameters with fixed weights, to detect specific features such as edges.
The parameters of a convolutional neural network are the weights of the kernel
that is convolved with a given image. Convolutional neural networks allow the
structured representation of images to be exploited and make an implicit assumption
of translational invariance to learn feature representations with a much smaller number
of parameters. Finally, the combination and stacking of many of these parametric
functional layers in so-called deep neural networks drive most of today’s successful
applications of deep learning (Goodfellow et al., 2016). Affine transformations of
the input data (also called fully connected layers) and convolutional operations are
linear operations and are combined with non-linear activation functions. Vanishing
gradients due to the use of sigmoid-type activation functions in deep neural networks
make learning the parameters very time consuming and inefficient. Rectified Linear
Unit (ReLU) activation functions have a unit gradient regardless of the magnitude
of the input feature and when used in very deep neural networks allow gradients
of sufficient magnitude to be backpropagated in very deep neural networks so that
learning the parameters using gradient descent can be performed within reasonable
time and computational effort (Krizhevsky et al., 2012). In this thesis, I use deep
neural networks to represent and parameterize families of probability functions of
very high-dimensional data such as geological models or three-dimensional images of
porous media.

2.3.2 Using Neural Networks to represent Probability
Distributions

Maximum likelihood estimation allows us to learn the parameters θ of a neural
network used to parameterize the density pθ(m) for a given training dataset of
images M = {m1, ...,mi} assumed to be independent and identically distributed
(iid)

max
θ

{log pθ(M)} = max
θ

{
∑

mi∈M

log pθ(mi)} (2.17)

Due to the differentiable nature of neural networks we can find a set of parameters
θ that maximizes the log-likelihood over the elements mi of the training dataset M
using gradient descent

θt+1 = θt − η∇θlog pθ(m) (2.18)
where t denotes the optimization step, η is the step size or learning rate and gradients
are computed with respect to model parameters θ.

While for fully-observed distributions pθ(m) we can use maximum likelihood to
learn the parameters θ for a training dataset M, this is not the case for deep latent
variable models i.e. latent variable models where deep neural networks are used to
parameterize the density function

pθ(m) =

∫
pθ(m, z) dz (2.19)
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The additional challenge comes from the integral expression in Eq. 2.19. Before
being able to evaluate the likelihood it is necessary to marginalize over the latent
variables which requires high-dimensional integration and makes the maximum
likelihood approach intractable. Approximate inference techniques such as variational
inference (Section 2.1.4) (Blei et al., 2017) approximate the probability distributions
involved in deep latent variable models and find such representations without the
need for expensive high-dimensional integration techniques such as Markov-Chain-
Monte-Carlo approaches. I will now review the family of generative models whose
parameters θ that can be efficiently estimated using the maximum likelihood approach
(Goodfellow, 2016).

2.3.3 Explicit Density

Generative models that represent the density explicitly allow to draw new samples
m ∼ pθ(m). We can further distinguish between two types of explicit density
representations; tractable and approximate density methods.

Tractable Density

Tractable density methods represent the density by tractable computations. Autore-
gressive methods use a factorization of the density into a sequence of conditional
distributions where each random variable is conditional on all previously occurring
random variables

p(x) =
n∏

i=1

p(xi|x1, ..., xi−1) (2.20)

Autoregressive techniques have been developed for sampling generative models of
continuous and categorical data such as images and audio. Recurrent neural networks
(PixelRNN Oord et al., (2016b)) and convolutional neural networks (Oord et al.,
2016a; Oord et al., 2016c) lend themselves specifically to represent the sequential
ordering associated with the conditional distributions in autoregressive techniques.
While autoregressive techniques have the advantage to provide explicit values of the
density and all conditional distributions, their sequential ordering which requires
sequential generation makes them comparatively slow to learn the parameters of
their neural network representations as well as at creating new realizations.

In the case of deep latent variable models where the dimension of the latent space
is the same as that of the image space it is possible to formulate a generative model
that allows a tractable explicit representation of the density through a change of
variables

p(m) = p(z)

⏐⏐⏐⏐det(∂gθ(z)

∂zT

)⏐⏐⏐⏐−1

(2.21)

where gθ is a function that maps from the latent to the image space and ∂gθ(z)
∂zT

is the
Jacobian of gθ with respect to z. If the transformation gθ is a bijective function we
can learn the parameters θ using a maximum likelihood approach (Dinh et al., 2016).
For high-dimensional distributions such as images computing the Jacobian would be
very computational demanding and therefore specialized bijective transformations gθ
are required that allow efficient computation of the transformation and the Jacobian.
A number of these bijective transformations can be coupled together forming a
self-normalizing flow (Rezende and Mohamed, 2015). Dinh et al., (2016) introduce
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specialized coupling layers that preserve invertibility of the transformation g(·)
allowing for complex and high-dimensional distributions such as natural images to be
represented by transformation from a simple multi-Gaussian prior distribution p(z).
Kingma and Dhariwal, (2018) have shown that self-normalizing flows can be trained
using a maximum likelihood approach and introduce invertible 1 × 1 convolution
operations to learn density representations of high-dimensional datasets such as
high-resolution images.

Approximate Density

I have introduced a number of approaches that allow explicit representation learning
using a maximum likelihood approach. A different approach to the methods such as
autoregressive techniques or self-normalizing flows of finding a tractable representation
of the density is to find approximate methods to obtain the parameters of density
models where the evaluation of the likelihood is intractable as is the case for deep
latent variable models (Eq. 2.19). Kingma and Welling, (2013) use the factorization
of the joint distribution of a deep latent variable model

pθ(m, z) = pθ(m|z)pθ(z) (2.22)

with a simple multi-Gaussian prior distribution pθ(z) of the latent variables. They
define an encoder distribution qϕ(z|m) parameterized by a neural network with
parameters ϕ that approximates the intractable true posterior

qϕ(z|m) ≈ pθ(z|m) (2.23)

and a decoder network pθ(m|z) that represents the conditional distribution of the
images given the latent variables. They decompose the log-likelihood or model
evidence log pθ(m) as

log pθ(m) = Lθ,ϕ(m) +DKL(qϕ(z|m)∥pθ(z|m)) (2.24)

where Lθ,ϕ(m) is the evidence lower bound (ELBO)

Lθ,ϕ(m) = Eqϕ(z|m) [pθ(m, z)− qϕ(z|m)] (2.25)

The ELBO is a lower bound due to the KL-Divergence (Eq. 2.14) in Eq. 2.24 being
positive by definition. By leveraging a reparameterization of the prior distribution of
the latent variables the so-called Variational Autoencoder (VAE) by Kingma and
Welling, (2013) model allows end-to-end learning of a generative and approximate
inference network for intractable deep latent variable models. Due to the fully-
differentiable nature of the VAE the parameters of the encoder and decoder network
can be learned by leveraging stochastic gradient descent techniques on noisy estimates
of the gradient of the ELBO using mini-batches of data, making the VAE a scalable
approach suited for approximate inference for very large datasets. After training,
the marginal likelihood of new data can be estimated using an importance sampling
technique (Rezende and Mohamed, 2015).

2.3.4 Implicit Density

I will now introduce deep generative models that do not require an explicit represen-
tation of the density pθ(m). Implicit density methods aim to learn a representation
of the underlying probability distribution defined implicitly by a set of training
examples.
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Generative Adversarial Networks

Recently, a new approach that casts learning probability distributions of data as a
two-player game called Generative Adversarial Networks (GANs) has been proposed
(Goodfellow et al., 2014). Formally, GANs are deep latent variable models that
learn an implicit representation of the probability distribution defined by a training
dataset. Let us assume here that the training dataset is composed of images.

GANs consist of two parametric functions: a discriminator Dω(m) and a generator
Gθ(z). The discriminator evaluates samples from the set of training examples
m ∼ pdata(m) and realizations created by the generator by applying the parametric
generator function Gθ(z) to a sample drawn from a prior distribution of the latent
variables z ∼ p(z). Common choices for the prior distribution of the latent variables
p(z) are multi-Gaussian or uniform distributions. The generator Gθ(z) maps random
samples from the latent space into the space of images. The discriminator’s role
is to assign a probability that a random sample m is from the data distribution
pdata(m). The discriminator tries to label each sample correctly, while the generator
tries to "fool" the discriminator into labeling the fake images as part of the true
data distribution and therefore achieving Dω(Gθ(z)) close to one. The objectives of
the generator and discriminator counteract each other and each player acts as an
adversary to the other’s objective - hence the name Generative Adversarial Networks.

More formally we can define the loss i.e. the cost function for GANs as a
minimization-maximization problem

min
θ

[
max

ω
{Em∼pdata(m)[log(Dω(m))] + Ez∼pz(z)[log(1−Dω(Gθ(z)))]}

]
(2.26)

Solutions to this optimization problem have been shown to be Nash equilibria,
where each player achieves a local optimum of their loss function with respect to
their parameters (Goodfellow, 2016). In practice we represent Gθ and Dω by convo-
lutional neural networks where parameters θ and ω are optimized using stochastic
gradient descent. Training is performed in an iterative alternating manner: first the
discriminator is trained to maximize

J (Dω) = Em∼pdata(m)[log(Dω(m))] + Ez∼pz(z)[log(1−Dω(Gθ(z)))] (2.27)

while the parameters of the generator are kept constant. This improves the ability of
the discriminator to distinguish between real images from the training set and those
created by the generator.

In a subsequent step we generate synthetic samples by applying the generator
Gθ(z) to samples from the prior z ∼ p(z) and train the generator to minimize

J (G) = Ez∼pz [log(1−Dω(Gθ(z)))] (2.28)

while keeping the parameters of the discriminator fixed. In the ideal case convergence
is reached when the value of the discriminator is 1

2
as this means that the discriminator

cannot distinguish between data from the training set and samples created by the
generator and therefore pg(m) = pdata(m).

The two-player game defined by the training procedure for GANs shows highly
unstable behavior making training of GANs for general high-dimensional datasets
such as images difficult in practice, where large number of trial and error runs are
required to find an optimal set of hyperparameters to allow stable training.
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2.4 Research Questions
At the beginning of this chapter I have reviewed a number of inversion techniques and
methods to generate realizations of geological features at the pore- and reservoir-scale.
I have shown that for Bayesian inversion techniques it is necessary to find good rep-
resentations of the prior distribution of the model parameters p(m) that allow us to
obtain representations that honor observed data while capturing the relevant features
of the prior distribution. At the pore-scale having statistical or generative models
of the data allows us to quantify the distribution of flow and transport properties
under changing structural features and boundary conditions allowing us to build
representative Digital Rock Physics (Blunt, 2017) models calibrated by laboratory
measurements. I have then introduced parametric generative models where neural
networks are used to represent the probability distribution of a given dataset of
observed examples and I have shown how the parameters of these neural networks
can be learned using a maximum likelihood approach. Generative models based
on explicit density representations allow us to draw new samples and compute the
likelihood of a dataset given the model, while implicit representations allow us only to
generate new high-fidelity realizations. Given the recent advances in deep generative
modeling we hypothesize that it may be possible to find new representations of
prior distributions for Bayesian inversion in subsurface applications and to create
data-driven stochastic reconstruction methods for digital rock applications. From
this we formulate the following research questions and contributions.

Research Question 1: How can we build generative models of porous media at the
pore-scale that allow fast sampling while reproducing statistical and physical properties
relevant for flow?

In Chapter 3 I propose using generative adversarial networks to learn a probabilistic
model of micro-CT image data that allow fast sampling of large three-dimensional
stochastic realizations of porous media at the pore-scale. I represent the genera-
tive model by a deep three-dimensional convolutional neural network trained on
subdomains or patches of large segmented three-dimensional micro-CT images of
synthetic materials and porous rocks. Using a fully-convolutional network allows
me to train on a large number of small training images while being able to generate
large three-dimensional realizations after training. I show that the obtained samples
honor the statistical properties of the porous media and the flow-properties such as
effective permeability.

In Chapter 4 I extend the analysis of GANs for stochastic image reconstruction to
three-dimensional greyscale micro-CT image of the oolitic Ketton limestone. Due to
the diverse nature of the features in the unsegmented micro-CT image this represents
a challenging dataset. Furthermore, I propose an evaluation of the generated images
based on a so-called Minkowski functionals - a set of morphological properties that
are inherently linked to key flow and transport properties of porous media such
as the Euler characteristic which is closely linked to the connectivity of porous
media. Finally, I investigate the representations learned in the deep convolutional
neural network and highlight some of the challenges inherent in training GANs to
represent high-dimensional datasets such as their ability to represent multi-modal
data distributions, and I address the issue of training instabilities.

Chapter 2 Lukas J. Mosser 19



Reservoir Modeling and Inversion using Generative Adversarial Network Priors

Research Question 2: Can we condition deep generative models trained to represent
three-dimensional geological features to generate stochastic realizations that honor
lower-dimensional data such as two-dimensional thin-sections or one-dimensional
borehole data?

In Chapter 5 I propose conditioning of stochastic samples created by a trained
GAN generator using a gradient-based search to find three-dimensional pore-scale
images and reservoir-scale models in the latent space of the GAN that honor the
available lower-dimensional data. This approach builds upon the idea of image
inpainting (Yeh et al., 2016) where I constrain the output of the generator function
to minimize the mismatch between existing lower-dimensional data and the output
of the generator function. By leveraging the discriminator function I additionally
regularize the generator to create samples that show features of the underlying data
distribution implicitly defined by the set of training images used to train the GAN. I
demonstrate that starting from various initial samples from the prior distribution
of the latent variables we obtain stochastic realizations of three-dimensional porous
media and reservoir models.

Due to the uncertainty and sparsity of observed geophysical data, many inverse
problems in the geosciences can be formulated in a Bayesian inference setting. Given
a prior distribution of model parameters the goal is to find the posterior distribution
i.e. the conditional distribution of the model parameters given observed data. The
probabilistic interpretation of GANs as models of high-dimensional data distributions
leads to the final research question:

Research Question 3: Can GANs be used in a Bayesian setting to represent
prior distributions in ill-posed large-scale subsurface inverse problems?

In Chapter 6 I propose the use of GANs as probabilistic models to represent the prior
distribution of possible geological and petrophysical models. I obtain solutions to
the ill-posed non-linear full-waveform inversion problem of acoustic seismic data by
performing Bayesian inference on the latent variables that govern the output of the
GAN generator using an approximate Markov-Chain-Monte-Carlo algorithm. This
allows samples from the posterior distribution of reservoir models to be obtained by
conditioning to observed seismic data. I use an approximate Metropolis-Adjusted
Langevin Algorithm (MALA) that leverages gradients of the posterior to perform
sampling of this posterior. Gradients of the posterior are obtained by combining the
GAN generator with a finite-difference solution to the wave equation that allows
gradients of the likelihood to be obtained using the adjoint-state method. Gradients
at grid-block-scale are then propagated to the latent variables by neural network
backpropagation and use of the chain-rule.

In Chapter 7 I use GANs to represent the space of possible geological models for
the reservoir history matching problem. An ensemble of history-matched reservoir
models is obtained by starting from a number of random initial sets of latent variables
and performing maximum a posteriori inference on each of them given observed
two-phase flow rate and pressure data.
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Chapter 3

Reconstruction of Three-Dimensional
Porous Media using Generative
Adversarial Neural Networks

3.1 Abstract
To evaluate the variability of multiphase flow properties of porous media at the
pore-scale, it is necessary to acquire a number of representative samples of the
void-solid structure. While modern X-ray computer tomography has made it possible
to extract three-dimensional images of the pore-space, assessment of the variability
in the inherent material properties is often experimentally not feasible. We present a
novel method to reconstruct the solid-void structure of porous media by applying
a generative neural network that allows an implicit description of the probability
distribution represented by three-dimensional image datasets. We show, by using an
adversarial learning approach for neural networks, that this method of unsupervised
learning is able to generate representative samples of porous media that honor
their statistics. We successfully compare measures of pore morphology, such as the
Euler characteristic, two-point statistics and directional single-phase permeability of
synthetic realizations with the calculated properties of a bead pack, Berea sandstone,
and Ketton limestone. Results show that GANs can be used to reconstruct high-
resolution three-dimensional images of porous media at different scales that are
representative of the morphology of the images used to train the neural network.
The fully convolutional nature of the trained neural network allows the generation
of large samples while maintaining computational efficiency. Compared to classical
stochastic methods of image reconstruction, the implicit representation of the learned
data distribution can be stored and reused to generate multiple realizations of the
pore structure very rapidly.

3.2 Introduction

3.2.1 Image Reconstruction

The reconstruction and the evaluation of the material properties of porous media
plays a key role across many engineering disciplines. Many physical processes such as
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the movement of multiple phases of fluids through sedimentary rocks are controlled
by individual pores at the micron and sub-micron scale (Blunt, 2017).

In carbon capture and sequestration (CCS), the long term storage behavior is
controlled by the physical and chemical interaction of super-critical CO2 with the
reservoir brine, as well as the spatial distribution and connectivity of minerals in the
pore-space (Juanes et al., 2006; Kang et al., 2010). The variability of the controlling
properties such as the permeability of the host rock is determined by repeated
experiments or numerical modeling of these processes.

Using modern computer tomographic methods, it is possible to observe porous
materials and evaluate their material properties at the micrometer scale (micro-CT)
under static and transient conditions at high pressures and temperatures in near real
time. Performing micro-CT imaging of porous media requires specialized, expensive
equipment and in the case of CCS, only a single image of the investigated rock type
is typically acquired.

To evaluate the variability associated with the geometrical and mineralogical
morphology of the pore-space, numerous physical experiments using the same rock
type would have to be performed to obtain a distribution over larger volumes. Due to
time and cost limitations inherent with the experimental acquisition of high-resolution
images, this is often deemed unfeasible. Material properties governing the single
and multiphase flow behavior of porous media can be estimated from numerical
solution of partial differential equations at a scale larger than that of a representative
elementary volume (REV) and verified by experimental results (Mostaghimi et al.,
2013).

Many sedimentary rocks consist of granular siliciclastic or carbonate materials.
Boolean models use this fundamental characteristic of natural granular materials to
emulate the shape of the arising pore-space, due to an underlying random process that
controls the distribution of the individual grains (Matheron, 1975; Serra, 1980). While
for the classical Boolean model, the centers of the grains are uniformly distributed
in space and grains can arbitrarily overlap, more complicated models with rigid hard
sphere grains and more complex grain interaction functions have been developed
(Matheron, 1971; Arns et al., 2009; Rikvold and Stell, 1985; Torquato, 2013). The
framework of Boolean models also allows extension beyond spherical particles and
enables derivation of the properties of material models as a function of the parameters
of the underlying random process (Bretheau and Jeulin, 1989; Jeulin, 2000; Lin and
Cohen, 1982; Yeong and Torquato, 1998).

In clastic rocks, the arrangement of individual grains occurs due to the transport
of material from a high energy source to a low energy sink. Process models, where
depositional mechanisms are simulated, have been shown to reproduce realistic
granular reconstructions capturing the pore-space morphology of granular sedimentary
rocks (Øren and Bakke, 2003).

Spatial probabilistic models such as truncated Gaussian processes or sequential
indicator simulation have been widely applied in the geosciences to model the spatial
distribution of materials (Pyrcz and Deutsch, 2014). Many of these methods rely on
two-point probability functions as a measure of spatial variability, whereas recent
methods in geostatistics use training images as a basis for sample reconstruction
(Caers and Zhang, 2004; Mariethoz et al., 2010; Meerschman et al., 2013). These
images are usually assumed to exhibit stationarity of the probability distribution of
the properties of interest and rely on higher order multiple-point statistics (MPS) to
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reconstruct stochastic random media.
With MPS, the probability distributions are represented by training images and

are sampled using a limited multi-scale neighborhood that captures the variation on
a large scale, as well as fine structural details on smaller scales (Tahmasebi et al.,
2014). MPS-based methods have been used in two and three-dimensional condi-
tional simulation of spatial properties in reservoir-scale earth modeling applications
(Comunian et al., 2011). The computational complexity of these methods is highly
dependent on individual algorithms as well as the size of the domains used to sample
from the training images (Mariethoz and Caers, 2014). Parallelized versions have
been developed, reducing the computational time required to perform reconstruction
using MPS (Straubhaar et al., 2011; Huang et al., 2013).

Three-dimensional porous media have been reconstructed using a modified
multiple-point statistics approach based on two-dimensional images of porous me-
dia (Okabe and Blunt, 2004; Okabe and Blunt, 2005; Okabe and Blunt, 2007).
Stochastic methods based on simulated annealing allow the incorporation of arbi-
trary cost functions of statistical and morphological properties used in unconditional
three-dimensional image reconstruction (Smith et al., 1983; Svergun, 1999). Recent
advances have reduced the computational runtime of simulated-annealing-based meth-
ods for reconstruction of porous media, to the order of tens of hours per realization
at the scale of 3003 voxels (Pant, 2016).

In the following section, we introduce a recently developed class of unsupervised
machine learning methods called generative adversarial networks (GAN), as discussed
in Chapter 2.3.4 and applied here to generate pore-space images, that allow simulation
of probability distributions given a set of training data (Goodfellow et al., 2014).
Volumetric generative adversarial networks have previously been applied to low-
resolution three-dimensional CAD model synthesis, and practical applications of
3D-GANs are few compared to their two-dimensional counterparts (Wu et al., 2016).
Integration of multi-resolution datasets incorporating image data across a number
of length scales is possible in the GAN framework by using a Laplacian pyramid
approach such as LapGAN (Denton et al., 2015).

We investigate the applicability of GANs to model three-dimensional textures of
rocks based on three-dimensional binary representations of porous media acquired at
the micrometer scale. We compare statistical, morphological and transport properties
of the simulated images with those of the training images. We evaluate the single-
phase directional permeability to show that the synthetic realizations sampled from
the learned representation of the input data can capture single-phase flow properties
of sedimentary rocks.

Training of these neural networks involves finding a set of hyperparameters that
lead to stable training (Goodfellow, 2016). While this training can take on the order
of tens of hours, the sampling of large volumetric domains occurs on the order of
seconds on the current generation of graphical processing units (GPU). We show that
in favorable cases convolutional neural networks incorporated in the GAN framework
allow the generation of synthetic reconstructions of porous media that exceed the
dimensions of their training images. Contrary to most existing simulation techniques
the set of parameters used to generate synthetic realizations can be stored once
trained, allowing rapid generation of new samples to assess the variability of material
properties.

While we apply GANs to a set of micro-CT images of porous media, the method
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can readily be applied to volumetric images of porous media obtained from other three-
dimensional microscopy instruments such as nano or medical-CT instruments. We
discuss the challenges involved in training GANs for stochastic image reconstruction
of porous media, as compared to other stochastic image reconstruction methods
and we evaluate the computational efficiency of GAN-based image reconstruction.
Finally, we provide empirical guidelines on the requirements of the input dataset to
allow successful training of GANs on large three-dimensional voxel representations
of natural porous media.

All data used in this study, as is the case for the rest of this thesis, are available
in the public domain and we have made the code used for training, as well as
example pre-trained models, available as additional supporting material 1. A public
dataset of high-resolution micro-CT images made available by the Imperial College
Pore-Scale Modelling Group 2, of a spherical beadpack, Berea sandstone, and oolitic
Ketton limestone will serve as benchmark cases to study the application of GANs to
three-dimensional stochastic image reconstruction.

3.3 Generative Adversarial Networks
In the following section, we present generative adversarial networks (GAN) for three-
dimensional image generation developing the discussion presented in Chapter 2 to
focus on the generation of three-dimensional pore-space images. Generative neural
networks have been developed in the context of deep learning by Goodfellow et al.,
(2014) as a methodology to learn a representation of a high-dimensional probability
distribution from a given dataset. In the context of image reconstruction, we refer
to this dataset as a set of training images that are representative samples of the
probability distribution underlying the image space.

GANs learn an implicit representation of the probability density as opposed
to explicit density models. The main drawback of explicit density models is their
computational cost which grows with the dimensionality of the samples and requires
sequential simulation of each voxel. For high-dimensional samples such as volumetric
image data, the computational cost is O(N) where N represents the number of voxels
in the domain of interest and can easily exceed 109 voxels for modern high-resolution
micro-CT image data. Using any of these methods would make it intractable
to generate a large number of very large samples. GANs have been designed to
perform fast sampling from the learned density representation and allow full parallel
generation, making them an ideal candidate to generate large volumetric images
(Goodfellow, 2016).

GANs consist of two differentiable functions: a discriminator D and a generator
G. The discriminator receives samples of the "real" dataset (Label 1) x ∼ pdata and
"fake" samples G(z) (Label 0) created by the generator from the hidden latent space
Z (Fig. 3.1). The latent space Z is composed of independent real random variables,
typically normally or uniformly distributed, that represent the random input to
the generator G. The generator G maps random variables from the latent space
into the space of images. The discriminator’s role is to assign a probability that a

1https://github.com/LukasMosser/PorousMediaGan
2http://www.imperial.ac.uk/earth-science/research/research-groups/perm/

research/pore-scale-modelling/micro-ct-images-and-networks/
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Figure 3.1: Overview of the GAN training process. Segmented volumetric images
are split into 643 or 1283 voxel training images. The generator G is a function
that is applied to a sample from a latent random space Z and creates a synthetic
realization. We assume that samples drawn from the hidden latent space Z are
normally distributed (Section 3.3). The discriminator’s role is to determine whether a
sample is part of the training image dataset (Label 1) or from the generator (Label 0).
The misclassification error is computed as a binary cross-entropy criterion and the
error back-propagated to improve the discriminator’s ability to distinguish real from
"fake" images. Then the generator is updated to improve the quality of the produced
samples and "fool" the discriminator. When sufficient image quality is obtained,
training is stopped, and the discriminator may be discarded. The generator can now
be used to create new samples. By providing larger latent vectors than used initially
for training, larger output images can be produced.

random sample is from the "real" data distribution pdata. The discriminator tries to
label each sample correctly, while the generator tries to "fool" the discriminator into
labeling the fake images as part of the true data distribution and therefore achieving
D(G(z)) close to one.

More formally we can define the loss i.e. the cost function for GANs as a
minimization-maximization problem

min
G

max
D

{Ex∼pdata(x)[log(D(x))]

+Ez∼pz(z)[log(1−D(G(z)))]}
(3.1)

Solutions to this optimization problem have been shown to be Nash equilibria, where
each player achieves a local minimum of their loss function with respect to their
parameters (Goodfellow, 2016).

In practice we represent G and D by convolutional neural networks that are
trained by a gradient descent-based optimization method. Training is performed in
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two steps: First the discriminator is trained to maximize

J (D) = Ex∼pdata(x)[log(D(x))]

+Ez∼pz(z)[log(1−D(G(z)))]
(3.2)

while the parameters of the generator are fixed. This improves the ability of the
discriminator to distinguish between real and fake images. In a subsequent step
we generate synthetic samples G(z) by drawing samples z from an N-dimensional
normal distributed latent space and train the generator to minimize

J (G) = Ez∼pz [log(1−D(G(z)))] (3.3)

while keeping the discriminator fixed.
By minimizing Eq. 3.3 the generator tries to "fool" the discriminator into be-

lieving that the samples G(z) are real data samples. In this way the generator
learns to represent a distribution pg(x) that is as close as possible to the real data
distribution pdata(x). When convergence is reached pg(x) = pdata(x) and the value of
the discriminator becomes 1

2
as it cannot distinguish between the two anymore.

Initially, the discriminator D outperforms the generator significantly making the
gradient used to train the generator close to zero. Therefore, instead of minimizing
log(1−D(G(z)) for the generator, it is helpful to maximize log(D(G(z)) (Goodfellow,
2016). GANs show highly unstable behavior during training and a large number of
trial and error runs are required to find an optimal set of hyperparameters that allow
stable training. A number of heuristics have been published which have been shown
to stabilize GAN training, such as one-sided label smoothing and adding white noise
to the input layer of the discriminator (Salimans et al., 2016; Sønderby et al., 2016).
We provide a more detailed overview of the neural networks used in this study in
Section 3.4.2 and later provide suggestions on how to facilitate efficient training
(Section 3.7) for volumetric image datasets of porous media.

3.4 Methodology
In the following section we outline the criteria used to evaluate the quality of
simulations based on the training image datasets. We treat all images under the
assumption of stationarity and the existence of a representative elementary volume.

3.4.1 Evaluation Criteria

Two-Point Statistics

We characterize the second order structure of the porous media by calculating the
two-point probability function of the pore phase. By assuming stationarity, this
function is equivalent to the non-centered covariance (Matheron, 1971):

S2(r) = P(x ∈ P,x+ r ∈ P ) for x, r ∈ Rd (3.4)

which is the probability P that two points x and x+ r, separated by the lag vector
r, are located in the pore phase P . At the origin, S2(0) is equal to the porosity ϕ.
S2 stabilizes around ϕ2 as r → ∞ (Fig. 3.2). Due to the anisotropic nature of many
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Figure 3.2: Comparison of S2(r) for a Boolean model and a packing of hard spheres
at a porosity ϕ = 0.5. S2 exhibits exponential decay for the Boolean model, whereas
a dampened oscillation is characteristic for packings of spheres. The mean chord
length can be found at the intersection of the slope of S2 at the origin with the x-axis
(Eq. 3.6).

porous media, we compute S2(r) along the three Cartesian directions, as well as the
radial average of S2(r).

It is a well known result that the specific surface area SV of a porous medium
can be expressed as a function of S2 (Debye et al., 1957). In the case of an isotropic
porous medium and in three-dimensions SV is related to S2 by

SV = −4S ′
2(0) (3.5)

where S ′
2(0) is the derivative of S2(r) at the origin.

Furthermore, the average chord length within the pore and the grain phases are
(Torquato, 2013)

l
pore

c =
ϕ

S ′
2(0)

(3.6a)

l
grain

c =
1− ϕ

S ′
2(0)

(3.6b)

which for the pore phase can be readily found from the intersection of the slope of
S2(r) with the x-axis (Fig. 3.2).

In favorable cases, it is possible to find analytical expressions of S2(r) from the
spatial distribution and geometry of the grains. A Boolean model of overlapping
spherical grains of uniform spatial distribution exhibits an exponential decay of the
covariance until the lag distance is equal to the diameter of the grains where it
becomes zero (Matheron, 1971). For porous media that can be well described by
a Boolean model, we can estimate the size of the elementary Boolean grain from
the decay of S2. Semi-analytical expressions for more complex models such as for a
packing of hard spheres have been developed (Torquato and Lado, 1985). Models
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of S2(r) for spherical packings exhibit a dampened oscillation. The shape of the
estimated covariance, therefore, allows us to obtain information on the structure of
the porous medium (Fig. 3.2). The covariance S2(r) was estimated for the training
images and the stochastic reconstructions generated by the trained GAN model.
For each GAN model, we evaluate the non-centered covariance S2 as well as the
specific surface area SV (Eq. 3.5) and compare these to the values obtained from
the original training images. In our discussion on the required training image sizes
(Section 3.7), we will use the average chord length and the specific surface area as
possible indicators of the necessary training image size.

Morphological Measures

It has been shown that flow properties at the pore-scale can be related to mor-
phological characteristics of the void-solid interface of a porous medium (Scholz
et al., 2015). Hadwiger’s theorem states that any continuous rigid motion invariant
valuation on compact-convex subsets of Rd can be described by a linear combination
of d+ 1 independent parameters characterizing the body. In three dimensions we
can, therefore, define four so-called Minkowski functionals that characterize the
topology of a three-dimensional object. We compute estimates of three Minkowski
functionals; the porosity ϕ, the specific surface area SV and the Euler characteristic
χV corresponding to the zero, first and 3rd order functionals. We compute the
densities of the Minkowski functionals by dividing by the volume V .

The Minkowski functional of order zero is the porosity, defined as the ratio of
volume of the void space to the bulk volume of the sample

ϕ =
Vpore

V
(3.7)

and is, therefore, a measure of the ability of a porous medium to store fluids.
The Minkowski functional of rank one is the specific surface area SV .

SV =
1

V

∫
dS (3.8)

where integration occurs over the void-solid interface S. The specific surface area SV

has dimensions of 1
length

and its inverse allows us to define a characteristic pore size.
The specific Euler characteristic is closely related to the order three Minkowski

functional and represents a dimensionless quantity defined as

χv =
1

4πV

∫
1

r1r2
dS (3.9)

where r1 and r2 are the principal radii of curvature of the void-solid interface. To
compute χV we do not directly evaluate the integral in Eq. 3.9 but instead make use
of a relationship for the Euler characteristic of arbitrary polyhedra,

χ = V − E + F −O (3.10)

where V is the number of vertices, E the number of edges, F the number of
faces and O the number of objects (Blunt, 2017). This expression is the basis for
efficient algorithms to compute Minkowski functionals of arbitrary geometric bodies
represented as volumetric voxelized domains (Lang et al., 2001). To compute these
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Table 3.1: Neural network configurations and hyperparameters used to train on
voxelized image subsets.

Training Image Dataset
Beadpack Berea Ketton

Training Image Size 1283 voxels 643 voxels 643 voxels
Latent Space z Dimension 100 512 100

Generator Filters NG 64 64 64
Discriminator Filters ND 8 16 16

Optimizer Generator + Discriminator: Adam
Learning Rate / Momentum 2× 10−4 / 0.5 2× 10−4 / 0.5 2× 10−4 / 0.5

Stabilization White Noise (σ = 0.1) Label Smoothing (ϵ = 0.1) White Noise (σ = 0.1)

three Minkowski functionals we have used the open-source image morphological
software library MorphoLibJ (Legland et al., 2016). While the porosity expresses
the ability to store fluids in a porous medium, adsorption and dissolution processes
are controlled by the specific surface area. The Euler characteristic allows the
connectivity of the porous medium to be characterized, which is a critical component
in the ability of fluids to flow. Reconstructions of porous media should therefore
closely match the observed Minkowski functionals to represent the behavior of relevant
physical processes at the pore-scale. The direct computation of the specific surface
area SV and porosity ϕ from images allows us to perform a comparison with the
values obtained from estimates obtained by computing the empirical non-centered
covariance S2(r) (Eq. 3.5).

Single-Phase Permeability

To evaluate the single-phase permeability of the porous media and their generated
synthetic reconstructions we solve the Stokes equations for slow, incompressible flow
assuming small inertial forces.

∇ · v = 0 (3.11a)
µ∇2v = ∇p (3.11b)

The Stokes equations are solved on the domain that is connected to the fluid inlet
and outlet. This allows us to define an effective porosity where only the fraction of
the pore-space that also contributes to flow is considered

ϕeff =
Vflow

V
(3.12)

A finite difference method to solve Eqs. 3.11a-3.11b on pore-space representations
has been implemented as a parallel flow solver, in the free open source numerical
framework OpenFOAM (Weller et al., 1998; Mostaghimi et al., 2013).

3.4.2 Neural Network Architecture

The neural network architecture used for the three-dimensional image reconstruction
corresponds to a volumetric version of the DCGAN network (Radford et al., 2015).
The network consists of two independent fully convolutional neural networks, the
generator G and the discriminator D. Upsampling from the input latent vector z is
performed by volumetric transposed convolution, followed by batch normalization
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Figure 3.3: Cross-sections of the three image datasets. The bordered regions indicate
the size of the training images extracted from the full dataset. The beadpack (a)
consists of spheres of equal diameter (d = 50 voxels). The Berea sandstone (b) is an
angular granular sandstone that shows traces of dispersed clay. The oolitic Ketton
limestone (c) consists of ellipsoidal grains showing inter and intra-granular porosity.
The voxel sizes are 3 µm for the bead pack and Berea sandstone and 15.2 µm for
the Ketton sample.

and a rectified linear unit (ReLU) activation function in all layers except the last (Ioffe
and Szegedy, 2015; Hinton et al., 2010). The discriminator D receives images sampled
from the latent space by the generator G(z) and images from the set of training
images representing pdata(x). Therefore, the size of the input layer of the discriminator
corresponds to the dimensions of the input training images. The discriminator consists
of volumetric convolution layers combined with LeakyReLU activation functions
(Maas and Ng, 2013). The final convolutional layer of the discriminator is followed by
a Tanh activation function. This combination of generator and discriminator neural
network architectures has previously been applied to subsets of the Imagenet and
CIFAR-10 datasets (Radford et al., 2015). The hyperparameters for the generator to
be used in the optimization of the neural network architecture are the number of
trainable convolutional filters in each layer of the neural network NG,F , ND,F and
the size of the latent vector z.

The generator and discriminator are optimized using a gradient descent-based
method where the parameters w are changed by taking k steps in the gradient

wk+1 = wk − α∇f(wk) (3.13)

where α is the learning rate. We have used the gradient descent-based optimizer
ADAM for optimization of both the generator and discriminator (Kingma and Ba,
2014). GANs have been shown to exhibit unstable behavior during training. The
addition of Gaussian noise to the input of the discriminator is an effective way to
stabilize the training process (Sønderby et al., 2016). An additional stabilization
measure called one-sided label smoothing, wherein the class label of 1 for real images
is replaced by a new value of 1− ϵ has been empirically shown to improve training
of GANs (Salimans et al., 2016). Both label smoothing and white noise addition to
the input of the discriminator have been used in this study to stabilize the training
based on the volumetric image datasets. Table 3.1 gives an overview of the neural
network hyperparameters used for each evaluated sample, the hyperparameters and
the stabilization measure used during training. Images generated by the GAN were
post-processed using a 33 median filter to remove single-pixel noise. The resulting
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images are grayscale images with all voxel values close to zero or one. To compare
the resulting images to the binary training images, we segment the generated images
using Otsu’s method (Otsu, 1975).

3.5 Experimental Data

3.5.1 Image Data and Processing

To evaluate the applicability of GANs for reconstruction of natural porous media
we use three previously acquired datasets. All images have been segmented into a
three-dimensional binary voxel representation of the pore-space (white) and grain
(black) (Fig. 3.3). We create a training database of images by extracting sub-volumes
from the voxelized binary images. Ideally, these training images should represent
independent domains, but due to the limited size of these images, we extract subsets
that overlap. Training image sizes were chosen based on an estimate of the average
grain size for each sample. To be able to match the covariance S2(r) (Eq. 3.4) and
image morphological characteristics, training images larger than the structuring
element were necessary. We discuss this requirement in more detail in the discussion
of our results (Section 3.7). Due to computational limitations, training image sizes
exceeding 1283 voxels were not considered.

Beadpack

The beadpack is based on a real packing of equally sized grains in a disordered close
packing (Finney, 1970). The image consists of 5003 voxels with a size of 3 µm. The
size of an individual sphere is 50 voxels. 1727 training images were extracted of size
1283 voxels corresponding to a spacing of 32 voxels between them in the original
image.

Berea

Berea sandstone is a fluvial sandstone of medium to fine grain size (Wentworth
classification) (Pepper, 1954). The individual grains are bonded by clays. The
sample analyzed in this study was acquired from an outcropping of the Berea
sandstone in a quarry near Berea, Ohio. De Witt showed that the Berea sandstone
was deposited in the early Carboniferous (354-323 Mya) (de Witt Jr, 1970).

The image of Berea sandstone consists of angular grains with no clay presence in
the intergranular pore-space. The image has dimensions of 4003 voxels with a voxel
size of 3 µm. To capture the local interaction of grains we have extracted training
images at 643 voxels which allows a number of grains to be present in one training
image (Section 3.7). Due to the small image size of 4003 voxels, subvolumes were
extracted at a spacing of 16 voxels. In all, 10647 training images were used for the
image reconstruction.

Ketton

The Ketton sample is an oolitic limestone of Jurassic age (201.3-145 Mya). The
sample was acquired from a quarry of Lincolnshire limestone in the North-East of
England. The oolites contained in the Lincolnshire formation are mainly non-ferroan
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Figure 3.4: Value of the cost function i.e. loss of the discriminator and generator
(Eqs. 3.2 - 3.3) for the GAN trained on the Berea sandstone. The samples shown
were computed with the same random number seed, showing the evolution of a single
realization during training. Initially, image quality is very low and random noise can
be observed. After 2000 generator iterations a drop in the generator loss function
is observed and coarse structures can be identified in the resulting sample. Loss
functions in GAN models do not reflect improvement in image quality which can be
observed from samples. Learning rates (Eq. 3.13) were reduced after sufficient image
quality was reached and training stopped based on manual inspection of Minkowski
functionals and two-point statistics.

calcite grains. The oolitic limestones of the Lincolnshire show a wide variety of
cementation, ranging from uncemented oolite sands with no intergranular cement
to heavily ferroan spar-cemented oolites with infilled microporosity (Emery, 1988).
Microstructures in the pore-space can be observed that lead to a reduction in porosity
(Fig. 3.3). The Ketton sample chosen for this study consists of large grains compared
to the overall image size. The image used for the following evaluation has been
downsampled from a 5003 voxel representation to an image size of 2563 voxels. This
allows more grains to be resolved per training image extracted from the full volume.
The downsampled voxel size is 15.2 µm.

Training images were extracted at a sub-volume size of 643 with a spacing of 8
voxels leading to a total of 15624 training images. The small spacing of the training
images results from the small CT image size of 2563 voxels.

3.6 Results
Three GANs were trained based on the network architectures highlighted in Sec-
tion 3.4.2. The training time for each dataset was 24 hours. Manual inspection
of synthetic realizations was performed during training to ensure convergence and
intermediate evaluation of the covariance and Minkowski functionals.

Figure 3.4 shows the training curve for the Berea sandstone dataset. Initially the
generator loss function (Eq. 3.3) is very high and no structural components can be
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Table 3.2: Chord lengths lC for the pore and grain phase (Eq. 3.6) determined
from the radial averaged covariance S2(r) of each training image and corresponding
realizations generated by the GAN model. The specific surface area SV and porosity ϕ
were evaluated for each of the samples using direct image morphological computation
and derived from the covariance. Close agreement between estimates of the porosity
and specific surface area can be observed for values determined by direct image
morphological estimation and derived values obtained from the radial averaged
covariance.

Beadpack Berea Ketton
l
pore

C [voxel] 20 10 9
l
grain

C [voxel] 36 41 64
Training Image Synthetic Training Image Synthetic Training Image Synthetic

Minkowski Functional S2(r) Direct S2(r) Direct S2(r) Direct S2(r) Direct S2(r) Direct S2(r) Direct
Porosity ϕ 0.363 0.359 0.368 0.366 0.196 0.198 0.199 0.197 0.127 0.119 0.119 0.119

Sv × 10−2 [ 1
voxel

] 7.0 7.3 6.9 7.5 7.5 8.2 7.9 8.5 5.2 5.2 4.7 5.2

observed in the samples. After a large reduction in the loss function of the generator,
initial structures are observed. Image reconstruction quality significantly improves
with the number of generator iterations, but cannot be linked to the loss function of
the generator. This can be observed from the increase in generator loss at the end
of training while image quality improves significantly. The final GAN models were
subsequently evaluated in terms of their directional and radial averaged non-centered
covariance S2(r), Minkowski functionals and the single-phase permeability.

For all datasets, 20 realizations were generated using the trained GAN model.
In the following section, we present the results of the evaluation of the properties
outlined in Section 3.4.1 and compare these to the properties of the original input
training image.

3.6.1 Beadpack

The evaluation of the non-centered covariance S2(r) for the beadpack (Fig. 3.5)
shows a strong hole effect reflecting the spherical nature of the grains. A GAN
model was trained for 24 hours on the beadpack training image dataset. The GAN
model achieves a small error in the porosity of the generated images with a tendency
towards higher porosities (Fig. 3.7). A bias can be observed for the specific surface
area and the Euler characteristic of the microstructure (Table 3.2). This bias can be
explained by the deviation of the grains from a perfect spherical shape in the synthetic
realizations. Due to the smooth nature of the spherical particles in the training
image, any deviation from this geometry will lead to an increase in the surface area.
This is reflected by a higher specific surface area for the synthetic realizations. In
addition we observe a reduction in connectivity, represented by a less negative Euler
characteristic. The directional covariance S2 measured on the generated samples
show excellent agreement up to the training image size of 1283 voxels and stabilizes
at ϕ2 (Fig. 3.8). As expected no directional variation of the covariance is observed
and the sample is therefore assumed to be isotropic. Single-phase permeability shows
a close agreement in both magnitude and variance between the measured training
image and the synthetic realizations (Fig. 3.7). Figure 3.6 shows a crossplot of the
effective porosity ϕeff i.e. the porosity open to flow (Eq. 3.12), and the single-phase
permeability exhibiting a similar trend in the distribution of values computed on
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training images and synthetic realizations. We provide a comparison of all twenty
realizations generated by the GAN model in cross-sections through the x-y plane
of the original model and a synthetic realization in Fig. 3.9. Many of the grains
show a circular to ellipsoidal shape, which considering the fact that a priori the
GAN model does not have any knowledge of the geometry of the grains, learning a
representation of a perfect sphere can be considered challenging (Section 3.7). The
complex grain-grain interface where individual beads contact at single points can be
observed for numerous grain arrangements in the generated realizations.
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Figure 3.5: Radial averaged covariance S2(r) for the beadpack sample and 20
synthetic realizations generated by the GAN model.The specific surface area SV and
mean chord lengths lC are derived from the slope of the covariance at the origin
(Eqs. 3.5-3.6).

Figure 3.6: A comparison of the numerically estimated single-phase permeability
of the beadpack for 1283 voxel subdomains of the original image and equal sized
GAN-based realizations shows a slight overestimation of the effective porosity for
the synthetic models. The mean and variance of both permeability distributions are
in close agreement (Fig. 3.7).
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Figure 3.7: Comparison of three Minkowski functionals (porosity (a), specific surface
area (b) and Euler characteristic (c)) for the beadpack evaluated on 2003 voxel
subdomains of the original training image and realizations of the GAN model. An
error of less than 5% can be observed for the porosity and surface area. A comparison
of the estimated values of permeability is shown in (d).

Figure 3.8: Comparison of the directional covariance (x-direction (a), y-direction (b),
z-direction(c)) of the beadpack and the average covariance of GAN-based synthetic
realizations. A clear hole effect can be observed in the original dataset, which is
captured by the GAN model.
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Figure 3.9: Twenty realizations of the spherical beadpack (top) generated to evaluate
the statistical, image morphological and transport properties considered in this study.
Cross-sectional view of the beadpack training image dataset (bottom).
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3.6.2 Berea

The radial averaged covariance S2(r) in Fig. 3.10, shows a near exponential decay
and stabilization occurs at a lag distance of 30 voxels for both covariance functions
obtained from the Berea training image and synthetic realizations generated by the
GAN model. Additionally, Fig. 3.12 shows that the directional two-point statistics
characterized by the directional covariances is captured in the generated images. In
all three directions, the GAN model shows excellent agreement and closely follows the
trend of the empirical estimates of S2. The results of the direct computation of the
Minkowski functionals is presented in Fig. 3.13 and show comparable distributions for
the porosity ϕ, specific surface area SV and the Euler characteristic χV of the training
images and the synthetic realizations. A comparison of the specific surface area SV

obtained from the covariance and the direct computation of the Minkowski functional,
show nearly equal values (Table 3.2). The estimates of the single-phase permeability
show a similar distribution covering the range of effective permeability measured on
the training images. Figure 3.11 shows the computed values of permeability and
the corresponding effective porosity. The permeability of the synthetic realizations
capture the values, variability and trend obtained from the Berea training image
dataset. Figure 3.14 shows a comparison of twenty realizations of the GAN model
trained on the Berea dataset. A smaller training image size of 643 voxels was used,
as compared to the beadpack (1283 voxels). This is due to the smaller size of the
structuring elements observed in the training image. A smaller training image size
was therefore sufficient to capture the long and short range correlation found in the
Berea sample.
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Figure 3.10: Radial averaged covariance S2(r) for Berea sandstone training images
and 20 synthetic realizations generated by the GAN model.

Figure 3.11: The distribution of numerically obtained permeability values on 1283

voxel subdomains and sampled realizations obtained from a GAN model trained on
the Berea sandstone dataset show close agreement in the effective porosity, as well
as the evaluated permeability.
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Figure 3.12: Directional non-centered covariance comparison for Berea sandstone.
The trained GAN model shows good agreement with the non-centered covariance S2

of the training image.

Figure 3.13: Comparison of three Minkowski functionals (porosity (a), specific surface
area (b) and Euler characteristic (c)) for Berea sandstone. The porosity, specific
surface area and specific Euler characteristic show good agreement between the
training image and samples from the trained GAN model. Estimates of permeability
for the Berea sandstone and generated samples are presented in (d).
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Figure 3.14: Realizations generated by the GAN model (top) compared to training
images (bottom) for Berea sandstone.
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3.6.3 Ketton

The covariance S2(r) of the Ketton limestone shown in Fig. 3.15, shows a pronounced
hole effect due to the ellipsoidal oolitic grains. Due to the hole effect observed in the
radial averaged covariance (Fig. 3.15), we relate the Ketton sample to a hard-sphere
model. Figure 3.17 indicates that the images generated by the GAN model trained on
the Ketton image, capture the oscillatory and anisotropic behavior of the covariance
observed in Ketton. The specific surface area SV derived from the generated images is
in close agreement with the training data. An error of approximately 1% was achieved
in the porosity of the GAN generated images compared to the original Ketton dataset
(Fig. 3.18). The measured specific surface area of the synthetic images shows a higher
variance compared to the original training images. Nevertheless, the average values of
the porosity ϕ and specific surface area SV derived from the non-centered covariance
S2(r) (Eq. 3.5) are in good agreement with values obtained from direct image
morphological estimation (Table 3.2). The distribution of single-phase permeability
estimates of the synthetic GAN realizations overlies the permeability values of the
Ketton training images. The Euler characteristic χV and the permeability of the
Ketton training dataset are closely matched by the synthetic images and therefore
capture the connectivity observed in the oolitic Ketton limestone. We present an
overview of the 20 realizations generated by the GAN model trained on the Ketton
dataset in Fig. 3.19.
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Figure 3.15: Radial averaged covariance S2(r) for the oolitic Ketton limestone
training image and 20 synthetic realizations generated by the GAN model.

Figure 3.16: Evaluated single-phase permeability for the Ketton training image.
The synthetic realizations show similar effective porosity and permeability as the
Ketton sample.
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Figure 3.17: The directional covariance of the Ketton sample shows oscillating
behavior in the x-direction (a), whereas a nearly exponential decrease can be observed
for the y and z directions (b-c). This anisotropy in S2(r) is also reflected in the
covariance of the samples obtained from the GAN model.

Figure 3.18: Comparison of the Minkowski functionals (porosity (a), specific surface
area (b) and Euler characteristic (c)) for the Ketton training image. The three
evaluated Minkowski functionals show good agreement. The evaluated Euler char-
acteristic indicates that the sampled synthetic realizations show a similar degree of
connectivity as the training image. Estimated permeability values for the Ketton
sample are presented in (d).
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Figure 3.19: Realizations generated by the GAN model (top) compared to training
images (bottom) for Ketton limestone.
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3.7 Discussion
This chapter presents a novel method for three-dimensional stochastic image re-
construction based on generative adversarial neural networks (GAN) trained on
three-dimensional segmented images. To summarize, the objectives of this contribu-
tion are threefold. Firstly, generate stochastic reconstructions of porous media such
as sedimentary rocks exceeding the size of the acquired image datasets. Secondly,
evaluate the ability of GAN models to capture the image morphological and physical
properties of micro-scale porous media. Thirdly, establish a method of stochastic
image reconstruction that allows a probabilistic treatment of pore-scale properties
such as permeability without the need to acquire numerous images of a single rock
type.

The first objective stems from technical limitations of micro-CT data acquisition.
Images are acquired as a trade-off between sample size i.e. how many representative
structures can be captured in one image versus the resolution at which these pore-
scale structures are resolved. The generation of large porous domains based on
high-resolution images enables this gap in scales to be bridged and micro-scale
features to be incorporated in macro-scale models.

Our findings show that GANs can learn an implicit representation of the image
space given a limited number of training images subsampled from larger images.
These subdomains were extracted based on characteristic length scales (Section 3.4.1)
and serve as a training set for the GAN model. For the Ketton limestone, a
small spacing of the extracted subdomains was required to increase the size of the
training image dataset. While we did not find any evidence of an introduced bias by
using correlated subdomains, we believe that these extracted training images should
represent independent regions.

We have evaluated the ability to train GANs for a number of training image
sizes less than and up to twice the size of the structuring elements. We have found
that models trained on images smaller than the average grain size results in artifacts
and distorted shapes occurring in the generated micro-structures. For the beadpack,
the size of an individual sphere is 50 voxels. A training image of 643 voxels would
typically only contain parts of an individual grain and only capture the interaction
of the particles, but not the geometry of the structuring element. For the beadpack,
models trained on 643 voxels were successful in learning a representation of the short
scale micro-structure but failed to reproduce the long distance correlation. A larger
training image of 1283 voxels, as was used to model the beadpack has a much higher
chance to represent the full geometry of the particles and therefore not only learn
interactions, but also the shapes of grains.

We, therefore, suggest that training images extracted from large datasets must be
larger than the average grain size. For models that are well described by a Boolean
model, the size of the structuring element can be readily estimated from stabilization
of the covariance S2(r). For more complex samples a different measure must be used
to estimate the size of the required training image.

The chord length is one additional measure that can be obtained to characterize
the grain space of porous media. While we have found that the mean chord length of
the grain space l

grain

C is always less than or equal to that of our chosen training image
size, lgrainC increases with decreasing porosity. This contradicts the need to have the
largest training domain for the beadpack sample which also has the highest porosity.
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A better estimate may be derived from the representative elementary volume of the
specific surface area which by definition is the same for the grain- and pore-space and
is, therefore, more representative of the morphology of the porous medium (Bear,
2013). Based on the properties we have evaluated we could not find a measure
derived from two-point statistical or image morphological properties that is closely
related to the required training image size and we see a theoretical discussion of this
as possible future work.

Conceptually the simplest model considered in this study, the spherical beadpack,
has proven to be the most challenging as a training image for the GAN model
(Section 3.6.1). While we observe spherical and ellipsoidal shapes in the resulting
realizations (Fig. 3.9), the shape is exactly defined by the spherical nature of the
grains. Any deviation from this shape, which for GANs, is learned implicitly from
the data itself, will lead to a misrepresentation of the effective properties. Random
hard-sphere models with spherical grains will efficiently capture the nature of this
dataset. Therefore we suggest a fit-for-purpose application of GANs, for training
images that exhibit variability of grain sizes and shapes, which are not readily
captured by a simpler model.

While for many sedimentary granular rocks representative volumetric images
can be obtained, this may be more challenging for carbonate samples with complex
pore-grain structures. The three training images considered in this study were all
treated under the assumption of stationarity i.e. we do not expect a systematic
variation in the mean and variance of the averaged properties as a function of location.
In theory, GANs are not limited to learning representations of stationary datasets.
This is shown by the many successful applications for two-dimensional image and
texture synthesis of non-stationary domains, such as learned image representations
of human faces (Gauthier, 2014) or galaxies (Schawinski et al., 2017; Ravanbakhsh
et al., 2016). Therefore a model that incorporates non-stationarity for a single
rock-type would technically be possible in the GAN framework but would require
the acquisition of many images of the same porous medium.

A valid representation of the microscale variability and connectivity of the pore-
space is critical to assess the single and multiphase flow behavior of porous media.
Therefore any stochastic reconstruction method used in the process of deriving or
evaluating the variability of micro-scale properties must capture the statistical and
image morphological characteristics of the reconstructed porous medium. While we
have shown that for the evaluated datasets, the GAN-based image reconstructions
capture the variation and characteristics of these porous media, a number of challenges
remain in this task that are different from those encountered by classical stochastic
methods of image reconstruction.

For porous media, many flow related properties can be related to the porosity.
Classical stochastic methods are able to capture the porosity efficiently by defining a
specific proportion of the grain and pore domain. The GAN-based model presented
in this study initially has no knowledge of the porosity. The porosity, therefore,
arises as a feature of the training image data. Matching the porosity distribution of
the training image dataset was found to be the main challenge in training a GAN
model. An error of three percent in porosity, for instance could lead to a significant
mismatch in the permeability of the synthetic images. It is, therefore, necessary
to continuously monitor the derived properties such as the Minkowski functionals
or estimates of the permeability, in the course of training the neural networks to
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Figure 3.20: Measured CPU time for generating synthetic realizations of Berea
sandstone at increasing image size. 100 realizations were computed at each image
dimension and CPU time averaged. Computational cost increases linearly with the
number of voxels in the generated image.

ensure that synthetic realizations created by the GAN model are able to capture the
effective properties of the micro-scale domains.

While this can be considered one of the main challenges in the application of
GANs for synthetic image reconstruction, learning an implicit representation of the
training data itself can be seen as a strength. Many classic stochastic methods rely
on the formulation of an objective function that ensures that statistical properties are
captured in the generated realizations e.g. matching S2(r) and the specific surface
area SV of the stochastic reconstructions to a desired precision. The GAN approach
does not require an explicit objective function a priori. The objective function is
encoded in the discriminator and adapted in the course of training.

During adversarial training both the generator and discriminator are continuously
improved. The discriminator’s sole purpose is to be able to distinguish real training
data from generated synthetic data. On the other hand, the generator tries to
generate synthetic data that the discriminator is not able to distinguish from the
training data. Due to the multi-scale representation of the convolutional neural
networks, these features must be learned across the full range of length scales present
in the training data, leading to a high-resolution image that captures small and
large scale features of the image dataset. A number of stacked GAN models can
be trained on e.g. low-resolution medical-CT data and high-resolution micro-CT
allowing incorporation of spatial information across multiple length scales (Zhang
et al., 2016).

Once the GAN model has successfully learned to create physically representative
samples of the porous medium, one possible application is to evaluate the variability
in the flow properties by evaluating the properties of a large number of samples.
This not only requires a physically valid representation of the porous medium but
also requires a method that allows fast image reconstruction. In Section 3.6 we have
shown that training was performed for approximately 24 hours and may vary due
to the need for manual inspection of the generated samples in the training process.
Figure 3.20 shows the CPU time required for generation of images at increasing
image size. The fully convolutional nature of the GAN architecture allows very large
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images, exceeding the size of the original sample to be generated very efficiently and
at low computational cost and runtime.

While training requires considerable time and computational resources in the form
of modern graphics processors as well as optimized neural network frameworks, image
reconstruction requires little computational effort and scales linearly in the total
number of voxels of the generated images. This, therefore, enables the generation of
ensembles of large domains based on volumetric images acquired from 3D microscopy,
that capture the physical behavior of the porous medium. The learned representation
of the generator consists of the weights of the convolutional filters learned in the
training process and can, therefore, be stored for future use once training has finished.

3.8 Conclusions
We have evaluated the application of generative adversarial neural networks for
stochastic image reconstruction of porous media based on previously acquired images
of sedimentary rocks. Three image datasets were used as training images: a beadpack,
a Berea sandstone, and an oolitic Ketton limestone.

By evaluating two-point statistical measures, image morphological features and
computing the single-phase effective permeability we have shown that the synthetic
images generated by the GAN model are able to match key characteristic statistical
and physical parameters of these porous media. While a large computational effort
is required to train the GAN model, the generation of samples from the learned
representation is highly efficient and learned models are easily stored for future use.

Future work in the application of GANs to stochastic image reconstruction of
porous media will include improving the quality of the image reconstruction by
evaluating various generator-discriminator architectures, the use of grayscale and
multi-channel training images, as well as the application of large multi-scale domains
of porous media to evaluate the ensemble behavior of single and multiphase flow
properties in porous media. Recent advances in the understanding of GANs should
lead to a more stable and consistent training process (Mao et al., 2016; Arjovsky
et al., 2017). This is explored further in the following chapter where we study the
reconstruction of grayscale (unsegmented) images of Ketton limestone, as well as
associated topological and flow properties.
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Chapter 4

Stochastic Reconstruction of an
Oolitic Limestone by Generative
Adversarial Networks

4.1 Abstract
Stochastic image reconstruction is a key part of modern digital rock physics and
materials analysis that aims to create representative samples of micro-structures for
upsampling, upscaling, and uncertainty quantification. We present new results of a
method of three-dimensional stochastic image reconstruction based on generative
adversarial neural networks (GANs). GANs are a family of unsupervised learning
methods that require no a priori inference of the probability distribution associated
with the training data. Thanks to the use of two convolutional neural networks, the
Discriminator and the Generator, in the training phase, and only the Generator in
the simulation phase, GANs allow the sampling of large and realistic volumetric
images. We apply a GAN-based workflow of training and image generation to
an oolitic Ketton limestone micro-CT unsegmented gray-level dataset. Minkowski
functionals calculated as a function of the segmentation threshold are compared
between simulated and acquired images. Flow simulations are run on the segmented
images, and effective permeability as well as velocity distributions of simulated flow
are also compared. Results show that GANs allow a fast and accurate reconstruction
of the evaluated image dataset. We discuss the performances of GANs in relation
to other simulation techniques, and stress the benefits resulting from the use of
convolutional neural networks . We address a number of challenges involved in GANs,
in particular the representation of the probability distribution associated with the
training data.

4.2 Introduction
The micro-structural characteristics of porous media play an important role in the
understanding of numerous scientific and engineering applications such as the recovery
of hydrocarbons from subsurface reservoirs (Blunt et al., 2013), sequestration of CO2

(Singh et al., 2017) or the design of new batteries (Siddique et al., 2012). Modern
micro-computer tomographic (micro-CT) methods have enabled the acquisition of
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high-resolution three-dimensional images at the scale of individual pores. Increased
resolution comes at the cost of longer image acquisition time and limited sample
size. Individual samples allow numerical and experimental assessment of the effective
properties of the porous media, but give no insight into the variance of key micro-
structural properties. Therefore, an efficient method to generate representative
volumetric models of porous media that allow the assessment of the effective properties
is required. The generated images serve as an input to a digital rock physics workflow
to represent the computational domain for numerical estimation of key physical
properties (Berg and Nyström, 2017).

Statistical methods aim at reconstructing porous media based on spatial statisti-
cal properties such as two-point pore-grain correlation functions. Quiblier, (1984)
has presented an extensive overview of the early literature of porous media recon-
struction and provided an extension of the method of Joshi, (1974) by reconstructing
three-dimensional porous media based on the empirical covariance function and
probability density function obtained from two-dimensional thin-sections. Other
statistical methods such as simulated annealing (Yeong and Torquato, 1998; Jiao
et al., 2008) allow high-quality three-dimensional reconstruction and incorporation
of numerous statistical descriptors of porous media. Pant, (2016) introduced a
multi-scale simulated annealing algorithm allowing simulation of three-dimensional
porous media at much lower computational cost than previous methods.

Methods to incorporate higher-order multiple-point statistical (MPS) properties
of porous media have been developed. These MPS functions are implicitly defined by
two- or three-dimensional training images. Simulation algorithms based on multiple-
point statistics are therefore considered as training image-based algorithms. MPS
simulation was originally developed in the context of generating realistic geological
structures (Guardiano and Srivastava, 1993; Caers, 2001; Mariethoz and Caers,
2014). With the advent of micron-resolution X-ray tomography (micro-CT imaging)
(Flannery et al., 1987), which provides training images, MPS simulation techniques
have been successfully applied to the stochastic reconstruction of three-dimensional
porous media (Okabe and Blunt, 2004; Okabe and Blunt, 2005; Okabe and Blunt,
2007).

Tahmasebi et al., (2012) as well as Tahmasebi and Sahimi (Tahmasebi and
Sahimi, 2012; Tahmasebi and Sahimi, 2013) have introduced a patch-based approach
where subdomains are simulated along a pre-defined path and populated based on a
cross-correlation distance criterion (CCSIM). This approach is similar to the image
quilting algorithm by Efros and Freeman, (2001) but corrects mismatching patches in
overlapping or neighboring domains. Tahmasebi et al., (2017) present a method for
fast reconstruction of granular porous media from a single two or three-dimensional
training image using a method closely related to CCSIM. They obtain significant
speedup in computational time by incorporating a fast-Fourier transform and a
multi-scale approach. A graph-based approach is used to resolve non-physical regions
at the boundaries of simulated patches of grains.

Object-based methods describe the material domain by locating geometrical
bodies of random size at locations provided by a spatial point process. The so-called
Boolean model is a particular case where the randomly placed bodies, typically
spheres are allowed to overlap (Matheron, 1975; Chiu et al., 2013). Object-based
methods may also allow interaction of particles to be incorporated (Torquato, 2013).
They have successfully been used to describe complex and heterogeneous materials.
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Process models reconstruct the pore and grain structure of materials by mimicking
how they were formed. Øren and Bakke, (2003) have created reconstructions of
sandstones by reproducing the natural processes of sedimentation, compaction and
diagenesis.

This contribution presents a training image-based method of image reconstruction
using a class of deep generative methods called generative adversarial networks
(GANs) first introduced by Goodfellow et al., (2014). In Chapter 3 and Mosser
et al., (2017) we have shown that GANs allow the reconstruction of three-dimensional
porous media based on segmented volumetric images. Their study applied GANs
to three segmented images of rock samples. They showed that GANs represent a
computationally efficient method for the fast generation of large volumetric images
that capture the statistical and morphological features, as well as the effective
permeability.

We expand on the work of Mosser et al., (2017) and investigate the ability of
generative adversarial networks to create stochastic reconstructions of an unsegmented
micro-CT scan of a larger oolitic Ketton limestone sample. We evaluate the four
Minkowski functionals for the three-dimensional datasets as a function of the gray-
level threshold. In addition to the numerical evaluation of permeability as shown by
Mosser et al., (2017), we compare velocity distributions of the original porous medium
and samples obtained from the GAN. We also provide details of the convolution
approach used by GANs. Furthermore we evaluate the reconstruction process within
the trained generative function and highlight the parametric and differentiable nature
of the obtained generative function. We evaluate the computational cost of GAN-
based image simulation with a reported values of computational run time for a variety
of other reconstruction methods of equal reconstruction quality. We also investigate
how the image representation evolves along the different layers of the GAN network,
and discuss the benefits that can be derived from the differentiable nature of the
parameterization used by GANs.

4.3 Generative Adversarial Networks
Generative adversarial networks are a deep learning method for generating samples
from arbitrary probability distributions (Goodfellow et al., 2014; Goodfellow, 2016).
GANs do not impose any a priori model on the probability density function and are
therefore also referred to as an implicit method. Without the need to specify an
explicit model, GANs provide efficient sampling methods for high dimensional and
intractable density functions.

In the case of CT images of porous media we can define an image x to be a sample
of a real, unknown probability density function (pdf) of images pdata of which we
have acquired a number of samples which serve as training images. In our example,
the training set is comprised of 643 voxel sub-domains of the original micro-CT image.
Sub-domains are extracted without any overlap and each training image represents
the originally acquired dataset.

GANs consist of two functions: a generator, whose role it is to generate samples
of the unknown density pdata(x) and a discriminator function that tries to distinguish
between samples from the training set and synthetic images created by the generator.
The generator G is defined by its parameters θ and performs a mapping from a
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random prior z to the image domain

z ∼ N (0, 1)d×1×1×1 (4.1)

Gθ : z → R1×64×64×64 (4.2)

where d is the dimensionality of the random prior.
The discriminator Dω(x) assigns a probability to an image x being a sample of

the true data distribution pdata

Dω : R1×64×64×64 → [0, 1] (4.3)

where values close to 1 represent a high probability of being a sample of x ∼ pdata(x).
We represent both the generator Gθ(z) and the discriminator Dω(x) by differ-

entiable neural networks with parameters θ and ω respectively. This allows us to
use backpropagation combined with mini-batch gradient descent to optimize the
generator and discriminator according to the functional

min
θ

max
ω

{Ex∼pdata [log Dω(x)] + Ex∼pz [log( 1−Dω(Gθ(z)))]} (4.4)

The optimization criterion of the generator and discriminator (Eq. 4.4) is solved
sequentially in a two-step procedure. We first train the discriminator to maximize its
ability to distinguish real from fake samples. This is done in a supervised manner by
training the discriminator on known real samples (Label 1) and samples created by
the generator (Label 0). The binary cross-entropy is used as an objective function to
compute the miss-classification error

H(y,y′) = −
∑
i

(yi log(y
′
i) + (1− yi) log(1− y′i)) (4.5)

where y′ is a vector containing the output probability assigned by the discriminator
for each element of a given mini-batch of samples. For each mini-batch of real images
we therefore optimize H(1,y′), and for all fake samples H(0,y′) (Eq. 4.5). The error
is back-propagated while keeping the parameters of the generator constant.

In a second step we train the generator to maximize its ability to "fool" the
discriminator into misclassifying the images provided by the generator as real images.
This is performed by computing the binary cross-entropy of the output of the
discriminator on a mini-batch of sampled from the generator Gθ(z) and requiring
that the created labels be close to one, therefore computing H(1,y′). The parameters
of the generator are then modified to optimize H(1,y′) by applying stochastic gradient
descent while keeping the parameters of the discriminator constant.

Training of these networks is often challenging due to the competing objective
functions of the generator and discriminator. Recently, new objective functions and
training heuristics have greatly improved the training process of GANs (Arjovsky
et al., 2017; Yeh et al., 2016).

GANs follow a different training scheme from other stochastic reconstruction
methods (Section 4.2). There are two phases in GAN-based reconstruction: training
and generation. Training is expensive, requiring modern graphics processing units
(GPU) and for three-dimensional datasets large GPU memory. Parallelization of
the training process across numerous GPUs reduces time for training the network.
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Nevertheless, finding a set of hyper-parameters, that is a network architecture
(number of filters, types, order of layers and activation functions) that leads to the
desired quality can require significant trial and error.

The second phase of GAN-based reconstruction, the generation of individual
samples, is extremely fast. All operations in the generator network can be represented
as matrix-vector operations which are executed efficiently on modern GPU systems
and take on the order of seconds for modern GPUs, as shown later in this Chapter.

4.4 Dataset
The sample used in this study is an oolitic limestone of Jurassic age (169—176
million years). The spherical to ellipsoidal grains consist of 99.1% calcite and 0.9%
quartz (Menke et al., 2017). Inter and intra-granular porosity can be observed,
as well as significant amounts of unresolved sub-resolution micro-porosity. This is
characterized by the various shades of gray in individual grains, where the interaction
of sub-resolution porosity with X-rays penetrating the sample during imaging leads
to an increase in intermediate gray-level values (Fig. 4.1). The sample was imaged
using a Zeiss XRM 510 with a voxel size of 27.8 µm. The size of the image domain
after resampling to 8bit resolution is 9003 voxels. We subdivide the original image
into a training set of non-overlapping 5832 images at a size of 643 voxels. We define
a sequential randomized pass over the full training set as an epoch. Evaluation of
the effective properties is performed at larger image sizes than the training images
to judge whether the GAN is able to generalize to larger domains. To evaluate
the reconstruction quality of the GAN model we randomly extract 64 images at
a size of 2003 voxels with no overlap from the original training image (Fig. 4.1)
which we refer to as the validation set. A synthetic validation set was created by
sampling 64 images at a size of 2003 voxels from the trained GAN model. To perform
numerical computation of the effective permeability as well as measure the two-point
correlation function, all images of the synthetic and original Ketton validation set
were segmented using Otsu thresholding (Otsu, 1975). Minkowski functionals were
evaluated for the unsegmented validation sets.

4.4.1 Neural Network Architecture and Training

Radford et al., (2015) proposed to remove fully connected layers in the input and
output of the generator network. They represent the input layer for the latent random
vector by a reshaping operation, followed by a stack of strided convolutional layers.
Jetchev et al., (2016) introduced the SGAN architecture where the input latent vector
has spatial dimension and is immediately followed by a set of convolution operations.
This allows images to be generated that are larger than the training images. They also
provide evidence that sampling using the SGAN network architecture represents a
stationary, ergodic and strongly mixing stochastic process. Our generator architecture
represents a fully convolutional network without reshaping operations. The fully
convolutional nature of the generator allows us to create images of arbitrary size
by providing latent random vectors with larger spatial dimensionality e.g. z ∼
N (0, 1)d×m×n×o. During training m, n and o are of size one, which results in an
image of 643 voxels. For image generation m, n and o may be of any integer size.
The main difference to the SGAN architecture of Jetchev et al., (2016) is therefore
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Figure 4.1: Two-dimensional gray-level cross-section of the three-dimensional micro-
CT image of the studied oolitic Ketton limestone sample. The image has a size of
9003 voxels and was acquired with a voxel size of 27.8 µm. Histogram equalization
was applied to the image prior to its use as a training image.

Figure 4.2: Example of a discrete convolution (a) for a 3× 3 filter kernel size applied
to a 4 × 4 feature map. (b) The so-called transposed convolution operation for a
3× 3 filter kernel size applied to a 2× 2 feature map. The active regions to compute
the output value are shaded green. Empty cells represent zero-padded values.
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that at training time the input random vector has a spatial dimension of one and
the output of the discriminator is a single scalar value.

In Fig. 4.2 we show an example of a convolution and transposed convolution
operation for the two-dimensional case. The convolution is performed by sliding a
filter kernel wi (Eq. 4.6) over the input feature map xi (Eq. 4.7) (Dumoulin and
Visin, 2016). We rewrite this as an efficient matrix vector operation (Eq. 4.8) by
unrolling the discrete convolution

W =

⎛⎜⎜⎝
w0 w1 w2 0 w3 w4 w5 0 w6 w7 w8 0 0 0 0 0
0 w0 w1 w2 0 w3 w4 w5 0 w6 w7 w8 0 0 0 0
0 0 0 0 w0 w1 w2 0 w3 w4 w5 0 w6 w7 w8 0
0 0 0 0 0 w0 w1 w2 0 w3 w4 w5 0 w6 w7 w8

⎞⎟⎟⎠ [4×16]

(4.6)
The input image x, in this case a single-channel 4× 4 image, and the output y are
represented as one dimensional vectors

x [16× 1], y [4× 1] (4.7)

This allows us to perform the discrete convolution

W ∗ x = y (4.8)

where W, x, y are defined according to Eq. 4.7. For each convolutional layer of the
network, the input features are convolved with a number of filter kernels W. While
the convolution operation (Eq. 4.8) creates an output of smaller size than the input
feature map, the so-called transposed convolution operation creates an output that
has larger spatial-dimensions. This is shown in Fig. 4.2-b where the input features x
are first padded with zeros and are subsequently convolved with the weight kernel
W to generate a spatially larger output feature map y.

The generator consists of a series of three-dimensional transposed convolutions.
In each layer, the number of weight kernels is reduced by a factor of 1

2
. Before the

final transposed convolution we add an additional convolutional layer (Fig. 4.3). Each
layer in the network except the last is followed by a batch normalization (Ioffe and
Szegedy, 2015) and a Leaky Rectified Linear Unit (LeakyReLU) activation function.
The final transposed convolution in the generator is followed by a hyperbolic tangent
activation function (Tanh) (LeCun et al., 1998). A representation of each activation
function used in the network is shown in Fig. 4.4.

We represent the discriminator as a convolutional classification network with
binary output using as input the real samples of the 643 voxel training set (Label
1) and synthetic realizations of equal size created by the generator (Label 0). Each
layer in the network consists of a three-dimensional convolution operation followed by
batch normalization and a LeakyReLU activation function. The final convolutional
layer outputs a single value between 0 and 1 (Sigmoid activation) which corresponds
to the probability that the input image belongs to the original training set or in
other words that it is a real image.

We distinguish two sets of parameters for training: the set of weights of a
network comprises the adjustable parameters of the filter kernels for convolutional
and neurons for linear network layers. The so-called hyper-parameters define the
network architecture and training scheme e.g. the number of filters per layer, the
number of convolutional layers or learning rates. A chosen set of hyper-parameters
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Figure 4.3: Architecture of the neural network used to represent the generator
function Gθ(z). The latent vector z is passed through a fully convolutional feed-
forward neural network. Transposed convolution operations upsample the image in
each layer. A single convolutional layer is introduced prior to the final network layer
to reduce artifacts due to upsampling using transposed convolution.

defines different networks with their own weights (parameters) which are adapted
using a mini-batch gradient descent method at training time.

In total 8 models have been trained on the Ketton image dataset. The main
hyper-parameters that were varied for each model are the number of filters in the
generator and discriminator, NGF and NDF respectively, as well as the number
of convolutional layers before the final transposed convolution in the generator.
The dimensionality of the latent random vector z was kept constant at a size of
512× 1× 1× 1. Learning was performed by stochastic gradient descent using the
ADAM optimizer with momentum constants β1 = 0.5, β2 = 0.999 and a constant
learning rate of 2× 10−4. Network training was performed on eight NVIDIA K40
GPUs using a mini-batch size of 64 images and the total run time of each training
run is eight hours.

To train the pair of networks Gθ(z) and Dω(x) we make use of two heuristic
stabilization methods. First, Gaussian noise (µ = 0, σ = 0.1) is added to the input
of the discriminator which is annealed linearly over the first 300 epochs of training.
A theoretical analysis of why adding Gaussian noise helps to stabilize GAN training
was performed by Sønderby et al., (2016). In addition, we make use of a second
stabilization method called label switching. Label switching represents a heuristic
stabilization method with the aim of weakening the discriminator during the early
stages of training. This heuristic stabilization method is performed by training the
discriminator every N steps for one step with switched labels of the input real and
generator simulated images; a real image is expected to be labeled as false and
generated images as real. This corresponds to switching the expected labels of the
input image mini-batches in Eq. 4.5.

Among the eight models tested, the network architecture generating realizations
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Table 4.1: Architecture of the generator and discriminator networks. The generator is
a fully convolutional version of a DCGAN (Radford et al., 2015) with one additional
convolution layer prior to the final transposed convolution. LeakyReLU activation
functions were used for all layers except the last.

Generator

Layer Type Filters Kernel Stride Padding Batchnorm Activation

1 ConvTransp3D 512 4× 4× 4 1 0 Yes LeakyReLU
2 ConvTransp3D 256 4× 4× 4 2 1 Yes LeakyReLU
3 ConvTransp3D 128 4× 4× 4 2 1 Yes LeakyReLU
4 ConvTransp3D 64 4× 4× 4 2 1 Yes LeakyReLU
5 Conv3D 64 3× 3× 3 1 1 Yes LeakyReLU
6 ConvTransp3D 1 4× 4× 4 2 1 No Tanh

Discriminator

Layer Type Filters Kernel Stride Padding Batchnorm Activation

1 Conv3D 64 4× 4× 4 2 1 No LeakyReLU
2 Conv3D 128 4× 4× 4 2 1 Yes LeakyReLU
3 Conv3D 256 4× 4× 4 2 1 Yes LeakyReLU
4 Conv3D 512 4× 4× 4 2 1 Yes LeakyReLU
5 Conv3D 1 4× 4× 4 1 0 No Sigmoid

Figure 4.4: Activation functions used in the generator and discriminator networks.

with the smallest mismatch with respect to the evaluated statistical and physical
properties is presented in Table 4.1. The presented model has hyper-parameters of
NDF = NGF = 64. Training was stopped after 170 epochs i.e. full iterations of the
training set of images. The generator consists of 27.9× 106 adjustable parameters
and 11.0× 106 parameters for the discriminator. Visual inspection of the generated
images and empirical computation of morphological and statistical properties were
used as a measure for reconstruction performance at each iteration.

After training, the generator was used to create 64 reconstructions at a size of
2003 voxels by sampling from the noise prior z (Eq. 4.1) and performing the mapping
from the latent space to the image space (Eq. 4.2). Figure 4.5 shows slices through
32 non-overlapping sub-domains of the Ketton validation set and slices through 32
synthetic validation samples generated by the GAN model. The samples shown
represent a random set of the generator output and were not selected by hand for
their visual or statistical quality. The following sections present the a posteriori
calculations of statistical, morphological and effective properties of these 64 synthetic
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Figure 4.5: Cross-sections of the 2003 voxel sub-domains of the Ketton micro-CT
image (top) and synthetic realizations obtained from the trained generator of the
generative network (bottom).

validation images in comparison to the extracted validation set of the original Ketton
image (Fig. 4.5).

4.4.2 Two-Point Probability Functions

The two-point probability functions S2(r) allow the first and second order moments of
a micro-structure to be characterized. We define the isotropic non-centered two-point
probability function S2(r) as the probability that two arbitrary points separated
by a distance ∥r∥ are located in the same phase i.e. grain or void phase of the
micro-structure. While S2(r) may be defined for both phases of a porous medium,
we compute the two-point probability function with respect to the pore phase only.

S2(r) = P(x ∈ P,x+ r ∈ P ) for x, r ∈ Rd (4.9)

S2(0) is equal to the porosity of the porous medium. Stabilization of S2(r) occurs
around a value of ϕ2 as the distance tends towards infinity. In addition, the specific
surface area SV can be determined from the slope of the two-point probability
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Figure 4.6: Comparison of the two-point probability function S2(r) measured along
the Cartesian axes for Ketton image sub-domains and GAN generated realizations.
S2(r) was measured on images after thresholding using Otsu’s method. Gray and
red shaded areas respectively show the variation around the average behavior (µ± σ)
of 64 images of the Ketton image and GAN generated validation set.

function at the origin SV = −4S ′
2(0) (Berryman, 1987).

We calculate S2(r) numerically using the lattice point algorithm described by
(Jiao et al., 2008). Figure 4.6 shows the directional two-point probability function
for 64 2003 voxel sub-domains of the original Ketton validation set (gray) and the
GAN generated realizations (red). Our findings show that the 64 GAN-generated
realizations lie within the standard deviation of the experimental S2(r) computed
for the 64 original Ketton images.

Due to the ellipsoidal nature of the grains found in the Ketton limestone, a
significant oscillation can be observed in all three orthogonal directions. This "hole-
effect" is characteristic of periodic media (Torquato and Lado, 1985). The hole-effect
found in the training image dataset is reproduced by the samples generated by
the GAN model, indicating the preservation of periodic features in the pore micro-
structure of the synthetic images.

Good agreement between the real and synthetic micro-structures can be observed
for the radial averaged two-point probability function (Fig. 4.7). For both the radial
averaged and directional estimates of S2(r) a tight clustering around the mean can
be observed, whereas the real porous medium shows a larger degree of variation
around the mean.

4.4.3 Minkowski Functionals

To evaluate the ability of the trained GAN model to capture the morphological
properties of the studied Ketton limestone, we compute four integral geometric
properties that are closely related to the set of Minkowski functionals as a function
of the image gray value. This is an extension of the work in the previous Chapter 3
and as presented in Mosser et al., (2017), where each functional had only one value
for each segmented image.

For any n-dimensional body we can define n+1 Minkowski functionals to charac-
terize morphological descriptor of the grain-pore bodies structures (Mecke, 2000).
The Minkowski functional of zeroth-order is equivalent to the porosity of a porous
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Figure 4.7: Radial average of the average two-point probability function S2(r)) for
64 dataset sub-domains and GAN generated images. Excellent agreement of the
average behavior can be observed (dashed line) whereas a lower variation around the
mean behavior can be observed for the GAN generated images.

medium and defined as
ϕ = M0 =

Vpore

V
(4.10)

where Vpore corresponds to the pore volume and V to the bulk volume of the porous
medium.

We measure the specific surface area SV defined as an integral geometric rela-
tionship

SV =
M1

V
=

1

V

∫
dS (4.11)

where M1 is the Minkowski functional of first order. In three dimensions, M1

corresponds to the surface area of the pore-grain interface. Both SV and ϕ can be
obtained by estimation of the two-point probability function S2(r) (Section 4.4.2).
The specific surface area SV has dimensions of 1

length
and its inverse can be used to

define a characteristic length scale of the porous medium.
The Minkowski functional of order 2, the integral of mean curvature, M2, can

be related to the shape of the pore-space due to its measure of the curvature of
pore-grain interface. We use a bulk volume average of the integral of mean curvature
defined as

κV =
M2

V
=

1

2V

∫
(
1

r1
+

1

r2
)dS (4.12)

where r1 and r2 are the principal radii of curvature of the pore-grain interface.
The Euler characteristic, χV , is a measure of connectivity that is proportional to

the dimensionless third order Minkowski functional M3

χV =
M3

4πV
=

1

4πV

∫
1

r1r2
dS (4.13)

We evaluate these four image morphologic properties at each of the 256 gray-
level values of the 2003 voxel Ketton image sub-domains and the GAN generated
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realizations. This allows us to describe the porous medium as a set of characteristic
functions dependent on a global truncation value ρ for each of the four Minkowski
functionals (Schmähling, 2006; Vogel et al., 2010). To compute the four properties at
each threshold level ρ the publicly available micro-structure analysis software library
Quantim was used (Vogel et al., 2010).

Figure 4.8 compares these four estimated properties as a function of the image
threshold value for the Ketton image (gray) and the samples generated by the GAN
model (red). The shaded regions correspond to the variation around the mean µ± σ
for both synthetic and real image datasets. The same 64 samples of the validation set
used in the evaluation of the two-point probability function have been used for this
analysis. Additionally, the vertical dashed lines represent the range of the threshold
values obtained by Otsu’s method when applied to the individual images. This allows
an estimate of the error region that is significant when introducing a thresholding
method based on a global truncation value such as Otsu’s method.

Our analysis of the GAN-based models shows excellent agreement for the porosity
ϕ(ρ), specific surface area SV (ρ) and integral of mean curvature κV (ρ) as a function
of the threshold value ρ. For these three properties a low error is introduced when
applying global thresholding. The fourth property, the specific Euler characteristic,
χV (ρ), shows an error of 20% in the range of global thresholding values with good
agreement outside this range. This implies that care must be taken when segmenting
an image - real or generated - to preserve the connectivity of the pore-space. As for
the covariances, we also observe that the scatter produced by the GAN simulations
is less than the scatter of the training set.

4.4.4 Permeability and Velocity Distributions

To validate GAN-based model generation for uncertainty evaluation and numerical
computations it is key that the generated samples capture the relevant physical
properties of the porous media that the model was trained on. The permeability
and, moreover, the local velocity distributions represent the key properties of the
porous medium (Menke et al., 2017).

To evaluate the ability of GAN-based models to capture the permeability and in
situ velocity distributions of the Ketton training images, we solve the Stokes equation
on a segmented representation of each of the 64 Ketton sub-domains and 64 synthetic
pore representations created by the GAN model. The segmented representations
used to estimate the two-point probability functions were reused for this evaluation.
A finite-difference-based method adapted for binary representations of voxel-based
pore representations was used to compute the effective permeability from the derived
velocity field (Mostaghimi et al., 2013). The effective permeability was computed in
the three Cartesian directions.

∇ · v = 0 (4.14a)
µ∇2v = ∇p (4.14b)

We present the resulting distribution of estimated permeability values as a function
of the effective porosity

ϕeff =
Vflow

V
(4.15)
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Figure 4.8: Four Minkowski functionals as a function of the segmentation threshold.
Shaded regions show variation of the properties around the mean µ ± σ. Vertical
dashed lines show the region of segmentation thresholds obtained by applying Otsu’s
method.
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Figure 4.9: Directional permeability computed on the validation dataset (64 images
with 2003 voxels) extracted from the original Ketton limestone micro-CT dataset and
realizations obtained from the GAN model. Values of permeability obtained from
the synthetic images are tightly clustered around the mean of the original dataset.

where Vflow is the volume of the connected porosity.
Our results show (Figs. 4.9 and 4.10) that the GAN model generates stochastic

reconstructions that capture the average permeability of the original training image
at a scale of 2003 voxels, with the majority of samples closely centered around the
average effective permeability of the Ketton subsets.

The velocity distributions of the numerical simulations performed on the Ketton
validation dataset and generated realizations were normalized by the average cell-
centered velocity following the approach of Alhashmi et al., (2016) and a histogram
with 256 logarithmically-spaced bins in a range from 10−4 to 102 for each simulation
was obtained.

Figure 4.11 shows the per bin arithmetic average of the bin frequencies and a
bounding region of one standard deviation µ ± σ as the shaded area. Due to the
high range of velocities spanning six orders of magnitude, the x-axis is represented
in logarithmic scaling.

Visually, the distributions of the generated samples and Ketton sub-domains are
nearly equivalent with minor deviations in the frequency of the very high and very
low velocities. For the GAN model, low velocities are more abundant than in the
original image whereas the opposite is true for high velocities.

To evaluate whether the velocity distributions obtained from numerical simulation
of flow for the GAN generated images are statistically similar to distributions
representative of the original image dataset we perform a two-sample Kolmogorov-
Smirnov test. The null hypothesis H0 states that two samples are of the same
underlying distribution. Define Dn,m as

Dn,m = sup
x

|F1,n(x)− F2,m(x)| (4.16)

and the null hypothesis H0 is rejected if

Dn,m > c(α)

√
n+m

nm
(4.17)

where n and m are the sample sizes respectively and c(α) =
√
−1

2
ln(α

2
).
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Figure 4.10: Averaged permeability for the original image datasets and synthetic
realizations obtained from the GAN model.

Figure 4.11: Comparison of probability density functions of the magnitude of velocity
extracted from the centers of voxels in the pore-space divided by the average flow
velocity plotted on semi-logarithmic (left) and double-logarithmic axes (right). The
combination of 64 simulations on sub-domains obtained from the original dataset
and 64 generated realizations of the GAN model are shown. Shaded regions highlight
the variation around the mean of all simulations µ ± σ. The solid line shows the
homogeneous limit velocity distribution for a single capillary tube.
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Table 4.2: Results of the two sample Kolmogorov-Smirnov test for equality of velocity
distributions computed on the image dataset and generated realizations. The null
hypothesis of distributional equality is to be accepted at a significance level of
α = 0.05 for all three directional velocity distributions.

Direction Dn,m D0.05

x 0.09 0.12y 0.09
z 0.07

All tests were performed at a significance level of α = 0.05 for the per-bin average
velocity distributions presented in Fig. 4.11 (dashed curves).

For all three directions the null hypothesis can be accepted at the 5% signif-
icance level based on the D0.05 statistic, giving evidence to the visual similarity
between the velocity distributions of the real Ketton images and their synthetic
counterparts (Table 4.2).

4.5 Discussion
We have presented the results of training a generative adversarial network on a
micro-CT image of the oolitic Ketton limestone. The image morphological properties
were evaluated as a function of the image threshold level and it was shown that the
generated images capture the textural features of the original training image. Two-
point statistics and effective properties computed on segmented representations of the
individual sub-domains have also shown excellent agreement between the realizations
generated by the GAN model and subsets of the Ketton image. Nevertheless there
remain a number of open questions that need to be addressed.

The predicted statistical and morphological properties have shown a tight bound
around the average behavior of the training image. This indicates that there is less
variation in the generated samples than in the training samples. This behavior can
have a number of origins.

The training images can be regarded as samples of the unknown multivariate pdf
preal(x), which is likely to be multi-modal. The original formulation of the GAN
objective function (Goodfellow et al., 2014) has been shown to lead to unimodal pdfs,
even if the training set pdf itself is multi-modal (Goodfellow, 2016). The behavior
of a generator to represent multi-modal pdfs by a pdf with fewer modes is called
mode-collapse (Goodfellow, 2016). This behavior may occur due to the fact that
there is no incentive for diversity in GAN training.

Visually the images generated by the presented GAN model are nearly indis-
tinguishable from their real counterparts (Fig. 4.5). Minkowski functionals and
statistical parameters allow us to perform an evaluation of the reconstruction quality.
Nevertheless, this does not rule out the fact that the generator may be memorizing
the training set, show mode-collapse behavior or output a low diversity of synthetic
samples. A generator showing one or more of these behaviors will falsely indicate
low errors in the Minkowski functionals, statistical and effective properties.

By visual inspection of the validation set generated by the GAN model, no
evidence of identical or repeated features in the generated images could be found.
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Figure 4.12: Interpolation in the latent space z performed for the evaluated generator
Gθ shows a smooth interpolation between the start latent random vector zstart (β = 1)
and the end point zend (β = 0). An example feature of this can be seen by a bright
calcite grain present in the left most image slowly being transformed into a spherical
grain with significant micro-porosity.

Following the approach by Radford et al., (2015) we perform an interpolation between
two points in the latent space z:

zstart, zend ∈ N (0, 1)512×1×1×1, β ∈ [0, 1] (4.18a)
zinter = β zstart + (1− β) zend (4.18b)

where β is a range of numbers from zero to one. This provides evidence of the
generator’s ability to learn meaningful representations and shows the absence of
memorization.

The smooth transition between the starting image Gθ(zstart) and the endpoint
Gθ(zend) shown in Fig. 4.12 indicates that the generator has not memorized the
training set and has instead learned a lower-dimensional representation z that results
in meaningful features of the pore-grain micro-structure. Definition of GAN training
objectives compatible with high-diversity samples showing no mode-collapse and
stable training remains an open problem. Che et al., (2016) have presented a summary
of recent advances to counteract mode-collapse,and have proposed a regularization
method to improve GAN output variety. Reformulations of the GAN training
criterion (Eq. 4.4) based on the Wasserstein distance (WGAN-GP) (Gulrajani et al.,
2017) and other training approaches to GANs such as EBGAN (Zhao et al., 2016) or
DRAGAN (Kodali et al., 2017) show the ability to model multi-modal densities and
allow stable training.

It is important to note that the output of the generator is parameterized by
the stochastic latent random vector and can be optimized due to the differentiable
nature of the generative neural network. This is a powerful concept that has been
leveraged in a number of applications in computer vision. Inpainting is the task
of creating semantically meaningful content where missing data exists. Commonly
this is a task performed where objects are occluded or only partially visible. In
micro-structural applications and often at larger geological scales lower dimensional
information may be more readily available than acquiring a full three-dimensional
image e.g. thin-sections of porous media. Constraining images to this data is referred
to as conditioning and can be reformulated as an inpainting problem. Yeh et al.,
(2016) introduced a framework for inpainting using GANs where the latent random
vector can be optimized with regards to a perceptual objective function determined
by the discriminator and a mismatch between the observed data and the output of
the generator. In other work we have shown that the method of Yeh et al., (2016)
can be applied and produces stochastic three-dimensional samples that honor the
given two- and one-dimensional conditioning data (Mosser et al., 2018a).
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Figure 4.13: Representations of the noise prior z as it is propagated through the
generator Gθ. Each layer adds to a multi-scale reconstruction of the final image
Gθ(z). The shallow Layers 1, 2 and 3 introduce global features of the final image
whereas deeper layers add high fidelity details to the output image. Significant noise
is still present in Layer 3 due to the use of transposed convolution operations, but
reduced by the convolution in Layer 5.

While the input and output to the GAN generator and discriminator is well
defined, the interior mechanics of the neural network that result in high-quality
reconstructions are not well understood. Rather than treating GANs as a black-box
mechanism, it is of interest to evaluate the behavior of the generator and discriminator
in more detail. In Fig. 4.13 we have extracted the generator’s output after each layer’s
activation function (following the convolution operation and batch normalization).

Based on the consecutive upsampling of the noise prior z by each transposed
convolution in the generator, we observe a multi-scale feature representation of the
final image. Early layers, where the spatial dimensions of the images are small, can
be related to global features in the generator output. The final layers create highly
detailed representations of the structural features of the reconstructed images. This
view of the generator’s behavior also helps identify deficiencies in the network’s
architecture. In Layers 3 and 4 we see repeated noise that appears to be following a
grid like structure. This is due to the transposed convolutional operation and in parts
is diminished by the additional convolution operation prior to the last upsampling
operation. This could be alleviated by the use of other convolution-based upsampling
layers such as the sub-pixel convolution operation (Shi et al., 2016) or interpolation
upsampling (nearest neighbor, bilinear, trilinear).

The discriminator’s role is simply to label images as real or "fake", but it also is
a critical component in the ability of the generator to learn features in the original
image space. The discriminator, in order to distinguish GAN-generated from real
training images, needs to learn a unique set of features that distinguish real samples
from fake ones. As such, for future work, it may be of interest to use a GAN trained
discriminator for classification or feature extraction (Arora and Zhang, 2017).

Nevertheless, we can perform a similar operation as for the generator and inspect
some of the features learned by the discriminator. Figure 4.14 shows a set of 5 learned
filters applied to an image of the Ketton training set. At shallow layers we find that
the discriminator has learned to identify the pore-space (Layer 1, second row) as
well as a number of edges. Deeper layers in the network represent more abstract
features and after Layer 2 no original feature of the pore-space is distinguishable.

Considering that the samples used to evaluate the statistical and effective prop-
erties were not chosen by hand but represent a random group of generated images
based on the GAN model, further improvement can be obtained in the reconstruction
results. The discriminator may be used as an evaluation criterion for samples where
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Figure 4.14: An inspection of the behavior of the discriminator’s learned feature
representations for a training sample of the original Ketton training image. Each
column represents one layer of the discriminator network. Each row represents one
learned filter kernel in each layer applied to the input (leftmost column).

higher values obtained from the discriminator D(Gθ(z)) indicate that the samples
are closer to the real training image dataset. In this way, high-quality reconstructions
may be "cherry-picked" by choosing representations that score values D(x) close to
one (real label) from a much larger set of reconstructions.

The computational effort to perform image reconstruction using GANs can be
split into two parts: training time and generation time. The training time is the
total time required to find a set of parameters of the generator that allows generation
at sufficient image quality. We define generation time as the total time required
to initialize a neural network and the associated parameters obtained during the
training phase and the generation of the images by passing a latent random vector
z through the generator to obtain an image x ∼ Gθ(z). To create one realization
from a GAN it is necessary to train the generator-discriminator pairing only once,
therefore training time is a fixed computational cost. Once trained, the generator
can simply be reused for each new realization.

We have performed benchmarking of our GAN model in terms of the compu-
tational time. Training was performed on eight Nvidia K40 GPUs and the total
training time was 8 hours. We evaluate the generation time of 100 realizations based
on this set of pre-trained parameters. Each benchmark consists of the following steps:
initialization of the generator parameters, sampling and initializing a latent random
vector in GPU memory and finally applying the generator to the latent random

Chapter 4 Lukas J. Mosser 69



Reservoir Modeling and Inversion using Generative Adversarial Network Priors

Table 4.3: Comparison of reported computational run-times of recent reconstruction
methods. The computational cost for running 100 realizations is estimated based
on the smallest reported run-time for each algorithm. An unbiased comparison is
difficult as each method has been evaluated on a different dataset and image sizes.

Computational Runtime Comparison

Authors Method Size [voxels3] Runtime (×1) Runtime(×100)

Pant (Pant, 2016) Simulated Annealing 3003 22-47 [hours] 2200 [hrs]
Čapek et. al (Čapek et al., 2009) Simulated Annealing 3203 160-400 [hrs] 16000 [hrs]

Tahmasebi et. al (Tahmasebi et al., 2017) Patch-Based 10002 × 300 0.1 [hrs] 11 [hrs]
Okabe and Blunt (Okabe and Blunt, 2004) MPS 1503 12 [hrs] 1200 [hrs]

Current Work GAN 4503 8 [hrs] 8.1 [hrs]

vector x ∼ Gθ(z) to create a realization with 4503 voxels. When sampling 100
realizations the first step, the initialization of the pre-trained generator parameters
is only required once and is not repeated for subsequent sampling operations. We
have repeated this benchmarking exercise ten times on an NVIDIA V100 GPU and
have quoted the average total run times. Our benchmark shows that the average
run time to perform sampling of 100 realizations with 4503 voxels is 100 seconds.

The main limitations in computational effort come from two factors: the training
time and available GPU memory. In the future we expect the training time to
decrease, due to greater performance of GPUs and development of novel GAN
training methods that allow faster convergence. Furthermore GAN-based image
synthesis for large spatial domains requires large amounts of GPU memory, for
example reconstruction with 4503 voxel requires more than 10 gigabytes of GPU
memory.

Recently, a number of algorithms have been developed to perform high-quality
reconstruction of porous media based on training images (Jiao et al., 2009; Zachary
and Torquato, 2011; Tahmasebi et al., 2017). While considering the resulting image
quality to be equal, one possible differentiation of these methods is computational
run time. Reported run times are heavily dependent on a number of criteria such
as the simulated image size, software implementation or hardware used. Table 4.3
presents a summary of measured computational time reported for a number of recent
reconstruction methods as well as their respective simulated image sizes.

Most methods reported in Table 4.3 incur a high computational cost per generated
realization, with the exception of the method of Tahmasebi et al., (2017). We refer
to these methods as proportional-cost methods as the computational cost scales
strongly with the number of created realizations. Training-based methods, such as
the presented GAN-based approach have a high initial computational cost due to the
required training phase. Our method, once training is completed, has a very small
generation time per realization. It is possible to determine an amortization time,
when the use of one approach, considering all other factors equal, becomes beneficial.

Figure 4.15 presents a comparison of the computational cost induced by different
methods as a function of the number of realizations at a fixed image size. The
amortization time, where the two curves intersect, correspond to the number of
realizations at which training-based methods, such as GANs, become faster.
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Figure 4.15: Comparison of the computational cost for two stochastic reconstruction
methods at fixed image size. Proportional cost-based methods are associated with a
high run time per realization. Training-based methods, such as the presented GAN
method, have a high initial computational cost due to their training phase and a
small cost per generated realization afterward.

4.6 Conclusions
We have presented a method to reconstruct micro-structures of porous media based
on grayscale image representations of volumetric porous media. By creating a GAN-
based model of an oolitic Ketton limestone, we have shown that GANs can learn
to represent the statistical and effective properties of segmented representations of
the pore-space as well as their Minkowski functionals as a function of the image
gray-level.

In addition to the effective permeability which is associated with a global average
of the velocity field, we show that the pore-scale velocity statistical distributions
have been recovered by the synthetic GAN-based models. We highlight the roles
of the discriminator and generator function of the GAN and show that the GAN
learns a multi-scale representation of the pore-space based on inference from a latent
random prior. Large hyper-parameter searches involved in the deep neural network
architectures and learning instabilities make the training of GANs difficult. The high
computational cost involved in training GANs is made good use of for applications
when very large or many stochastic reconstructions are required. The differentiable
nature of the generative network parameterized by the latent random vector provides
a powerful framework in the context of gradient-based optimization and inversion
techniques.

Future work will focus on creating GAN-based methodologies that ensure a valid
representation of the underlying data distribution allowing application of GANs for
uncertainty quantification and inversion of effective material properties.
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Chapter 5

Conditioning of Three-Dimensional
Generative Adversarial Networks for
Pore and Reservoir-scale Models

5.1 Abstract
Geostatistical modeling of petrophysical properties is a key step in modern integrated
oil and gas reservoir studies. This contribution leverages the differentiable nature of
neural networks to extend GANs to the conditional simulation of three-dimensional
pore- and reservoir-scale models. Based on the previous work of Yeh et al., (2016), we
use a content loss to constrain to the conditioning data and a perceptual loss obtained
from the evaluation of the GAN discriminator network. The technique is tested
on the generation of three-dimensional micro-CT images of a Ketton limestone, as
presented in the previous chapter, constrained by two-dimensional cross-sections, and
on the simulation of the Maules Creek alluvial aquifer constrained by one-dimensional
sections. Our results show that GANs represent a powerful method for sampling
conditioned pore and reservoir samples for stochastic reservoir evaluation workflows.1

5.2 Introduction
The spatial distribution of rock properties within a reservoir can have a critical
impact on hydrocarbon recovery. In recent years a number of geostatistical methods
have been developed to generate earth models given sparse information.

Different approaches exist to model the distribution of geological facies and
petrophysical properties. Variograms quantify geological and petrophysical variations
using so-called two-point statistics (Matheron, 1975; Pyrcz and Deutsch, 2014).
Anisotropic behavior is incorporated by introducing orientation-dependent variograms.
Truncated Gaussian simulation obtains facies models by truncation of variogram-
based models of Gaussian fields (Armstrong et al., 2011). In contrast, multiple-point
statistical (MPS) methods (Strebelle, 2002) evaluate the dependency of the facies
occurrence at a given location based on statistics available on multiple-point templates.
These statistics are provided by training images, that represent the conceptual

1We have released our code for conditioning at http://github.com/LukasMosser/geogan
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geological knowledge and act as a discrete prior on the geological understanding of
the subsurface reservoir.

Recent methods such as direct sampling (Mariethoz et al., 2010) have led to
significant reduction in the computational overhead of MPS methods, allowing faster
sampling of three-dimensional reservoir models. Object-based methods populate
model domains with predefined parameterized geometric representations of geobodies.
This allows realistic representation of geological features, but the conditioning to
well data is challenging when the size of geological objects is large compared to the
well spacing.

At the reservoir scale (meters to 10s of kilometers) we have no knowledge of the
true subsurface distribution of reservoir properties, except at discrete well locations;
on the other hand, at the scale of individual pores of the reservoir rock, direct
imaging methods such as micro-computed tomography allow images of the pore-grain
structure to be made (Blunt et al., 2013; Berg et al., 2017). These images are often
limited in size. Where large spatial domains are required for e.g. upscaling tasks,
statistical models enable statistical and physical representations of the pore-grain
structure. Due to the abundance of two-dimensional thin sections compared to
three-dimensional CT measurements, models are often conditioned to match existing
two-dimensional images.

In Chapters 3 and 4 we have shown that GANs are able to generate very realistic
stochastic representations of pore-scale structures (Mosser et al., 2017; Mosser et al.,
2018c). Chan and Elsheikh, (2017) have shown that GANs are able to produce
parametric geological representations. Laloy et al., (2017) incorporated GANs in a
Markov Chain Monte-Carlo approach to create representations conditional to dynamic
hydraulic data. Laloy et al., (2017a) used conditional MPS simulations as a training
set for variational autoencoders to sample conditioned geological representations.
Yeh et al., (2016) proposed a combined "content + perceptual" loss approach and
leverage the differentiable and parametric nature of the deep neural networks used
to condition GAN simulations to pre-existing data.

5.3 Theory
Generative adversarial networks (GANs) (Goodfellow et al., 2014; Goodfellow, 2016)
are a recent methodology developed in deep learning that allows modeling and
sampling from a data distribution represented by a set of training examples. GANs
consist of two differentiable functions; a generator Gθ(z) that maps samples obtained
from a multivariate standardized normal distribution to an image x and a discrimi-
nator Dω(x) that takes on the role of a classifier to distinguish between simulations
x ∼ Gθ(z) created by the generator and the training images. Both networks are
trained in an alternating two-step procedure that optimizes a min-max objective
function

min
θ

max
ω

{Ex∼pdata(x)[log(Dω(x))] + Ez∼pz(z)[log(1−Dω(Gθ(z)))]} (5.1)

In this setting, the two functions have distinct and opposing objectives: the
discriminator’s goal is to distinguish between real training images and samples
obtained from the generator, whereas the generator tries to create samples that the
discriminator falsely classifies as being a sample from the data distribution. Due
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to this two-player game between the generator and discriminator the training of
GANs is inherently unstable. Using the Wasserstein distance as a surrogate objective
function (Arjovsky et al., 2017) has proven to be a successful way of stabilizing the
GAN training process. This contribution uses Wasserstein-GANs combined with a
single-sided gradient penalty to train the generator-discriminator pairing (Petzka
et al., 2017; Gulrajani et al., 2017). Generative adversarial networks were trained on
the three-dimensional Maules Creek reservoir dataset (Mariethoz and Caers, 2014)
and on a grayscale micro-CT image of a Ketton limestone. The Ketton dataset serves
as a pore-scale example for model conditioning (Menke et al., 2017). An overview of
the image processing performed on the Ketton dataset can be found in the previous
chapter (Mosser et al., 2018c).

The generator and discriminator of each trained GAN are represented by a deep
convolutional neural network (DCGAN) (Radford et al., 2015; Jetchev et al., 2016).
Due to the differentiable nature of the deep neural network we can perform gradient-
based optimization of the latent variables z with respect to an objective function
L(z) acting on the output of the GAN generator Gθ(z)

z∗ = argmin
z

L(z) (5.2)

while keeping the parameters θ of the GAN generator constant.
We solve Eq. 5.2 by gradient-descent, where we first obtain an initial sample

z0 ∼ p(z) from the prior distribution of the latent-variables, in our case a multivariate
Gaussian and perform gradient-descent on the latent variables

zt+1 = zt − η
∂L(z)
∂zt

(5.3)

where the gradients of the objective function with respect to the latent variables
∂L(z)
∂zt

are obtained using backpropagation (Rumelhart et al., 1988; LeCun et al., 1998)
and η represents the step-size.

To constrain a single realization x = Gθ(z) of the generator to a set of continuous
conditioning data, we first define the objective function L(z) referred to as the
content loss in the work of Yeh et al., (2016), that is the masked mean-squared error
between the generator output Gθ(z) and the conditioning data M⊙ y

Lcontent(z) = ∥M⊙G(z)−M⊙ y∥22 (5.4)

where the elements of the mask M = Mi indicate the location of the conditioning
data (Mi = 1) and the regions of missing data (Mi = 0) which we aim to reconstruct.

By minimizing the content loss according to Eq. 5.2 we obtain a realization
x∗ = Gθ(z

∗) that matches the conditioning data (Mi = 1) and provides a synthetic
output by the generator where data is missing (Mi = 0).

In the case where a GAN has been trained to represent binary indicator variables,
the objective function Lcontent(z) is the binary cross-entropy between the values of
the binary indicator variable at the conditioning locations and the GAN output. The
output of the GAN, conditioned on a set of binary indicator data, represents the
probability of each value of the GANs output to belong to one of two classes. After
conditioning, a binary representation of the conditioned GAN output is obtained
by thresholding the probability values at the 0.5 level. Yeh et al., (2016) showed
that only minimizing the content loss does not lead to visual realistic results and

Chapter 5 Lukas J. Mosser 74



Reservoir Modeling and Inversion using Generative Adversarial Network Priors

therefore introduced a so-called perceptual loss that is given by the discriminator’s
evaluation of the generator’s output Dω(Gθ(z)).

Lperceptual(z) = log(1−Dω(Gθ(z))) (5.5)

This perceptual loss evaluates the similarity of patterns observed on the generated
samples to the samples of the training set.

The perceptual loss is therefore added to the content loss in our optimization
procedure and weighted by a user-defined factor λ.

Ltotal(z) = Lcontent(z) + λLperceptual(z) (5.6)

The conditioned realizations presented in this chapter therefore minimize the total
loss

z∗ = argmin
z

Ltotal(z) (5.7)

by optimizing the set of latent variables z and keeping the parameters of the generator
and discriminator fixed.

For continuous grayscale images we stop optimizing when the content loss has
reached values less than 10−3, whereas for binary indicator models we use a unit
accuracy i.e. exact matching of the indicator variables at the conditioning locations
after thresholding as the convergence criterion.

Accuracy =
True Positives+ True Negatives

Positives+Negatives
(5.8)

5.4 Results
We evaluate the ability of GANs to generate conditional samples by conditioning
the trained GAN networks to lower-dimensional data. Conditioning the three-
dimensional output of the Ketton generator network to two-dimensional micro-CT
data is performed using orthogonal intersections centered at the origin (Okabe and
Blunt, 2004). The location of the orthogonal conditioning planes can be seen (black)
in Fig. 5.1. Although the conditioning data is lower-dimensional, this has a spatial
influence on the resulting realizations in the third dimension (Fig. 5.1).

For the Maules Creek dataset we condition to a single well in the center of the
domains shown in Fig. 5.2. Conditioning of 1024 Maules Creek three-dimensional
simulations was performed on a single GPU in 8 hours. We present the mean
and standard deviation of the ensemble of realizations in Fig. 5.2b-c. An elliptical
influence of the conditioning data is observed showing that the anisotropy of the
training images is properly captured by the GAN generator. Good variation in the
samples is shown by the high variance of the conditioned model ensembles. Each
conditioned sample matches the indicator data at the well exactly.

5.5 Conclusions
Generative adversarial networks are a new powerful machine learning approach for
generating three-dimensional simulations of porous media at the reservoir and pore
scale. One pore-scale and one reservoir-scale case study have shown that conditional
simulation can also be performed, constrained by lower-dimensional well data at the
reservoir scale or cross-sections at the pore scale.
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Figure 5.1: (a) A subset of the Ketton limestone training image has been used to
extract orthogonal two-dimensional cross-sections used as conditioning data (black
planes). (b-c) Two conditioned simulations of a GAN trained on the Ketton dataset
are shown. The same lower-dimensional conditioning data has a different volumetric
expression away from the conditioning planes.

Figure 5.2: (a) A GAN was used to create simulations of the Maules Creek training
image conditional to a single centered well. (b-c) Mean and standard deviation
maps and cross-sections of 1024 conditioned simulations were created by optimizing
the latent vectors of GAN samples trained on the Maules Creek training image.
An elliptical region of influence can be observed around the conditional well data.
Boundary artifacts observed in the mean of all samples occur due to transposed
convolutional layers used in the generator architecture.
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Chapter 6

Stochastic Seismic Waveform
Inversion using Generative
Adversarial Networks as a Geological
Prior

6.1 Abstract
We present an application of deep generative models in the context of partial-
differential equation constrained inverse problems. We combine a generative ad-
versarial network representing an a priori model that generates geological hetero-
geneities and their petrophysical properties, with the numerical solution of the
partial-differential equation governing the propagation of acoustic waves within the
earth’s interior. We perform Bayesian inversion using an approximate Metropolis-
adjusted Langevin algorithm to sample from the posterior distribution of earth
models given seismic observations. Gradients with respect to the model parameters
governing the forward problem are obtained by solving the adjoint of the acoustic
wave-equation. Gradients of the mismatch with respect to the latent variables are
obtained by leveraging the differentiable nature of the deep neural network used
to represent the generative model. We show that approximate Metropolis-adjusted
Langevin sampling allows efficient Bayesian inversion of model parameters obtained
from a prior represented by a deep generative model, obtaining a diverse set of
realizations that reflect the observed seismic response.

6.2 Introduction
Solving an inverse problem means finding a set of model parameters that best fit
observed data (Tarantola, 2005). The observed data or measurements are often noisy
and/or sparse and therefore lead to an ill-posed inverse problem where numerous
realizations of the underlying model parameters may lead to a model response that
matches observed data (Kabanikhin, 2008). Additionally, the model used to describe
how the observed data are generated, the so-called forward model, may be uncertain
(Hansen and Cordua, 2017).

Based on natural observations or an understanding of the underlying data gen-
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Figure 6.1: Computational domain for the acoustic inversion problem. Acoustic
recording devices are placed on the surface (∇) and record incoming acoustic waves
reflected from geological structures and emanating from an artificial source (∗).
The computational domain is embedded within a dampened boundary domain to
emulate lateral and vertical dissipation of the wave-source. The generative model
Gθ(z) creates the underlying spatially distributed P-wave velocity. Additional lower-
dimensional constraints (dashed vertical line representing a well) can be placed on the
generative model, by incorporating loss terms. The vertical axis of the computational
domain has been rescaled by a factor of 10 for visualization purposes.
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erating process we may have a preconception about possible or impossible states
of the model parameters. We may formulate this knowledge as a prior probability
distribution function (pdf) of our model parameters and use Bayesian inference to
obtain a posterior pdf of the model parameters given the observations (Tarantola,
2005).

Seismic inversion involves modeling the physical process of waves radiating through
the earth’s interior (Fig. 6.1). By comparing the simulated synthetic measurements
to actual acoustic recordings of reflected waves we can modify model parameters and
minimize the misfit between synthetic data and measurements. The adjoint of the
partial differential equation (PDE) represents the gradient of the data mismatch with
respect to the parameters, leading to a gradient-based optimization of the model
parameters (Plessix, 2006). In the most general case, which has been used in this
study, these gradients are obtained by backpropagating the full wavefield in time
an approach commonly referred to as full-waveform inversion (FWI). The set of
parameters represented by the spatial distribution of the acoustic velocity of the
rocks within the earth can easily exceed 106 values depending on the resolution
of the simulation grid and the observed data. Large three-dimensional seismic
observations may require millions of parameters to be inverted for, demanding
enormous computational resources (Akcelik et al., 2003).

Direct observations of the earth’s interior, boreholes, may have been drilled
for hydrocarbon exploration/development or hydrological measurements. These
represent a quasi one-dimensional source of information of spatially sparse nature.
Typical borehole sizes are on the order of 10s of centimeters in diameter whereas the
vertical resolution of seismic observations is usually on the order of 10s of meters.

We can deduce prior knowledge of the earth’s interior from observations of analog
outcrops or subsurface reservoirs. This geological knowledge can be incorporated
into prior distributions of physical properties of rocks, such as the acoustic P-wave
velocity, or into the distribution of geological features such as geological facies and
fault distributions within the earth.

Efficient parameterizations (Akcelik et al., 2002; Kadu et al., 2016) that allow a
dimensionality-reduced representation of the high-dimensional parameter space of
possible models have been shown to reduce computational cost and increase spatial
resolution. Due to the high computational cost incurred by full-waveform inversion
(Modrak and Tromp, 2015; Akcelik et al., 2003), probabilistic ensembles of models
that match observed data are rarely generated and often only a single model that
satisfies pre-defined quality criteria is created and used for interpretation and decision
making processes. We parameterize the earth model by a deep generative model
that creates stochastic realizations of possible model parameters. The probabilistic
distribution of model parameters is parameterized by a lower-dimensional set of
multi-Gaussian distributed latent variables. Combined with a generative deep neural
network this represents a differentiable prior on the possible model parameters.
We combine this differentiable generative model with the numerical solution of the
acoustic wave equation to produce synthetic acoustic observations of the earth’s
interior (Louboutin et al., 2017). Using the adjoint method (Plessix, 2006), we
compute a gradient of the mismatch between real and synthetic data with respect
to model parameters not only in the high-dimensional model space, but also in
the much smaller set of latent variables. These gradients are required to perform
a Metropolis-adjusted Langevin (MALA) sampling of the posterior of the model
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dseis

dwell

mz
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Figure 6.2: Graphical model of the geological inversion problem. The set of possible
earth models is represented by a generative model with parameters θ (the parameters
of the generator m ∼ Gθ(z)). We obtain model observations of the acoustic waves
dseis via the deterministic PDE as well as partial observation of the model parameters
m from local information at e.g. boreholes dwell.

parameters given the observed seismic data. Performing MALA sampling allows us
to obtain a diverse ensemble of model parameters that match the observed seismic
data. Additional constraints on the generative model, such as information located
at existing boreholes, are readily incorporated and included in the MALA sampling
procedure.

We summarize our contributions as follows:

(i) We combine a differentiable generative model controlled by a set of latent
variables with the solution of a PDE-constrained numerical solution of a physical
forward problem.

(ii) We use gradients obtained from the adjoint method and from neural network
backpropagation to perform approximate MALA sampling of the posterior in
the lower-dimensional set of latent variables.

(iii) We illustrate the proposed inversion framework using a simple synthetic seismic
inversion problem and evaluate the resulting ensemble of model parameters.

(iv) The framework allows integration of additional information, such as the knowl-
edge of geological facies along one-dimensional vertical boreholes.

(v) The proposed approach may readily be extended to a number of inverse problems
where gradients of the objective function with respect to input parameters can
be calculated.

The code, data and trained weights of the neural networks have been made available
under an open-source license1.

6.3 Related Work
Tarantola, (2005) cast the geophysical seismic inversion problem in a Bayesian frame-
work. Mosegaard, (1995) presented a general methodology to perform probabilistic
inversion using Monte Carlo sampling. They used a Metropolis rule combined with a
sampling of the prior to obtain the posterior distribution. In a similar manner, Sen

1Code Repository: https://github.com/LukasMosser/Stochastic_Seismic_Waveform_Inversion
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and Stoffa, (1996) evaluated the use of Gibbs sampling to obtain a posteriori model
parameters and evaluate parameter uncertainties. Mosegaard, (1998) showed that
the general Bayesian inversion approach of Mosegaard, (1995) also gives information
on the ability to resolve geological features. Geostatistical models allow spatial
relationships and dependencies of the petrophysical parameters to be modeled and
incorporated into a stochastic inversion framework (Bortoli et al., 1993; Haas and
Dubrule, 1994). Bayesian linear inversion has successfully been applied to infer
petrophysical property distributions (Grana and Della Rossa, 2010). Buland and
Omre, (2003) developed an approach to perform Bayesian inversion for elastic petro-
physical properties in a linearized setting. Grana et al., (2017) used a Gaussian
mixture model for Bayesian linear inversion from seismic and well data. Stochastic
sampling of petrophysical properties conditioned to well-log data allows petrophysical
property distributions to be inferred using an appropriate sampling strategy such
as Markov-Chain-Monte-Carlo (MCMC) (Bosch et al., 2009). A fully integrated
stochastic inversion method that allows direct inversion from seismic Amplitude
versus Angle (AVA) data creates a direct link between observed seismic data and
underlying rock physics models (Azevedo et al., 2019). Geological modeling using
multiple-point statistics (Guardiano and Srivastava, 1993) can be used for inversion
from seismic data (González et al., 2007) where geological features are represented
by a set of representative training images. For a more extensive review of statistical
inversion approaches we refer to Bosch et al., (2010) and the comprehensive overviews
of Dubrule, (2003), Doyen, (2007), and Azevedo and Soares, (2017).

In the case of non-linear physics-based inversion schemes such as FWI, com-
putation of the solution to the forward problem is very expensive. Therefore,
computationally efficient approximations to the full solution of the wave equation
may allow efficient solutions to complex geophysical inversion problems. Neural
networks have been shown to be universal function approximators (Hornik et al.,
1989) and as such lend themselves as possible proxy-models for solutions to the
geophysical forward and inverse problem (Hansen and Cordua, 2017).

The early work by Röth and Tarantola, (1994) presents an application of neural
networks to invert from acoustic time-domain seismic amplitude responses to a depth
profile of acoustic velocity in a supervised setting. They used pairs of synthetic
data and velocity models to train a multi-layer feed-forward neural network with
the goal of predicting acoustic velocities from recorded data only. They showed
that neural networks can produce high resolution approximations to the solution of
the inverse problem based on representations of the input model parameters and
resulting synthetic waveforms alone. In addition, they showed that neural networks
can invert for geophysical parameters in the presence of significant levels of acoustic
noise.

Representing the geophysical model parameters at each point in space quickly
leads to a large number of model parameters especially in the case of three-dimensional
problems. Berg and Nyström, (2017) represented the spatially varying coefficients
that govern the solution of a PDE by a neural network. The neural network acts as
an approximation to the spatially varying coefficients characterized by the weights of
the neural network. The weights of the individual neurons are modified by leveraging
the adjoint-state equation in the reduced-dimensional space of network-parameters
rather than at each spatial location of the computational grid.

Hansen and Cordua, (2017) replaced the solution of the partial differential

Chapter 6 Lukas J. Mosser 81



Reservoir Modeling and Inversion using Generative Adversarial Network Priors

equation by a neural network allowing fast computation of forward models and
facilitating a solution to the inversion problem by Monte-Carlo sampling. Araya-Polo
et al., (2018) used deep neural networks to perform a mapping between seismic
features and the underlying P-wave velocity domain; they validated their approach
based on synthetic examples. Recently, a number of applications of deep generative
priors have been presented in the context of computer vision for image reconstruction,
linear (Chang et al., 2017) and bilinear (Asim et al., 2018) inverse problems, as well
as compressed sensing (Bora et al., 2017). Mosser et al., (2017) proposed GANs
to generate three-dimensional stochastic realizations of porous media from binary
and gray-scale computer-tomography images (Mosser et al., 2018d). These deep
generative models can further be conditioned to honor lower-dimensional features
such as cross-sections or borehole data (Dupont et al., 2018; Mosser et al., 2018a;
Chan and Elsheikh, 2018b). For more general subsurface inverse problems, Laloy
et al., (2017) used a GAN to create geological models for hydrological inversion.
Inversion was performed using an adapted Markov-Chain Monte-Carlo (MCMC)
(Laloy and Vrugt, 2012) algorithm where the generative model was used as an
unconditional prior to sample hydrological model parameters. Chan and Elsheikh,
(2017) evaluated the applicability of Wasserstein-GANs to parameterize geological
models for uncertainty propagation.

Mosser et al., (2018b) used a GAN with cycle-constraints (cycle-GAN) (Zhu et al.,
2017) to perform seismic inversion formulating the inversion task as a domain-transfer
problem. Their work used a cycle-GAN to map between the seismic amplitude domain
and P-wave velocity models. The cycle-constraint ensures that models obtained
by transforming from the amplitude to P-wave velocity representation and back
to the amplitude domain are consistent. Due to the P-wave velocity models and
seismic amplitudes being represented as a function of depth, rather than depth
and time respectively, this approach lends itself to stratigraphic inversion, where a
pre-existing velocity model is used to perform time-depth conversion of the seismic
amplitudes. Richardson, (2018) showed that a quasi-Newton method can optimize
model parameters in the latent-space of a pre-trained GAN for a synthetic salt-body
benchmark dataset.

6.4 Problem Definition

6.4.1 Bayesian Inversion

In the Bayesian framework of inverse problems we aim to find the posterior of latent
variables z given the observed data dobs (Fig. 6.2). The joint probability of the latent
variables z and observed data dobs is

p(z,dobs) = p(dobs|z)p(z) (6.1)

Furthermore, by applying Bayes rule, we define the posterior over the latent variables
z given the observed seismic data dobs

p(z|dobs) =
p(dobs|z)p(z)

p(dobs)
∝ p(dobs|z)p(z) (6.2)
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We express the observed data by assuming conditional independence between the
observed seismic data dseis and data observed at the wells dwell

p(dobs|z) = p(dseis|z)p(dwell|z) (6.3)

We represent the observed seismic data by

dseis = S(m) + ε, ε ∼ N (0, σ2
seisI) (6.4)

where S(m) = S(m(x)) = S(Gθ(z)), denoting the spatial model coordinates by x,
the seismic forward modeling operator by S, and the generative model by Gθ(z)
with parameters θ. We assume a normally distributed noise term ε with zero mean
and standard deviation σseis equal to 25% of the standard deviation of the reference
model seismic amplitude data. The geological facies mfacies, the P-wave velocity
mVp , and the rock density mρ represent the set of model parameters m. The model
parameter mfacies represents the probability of a geological facies to occur at a spatial
location x.

The aim is to generate samples of the posterior z ∼ p(z|dobs). We reformulate
the approach using an iterative approximate Metropolis-adjusted Langevin sampling
rule (MALA-approx) with iteration number t as follows (Roberts and Tweedie, 1996;
Roberts and Rosenthal, 1998; Nguyen et al., 2016)

zt+1 = zt + γt∇ log p(zt|dobs) + ηt (6.5a)

zt+1 = zt + γt∇ log[p(dseis|zt)p(dwell|zt)p(zt)] + ηt (6.5b)

zt+1 = zt + γt{∇ log p(dseis|zt) +∇ log p(dwell|zt) +∇ log p(zt)}+ ηt (6.5c)

where ηt ∼ N (0, 2γtI) is a sample from a Gaussian distribution with variance propor-
tional to the step-size γt at MALA iteration t. Assuming a Gaussian log-likelihood
of the seismic data given the latent variables log p(dseis|zt) ∝ −∥S(Gθ(zt))− dseis∥22
leads to the proposal rule of the MALA approximation (Nguyen et al., 2016) for the
case when only seismic observations dseis are considered

zt+1 = zt − γt
∂∥S(Gθ(zt))− dseis∥22

∂Gθ(zt)

∂Gθ(zt)

∂zt
+ γt∇ log p(zt) + ηt (6.6)

Using this sampling approach requires gradients of the data mismatch with respect
to model parameters, which are obtained by the adjoint-state method which will be
presented in the following section. The gradients of the model parameters ∂Gθ(zt)

∂zt
with

respect to the latent variables are obtained by traditional neural network backpropa-
gation. The gradient of the log-probability of the Gaussian prior distribution of latent
variables ∇ log p(zt) can be interpreted as a regularization of the latent variables
against deviation from the Gaussian prior assumption (Creswell and Bharath, 2018).

We follow the MALA step-proposal algorithm using an initial step size γt=0 = 10−2

for every model inference (Xifara et al., 2013). To obtain valid samples of the
posterior we furthermore anneal the step size from the initial value of γt=0 = 10−2 to
γt=200 = 10−5 over 200 iterations.

Where lower-dimensional information is available, such as at boreholes, the
geological models should honor not only the seismic response but also this additional
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lower-dimensional information. In this study we additionally find samples of the
posterior that reflect observed geological facies indicators dwell = mfacies

well at a
one-dimensional borehole. When including borehole information the step-proposal
corresponds to

zt+1 = zt − γt
∂∥S(Gθ(zt))− dseis∥22

∂Gθ(zt)

∂Gθ(zt)

∂zt

+γt
∂ log p(dwell = mfacies

well |zt)
∂zt

+ γt∇ log p(zt) + ηt

(6.7)

where we obtain samples of the posterior given the observed seismic data dseis and
geological facies at the wells dwell = mfacies

well .
The additional term log p(dwell = mfacies

well |zt) in Eq. 6.7 represents the assumption
of a Bernoulli distribution for the facies as derived from the generator and observed
at the borehole.

6.4.2 Adjoint-State Method

We perform numerical solutions of the time-dependent acoustic wave equation given
a set of model parameters

F (u,mVp) =
1

mVp(x)2
d2u(x, t)

dt2
−∆u(x, t) + η

du(x, t)

dt
− q(x,xs, t) = 0 (6.8)

where u(x, t) is the unknown wave-field and mVp(x) is the acoustic P-wave velocity.
The dampening term η du(x,t)

dt
prevents reflections from domain boundaries and ensures

that waves dissipate laterally. We refer to the evaluation of F (u,mVp) = 0 (Eq. 6.8)
as the forward problem.

Time-dependent source wavelets q(x,xs, t) are introduced at locations xs. We
emulate the seismic acquisition process by placing regularly spaced acoustic receivers
that record the incoming wave-field at the top edge of the simulation domain
(Fig. 6.1). To show the impact of adding additional information from the acoustic
forward problem to the posterior pdf of models, we perform Bayesian inversion using
the proposed approach in a number of scenarios where we increase the number of
acoustic shot data from 2 to 27 acoustic sources.

To perform sampling according to the MALA algorithm presented in Eq. 6.6, we
seek to obtain a gradient of the following functional

J(mVp(x)) =
nsources∑

i=1

∥dpred
seis (m

Vp(x)), qi)− dseis∥22 (6.9)

where dpred
seis and dseis are the predicted and observed seismic observations respectively.

We augment the functional J(mVp(x)) by forming the Lagrangian

L(mVp , u, λ) = J(mVp)− ⟨λ, F (u,mVp)⟩ (6.10)

Differentiating L(mVp , u, λ) with respect to λ leads to the state equation
(Eq. 6.8), but differentiation with respect to the acoustic wave-field u leads to the
adjoint state equations (Plessix, 2006):

(
∂F (u,mVp)

∂u
)T λ = (dpred

seis − dseis) (6.11)
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Figure 6.3: Overview of the object-based model realization used as a reference model
for evaluating the inversion procedure. Geological facies (a) distinguish between river
channel bodies (light) and shale (dark). (b) Acoustic P-wave velocity Vp and (c) rock
density ρ is constant within river-channels and varies by layer within shale.

showing that we obtain a similar back-propagation equation as that used to derive
gradients in neural networks (LeCun et al., 1988): the data mismatch is backpropa-
gated thanks to a linear equation in the adjoint state vector λ. By differentiating
the Lagrangian in Eq. 6.10 with respect to m(x) we obtain

∂J

∂mVp
=

∂∥S(Gθ(zt))− dseis∥22
∂Gθ(zt)

= ⟨λ, ∂F (u, mVp)

∂mVp
⟩ (6.12)

which is the gradient required to perform MALA sampling of the posterior distribution
of latent variables, Eq. 6.6.

We perform numerical solution of the acoustic wave equation and the respective
adjoint computation using the domain-specific symbolic language Devito (Kukreja
et al., 2016; Louboutin et al., 2017). The numerical solution is performed using a
fourth-order finite-difference scheme in space and 2nd-order in time.

6.5 Generative Model
We use a generative model to sample realizations of spatially varying model pa-
rameters m(x) ∼ Gθ(z). These realizations are obtained by sampling a number of
latent variable vectors z. The associated model representations represent the a priori
knowledge about the spatially varying properties of the geological structures in the
subsurface.

We model the prior distribution of the spatially varying model parameters m(x)
(Section 6.4.1) by a generative adversarial network (GAN) (Goodfellow et al., 2014).
GANs represent a generative model where the underlying probability density function
is implicitly defined by a set of training examples. To train GANs two functions are
required: a generator Gθ(z) and a discriminator Dω(m). The role of the generator is
to create random samples of an implicitly defined probability distribution that are
statistically indistinguishable from a set of training examples. The discriminator’s
role is to distinguish real samples from those created by the generator. Both functions
are trained in a competitive two-player min-max game where the overall loss is defined
by

min
θ

max
ω

{Em∼pm [log Dω(m)]

+Ez∼pz [log (1−Dω(Gθ(z)))]}
(6.13)

Due to the opposing nature of the objective functions, training GANs is inherently
unstable and finding stable training methods remains an open research problem.
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Nevertheless, a number of training methods have been proposed that allow more
stable training of GANs. In this work we use a so-called Wasserstein-GAN (Arjovsky
et al., 2017; Gulrajani et al., 2017; Chan and Elsheikh, 2017), that seeks to minimize
the Wasserstein distance between the generated and real probability distribution. We
use a Lipschitz penalty term proposed by Petzka et al., (2017) to stabilize training
of the Wasserstein-GAN. For the discriminator, keeping the parameters θ of the
generator fixed, we minimize

min
ω

{Ez∼pz [Dω(Gθ(z))]− Em∼pm [Dω(m)]

+λLPEm̂∼pm̂ [(max {0, ∥∇Dω(m̂)∥ − 1})2]}
(6.14)

where m̂ is linear combination between a real and generated sample controlled by a
random variable τ (Petzka et al., 2017). For the generator, keeping the parameters
of the discriminator ω constant, we minimize

−Ez∼pz [Dω(Gθ(z))] (6.15)

In our work we set λLP = 200 to train the generative model. We represent both
the generator and discriminator2 function by deep convolutional neural networks
(Appendix Table 6.1). The generator uses a number of convolutional layers followed
by so-called pixel-shuffle transformations to create output models (Shi et al., 2016).
The latent vector is parameterized as a multivariate standardized normal distribution:

z ∼ N (0, I)50×1×2 (6.16a)
Gθ : z → R3×64×128 (6.16b)

Due to the geological properties represented in our dataset, namely, geological facies
indicators mfacies, acoustic P-wave velocity mVp and density mρ, the generator must
output three data channels. We represent the geological facies as a probability of
a spatial location belonging to a sandstone facies. To facilitate numerical stability
of the GAN training process we apply a hyperbolic tangent activation function and
convert to a probability mfacies for subsequent computation (Eq. 6.7). We apply
a hyperbolic tangent activation function to model the output distribution of the
P-wave model parameters mVp . For rock density mρ a soft-plus activation function
is used to ensure positive values (Appendix 6.10.1). In this study, only the facies
indicator mfacies and acoustic P-wave velocity mVp are used in the inversion process.

The generator-discriminator pairing is trained on the set of training images
described in Section 6.6. GAN training required approximately eight hours on eight
NVIDIA K80 graphics processing units. A set of samples obtained from the GAN
prior are presented in Appendix Fig. 6.9. After training, the generator Gθ(z) and the
forward modeling operator S(m) are arranged in a fully differentiable computational
graph. To accommodate the sources and receivers of the acoustic forward modeling
process described in Section 6.4, we pad the output of the generator by a domain of
constant P-wave velocity.

2In the Wasserstein-GAN literature the discriminator is also termed a "critic".
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6.6 Dataset
To demonstrate the proposed inversion method we will use a model of a fluvial-
dominated system consisting of highly porous sandstones embedded in a fine grained
shaly material. Object-based models are commonly used to model such geological
systems (Deutsch and Wang, 1996). They represent the fluvial environment as a set
of randomly located geometric objects following various size, shape and property
distributions. We train a set of GANs on a dataset of ten thousand realizations of
two-dimensional cross-sections of fluvial object-based models.

The individual cross-sections are created with an object-based model, where half-
circle sand-bodies follow a uniform width distribution. P-wave velocity and density
are constant within each channel-body and their values are sampled independently
from a Gaussian distribution for each individual channel-body. The locations of the
channel-bodies are determined by a uniform distribution in spatial location. The
fine-grained material surrounding the river systems is made of layers of single-pixel
thickness where each layer has a constant value of acoustic P-wave velocity and
density which varies randomly from one layer to another and is sampled from a
Gaussian distribution. We use a binary indicator variable to distinguish the two facies
regions, river channel vs shale matrix. The ratio of how much of a given cross-section
is filled with river channels compared to the overall area of the geological domain is
a key property in understanding the geological nature of these structures. This ratio
follows a uniform distribution from 30 to 60% in our dataset and river channels are
placed at random until a cross-section meets the randomly sampled ratio.

A total of ten thousand training images were created as a training set for the
GAN. A further four thousand images were retained as a test set to evaluate the
inversion technique. While training the generative model outlined in Section 6.5 we
monitor image quality and output distributions for each of the modeled properties.
The reference model (Fig. 6.3) used to evaluate the Bayesian inversion approach
was chosen randomly from the test-set of object-based models. Figure 6.3 shows
a comparison of the distribution of the three-modeled properties, geological facies
indicator, acoustic P-wave velocity and rock density for the reference model.

6.7 Results
We evaluate the proposed method of inversion by sampling a set of latent variables z
determining the output of the generative model Gθ(z) (Section 6.6, Fig. 6.3). First,
we evaluate the generative model as a prior for representing possible earth models
and generating N = 100 unconditional samples (Fig. 6.4-1, Appendix Fig. 6.9).

Two cases of inversion are considered: inversion for the acoustic P-wave velocity
Vp and combined inversion of acoustic velocity and of geological facies along a
borehole. In all the cases presented we assume that density is a constant. For all
tests we perform inversion using the approximate MALA scheme. For the additional
borehole constraint we require an accuracy above 95% of geological facies to be
accepted as a valid inverted sample. While lower errors in seismic mismatch and
borehole accuracy can be achieved, evaluating the forward problem and adjoint of
the partial differential equation comes at a high computational cost and therefore a
cost-effectiveness trade-off was necessary.

For the first case of seismic inversion without borehole constraints we perform
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(a) Pixel-wise mean for 100 samples obtained from the prior and inferred models.

(b) Pixel-wise standard deviation for 100 samples obtained from the prior and inferred
models.

Figure 6.4: (a) Pixel-wise mean and (b) standard deviation of the ensemble of 100
models sampled unconditionally from the prior (1) represented by the generator
function Gθ(z). Posterior ensemble of geological indicator variables matched to the
seismic representation of the reference model shown in Fig. 6.3 for (2) 2 sources, (3)
2 sources and a single borehole, (4) 3 sources, (5) 9 sources, (6) 27 sources. Source
locations are indicated by red diamonds and the borehole location by a blue circle.
The reference model is indicated by red contours.

simulations where the number of acoustic sources are increased. Fewer acoustic
sources means that less of the domain is properly imaged, leading to high uncertainty
in areas where no incoming waves have been reflected and recorded by the receivers
on the surface. The acoustic sources and 128 receivers are equally spaced across the
top edge of the domain.

In Fig. 6.4 we show the pixel-wise mean (Fig. 6.4a) and standard deviation
(Fig. 6.4b) of 100 inferred models for an increasing number of acoustic sources (2
sources up to 27 sources). As the total number of acoustic sources increases we
obtain a lower standard deviation for the resulting model ensembles. In the case of
two acoustic sources (Fig. 6.4b-2) we find that close to the sources there is small
variation amongst the inferred models (dark shades) whereas the central area where
no acoustic source has been placed shows a very high degree of variation. This is
confirmed by the three source case where a central acoustic source has been placed in
addition to the sources on the borders of the domain. Lower variability in the inverted
ensemble can be observed. This correlates well with the Bayesian interpretation of
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Figure 6.5: Comparison of (a) the seismic waveform based on the reference model
acoustic velocity with (b) the waveform of an inferred model with three seismic
sources. The difference (c) in amplitude of the two waveforms. Colormaps are scaled
based on one standard deviation in amplitudes of the reference model wave-form (a).

the inverse problem; where acoustic sources allow the subsurface to be imaged we
arrive at a low standard deviation in the posterior ensemble of geological models,
whereas within regions that are only sparsely sampled by the acoustic sources we
expect the prior, the unconditional generative model, to be more prevalent, leading
to a higher variability of geological features. As expected, when we increase the
number of sources, we find overall smaller variability in the resulting ensemble of
inverted earth models. We observe only marginal reduction in variability between the
cases with nine and twenty-seven sources (Figs. 6.4b, 5-6). For all inversion scenarios
considered we present samples from the posterior in Appendix Figs. 6.10-6.13.

In the case where lower-dimensional information such as a borehole was included
as an additional objective function constraining the generative model (Fig. 6.4b-3),
we find a lower standard deviation around this borehole. The standard deviation
along the well is close to zero due to the per-realization 95% accuracy constraint.
Furthermore there is a region of influence where the borehole constrains lateral
features such as channel bodies. This is shown by channel shaped features of low
standard deviation at the top and bottom of the domain. Comparison with the
reference model (Fig. 6.3a) shows that two channel bodies can be found along the
one-dimensional feature.

For each generated realization we have recorded the ratio of the squared error
norm (Eq. 6.6) and the squared norm of the noise in the seismic data (Fig. 6.6) at
each MALA sampling iteration. The global minimum of the data mismatch in the
presence of Gaussian noise is reached when the objective function value is equal to
the squared norm of the noise in the data i.e. at a ratio equal to one (Fig. 6.6). In
practice we find that performing 200 MALA iterations leads to a sufficient reduction
in the mismatch of the seismic data and as required by the approximate MALA
algorithm the error stabilizes as the step-size is reduced.

Due to the fact that modern FWI methods come at very high computational
cost for two and possibly three-dimensional inversion, a small number of required
iterations is a necessity. In further tests, reducing the number of iterations of the
MALA approximation or simply optimizing by gradient descent, as performed by
Richardson, (2018), allows convergence to small errors, but this approach has been
shown to lead to reduced sample diversity (Nguyen et al., 2016).
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Figure 6.6: Comparison of the ratio of the squared error norm and the squared norm
of the Gaussian noise. The global minimum is reached at values of one. Shaded
regions indicate ± σ of the squared error ratio. We perform 200 approximate MALA
iterations to obtain samples of the posterior given seismic observations only, as well
as where borehole information and seismic observations are included. The step-size
was annealed to very small values leading to a stabilization of the squared error norm
at the end of the sampling procedure.
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6.8 Discussion
We have shown that it is possible to obtain posterior realizations inferred from the
latent space of a GAN generator that honor seismic and well-bore data by using
an approximate Bayesian sampling method. A number of open questions remain
concerning the generative model and the posterior distribution of models that are
obtained.

A common challenge with GANs specifically is their so-called mode-collapse
behavior where the distribution represented by the generative model has collapsed to
one or a few modes of the distribution represented implicitly by the set of training
images. GANs do not represent the density explicitly and therefore it is not possible
to evaluate the ability of a GAN to represent the distribution by e.g. evaluating
the likelihood of a set of test images given the model parameters p(m|θ). Theis
et al., (2015) have shown that evaluating sample quality and diversity of generative
adversarial networks is difficult. Nevertheless a number of heuristic approaches such
as the Inception Score (IS) (Salimans et al., 2016) or the Frechet Inception distance
(FID) (Heusel et al., 2017) have been proposed, and while these methods are popular
for evaluating GANs trained on natural images, they may not be representative
measures to compare GANs as shown by Barratt and Sharma, (2018). Arora
and Zhang, (2017) propose a method to empirically evaluate the support of the
distribution represented by a GAN.

Another common failure case of GANs occurs when the generator only memorizes
the images of the training set and does not learn a representation of the entire
distribution. In this case, it should only be possible to infer models which are part
of the training set and which match the well and seismic data associated with the
reference model. In the following we investigate whether the ensemble of models
obtained by solving the inverse problem represent new stochastic realizations of the
underlying distribution represented implicitly by the training images.

We have evaluated the mean-squared-error (MSE) and the structural similarity
index (SSIM) (Wang et al., 2004) between pairs of binary facies models. A perfect
agreement between two models is reached for a MSE of zero and an SSIM of one.
The MSE, while being a common measure to compare pairs of data, is very sensitive
to small translations of the models that are compared. The structural similarity
index attempts to capture perceptual similarity and is less sensitive to pixel-wise
differences in the two compared models (Wang and Bovik, 2009).

In Fig. 6.7 we show kernel-density-estimates for the distributions of the two
image similarity measures. First, we compare the distribution of the MSE and SSIM
between the reference model and the 104 models in the training set (Ref.-TI), with
that between the reference model and 105 models sampled from the GAN prior
(Ref.-Prior). We find that the two distributions match closely. This confirms that
images drawn from the GAN prior and from the training set are statistically similar
and that none of the images from the training set and prior are likely to be identical
with the reference model. This finding is a good indication that the GAN does not
seem to have collapsed to a few modes but it does not exclude the possibility of our
generative model having memorized the training set as in this case we would expect
the distributions between Ref.-Prior and Ref.-TI to match.

In a second step we now compare the reference model to the models inferred
by our Bayesian inversion approach using the GAN as a prior. We find that the

Chapter 6 Lukas J. Mosser 91



Reservoir Modeling and Inversion using Generative Adversarial Network Priors

Figure 6.7: Kernel density estimates of the distributions of the (left) mean-squared-
error and (right) structural similarity index (SSIM) with respect to the reference
model for models sampled from the GAN prior, and inferred models obtained by
Bayesian inversion.

distributions are all consistently shifted to regions of higher similarity to the reference
model i.e. lower MSE and higher SSIM for models inferred when considering the
seismic data as well as seismic and well data. This shows that our inversion, when the
number of data is increased, tends towards models that are more and more similar to
the reference model. When 9 and 27 acoustic sources are used we find that inversion
leads to models that on average have a SSIM that has very low probability under the
Ref.-TI. and Ref.-Prior distributions showing that our GAN is able to create images
outside the set of training images. If the generator had only memorized the training
set, we should not be able to infer models with higher similarity as the number of
data increased.

In Fig. 6.8a we show models from the training set, samples from the GAN prior
and models inferred with the highest SSIM when compared to the reference case
(Fig. 6.3). In Fig. 6.8b we show models that have an SSIM close to the mode of the
SSIM distributions and find that the model from the posterior inferred by inversion
using 27 acoustic sources is visually more similar to the reference case (Fig. 6.3) than
the samples obtained from the prior and from the training set.

It is important to note that the evaluation of the inferred models with respect
to a reference model is only possible in the case of synthetic data. In subsurface
applications it is not possible to obtain the entire reference model. Furthermore,
models that are structurally very different can be valid solutions of the ill-posed
inverse problem. These models, which represent possible solutions of the inverse
problem, may be associated with different modes of the prior distribution. In the case
of GANs, the generator may be able to represent all of these modes or only a subset
(mode-collapse). If mode-collapse has occurred the posterior ensemble only represents
solutions obtained from the modes represented by the generator. Therefore, checking
for the occurrence of mode-collapse is key for practical applications as mode-collapse
may significantly affect the ensemble of obtained solutions and possibly lead to
underestimated uncertainty.

For future work, evaluating other deep generative models based on explicit density
representations (Kingma and Welling, 2013; Dinh et al., 2016; Oord et al., 2016a;
Kingma and Dhariwal, 2018), which can calculate the likelihood of a set of test
images, may help to improve the representation of the prior distribution and mitigate
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(a) Samples with the highest SSIM with the reference model from the (1) training set,
(2) models from the GAN prior, and (3) models obtained by Bayesian inversion using 27
sources.

(b) P50 realizations of the distributions of the SSIM for the (1) training set, (2) models
from the GAN prior, and (3) models obtained by Bayesian inversion using 27 sources.

Figure 6.8: Overview of models from the training set, GAN prior, and inferred models
using the MALA approach that (a) show the highest similarity to the reference model
(Fig. 6.3) measured by the SSIM metric and (b) represent realizations close to the
mode of the distribution of the SSIM.

the effect of mode-collapse on inversion.

6.9 Conclusions
Inversion of subsurface geological heterogeneities from acoustic reflection seismic
data is a classical method to aid the understanding of the earth’s interior. The
inference of model parameters from measured acoustic properties is often performed
in the very high-dimensional space of model properties leading to very CPU-intensive
optimization (Akcelik et al., 2003).

We apply a method that combines a generative model of geological heterogeneities
efficiently parameterized by a lower-dimensional set of latent variables, with a
numerical solution of the acoustic inverse problem for seismic inversion using the
adjoint method. Leveraging the adjoint of the studied partial differential equation
we deduce gradients that are consequently used to sample from the posterior over
the latent variables given the mismatch of the observed seismic data by following an
approximate MALA scheme (Nguyen et al., 2016).

While the proposed application was illustrated on a simple geophysical inversion
this method may find use in other domains where spatial property models control the
evolution of physical systems such as in fluid flow in porous media or materials science.
The combination of a deep generative model parameterized by a lower-dimensional
set of latent variables and gradients obtained by the adjoint method may lead to new
efficient techniques for solving high-dimensional inverse problems. This is explored
in the next chapter where we study the problem of reservoir history matching.
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6.10 Chapter Appendix

6.10.1 Generative Model Network Architectures

Table 6.1: Generator and discriminator network architectures used to create synthetic
geological structures. Binary indicators of geological facies and corresponding P-wave
velocities are represented by a bi-variate Gaussian distribution and a hyperbolic
tangent activation function is used to represent the two families of properties. Rock
density shows a Gaussian distribution. A soft-plus activation function (f(x) =
1
β
log(1 + exp(β x)), β = 1) is used to ensure positive values of density. Notation

for convolutional layers: LayerType(Number of filters), k=kernel size, s=stride,
p=padding. BN=BatchNorm, PS=PixelShuffle

Latent Variables z ∈ R50×1×2

Conv2D(512)k3s1p1, BN, ReLU, PSx2

Conv2D(256)k3s1p1, BN, ReLU, PSx2

Conv2D(128)k3s1p1, BN, ReLU, PSx2

Conv2D(64)k3s1p1, BN, ReLU, PSx2

Conv2D(64)k3s1p1, BN, ReLU, PSx2

Conv2D(64)k3s1p1, BN, ReLU, PSx2

Conv2D(3)k3s1p1

Tanh (0,1) | Softplus (2)
(a) Multi-Channel Generator

Geological Properties m ∈ R3×64×128

Conv2D(64)k5s2p2, ReLU

Conv2D(64)k5s2p1, ReLU

Conv2D(128)k3s2p1, ReLU

Conv2D(256)k3s2p1, ReLU

Conv2D(512)k3s2p1, ReLU

Conv2D(512)k3s2p1, ReLU

Conv2D(1)k3s1p1, ReLU
(b) Discriminator for multi-channel GAN
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Figure 6.9: Samples from the prior distribution of models obtained from the GAN
with the reference model (Fig. 6.3) shown in the first row.
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Figure 6.10: Samples obtained from latent space optimization with 2 acoustic sources
with the reference model (Fig. 6.3) shown in the first row.
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Figure 6.11: Samples obtained from latent space optimization with 3 acoustic sources
with the reference model (Fig. 6.3) shown in the first row.
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Figure 6.12: Samples obtained from latent space optimization with 9 acoustic sources
with the reference model (Fig. 6.3) shown in the first row.
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Figure 6.13: Samples obtained from latent space optimization with 27 acoustic
sources with the reference model (Fig. 6.3) shown in the first row
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Figure 6.14: Samples obtained from latent space optimization with 2 acoustic sources
and one borehole with the reference model (Fig. 6.3) shown in the first row
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Chapter 7

DeepFlow:
History Matching in the Space of
Deep Generative Models

7.1 Abstract
The calibration of a reservoir model with observed transient data of fluid pressures and
rates is a key task in obtaining a predictive model of the flow and transport behavior of
the earth’s subsurface. The model calibration task, commonly referred to as "history
matching", can be formalized as an ill-posed inverse problem where we aim to find the
underlying spatial distribution of petrophysical properties that explain the observed
dynamic data. We use a generative adversarial network pre-trained on geostatistical
object-based models to represent the distribution of rock properties for a synthetic
model of a hydrocarbon reservoir. The dynamic behavior of the reservoir fluids is
modeled using a transient two-phase slightly compressible Darcy formulation. We
invert for the underlying reservoir properties by first modeling property distributions
using the pre-trained generative model then using the adjoint equations of the forward
problem to perform gradient descent on the latent variables that control the output
of the generative model. In addition to the dynamic observation data, we include well
rock-type constraints by introducing an additional loss function. Our contribution
shows that for a synthetic test case, we are able to obtain solutions to the inverse
problem by optimizing in the latent variable space of a deep generative model, given
a set of transient observations of a non-linear forward problem.

7.2 Introduction
Understanding the flow of fluids within the earth’s subsurface is a key issue in
many practical applications such as the understanding of how pollutants in aqueous
phases are transported and affect the environment (Yong et al., 1992; Bear and
Cheng, 2010), hydrogeological models (Domenico et al., 1998; Fetter, 2018), the
formation of mineral deposits (Garven, 1985; Sibson et al., 1975), carbon-capture
and sequestration (CCS) (Lackner, 2003; Holloway, 2005), and the migration and
production of hydrocarbons from subsurface reservoirs (England et al., 1987). When
modeling subsurface architectures a spatial gridded representation is usually built
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for modeling physical flow processes (Aziz and Others, 1993). The flow of fluids,
including aqueous and non-aqueous fluids such as supercritical CO2 is simulated by
solving a set of partial differential equations that describe the transient behavior of
the flowing liquid phases (Gerritsen and Durlofsky, 2005).

In many cases the ability for fluids to flow within a porous material is dominated
by two key properties: the effective porosity ϕ defines how much pore-space is
available to flow as a proportion of the bulk volume of the material (Bear, 2013).
The permeability k is a property that is proportional to the flow conductance
(Darcy, 1856; Muskat, 1938). We refer to Blunt et al., (2013) for a detailed review
of the principles of multiphase fluid flow within porous media. Obtaining direct
measurements of these two properties, permeability and porosity, is difficult and in
many cases these measurements are sparse and obtained at various spatial scales,
making their integration within the modeling workflow difficult (Wu et al., 2002;
Farmer, 2002).

Nevertheless, representing the spatial distribution of the properties of porous
media within the earth’s subsurface is necessary to build reliable predictive models. In
applications such as the injection of supercritical CO2 into hosting rock formations for
long-term storage (Chadwick and Noy, 2010; Martens et al., 2012) or the production
of hydrocarbons and water from subsurface reservoirs we obtain, in addition to well
and seismic data, measurements of the variables dependent on these flow properties
(k and ϕ) such as fluid phase pressures, as well as produced and injected volumes over
time (Muskat, 1949). Calibration of a spatial model of the petrophysical parameters
with available physical measurements is commonly referred to as "history matching"
(Oliver and Chen, 2011), and more generally as data assimilation (Reichle et al.,
2002). Determining the underlying spatially distributed parameters x from observed
parameters y such as fluid pressures and rates, can be formalized as an an ill-posed
inverse problem.

For an inverse problem to be well-posed it must satisfy three criteria (Tikhonov
and Arsenin, 1977):

1. Existence: for every set of observed parameters y there must exist a solution.

2. Uniqueness: the obtained solution has to be unique.

3. Stability: the solution is stable with regards to small changes in the observed
parameters i.e. a small change in the observed parameters yobs induces only a
small change in the solution parameters x

If these three criteria are not fulfilled the problem is considered ill-posed. It has been
shown that inverse problems with spatially distributed parameters are often ill-posed
because they don’t fulfill the uniqueness or stability criteria (Kravaris and Seinfeld,
1985). A detailed analysis of the existence criterion for distributed parameter systems
of the heat, transport, and wave equations is provided by Chavent, (1979).

Reducing the number of parameters used to represent the solution space m helps
the inverse problem to be well-defined. Coats et al., (1970) assumed a constant value
for large spatial regions of the underlying parameters (Cooley and Sinclair, 1976; Yeh
and Tauxe, 1971). Leo et al., (1986) used B-splines to represent spatial distributions
of porosity and permeability. Recently, a number of approaches for model parame-
terization have been developed based on principal component analysis (PCA) (Vo
and Durlofsky, 2014) and improvements thereof using kernel and optimization-based
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PCA. Demyanov et al., (2011) use kernel learning to find a parameterization of the
petrophysical parameter space.

In a Bayesian setting of the inverse problem (Tarantola, 2005) the gradual
deformation method applies a continuous perturbation of a set of model parameters
m obtained from a prior distribution to honor the observed data of the forward
problem (Roggero et al., 1998; Caers, 2007). Bayesian approaches to solve the
reservoir history matching problems, such as the Ensemble Kalman Filter (EnKF)
(Evensen, 1994; Evensen, 2003) have been applied in numerous history-matching case
studies (Lorentzen et al., 2005). Emerick and Reynolds, (2012) present an ensemble
method based on EnKF, that shows improved performance in the case of highly
non-linear problems.

Recent developments in deep learning (LeCun et al., 2015; Goodfellow et al.,
2016) have motivated the use of neural-network-based parameter representations.
Canchumuni et al., (2018) parameterized geological training images using a Deep
Belief Network (DBN) (Hinton et al., 2006; Hinton and Salakhutdinov, 2006) and
used an ensemble smoother with multiple data assimilation (ES-MDA) (Emerick
and Reynolds, 2013) to perform history matching. Variational autoencoders (Laloy
et al., 2017a) and spatial generative adversarial networks (SGAN) (Jetchev et al.,
2016; Laloy et al., 2017b) have been used to generate a set of channelized training
images to perform probabilistic inversion using adaptive Markov-Chain Monte-Carlo
methods (Laloy and Vrugt, 2012). Chan and Elsheikh, (2018a) used generative
adversarial networks trained using patch-based kernel discrepancy measures to
synthesize geological models from training images. Realizations conditional to spatial
observations of the underlying model parameters can be obtained by gradient-based
image inpainting methods (Yeh et al., 2016; Mosser et al., 2018a; Dupont et al., 2018)
or direct learning of conditional image distributions using autoregressive generative
models such as PixelCNNs (Oord et al., 2016a; Dupont and Suresha, 2018).

Adjoint-state methods allow gradients of the forward problem with respect to
the solution parameters m to be obtained. These gradients can then be further
backpropagated through a deep generative models such as generative adversarial
networks (GANs) (Goodfellow et al., 2014; Kingma and Welling, 2013; Richardson,
2018; Mosser et al., 2018d) to perform inversion in the space of latent variable models
and have been used for probabilistic inversion in the case of acoustic waveform
inversion using a Metropolis-adjusted Langevin algorithm (MALA) (Roberts and
Stramer, 2002; Mosser et al., 2018d). Numerous studies have evaluated the use
of GANs for linear inverse problems (Shah and Hegde, 2018) in the context of
compressed sensing (Bora et al., 2018; Mardani et al., 2019) and have analyzed the
convergence of inversion algorithms that use GANs (Bora et al., 2017; Shah and
Hegde, 2018).

A number of recent approaches have combined methods developed in the context
of deep neural networks with traditional approaches to solve (ill-posed) inverse
problems such as learning the regularization itself (Li et al., 2018; Lunz et al.,
2018), using iterative deep neural networks (Adler and Öktem, 2017), or introducing
deep neural networks as proxys for non-linear forward operators in reconstruction
algorithms (Adler and Öktem, 2018).

Following the work of Chapter 6 we parameterize a family of geological models
and associated permeability and porosity values using a GAN. We solve the transient
two-phase immiscible Darcy flow equations without gravity and under isothermal
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conditions using a finite-difference approach and obtain gradients of the mismatch
between observed and simulated data with respect to the grid block permeability
and porosity using the adjoint-state method.

Starting from random initial locations within the underlying Gaussian latent
space controlling the GAN’s output, we use gradient-descent to minimize the misfit
between the flow data and the forward model output by modifying the set of
latent variables. A regularization scheme of the optimization problem is derived
from a Bayesian inversion setting. Based on a two-dimensional synthetic case of a
channelized reservoir system we show that gradient-based inversion using GANs as a
model parameterization can be achieved, honoring the observed physical quantities
of the non-linear forward problem as well as borehole geological measurements. The
trained models and code are available as open-source software1.

7.3 Methodology
We consider the problem of determining the flow behavior of a subsurface hydrocarbon
reservoir from which oil and water are being produced from a well. To displace the
oil phase we inject water at a constant injection rate in another well and produce
oil by maintaining a constant bottom-hole pressure. The forward problem F(·) is
therefore defined as solving the two-phase (oil and water) Darcy flow equations
with a slightly compressible oil phase with no gravity effects and under isothermal
conditions. The observed variables of the system yobs are the injection pressure
pinj(xi, t) at the location of the injection well xi as a function of time t, as well as
the produced volumes of water qw(xp, t) and oil qo(xp, t) at the production well xp.

yobs,flow = {pinj(xi, t), qw(xp, t), qo(xp, t)}
yobs,well = {1r(xwells)}

(7.1)

We consider all fluid parameters of the forward problem, the oil and water viscosity
µo,w, density ρo,w, compressibility co,w, as well as the relative-permeability behavior,
represented by a Brooks-Corey model, as constants (Blunt, 2017). A table of fluid
properties is provided in Appendix Table 7.2. Therefore, the set of model parameters
m(x) are the spatial distribution of the reservoir rock type indicator function 1r(x),
the single-phase permeability k(x), and porosity ϕ(x).

m(x) = {1r(x),k(x), ϕ(x)} (7.2)

We assume a binary set of reservoir rock-types where 1r(x) = 0 corresponds to a
low permeability shale and 1r(x) = 1 indicates the high permeability sandstone of a
river-channel.

Given the non-linear forward operator F(·) this allows us to define the forward
problem as

ym = F(m) (7.3a)

yobs,flow = ym + ε, ε ∼ N (µϵ, σ
2
ϵ I) (7.3b)

1https://github.com/LukasMosser/DeepFlow
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We represent the distribution of possible model parameters m by a (deep) generative
latent-variable model

m = Gθ(z)

z ∼ p(z) = N (0, I)
(7.4)

with latent variables z sampled from a multi-Gaussian distribution (Eq. 7.4). Here
we assume that the generative model has been trained prior to the inversion process,
and is therefore constant.
We can then write

yobs,flow = ym + ε = F(Gθ(z)) + ε (7.5)

and from Bayes theorem

p(z|yobs,flow) ∝ p(yobs,flow|z)p(z) (7.6)

where for the observed flow data yobs,flow the likelihood function p(yobs,flow|z) is
a Gaussian with mean F(Gθ(z)) and variance σ2

ϵ . We have assumed a Bernoulli
likelihood for the observed facies at each well sample (Eq. 7.2).

Furthermore, we assume conditional independence of the likelihood of the observed
flow and facies data at the wells

p(yobs|z) = p(yobs,flow|z)p(yobs,well|z) (7.7)

In the case of GANs only individual samples can be obtained and therefore
estimation of the posterior is restricted to point-estimates. We derive a regularization
scheme for the history matching problem from finding point estimates of the maxima
of the posterior distribution (MAP)

argmax
z

{p(yobs,flow|z)p(yobs,well|z)p(z)} (7.8a)

= argmax
z

{log p(yobs,flow|z) + log p(yobs,well|z) + log p(z)} (7.8b)

= argmin
z

{− log p(yobs,flow|z)− log p(yobs,well|z)− log p(z)} (7.8c)

= argmin
z

{Lflow(z)− Lwells(z)− Lprior(z)} (7.8d)

= argmin
z

{ 1

2σ2
ϵ

∥yobs,flow −F(Gθ(z))∥22 (7.8e)

−
Well
Cells∑

[1r(xwells) log(p(1r(xwells))) + (1− 1r(xwells)) log(1− p(1r(xwells)))]

− log p(z)}

where the squared-error norm of the difference between the observed data yobs,flow

and the modeled data ym = F(Gθ(z)) is a result of the assumption of a Gaussian
likelihood in Eq. 7.3 and the well loss Lwells(z) corresponds to the binary cross-
entropy between the observed facies indicator 1r(xwells) and the facies probability
p(1r) of each grid-block at the wells.

The derived regularization scheme can be framed as a minimization problem over
the latent variables i.e. we minimize Eq. 7.8 by modifying the latent variables z.
Specifically we use a squared-error functional that measures the difference between
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the observed pressures and rates at the well locations averaged over the total duration
T of the observed data

Lflow(z) =
1

T

T∑
t=0

[(∥qobsw (xp, t)− qmw (xp, t)∥
σq

)2

+

(∥qobso (xp, t)− qmo (xp, t)∥
σq

)2

+

(∥pobs(xi, t)− pm(xi, t)∥
σp

)2
] (7.9)

where xp and xi are the locations of the production and injection wells respectively
and measurement uncertainties have been quantified by the standard deviation of
the oil and water rate

σq = 0.03 qinj (7.10)

and the standard deviation of the pressure measurements

σp = 0.05 pref (7.11)

used to generate the set of observed pressure and rate data.
Using the adjoint-state method (Plessix, 2006; Suwartadi et al., 2012; Krogstad

et al., 2015) and traditional neural network backpropagation (Rumelhart et al.,
1988) we can obtain gradients ∂Lflow(z)

∂z
of the error functional Lflow(z) (Eq. 7.9) with

respect to the latent variables.
We therefore seek to minimize the total loss

L(z) = Lflow(z)− Lwell(z)− Lprior(z) (7.12)

consisting of the flow loss Lflow(z) (Eq. 7.9), the well-data loss Lwells(z), and the prior
loss Lprior(z) = log p(z) (Eq. 7.8). We note that this is similar to the approach by
Creswell and Bharath, (2018) which includes an additional loss term corresponding
to the prior distribution of the latent variables when inverting the generator function
of a GAN. The system of partial differential equations of the non-linear forward
problem as well as the likelihood function (Eq. 7.9) have been previously implemented
in the open-source MATLAB/GNU-Octave reservoir simulation framework MRST
(Lie, 2019). An overview of the end-to-end coupling between the latent variables,
the deep generative model Gθ, and the numerical forward model F(·) is shown in
Fig. 7.1.

To evaluate the proposed approach we create synthetic two-dimensional vertical
cross-sections of a stacked river-channel system using an object-based approach.
Channel-bodies are represented by half-circles with centres following uniform dis-
tributions in space. The full object-based modeling workflow is detailed in Mosser
et al., (2018d). For the case of reservoir history matching (Eq. 7.3) each object-based
model is associated with the three model parameters m following Eq. 7.2 (Fig. 7.2).

We train a deep generative adversarial network (GAN) (Goodfellow et al., 2014)
on a set of 104 object-based realizations to learn the generative model Gθ(z) (Eq. 7.4)
prior to obtaining MAP samples (Eq. 7.8) by optimizing Eq. 7.12. Specifically, we
train a so-called Wasserstein-GAN (Arjovsky et al., 2017; Gulrajani et al., 2017),
that minimizes the Wasserstein distance between generated and real probability
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m = Gθ(z)

Gθ(z)

∂m
∂z

z ∼ p(z)

xi xp

pinj(xi, t)
qw = const

pbhp = const
qo,w(xp, t)

z − η ∂Lflow(z)
∂m

∂m
∂z

F [Gθ(z)]

∂Lflow(z)
∂m .

y
f
lo
w

Time

Lflow(z)

Figure 7.1: Overview of a single forward and backward-pass through the combined
generative network Gθ and forward problem of two-phase Darcy flow F(·). A set
of model parameters m = Gθ(z) is generated from a forward-pass through the
generative model Gθ. The generative model creates spatial properties such as the
permeability k shown here (top). The forward problem is solved where water
is injected in the injection well (blue) and oil and water are produced from the
production well (red). The error functional between observed parameters yobs and
modeled observations ym = F(m) = F(Gθ(z)) is evaluated. A spatially distributed
gradient (bottom) with respect to the underlying properties is computed using the
adjoint state method. The obtained gradients are then backpropagated by traditional
neural-network backpropagation to compute a gradient with respect to the latent
variables. The error functional is minimized by performing gradient descent using
the obtained gradient.

distributions. To stabilize training of the Wasserstein-GAN we use the Lipschitz
penalty introduced by Petzka et al., (2017). A detailed overview of the training
procedure for the deep generative model is presented in Mosser et al., (2018d).
Network architectures for the generator Gθ(z) and discriminator Dω are detailed in
Appendix Table 7.1.

The generator network Gθ(z) is a deep convolutional neural network that maps
a 100-dimensional noise-sample from a standardized multi-Gaussian distribution
z ∼ N (0, I) to a spatial distribution of the model parameters m (Eq. 7.2) with 128
pixels in the x- and 64 pixels in the z-direction

R50×2×1 → R3×128×64 (7.13)

where the three output features correspond to the grid-block rock-type probability,
permeability and porosity (Eq. 7.2). Due to the continuous nature of the generative
networks sigmoid activation function, the output of the generative network corre-
sponding to a representation of the reservoir rock-type 1r can be interpreted as a
rock-type probability. The grid-block permeability and porosity values are obtained
by transforming the generated rock-type probability from the interval (0 − 1) to
a permeability by a linear transformation (Appendix Table 7.1a) to rescale the
output of the generative model to a range of values that correspond to admissible
petrophysical values for sandstone and shale. The finite-difference approximation of
the forward model is computed on the regular grid given by the pixel-based output
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Figure 7.2: Reference object-based model used to generate observed data. Each
object-based model has three associated properties: (a) the rock-type (shale 0 -
sandstone 1) indicator 1r, (b) the grid block permeability k, (c) and porosity ϕ.
The model was obtained from a test-set of object-based model realizations that the
generator network Gθ(z) was not trained on.

of the generative model Gθ(z) and hence each pixel-based property corresponds to
the grid-block property used in the numerical evaluation of the forward problem.

We have selected a reference realization from a test-set of object-based realizations
that were generated independently of the models used to train the generative network
Gθ. The model shown in Fig. 7.2 was used to generate a set of synthetic observed
data yobs that served as a reference case used to validate the proposed inversion
approach. Gaussian noise was added to the production rates and pressures based
on assumed measurement uncertainties (Eqs. 7.10-7.11). The transient pressure and
rates of oil and water were recorded for a duration of 600 days and the full history
was used in the gradient-based optimization outlined in Eq. 7.8. To minimize the
total loss (Eq. 7.12) we used the ADAM optimizer (Kingma and Ba, 2014) using a
fixed step size and β-parameters (η = 3×10−2, β1 = 0.9, β2 = 0.999). The simulation
parameters used for the numerical evaluation of the forward problem are provided in
Appendix Table 7.2.
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Figure 7.3: (a) Overview of the dynamic flow behavior, as well as average and
standard deviation of the grid block rock-types for N = 100 samples obtained from
the unconditional prior distribution i.e. samples drawn at random from the generative
model. (b) Model realizations after optimizing only the grid block rock-type at wells,
(c) optimizing only the dynamic flow behavior, and (d) optimizing both well rock-type
and flow behavior. Red contours on the mean and standard deviation of rock-type
distributions reflect the reference model of object-based channel-bodies shown in
Fig. 7.2.
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7.4 Results
Four history matching scenarios were considered:

• Scenario 1: Samples of the unconditional prior were obtained (N = 1000) and
a single evaluation of the forward problem was performed. This allowed us to
evaluate the prior distribution of the dynamic flow behavior of the underlying
generative model yprior = F(m) = F [Gθ(z)] (Fig. 7.3-a).

• Scenario 2: Inversion was performed by considering only the well data loss
Lwell(z) at the injection and production wells and the prior loss Lprior(z) to
honor the prior distribution of the latent variables z (Fig. 7.3-b).

• Scenario 3: We performed inversion by considering only the flow-based loss
Lflow(z) due to the mismatch between simulated and observed dynamic two-
phase flow data, as well as the prior loss on the latent variables Lprior(z)
(Fig. 7.3-c).

• Scenario 4: All three losses were combined: the flow loss Lflow(z), the well-data
loss Lwell(z), and the prior loss Lprior(z), corresponding to the total loss L(z),
as outlined in Eq. 7.12 (Fig. 7.3-d).

For Scenario 2 to 4, we performed N = 100 inversions, starting from the same set of
100 prior random samples of latent variables z. Each optimization procedure was
run for a total of 500 ADAM optimization steps. For Scenarios 3 and 4, we choose
the iteration with the lowest total loss as the output of each run. Early stopping
was performed in Scenario 2 where only the well data loss was considered when the
facies accuracy at the well reached 100%. Figure 7.3 shows a comparison of these
four scenarios in terms of their dynamic flow behavior i.e. pressures and rates at
production and injection wells as a function of the simulation time, as well as the
mean and standard deviation of the thresholded rock-type probability maps. The
threshold for rock-type probability maps was set at 0.5 to distinguish between sand
(1) and shale (0).

The prior distribution of the observed variables yprior (Scenario 1, Fig. 7.3-a,
right) shows a large spread in the distribution of the observed oil-water production
rates and injection pressure. The observed liquid rates of the reference case (red) lie
at the edge of the unconditional data distribution. The pressure behavior of the prior
models varies across 2 orders of magnitude in relation with the pressure behavior of
the reference case at the low end of the pressure versus time distribution.

The unconditional prior samples of the model parameters, shown here as the
rock-type indicator function 1r, are shown as cross-sections of the mean and standard
deviation of the N = 100 models (Scenario 1, Fig. 7.3-a, left). As shown by the
standard deviation map, nearly all values are close to a value of 0.5 as expected from
an indicator function of mean 0.5.

Considering the likelihood of the grid-block rock-type indicator function at the
wells only (Scenario 2) where the binary cross-entropy loss at the injection and
production well Lwell(z), as well as the prior loss Lprior(z) were minimized, we find a
large spread in the production behavior of the generated samples closely resembling
the unconditional prior distribution (Scenario 2, Fig. 7.3-b, right). Inspecting the
mean and standard deviation maps of the rock-type indicator function of the inverted
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Figure 7.4: Histograms of the total loss functional logL(z) (a, c) and the grid-block
rock-type accuracy at the wells (b, d). Models (N = 100) optimized on the observed
flow data only (a-b, red) and optimized on both flow and well rock type (c-d, red) are
compared to models (N = 1000) sampled unconditionally from the prior distribution
(a-d, black). In both cases, we observe that optimizing the flow-based objective leads
to realizations that match the observed data closer than sampling unconditionally
from the prior. The accuracy of the well rock type for models optimized only on
the dynamic flow data follow the prior distribution of models, whereas the models
obtained by optimizing flow and well-data loss functions have high accuracy at the
well locations.
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Figure 7.5: Comparison of the number of models that have a connected cluster of
channel-bodies that connects the injection and production wells in each individual
sample obtained in the inversion process for the four scenarios outlined in Section 7.3.
After Boolean dilation, nearly all models that were optimized with respect to the
observed dynamic flow data form a connected cluster between the two wells, whereas
half of the samples obtained from honoring only the well data remained disconnected.

samples matching the well data only, we find that these samples match the well
data while their flow behavior is consistent with the unconditional prior. This
means that constraining only by well data has very little effect on the facies model
connectivity between the wells. A lateral effect of the grid-block well data can be
observed comparing the outline of the mean rock-type maps and the red contours of
the reference model (Fig. 7.2) used to generate the reference observed data yobs,flow

and yobs,well.
When only the flow loss Lflow(z) was considered in the optimization, the produc-

tion data of the generated realizations were tightly constrained to the observed liquid
rates and pressures (Scenario 3, Fig. 7.3-c, right). The mean and standard deviation
maps for the obtained distribution of the rock-type indicator functions 1r do not
indicate any clear structural features and resemble the prior maps shown in the first
row of Fig. 7.3. We have obtained samples of model parameters m that all honor the
observed dynamic flow data yobs,flow, but which are not anchored at the wells by the
observed well rock types. Combining the flow loss Lflow(z), the well data loss Lwell(z)
and prior loss Lprior(z) as the total loss (Eq. 7.12) (Scenario 4, Fig. 7.3-d) we obtain
samples that match the observed dynamic behavior closer than Scenario 3, which
only considered the flow loss. In addition to honoring the dynamic observed data
yobs,flow, the facies data 1r of the obtained samples at the wells match the observed
grid-block data at the production and injection well yobs,well. This is indicated by the
low standard deviation map of the N = 100 inverted models (Scenario 4, Fig. 7.3-d,
left). Figure 7.4 compares the distribution of the total loss (L(z), Eq. 7.12) for the
N = 1000 models obtained from the unconditional prior distribution i.e. sampling a
set of model parameters m (Eq. 7.2) from the generative model Gθ(z) and solving
the forward problem once, (Eq. 7.3) and the models of Scenario 3 (flow and prior
loss only) and 4 (flow, well and prior loss). For both scenarios considered (Fig. 7.4, a
and c respectively) the distribution of the total loss is shifted to lower values when
compared to the total loss distribution of the models obtained by sampling from the
prior distribution. The distribution of well rock type accuracy shows that history
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Figure 7.6: Optimization trajectory for a selected inverted sample based on flow,
well-data and prior losses. The flow loss L(z) shows a highly non-linear optimization
problem with many local minima leading up to the smallest error being achieved
after 214 iterations. The well data accuracy at the production and injection wells
quickly reaches values greater than 90% accuracy. Cross-marks indicate the loss
values of the intermediate realizations presented in Fig. 7.8.

matching only flow data (Fig. 7.4 b) does not improve the rock type accuracy. When
the well-data loss Lwell(z) is optimized in addition to the flow-loss (Fig. 7.4 d), we
observe that the obtained models closely match the rock type at the wells in addition
to the dynamic flow data.

Due to the high computational cost of the forward model, reaching a good match
with the observed data, within a reasonable number of forward-model evaluations, is
necessary. Appendix Fig. 7.10 shows the distribution of the number of optimization
iterations of Eq. 7.8 necessary to reach a given threshold value of the total loss L(z)
for the case where all three loss functions are used in the history matching process
(Scenario 4). All N = 100 inverted models achieve a total-loss less than 1 × 103

(Fig. 7.10 c) which corresponds to the low end of the loss values obtained by sampling
from the prior distribution only (Fig. 7.4 c). In Fig. 7.3 we have shown that including
the flow loss Lflow(z) leads to high variance in the generated distribution of the model
properties m while honoring the observed flow data (Scenario 3, Fig. 7.3-c, right),
while only constraining samples to honor the well data reduces the variance near
the wells, but does not constrain to observed dynamic data (Scenario 2, Fig. 7.3-b,
right). A smaller injection pressure observed for the samples obtained from Scenario 3
compared to those that match only the wells in Scenario 2 would indicate a better
connected system of channel bodies. After closer inspection of the inverted samples
it was found that nearly all models obtained from Scenario 3 and 4 are connected
(Fig. 7.5 and Appendix Fig. 7.14-7.15). We evaluate for all four scenarios whether
any of the clusters of river-channel bodies connects the injection and production wells.
Less than half of the models for all scenarios show a connection between injector and
producer wells (Fig. 7.5 - black). However after Boolean dilation of the largest cluster
and performing the connectivity analysis again, half of the samples that honor the
well data only (Scenario 2) show connectivity, whereas all models obtained that were
optimized to honor flow (Scenario 3), as well as flow and well data (Scenario 4) form a
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Figure 7.7: Comparison of the observed dynamic pressure and rate data (red) obtained
for a single inversion case. The observed dynamic data from the initial starting
model (green) is optimized by honoring flow and well data for 500 iterations. The
intermediate pressure and rate data of the 500 iteration steps are colored according
to their total loss L(z).

connected cluster between the injector and producer well (Fig. 7.5 - red). A possible
explanation of this result is that due to the finite-difference approximation (two-point
flux approximation) used to solve the forward-problem the transmissibilities between
two neighbouring grid blocks are computed as a weighted average of the permeability
values i.e. a single grid block spacing between two high-permeable channel-bodies
does not provide an effective flow barrier.

A single model obtained from optimization using flow and well losses, while
honoring the prior distribution of the latent-variables (Scenario 4), was chosen as an
example to highlight the optimization process for a single realization. This specific
example was chosen as it showed the largest reduction in the total loss L(z) from the
initial starting model to the iteration with the lowest total loss out of 500 optimization
steps. Figure 7.6 shows the evolution of the total loss L(z) (black), the accuracy in
matching the rock-type indicator function 1r at the well locations (red), and the
prior loss evolution. A highly non-linear optimization with many local minima can
be observed. The accuracy of matching the well data can be observed to quickly
reach values above 90% and staying at 100% for the entirety of the optimization
process. The smallest total loss for this model is achieved after 214 iterations.

For the example model, we have recorded the observed dynamic flow behavior as
well as the distribution of the flow parameters at intermediate steps in the optimization
procedure, where the total loss L(z) achieved a new local minimum. Figure 7.7 shows
the evolution of the dynamic flow behavior in the course of performing the inversion.
The model initially shows a very high injection pressure (Fig. 7.7 c -blue), which
is significantly and continuously reduced to values close to the observed pressure
data (red). Similar behavior is observed for the liquid water and oil rates at the
production wells (Fig. 7.7 a-b). The solution found by the optimization strategy
(Eq. 7.8) with the lowest error value (Fig. 7.7 a-c, black) closely matches the observed
dynamic production data and the rock-type indicator function 1r at the wells.

The intermediate spatial distributions of the rock-type indicator 1r for each of
the obtained local minima in the optimization process are shown in Fig. 7.8. Initially
the channel-bodies were completely disconnected (Fig. 7.8 a). As the optimization
process progresses more channel-bodies were introduced gradually (Fig. 7.8 b-e) and
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Figure 7.8: Evolution of the spatial distribution of the rock-type indicator 1r for the
selected model.

form a spanning cluster that matches the grid-block data at the wells (Fig. 7.8 f).

7.5 Discussion
We have shown that solutions of the ill-posed inverse problem of reservoir history
matching can be obtained by inversion in the space of a deep generative adversarial
network for a synthetic case. The model parameter distributions m match the
obtained dynamic observed flow data yobs as well as honor the grid-block properties
at the wells with adequate solutions found on average in less than 100 optimization
iterations. To evaluate whether the obtained samples of the posterior distribution
are local maxima we followed the approach by Zhang et al., (2019) and performed
a cyclical spherical linear interpolation (White, 2016) in the latent space between
three obtained realizations. For each interpolated latent vector we have solved the
forward model and evaluated the loss functions. Figures 7.9a and 7.9b indicate that
the posterior distribution p(z|yobs) is highly multi-modal, where each of the obtained
realizations lie at a minimum of the total loss L(z) i.e. near a local maximum of the
posterior. While the samples obtained match the flow and well data it is important
to note that in a high-dimensional setting, finding the maxima of the posterior may
not be a sufficient description of the full posterior distribution and this needs to be
considered when using the obtained history-matched ensemble of reservoir models
for forecasts of future reservoir performance. To estimate posterior parameters
such as the cumulative production, a harmonic mean averaging approach (Green,
1995; Raftery et al., 2006) could be used where individual samples are weighted by
their corresponding likelihood (Zhang et al., 2019). Furthermore, a number of open
challenges are still to be addressed in the context of solving inverse problems with
deep generative models such as GANs.

The synthetic case presented is a simplified representation of a system of river-
channel bodies. The features encountered in real reservoir systems are more diverse
and heterogeneous, and it is possible that many other reservoir features should be
included in the training set of generative models. The types of models that may
be needed include three-dimensional multi-rock-type models i.e. more than two
rock-types in a generated reservoir model. Furthermore, it may be of interest to
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(a) Total Loss L(z) and well facies accuracy for 100 realizations interpolated between
three obtained maxima of the posterior p(z|yobs).

(b) Flow Loss Lflow(z), well loss −Lwell(z), and prior loss −Lprior(z) of the interpolated
latent variables between three maxima obtained by optimizing the total loss (Scenario 4).

Figure 7.9: Values of (a) the total loss and well accuracy, and (b) flow, well and prior
losses for interpolations of the latent variables between realizations obtained from
MAP sampling (bold circles) for Scenario 4 (Section 7.4).

combine a number of datasets into a single generative model that is conditioned on
the type of reservoir architecture Gθ(z, c), where c is a vector of conditional variables
that influence the output of the deep generative model using discrete conditionals
such as depositional environment e.g. fluvial versus lacustrine environments or
using continuous conditioning variables such as reservoir net-to-gross. This type of
conditional generative model could be facilitated by making use of architectures such
as that proposed by Miyato and Koyama, (2018). Empirically, it has been shown that
introducing class-conditional variables to GANs, so-called cGANs, result in improved
training and distributional representation behavior compared to their unconditional
counter-parts (Gauthier, 2014). This may speak for training a single general reservoir
model generator compared to creating a library of standalone pre-trained generator
networks for each depositional environment.
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An important aspect to be considered here is the evaluation of the generated
models in terms of model quality, mode-collapse, and representation of spatial
statistics as highlighted in Mosser et al., (2017) and Laloy et al., (2017b), where
two-point correlation functions are used to quality control the individual generated
reservoir models. The use of established GAN quality control measures such as
Inception Score (IS) (Salimans et al., 2016) or Frechet Inception Distance (FID)
(Heusel et al., 2017) may be challenging due to the induced distribution shift between
ImageNet (Deng et al., 2009) pre-trained networks and the features observed in
typical reservoir architectures. Kernel-based methods such as the maximum mean
discrepancy (MMD) have already been successfully applied to train GANs on reservoir
models (Chan and Elsheikh, 2018b) which could be repurposed to quality control
generated reservoir models.

While the synthetic case presented herein has shown that a gradient-based
approach to solving the ill-posed inverse problem is feasible, other strategies such
as using Markov-Chain Monte-Carlo methods as demonstrated by Laloy et al.,
(2017a), may lead to successful inversion results, but at high computational cost.
Combinations with other established inversion techniques, such as Ensemble Kalman-
Filters (Gu et al., 2005; Aanonsen et al., 2009) or Ensemble Smoothers (ES-MDA)
(Emerick and Reynolds, 2013) should also be evaluated. The presented approach,
together with a set of suitable generative models should be applied to benchmark
studies such as the PUNQ or SPE comparative solutions datasets to investigate the
applicability of inversion with deep generative models in the presence of measurement
errors and noise. While the present study only considers inverting for one model
at a time i.e. using a batch-size of one, it is possible to perform inversion using a
batch-size greater than one, as in Creswell and Bharath, (2018) who show that the
gradient contributions to the latent variables can be computed independently for
each element of a batch of latent-variables and hence for a set of model parameters
m. By computing the numerical solution forward problem and the associated adjoint
for each set of model-parameters within a batch, the proposed method could be
integrated into existing workflows for ensemble reservoir modeling.

Using deep latent variable models, such as GANs, to represent the space of
solutions for ill-posed inverse problems opens up interesting avenues with regards to
the theoretical basis of the ill-posed nature of these problems. Investigation of the
existence and stability criteria (Section 7.2) (Tikhonov and Arsenin, 1977) of deep
latent variable inversion schemes could lead to new promising theoretical insights
into the convergence behavior of inversion methods using deep generative models.
Furthermore, the geometry of the loss landscape and representation manifolds within
the space of latent variables may allow for faster convergence and higher quality
inversion results. Chen et al., (2017) and Arvanitidis et al., (2017) have investigated
the geometric structure of the manifold represented by deep generative models. Shao
et al., (2018) have shown that the manifold in the data space obtained from VAEs
are non-linear with near-zero curvature and linear paths in latent space correspond
to geodesics on the data manifold. This indicates that the geometry of the learned
manifolds is accounted for in operations performed in the latent space of deep
generative models.

We have shown that GANs may be used as generative models for parameterization
of geological models, and can provide a solution space for ill-posed inverse problems.
Nevertheless GANs, due to their challenging training, evaluation and complex latent-
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to-parameter-space relationship may not be the optimal reparameterization choice in
the case of ill-posed inverse problems. Deep generative models such as variational
(Kingma and Welling, 2013) and disentangling autoencoders (Higgins et al., 2017;
Burgess et al., 2018), as well as flow-based generative models, such as RealNVP
(Dinh et al., 2016) or GLOW (Kingma and Dhariwal, 2018), that provide a bijective
and invertible mapping between latent space and model space may be better suited
for the inversion task. This has been demonstrated by Ardizzone et al., (2018) for
ill-posed inverse problems.

7.6 Conclusions
We have presented an application of deep generative models in the context of the
ill-posed history matching inverse problem. Based on a two-dimensional synthetic
cross-section of a river-channel system we have trained a GAN to represent the
prior distribution of the subsurface properties m, permeability k, porosity ϕ and
the rock-type indicator 1r. We find solutions to the two-phase slightly-compressible
Darcy flow problem of oil and water systems commonly used to describe the transient
flow behavior in hydrocarbon reservoirs. By incorporating a finite-difference-based
numerical simulator with adjoint-state capabilities (Krogstad et al., 2015) in an
end-to-end differentiable framework, we perform inversion using gradient-based
optimization of the mismatch between observed dynamic data (Eq. 7.9) and grid-
block-scale well data (Fig. 7.3), while honoring the prior distribution of the latent
variables (Eq. 7.12). By using a momentum-accelerated first-order gradient descent
scheme (Kingma and Ba, 2014), the method converges to a solution despite the
highly non-linear and non-convex loss landscape (Fig. 7.6). Future work will focus on
applications to real reservoirs and history matching benchmark studies such as the
PUNQ or SPE comparative solutions models, as well as the evaluation of other deep
latent-variable generative models and their theoretical benefits for finding solutions
to ill-posed inverse problems.
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7.7 Chapter Appendix

7.7.1 Generative Model Architecture and Quality Control

Figure 7.10: Distribution of the number of optimization iterations required to reach
a total loss L(z) (Eq. 7.9) of less than or equal to 1× 103 in the case of matching
flow and well rock type data (Scenario 4). This threshold corresponds to the lower
end of the total-loss distribution of the prior distribution (Fig. 7.4 c). Optimization
converges on average within the first 30 iterations.

Figure 7.11: Comparison of the pdfs of N = 1 × 104 samples of the test set and
N = 1×104 samples obtained from the generative network Gθ(z) trained to represent
the river-channel body system. The reservoir rock-type (a) and permeability (b)
show a near binary distribution whilst porosity follows a bi-modal pdf. The pdfs of
the generated samples match the test set closely.
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Table 7.1: Generator and discriminator network architectures used to represent the
distribution of model parameters m used in the inversion process (Eq. 7.2). Binary
indicators of geological facies and derived permeability are represented by a bi-variate
Gaussian distribution with a hyperbolic tangent activation function used to create the
binary output distribution. We use a linear transformation layer to renormalize the
output of the GAN from the (−1, 1) interval of the tanh activation to a known range
of permeability and porosity values. Permeability transform parameters: a = 1×10−3,
b = 1× 10−12

Porosity transform parameters: c = 0.3, d = 0.1
Notation for convolutional layers: LayerType(Number of filters), k=kernel size,
s=stride, p=padding. BN=BatchNorm, PS=PixelShuffle

Latent Variables z ∈ R50×2×1

Conv2D(512)k3s1p1, BN, ReLU, PSx2

Conv2D(256)k3s1p1, BN, ReLU, PSx2

Conv2D(128)k3s1p1, BN, ReLU, PSx2

Conv2D(64)k3s1p1, BN, ReLU, PSx2

Conv2D(64)k3s1p1, BN, ReLU, PSx2

Conv2D(64)k3s1p1, BN, ReLU, PSx2

Conv2D(2)k3s1p1

m0 = Tanh(Channel 0) · 0.5 + 0.5 = p(1r)
x1 = Tanh(Channel 1) · 0.5 + 0.5

m1 = (a+m0) · b = permeability k
m2 = c · x1 + d = porosity ϕ

(a) Multi-Property Generator

Model Parameters m ∈ R2×128×64

Conv2D(64)k5s2p2, ReLU

Conv2D(64)k5s2p1, ReLU

Conv2D(128)k3s2p1, ReLU

Conv2D(256)k3s2p1, ReLU

Conv2D(512)k3s2p1, ReLU

Conv2D(512)k3s2p1, ReLU

Conv2D(1)k3s1p1, ReLU
(b) Discriminator
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Table 7.2: Fluid and simulation parameters for oil and water phases used in the
numerical solution of the two-phase flow forward problem.

Parameter Value Unit
Normalized Water Saturation S̄w

Sw−Sw,cr

1−Sor−Sw,cr
−

Normalized Oil Saturation S̄o
So−So,cr

1−Swc−So,cr
−

Water, Oil Viscosity (µw, µo) (3× 10−4, 5× 10−3) Pa · s

Water, Oil Density (ρw, ρo) (1000, 700) kg ·m−3

Brooks Corey Exponents (nw, no) (2, 2) −

Water, Oil Compressibility (cw, co) (0.0, 1× 10−5) bar−1

Connate, Init., Crit. Water Saturation (Swc, Sw,i, Sw,cr) (0.10, 0.15, 0.15) −

Residual, Init., Crit. Oil Saturation (Sor, So,i, So,cr) (0.10, 0.15, 0.12) −

Water Injection Rate qw,inj 300 m3 · day−1

Bottomhole Pressure pbhp 150 bar

Reference Pressure pref 200 bar
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7.7.2 Inverted Samples

Figure 7.12: Unconditional samples (N = 100) obtained from sampling the prior
distribution of the generative model (Section 7.4, Scenario 1)
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Figure 7.13: Samples obtained by minimizing the sum of the well and prior losses
(Section 7.4, Scenario 2)
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Figure 7.14: Samples obtained by minimizing the sum of the flow and prior losses
(Section 7.4, Scenario 3)
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Figure 7.15: One hundred samples obtained by minimizing the sum of the flow, well,
and prior losses (Section 7.4, Scenario 4)
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Chapter 8

Discussion and Recommendations

Prior to the start of the research presented in this thesis GANs had been applied to
two-dimensional datasets of small natural images such as human faces or handwritten-
digits (LeCun et al., 1995) as for example in the seminal papers on GANs by
Goodfellow et al., (2014) and on DCGAN by Radford et al., (2015). The most
prominent work on three-dimensional datasets using GANs was presented by Wu
et al., (2016) where a three-dimensional convolutional GAN was separately trained
on each class of the IKEA dataset (Lim et al., 2013).

Since then, there have been enormous improvements in the field of generative mod-
eling and GANs specifically, not only in terms of the ability to model higher resolution
images (Karras et al., 2017) and diverse distributions (Miyato and Koyama, 2018;
Brock et al., 2018), but also in the theoretical understanding of GANs (Mescheder
et al., 2017; Mescheder et al., 2018; Arora et al., 2017; Arora and Zhang, 2017).

Considering these advances, I will now present a number of related approaches to
deep generative modeling, how we can use these to build realistic prior distributions
at pore and reservoir-scale, as well as create a link between the Bayesian framework
presented in Chapters 6-7 and a much wider field of statistical learning approaches
that consider deep generative priors for inverse problems.

8.1 Recent similar Work
Concurrently to my work on generative models at pore and reservoir-scale GANs have
been trained on datasets of two and three-dimensional object-based and geostatistical
models. Chan and Elsheikh, (2017) have used a GAN to parameterize geological
models based on training sets of two-dimensional patches extracted from a single
larger geostatistical training image and evaluate the use of the trained generator
for uncertainty propagation for a two-dimensional flow problem. Conditioning to
well-data was performed by using a separate neural network to predict a latent-vector
which once passed through the generator results in a realization conditioned to the
observed data (Chan and Elsheikh, 2018b). Laloy et al., (2017a) trained a VAE
(Kingma and Welling, 2013) on two-dimensional geostatistical training images. A
specialized GAN architecture by Jetchev et al., (2016) was also extended to 3-D
and after training used for hydrological inversion using MCMC (Laloy et al., 2017b;
Laloy and Vrugt, 2012).

Concurrently to my work on conditioning pore and reservoir-scale models to
available data (Chapter 5 and Mosser et al., (2018a)) Dupont et al., (2018) presented
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a gradient-based conditioning approach based on image-inpainting using GANs (Yeh
et al., 2016) and showed that generative models can be trained on two-dimensional
training images of fluvial systems and conditioned to multiple independent sets
of well-data. Zhang et al., (2019) trained GANs on two-dimensional object-based
training images for fluvial and non-stationary deltaic systems, three-dimensional
object-based models of river-channels with three facies types, and on non-stationary
three-dimensional carbonate systems.

One of the key benefits of training a deep generative model compared to other
modeling approaches is the amortization of computational cost (Fig. 4.15). Once
a large set of training images has been acquired generative models only need to be
trained and evaluated once and can be used for fast sampling thereafter.

8.2 Availability of Training Images
The availability of training images and the scale at which training is performed is
an equally important factor at the reservoir-scale even more so as obtaining a set
of valid training images is a common topic of discussion in training image-based
methods such as MPS. While it is impossible to obtain three-dimensional direct
observations of the earth’s subsurface that could serve as training images, there
may still be significant benefit to training deep generative models for reservoir-scale
applications.

In many reservoir modeling applications object-based models are used to represent
subsurface geo-bodies and their properties. In the case where a large set of object-
based models or other synthetic training images for example from process-based
models can be created, deep generative models can act as a proxy for the modeling
workflow. While such a training set can not enumerate the space of all possible
object-based models, generative models aim to represent the underlying probability
distribution and hence are able to synthesize new realizations that are not part
of the training set. This workflow has been used in Chapters 6 and 7 based on
two-dimensional object-based models for river channels.

8.3 Non-stationarity Issues of the Prior
To be able to use deep generative models such as GANs for stochastic modeling, or
solving inverse problems as presented in Chapters 6 and 7, a basic premise is that
it is possible to train a model such as a GAN on a given dataset. Deep generative
models are data-driven and have been shown to scale well in terms of image quality
and diversity with the number of available training images (Brock et al., 2018).

At the pore-scale, acquisition of large three-dimensional images is possible with
modern micro-CT technology and therefore acquiring a large training image is feasible.
Nevertheless, I have made the assumption that there exists a representative volume
element that can be defined at a smaller scale than the original CT-image to be able
to extract a large number of training patches.

In Chapter 3 I have introduced a method to upsample images by using a fully-
convolutional generator network. The generator was trained on patches of 643 voxels
(Mosser et al., 2017). After training, latent vectors with larger spatial dimensions
are used to sample larger spatial domains and the network performs an implicit
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upsampling due to the fully convolutional nature of the GAN generator. This
implicitly makes the assumption that there exists a representative volume from which
we can statistically extrapolate to create larger images. For complex porous media,
such as carbonates, making such an assumption may not be possible and applications
to complex non-stationary porous media using the approach presented in Chapters 3
and 4 may be difficult.

Deep generative models such as GANs do not require stationarity of the training
images e.g. it is possible to train on datasets of highly diverse natural images and
objects. Therefore if it is possible to acquire a sufficient amount of training data for
complex porous media at the scale of interest, then GANs should be able to represent
the distribution of these non-stationary training images without the need for latent
variable upscaling as presented in Chapters 3-4.

8.4 Challenges with GANs and how to address them
In my introduction to deep generative models in Chapter 2 I have introduced a
number of methods that have been developed to model high-dimensional probability
distributions. While GANs specifically have been used throughout this thesis as
the choice of deep generative model to represent geological features, GANs suffer
from a number of challenges in their application. In Chapters 3 and 4 (Mosser
et al., 2017; Mosser et al., 2018c) I highlight that the property distributions of the
realizations sampled from the trained GAN show lower diversity than the properties
of the test-set images. This behavior is symptomatic of GANs and is referred to as
mode-collapse i.e. when the generator has not learned to represent all of the modes
of the distribution defined implicitly by the set of training images.

Since the first publication on using GANs for three-dimensional pore-scale stochas-
tic modeling (Mosser et al., 2017) the field of deep generative modeling and under-
standing of GANs has improved significantly. Arora et al., (2017) have shown that
the ability of a GAN generator to represent a distribution from a set of training
images is inherently bounded by the size of the discriminator. This motivates the use
of very large discriminative networks (Arora and Zhang, 2017; Brock et al., 2018).
The use of highly overparameterized discriminators in turn can lead to overfitting
which can be alleviated by limiting the number of weight updates of the discriminator
per update of the generator parameters and by using specialized gradient penalties
that incentivizes generalization in GANs (Thanh-Tung et al., 2019).

Numerous types of convolutional neural networks have been proposed to represent
the generator and discriminator networks (Radford et al., 2015) leading to improved
representations at higher resolutions (Karras et al., 2017) and for very large datasets
(Miyato et al., 2018; Miyato and Koyama, 2018; Brock et al., 2018). While the
original GAN algorithm by Goodfellow et al., (2014) has been shown to be locally
stable (Nagarajan and Kolter, 2017) a number of alternative training frameworks
have been developed around so-called f-divergences (Nowozin et al., 2016) and
Wasserstein-GANs (Arjovsky et al., 2017; Gulrajani et al., 2017) which are related
to the field of optimal transport (Genevay et al., 2017; Salimans et al., 2018).

In the course of this thesis I have been able to benefit from some of these advances
to improve training of generative networks in practice. GANs used for the initial
publications on pore-scale stochastic modeling (Chapters 3-4) were trained using
the original GAN formulation which requires a number of heuristic modifications
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to enable stable training such as adding noise to the generator (Zhao et al., 2016;
Salimans et al., 2016) or label flipping (Sønderby et al., 2016).

For the later chapters where GANs were applied to solve ill-posed inverse problems
(Chapters 6-7) I used Wasserstein-GANs which at the time were shown to suffer
less from mode-collapse and require fewer hyperparameters and heuristics than the
original GAN formulation. Many of the more recent advances such as the use of
spectral normalization (Miyato et al., 2018), self-attention (Zhang et al., 2018) or
the use of the two-timescale update rule presented by Heusel et al., (2017) are
promising new methods to further reduce the challenges involved in training GANs.
A comparative overview of these learning approaches for GANs was provided by
Mescheder et al., (2018).

8.5 Evaluating Deep Generative Models
While choosing a different learning approach for GANs may help to alleviate some
of the challenges in their training and representation capabilities, diagnosing mode-
collapse and evaluating the distributions represented by GANs is a challenging task.
Since GANs do not explicitly define a density that can be evaluated such as in the
case of explicit tractable density methods (Section 2.3.3) or provide a lower-bound
on the log-likelhood as in the case of VAEs (Section 2.3.3), we cannot use these
measures to evaluate their representative capacity.

In Chapter 3 I have proposed the use of two-point correlation functions and
numerical evaluations of flow properties to evaluate the quality of the generated
stochastic realizations. This was further expanded in Chapter 4 to gray-scale images
and the use of Minkowski functionals as a means to characterize random materials.
Minkowski functionals have also been used to quantify the quality of GAN generated
images in cosmological simulations by Mustafa et al., (2019).

The main reason for me to train on gray-scale images was to avoid introduc-
ing errors due to image segmentation into the generative model representation.
While learning a representation of the full gray-scale features may be more difficult,
this allows a practitioner to reuse the same set of parameters irrespective of the
segmentation method used to separate the pore and grain-space.

The motivation for the use of these statistical and image morphological properties
was to be comparative with existing stochastic reconstruction methods. A number
of approaches have been developed to evaluate the quality and diversity of images
created by deep generative models. The Inception score (IS) (Salimans et al., 2016)
and Frechet inception distance (FID) (Heusel et al., 2017) are measures derived using
correlations obtained from the feature vectors of a pretrained deep neural network.
The FID has been developed as a replacement for the IS as it has been shown to
be sensitive to the weights used to compute the IS (Barratt and Sharma, 2018).
Nevertheless, both the IS and FID measures are commonly found concurrently in
GAN literature as a means to quantify the image quality and output diversity of
GANs. Ledig et al., (2016) trained GANs for image super-resolution and compared
the use of MSE, SSIM, and a mean opinion score based on human evaluations to
quantify the quality of the generated high-resolution images. Arora and Zhang,
(2017) propose a method based on the birthday paradox to find the support size of
the distribution represented by a GAN.

A number of these approaches should be combined to give an estimate of the
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image quality and diversity of a trained GAN. It is unclear whether the FID and IS
will generalize to pore-scale images and reservoir models. The main reason for this is
that the neural networks used to obtain the feature representation for the FID and
IS scores are typically trained on the Imagenet dataset (Deng et al., 2009). To apply
the FID and IS score it may therefore be necessary to train on a large dataset of
porous media at the pore-scale or various types of reservoir facies models specifically
to obtain an appropriate set of neural network weights. Where possible the FID
and IS scores, should be combined with domain specific quality measures as those
proposed in Chapters 3 and 4 (Mosser et al., 2017; Mosser et al., 2018d).

8.6 Interpolating in Latent Space
Radford et al., (2015) perform a linear interpolation z(β) = βz1 + (1− β)z2 between
two samples {z1, z2} of the latent space and map the interpolated latent variables
to the image domain mβ = Gθ(z(β)). They obtain smooth transitions between the
images created by the GAN generator.

In Chapter 4 I present such an interpolation between a set of latent variables and
their associated representations of three-dimensional images of the Ketton limestone
(Fig. 4.12) and show that smooth continuous transformations are obtained by linear
interpolation in the latent-space of the trained generator network. Chapters 5-7 are
based on the assumption that it is possible to interpolate or move in latent-space while
obtaining physically meaningful representations in the generated image (Chapter 5)
or model parameter space (Chapters 6-7).

White, (2016) showed that linear interpolation between two samples obtained
from a multivariate Gaussian distribution leads to interpolated latent variables z(β)
with smaller variance than the start and end-point samples {z1, z2} obtained from
the Gaussian prior. For the case of a Gaussian prior distribution White, (2016)
propose to perform spherical linear interpolation which corresponds to a great-circle
path between the two points in the high-dimensional space of latent-variables.

In Chapters 6-7 I have presented a Bayesian approach to finding a set of model
parameters created by a pre-trained GAN generator. In both Chapters 6 and 7 the
prior distribution of latent-variables is honored by incorporating the prior distribution
in the Bayesian inference approach. In Chapter 5 I have followed the approach of Yeh
et al., (2016) where the discriminator was used as an additional measure for a sample
obtained from the generator to be close to the data distribution (Eq. 5.5). Honoring
the prior distribution of latent variables or using the discriminator to evaluate a set
of obtained images can both be interpreted as a regularization technique to obtain
samples from the GAN generator that are close to the prior distribution of images.
Nevertheless it remains an open question whether this additional regularization
is sufficient to guarantee that samples obtained from the GAN generator and by
extension from the Bayesian inference approach presented in Chapters 6-7 are
statistically valid.

Makhzani et al., (2015) have shown that in the case of VAEs the space of latent-
variables is represented by a continuous multivariate distribution which can have a
number of gaps where no valid image representation can be found. This indicates
that obtaining valid image representations is not only dependent on the sampling
strategy used but also on the deep generative model itself.

Furthermore, if the distribution of latent variables associated with a GAN contains
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regions for which interpolation should not be possible this needs to be accounted for
explicitly by considering GAN architectures that allow for a discontinuous space of
latent variables or by incorporating categorical variables using so-called conditional
GANs (Mirza and Osindero, 2014).

While for many applications where only visual plausibility is considered e.g. gener-
ating realistic faces of humans (Karras et al., 2019) statistically valid representations
obtained from the GAN generator may not be of concern, nevertheless when con-
sidering solving inverse-problems with deep generative models such as GANs future
work will need to address how we can ensure that the solutions obtained represent
physically meaningful solutions from the prior distribution of model parameters. In
the case of ill-posed inverse problems the non-physical solutions obtained from a
deep generative model may still represent valid solutions of the forward problem that
match the data, but which have zero probability under the the prior distribution of
model parameters.

8.7 Conditional GANs
In this thesis GANs have been used to create probabilistic generative models that given
a random sample from a latent-noise distribution z create a new stochastic realization
m = Gθ(z), z ∼ p(z). The family of these latent-variable models can be expanded
to conditional-GANs (Mirza and Osindero, 2014) which define a joint distribution
p(m, c) where m are the data we wish to model and c is an additional observed
random variable. The conditional variable is often a categorical random variable
that describes class-labels for a set of training images e.g. c = {house, cat, dog} or
a continuous property. Incorporating such additional information when training a
GAN has been shown to help stabilize training and lead to higher image quality and
diversity. Additional information of the porous media or reservoir models that we
wish to model is often known a priori for a set of training images e.g. lithology as
a categorical variable or porosity and permeability as continuous properties at the
pore-scale - environment of deposition as a categorical variable and facies proportions
as a continous property at the reservoir-scale.

Conditional GANs have found use in particle physics where numerical computation
of the scatter of atomic particles on the detector of the Large Hadron Collider (LHC)
is very computational demanding (Oliveira et al., 2017). A conditional GAN has been
trained on a limited set of numerical simulations with known parameters (Paganini
et al., 2017). The particle energy and type of particle then serve as conditional
variables to the GAN generator which is able to create random realizations of energy
maps of the particle scatter for a specified energy and particle type. The conservation
laws of energy can be encoded as a differentiable criterion that has to be satisfied
for a given generated image i.e. energy of the incoming particle is equal to the total
energy of the particle scatter, in addition to the GAN losses (Oliveira et al., 2017).
Where possible such differentiable constraints should be added as additional penalties
to ensure that the generative model honors a-priori known relationships within the
modeled images.

Many properties at the pore-scale such as the porosity or the two-point correlation
function require a binary image representation which means that an image has to
be thresholded prior to computation of these quantities. In unpublished work I
have attempted to develop differentiable Minkowski functional representations and
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two-point correlation functions which could be directly included as a constraint
on the GAN learning objective, but ultimately I did not pursue this due to the
non-differentiable nature of the segmentation process. Nevertheless, Feng et al.,
(2019) have shown that including pore-morphology derived constraints in the GAN
training objective is possible for pore-scale images. These types of conditioning
approaches are not specific to the use of GANs, as they represent a differentiable
objective function that is included as a regularization on the training objective.
In addition to using a discriminator in the GAN framework, Singh et al., (2017)
incorporate a loss that checks for known invariances and was applied to a training set
of Cahn-Hillard simulations. Cang et al., (2018) have used a more general style-based
approach where features are extracted from the activations of a VGG-type neural
network to regularize the visual appearance of the generated micro-structures created
by a VAE trained on two-dimensional pore-scale cross-sections.

8.8 Other Deep Generative Models
In Chapters 3-5 I have shown that GANs can be a very general and flexible framework
to model data-distributions such as images at the pore-scale, but it is not clear
whether GANs themselves are the ideal deep generative model for stochastic pore
and reservoir-scale modeling. The challenges in quality control and training stability
as I have outlined here may outweigh their ability to perform fast sampling at
high-resolution. As we look beyond the family of implicit density models such as
GANs there exist a number of recent advances in explicit deep generative models that
provide comparable image quality while allowing for stable training and quantitative
metrics of model quality and diversity.

Explicit or approximate density models such as VAEs (Kingma and Welling,
2013) or PixelRNN (Oord et al., 2016a) allow us to measure or estimate a lower
bound of the log-likelihood (ELBO, Chapter 2) of the data which helps compare
different models after training or even families of generative models trained on the
same dataset. Furthermore these networks are typically trained using maximum
likelihood which is quite stable using stochastic gradient descent compared to the
unstable adversarial learning framework of GANs. VAEs (Kingma and Welling, 2013)
as compared to GANs do not suffer from mode-collapse as they have a mode-covering
behavior due to the form of the KL-divergence in their objective function.

Some of the early criticisms of explicit density models compared to implicit
models such as GANs have been the lack of high-resolution details in generated
realizations as samples often appear blurred, or long sampling and training times
are required as is the case of sequential factorized models such as PixelRNN (Oord
et al., 2016a). Both of these criticisms have been refuted recently.

Specialized neural network architectures inspired by PixelRNN have been devel-
oped to encode sequential features to represent large-scale correlations in acoustic
data for speech synthesis (Wavenet (Oord et al., 2016c)). Fast training and sampling
for tractable explicit density models such as PixelRNN (Oord et al., 2016a) has been
made possible due to the use of masked convolution operations in PixelCNN (Oord
et al., 2016b) and PixelCNN++ (Salimans et al., 2017). State of the art explicit
density models combine sequential generation of a latent representation with convo-
lutional decoder networks (VQ-VAE, Oord et al., (2017) and Razavi et al., (2019))
and results are comparable with state-of-the-art GAN methods such as BigGAN
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(Brock et al., 2018) in terms of image quality and diversity.
Self-normalizing flows (Rezende and Mohamed, 2015; Dinh et al., 2016) represent a

new family of generative models based on change-of-variables (Eq. 2.21) for probability
distributions and have been recently extended by Kingma and Dhariwal, (2018) to
model high-resolution images using invertible neural networks. Flow-based generative
models are based on reversible neural networks which allow exact inference of
latent variables for a new data-point and because they are based on an explicit
representation of the density function they can be evaluated using the exact log-
likelihood. Furthermore, Kingma and Dhariwal, (2018) have shown that the latent
variables correlate with semantically meaningful attributes of images, meaning that
the network learns to group images with different features in different parts of
the latent space. Additional computational benefits come from fast sampling and
inference in reversible neural networks as well as reduced computational cost during
training.

Currently their main drawback is the need for specialized reversible neural network
architectures, which limits the set of possible network architectures, and a lower
log-likelihood compared to other methods such as PixelCNNs. Nevertheless, the
lower log-likelihood of flow-based generative models should not exclude them from
being used for high-fidelity image generation. Theis et al., (2015) have shown that a
higher likelihood of deep generative models is not indicative of higher image fidelity.
The observations by Nalisnick et al., (2018) and Choi and Jang, (2018) indicate
that the Watanabe-Akaike Information Criterion (WAIC) (Watanabe, 2010; Gelman
et al., 2013) - an extension to the Akaike Information Criterion (AIC) (Akaike, 1998)
- may provide a more robust approach to evaluate deep generative models.

8.9 Engineering Considerations
The task of training generative models for pore and reservoir modeling should also
be approached from an engineering point of view with a set of well-defined goals and
metrics in mind. To practically train GANs or any other type of deep generative
model I have implemented a number of computational libraries that allow automatic
computation of the key properties of interest during the training process.

In preparation of Chapter 3 I have monitored the two-point correlation function
as a function of the training iterations to allow for an additional quantitative measure
of convergence in addition to visual appearance during training. This was expanded
to monitoring the Minkowski functionals as a convergence metric in Chapter 4. For
different values of the hyperparameters e.g. learning rate or number of convolutional
filters in each network layer, a model was trained and the metrics compared to obtain
an optimal selection of the hyperparameters. While the metrics used in this thesis
are inspired by pore and reservoir-scale features, additional criteria such as the time
to sample a new realization may be of importance in practical applications. While in
this thesis only GANs were evaluated as a generative model, the choice of model or
training formulation itself should be regarded as a hyperparameter and large-scale
studies performed to find an optimal model given the metrics of interest. These
studies could leverage Bayesian-optimization for hyperparameter tuning of deep
neural networks (Snoek et al., 2012; Bergstra et al., 2011) or automated-machine-
learning methods (Auto-ML) (Hutter et al., 2019) such as neural architecture search
(NAS) (Elsken et al., 2018).
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8.10 Combining Geostatistics and Deep Learning
Finally, a promising avenue is to find and investigate relationships between methods
from traditional geostatistics or random material theory (Torquato, 2013) and deep
generative modeling. Recently Alanov et al., (2019) have proposed a combination of
a texture synthesis approach with GANs that has been directly compared to Mosser
et al., (2017) and shows a significant improvement in the ability to synthesize textural
features. In the future it may be worth investigating the similarities between deep
generative models and sequential simulation (Daly, 2005; Parra and Ortiz, 2011) or
MPS methods to develop improved geostatistical simulation methods.

A first attempt at developing such approaches has been made recently by Avalos
and Ortiz, (2019) where a recurrent convolutional network is used to predict lithologies
from a training image and data at wells. It may equally be beneficial for the machine
learning community to explore methods developed in geostatistical simulation as there
exist many parallel developments in both fields as similarities between sequential
simulation techniques (Daly, 2005; Parra and Ortiz, 2011) and tractable density
models such as PixelRNN (Oord et al., 2016a) show. Notably Feng et al., (2018)
have used convolutional neural networks to accelerate MPS simulation.

Beyond the field of pore-scale reconstruction and geostatistical simulation GANs
have gained attention for the design of new micro-structures (Yang et al., 2018).
These approaches first train a deep generative model such as a GAN (Yang et al.,
2018) or a VAE (Gómez-Bombarelli et al., 2016) on a set of training examples
and then optimize the latent variables to maximize a derived material property.
Optimizing semantically meaningful latent variables of a deep generative model to
optimize a specific physical or chemical quantity may lead to the discovery of efficient
batteries and pharmaceuticals (Liu et al., 2018; Gómez-Bombarelli et al., 2016).

8.11 Using Deep Generative Models
for Inverse Problems

Optimizing and performing Bayesian inference of the latent variables of a GAN forms
the basis of Chapters 5-7 (Mosser et al., 2018a; Mosser et al., 2018d; Mosser et al.,
2019) and the latter two chapters consider applications where the function that is
being evaluated includes a physics-derived forward-modeling operator. This is a
specialization of using deep generative models as an approach to represent the prior
distribution in inverse problems that was first developed in the field of compressed
sensing (CS) and specifically using GANs in the linear case by Bora et al., (2017).

In CS the general problem definition consists of trying to recover an underlying
image m∗ from a set of linear measurements d which is smaller than the number of
parameters n in m∗

d = Am∗ + ε (8.1)

where A is the linear measurement operator and ε corresponds to additive noise. This
represents an underdetermined linear system and therefore additional assumptions
on the behavior of m∗ have to be made. This is analogous to solving an ill-posed
inverse problem with a linear forward operator.

The most widely used technique to solve Eq. 8.1 is the Lasso-approach, which is
equivalent to an L1 regularization on m∗. Direct reconstruction of a fully observed
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image corresponds to a special case of CS where the measurement matrix is a diagonal
unit matrix. In a similar way image inpainting which forms the basis of Chapter 5
can be defined in the context of CS where measurements correspond to observed
pixels of a masked image (Bora et al., 2017). Bora et al., (2017) have used a GAN to
represent the space of images m ∼ pdata(m) and find reconstructions by minimizing

L(z) = ∥AGθ(z)− d∥22 (8.2)

which without any additional constraints on the latent variables z is equivalent to
maximum-likelihood estimation of m∗ in the Gaussian case. More importantly the
authors provide a proof of convergence for specific neural network representations of
GAN generators and measurement matrices A which considerably outperforms the
Lasso method on the same dataset (Bora et al., 2017). Deep generative priors have
recently also been successful at solving the phase retrieval problem in compressed
sensing (Hand et al., 2018; Işíl et al., 2019) and progress has been made in finding
theoretical convergence guarantees for these types of generative priors (Hand and
Voroninski, 2017; Shah and Hegde, 2018; Heckel and Hand, 2018; Ma et al., 2018).

8.12 Bayesian Inference
for Deep Latent Variable Models

In Chapters 6-7 I set the inversion problem in a Bayesian context using GANs as
a prior distribution of the model parameters. In Bayesian inversion the goal is
to find the posterior distribution of the model parameters given the observations
p(m|dobs). When we introduce a deep latent variable model such as a GAN as a prior
distribution over the model parameters m we aim to infer the posterior distribution
of the latent variables p(z|dobs) given the observations.

In Chapter 6 I have used an approximate MCMC-based sampling method, based
on previous work on so-called Plug-and-Play Generative Networks (PPGN), to
obtain samples from the posterior of the latent variables (Nguyen et al., 2016).
Plug-and-play generative networks use an approximate Metropolis-adjusted Langevin
algorithm (MALA) (Roberts and Tweedie, 1996) derived from stochastic gradient
Langevin dynamics (SGLD) (Welling and Teh, 2011) to obtain posterior samples.
Compared to MALA, SGLD has no Metropolis rejection step and assumes that
the step-sizes approach zero, which in practice is implemented by assuming small
step sizes that are annealed to very small values compared to the initial step size
(Welling and Teh, 2011). In contrast to the PPGN approach where the likelihood is
represented as a neural network trained to classify natural images, the likelihood in
Chapters 6-7 requires the numerical solution of a set of partial differential equations
that describe the acoustic wave equation and two-phase flow problem respectively.
To be able to apply the MALA formalism, gradients of the log-density need to be
computed. In both cases, seismic waveform inversion and reservoir history matching,
I have obtained gradients using the adjoint-state method. The approximate MALA
algorithm as defined by Nguyen et al., (2016) includes a number of hyperparameters,
the learning rate ε1, the noise variance ε2, and the weight-decay factor λ. The
influence of the choice of these hyper-parameters was only evaluated qualitatively by
Nguyen et al., (2016).
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In Chapter 6 (Mosser et al., 2018d) I consider the case where inversion of acoustic
properties is performed, assuming a Gaussian likelihood for the observed seismic
data, and a Bernoulli likelihood for data at the wells. The prior distribution of the
latent variables is given by a multi-Gaussian distribution. Combining the likelihood
functions and the prior for the latent variables, as well as coupling the learning rate
to the noise variance according to Roberts and Tweedie, (1996) reduces the set of
hyperparameters for approximate-MALA to the step-size and the total number of
iterations. Approximate MALA sampling obtains samples from the posterior in the
limiting case where the step size approaches zero when in practise I have annealed
the step size to a finite and very small amount (Welling and Teh, 2011). Because
the prior represented by the GAN generator is multi-modal and the forward-problem
non-linear it is likely that the posterior distribution is also multi-modal. By starting
from a number of random locations in latent-space and performing approximate
MALA sampling I aim to obtain an ensemble of samples from the multi-modal
posterior distribution.

In Chapter 7 (Mosser et al., 2019) I chose to simplify the inference scheme further
by finding samples corresponding to local maxima of the posterior distribution. MAP
sampling from the posterior starting from the GAN prior amounts to gradient descent
with a contribution from the Gaussian prior on the latent variables. By starting from
random initial starting locations in latent-space I aim to obtain samples close to the
modes of the posterior distribution. An open question is whether an approximate
MCMC algorithm like MALA actually converges to samples of the posterior as well
as how sufficient exploration of the posterior distribution can be ensured. Zhang
et al., (2019) have shown that samples obtained using SGLD represent only a subset
of the modes of a multi-modal density and propose an extension using a cyclical
step-size to sample from all the modes of a density. Future work should therefore
investigate the impact of various posterior sampling strategies.

For both the seismic inversion and reservoir history matching scenarios the
computational graph that represents the prior and likelihood is fully differentiable
and therefore sophisticated Monte-Carlo methods such as Hamiltonian-Monte-Carlo
(Duane et al., 1987; Neal, 2011; Betancourt, 2017) and their stochastic variants
(Stochastic Gradient-Hamiltonian-Monte-Carlo (Chen et al., 2014)) should be con-
sidered as possible sampling strategies.

It is important to note at this point that using a deep generative model as a
prior representation for inverse problems is a very recent development and theoretical
and practical applications of these models are at a very early stage. The main
driving factors currently come from the field of compressed sensing where a number
of proofs have been developed for certain fully connected and convolutional network
architectures. The aim of the work that I have performed and presented in Chapters 6
and 7 was not to attempt to solve the open and challenging problem of finding general
solutions or theoretical guarantees of convergence as was done by Bora et al., (2017)
for the limited framework of a linear inverse problem, fully connected networks and
under global optimization, but rather to frame the problem of finding solutions to
ill-posed inverse problems using deep generative priors in a Bayesian context and to
apply these methods to important inverse problems in geoscience. Nevertheless, I
want to emphasize that future work will need to investigate convergence behavior
and find new algorithms that give theoretical guarantees to solving inverse problems
with deep generative priors (Heckel and Hand, 2018; Ma et al., 2018).
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The notion of creating a data-driven prior also represents a paradigm shift in
the context of inverse problems and compressed sensing which is driven by efforts
to collect large high-quality datasets of high-quality data in the field of machine
learning. In areas where such efforts are possible such as in medicine (Wang et al.,
2017), data-driven priors for generative models have large potential (Tezcan et al.,
2018) and have already been shown to outperform traditional methods such as Lasso
(Mardani et al., 2017).

8.13 Challenges in representing the Prior
for large-scale Inverse Problems

Bayesian inversion using GAN priors has been applied to synthetic acoustic (Chap-
ter 6) and to reservoir history matching (Chapter 7) cases where the prior was
represented by a GAN trained on a set of object-based models of fluvial river systems.
For practical applications of the outlined inversion scheme to real datasets we need
to consider the representation of the prior, the implementation of the forward model
and the sampling strategy.

For the case of seismic inversion, the domain where properties were inferred is a
subdomain of the overall computational domain which emulates an inversion being
performed only in the reservoir interval. Creating a high-fidelity prior represented by
a deep generative model that is able to capture high-resolution details of a realistic
basin-scale inversion problem is most likely not feasible and not fit-for-purpose.
Richardson, (2018) has shown that large-scale inversion of salt-domes with a prior
represented by a GAN is possible which is a problem that lies between the reservoir-
and basin-scale.

When considering large-scale full-waveform inversion problems one of the chal-
lenges is to find a good initial model that allows convergence of the FWI inversion
algorithm. It may therefore be more beneficial to train deep generative models on
much simpler relationships of P-wave velocity and density with respect to depth
and using such a differentiable generative model to find good starting models for
a traditional FWI approach. Where geological knowledge and well data justify
reservoir-scale representations more detailed prior models based on deep generative
models as is presented in Chapter 6 can be applied.

Where enumerating the space of possible geological scenarios is not possible or
collecting a sufficiently large dataset to train a deep generative prior is not possible,
other generative priors that do not rely at all on a training set may be more successful.
The so-called deep-image-prior (DIP) (Ulyanov et al., 2018) considers a CNN with
random weights, which are fixed during the inversion process, and a random latent
variable code that serves as the input to the CNN and which is optimized to find a
solution to the inverse problem. One of the drawbacks of DIP is that the networks
considered are highly over-paramterized compared to the space of images they aim to
represent. This means that these networks tend to overfit to the input data and most
importantly to the noise present within natural images. Therefore early stopping has
to be applied to prevent the networks from overfitting (Van Veen et al., 2018). In
contrast under-paramerterized neural networks have been shown to perform equally
well compared to DIP and without the need for early stopping because the networks
do not have enough degrees of freedom to overfit to high-frequency noise (Heckel and
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Hand, 2018). Due to their simplicity they also allow theoretical investigation into
the ability for these approaches to be used for inverse problems (Heckel and Hand,
2018).

In the case of reservoir history matching, the space of conceptual geological models
may be much smaller and can be reduced to a well-defined prior by an integrated
reservoir development team. Therefore creating deep generative priors based on
existing object-based or geostatistical approaches may be feasible.

8.14 Representing the Forward Problem
Practical application of the presented approaches relies on efficient methods to
compute the forward model. Both applications of deep generative priors for seismic
inversion and reservoir history matching use a numerical solution of the system of
partial differential equations that governs the forward problem as well as computation
of the adjoint to calculate gradients for the considered gradient-based inference
methods, MALA and MAP sampling.

Numerical solution of the governing equations on real datasets is computationally
demanding and may therefore be prohibitive to applying generative priors for inversion
in a geophysical context. The requirement of fast forward and adjoint-solvers
motivates the use of proxy-models to replace the numerical solution and where
required by the inference method, also the adjoint.

In the case of linear acoustic waveform tomography such approximate models can
be learned using neural networks (Holm-Jensen and Hansen, 2018; Holm-Jensen and
Hansen, 2019). Specialized CNNs developed in the field of speech synthesis (Oord
et al., 2016c) have been adopted as proxy models for acoustic wave tomography
(Moseley et al., 2018). Applying direct mappings to pre-stack seismic data (Röth
and Tarantola, 1994; Araya-Polo et al., 2018; Yang and Ma, 2019; Li et al., 2019)
or post-stack seismic data (Mosser et al., 2018b) to perform acoustic inversion have
been proven successful on synthetic datasets.

Fluid flow modeling at pore and reservoir-scale can be accelerated using a similar
approach such as learning temporally coherent representations of fluid flow (Tompson
et al., 2017; Xie et al., 2018; Kim et al., 2019) and accelerating lattice-Boltzmann
simulations (Hennigh, 2017). Directly incorporating operators of partial differential
equations into so-called physics-informed neural networks (PINN) (Raissi et al., 2019;
Wu et al., 2018) can further help to regularize the solution space of neural networks
to be in agreement with the governing physical laws.

In conclusion, it is clear that using data-driven deep generative models as prior
distributions shows promise for solving inverse problems. The work I have presented
in this thesis represents a contribution to this new and emerging field where I
first considered using deep generative models as an unconditional prior distribution
(Chapters 3-4) and consequently used deep generative prior distributions in the
context of Bayesian inversion (Chapters 6-7).

Nevertheless, future work will need to address some of the theoretical limitations
of our understanding of these methods before applying deep generative priors in a
practical context. For a limited subset of problems in the field of compressed sensing
there have been early successes at showing that this new family of methods can
outperform traditional approaches (Bora et al., 2017; Ulyanov et al., 2018; Heckel
and Hand, 2018). Due to the sparse nature of the information of the subsurface, the
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challenges in computational complexity, as well as the ability to obtain representative
data to train deep generative models as prior distributions motivates the future
development of specific techniques and algorithms at the intersection of inverse
problems, geostatistics, and deep generative modeling.
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Chapter 9

Conclusions

Recent advances in deep generative modeling (Goodfellow et al., 2014; Kingma
and Welling, 2013; Oord et al., 2016a), have enabled the representation of complex
multi-modal distributions of natural images which are parameterized by deep neural
networks. In this thesis, I have introduced generative adversarial networks (Good-
fellow et al., 2014) as a new approach to create stochastic realizations of geological
features at pore and reservoir-scale. GANs consist of two competing neural net-
works that learn a generative function to sample from high-dimensional probability
distributions that are implicitly defined by a set of training images.

At the pore-scale, a number of training images were obtained from micro-CT
imaging and segmented into pore and grain domains. These binary training images
were then subsequently divided into smaller subvolumes or patches to create a training-
set of images to train a GAN generator-discriminator network pair. In Chapter 3 I
have used a fully convolutional neural network architecture for the GAN generator
that is first trained on patches of images and after training can be used to generate
significantly larger samples of porous media. I have evaluated the generated stochastic
realizations in terms of spatial statistical and image morphological properties as well
as their fluid flow properties and good agreement was found between the statistical
and physical properties of a held-out test-set of micro-CT images and GAN generated
realizations.

While the GAN generated samples honor the average statistical and physical
behavior the sampled realizations show a lower diversity and range of variance than
properties measured on test-set images. This most likely stems from the mode-seeking
behavior of GANs where the generator only learns to represent a subset of the modes
of the modeled multi-modal distributions implicitly defined by the set of training
images. Since the publication of the work presented in Chapters 3-4 a number
of improved GAN formulations (Arjovsky et al., 2017; Miyato and Koyama, 2018;
Zhang et al., 2018) have been proposed to counteract mode-collapse behavior. One of
these improved methods, so-called Wasserstein GANs (Gulrajani et al., 2017; Petzka
et al., 2017), have been used in the later chapters of this thesis. Future work on
GANs for stochastic modeling at pore- and reservoir-scale should evaluate the use of
new measures of image quality and diversity (Arora and Zhang, 2017) such as the
Inception Score (Salimans et al., 2016) or Frechet Inception Distance (Heusel et al.,
2017).

Chapter 5 shows that GANs can be readily conditioned to observed data by
using a gradient-based image inpainting approach (Yeh et al., 2016; Dupont et al.,
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2018). Optimizing the latent variables z to create an output from the generator that
matches the observed data, and including a perceptual feature loss based on the
discriminator’s evaluation of the generated images, allows high-fidelity realizations to
be obtained that honor the observed data. By using a second neural network that is
trained to infer the latent variables, conditional realizations can be obtained directly
from a GAN (Chan and Elsheikh, 2018a) and other deep generative models such as
PixelCNNs (Oord et al., 2016a) that use a per-pixel sequential generation of new
random samples can be used to generate samples without the need for gradient-based
optimization of latent variables.

The probabilistic nature of deep generative models such as GANs allows their
use as a prior distribution in a Bayesian inversion framework. In Chapters 6-7 I
first created synthetic object-based models that resemble a fluvial channel body
system embedded in a shale matrix. Each object-based model represents continuous
petrophysical property distribution such as the P-wave velocity, permeability or
porosity as well as the spatial distribution of the rock-type facies, sand or shale.
A GAN parameterized by deep convolutional neural networks was then trained to
sample new stochastic realizations of these object-based models.

In Chapter 6 I considered the case of Bayesian inversion of acoustic rock properties
of a synthetic fluvial reservoir system. The GAN prior was coupled with a forward
model of the acoustic wave equation in a full-waveform inversion scheme. Gradients
of the data-mismatch with respect to the grid-block scale property distributions
generated by the GAN were obtained using the adjoint-state method. Facies dis-
tributions at the wells were incorporated in the inversion approach by assuming
conditional independence between the likelihood of the observed seismic data and a
Bernoulli likelihood assumed for the facies indicator variable. Bayesian inference of
the latent variables that control the output of the GAN prior was performed using
an approximate MCMC method (Roberts and Rosenthal, 1998). Inference under
a varying number of acoustic sources was performed to determine the influence of
increasing the available seismic information on the posterior distribution. Incorpo-
rating the Bernoulli likelihood for facies data observed at wells, allowed realizations
to be conditioned to well and seismic data.

At the reservoir-scale, building a single conditional GAN to output numerous
reservoir architectures (Mirza and Osindero, 2014; Miyato and Koyama, 2018) or
training a number of GANs on e.g. training images corresponding to different
environments of deposition (Chapter 8) may be feasible. I therefore considered the
ill-posed inverse problem of reservoir history matching as a second application of
Bayesian inversion with a GAN prior. A two-dimensional flow-problem of water
injection into an oil-saturated reservoir with an injector-producer pair was considered.
Similar to Chapter 6 and Mosser et al., (2018d) a fully differentiable graph was
created to allow MAP sampling from a number of random starting locations in latent
space using gradient-descent. The proposed inference method, based on the Bayesian
inversion framework outlined in Chapter 6 and Mosser et al., (2018d) converges
readily to a local maximum of the posterior that matches observed production rates
and pressures as well as facies data at the wells.

Nevertheless, the non-linear mapping between the latent-space and the model
domain makes optimization using gradient-based techniques challenging. Rigorous
theoretical proofs of convergence have only recently been obtained for a limited set
of neural network models and optimization strategies (Bora et al., 2017; Shah and
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Hegde, 2018; Heckel and Hand, 2018).
The computational challenge of calculating the forward problem in inverse prob-

lems as well as obtaining gradients using the adjoint-state method motivates the
development of new proxy models. By first generating a number of numerical sim-
ulations and training deep neural networks (Holm-Jensen and Hansen, 2019) as a
proxy to map from model parameters to a solution of the forward problem allows a
differentiable representation of the forward problem to be obtained.

Physics informed neural networks show the potential to constrain overparameter-
ized neural networks to a solution space that honors the governing physical relation-
ships (Raissi et al., 2019; Wu et al., 2018). In future work, neural network-based
parameterizations of the forward-problem could accelerate the proposed Bayesian
inversion approach presented in Chapters 6-7.

Furthermore, generative models based on invertible neural networks and self-
normalizing flows (Rezende and Mohamed, 2015; Dinh et al., 2016) have been used
to solve ill-posed inverse problems in a fully data-driven framework (Ardizzone et al.,
2018) and could in future work be used to map between the geophysical parameter
space and observed data without an explicit representation of the likelihood.

The recent advances in the theoretical understanding of GANs (Mescheder et al.,
2017; Mescheder et al., 2018; Arora and Zhang, 2017), the development of new
families of deep generative models (Ardizzone et al., 2018; Dinh et al., 2016; Kingma
and Dhariwal, 2018), and the successful applications of GANs in compressed sensing
(Hand et al., 2018), represent numerous opportunities to develop new subsurface
inversion techniques using deep generative models to represent prior distributions.
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