
Imperial College of Science, Technology and Medicine

Department of Mathematics

Aspects of Positive Definiteness and
Gaussian Processes on Planet Earth

Tasmin L. Symons

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Mathematics of Imperial College, August 2019



Abstract

This thesis studies characterisations and properties of spatial and spatio-

temporal Gaussian processes defined over the sphere Sd (or in the spatio-

temporal case the product of the sphere and the real line Sd × R. Such

processes are of importance in global weather and climate science, where the

geometry is necessarily spherical, but, especially in the dynamic setting, they

are less well-studied than their Euclidean counterparts.

Beginning with Brownian motion, we first look at characterising Gaussian

randomness on Sd and Sd × R, and how it compares with the Euclidean

setting – we show that the characterisation theorems of Gaussian processes

on spaces of types spanning Rd, Sd and Sd×R can be phrased as consequences

of a powerful general theorem of harmonic analysis. We go on to find the

answer to a recent question posed about dimension-hopping operators for

positive-definite (i.e. covariance) functions on Sd × R, and consider how

we could go about constructing dimension-hopping operators with the semi-

group property on the sphere.

Later, we address the theory of the path properties of these processes, extend-

ing a finite-dimensional result the the infinite-dimensional case and showing

that a remarkably elegant approach for processes on Rd carries over to our

setting. We finish by finding the analogue of the powerful Ciesielski isomor-

phism for continuous functions on the two-sphere.
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Foreword

Much of the work in this thesis has already been published, or submitted for

publication.

1. Chapter 1 summarises, as background and motivation for what follows,

the contents of:

N. H. Bingham, Aleksandar Mijatović and Tasmin L. Symons, Brow-

nian Manifolds, Negative Type and Geotemporal Covariances, Com-

munications on Stochastic Analysis 10(4) (2016), 421 – 432. DOI:

10.31390/cosa.10.4.03

2. Chapter 2 expands on my work in:

N. H. Bingham and Tasmin L. Symons, Probability, Statistics and

Planet Earth I: The Bochner-Godement theorem and Geotemporal Co-

variances. Submitted to Probability Surveys.

3. The results in Chapter 3, Sections 1 and 2, have been published in:

N. H. Bingham and Tasmin L. Symons, Dimension walks on Sd×R.

Statistics and Probability Letters 47 (2019), 12 – 17. DOI:10.1016/

j.spl.2018.11.014

4. The work in Chapter 4 has been written for publication in:

N. H. Bingham and Tasmin L. Symons, Aspects of Gaussian pro-

cesses on spheres. Submitted to Stochastic Processes and their Appli-

cations (Larry Shepp Memorial Special Issue).
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Introduction

Described as a ‘beautiful marriage’ by Gelfand and Schliep [GS16], the com-

bination of Gaussian processes with spatial statistics is ‘the most valuable

tool in the toolkit for geostatistical modeling.’ The literature agrees – Gaus-

sian random fields over (subsets of) R2 have become ubiquitous in spatial

statistics, with applications ranging from disease mapping [Bat+19] to un-

derstanding patterns in terrorism [Pyt+19].

In light of the scientific challenges posed by monitoring our changing planet,

our interest is driven by a desire to model environmental phenomena – our

weather, oceans, and climate. Gaussian processes are useful here in a variety

of ways, including building statistical emulators of more expensive dynamics-

based models [PAF18]. The governing physical processes here are supremely

complex. They are also intrinsically global. The mathematical objects of

interest, then, are Gaussian processes defined on the sphere S2, or, when the

process of interest evolves with time, S2 × R.

It is the study of these processes which drives this thesis. Much of the theory

of Gaussian processes on a d-dimensional sphere is classical, but the area is
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Introduction 2

active and growing apace. The theory of Gaussian processes which evolve

‘geo-temporally’ – in space on the sphere and in linear time – is still very

much in its infancy. This thesis aims to contribute to both theories, and

highlight how they complement one another.

The plan of this thesis is as follows. In Chapter 1 we consider the prototypical

Gaussian process, Brownian motion, parametrised by our parameter spaces

of interest – Sd and Sd × R. The theory here is largely geometric in nature,

as is the question of whether a given manifold is Brownian (i.e. supports a

Brownian motion). The sphere Sd is Brownian, a result well-known and due

to Lévy [Lév59]. Whether Sd × R is Brownian, however, depends entirely

on the manner in which × is interpreted – if we consider it as a product

manifold then Brownian motion, surprisingly, does not exist.

Motivated by this, in Chapter 2 we consider characterising more general

Gaussian processes on Sd and Sd×R. As (mean zero) Gaussian processes are

defined entirely by their covariance, this is equivalent to characterising posi-

tive definite functions on Sd and Sd ×R. We find an alternative formulation

of a recent result of Berg and Porcu [BP17] characterising the positive defi-

nite functions on Sd×R. Our formulation follows elegantly from the classical

Bochner-Godement theorem. We also discuss the challenges of characterising

strict positive definiteness on Sd × R.

Chapter 3 concerns walks on dimensions, dimension-hopping operators which

preserve positive definiteness. These are useful in defining new parametric

families of covariances for applications. We extend a pair of papers by Beat-
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son and zu Castell [BC17; BC16] to the geo-temporal case, and explore an

alternative dimension-hopping operator based on properties of the ultras-

pherical polynomials.

In Chapter 4 we discuss the fascinating path properties of Gaussian ran-

dom fields on Sd and Sd × R. This is a rapidly growing area of research,

and, after obtaining Belyaev’s dichotomy for fields on the sphere, we survey

two approaches to quantifying the regularity of a spherical process’s paths:

one concerns asymptotic estimates [Mal13], the other integrability condi-

tions [LS15]. We extend a theorem of Malyrenko’s to the Hilbert sphere S∞,

and show that the Schilling’s [Sch00] remarkable approach to proving the

Kolmogorov-Chentsov theorem is valid for processes parametrised by Sd.

Finally, in Chapter 5 we find a Ciesielski isomorphism – an isomorphism

between a function space and a sequence space – for functions in C(S2).

In the classical setting the Ciesielski isomorphism has become an invaluable

tool, but the Faber-Schauder construction used to prove the isomorphism

[Sem82] requires some adapting to the spherical setting. This is addressed

here.

We finish with a brief summary and some ideas for future directions of re-

search.



Chapter 1

Brownian Manifolds

A stochastic process, X = {Xt} is a mathematical model for a random

phenomenon evolving temporally, with time t. In many applications it is

preferable for the relevant parameter to be a point in space – a spatial process,

or a random field; sometimes we need both time and space – a spatio-temporal

process. Our main interest here is the case when space is a sphere (a model

for the Earth). In this case we will speak of a geo-temporal process.

Let (Ω,F ,P) be our probability space, and (R,B(R), µ) be a measurable

space with measure µ (more general measure spaces are permissible, but in

this thesis we will focus on real-valued random fields).

Definition 1.1. A stochastic process parametrised by an index set M on

(Ω,F ,P) (we will usually say ‘a stochastic process on M ’, leaving the prob-

ability space to one side) is a family {Xt : t ∈ M} of random variables.

4



1.1. Brownian manifolds and negative type 5

That is, for each t ∈ M , Xt is a measurable mapping from (Ω,F ,P) to

(R,B(R), µ). For fixed ω ∈ Ω the set {Xt(ω) : t ∈ M} is the path of the

field.

The simplest manifold that might be used for the space variable is Euclidean

space, of dimension d say, Rd. In the (particularly classical) literature this

set-up is sometimes referred to as multi-dimensional (d-dimensional) time.

Throughout this thesis we concern ourselves with Gaussian random fields

on the sphere Sd and on the sphere-cross-line Sd × R. As the prototypical

Gaussian process is Brownian motion, an exploration of Brownian motion in

these two scenarios is of value. The work in this chapter has been published in

colloboration with N. H. Bingham and Aleksandar Mijatović as [BMS16] and

is presented here with their kind permission as background and motivation

for the work on more general Gaussian processes to follow in Chapters 2 – 5.

1.1 Brownian manifolds and negative type

1.1.1 Lévy’s Brownian motion with multi-dimensional

time

A sensible definition of Brownian motion – the stochastic process describing

the motion of particles suspended in fluid – is as the centred Gaussian process
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B = (Bt : t ∈ R) with incremental variance

i(s, t) := E[(Bt −Bs)
2] = |t− s| (1.1)

and B0 = 0. It is helpful, here, to regard B as a map t 7→ Bt from R to the

Hilbert space H = L2(Ω,F , P ), so we have

‖Bt −Bs‖2 = |t− s|, (1.2)

the left-hand side being the incremental variance. The covariance is then

given by the inner product

c(t, s) := 〈Bt, Bs〉 =
1

2
(|t|+ |s| − |t− s|). (1.3)

The linearity of the inner product shows that increments Btn−Btn−1 , Btn−1−

Btn−2 , . . . , Bt1−Bt0 are uncorrelated and thus are independent, by the Gaus-

sianity of B.

Defining the Brownian covariance as an inner product allows us to extend

to multi-dimensional processes. Lévy [Lév48] showed that one can define

Brownian motion with multi-dimensional time (or “multi-parameter Brown-

ian motion”, or, in two dimensions, a “Brownian sheet”) as the real-valued

centred Gaussian process B = (Bt : t ∈ Rd) with incremental variance given

by the d−dimension equivalent of (1.1). For later treatments, see also [Lév59;

Lév66].
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We have

i(s, t) = c(s, s) + c(t, t)− 2c(s, t), (1.4)

and as c(s, s) = E[B2
s ] = i(s, 0),

c(s, t) =
1

2
(i(s, 0) + i(t, 0)− i(s, t)). (1.5)

Thus either of c, i determines the other; i is more convenient here.

Lévy also showed that Brownian motion can be defined so as to be parametrised

by the sphere Sd ⊂ Rd+1, in addition to Rd as above. Now the incremental

variance is given by the geodesic distance d on the sphere (from the North

Pole o, which plays the role of the origin above):

i(s, t) = ‖Bs −Bt‖2 = d(s, t). (1.6)

Thus
√
d(s, t) = ‖Bt −Bs‖; one calls

√
d a Hilbertian distance.

A word on terminology: our incremental variance is also known by several

other names: the variogram (a term due to Matheron, arising in mining), the

structure function (Yaglom), mean-squared difference (Jowett), etc.; see e.g.

Cressie ([Cre93, §2.3.1]).
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1.1.2 Brownian and non-Brownian manifolds

For M a manifold with geodesic distance d, or more generally with (M,d)

a metric space, one can proceed as above and call B = (Bx : x ∈ M) a

Brownian motion parametrised by M if the Bx are centred Gaussian, the

incremental variance is the geodesic distance,

E[(Bx −By)
2] = d(x, y), (1.7)

and the finite-dimensional distributions are Gaussian (that is, linear com-

binations
∑
ciBti are Gaussian). Then (1.6) above is satisfied with d the

geodesic distance on M . Call such a manifold, or metric space, Brownian.

Euclidean space and spheres are Brownian, by Lévy’s results above. Further

examples are given by the real or complex hyperbolic spaces, a result due to

Faraut and Harzallah ([FH74, Prop. 7.3.]) (and implicit in Gangolli [Gan67]).

By contrast, quaternionic hyperbolic spaces are not Brownian ([Far73, Cor.

IV.2] or [FH74]), and nor is the octonion (Cayley) projective plane.

The question of whether a space M is Brownian is thus purely geometric, as

it depends on whether a map B exists satisfying (1.6).
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1.1.3 Spaces and kernels of negative type

Definition 1.2. A metric space (M,d) is of negative type if

∑n

i,j=1
d(xi, xj)uiuj ≤ 0 (1.8)

for all n = 2, 3, · · · , all points xi ∈M and all real ui with
∑
ui = 0 (the term

conditionally negative definite is also used, reflecting the condition
∑
ui = 0).

Call M of strictly negative type if the sum above is negative for all such ui

not all zero.

Such spaces are important in a variety of contexts, and have been studied at

length in the books by Blumenthal [Blu70] and Deza and Laurent [DL97].

A function k : X×X → R mapping a pair of inputs to a real number is often

referred to as a kernel – the term comes from the theory of integral operators,

where kernel functions act as weights (Tkf)(x) :=
∫
k(x, y)f(y)dµ(y). We say

a kernel is of negative type if

∑n

i,j=1
k(xi, xj)uiuj ≤ 0 (1.9)

for all n = 2, 3, · · · , all points xi ∈ M and all real ui with
∑
ui = 0, and of

positive type (or positive definite) if

∑n

i,j=1
k(xi, xj)uiuj ≥ 0 (1.10)
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for all n = 2, 3, · · · and all points xi ∈M ; similarly for strictly positive type.

Incremental variances i are of negative type: using (1.4)

n∑
i,j=1

i(xi, xj)uiuj =
n∑

i,j=1

[c(xi, xi) + c(xj, xj)− 2c(xi, xj)]uiuj (1.11)

=
n∑
i=1

c(xi, xi)ui

n∑
j=1

uj +
n∑
j=1

c(xj, xj)uj

n∑
i=1

ui

− 2
n∑

i,j=1

c(xi, xj)uiuj (1.12)

=− 2
n∑

i,j=1

c(xi, xj)uiuj ≤ 0, (1.13)

since
∑
ui = 0 and covariances c are of positive type.

1.1.4 Schoenberg’s theorems

It was shown by Schoenberg [Sch37; Sch38] that a metric space (M,d) is of

negative type if and only if there is a map φ : M → H for some Hilbert space

H with

d(x, y) = ‖φ(x)− φ(y)‖2. (1.14)

Thus, when H = L2(Ω,F , P ) as before, M is Brownian if and only if it is

of negative type, and then Brownian motion B on (parametrised by) M is

the map φ above. Then φ : (M,
√
d)→ H is called the Brownian embedding

(or just, embedding). See Lyons [Lyo13] for a short proof of Schoenberg’s

theorem.
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The other classical result of Schoenberg relevant here [Sch38] is that a kernel

k is of negative type iff e−tk is of positive type for every t ≥ 0. This suggests

the Lévy-Khintchine formula, and was part of Gangolli’s motivation for his

theory of Lévy-Schoenberg kernels [Gan67].

1.1.5 Geo-temporal covariances

We now turn to less classical matters. When modelling phenomena on the

globe, we need both a space coordinate (on the sphere) and a time coordinate

(on the line or half-line); thus the space M = S × R (or M = S × R+) is

needed. The most basic Gaussian process one might wish to model on M is

Brownian motion. But the product can be taken in several different senses,

and it turns out that the question of existence of Brownian motion depends

on which kind of product we take. Recall that by Lévy’s results, Brownian

motion exists on both S and R (or R+), since both are of negative type.

First, take the product of metric spaces, under Hamming distance (“city-

block metric”), under which distances s add:

s := s1 + s2, (1.15)

in the obvious notation. From the definition of negative type, this property

is preserved under such products; see e.g. [Blu70, §3.2]. So Brownian motion

on the sphere cross line exists, with the product taken in this sense.
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Next, one can take the product under the ordinary cartesian (or pythagorean)

rule:

s2 := s1
2 + s2

2. (1.16)

Here again, Brownian motion exists. McKean [McK63] gives a thorough

study of the white-noise case (from which the Brownian case follows by inte-

gration), starting from the work of Chentsov [Che57] on white noise in this

setting. McKean’s construction moves between Euclidean space Rd+1 and

‘sphere cross half-line’, Sd × R+.

By contrast, if one takes the cartesian product of two Riemannian manifolds,

distance is given by the differential cartesian rule [Lee18, p. 20]:

ds2 := ds2
1 + ds2

2, (1.17)

again in the obvious notation. It turns out that M = S × R is no longer of

negative type – so is no longer Brownian – viewed as a manifold in this way.

The same holds for any product of manifolds with at least one spherical factor

– or even a factor with two pairs of antipodal points. This is purely geometric,

rather than probabilistic – see [HKM02] for background and details.

Thus Brownian motion exists on M = Sd×R, regarded as a product of metric

spaces in both the above senses, though not of Riemannian manifolds. This

provides a route to geo-temporal modelling – but separates the effects of

space and time.
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1.1.6 Remarks

1. Testing for independence

Ideas closely related to the above have found applications in statistics, in

the work of Székely, Rizzo and Bakirov [SRB07] and Székely and Rizzo

[SR09]. See in particular the extensive commentary to the invited paper

[SR09]. Their work introduces the concept of distance correlation (later sim-

plified by Lyons, below) to develop non-parametric tests of independence for

high-dimensional random vectors without needing to invert large matrices

at (prohibitively) large computational cost. Distance covariance, defined for

two random vectors X and Y with characteristic functions fX , fY and joint

characteristic function fX,Y by V(X, Y ) = ||fX,Y (t, s) − fX(t)fX(s)||2 for a

suitable choice of norm ||.|| (see [SR09, §2.2]), is shown to be a natural exten-

sion of Pearson’s correlation, with the crucial distinction that zero distance

correlation implies independence.

The test statistic developed by Székely and Rizzo depends only on the dis-

tance between observations: given a bivariate sample ((X1, Y1), · · · , (Xn, Yn)),

where each coordinate has finite mean, it turns out that one can test for in-

dependence of the X- and Y -coordinates, consistently against all alternatives

(again, with finite means) by test statistics involving only distances between

observations.

2. Distance covariance

The theory of distance covariance in metric spaces has been re-worked and
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simplified by Russell Lyons [Lyo13; Lyo14]. The crux is, as above, that the

distance covariance of (X, Y ) is zero if and only if X and Y are independent.

It turns out that this does not hold for general metric spaces, but does so

exactly for those of strong negative type, a class that includes Euclidean

spaces.

3. Other approaches

The first person to use white-noise integrals for Lévy’s Brownian motion was

Chentsov [Che57], an approach later taken up by Lévy himself [Lév66], and

McKean [McK63].

4. Hypergroups

The theory of hypergroups is by now well established, but too extensive for

us to discuss here. We refer to the standard work on the subject by Bloom

and Heyer [BH94]. Hypergroups make contact with the work studied here,

for instance through our main example, the symmetric spaces of rank one;

these have constant curvature κ. For the spherical case κ > 0, the rele-

vant hypergroup here is the Bingham (or Bingham-Gegenbauer) hypergroup

[Bin72b], [BH94, p. 3.4.23]. For the Euclidean case κ = 0, it is the Kingman

(or Kingman-Bessel) hypergroup [BH94, p. 3.4.30]. For the hyperbolic case

κ < 0, it is the hyperbolic hypergroup [BH94, p. 3.5.68].

5. Markov property

In one dimension, the Markov property is expressed by present time being

a splitting time: past and future are conditionally independent given the

present. In higher dimensions, the geometry is necessarily more complicated.
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In the plane, for example, one might have values within and without a contour

conditionally independent given values on the contour.

6. Fractional processes

Brownian motion is too smooth for some purposes, and may be usefully gen-

eralised to fractional Brownian motion, which has a parameter that governs

the degree of smoothness. Such fractional Gaussian fields have been studied

in contexts related to ours by Gelbaum [Gel14].

7. Higher dimensions

It is of interest to see what happens to the n-dimensional spheres and hyper-

bolic spaces considered here as the dimension n→∞. There has been much

studied in recent decades, due largely to Olshanski, Okounkov and Vershik.

For background and details, see several recent papers by Jacques Faraut, e.g.

[Far12].

1.2 Preliminaries from Riemannian geometry

and harmonic analysis

We have established that Sd × R, viewed as a manifold, does not support

Brownian motion. This raises the question: what kinds of Gaussian random-

ness can exist in space-time, when the space is a sphere? Answering this boils

down to the theory of spherical functions on symmetric spaces and, pending

the answer in Chapter 2, we sketch the theory we will need from geometry
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and harmonic analysis below.

1.2.1 Spaces of constant curvature

We refer the reader to [Tu07] for an introduction to general manifolds, and

satisfy ourselves here by specialising to the three familiar examples of Rie-

mannian manifolds of constant curvature κ:

1. κ = 0: Euclidean space Rd;

2. κ > 0: spheres Sd := {x ∈ Rd+1 : ||x|| = 1};

3. κ < 0: hyperbolic space Hd.

As noted above, one can extend Lévy’s results on Brownian motion on Rd

and Sd to Hd: we summarise this by saying that Sd,Rd,Hd are Brownian

manifolds: they can be index spaces for Brownian motion.

These three families are the main examples of Riemannian symmetric spaces

(below) of rank one. By contrast, the other examples are not Brownian: see

the comment on the Kazhdan property below.

1.2.2 Symmetric spaces

A symmetric space (Helgason [Hel1,2,3,4], Wolf [Wol1,2]) is a Riemannian

manifold M whose curvature tensor is invariant under parallel translation.
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These are the spaces where at each point x the geodesic symmetry exists:

this fixes x and reverses the (direction of) geodesics through x, an involu-

tive automorphism [Wol2, Ch. 11]. Then M is a Riemannian homogeneous

space M = G/K, with G a closed subgroup of the isometry group of M

containing the transvections, and K the isotropy subgroup of G fixing the

base-point x; (G,K) is called a Riemannian symmetric pair. The Banach

algebra L1(K\G/K) of (Haar) integrable functions on G bi-invariant under

K is commutative. Such pairs are called Gelfand pairs, and such Banach

algebras are called commutative spaces [Wol07]. We remark that the product

of two symmetric spaces is itself symmetric.

1.2.3 Spherical functions

For harmonic analysis on symmetric spaces, one needs (cf. the Fourier trans-

form in Euclidean space and the Gelfand transform for Banach algebras)

spherical measures, spherical functions and the spherical transform [Wol07,

Ch. 8, 9]. For (G,K) a Gelfand pair (with G at least locally compact, which

covers all our cases of interest), a spherical measure m is a K-bi-invariant

multiplicative linear functional on Cc(K\G/K); a spherical function is a con-

tinuous function φ : G→ C with the measure mφ(f) :=
∫
G
f(x)φ(x−1)dµG(x)

spherical. The spherical transform for (G,K) is the map

f 7→ f̂(φ) := mφ(f) =

∫
G

f(x)φ(x−1)dµG(x). (1.18)
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The positive definite spherical functions φ on (G,K) are in bijection with the

irreducible unitary representations π of G with a K-fixed unit vector u via

φ(g) = 〈u, π(g)u〉 (1.19)

(the Gelfand-Naimark-Segal construction). These form the spherical dual, Λ,

which will be of central importance to the results in Chapter 2.

Spherical functions have the following properties:

1. φ is uniformly continuous on G;

2. φ(x)φ(y) =
∫
K
φ(xky)dk, for x, y ∈ G;

3. φ(1) = 1;

4. φ is positive definite on G;

5. f ∗ φ is proportional to φ for all f ∈ Cc(K\G/K).

When the space is compact the spherical functions form a countable set – in

the case of the d−sphere this the set of ultraspherical polynomials of index

λ = (d−1)/2. In turn, the addition formula for the Gegenbauer polynomials

reflects (and is most easily proved via) the action of the group SO(d) on the

sphere Sd = SO(d+ 1)/SO(d) as a coset space.

The mathematics here is dominated by orthogonal polynomials as a direct

consequence of the geometry of the sphere: it arises as a quotient of compact



1.2. Preliminaries from Riemannian geometry and harmonic analysis 19

Lie groups; harmonic analysis on these rests on the Peter-Weyl theorem, for

which one has the Schur orthogonality relations.

1.2.4 The Kazhdan property

Before moving on to more general Gaussian processes, let us briefly comment

on the Brownian motion in general symmetric spaces. In this case, when M =

G/K is a symmetric space, the geometrical property of being Brownian has

an algebraic interpretation. Kazhdan defined a locally compact group to have

Property (T ), now called the Kazhdan property, if the unit representation is

isolated in the space of unitary representations. Such Kazhdan groups have

been much studied; see the book by Bekka, de la Harpe and Valette [BHV08]

for a very thorough survey of the development of this theory. In the rank-

one case, the spherical dual can be identified with a set Λ ⊂ R, where if

M is compact Λ is a discrete set. If M is Euclidean, or is real or complex

hyperbolic space, Λ can be identified with [0,∞) so, M is Brownian but is not

Kazhdan (0 corresponding to the unit representation). On the other hand

if M is quaternionic hyperbolic space, or the octonion (Cayley) projective

plane, Λ = {0} ∪ [λ0,∞), where λ0 > 0, so here M is Kazhdan but not

Brownian (see Kostant [Kos69]; cf. [FH74]).



Chapter 2

Geo-temporal Covariances

2.1 Gaussian Processes on the Sphere

We now turn away from Brownian motion to more general Gaussian pro-

cesses on Sd and Sd × R. Characterising isotropic Gaussian randomness on

these spaces boils down to characterising the general form of positive-definite

functions on these spaces. For the sphere this result is classical, and due

to Schoenberg [Sch42]. In the geo-temporal case the result is much more

recent, dating to Berg and Porcu in 2017 [BP17]. In this chapter we survey

the background of positive definite functions on spheres, and proceed to find

an alternative formulation of Berg and Porcu’s result with a much simpler

proof: it is simply a consquence of the Bochner-Godement theorem applied

with some care to the product space Sd × R.

20
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Take a Gaussian process X on (defined on, or parametrised by) I: X =

{Xt, t ∈ I}, on a probability space (Ω,F , P ) taking values Xt ∈ R (or a more

general metric space). In the most general setting, no structure is needed on

the index set I (see e.g. [AT07, §1.2]). All we need is a mean function µ

on I (we centre the process so µ = 0 below unless otherwise stated), and a

covariance function c on I × I,

c(s, t) := cov(Xs, Xt),

which is positive definite (‘non-negative definite’), or of positive type:

n∑
i,j=1

c(ti, tj)uiuj ≥ 0, n ∈ N, ti ∈ I, ui ∈ R. (2.1)

Unless otherwise stated throughout this thesis we assume our covariance

functions are continuous and isotropic – the covariance function c(s, t) de-

pends on the distance d(s, t) (with the appropriate metric). We now define

the classes of continuous isotropic positive definite functions P(I):

Definition 2.1. The class of continuous functions f : I × I → R such that

f is positive definite is denoted P(I).

We abuse notation and redefine P(Sd) as the class of the functions f ∈

C[−1, 1] such that C(x, y) = f(cos d(x, y)) is positive definite on Sd, and

similarly P(Sd×R) is the classes of continuous functions f : [−1, 1]×R→ R

such that f(cos d(x, y), t) is positive definite on Sd × R. To streamline the
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exposition we refer to such functions f as ‘positive definite on the sphere(-

cross-line)’, but the reader should keep in mind that it is actually f composed

with cos which is truly positive definite on the sphere, and similarly for the

sphere-cross-line.

2.2 The Bochner-Godement theorem

In its modern formulation, this very useful result is as follows:

Theorem 2.1 (Bochner-Godement [Wol07, Th. 9.3.4]). The general isotropic

positive definite function f on a symmetric space M is given (to within scale

c) by a mixture of positive definite spherical functions φλ over the spherical

dual Λ by a probability measure µ:

f(x) = c

∫
Λ

φλ(x)µ(dλ), (2.2)

or, fixing x and suppressing it in the notation,

f = c

∫
Λ

φ(λ)µ(dλ). (2.3)

For background and details, see [Wol07, Ch. 9], [FH74, Th. 3.1] – alterna-

tively, [AB76] provides a concise and readable summary of what we need here.

The crucial insight is that the Bochner-Godement theorem, stated as here,

hugely simplifies the proofs of Schoenberg’s theorem and its descendants.
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The case when the symmetric space M is a product M = M1 × M2 of

symmetric spaces Mi is important below. The spherical dual Λ of M is then

accordingly the cartesian product of the Λi:

M = M1 ×M2; Λ = Λ1 × Λ2. (2.4)

Then (2.3) becomes, in the obvious notation,

ψ = c

∫
Λ

φ(λ)dµ(λ) = c

∫
Λ1×Λ2

φ1(λ1)φ2(λ2)dµ(λ1, λ2). (2.5)

The first of the five results is the prototype:

Theorem 2.2 (Bochner [Boc33]). The general stationary positive definite

function f : R → R is a multiple of a characteristic function (Fourier-

Stieltjes transform of a probability measure F ):

f(t) = c

∫
R
eitxdF (x). (2.6)

This is the Euclidean case R = G\K, G = R, K = {e}. In the case where

the covariance function c(t, s) is not just stationary but radial, i.e. c(t, s) =

f(||t− s||) where || · || is Euclidean distance, the radialisation of the Fourier

transform in Bochner’s theorem simplifies to the following early result of

Schoenberg’s.

Theorem 2.3 (Schoenberg [Sch38]). The general radial positive definite
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function f : R+ → R has integral representation

f(t) =

∫ ∞
0

Γ

(
d− 1

2

)(
2

rt

) d−1
2

J(d−1)/2)(rt) dF (r), (2.7)

where F is a probability measure on R+ and J(d−1)/2 is a Bessel function of

the first kind (cf. Bochner and Chandrasekharan [BC49, §II.y]).

These modified Bessel functions arise whenever one radialises a characteristic

function, as in Kingman’s random walks with spherical symmetry [Kin63].

Now we turn to the manifolds of interest in (global) geo-statistical applica-

tions – the sphere Sd and related spaces. Here the spherical dual Λ consists

of families of normalised ultraspherical (also called Gegenbauer) polynomi-

als [AB76, §3]. Before normalisation the Gegenbauer polynomials (Cλ
n) are

defined using the generating function

(1− 2xr + r2)−λ =
∞∑
n=0

Cλ
n(x)rn, |r| < 1, x ∈ C, (2.8)

or, equivalently,

1− r2

(1− 2xr + r2)λ+1
=
∞∑
n=0

Cλ
n(x)λ−1(n+ λ)rn, |r| < 1, x ∈ C. (2.9)

Comparing this to the familiar generating function for the Chebychev poly-

nomials

1− r2

1− 2xr + r2
= T0(x) + 2

∞∑
n=1

Tn(x)tn (2.10)
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the case λ = 0 follows from taking the limit:

lim
λ→0

n+ λ

λ
Cλ
n(x) =


1 n = 0,

2Tn(x) n = 1, 2, . . .

(2.11)

Thus, the family {C0
n(x)/C0

n(1) : n = 0, 1, . . .} is precisely the family of

Chebychev polynomials Tn(x) = cos(n arccosx).

The ultraspherical polynomials form an important subclass of the Jacobi

polynomials P
(α,β)
n (x) when α = β:

Cλ
n(x) =

(2λ)n
(λ+ 1/2)n

P (λ−1/2,λ−1/2)
n (x), (2.12)

where (a)n := a(a+1)(a+2)...(a+n−1) = Γ(a+n)/Γ(a) is the Pochammer

function. For background on Jacobi polynomials see e.g. [AAR99, Ch. 6].

We normalise the ultraspherical polynomials so they take value 1 at x = 1:

W λ
n (x) :=

Cλ
n(x)

Cλ
n(1)

. (2.13)

Then the families {W λ
n : λ > −1/2} are orthogonal polynomials on [−1, 1]

with respect to the probability measure

Gλ(dx) :=
Γ(λ+ 1)√
πΓ(λ+ 1/2)

· (1− x2)λ−1/2dx, (2.14)



2.2. The Bochner-Godement theorem 26

i.e. ∫ 1

−1

W λ
n (x)W λ

m(x)Gλ(dx) =
δm,n
ωλn

, (2.15)

where

ωλn :=
(n+ λ)

λ
· Γ(n+ 2λ)

Γ(2λ)
. (2.16)

Note that we can rewrite Gλ(dx) as

Gλ(dx) =
σd−1

σd
· (1− x2)λ−1/2dx, (2.17)

where σd is the surface area of the d−sphere Sd and setting λ = (d− 1)/2

σd = ω(Sd) =
2π(d+1)/2

Γ((d+ 1)/2)
=

2πλ+1

Γ(λ+ 1)
. (2.18)

The ultraspherical polynomials are closely related to spherical harmonics.

Spherical harmonics of degree n are the restriction to the sphere Sd of real-

valued harmonic homogeneous polynomials in Rd+1 of degree n. A polyno-

mial is harmonic if it is a polynomial solution of the Laplace equation

d+1∑
i=1

∂2u

∂x2
i

= 0, (2.19)

and homogeneous if it defines a homogeneous function (i.e. if all the non-zero

terms are of the same degree). For example, let d + 1 = 2, and n a positive

integer. Then the homogeneous polynomial u(x, y) = x2− y2 satisfies (2.19).

Restricting to the circle S1 we have x = cos θ, y = sin θ and u(θ) = cos 2θ,

the Chebychev polynomial T2(x).



2.2. The Bochner-Godement theorem 27

Allowing the zero-function to be a harmonic homogeneous polynomial of

degree 0 the space Hn(d) of spherical harmonics of degree n on the sphere

Sd ⊂ Rd+1 form a finite-dimensional vector space of dimension (see [AAR99,

9.3])

dim(Hn(d)) = (2n+ d− 1)
(n+ d− 2)!

n!(d− 1)!
(2.20)

= (2n+ d− 1)
Γ(n+ d− 1)

n!Γ(d)

= (2n+ 2λ)
Γ(n+ 2λ)

n!Γ(2λ+ 1)

=
1

n!

n+ λ

λ

Γ(n+ 2λ)

Γ(2λ)
=
ωλn
n!
. (2.21)

Then the orthogonality relation (2.15) can be written as

∫ 1

−1

W λ
n (x)W λ

m(x)(1− x2)λ−1/2dx =
σd
σd−1

1

n!dim(Hn(d))
δm,n. (2.22)

With the ultraspherical polynomials thus introduced we can formulate Schoen-

berg’s theorem, the classical result characterising positive-definiteness on the

sphere.

Theorem 2.4 (Bochner, Schoenberg [Sch37]). For Sd, the general isotropic

pd function f ∈ P(Sd) is (to within scale c) a mixture of (normalised) ultra-

spherical polynomials W λ
n (x) with λ = (d− 1)/2 – that is, f ∈ P(Sd) if and
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only if it has the Fourier-Gegenbauer expansion:

f(x) = c

∞∑
n=0

anW
λ
n (x), an ≥ 0,

∞∑
n=0

an = 1, (2.23)

where x = cos d(x, y), x, y ∈ Sd. The sequence (an) is a mixing law whose

components are the Schoenberg coefficients of f .

Proof. This is immediate from the Bochner-Godement theorem. For the

d−dimensional sphere, the spherical dual Λ(Sd) is given by the (discrete) fam-

ily of ultraspherical polynomials of order λ = (d−1)/2,
{
W λ
n ◦ cos : n = 0, 1, . . .

}
[Bin73; AB76]. Since in this case the spherical dual is discrete, the integral of

the Bochner-Godement theorem is reduced to a sum over n, with the spectral

measure µ now a probability sequence (an).

In particular, writing x = cos θ, the general positive definite function on Sd

is given by

f(x) =
∞∑
n=0

W λ
n (x)an

for some sequence (an) such that an ≥ 0 for all n, and
∑∞

n=0 an = 1.

The classes P(Sd) nest:

P(S1) ⊃ P(S2) ⊃ . . . ⊃ P(S∞). (2.24)

To see this, note that, by definition, if f ∈ P(Sd+1) the n × n matrix

A = (Aij), Aij = f(d(xi, xj)), is positive definite for all finite collections
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x1, . . . , xn ∈ Sd+1. Since S1 ⊂ S2 ⊂ . . ., this holds for all x1, . . . , xn ∈ Sd ⊂

Sd+1, thus f ∈ P(Sd).

We define P(S∞) := ∩P(Sd) to be the set of functions positive definite on all

spheres and, equivalently, positive definite on the infinite-dimensional Hilbert

sphere. In this limiting case the ultraspherical polynomials W∞
n are simply

the monomials xn, and f ∈ P(S∞) if and only if

f(x) = c
∞∑
n=0

anx
n, (2.25)

with an ≥ 0 and
∑∞

n=0 an = 1 [Sch42].

The Fourier-Gegenbauer form of (2.23) allows one to find the sequence of

Schoenberg coefficients (an) from a given function f via the Fourier-Gegenbauer

transform:

an =

∫ 1

−1

f(x)W λ
n (x)(1− x)λ−1/2dx. (2.26)

These coefficients encode entirely the covariance function, and thus the fea-

tures of the underlying Gaussian field. This will be exploited in depth in

later chapters, particularly with regard to path properties, where the conti-

nuity and differentiability properties of the field are defined by the rate of

decay of the sequence (an).

A result generalising the Bochner-Schoenberg theorem to any compact sym-

metric space of rank one is due to Askey and Bingham in the 1970s.

Theorem 2.5 (Askey and Bingham [AB76]). For a compact symmetric space
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of rank one, M , the general isotropic positive-definite function f ∈ P(M) is

(to within scale factor c) a mixture

f(x) = c

∞∑
n=0

anφn(x), an ≥ 0,
∞∑
n=0

an = 1 (2.27)

of the (countably many) spherical functions φn.

Theorem 2.5 completes the picture for non-product spaces. Two recent re-

sults are on products M = M1 × M2 of symmetric spaces. (2.5), com-

bined with the Bochner-Schoenberg theorem, makes the first, on products of

spheres, immediate from the Bochner-Godement theorem [GMP16].

Theorem 2.6 (Guella, Menegatto and Peron [GMP16]). The general isotropic

pd function on Sd1 × Sd2 is

c
∞∑

m,n=0

amnW
λ1
m (x1)W λ2

n (x2), amn ≥ 0,
∞∑

m,n=0

amn = 1, (2.28)

where xi = cos d(xi, yi), xi, yi ∈ Sdi and λi = 1
2
(di − 1).

The second, the case of ‘sphere cross line’ M = Sd × R, was answered by

Berg and Porcu [BP17] in 2017.

Theorem 2.7a (Berg and Porcu [BP17]) The class P(Sd × R) of isotropic

stationary sphere-cross-line covariances f coincides with the class of mixtures

of products of Gegenbauer polynomials W λ
n (x) and positive definite functions
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an(t) ∈ P(R):

f(x, t) = c

∞∑
n=0

an(t)W λ
n (x), an(0) ≥ 0,

∞∑
n=0

an(0) = 1, (2.29)

with x as in Theorem 2.4. The coefficient functions are given by the Fourier-

Gegenbauer transforms

an(t) =

∫ 1

−1

f(x, t)W λ
n (x)(1− x2)λ−1/2dx. (2.30)

We offer here a new, alternative formulation of the Berg-Porcu theorem which

shows it to be, as Schoenberg’s theorem is, a direct corollary of the Bochner-

Godement theorem. Both formulations are illuminating: the Berg-Porcu

formulation of Theorem 2.7a is convenient in practice (indeed, we shall use

it in Chapter 3). Given a function f ∈ P(Sd × R) one can use (2.30) to find

the Fourier-Gegenbauer coefficients, although we note that as in the purely

spatial case the integral in (2.30) rarely has a closed form.

On the other hand, the formulation below displays more explicitly the un-

derlying analysis: Theorem 2.7a combines the mixing law (an) from Schoen-

berg’s theorem with the temporally varying component to obtain a sequence

of positive-definite functions, whereas here we separate them with the main

user-benefit being a quick-and-easy proof, given below.

Theorem 2.7b. The class of isotropic stationary sphere-cross-line covari-

ances P(Sd×R) := {f ∈ C([−1, 1]×R) : f(cos θ, t) is positive definite for θ ∈

[0, π], t ∈ R} coincides with the class of mixtures of products of Gegenbauer
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polynomials W λ
n (x) and characteristic functions φn(t) on the line:

f(x, t) = c

∞∑
n=0

anW
λ
n (x)φn(t), an ≥ 0,

∞∑
n=0

an = 1. (2.31)

Proof. This is the special case of the Bochner-Godement theorem for M =

Sd × R, with spherical dual Λ = Λ1 × Λ2 = N0 × R.

In the product formulation of Bochner-Godement (2.5) take λ = (λ1, λ2) =

(n, x) with n ∈ N0, x ∈ R – then φ1(n) = W λ
n by Schoenberg’s theorem, and

φ2(x) = eix· = {t 7→ eitx, t ∈ R}, by Bochner’s theorem. Thus

ψ = c

∫
Λ

φ(λ)µ(dλ) =

∫
N0×R

W λ
n e

ix·µ(d(n, x)). (2.32)

To perform the integration, we can use the language of either probability

theory or measure theory, depending on the reader’s taste. For the first:

since µ is a probability measure, the integral is an expectation of the random

variable λ = (λ1, λ2) with law µ. So

f = cE[φ(λ)] = cE [φ1(λ1)φ2(λ2)] (2.33)

= cE [E [φ1(λ1)φ2(λ2)|λ1]] , (2.34)

by the Tower property of conditional expectation [Wil91, §9.7] (also some-

times called the Conditional Mean Formula [Wil01, p. 390] or the chain rule

[Kal97, p. 105]). Condition on λ1 = n. The first factor in the conditional

expectation is W λ
n , as in the Bochner-Schoenberg theorem. If the conditional

law of λ2|(λ1 = n) is µn, with characteristic function φn(t), then the second
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factor is the integral of the character eixt with respect to µn, namely φn(t).

The remaining expectation is thus of W λ
nφn(t) over the law a = (an) of λ1,

giving (2.31) as required.

For the second, use disintegration of measures (a generalisation of Fubini’s

theorem to non-product measures: see e.g. Kallenberg [Kal97, Th. 6.4]),

integrating µ on Λ first over the x-variable above for fixed n. This gives a

probability measure, µn. The remaining integration (of W λ
nφn)) is a summa-

tion over n with weights an, again giving (2.31).

Note that, since φn(0) = 1, the mixing law (an) in (2.31) may be determined

via the Fourier-Gegenbauer transform

an =

∫ 1

−1

f(x, 1)W λ
n (x)(1− x2)λ−1/2dx. (2.35)

2.3 Chordal vs. Geodesic distance

As we have seen, the positive definite functions f : Rd+1 × Rd+1 → R are

the Fourier(-Stieltjes) transforms of (positive, finite) measures, by Bochner’s

theorem. If, further, f(x, y) is a radial function purely of the (Euclidean)

distance t = ||x− y|| between its two arguments we can use Theorem 2.3.

A natural question here is whether one can restrict these radial functions

from Rd+1 to isotropic functions on the sphere Sd, whilst retaining positive

definiteness. A recipe due to Yadrenko [Yad83] allows for the construction
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of a positive definite function f̂ on Sd from a positive definite function f on

Rd+1 via the transformation

f̂(θ) = f

(
2 sin

θ

2

)
, θ ∈ [0, π].

Although this construction is convenient, one predictably pays a price for

ignoring the geometry of the sphere. Gneiting [Gne13] highlighted this ap-

proach’s severe restrictions – there is a lower bound of inft>0 1/t sin t ≈ −0.21

on f̂ when d = 2 (the geostatistical case). Moreover, Gneiting argues that,

since sin θ ≈ θ when θ is small, this construction is doomed to conflict with

spherical geometry. It is preferable, therefore, to construct our positive def-

inite functions on the sphere itself, using geodesic (or great circle) distance

in preference to the Euclidean distance above.

2.4 Strict Positive Definiteness

Schoenberg’s theorem characterises the class P(Sd) of isotropic positive-

definite functions on the sphere – that is, functions f such that for any

n ∈ N and any collections u1, u2, . . . un ∈ R and x1, x2, . . . xn ∈ Sd

n∑
i,j=1

f(d(xi, xj))uiuj ≥ 0. (2.36)

Note that this is equivalent to the n × n matrix A := f(d(xi, xj)) being

non-negative definite.
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Definition 2.2. If for all sets of n distinct points on Sd the matrices A =

f(d(xi, xj)) are positive definite (in the sense of matrices, i.e. non-singular,

of full rank, and so on) we say the function f is strictly positive definite,

and write f ∈ P+(Sd).

It is of interest to find necessary and sufficient conditions for membership of

the class P+(Sd). We focus on approaches phrased in terms of conditions on

the Schoenberg coefficients an.

The simplest condition is a sufficient condition found by Xu and Cheney.

Theorem 2.7 (Xu and Cheney [XC92]). Let f ∈ P(Sd) with Schoenberg

coefficients (ak)k∈N. Let x1, x2, . . . xn be distinct points on Sd. If ak > 0 for

0 ≤ k < n, then the matrix Ai,j = f(d(xi, xj)) is positive definite.

Proof. We show Xu and Cheney’s proof in the case d = 1, as a model for the

general case. In fact, Xu and Cheney’s result is stronger when d = 1, with

positivity being enforced only for the first bn
2
c coefficients [XC92, Th. 1]. Let

A ∈ Rn×n be the matrix given by f(d(xi, xj)). Assume, for a contradiction,

that there exists some non-zero u = (u1, u2, . . . un), ui ∈ R such that uTAu =

0.

Recall that, when d = 1 λ = 0 and so the ultraspherical polynomials in the

Schoenberg expansion of f ∈ P(S1) are the Chebyshev polynomials W 0
n(x) =

cos(n arccosx). Writing xi = (cos θi, sin θi), so the arc length d(xi, xj) =
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θi − θj we have

Aij = f(d(xi, xj)) =
∞∑
k=0

ak cos(kd(xi, xj)) (2.37)

=
∞∑
k=0

ak cos(kθi − θj) (2.38)

=
∞∑
k=0

ak cos kθi cos kθj +
∞∑
k=0

ak sin kθi sin kθj, (2.39)

yielding A = B + C, where

Bij =
∞∑
k=0

ak cos kθi cos kθj, Cij =
∞∑
k=0

ak sin kθi sin kθj. (2.40)

These are sums of non-negative definite matrices of rank 1, and are thus non-

negative definite themselves. Thus, by assumption, uTBu = 0 and uTCu = 0

and

0 =
n∑

i,j=1

uiujBij =
n∑

i,j=1

uiuj

∞∑
k=0

ak cos kθi cos kθj (2.41)

=
∞∑
k=0

ak

n∑
i,j=1

uiuj cos kθi cos kθj. (2.42)

Now let r = bn
2
c. Then, since a0, a1, . . . ar are strictly positive,

∑n
i=1 ui cos kθi =

0 for k = 0, 1, . . . , r. Clearly, then, the operator L(f) :=
∑n

i=1 uif(θi) anni-

hilates cos kθ, k = 0, 1, . . . r. The same argument applied to the matrix C

shows that L also annihilates sin kθ, k = 0, 1, . . . , r.

Trigonometric polynomials have the interpolation property – there exists a

trigonometric polynomial p of degree at most r satisfying p(θi) = ui, i =
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1, . . . , n (if n ≤ 2r + 1). Thus,

0 = L(p) =
n∑
i=1

uip(θi) =
n∑
i=1

u2
i > 0, (2.43)

the desired contradiction. So, ui = 0 for all i. The proof of the general case

d > 1 follows along similar lines and we refer the reader to Xu and Cheney

[XC92] for full details.

This yields the following corollary, a sufficient condition for a positive definite

function f to be strictly positive definite.

Corollary 2.1 (Xu and Cheney [XC92]). If f(x) =
∑
anW

λ
n (x) ∈ P(Sd)

and an > 0 for all n, then f ∈ P+(Sd).

Weaker sufficient conditions, and necessary ones, have been found for mem-

bership of P+(Sd) since 1992. A well-known result is the following, by Chen,

Menegatto and Sun [CMS03].

Theorem 2.8 (Chen, Menegatto and Sun). Let d ≥ 2. A function f ∈ P(Sd)

is strictly positive definite, f ∈ P+(Sd), if and only if an > 0 for infinitely

many odd n, and infinitely many even n.

We omit the proof, which relies on careful selection of a polar origin, and then

representing points xi ∈ Sd in polar form using points x′i ∈ Sd−1, allowing the

use of a representation theorem for the ultraspherical polynomials. Note that

this technique fails when d = 1 – indeed, the sufficient condition in Theorem
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2.8 fails in this case and the question of characterising fully the members of

P(S1) remains open.

Questions of membership of P+(Sd×R) are more complicated still, with even

a sufficient condition still elusive – Xu and Cheney’s approach fails (observe

that in the geo-temporal case the double sum in (2.42) cannot be split, as

it will contain a factor of φk(ti − tj), and it does not seem possible to adapt

Chen, Menegatto and Sun’s technique to include a temporal factor.

2.5 Complements

The theory here is rich and historied, and we collect here some remarks

expanding upon more general mathematical and historical aspects of the

above, for interest.

2.5.1 The Gelfand-Naimark-Segal (GNS) construction

For G a topological group, K a closed subgroup, π a unitary representation

of G in a Hilbert space H, say u ∈ H is cyclic if {π(g)u : g ∈ G} generates

a dense subspace of H. The Gelfand-Naimark-Segal (GNS) construction

[GN43; Seg47], which we touched upon slightly when discussing spherical

functions in Chapter 1, says that for φ ∈ P(K\G/K), there exists a unitary



2.5. Complements 39

representation (πφ, Hφ) of G and a K-invariant cyclic unit vector u with

φ(g) = (u, π(g)u) g ∈ G, (2.44)

and (πφ, Hφ, u) is unique up to isomorphism.

The GNS construction permeates the modern treatment of spherical func-

tions on symmetric spaces; see e.g. [Hel62, Ch. X.4]. It is easily seen that

any φ as in (2.44) is positive definite; these are the spherical functions that

arise in, say, symmetric spaces of compact type.

In (2.44) above, φ is an extreme point in the convex set P(K\G/K) if and

only if the unitary representation (πφ, Hφ) is irreducible [Far08, Prop 1.4].

This shows very clearly the role of convexity and the Krein-Milman theo-

rem [Rud91, Th. 3.21] – which states that a compact convex subset of a

locally convex vector space is the closed convex hull of its extremal points –

here. In particular, the classes P(Sd) are convex and the Bochner-Godement

expansion (2.3) may be intepreted as Choquet representations.

2.5.2 Gelfand pairs

For G a locally compact group with compact subgroup K, (G,K) is called a

Gelfand pair if the convolution algebra of K-biinvariant compactly supported

continuous measures on G is commutative; equivalently, if for any locally

convex irreducible representation π of G, its space of K-invariant vectors is
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at most one-dimensional. For symmetric spaces M = (G,K), (G,K) is a

Gelfand pair; see e.g. [Hel62, Th. 4.1].

2.5.3 Pólya criteria

Verifying (strict) positive definiteness is a highly non-trivial task – checking

whether infinitely many of the Schoenberg coefficients of a given function

are positive is almost always a completely intractable problem. Similarly in

Euclidean space, checking whether a given function is positive definite using

Bochner’s theorem is often impossible. To circumvent this, we need easy-to-

check sufficient conditions for positive definiteness. The most ubiquitous of

these is Pólya’s criterion [Gne01; Pól18; Pól49; Luk70].

Theorem 2.9 (Pólya’s criterion [Pól18; Luk70]). If f is even, continuous

and convex on [0,∞), and limt→∞ f(t) = 0, then f ∈ P(R).

A Pólya condition for spheres was found recently by Beatson [BCX14], relying

on a conjecture later proved by Xu [Xu18].

Theorem 2.10 (Pólya’s criterion for spheres [BCX14]). Let d ≥ 2. If f is

such that

1. f ∈ Cλ[−1, 1];

2. supp f ⊂ [0, 1);

3. the derivative from the right of (f ◦ cos)(λ+1)(0) exists;
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4. (−1)λ(f ◦ cos)(λ) is convex,

then f ∈ P(Sd). If, further, f ◦ cos restricted to (0, π) does not reduce to a

linear polynomial, then f ∈ P+(Sd).

The (rather unnatural looking) condition (4 ) is a technical requirement in

[BCX14, Th. 1.3], ensuring tat the Fourier-Gegenbauer coefficients in their

construction of members of P+(Sd) are non-negative.

2.5.4 Anisotropy

We have assumed (and will continue to assume throughout this thesis) the

spatial component of the process is isotropic – the covariance between two

points x and y depends solely on the distance between them. This convenient

assumption facilitates all the theory exposited above and is key to much of

what follows in subsequent chapters – and is pervasive in spatial statistics:

see [Ma17] for a discussion of isotropy’s impact on covariance modelling over

Rd.

2.5.5 Lagrangian frameworks

In fluid dynamics one has a choice of one’s frame of reference – one may

either sit on the bank and watch the water pass (Eulerian), or one may

follow the body of water in a boat (Lagrangian). In geostatistical cases,
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when the symmetry of an isotropic model is an inappropriate assumption, a

Lagrangian covariance structure may be more suitable, or, as suggested by

Gneiting [Gne02b], a convex combination of a symmetric covariance and a

Lagrangian one.

The basic idea of a Lagrangian covariance is to take a stationary spatial

random field with covariance Cs(h) and follow it along as it moves with

(random) velocity V. The covariance of this field then has the form

C(h, t) = EV (Cs(h− tV)) .

Gneiting et al. [GGG07] discuss possible choices for V, in particular not-

ing that prevailing winds may be modelled by the simplest case V = v, a

constant. They also raise the interesting possibility of a dynamic velocity

V(t), which would yield nonstationary covariances in a very natural way.

This framework has recently been extended to the Sd × R case by Alegria

and Porcu [AP17], who also discuss the dimple effect (where the field is more

strongly correlated in time than in space) for transport models.

2.5.6 Multivariate applications

The results discussed above extend to the multivariate setting. In this case,

one needs to consider cross-covariance functions. Recent work [Ale+19] ex-

tends the traditional Euclidean framework to the Sd × R setting discussed

here, offering some parametric families of matrix-valued covariances on sphere
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cross line.



Chapter 3

Dimension Walks

For a given function, checking positive definiteness can be a cumbersome

task, even with the assistance of the powerful theorems of Chapter 2. This

motivates the question: given a positive definite function, what operations

can we apply to it which preserve positive definiteness? These positivity-

preserving operators are useful in the development of new families of (strictly)

positive definite functions for use as covariance models in applications.

Two such positivity-preserving operators are the montée and descente oper-

ators introduced by Mathéron [Mat70]. These operators map positive def-

inite functions to new functions positive definite with respect to a space of

different dimension. Wendland [Wen95] coined the phrase ‘walks through

dimensions’ to describe this dimension-hopping property. Somewhat coun-

terintuitively, the montée (“up”) operator walks down dimensions, whilst

descente increases the dimension. In fact, the names refer to the effect of the

44
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operators on smoothness – montée, by integrating, increases the smoothness

of the positive definite function it is applied to, whereas descente does the

opposite.

For functions f ∈ P(Rd) the montée, denoted I, and descente, D, operators

are defined by

(If) (t) :=

∫∞
t
uf(u) du∫∞

0
uf(u) du

, t ≥ 0 (3.1)

and

(Df) (t) :=


1, t = 0

f ′(t)/tf ′′(0), t > 0

(3.2)

Note that, for f absolutely continuous, (DI)f = (ID)f = f . The term

‘walks through dimensions’ becomes clear with the following pair of theorems

[Mat70; Wen95]:

Theorem 3.1. Let f ∈ P(Rd), d ≥ 3. If uf(u) is integrable over [0,∞),

then If ∈ P(Rd−2).

Theorem 3.2. Let f ∈ P(Rd). If f ′′ exists, then Df ∈ P(Rd+2).

The utility of the above theorems was demonstrated by Wendland [Wen95]

in his construction of a compactly supported correlation model in Euclidean

space, later adapted by Gneiting [Gne99; Gne02a]. Compactly supported

correlation functions are of particular use in meteorological forecast verifica-

tion, where error correlations vanish beyond a certain length-scale (typically

a few thousand kilometres) [GC99]. Moreover, using a compactly supported
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model reduces computational cost, allowing for sparse matrix techniques to

be utilised.

The primary obstacle to the development of valid compactly supported pos-

itive definite functions is the difficulty of parametrising their smoothness

properties. As we shall see in Chapter 4, the behaviour of the covariance

function near the origin is determined by the smoothness of the underlying

random field – this is usually phrased in terms of mean-square differentia-

bility: a random field with covariance function c is k-times mean-square

differentiable if and only if c(2k)(0) exists. Families of covariance models

where this can be parametrised are the most appealing to practitioners, and

dimension-hopping operators are key here.

Consider the truncated power function

pν,0(t) :=


(1− t)ν , t ∈ [0, 1],

0, t ≥ 1.

(3.3)

This is in P(Rd) if and only if ν ≥ (d + 1)/2. Wendland showed, using

Theorems 3.1 and 3.2, that repeated application of the montée operator

pν,k(t) = Ikpν,0(t), k ∈ N (3.4)

gives covariance functions in P(Rd) if and only if ν ≥ (d+1)/2+k. Since pν,k

is 2k-times differentiable at zero [Wen95], this gives a parametric family of

compactly covariance functions from which one can choose any (even) degree
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of differentiability at the origin.

3.1 Montée and descente on Sd

The meteorological applications of montée and descente in Euclidean space

motivate the development of analogous operators for functions in P(Sd), to

facilitate the construction of locally supported families of covariance models

with nice parametrisation properties. These analogues were found by Beatson

and zu Castell [BC17] and applied to generalise the Wendland construction

above. Spherical montée and descente operators have also been introduced

for the Hilbert sphere S∞ [Zie14] and the complex sphere [MPP17].

Definition 3.1 ([BC17]). For f ∈ P(Sd) absolutely continuous and integrable

on [−1, 1], define the the montée operator by

(If) (x) :=

∫ x

−1

f(t) dt, (3.5)

and the descente operator by

(Df) (x) := f ′(x). (3.6)

Clearly for f absolutely continuous (DI)f = (ID)f = f (for almost all

x ∈ [−1, 1]).

As one would expect from Schoenberg’s theorem, the properties of the montée
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and descente operators on spheres are inherited from the differentiability

and integrability properties of Gegenbauer polynomials. From Szegő [Sze39,

§4.7.14]:

DW λ
n (x) =


2λW λ+1

n−1 (x), λ > 0

2W 1
n−1(x), λ = 0.

(3.7)

Following [BC17], define a new index µ by

µλ :=


l, λ > 0

1, λ = 0,

allowing (3.7) to be more concisely written as

DW λ
n (x) = 2µλW

λ+1
n−1 (x), λ ≥ 0. (3.8)

Then, writing (3.8) in terms of the montée operator I,

IW λ+1
n−1 (x) =

1

2µλ

(
W λ
n (x)−W λ

n (−1)
)
, λ ≥ 0. (3.9)

These then give the following dimension walks on spheres:

Theorem 3.3 ([BC17]). Let d ∈ N. If f ∈ P(Sd+2), then there exists a

constant C such that C + If ∈ P(Sd).

Theorem 3.4 ([BC17]). Let d ∈ N. If f ∈ P(Sd) has a continuous derivative

f ′, then Df ∈ P(Sd+2).

Theorem 3.3 shows that the montée operator for spheres walks down di-
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mensions, producing (as one expects from integration) a smoother function.

Theorem 3.4 gives a rougher function on a space of higher dimension, unless

the derivative fails to exist or be continuous. As in the Euclidean case, the

montée operator can be used to construct families of increasingly smooth

(strictly) positive definite functions [BC17, §3].

3.2 Montée and descente on Sd × R

The possibility of walks on dimensions for members of P(Sd×R) was raised

by Porcu et al. in a recent survey [PAF18]:

“The literature on walks through dimensions is related to opera-

tors that allow one, for a given positive definite function on the

n-dimensional sphere, to obtain new classes of positive definite

functions on n′-dimensional spheres, with n 6= n′. The applica-

tion of such operators has consequences on the differentiability at

the origin of the involved functions. Walks on spheres have been

proposed by Beatson et al. [BC17; BC16], Ziegel [Zie14] and

Massa et al. [MPP17]. This last work extends the previous work

to the case of complex spheres. It would be timely to obtain walks

through dimensions for the members of the classes P(Sn×R), for

n a positive integer.”

Here we show the results of Beatson and zu Castell [BC17; BC16] for one-



3.2. Montée and descente on Sd × R 50

and two- step operators on the sphere extend to the spatio-temporal setting,

answering the question posed above. The results in this section, and the

subsequent section detailing one-step walks, have been published in Statistics

and Probability Letters [BS19].

For the spatio-temporal montée and descente operators, defined below, we

abuse notation and reuse I and D from the purely spatial setting.

Definition 3.2. For f ∈ P(Sd × R) integrable define the spatio-temporal

montée operator by

(If)(x, t) :=

∫ x

−1

f(u, t)du. (3.10)

For f ∈ P(Sd×R) with continuous partial derivative in its first variable, the

spatio-temporal descente operator D is defined as

(Df)(x, t) :=
∂

∂x
f(x, t). (3.11)

By Corollary 3.9 in [BP17], ∂nf(x, t)/∂xn exists and is continuous when

n ≤ λ. Thus we can only guarantee existence and continuity of Df(x, t)

for λ ≥ 1, i.e. d ≥ 3. For the interesting cases d = 1 and d = 2 we

need to impose additional (but not particularly cumbersome) differentiability

assumptions, namely that ∂f(x, t)/∂x exists and is continuous, to ensure the

uniform convergence of its Schoenberg expansion.

Theorem 3.5. For d ∈ N and f ∈ P(Sd+2 × R), there exists a constant C

such that C + If ∈ P(Sd ×R).
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Proof . The proof proceeds as in [BC17], with the appropriate changes. Since

f(x, t) ∈ P(Sd+2×R), it has the uniformly convergent Schoenberg expansion

f(x, t) =
∞∑
n=0

an(t)W λ+1
n (x),

with an(t) as in the first formulation of the Berg-Porcu theorem (i.e. combin-

ing the mixing law and characteristic functions into one sequence of functions

in P(R) with
∑
an(0) = 1 – this eases the exposition here somewhat). Inte-

grating term by term and using (3.10) and (3.9):

If(x, t) =

∫ x

−1

∞∑
n=0

an(t)W λ+1
n (u)du

=
∞∑
n=0

an(t)

∫ x

−1

W λ+1
n (u)du

=
∞∑
n=0

an(t) IW λ+1
n

=
∞∑
n=0

an(t)
1

2µλ

(
W λ
n+1(x)−W λ

n+1(−1)
)

=
∞∑
n=1

an−1(t)

2µλ
W λ
n (x)−

∞∑
n=1

an−1(t)

2µλ
W λ
n (−1).

So,

(If)(x, t) =
∞∑
n=0

bn(t)W λ
n (x), (3.12)

where

bn(t) =


an−1(t)

2µλ
, n = 1, 2, 3, . . .

−
∑∞

i=0
ai−1(t)

2µλ
W λ
i (−1), n = 0.

(3.13)
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When n ≥ 1 the bn(t) are clearly positive definite on R, and 2µλ
∑∞

n=1 bn(0)

=
∑∞

n=0 an(0) < ∞. The only term which needs more comment is b0(t).

This is constant in x, so if there exists a constant C bounding b0 we find

C + If ∈ P(Sd × R) as required.

When λ = 0,

|b0(t)| =
∣∣1
2

∞∑
n=1

an−1(t)W 0
n(−1)

∣∣
=
∣∣1
2

∞∑
n=1

an−1(t)
∣∣

≤ 1

2

∞∑
n=1

|an−t(t)|

≤ 1

2

∞∑
n=1

an−1(0) <∞.

The final inequality follows from the positive-definiteness of the an (so |an(t)| ≤

an(0) for all t ∈ R). So we may take C = 1
2

∑∞
n=1 an−1(0).

Similarly for λ > 0, W λ
n (−x) = (−1)nW λ

n (x) [Sze39, §4.1.3], so

|b0(t)| =
∣∣ ∞∑
m=1

(−1)m+1am−1(t)

2µλ
W λ
m(1)

∣∣ ≤ ∞∑
m=1

|am−1(t)|
2µλ

≤
∞∑
m=1

|am−1(0)|
2µλ

.

By [Sze39, Th. 9.1.3] the sum is (C, k)-summable for k > λ + 1/2 and so,

since all the terms in the sum are non-negative, convergent [Har49, Th. 64].
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So

|b0(t)| ≤
∞∑
m=1

am−1(0)

2µλ
W λ
m(1) =

∞∑
m=1

am−1(0)

2µλ
=: C <∞,

giving the required bound for b0(t).

Walks up dimensions, using the descente operator, are simpler still, but we

now require the function f to have a continuous first partial derivative.

Theorem 3.6. Let d ∈ N and f : [−1, 1]×R→ R continuously differentiable

in its first argument. If f ∈ P(Sd × R), then Df(x, t) = ∂/∂xf(x, t) ∈

P(Sd+2 × R).

Proof. We can differentiate termwise, as the series of derivatives is uniformly

convergent:

∂

∂x
f(x, t) =

∂

∂x

(
a0(t) +

∞∑
n=1

an(t)W λ
n (x)

)

=
∞∑
n=1

an(t)
∂

∂x
W λ
n (x)

=
∞∑
n=1

an(t)2µλW
λ+1
n−1 (x) (by (3.7))

=
∞∑
n=0

2µλan+1(t)W λ+1
n (x).

Alternatively, one may extend the proof of [BC17, Lemma 2.4, Th. 2.3] along

the same lines as in the proof above.
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We also have the following result for the infinite-dimensional case (the Hilbert

sphere), analogous to that in [TZ17].

Theorem 3.7. The class P(S∞ × R) of geotemporal covariances on the

Hilbert sphere cross time is closed under I (up to an additive constant).

It is not closed under descente: if f ∈ P(S∞ × R), then Df ∈ P(S∞ × R)

only if
∑
nan(t) <∞.

Proof. This is straightforward: functions f ∈ P(S∞×R) have the Schoenberg

expansion

f(x, t) =
∞∑
n=0

an(t)xn.

Integrating with respect to x:

If(x, t) =

∫ x

−1

f(u, t) du =
∞∑
n=0

an(t)

n+ 1

(
xn+1 − (−1)n+1

)
=
∞∑
n=0

bn(t)xn,

(3.14)

where

bn(t) =


an−1(t)/n, n = 1, 2, . . .∑∞

i=0 (ai(t)(−1)i) /(i+ 1), n = 0.

Since b0(t) is bounded by
∑
an(0)/(n + 1) <∞ there is a suitable constant

C such that C + If ∈ P(S∞ × R).

Turning to the descente operator: by [BPP18, Th. 1.1] the functions an(t)

are given by

an(t) = ãn(x, t)
∣∣
x=0

, ãn(x, t) =
1

n!

∂nf(x, t)

∂xn
.
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So, as above, consider

∂f(x, t)

∂x
=
∞∑
n=0

bn(t)xn,

where

bn(t) = b̃n(x, t)
∣∣
x=0

, b̃n(t) =
1

n!

∂n+1f(x, t)

∂xn+1
.

So,

b̃n(x, t) = (n+ 1)ãn+1(x, t),

and

bn(t) = (n+ 1)an+1(t).

Thus if
∑
nan(0) does not converge then Df(x, t) /∈ P(S∞ × R), and the

result follows taking the contrapositive.

Beatson and zu Castell showed further than the montée and descente op-

erators preserve strict positive definiteness on the sphere using the Chen,

Menegatto and Sun criterion [CMS03] cf. §2.4: f ∈ P+(Sd), d ≥ 2, if and

only if infinitely many of the Schoenberg coefficients of even index, and in-

finitely many of odd index, are non-zero. The criterion is necessary but not

sufficient for d = 1.

As mentioned, characterising functions in P+(Sd×R) remains an open prob-

lem, but we expect a similar criterion to hold and thus montée and descente

for Sd × R to preserve strict positive definiteness, also.
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3.3 Walking in steps of one

The alert reader will observe that Theorems 3.3, 3.4, 3.5 and 3.7 (and the

corresponding theorems in Euclidean space) hop dimension in steps of two.

The reason for this is (3.8): the parameter λ of the relevant ultraspherical

polynomial changes by an integer, thus alters d = 2λ + 1 by two. In the

Euclidean setting, walks of one step are achieved using fractional integration.

A similar approach can be employed in the spherical case, as demonstrated by

Beatson and zu Castell [BC16], using weighted Riemann-Liouville operators

Definition 3.3 ([BC16]). Define, for f ∈ P(Sd) and λ ≥ 0,

αIλ+f(x) := (1 + x)−λ+α

∫ x

−1

(x− u)α−1(1 + u)λf(u) du, (3.15)

αIλ−f(x) := (1− x)−λ+α

∫ 1

x

(u− x)α−1(1− u)λf(u) du, (3.16)

αIλ± := αIλ+± αIλ−. (3.17)

If f is absolutely continuous then we may also define

αDλ
+f(x) := (1 + x)

∂

∂x

(
(1 + x)−λ

∫ x

−1

(x− u)α−1(1 + u)λ−αf(u) du

)
,

(3.18)

αDλ
−f(x) := (1− x)

∂

∂x

(
(1− x)−λ

∫ 1

x

(u− x)α−1(1− u)λ−αf(u) du

)
,

(3.19)

αDλ± := αDλ
+± αDλ

−. (3.20)
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Unlike the classical Riemann-Liouville operators the operators αIλ± and αDλ±

do not have the semi-group property: that is, integration (or differentiation)

of orders α1 and α2 in succession does not yield the result of integration (or

differentiation) α1 + α2.

For one-step walks on spheres we are interested in the case where α = 1/2.

For the rest of this chapter we abuse notation somewhat, and abbreviate
1
2 Iλ·

to Iλ· and, similarly,
1
2Dλ
· to Dλ

· for ease of reading.

With the one-step operators thus defined, Beatson and zu Castell provided

the following one-step analogues to montée and descente for spheres:

Theorem 3.8 ([BC16]). If d ∈ N, f ∈ P(Sd+1), then Iλ±f ∈ P(Sd).

Theorem 3.9 ([BC16]). If d ∈ N, f ∈ P(Sd), then Dλ±f ∈ P(Sd+1)

The crux of the proof of these results, and our extension to P(Sd×R) given

below, are the following two lemmas concerning the action of the one-step

operators on ultraspherical polynomials.

Lemma 3.1 ([BC16]). For λ > 0, n ∈ N, x ∈ [−1, 1],

Iλ+W λ+1/2
n (x) =

√
πΓ(λ)

Γ(λ+ 1/2)

n+ 2λ

n+ λ+ 1/2
W λ
n (x),

Iλ−W λ+1/2
n (x, 0) =

√
πΓ(λ)

Γ(λ+ 1/2)

n+ 2λ

n+ λ+ 1/2
W λ
n+1(x).

When λ = 0 simply take the limit λ→ 0+ and obtain

I0
+Pn(x) =

2

n+ 1/2
Tn(x), I0

−Pn(x) =
2

n+ 1/2
Tn+1(x).
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where Pn(x) and Tn the Legendre and Chebychev polynomials, respectively.

Lemma 3.2 ([BC16]). For λ > 0, n ∈ N, x ∈ [−1, 1],

Dλ+W λ
n (x) =

√
πΓ(λ+ 1/2)

Γ(λ)

n+ 2λ

n+ λ
W λ+1/2ln−1(x),

Dλ−W λ
n (x) =

√
πΓ(λ+ 1/2)

Γ(λ)

2n

n+ λ
W λ+1/2
n (x).

When λ = 0 again take the limit λ→ 0+ and obtain

D0
+Tn(x) = nπPn−1(x), D0

−Tn(x) = nπPn(x).

3.4 One-step walks on Sd × R

We now turn to verifying that Beatson and zu Castell’s one-step dimension

walks above extend to the spatio-temporal setting. This is slightly less trivial

an extension that in the two-step case, but as before most of the work has

been done for us in determining the effect of the operators on the ultraspher-

ical polynomials.

Definition 3.4. Define, for f(x, t) ∈ P(Sd × R) and λ ≥ 0,

Iλ+f(x, t) := (1 + x)λ+1/2

∫ x

−1

(x− u)−1/2(1 + u)λf(u, t)du, (3.21)

Iλ−f(x, t) := (1− x)λ+1/2

∫ 1

x

(u− x)−1/2(1− u)λf(u, t)du, (3.22)

Iλ± := Iλ+±Iλ−. (3.23)



3.4. One-step walks on Sd × R 59

If f is absolutely continuous, then we may also define

Dλ
+f(x, t) := (1 + x)

∂

∂x

(
(1 + x)−λ

∫ x

−1

(x− u)−1/2(1 + u)λ−1/2f(u, t)du

)
,

(3.24)

Dλ
−f(x, t) := (1− x)

∂

∂x

(
(1− x)−λ

∫ 1

x

(u− x)−1/2(1− u)λ−1/2f(u, t)du

)
,

(3.25)

Dλ± := Dλ
+±Dλ

−. (3.26)

The results below extend those of Section 3.2 to our context.

Theorem 3.10. If d ∈ N, f ∈ P(Sd+1 × R), then Iλ±f ∈ P(Sd × R).

Proof. As above, the proof requires only small modifications to Beatson and

zu Castell’s arguments [BC16]. In both cases, the proof itself closely repli-

cates that of Theorem 3.5: after justifying exchanging the integration with

summation we simply apply the relevant result about ultraspherical polyno-

mials, then conclude.

Let f ∈ P(Sd+1 × R). Then f has the uniformly convergent expansion

f(x, t) =
∞∑
n=0

an(t)W λ+1/2
n (x). (3.27)

Thus,

IλI f(x, t) = (1 + x)−λ
∫ x

−1

(x− u)−1/2(1 + u)λ+1/2f(u, t) du
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= (1 + x)−λ
∫ x

−1

(x− u)−1/2(1 + u)λ+1/2

∞∑
n=0

an(t)W λ+1/2
n (u) du.

To justify integrating termwise we need to establish boundedness of the op-

erator Iλ+ from C[−1, 1] to C[−1, 1]. Using the beta integral

∫ x

−1

(x− u)−1/2(1 + u)ν du = (1 + x)ν+1/2 Γ(1/2)Γ(ν + 1)

Γ(ν + 3/2)
(3.28)

we obtain

sup
x∈[−1,1]

|Iλ+f(x, t)| = sup
x∈[−1,1]

|(1 + x)−λ
∫ x

−1

(x− u)−1/2(1 + u)λ+1/2f(u, t) du|

(3.29)

≤ sup
x∈[−1,1]

|1 + x|−λ
∫ x

−1

|(x− u)−1/2(1 + u)λ+1/2||f(u, t)| du

(3.30)

≤ 2Γ(1/2)Γ(λ+ 3/2)

Γ(λ+ 2)
sup

x∈[−1,1]

|f(x, t)|. (3.31)

So ||Iλ+f || ≤ C||f ||. By the same reasoning, Iλ− is a bounded also, and thus

Iλ± is. Positivity of the operators is clear from their definitions.

Now we may exchange the sum and the integral and use Lemma 3.1 to obtain:

Iλ+f(x, t) =
∞∑
n=0

an(t)(1 + x)−λ
∫ x

−1

(x− u)−1/2(1 + u)λ+1/2W λ+1/2
n (u) du

=
∞∑
n=0

an(t)Iλ+W λ+1/2
n (x)
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=
∞∑
n=0

bn(t)W λ
n (x),

where

bn(t) =

√
πΓ(λ)

Γ(λ+ 1/2)

n+ 2λ

n+ λ+ 1/2
an(t),

and

Iλ−f(x, t) =
∞∑
n=0

an(t)(1− x)−λ
∫ x

−1

(u− x)−1/2(1− u)λ+1/2W λ+1/2
n (u) du

=
∞∑
n=0

an(t)Iλ−W
λ+1/2
n (x)

=
∞∑
n=0

cn(t)W λ
n (x),

where

cn(t) =

√
πΓ(λ)

Γ(λ+ 1/2)

n+ 1

n+ λ+ 1/2
an+1(t)

Clearly, both
∑
bn(0) and

∑
cn(0) converge, thus Iλ+f and Iλ−f are members

of P(Sd × R) as required.

Note that, unlike in Theorem 3.5, there is no additional constant C needed

here.

To prove the corresponding statement about the operators Dλ± we need the

following lemma, the proof of which is identical to the corresponding result

in Beatson and zu Castell [BC16, Th. 2.8].

Lemma 3.3. Let f ∈ P(Sd ×R) have Schoenberg expansion
∑
an(t)W λ

n (x).
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If both Dλ±f ∈ C([−1, 1]× R), then the resulting Schoenberg expansions

Dλ+f(x, t) =
∞∑
n=0

bn(t)W λ+1/2
n (x), Dλ−f(x, t) =

∞∑
n=0

cn(t)W λ+1/2
n (x)

have coefficients

bn(t) =
Γ(λ+ 1/2)

√
π

Γ(λ)

2(n+ 2λ+ 1)

n+ λ+ 1
an+1(t), (3.32)

cn(t) =
Γ(λ+ 1/2)

√
π

Γ(λ)

2n

n+ λ
an(t). (3.33)

Theorem 3.11. If d ∈ N, f ∈ P(Sd × R) and Dλ±f are continuous, then

Dλ±f ∈ P(Sd+1 × R).

Proof. We adapt the proof of the corresponding result in [BC16]. On the

surface matters appear slightly more complicated than in the purely spatial

setting, as here we are dealing with series of positive definite functions, rather

than of non-negative reals. But, we can reduce this case to the previous one.

Let f ∈ P(Sd ×R) with Schoenberg functions (an). The continuity assump-

tion guarantees Abel summability of Dλ
±f(x, t) for any (x, t) ∈ [−1, 1] × R,

whilst Lemma 3.3 gives positive-definiteness of the resulting coefficient func-

tions bn(t). Thus, bn(0) ≥ 0 and
∑
bn(0)W

λ+1/2
n (1) =

∑
bn(0) is summable

(since Abel summability of non-negative real numbers implies summability

[Har49, Th. 91]).

To conclude, note that, for any n, |W λ
n (x)| ≤ W λ

n (1) for all x ∈ [−1, 1], and

|bn(t)| ≤ bn(0) for all t ∈ R. The Weierstrass M-test then demonstrates
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uniform convergence. So, Dλ±f ∈ P(Sd+1 × R), as required.

3.5 Walking with the semi-group property

Beatson and zu Castell’s operators, extended above, give walks in steps of one

but lack the semi-group property – two steps of length one do not necessarily

yield the same result as a single step of length two.

Here we propose an alternative method of walking through dimensions allow-

ing, theoretically at least, for walks of arbitrary length with the semi-group

property.

The idea is to use some classical integral representations of ultraspherical

polynomials to find a dimension-hopping operator Hλ
ν which maps P(Sd(ν))

to P(Sd(λ)) such that the composition Hη
λ ◦ Hλ

ν : P(Sd(ν))→ P(Sd(η)) results

in the same member of P(Sd(η)) as direct application of Hη
ν – that is, that

the operator H has the semi-group property.

Theorem 3.12 ([Bin72a]). If 0 < ν < λ, x ∈ [−1, 1], there exists a measure

Mλ
ν (x; dy) on [−1, 1] such that

W λ
n (x) =

∫ 1

−1

W ν
n (y)Mλ

ν (x; dy). (3.34)
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Moreover, when λ 6= ν the measure Mλ
ν is absolutely continuous with density

Mλ
ν (x; dy) = Gν(dy)

∞∑
m=0

ωνmW
λ
m(x)W ν

m(y) (3.35)

where, recall,

Gν(dy) =
Γ(ν + 1)√
πΓ(ν + 1/2)

(1− y2)ν−1/2dy,

ωνm =
n+ ν

ν

Γ(n+ 2ν)

n!Γ(2ν)
.

As a result we have the following:

Theorem 3.13. Let 1 < d1 < d2 <∞, λ1 = (d1 − 1)/2, λ2 = (d2 − 1)/2. If

f ∈ P(Sd1), then

(Hλ2
λ1
f)(x) :=

∫ 1

−1

f(y)Mλ2
λ1

(x; dy) ∈ P(Sd2), (3.36)

i.e. the operator Hλ2
λ1

gives a walk on dimensions from P(d1) to P(d2).

Proof. If f ∈ P(Sd1), then

f(x) =
∞∑
n=0

anW
λ1
n (x),

∑
an = 1, an ≥ 0.

So,

∫ 1

−1

f(y)Mλ2
λ1

(x; dy) =

∫ 1

−1

∞∑
n=0

anW
λ1
n (y)Mλ2

λ1
(x; dy)
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=
∞∑
n=0

∫ 1

−1

anW
λ1
n (y)Mλ2

λ1
(x; dy),

where interchanging the sum and integral is justified by the uniform conver-

gence of the Schoenberg expansion. Then,

∞∑
n=0

∫ 1

−1

anW
λ1
n (y)Mλ2

λ1
(x; dy) =

∞∑
n=0

an

∫ 1

−1

W λ1
n (y)Mλ2

λ1
(x; dy)

=
∞∑
n=0

anW
λ2
n (x) ∈ P(Sd2),

since the an remain non-negative and summable to 1.

Theorem 3.7. is not, in-and-of-itself, terribly useful. To be able to pass

directly from f ∈ P(Sd1) to f ′ ∈ P(Sd2) we need to be able to integrate

against Mλ2
λ1

(x, dy) immediately – that is, we need

∞∑
m=0

ωνmW
λ
m(x)W ν

m(y).

There is no explicit formula for this series. In an attempt to circumvent

this we have found an alternative form, as a double integral, which is more

tractable (at least numerically, as we lose the oscillatory polynomial be-

haviour of the sum).

Moreover, Theorem 3.14 below is interesting in its own right, completing the

integral representations in [Bin72a] by showing the dependence on the higher

index, λ, in a more convenient and structurally revealing way.
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The Poisson kernel for the Jacobi polynomials reduces in the ultraspherical

case to the generating function, cf. [Bin72a, (2.1)]

∞∑
n=0

ωνnr
nW ν

n (x) = (1− r2)/(1− 2rx+ x2)ν+1, r ∈ (−1, 1). (3.37)

Note that this is not the usual generating function for the ultraspherical

polynomials [Sze39, §4.7.23].

Askey and Fitch [AF69] showed that for x, y ∈ [−1, 1], r ∈ (−1, 1), 0 ≤ ν <

λ ≤ ∞, the series
∞∑
n=0

ωνnr
nW λ

n (x)W ν
n (y) (3.38)

converges to a non-negative sum-function, which leads to a corresponding

probability measure Mλ
ν (x) satisfying

W λ
n (x) =

∫ 1

−1

W ν
n (y)Mλ

ν (x; dy), n = 0, 1, 2, . . . . (3.39)

Here (see [Bin72a]) we may take 0 ≤ ν ≤ λ ≤ ∞, x ∈ [−1, 1]. Some cases give

Dirac laws: if x = ±1, Mλ
ν (±1) = δ±1 (as W λ

n (±1) = (±1)n). If λ = ν, then

Mλ
λ (x) = δx (as there is no projection to be done); so we may now restrict to

ν < λ as before. [Bin72a, Lemma 1] gives the Abel-limit operation explicitly:

for x, y ∈ (−1, 1), we may take r = 1 here to get

mλ
ν(x; y) :=

∞∑
n=0

ωνnW
λ
n (x)W ν

n (y) ≥ 0 (3.40)

a non-negative function in L1(Gν), finite-valued unless x = y and ν < λ ≤
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ν + 1. It is in fact the Radon-Nikodym derivative dMλ
ν (x; dy)/dGν(dy):

Mλ
ν (x; dy) = Gν(dy) ·mλ

ν(x; y) = Gν(dx) ·
∞∑
n=0

ωνnW
λ
n (x)W ν

n (y). (3.41)

Following [Bin72a], for λ > ν write Hλ
ν for the probability measure of Beta

type on [0, 1] given by the Sonine law

Hλ
ν (dx) :=

2Γ(λ+ 1
2
)

Γ(ν + 1
2
)Γ(λ− ν)

· x2ν(1− x2)λ−ν−
1
2dx. (3.42)

This occurs in Sonine’s first finite integral for the Bessel function [Wat62, p.

373]: for

Λµ(t) := Γ(ν + 1)Jν(t)(t/2)−µ, (3.43)

Λλ− 1
2
(t) =

∫ 1

0

Λν− 1
2
(ut)Hλ

ν (du) (3.44)

(the drop by a half-integer in parameter here reflects the drop in dimension

in Sd ⊂ Rd+1).

For the product of Wn terms in (3.40), we need Gegenbauer’s multiplication

theorem for the ultraspherical polynomials [Wat62, p. 369],

W ν
n (x)W ν

n (y) =

∫ 1

−1

W ν
n (xy + σ

√
1− x2

√
1− y2)Gν− 1

2
(dσ). (3.45)

To cope with the drop in index (dimension) in (3.40), we need the Feldheim-
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Vilenkin integral [Bin72a, (2.11)], [AF69],

W λ
n (x) =

[
2Γ(λ+ 1

2
)

Γ(ν + 1
2
)Γ(λ− ν)

] ∫ 1

0

u2ν(1− u2)λ−ν−1

· [x2 − x2u2 + u2]
1
2
nW ν

n

(
x√

x2 − x2u2 + u2

)
du. (3.46)

We can then formulate our result.

Theorem 3.14. For r ∈ (−1, 1), the sum of the Askey-Fitch series (3.40)

above is given by the integral (3.47) below:

∫ 1

0

Hλ
ν (du)

∫ 1

−1

Gν− 1
2
(dv)

[1− r2(x2 − x2u2 + u2)]

Iν+1
, (3.47)

where I is given by

I := 1− 2r · xy + uv
√

1− x2
√

1− y2

√
x2 − x2u2 + u2

+
(xy + uv

√
1− x2

√
1− y2)2

(x2 − x2u2 + u2)
. (3.48)

Moreover, this holds also for r = 1 unless ν < λ ≤ ν + 1.

Proof. We sum the series by reducing it to the generating function (3.37).

There are two steps: reduction of λ to ν by the Feldheim-Vilenkin integral

(3.46) and reduction of two Wn terms to one by Gegenbauer’s multiplication

theorem (3.45).

We follow [Bin72a]. As there, we may substitute for W λ
n (x) from (3.46) into
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the series (3.40) and integrate term-wise, rewriting (3.40) as

∫ 1

0

Hλ
ν (du)

∞∑
n=0

ωνn(r[x2 − x2u2 + u2]
1
2 )n ·W ν

n (y)W ν
n

(
x√

x2 − x2u2 + u2

)
.

(3.49)

We use Gegenbauer’s multiplication theorem (3.45) with

r 7→ r
√
x2 − x2u2 + u2,

and replace the product of W ν
n factors in the above, at the cost of another

integration over Gν− 1
2
(dv), by a single W ν

n term, with argument

xy√
x2 − x2u2 + y2

+v
√

1− y2.

√
1− x2

x2 − x2u2 + u2
=
xy + uv

√
1− x2

√
1− y2

√
x2 − x2u2 + u2

.

(3.50)

The integrand is now of the form
∑
ωνnr

nW ν
n (·), and the result now follows

from (3.37).

This result allows us to rephrase Theorem 3.13 in a more (numerically)

tractable form, by replacing the double sum in the measure Mλ2
λ1

(·; dy) with

(3.47). That is, if f ∈ P(Sd1) a walk on dimension to d2 is obtained via

∫ 1

−1

f(y)Mλ2
λ1

(x; dy) ∈ P(Sd2), (3.51)
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where

Mλ2
λ1

(x; dy) = Gλ1(dy)

∫ 1

0

Hλ2
λ1

(du)

∫ 1

−1

Gλ1− 1
2
(dv)

[1− r2(x2 − x2u2 + u2)]

Iλ1+1
,

(3.52)

where I is given by

I := 1− 2r · xy + uv
√

1− x2
√

1− y2

√
x2 − x2u2 + u2

+
(xy + uv

√
1− x2

√
1− y2)2

(x2 − x2u2 + u2)
. (3.53)

Of course, applying this to produce new parametric families via projection is

still complicated by the fact we were unable to obtain a closed form for the

integral above. Nonetheless, the result completes and complements the work

in [AF69; Bin72a] by displaying the dependence on the higher index λ in a

structurally revealing way: for simplicity, let r = 1 so that

I =

(
1− xy + uv

√
1− x2

√
1− y2

√
x2 − x2u2 + u2

)2

, (3.54)

and (3.47) is given by

∫ 1

0

Hλ
ν (du)

∫ 1

−1

Gν− 1
2
(dv)

1− (x2 − x2u2 + u2)

Iν+1
. (3.55)

Using the definition of Hλ
ν and the probability measure Gν+ 1

2
and simplifying,

(3.47) becomes

2√
π

∫ 1

0

Γ(λ+ 1
2
)

Γ(λ− ν)
u2ν(1− u2)λ−ν−

1
2

∫ 1

−1

(1− v2)ν−
1
2
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·
[

1− (x2 − x2u2 + u2)

I2(ν+1)

]
dvdu. (3.56)

Note that the higher index λ occurs only in the outer integral. Moreover,

the interactions between the indexes occur also only in the outer integral: in

the Gamma function Γ(λ− ν) and the power λ− ν − 1/2 of (1− u2).



Chapter 4

Path properties

As we have previously noted, centred Gaussian processes are determined

entirely by their covariance functions. When the process is parametrised by

the sphere Sd with continuous covariance the covariance function is given by

f ◦ cos where f has, by Theorem 2.4, a representation of the form

f(x) =
∞∑
n=0

anW
λ
n (x), an ≥ 0,

∞∑
n=0

an = 1, λ = (d− 1)/2, (4.1)

and thus the process’s behaviour is encoded entirely within the mixing law

(an). In this chapter we exploit that fact to quantify several properties of

the paths of a Gaussian random field on the sphere.

Starting with Belyaev’s dichotomy we survey this very active area of research,

looking at both summability and integrability conditions for path continuity.

We extend a result of Malyrenko’s to the Hilbert sphere S∞, and close by

72
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exploring some extensions to the geo-temporal setting.

4.1 Belyaev’s dichotomy and the Dudley in-

tegral

As usual, let X = {Xt : t ∈M} be a real-valued zero-mean Gaussian process,

on (defined on, indexed by) the sphere Sd (or any other compact metric space

M). The law ofX is determined by either of the covariance or the incremental

variance:

c(s, t) := cov(Xs, Xt) = E[XsXt], i(s, t) := E[(Xt −Xs)
2] (4.2)

(respectively positive and negative definite, or of positive and negative type);

recall from Chapter 1 that we can pass between them by

i(s, t) = c(s, s)+c(t, t)−2c(s, t), c(s, t) =
1

2
(i(s, o)+ i(t, o)− i(s, t)), (4.3)

with o some base point (a ‘North Pole’). As usual, we restrict attention to

isotropic processes, where these are functions only of the geodesic distance

d(s, t), or of x := cos d(s, t) ∈ [−1, 1] (s, t ∈ Sd):

c(s, t) = C(x), i(s, t) = I(x). (4.4)
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If the covariance function is continuous, then it is immediately clear that the

process X is mean-square continuous, i.e. that for all s, t ∈ Sd

s→ t ⇒ E[ |X(s)−X(t)|2]→ 0. (4.5)

But, continuity in mean-square does not imply (nor is implied by) continuity

of the sample paths of the process X. To make statements about that,

we need some new tools. For reference here, we use [MR06, Ch. 5] which

exposits the theory for processes on more general separable metric spaces

than the sphere. Indeed, all of the results in this section can be stated quite

generally, at the very least for processes on compact metric spaces whose

Karhunen-Loève expansion (see Theorem 4.1 below) converges a.s. at fixed

points in their domain.

First, we need the notion of a reproducing kernel Hilbert space (RKHS).

Definition 4.1 (Reproducing kernel Hilbert space (RKHS) [MR06, Th.

5.3.1]). Let Γ be a continuous covariance function of Sd×Sd (not necessarily

isotropic). Then the reproducing kernel Hilbert space of Γ is the separable

Hilbert space H(Γ) of continuous real-valued functions on Sd such that

Γ(t, ·) ∈ H(Γ), t ∈ Sd; (4.6)

〈f(·),Γ(t, ·)〉 = f(t), f ∈ H(Γ), t ∈ Sd. (4.7)

The property (4.7) is the reproducing property which gives RKHSs their name

– Γ = Γ(·, ·) is called the reproducing kernel of H(Γ).
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An alternative definition of RKHS’s is as Hilbert spaces whose point evalu-

ation maps1 are continuous. Definition 4.1 allows us to prove the following

representation theorem for the process X.

Theorem 4.1 (Karhunen-Loève Expansion [MR06, Th. 5.3.2, Cor. 5.3.4]).

Let X be a mean zero Gaussian process on a separable metric space M with

continuous covariance. Then X has a version given by

X ′(t) =
∞∑
i=0

γi(t)ξi, (4.8)

where the γi are continuous functions on M , ξi are independent Gaussian

random variables and the convergence is in L2(Ω,F ,P) and almost sure for

fixed t.

The Karhunen-Loève expansion is well-known, but we include the proof here

due to the importance of the result.

Proof. We follow [MR06, Th. 5.3.2, Cor. 5.3.4]. Suppose X has continuous

covariance Γ with reproducing kernel H(Γ). Let

L2(X) := Closure of

{
n∑
i=1

aiX(ti) : ai ∈ R, ti ∈M, i = 1, 2, . . . n

}
(4.9)

in L2(Ω,F ,P), and further

S :=

{
n∑
i=1

aiΓ(ti, ·) : ai ∈ R, ti ∈M, i = 1, 2, . . . n

}
. (4.10)

1For fixed x the point evaluation map is the map δx : Γ 7→ R, δx : f 7→ f(x).
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Then we can define a linear, bijective, norm-preserving map ΘP : S → L2(X)

by

ΘP

(
n∑
i=1

aiΓ(ti, ·)

)
=

n∑
i=1

aiX(ti). (4.11)

This is the Loève isometry. Note that the right hand size is a Gaussian

random variable (it is the sum of Gaussian random variables).

Let γi be a complete orthonormal set in H(Γ) and set ξi = ΘP(γi). Then for

each i ∈ N ξi is a Gaussian random variable. Moreover, since the γi is an

orthonormal set, the ξi form a complete orthonormal set in L2(X) (and are

thus independent Gaussian random variables). Since X is clearly in L2(X),

we then have that

X(t) =
∞∑
i=1

E(X(t)ξj)ξi. (4.12)

(Note: the left-hand side is a random variable, whilst the right-hand side

is an equivalence class of L2(Ω,F ,P) and the equality must be interpreted

accordingly, as a statement about equivalence classes.)

Now, since ΩP is an isometry,

E(ΘP(f)ΘP(g)) = 〈f, g〉, (4.13)

and so, using also the reproducing kernel property of Γ,

E(X(t)ξi) = 〈Γ(t, ·), γi(·)〉 = γi(t), (4.14)
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giving the Karhunen-Loève expansion

X(t) =
∞∑
i=1

γi(t)ξi, (4.15)

with convergence in L2(Ω,F ,P).

Fix t ∈ M . Then (γi(t)ξi)i∈N form a sequence of independent Gaussian ran-

dom variables whose sum
∑
γi(t)ξi converges almost surely, by Kolmogorov’s

three-series criterion [Kal97, Th. 3.18], if and only if

(a)
∑
γi(t)ξi converges in distribution – this is given by the L2 convergence

found above;

(b)
∑

P{|γi(t)ξi| > 1} <∞ ;

(c)
∑

E [γi(t)ξi : |γi(t)ξi| ≤ 1] converges – this is immediate, since the ξi

have mean zero;

(d)
∑

Var [γi(t)ξi : |γi(t)ξi| ≤ 1] converges.

To show (d) consider the sum’s upper bound
∑

Var [γi(t)ξi] =
∑
γ2
i (t). Since

the {ξi} are independent standard Gaussians, for fixed t ∈M :

∞ > E
[
X(t)2

]
= E

( n∑
i=1

γi(t)ξi

)2
 (4.16)

=
n∑
i=1

n∑
j=1

γi(t)γj(t)E [ξiξj] (4.17)

=
n∑
i=1

n∑
j=1

γi(t)γj(t)δij =
n∑
i=1

γ2
i (t). (4.18)
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So (d) holds. Applying Chebyshev’s inequality to (b) and using the above:

n∑
i=1

P {|γi(t)ξi| > 1} ≤ Var(|γi(t)ξi|) =
∑

γ2
i (t) <∞. (4.19)

Thus, for fixed t ∈M , (4.8) converges almost surely.

It can be shown further [MR06, Cor. 14.6.4] that if X has continuous sample

paths then (4.8) converges uniformly on compact spaces M with probability

one.

But when does X have continuous sample paths? Continuity of the co-

variance function is uninformative, here, but the Karhunen-Loève expansion

opens the door to a library of zero-one laws.

We recall one of the best known of these: Belyaev’s dichotomy for Gaussian

processes ([Bel61]; [MR06, Th 5.3.10]) – colloquially, Belyaev’s dichotomy

says that Gaussian paths are either ‘very nice’, or ‘very nasty’.

To prove this, we need to introduce a new tool: the oscillation function. For

general (non-random) functions f this is defined as

Wf (t) := lim
ε→0

sup
u,v∈Bε(t)

|f(u)− f(v)|, (4.20)

where Bε(t) is the closed ball of radius ε centred at t ∈ M . The oscillation

function is 0 if and only if f is continuous. We have

Wf (t) = Mf (t)−mf (t), (4.21)
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where

Mf (t) := lim
ε→0

sup
u∈Bε(t)

f(u), (4.22)

mf (t) := lim
ε→0

inf
u∈Bε(t)

f(u), (4.23)

using the convention that ∞−∞ = 0. Then,

Definition 4.2 ([MR06, Th. 5.3.7]). The oscillation function of a Gaus-

sian process X on a separable metric space M is the upper-semi-continuous

function α : M → R with the properties

P(WX(·,ω)(t)) = α(t) : t ∈M) = 1;

(4.24)

P
(
MX(·,ω)(t) = X(t, ω) +

α(t)

2
,mX(·,ω)(t) = X(t, ω)− α(t)

2

)
= 1 ∀t ∈ Sd.

(4.25)

We can now state and prove Belyaev’s Dichotomy for spheres Sd ⊂ Rd+1.

Theorem 4.2 (Belyaev’s Dichotomy [MR06, Th. 5.3.10], [Bel61]). Let

{X(t) : t ∈ Sd} be an isotropic Gaussian process on (Sd, d(·, ·)). Then either

(a) X has continuous paths almost surely on all open S ⊂ Sd; or (b) X is

unbounded almost surely on all open S ⊂ Sd.

Proof. Let α be the oscillation function of X. Since X is isotropic its in-

cremental variance i(s, t) = E[|X(s) − X(t)|2] depends only on d(s, t), and
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(since the increments have mean zero) the law of (X(t)−X(s)) is therefore a

function solely of the distance d(s, t) between s and t ∈ Sd. Then, by (4.24),

α is constant on all open subsets of Sd. So either:

a) α = 0, meaning X is continuous almost surely on all open S ⊂ Sd.

b) α = a > 0. This follows by [MR06, Th. 5.3.9]. Let E be a dense subset of

S ⊂ Sd with separability set D, so D ∩ S = E. Then for fixed t ∈ I ′ define

Fn(t) := {u ∈ Sd : d(t, u) < 1/n}. (4.26)

Then by definition of the oscillation function, and noting that if u ∈ D∩Fj(t)

for j ≥ n, u ∈ D ∩ Fn/2(t):

MX(·,ω)(t) = lim
s→t

sup
s∈Sd

X(s, ω) (4.27)

= lim
n→∞

sup
s∈D∩Fn(t)

X(s, ω) (4.28)

≥ lim
n→∞

sup
s∈D∩Fn(t)

(
lim
j→∞

sup
u∈D∩Fj(s)

X(u, ω)

)
(4.29)

= lim
n→∞

sup
s∈D∩Fn(t)

(X(s, ω) + α(s)/2) (4.30)

= lim
n→∞

sup
s∈D∩Fn(t)

(X(s, ω) + a/2) (4.31)

= MX(·,ω)(t) + a/2. (4.32)

Since a > 0 it follows that P(MX(·,ω)(t) = ∞; t ∈ D ∩ S) = P(MX(·,ω)(t) =

∞; t ∈ E) = 1 and hence, since E is dense in Sd, MX(·,ω)(t) = ∞ for all

t ∈ I with probability one. The corresponding argument for mX(·,ω)(t) is
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identical.

The natural question is, then: on what side of the dichotomy does a given

process X fall? That is: what are the necessary and sufficient conditions for

a process X to have continuous sample paths?

This is one of the oldest problems in stochastic-process theory, and much is

known by way of necessary conditions for continuity [MR06, §6.2], and suf-

ficient conditions [MR06, §6.1]; see also [MS70; MS72; Gar72]. To formulate

these results in the context of the sphere, and give a necessary and sufficient

condition for path continuity in terms of the Schoenberg coefficients, we need,

as in the standard theory, to introduce the concept of metric entropy.

Definition 4.3. For a Gaussian process {Xt : t ∈ Sd}, the Dudley metric is

defined as:

dX(s, t) :=
√
E[(Xs −Xt)2] =

√
i(s, t), s, t ∈ Sd, (4.33)

where i(s, t) is the incremental variance familiar from previous chapters.

Note that the Dudley metric is, more precisely speaking, a pseudo-metric:

dX(s, t) = 0 ; s = t.

For u > 0, write N(u) for the minimum number of dX-balls of radius u

required to cover Sd; then if H(u) := logN(u), H := {H(u) : u > 0} is called

the metric entropy with respect to the pseudo-metric dX (the term is due to

Lorentz, the concept to Kolmogorov using the term ‘ε-entropy’). The Dudley
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integral is ∫ ε

0

√
H(u)du, ε > 0. (4.34)

When the process X is isotropic, we can obtain a clean necessary and suffi-

cient condition for continuity, namely, finiteness of (4.34) [MR06, Th. 6.1.2].

In the Euclidean case this result is due to Dudley [Dud67], with the general

case discussed in [Dud73, §5]. The case of isotropic fields on compact sub-

spaces of two-point homogeneous spaces is examined in Lifshits [Lif95, Th.

3, §15].

Estimating the metric entropy is a non-trivial task. But, it is possible to find

a condition for the finiteness of (4.34) without needing to estimate H(u), by

instead making use of the incremental variance.

To do this, we need to briefly introduce the non-decreasing rearrangement of

the incremental variance i(s, t) = (dX(s, t))2. Note that i is a function from

Sd × Sd → R+ (although, since X is isotropic it depends only on d(s, t)).

Define

mi(ε) := λ((s, t) ∈ Sd × Sd : i(s, t) < ε), (4.35)

where λ{·} denotes, as usual, Haar measure. Then the non-decreasing rear-

rangement of i is

i(u) := sup {y : mi(y) < u} . (4.36)
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Then we may define our alternative to the Dudley integral:

J(dX) = J(i) :=

∫ ε

0

i(u)√
− log u

du

u
. (4.37)

This is equivalent to (4.34) (when (4.34 is finite) by a technical lemma from

Marcus & Pisier [MP81, Lemma 3.6]:

Lemma 4.1 ([MP81]). If the Dudley integral I(i) :=
∫ ε

0

√
Hi(u) du < ∞

(where Hi denotes the metric entropy with respect to the Dudley metric as-

sociated with incremental variance i) then

−C1ī+
1

2
J(i) ≤ I(ε) ≤ C2ī+ 2J(i), (4.38)

where 0 < C1, C2 <∞ and ī := sup{i(x) : x ∈ Sd}.

Moreover, by [JM74, Cor. 2.5],

J(i) =

∫ ε

0

i(u)√
− log u

du

u
≤
∫ ε

0

i(u)√
− log u

du

u
. (4.39)

Thus, combining, the Dudley integral (4.34) is finite if

∫ ε

0

i(u)√
− log u

du

u
<∞. (4.40)

We can now, for isotropic processes on spheres, formulate this explicitly.
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Recall that, when X is isotropic i(s, t) = I(x), where x = cos d(s, t). Take

φ(u) := sup{
√
I(cos d(s, t)) : d(s, t) ≤ u}, s, t ∈ Sd; (4.41)

then clearly

∫ ε

0

i(u)√
− log u

du

u
<∞⇒

∫ ε

0

φ(u)√
− log u

du

u
<∞. (4.42)

The Dudley condition then becomes, taking v := d(s, t) and using Schoen-

berg’s theorem, ∫ 1

0

√
supv≤u I(cos v)

− log u

du

u
<∞; (4.43)

∫ 1

0

√
supv≤u(1−

∑∞
0 anW λ

n (cos v))

− log u

du

u
<∞. (4.44)

Finiteness of this integral, then, guarantees continuous sample paths (on all

open subsets). When the integral fails to converge the paths are unbounded

on all open subsets of Sd. But, there is a sense in which they are ‘nearly

continuous’: a ‘localisation of pathology’. If (4.44) does not hold for a process

X, then its Karhunen-Loève expansion,

X(t, ω) =
∞∑
i=0

γi(t)ξi(ω), (4.45)

is not uniformly convergent a.s., but it is convergent a.s. and in L2. In

particular, this shows that a.s. X(t) = X(t, ω) is a measurable function of t.

So, we can invoke Lusin’s continuity theorem (or Lusin’s restriction theorem,
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of 1912: [Dud90, Th. 7.5.2], [Rud87, §2.24]).

Theorem 4.3 (Lusin’s Continuity Theorem). Suppose f is a measurable

function on a compact space M . Let ε > 0. Then there exists a g ∈ C(M)

such that

λ({x : f(x) 6= g(x)}) < ε (4.46)

and

sup
x∈M
|g(x)| ≤ sup

x∈M
|f(x)|. (4.47)

Applying this to X(t) we see that there exists a continuous process X ′,

taking values identical to X (for fixed ω) apart from on a set of arbitrary

small measure.

Thus, when slightly restricted, discontinuous paths become continuous. A

similar idea is pursued in [Adl90], using the idea of Lebesgue density. Adler

restricts his attention to the sample paths of {X(t) : t ∈ [0, 1]}. By a result

of Geman [Adl90, p.114], the set A has zero Lebesgue density at t = 0 iff

∫
A

Ψ

(
λ(A ∩ (0, t))

t

)
dt

t
<∞.

for some continuous strictly increasing Ψ such that Ψ(0) = 0. Adler quotes

Don Geman proposing the following conjecture [Adl90, p.114]: “If, after

we have drawn a discontinuous, unbounded, Gaussian sample path on the

blackboard, we were to step far enough backwards so that we could no longer

see sets of zero Lebesgue density, the sample path would become continous
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and bounded.” The above Lusin argument gives this if we can no longer see

sets of arbitrary small measure, but not necessarily sets of Lebesgue density

zero.

4.2 Malyarenko’s theorem

Examination of (4.44) above reveals that the paths of a Gaussian process on

the sphere are continuous if and only if the coefficients an in its covariance’s

Schoenberg expansion (cf. Theorem 2.4)

cov(Xs, Xt) =
∞∑
n=0

anW
λ
n (cos d(s, t)), s, t ∈ Sd (4.48)

decay quickly enough2 – slow decay means wild behaviour of the paths, but if

the decay is fast enough, the paths become very smooth, e.g. if an = O(1/nα)

then the paths will be a.s. in Cbα/2c.

While the Dudley conditions in the section above resolve the matter com-

pletely in principle, in practice one cannot test them, for the obvious reasons:

even if one can determine the mixing law (an) in closed form, passage between

the mixing law (an) and the ultraspherical series
∑
anW

λ
n , the supremum,

and the integration together form an intimidating mathematical barrier.

While there is no definite solution to this (any more than there is in the

2We note here that in some of the literature, particularly that aimed at cosmological
applications, (a rescaling of) the mixing law (an) is referred to as the angular power
spectrum.
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classical case of Fourier series [Zyg68]), there is an answer in a principal case

of practical interest, that when the mixing law (an) is regularly varying (see

e.g. [BGT87]). Here the results are due to Malyarenko [Mal05; Mal13], based

on early works of Bingham [Bin79], Askey and Wainger [AW65]).

First we need to introduce the notion of a slowly varying function, to be able

to formulate Malyrenko’s theorem.

Definition 4.4. A measurable function ` : (0,∞)→ R is slowly varying if

`(λx)

`(x)
→ 1, x→∞, (4.49)

for all λ > 0.

Theorem 4.4 (Malyrenko [Mal13, Th. 4.8]). Let X be a mean-zero Gaus-

sian isotropic random field on the sphere Sd with incremental variance I :

[−1, 1]→ R. Then, for ` slowly varying,

An :=
∞∑
k=n

ak ∼ `(n)/nγ, n→∞, γ ∈ (0, 2) (4.50)

if and only if

I(v) = 1−
∞∑
n=0

anW
λ
n (cos v) ∼ Γ(λ+

1

2
).

Γ(1− 1
2
γ)

2γΓ(λ+ 1
2
− 1

2
γ)
.vγ`(1/v), v ↓ 0.

(4.51)

Proof. We sketch Malyrenko’s proof here. The implication from An to I(v)
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is Abelian; the converse is Tauberian. We have

I(v) =
∞∑
n=0

an(1−W λ
n (v)) =

∞∑
n=0

(An − An+1)(1−W λ
n (v)). (4.52)

Writing this by partial summation:

I(v) =
∞∑
n=0

An+1(W λ
n (v)−W λ

n+1(v)). (4.53)

The difference of ultraspherical polynomials here may be expressed as a single

Jacobi polynomial (Erdélyi et al. [Erd+81, Vol. II, 10.8]). Recall that

the Jacobi polynomials are a two-index family P
(α,β)
n (α, β ≥ −1

2
; we take

α ≥ β). When α = β, the Jacobi polynomials reduce to the ultraspherical

polynomials, with

α = β = λ− 1

2
=

1

2
(d− 2). (4.54)

We use the normalisation [Mal2, 4.3.1]

R(α,β)
n (x) := P (α,β)

n (x)/P (α,β)
n (1). (4.55)

Then ([Mal13, p. 127])

Rα,β
n (cos θ)−Rα,β

n+1(cos θ) =
(2n+ α + β + 2)

(α + 1)
sin2 1

2
θ Rα+1,β

n (cos θ). (4.56)

So

I(cos θ) =
2sin2 1

2
θ

(α + 1)

∞∑
n=0

(n+ α + 1)AnR
α+1,β
n (cos θ). (4.57)
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The sin2 1
2
θ (equivalently, θ2/4) term on the right accounts for the upper limit

2 on γ in the result; that the incremental variance is non-negative accounts

for the lower limit of 0. The results of [Bin78; Bin79] now apply to the

sequence (n+ α + 1)An = (n+ α + 1)
∑∞

n ak with the σ there as 1− γ.

The Tauberian conditions needed follow from an ≥ 0 (so An is non-negative

and non-decreasing).

In fact, this theorem applies on any compact two-point homogeneous space,

where in general isotropic processes have covariance functions given by

cov(Xs, Xt) =
∞∑
n=0

anR
(α,β)
n (cos d(s, t)) (4.58)

where R
(α,β)
n are normalised Jacobi polynomials (as in the above proof).

Malyarenko’s theorem is very similar to that of [Bin72c] on Hankel trans-

forms, the link being provided by Szegő’s Hilb-type asymptotic formula for

the Jacobi polynomials [Sze39, Th. 8.21.12].

The Belyaev integral is convergent here, and so Malyarenko’s theorem pro-

vides us with an ample range of examples of the continuous case in the

Belyaev dichotomy. The supremum operation in (4.44) is not an obstacle

here, since any regularly varying function of non-zero index is asymptoti-

cally monotone [BGT87, §1.5.2]).

It is possible to extend to the boundary case γ = 0 here, when the tail An of

the mixing law is slowly varying, but convergence of the Dudley integral now
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hinges on the behaviour of ` at infinity. This is shown by familiar examples

–
∑

1/(n(log n)k) is convergent if k > 1, and divergent if k ≤ 1. One can

also extend to the case γ = 2 [Bin72c].

A complementary approach to Malyrenko’s is taken by Kerkyacharian et al.

[Ker+18, §7.22], who show that if the mixing law satisfies an = O(1/n1+γ) for

γ > 0 (so An :=
∑∞

n ak = O(1/nγ)), then the sample paths of the process X

are a.s. in the Besov space Bα
∞,1 for all α < γ (there is much more on Besov

spaces to come below, in §4.4 – in the context of [Ker+18] see Giné and Nickl

[GN16] for the theory of Besov spaces and Fukushima et al. [FOT11] for the

necessary Dirichlet structure on the index set, Sd here). Thus, the faster the

decay of the mixing law, the smoother the paths of the process.

4.3 The Hilbert sphere

We now turn to a new result: an extension of Theorem 4.4 to the Hilbert

sphere. The Hilbert sphere S∞ is not locally compact, and because of this one

may expect very different behaviour for it from that on Euclidean spheres.

Gaussian processes on S∞ are deterministic (see [Ber74] for the definition):

the behaviour of the process locally determines it everywhere [Ber80, Th.

4.1]. In fact, Berman shows that, by replacing independence assumptions

with orthogonality ones, any centred stochastic process on S∞ with covari-

ance of the form (2.25) is deterministic.
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Recall that ultraspherical polynomials may be defined for λ =∞ byW∞
n (x) =

xn and the general covariance for a process X on the Hilbert sphere is of the

form (2.25):
∞∑
n=0

anx
n, an ≥ 0,

∞∑
n=0

an = 1. (4.59)

This is, as is remarked in [Ber80], a much simpler form than the finite-

dimensional case, a fact which opens up a lot of interesting theory, especially

in the Gaussian case – see [Ber80] for a definitive overview. For more recent

work on covariance functions and Gaussian processes on the Hilbert sphere,

see [BPP18; Jäg19].

Since

Γ(ν + 1
2

+ 1
2
γ)

Γ(ν + 1
2
)
∼ ν

1
2
γ →∞ (ν →∞), (4.60)

the infinite-dimensional case of Theorem 4.4 does not follow formally by

letting ν →∞. Instead, we have the following:

Theorem 4.5. In the notation of Malyarenko’s theorem, with γ ∈ (0, 2)

An :=
∞∑
k=n

ak ∼ `(n)/n
1
2
γ, n→∞ (4.61)

if and only if

I(v) = 1−
∞∑
n=0

an(cos v)n ∼
Γ(1− 1

2
γ)

2
1
2
γ

· vγ`(1/v2), v ↓ 0. (4.62)

Proof. The functions in P(S∞) = P∞ are probability generating functions

(in t, say), or (putting t = e−s) Laplace-Stieltjes transforms.
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Let s = − log cos v, so that cos v = e−s. The Schoenberg series
∑
ane

sn thus

takes the form of the Laplace-Stieltjes transform of the mixing law.

[BGT87, Cor. 8.1.7] links the tail behaviour of a distribution F with its

Laplace-Stieltjes transform F̂ . It states that, for α ∈ [0, 1),

1− F (x) ∼ `(x)/xα, x→∞, (4.63)

if and only if

1− F̂ (s) ∼ Γ(1− α)sα`(1/s), s→ 0. (4.64)

So, taking α = γ/2 ∈ [0, 1), (4.61) holds if and only if

1−
∞∑
n=0

ane
−sn ∼ Γ(1− 1

2
γ)s

1
2
γ`(1/s). (4.65)

Comparing expansions around zero of cos v and e−s, we have s ∼ 1
2
v2 and so,

taking α = γ/2 ∈ [0, 1) (4.65) is equivalent to

1−
∞∑
n=0

an(cos v)n ∼
Γ(1− 1

2
γ)

2
1
2
γ

· vγ`(1/v2), v ↓ 0, (4.66)

as required.

It is not surprising that the tails here are heavier than in the finite dimen-

sional case of Theorem 4.4 – there there are ‘more ways of going off to infinity’.

Thus the relevant probability laws (an) here have regularly varying tails in

(0, 1), rather than in (0, 2) as in the Euclidean case of Malyarenko’s theorem.
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The constants introduced (in going between the ‘Abelian’ and ‘Tauberian’

sides) in results of this type are the values, for s = γ, of the Mellin transform

k̂(s) :=

∫ ∞
0

usk(u)du/u (s ∈ C)

of the kernel k in the relevant Mellin-Stieltjes convolution (see e.g. [BGT87,

Ch. 4, 5]).

4.4 Integrability conditions

The question of path-continuity of process on spheres is also addressed in

the work of Lang and Schwab [LS15] (cf. [AL14]) and Lan, Marinucci and

Xiao [LMX18]. The picture is much as above: the faster the decay of the

Schoenberg coefficients/mixing law, the better: the more regular the paths of

the process (and, as above, the faster the decay of the incremental variance

at the origin).

In [LS15, §4, Assumption 4.1], Lang and Schwab assume a decay condition

on the mixing law (an) measured by a summability condition (rather than by

rate of decay as in §4.3 above): in our notation, they assume

∞∑
n=0

ann
γ <∞ (γ > 0). (4.67)
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In view of the work above, we re-write this by partial summation as

∞∑
n=0

An.n
γ−1 <∞ :

∞∑
n=0

(n+ α + 1)An · nγ−2 <∞. (4.68)

As in §4.3, and in [LS15, §4], the case γ ∈ (0, 2) is especially important, so we

begin with that. Then the summability condition (4.67) may [Bin79, Th. 1]

be translated into a corresponding integrability condition on the incremental

variance at the origin: (4.67) implies

∫ π/2

0+

I(cos θ) · θ−γ dθ
θ
<∞. (4.69)

As
∫

0+
dθ/θ diverges, this gives in particular that

I(cos θ) = o(θγ) (θ ↓ 0). (4.70)

This strengthens the result of [LS15, Lemma 4.2] from O(.) to o(.) (though in

view of the ‘ε-gap’ in [LS15, Th. 4.7], where it is used, this does not matter).

This leads quickly to the path-regularity result ([LS15]; cf. [LMX18]):

Theorem 4.6 ([LS15, Th. 4.5]). If X is an isotropic Gaussian random

field on the sphere whose Schoenberg coefficients (an) satisfy the summability

condition (4.67), then for any δ < γ/2 X has a continuous version: for

k := bγ/2c, the modification is k times continuously differentiable, with kth

derivative Hölder continuous with exponent δ − k.



4.4. Integrability conditions 95

Proof. (Sketch). The proof consists of three steps:

(i) For n ∈ N , x, y ∈ Sd

E[|X(x)−X(y)|2n] ≤ Cγ,nd(x, y)γn,

with d(., .) geodesic distance as before [LS15, Lemma 4.3].

(ii) The Kolmogorov-Chentsov theorem on manifolds [AL14] gives the result

for γ ∈ (0, 2].

(iii) For γ > 2, fractional differentiation can be used to the range above.

We refer for full detail to [LS15; AL14].

The crucial step is the application of the Kolmogorov-Chentsov theorem for

manifolds. In the Euclidean setting, this classical result is as follows:

Theorem 4.7 (The Kolmogorov-Chentsov Theorem). If X is a stochastic

process on Rd and

E[ |Xt −Xs|p] ≤ c|t− s|d+s+kp, s, t ∈ Rd (4.71)

for some constants p > 0, s ∈ (0, p), k ∈ N ∪ 0, then for any σ < s/p,

|Xt −Xs| ≤ C(ω)|t− s|k+σ, s, t ∈ Rd (4.72)

for some random variable C(ω) < ∞ with probability one. In other words:

X has a.s. a (k + σ)–Hölder continuous version.
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The notion of a Besov space and Besov Embedding Theorem, generalisations

of the earlier Sobolev spaces and embedding theorem, together allow for an

extremely short proof of this powerful theorem, due to Schilling [Sch00].

Define, using the notation (as in Schilling) ||u|X|| to denote the norm of u

with respect to the space X, the Besov space on Rd to be the space

Bs
pp(Rn) :=

{
u ∈ Lp(Rd) : ||u|Bs

pp(Rn)|| <∞
}

(4.73)

with 0 < p ≤ ∞, nmax(1/p− 1, 0) < s < M , M ∈ N with quasi-norm

||u|Bs
pp(Rd)|| := ||u|Lp(Rd)||+

(∫
|h|≤ν
|h|−sp||∆M

h u|Lp(Rd)||p dh
|h|n

)1/p

,

(4.74)

and

∆1
hu := u(·+ h)− u(·) (4.75)

∆M
h u := ∆M−1

h (∆1
hu). (4.76)

Theorem 4.8 (Besov Embedding Theorem [Sch00; Tri83]). B
s+n/p
pp (Rd) ⊂

Cs(Rd) for 0 < p ≤ ∞, 0 < s /∈ N, up to modification on a set of measure

zero.

Note that Theorem 4.8 is a generalisation of Sobolev’s Embedding Theorem,

which (as the name suggests) refers only to Sobolev spaces W s
p (Rd). The

Sobolev spaces W s
p (Rd) coincide entirely with the Besov spaces Bs

pp(Rd) when

p ≥ 1.



4.4. Integrability conditions 97

Proof of Theorem 4.7 [Sch00]. The expectation E[|Xt−Xs|p] is finite, so the

random variable Xt(ω) is finite a.s. and thus its paths t → Xt(ω) are in

the Besov space B
σ+k+n/p
pp (Rd) a.s. So, by Sobolev’s (or Besov’s) Embedding

Theorem, the process X has a version X ′ in the Hölder space Cσ+k(Rd) for

each σ < s/p.

The power of Schilling’s approach is that it easily extends to the non-Euclidean

case, giving an alternative proof of the Lang-Schwab Theorem. For this, we

need a) Besov spaces on spheres; and b) a Sobolev/Besov Embedding Theo-

rem.

For (a), see [FFP16]. The definition here is a little more complex. On the

sphere Sd = SO(d+ 1)/SO(d) define the vector fields

Xi,j = xj∂xi − xi∂xj , i < j. (4.77)

These generator a family of one-parameter groups of rotations in SO(d+ 1),

defined by

exp τXi,j·(x1, . . . , xd+1) = (x1, . . . , xi cos τ−xj sin τ, . . . xi sin τ+xj cos τ, . . . xd+1)

(4.78)

(see [FFP16, §4.4]). Then, c.f. [FFP16, §10.2] define

Tj(τ)u(x) := u(exp τXi,j · x), x ∈ Sd (4.79)
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and the new difference operator

ΩM
h,p(u) :=

∑
1≤j1,...,jM≤d

sup
0≤τj1≤h

. . . sup
0≤τjM≤h

||(Tj1(τj1)−I) . . . (TjM (τjM )−I)u|Lp(Sd)||,

(4.80)

where I is the identity operator in Lp(Sd) and, recall, ||u|X|| denotes the norm

of u with respect to the space X. Then the Besov space Bs
pp(Sd) consists of

the functions in u ∈ Lp(Sd) such that

||u|Bs
pp(Sd)|| := ||u|Lp(Sd)||+

(∫ ∞
0

h−sp
(
ΩM
h,p(u)

)p dh
h

)1/p

<∞. (4.81)

The final ingredient needed for a Schilling-style proof of Lang-Schwab theo-

rem (Th. 4.6) is a Besov Embedding Theorem applicable to spheres – this

is provided by Han [Han95] for spaces of homogeneous type, with the state-

ment directly analogous to that of Theorem 4.8. Spheres are of homogeneous

type, and so Schilling’s short proof of the Kolmogorov-Chentsov theorem gen-

eralises to spheres, simplifying the proof of Theorem 4.6.

4.5 Spherical Harmonics

We’ve seen that processes defined on any separable metric space M have a

convergent (in L2 and almost surely) Karhunen-Loève expansion
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X(t) =
∞∑
i=0

γi(t)ξi, t ∈M. (4.82)

Given a process’s Karhunen-Loève expansion, we can read off its covariance:

cov(Xs, Xt) = E

[
∞∑
i=0

γi(s)ξi

∞∑
j=0

γj(t)ξj

]
(4.83)

=
∞∑

i,j=0

γi(s)γj(t)E [ξiξj] (4.84)

=
∞∑

i,j=0

γi(s)γj(t)δij (4.85)

=
∞∑
i=0

γi(s)γi(t), (4.86)

where (4.85) follows from the fact that ξi ∼ N(0, 1) are independent and

thus E [ξiξj] = δij. Clearly we can also go in the other direction, and derive

a given process’s Karhunen-Loève expansion from its covariance.

We can thus exploit Schoenberg’s expansion of the covariance function for

isotropic random fields on the sphere to get a more explicit Karhunen-Loève

expansion. Although this is not important for the theoretical results on path

properties above, it is the key for simulation of such random fields [LS15, §5].

The vital ingredients here are the spherical harmonics – recall from Section

2.3 that these are the restrictions to the sphere Sd ⊂ Rd+1 of homogeneous

polynomials which are harmonic: solutions to the Laplace equation in Rd+1
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[AAR99, Ch. 9]. For each degree λ = 0, 1, 2, . . . there are

c(l, d) :=
2l + d− 1

d− 1

(
l + d− 2

l

)
(4.87)

linearly independent spherical harmonics of degree l. Denote the mth spher-

ical harmonic of degree l by Ylm.

Spherical harmonics are closely related to the ultraspherical polynomials, via

the addition theorem for spherical harmonics [AAR99, Th. 9.6.3]:

c(l,d)∑
m=1

Ylm(s)Ylm(t) = W λ
l (〈s, t〉) · c(l, d)

ωd
, (4.88)

where λ = (d − 1)/2, ωd is (as in (2.16)) the surface area of the d−sphere

and 〈·, ·〉 is the inner product in Rd+1 (so in particular, cos〈·, ·〉 is geodesic

distance on Sd).

Now, let X be an isotropic process on Sd with mixing law (an). Write

vn := an ·
ωd

c(n, d)
, n = 0, 1, . . . . (4.89)

For readers familiar with the cosmological applications of random fields on

the sphere (c.f. [MP11] and its references) this will be familiar, when d = 2,

as the angular power spectrum we referred to previously.

So, comparing (4.86) with the general Schoenberg expansion of a covariance
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on the sphere:

∞∑
l=0

γi(t)γj(s) =
∞∑
l=0

alW
λ
l (〈s, t〉) (4.90)

=
∞∑
l=0

vl
c(l, d)

ωd
W λ
l (〈s, t〉) (4.91)

=
∞∑
l=0

vl

c(l,d)∑
m=1

Ylm(s)Ylm(t) (4.92)

=
∑
lm

∑
l′m′

δll′δmm′vlYlm(s)Yl′m′(t) (4.93)

=
∑
lm

∑
l′m′

E[ξlmξl′m′ ]Ylm(s)Yl′m′(t) (4.94)

= E

[∑
lm

Ylm(s)ξlm
∑
l′m′

Yl′m′(t)ξl′m′

]
(4.95)

where ξlm ∼ N(0, vl) and writing
∑

lm for the double sum
∑∞

l=0

∑c(l,d)
m=1 . That

is, the Karhunen-Loève expansion of an istropic process on Sd takes the form

X(t) =
∑
lm

Ylm(t)

vl
ξlm (4.96)

where the Ylm are the relevant spherical harmonics, and ξlm ∼ N(0, 1) are

independent.

The spectral expansion (4.96) is well-known, and well-used – Marinucci and

Peccati’s [MP11] use the case d = 2 to model cosmic microwave background

(CMB) radiation; and it provides the easiest-to-implement method of gener-

ating sample isotropic fields on Sd numerically. Below we shall see that this

approach can be extended to the geo-temporal case.
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4.6 The geo-temporal case

In light of (4.96) it seems appropriate to find a corresponding spectral ex-

pansion of random fields on Sd × R.

Theorem 4.9. Let X be a geo-temporal random field with Karhunen-Loève

expansion

X(x, t) =
∑
lm

√
vl almclφl(t)Ylm(x), alm ∼ N(0, 1) (4.97)

where Ylm are spherical harmonics, φl(t) a characteristic function, cl con-

stants such that
∑
vlc(l, d)c2

l < ∞, and writing
∑

lm for the double sum∑∞
l=0

∑c(l,d)
m=1 . Then X has covariance

C(X(x, s), X(y, t)) = c
∞∑
n=0

anφn(t− s)W λ
n (〈x, y〉), (4.98)

where the coefficients (an) are as in Theorem 2.7b. That is, (4.97) generates

the most general Gaussian random field on Sd × R isotropic in space and

stationary in time.

Proof. The covariance calculation is now

cov(X(x, s), X(y, t)) = E

[∑
lm

√
vl almclφl(s)Ylm(x)

∑
l′m′

√
vl′ al′m′cl′φl′(t)Yl′m′(y)

]
(4.99)
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=
∑
lm

∑
l′m′

E[almal′m′ ]
√
vlvl′clcl′φl(s)φl′(t)Ylm(x)Yl′m′(y)

(4.100)

=
∑
lm

∑
l′m′

δll′δmm′
√
vlvl′clcl′φl(s)φl′(t)Ylm(x)Yl′m′(y)

(4.101)

=
∞∑
l=0

vlc
2
l φl(s)φl(t)

∞∑
m=0

Ylm(x)Ylm(y) (4.102)

=
1

ωd

∞∑
l=0

vlc(l, d)c2
l φl(s)φl(t)W

λ
l (〈x, y〉) (4.103)

=
∞∑
l=0

alc
2
l φl(s)φl(t)W

λ
l (〈x, y〉) (4.104)

using the addition formula for spherical harmonics. Since the field is sta-

tionary in time the temporal factor in the covariance depends only on the

difference s − t, and thus we may take s = 0 and deal with t only. After

rescaling so
∑∞

n=0 an = 1, this gives (4.98), as required.

Interest in path properties of geo-temporal Gaussian processes is still develop-

ing and the current literature is very sparse – we know of only [Jon63; CAP18]

addressing the subject. [CAP18] describe regularity properties of spatio-

temporal processes using Sobolev and interpolation spaces, aided by two

new spectral expansions for spatio-temporal processes: a double Karhunen-

Loève expansion and a decomposition of the φn(t) above into their Hermite

expansions
∑

k bn,kHk(t), with Hk the normalised Hermite polynomial of de-

gree k. Their approach, which is based on Theorem 2.7a, handles space and

time asymmetrically, whereas (4.97) above gives a symmetric expansion.
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4.7 Complements

4.7.1 Other approaches to continuity for Gaussian pro-

cesses

A very recent approach to studying path properties of Gaussian processes

on the sphere is due to work by Lan, Marinucci and Xiao [LMX18; LX18]

obtained in 2018, using their concept of strong local non-determinism to

determine a.s. Hölder conditions for spherical Gaussian random fields (d = 2;

‘exact modulus of non-differentiability’) and their local times, assuming the

Schoenberg coefficients are bounded above and below by powers.

Azmoodeh et al. [Azm+14] give necessary and sufficient conditions for Hölder

continuity of Gaussian processes (but without an exact modulus of continu-

ity, as in [LMX18]), for general (rather than spherical) Gaussian processes.

Marcus and Rosen [MR06, Ch. 7] give a fairly exhaustive account of the

theory of exact moduli of continuity for such Gaussian processes.

4.7.2 Measuring smoothness

‘How to measure smoothness’ is the title of Chapter 1 in the standard work

on function spaces, Triebel [Tri83]. The three-parameter families most com-

monly used for measuring smoothness are the Besov spaces Bs
pq described

above. For more background here, we refer to [Tri83] (there, the spaces F s
pq,
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usually called Triebel-Lizorkin spaces, are also treated, but we do not con-

sider these), and for Bs
pq(M) to [FFP16]. There are also weighted versions

Bs
pq(ρ), with weight-function ρ; see [Sch00, §3]

4.7.3 Sobolev spaces

The approach of [LS15] (and extended in [CAP18]) quantifies Gaussian paths

in terms of Sobolev spaces Wm
p (Ω) (m ∈ N, p ∈ [1,∞), Ω a domain), rather

than the (more general) Besov spaces we have used. Sobolev spaces are

defined [AF03, Ch. III] as vector subspaces of Lp(Ω) whose weak (or distri-

butional) partial derivatives of order α ≤ m lie in Lp. As in Lp, the elements

of Wm
p are equivalence classes of functions (under equality a.e.) rather than

individual functions and, again like Lp, the Wm
p are Banach spaces.



Chapter 5

The Ciesielski Isomorphism on

Spheres

Let α ∈ (0, 1), and define Lipα([0, 1]d) to be the space of Hölder continuous

functions of order α, with the additional requirement that they vanish at

zero. Using the notation ||u|X|| to denote the norm of u with respect to the

space X, let

||f |Lipα(S2)|| := sup
s,t∈S2

|f(s)− f(t)|
|t− s|α

. (5.1)

We then have the following classical result due to Ciesielski [Cie60a; Cie60b],

relating a function space to a sequence space.

Theorem 5.1 (Ciesielski’s Isomorphism [Sem82, Th. 3.5.10]). Let α ∈ (0, 1).

Then the space Lipα([0, 1]d) is isomorphic to `∞.

106



107

Ciesielski’s isomorphism has found myriad applications in probability theory,

ranging from stochastic integration [GIP16] to large deviation theory [AIP13].

Our motivation here comes from the use of Ciesielski’s result to describe the

path properties of a Gaussian process. This question was first addressed in

the one-dimensional setting by Ciesielski [Cie61].

[RS98] address the question of regularity of random fields on the d-dimensional

interval [0, 1]d, using Ciesielski’s approach to find a condition for Hölder con-

tinuity of a version of a random field X in terms of the coefficients of its

Schauder expansion
∞∑
j=0

∑
v∈Vj

λj,vΛj,v (5.2)

where the Λj,v form a Schauder basis of [0, 1]d with respect to a suitable

choice of triangulation V1 ⊂ V2 ⊂ . . .1. When the parameter space of the

random field is [0, 1]d the coefficients λj,v are second differences of the form

∆2
hX(t) = X(t + h) + X(t − h) − 2X(t), the importance of which for path

regularity was first noted by Zygmund [Zyg45]. [RS98] go on to obtain a

central limit theorem for sequences of random elements in a Hölder space. A

follow-up paper [RS04] answers the same question for Banach-space valued

random fields.

In this chapter we take the preliminary steps towards expanding this frame-

work to spheres: specifically, we obtain a Ciesielski isomorphism between

the space of Hölder-continuous functions of order α on S2 and the sequence

1Recall that a Schauder basis of a Banach space F is a sequence (Λn) of functions
in F where for each f ∈ F there exists a unique sequence of scalars (λn) such that

||f −
∑N

1 λnΛn|| → 0 as N →∞.
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space `∞. The proof of Theorem 5.1 follows from an equivalence between the

continuity properties of a function f and the rate of convergence of the co-

efficients of f ’s Faber-Schauder decomposition [Sem82, Theorem 3.5.2], and

it is this result which is the technical hurdle here. The construction of the

Faber-Schauder decomposition hinges on the use of bases of splines of de-

gree one – i.e. functions which are “pyramidal”: continuous and affine on

a triangulation of [0, 1]d. Such functions cannot exist on the sphere – it is

non-Euclidean, so the parallel postulate does not hold. But, the idea can

be adapted for our purposes, borrowing from the theory of spherical splines.

The result is Theorem 5.2, below.

The modulus of smoothness we can use in Theorem 5.2 is rather general –

take any function ρ : [0, 2π]→ R with the following properties:

1. ρ(0) = 0, ρ(δ) > 0 for 0 < δ < 2π;

2. ρ is non-decreasing on [0, 2π];

3. ρ(2δ) < c1ρ(δ);

4.
∫ δ

0
ρ(u)/u du < c2ρ(δ);

5. δ
∫ 2π

δ
ρ(u)/u2 du < c3ρ(δ)

for suitable positive constants c1, c2, c3. One example of a function ρ satisfy-

ing (1)–(5) is

ρ(δ) := δα logβ(c/δ), (5.3)
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with c ≥ 2π exp(β/α) if β > 0 and c > 2π exp(−β/(1 − α)) if β < 0.

Throughout this chapter any function denoted ρ is assumed to satisfy (1)–

(5).

5.1 Spherical Triangulations

The first step is to define a triangulation on S2, which we need to find our

Schauder basis of C(S2). We start with an octahedron projected (gnomon-

ically) onto the sphere – i.e. eight spherical triangles of equal size with six

vertices – (v0, v1, v2, v3, v4, v5) given by

v0 = (0, 0, 1)

v1 = (1, 0, 0)

v2 = (0, 1, 0)

v3 = (−1, 0, 0)

v4 = (0,−1, 0)

v5 = (0, 0,−1).

At each recursion step, subdivide each triangle into four triangles by drawing

edges between the mid-points of each existing edge i.e. (wlog the vertices of

the existing triangle are (v0, v1, v2)) define new vertices w0, w1, w2 by

w0 =
v1 + v2

|v1 + v2|
;
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w1 =
v0 + v2

|v0 + v2|
;

w2 =
v0 + v1

|v0 + v1|
.

It is not possible to have a completely uniform triangulation of the sphere

containing more than twenty spherical triangles (the icosahedron is the Pla-

tonic solid with the most faces). Nonetheless, the octahedral triangulation

boasts nice enough uniformity properties for our purpose: denoting by Tn

the octahedral triangulation a level n, the maximum diameter of ∆ ∈ Tn, dn,

is bounded by

dn ≤ A · 2−n, (5.4)

where A is a suitable constant [BDS08]. Moreover, it follows from the proof

of [BDS08, Theorem 1] that, for all n ∈ N, for all ∆ ∈ Tn, the area α(∆) is

bounded below by

α(∆) ≥ B · 2−2n, (5.5)

where B is a constant.

Now we need an analogue of a pyramidal basis for C(S2). In the planar case

this basis is formed of splines of degree one (see [Sem82, Ch. 3]), so a natural

first pick is to try spherical splines of degree one, slightly modified.

Given a spherical triangle ∆ = (v1, v2, v3) define the spherical barycentric co-

ordinates of a point x ∈ S2 to be the (unique) triplet (bv1(x), bv2(x), bv3(x))
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such that

x = bv1(x)v1 + bv2(x)v2 + bv3(x)v3. (5.6)

Clearly, for α ∈ R bv(αw) = αbv(w). Moreover bvi(vj) = δij, bv(x) > 0 for

all x ∈ Int(∆) and if x lies on the edge of ∆ joining v1 and v2, say, then

bv3(x) = 0.

The values of the barycentric co-ordinates are given by ratios of volumes:

b1 =
vol(t1)

vol(t)
, (5.7)

where t is the spherical pyramid with vertices (0, v1, v2, v3) and t1 the spher-

ical pyramid with vertices (0, x, v2, v3). b2 and b3 are defined similarly.

The volume of a spherical pyramid t = (0, v1, v2, v3) with face triangle ∆ =

(v1, v2, v3) is given by

vol(t) = vol(S2)
α(∆)

α(S2)
=

4π

3

α(∆)

4π
=
α(∆)

3
, (5.8)

where α(·) denotes surface area. So the b1 are equivalently ratios of surface

areas of spherical triangles.

Now define, for each triangulation Tj and each v ∈ Tj the pyramidal function
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Λj,v : S2 → R by

Λj,v(x) :=


bv(x) x ∈ {∆ : v ∈ Vert(∆)},

0 else.

(5.9)

Then Λj,v has the following properties:

1. Λj,v(v) = 1

2. Λj,v(w) = 0 for all w ∈ Vert(Tj)\{v}

Let T1, T2, . . . be the sequence of refinements of the octahedral triangulation

of the sphere. Let Wn = vert(Tn), V1 = W1, Vn+1 = Wn+1\Vn, V = ∪Vn.

Then we can formulate the following definition.

Definition 5.1. A basis {Λj : j ∈ N} of C(S2) is pyramidal if and only if

1. for every j ∈ N there exists a ν ∈ N such that Λj is pyramidal with

respect to Tν – denote the smallest such ν by ν(j);

2. if j < j′ then ν(j) ≤ ν(j′);

3. each v ∈ V is the peak vertex of precisely one function Λj;

4. if v ∈ Wm and v is a peak vertex of Λj then ν(j) ≤ m.

Lemma 5.1. For the sequential octahedral triangulation of S2 there is a

sequence in C(S2) satisfying (1) – (4).
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Proof. Pick the sequence of functions L = {Λj,v : j ∈ N, v ∈ Vj}, where Λj,v

is the (unique) function pyramidal wrt Tj with peak vertex v. For ease, order

the vertices lexicographically by their co-ordinates projected back onto the

octahedron. For each j ∈ N (1) is satisfied, with ν = j. (2) and (3) follow

by the construction of Vj. For (4), let v ∈ Wm. Then either v ∈ Vm, and

ν(j) = m, or v ∈ Wm−1 and ν(j) < m.

We will see that the L forms a basis for C(S2), i.e. any f ∈ C(S2) has a

unique, uniformly convergent, expansion

f(t) =
∑
j∈N

∑
v∈Vj

λj,v(f)Λj,v(t). (5.10)

In fact, L is precisely the class s1 of spherical splines of degree one, based on

Bernstein-Bézier polynomials – see e.g. [ANS96].

Denote by S(n) the partial sum over all vertices in the first n triangulations:

S(n) =
n∑
j=1

∑
v∈Vj

λj,vΛj,v. (5.11)

Note that (1) and (4) imply that if v < w then Λj,w(v) = 0.

Let w ∈ Wn. Then

f(w)− S(n)(w) =
∞∑

j=n+1

∑
v∈Vj

λj,vΛj,v(w) = 0, (5.12)

as for all j > n we have w ∈ vert(Tj), so Λj,v(w) = 0 (as if w ∈ Wn then
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w /∈ Vj for j > n). Thus, for v ∈ W1

f(v) = S(1)(v) =
∑
w∈W1

λ1,wΛ1,w(v) = λ1,v, (5.13)

and for v ∈ Vn, n ≥ 2,

f(v) = Sn(v) = S(n−1)(v) +
∑
w∈Vn

λn,wΛn,w(v) (5.14)

= S(n−1)(v) + λn,v, (5.15)

i.e. the coefficients are given by

λ1,v = f(v), v ∈ W1, (5.16)

λn,v = f(v)− S(n−1)(v), v ∈ Vn, n ≥ 2. (5.17)

Now we can finally show that L is indeed a basis for C(S2).

Proposition 5.1. L = {Λj,v : j ∈ N, v ∈ Vj} is a basis of C(S2).

Proof. By [Sem, 1.3.2] L is a basis of C(S2) if (a) Λj,v(v) 6= 0, Λj,v(w) = 0,

w ∈ Vert(Tj)\{v}, which is true by construction, and (b)
∑
λΛ converges

uniformly.

To show this, note that dn → 0, where dn = sup{diam ∆ : ∆ ∈ Tn}. Take

n sufficiently large. For any x ∈ S2 there exists a triangle ∆ with vertex v
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such that d(x, v) ≤ diam (∆) ≤ dn, and x. Then,

|S(n)(x)− f(x)| = |S(n)(x)− f(v) + f(v)− f(x)| (5.18)

≤ |S(n)(x)− f(v)|+ |f(v)− f(x)|, (5.19)

by the triangle inequality. Define

ωf (δ) := sup
t,s,∈S2,d(t,s)≤δ

|f(t)− f(s)| (5.20)

so |f(v) − f(x)| ≤ ωf (dn). Meanwhile, since S(n) is continuous and f(v) =

S(n)(v),

|S(n)(x)− f(v)| = |S(n)(x)− S(n)(v)| → 0, (5.21)

i.e. ||f − S(n)|| → 0. Moreover.

|λj, v| ≤ ωf (dn−1) + ωf (dn) ≤ 2ωf (dn−1), v ∈ V n, (5.22)

completing the proof.

5.2 The Ciesielski Isomorphism

Now that we have defined the relevant basis of C(S2), we can formulate our

main result, from which the Ciesielski isomorphism follows.
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Theorem 5.2. For every f ∈ C(S2) the following are equivalent:

(i) ωf (δ) = O (ρ(δ)) ; (5.23)

(ii) sup
v∈Vn
|λn,v| = O

(
ρ(2−n)

)
. (5.24)

To prove this, we need a series of lemmas.

Lemma 5.2. For all j ∈ N, all x ∈ S2,
∑

v∈Vj |Λj,v(x)| ≤ 3.

Proof. By continuity it suffices to check the result for x ∈ ∆, some spherical

triangle in Tj. If v ∈ Vj is not a vertex of ∆ then Λj,v(t) = 0. Otherwise,

either 2 or 3 vertices of ∆ are in Vj, so

∑
v∈Vj

|Λj,v(x)| ≤
∑

vi vertices of ∆

|Λj,vi(x)| ≤ 3, (5.25)

since Λj,vi takes value 1 at vi then decreases to 0 at the other vertices.

Lemma 5.3. If f ∈ C(S2) and there exists k ∈ N such that

sup {|λn,v| : v ∈ Vn} ≤ (ρ(2−n)) (5.26)

for n ≥ k, then

||f − S(n−1)(f)|| ≤ 6c1c2ρ(2−n), n ≥ k. (5.27)
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Proof. Let n ≥ k. Then, using Lemma 5.2, the proof follows [Sem82] closely:

|f(x)− S(n−1)(x)| =
∞∑
j=n

∑
v∈Vj

λj,vΛj,v(x) (5.28)

≤
∞∑
j=n

∑
v∈Vj

|λj,v||Λj,v(x)| (5.29)

≤
∞∑
j=n

3 sup
v∈Vj
|λj,v| ≤

∞∑
j=n

3ρ(2−j) = 6
∞∑
j=n

2−j
ρ(2−j)

2−j+1
(5.30)

≤ 6
∞∑
j=n

∫ 2−j+1

2−j

ρ(t)

t
dt (5.31)

= 6

∫ 2−n+1

0

ρ(t)

t
dt ≤ 6c2ρ(2−n+1) ≤ 6c1c2ρ(2−n). (5.32)

Lemma 5.4. There exists a constant c0 such that for each n ∈ N and each

pair x0, y0 ∈ S2 such that d(x0, y0) ≤ π2−n there exists a sequence x0 =

z0, z1, . . . , zk = y0 and spherical triangles ∆j in T , j = 1, . . . , k such that

k ≤ c0 and for each j successive points zj−1, zj lie in the same simplex ∆j.

Proof. The proof again follows [Sem82], with the appropriate adjustments

for the spherical geometry. Let x0, y0 be such that d(x0, y0) ≤ π2−n. Then

there is a spherical cap K such that diam (K) = π2−n and x0, y0 ∈ K.

Denote by TKn := {∆ ∈ Tn : ∆ ∩ K 6= ∅} the set of spherical triangles in

the triangulation Tn intersecting K. |TKn | is then the maximum number of

simplexes that the sequence z0, . . . zk can walk through.

Let K̂ := {z ∈ S2 : d(z,K) ≤ A · 2−n}. By (5.4) it follows that ∪{∆ : ∆ ∈
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TKn } ⊂ K̂. Now, the area of the spherical cap K̂ is

2π
[
1− cos

(
(A+ 2π)2−n

)]
≤ π

[
(A+ 2π)2−n

]2
, (5.33)

using the bound 1 − cosx ≤ x2/2. By (5.5) the area of ∆ in Tn is greater

than B · 2−2n, and thus the number of triangles |TKn | in TKn is less than

c0 =
π(A+ 2π)2

B
, (5.34)

which does not depend on n.

The rest follows precisely as in [Sem82, p. 69]: let Γ denote the set of all finite

sequences of spherical triangles ∆1, . . . ,∆k with x0 ∈ ∆1 and ∆j−1 ∩∆j 6= ∅

(further, ∆i 6= ∆j for i < j – otherwise the intermediary triangles could be

dropped from the sequence).

For each ∆ ∈ TKn there is a sequence (∆j) in Γ with ∆ = ∆j for some j.

Thus, there is a sequence ∆1, . . .∆k in Γ where y0 ∈ ∆k. So k ≤ c0, and we

can choose any zj ∈ ∆j ∩∆j+1 to fill the sequence.

We now proceed to the proof of the main theorem

Proof of Theorem 5.2. (⇒): Let ωf (δ) = O(ρ(δ)). Then since the coeffi-

cients

λn,v = f(v)− S(n−1)(v) (5.35)
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are bounded:

|λn,v| ≤ ωf (dn−1) ≤ ωf (2
−(n+1)) ≤ ωf (2

−n), (5.36)

we have that supv∈Vn |λn,v| = O(ρ(2−n)).

(⇐): Now suppose

sup
v∈Vn
|λn,v| = O(ρ(2−n). (5.37)

Then by Lemma 5.3,

||f − S(n−1)(f)|| ≤ 6c1c2ρ(2−n). (5.38)

First, following Semadeni [Sem82, p. 71], estimate |f(x) − f(y)| when x, y

belong to the same triangle ∆ in Tn for some sufficiently large n. Then, by

(5.4) d(x, y) ≤ A ·2−n < π/4. For each k ≤ n there exists a (unique) ∆k ∈ Tk

such that ∆ ⊂ ∆k.

Let v be a vertex of ∆k, and denote the remaining two vertices by v2, v3. Let

∆x = (x, v2, v3) and ∆y = (y, v2, v3) be the triangles with vertices x, v2, v3

and y, v2, v3 respectively. Since by (5.7) the barycentric co-ordinate bv(·) are

ratios of the volumes of ∆(·) and ∆k, using (5.8) we have

Λk,v(x)− Λk,v(y) = bv(x)− bv(y) (5.39)

=
α(∆x)

α(∆k)
− α(∆y)

α(∆k)
=

1

|α(∆k)|
|α(∆x)− α(∆y)|. (5.40)
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By (5.5) α(∆k) ≥ B · 2−2k so

Λk,v(x)− Λk,v(y) ≤ 22k

B
|α(∆x)− α(∆y)|. (5.41)

The area |α(∆x)− α(∆y)| is the area between the two triangles ∆x and ∆y

and is enclosed in a spherical rectangle of area 2 · d(x, y) · diam (∆k). The

area of this spherical rectangle � is given by

α(�) = 4 arcsin

(
tan

(
2d(x, y)

2

)
tan

(
diam (∆k)

2

))
. (5.42)

Noting that k ≥ 1 diam (∆k) ≤ π/2, so tan(diam (∆k)/2) ≤ 1, and since

arcsin is increasing and arcsin(tan(x)) ≤ 2x for x ∈ [0, π/4], we have

α(�) ≤ 4 arcsin (tan (d(x, y))) ≤ 8d(x, y) ≤ 8A · 2−n. (5.43)

Putting this together,

Λk,v(x)− Λk,v(y) ≤ 2A22k−n

B
. (5.44)

Now,

|f(x)− f(y)| ≤
n−1∑
k=0

∑
v∈Vk

|λk,v||Λk,v(x)− Λk,v(y)|+ 2||f − S(n−1)(f)|| (5.45)

≤
n−1∑
k=1

ρ(2−k)
∑

v∈Vert(∆k)

|Λk,v(x)− Λk,v(y)|+ 12c1c2ρ(2−n)

(5.46)
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≤
n−1∑
k=1

ρ(2−k)
2A22k−n

B
+ 12c1c2ρ(2−n) (5.47)

≤ C2−n
n∑
k=1

2k−1ρ(2−k). (5.48)

(5.49)

Now consider the general case of x, y ∈ S2, d(x, y) < δ < π/4. Then there

exists a n ≥ 2 such that 2−(n+1)π ≤ d(x, y) ≤ 2−nπ. So, by Lemma 5.4. and

the above,

|f(x)− f(y)| ≤
k∑
l=1

|f(zl)− f(zl−1)| (5.50)

≤ C ′2−n
n∑
k=1

2k−1ρ(2−k) (5.51)

≤ C ′2−n

[
2n−1∑
k=1

∫ 1
k

1
k+1

ρ(t)

t2
dt

]
(5.52)

≤ C ′2−n
[∫ 1

2−n

ρ(t)

t2
dt

]
(5.53)

≤ C ′
d(x, y)

π

[∫ 1

2−n

ρ(t)

t2
dt

]
(5.54)

≤ C ′
d(x, y)

π

[∫ 1

d(x,y)
π

ρ(t)

t2
dt

]
. (5.55)

Recall properties (2) and (5) of ρ:

2. ρ is non-decreasing; (5.56)

5. δ

∫ 2π

δ

ρ(u)

u2
du < c3ρ(δ). (5.57)

Since ρ is positive,
∫ 1

δ
ρ(u)/u2 ≤

∫ 2π

δ
ρ(u)/u2, so (allowing the constant C ′ to
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vary as necessary),

|f(x)− f(y)| ≤ C ′ρ

(
d(x, y)

π

)
(5.58)

≤ C ′ρ(d(x, y)) ≤ C ′ρ(δ). (5.59)

Now, letting Lipα(S2) be the space of Hölder continuous functions f of order

α with norm

||f |Lipα(S2)|| := sup
s,t∈S2

|f(s)− f(t)|
d(s, t)α

(5.60)

we have the following spherical version of Theorem 5.1.

Corollary 5.1. Let α ∈ (0, 1). Then Lipα(S2) is isomorphic to `∞.

Proof. We need to find a linear, bounded, operator uα : `∞ → Lipα(S2). Let

a = (an) be a sequence in `∞, fix t ∈ S2, and consider the series

∞∑
n=1

anbnΛn(t) =
∞∑
j=1

∑
v∈Vj

aj,vbjΛj,v(t) (5.61)

where bj = 2−jα. Then, for fixed j,

∑
v∈Vj

|aj,vbjΛj,v(t)| ≤ ||a||∞2−jα
∑
v∈Vj

Λj,v(t) (5.62)

≤ ||a||∞2−jα, (5.63)

and since
∑

2−jα <∞ the series (5.60) converges to, say, f ∈ C(S2). More-
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over,

||f ||∞ ≤ ||a||∞
∑
j

2−jα (5.64)

= ||a||∞
1

1− 2−α
, (5.65)

so f is bounded, and f ∈ Lipα(S2).

Let ρ(δ) := δα. Applying Theorem 5.2, we see that ωf (δ) ≤ Cδα for a

constant C depending only on ||a||∞ (crucially, not on the sequence itself).

Thus, uα(a) := f is a bounded, linear operator from `∞ to Lipα(S2).

The result then follows using the Open Mapping Theorem [Rud91, Th. 2.11]

– if T is a bounded linear operator from X to Y then X ≈ Y if and only if

T is bijective. To see that the mapping uα : `∞ → Lipα(S2) is bijective, we

construct its inverse.

Let f ∈ Lipα(S2) be given by f(t) =
∑∞

n=0

∑
v∈Vn λn,vΛn,v(t) and note that,

for fixed n, by Theorem 5.2 and the definition of Lipα(S2), supv |λn,v| =

O(2−nα). Then the sequence (an,v) defined by an,v := 2nαλn,v is such that

|an,v| ≤ 2nα sup
v∈Vn
|λn,v| ≤ C2nα2−nα ≤ C, (5.66)

i.e. (an) = (an,v) is a bounded sequence and the mapping f 7→ (an) is the

required inverse u−1
α : Lipα(S2)→ `∞.



Chapter 6

Summary and future directions

6.1 Summary

In this thesis we have explored several areas of the theory of Gaussian random

fields on the sphere, ranging from the prototypical example of Brownian

motion in Chapter 1 to their path properties in Chapter 4.

In the geo-temporal setting we have proved a new formulation of the charac-

terisation theorem (Theorem 2.7b) for functions positive definite on Sd ×R,

before in Chapter 3 verifying that Beatson and zu Castell’s [BC17; BC16]

operators for functions on Sd extend to the geo-temporal case. The paths

of processes of Sd × R are not yet well-studied: we showed in Chapter 4.6

that our formulation of the Berg-Porcu theorem allows for a very symmetric

Karhunen-Loève expansion compared to those proposed in [CAP18].

124
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We have also made some contributions to the purely spatial theory. In Chap-

ter 3 we proposed a new method for dimension hopping, based on spherical

fractional integration with the semi-group property. After surveying the cur-

rent state of the theory of the path properties of Gaussian processes on Sd

in Chapter 4, we showed that Schilling’s neat approach to the Kolmogorov-

Chentsov theorem [Sch00] may be applied on the sphere, streamlining work

by Lang & Schwab [LS15]. We also extended a result of Malyrenko’s to the

case of fields on the Hilbert sphere S∞. Finally, in Chapter 5 we obtained

a Ciesielski isomorphism for functions on the 2-sphere, which we hope will

have interesting applications.

6.2 Current and Future Directions

The work in this thesis is ongoing, and we have much more to say in the

future. Below we summarise some of our main strands of thinking.

6.2.1 Applications of the Ciesielski Isomorphism

Theorem 5.2 is the equivalent result on the 2-sphere to a theorem of Ciesielski

[Cie60a] (generalised slightly by Rhyll, we used the exposition in Semadeni

[Sem82, Ch. 3]). In [RS98], Račkauskas and Suquet use this to find a suf-

ficient condition for Hölder continuity of random processes on [0, 1]d. In

particular, they find the following.
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Theorem 6.1 (Račkauskas and Suquet [RS98, Theorem 10]). Let p ≥ 1 and

σ is an increasing function on R. If a continuous process {X(t) : t ∈ [0, 1]d}

satisfies, for each t ∈ [0, 1]d and each h = (h1, . . . , hd) where 0 ≤ hi ≤

min(ti, 1− ti),

P
{
|∆2

hX(t)| > λ
}
≤ C

λp
σp(|h|), (6.1)

where ∫ 1

0

σ(u)

u1+d/pρ(u)
du <∞, (6.2)

then X has a version with almost all paths Hölder continuous with modulus

of continuity ρ.

Using the results of Chapter 5 to find analogous statements to the above for

processes parametrised by the sphere is the focus of my current work. It

would also be of interest to find a d-dimensional version of Theorem 5.2.

6.2.2 Path properties of geo-temporal processes

As remarked in Chapter 4, although the literature on path properties of

random fields on spheres is vast, geo-temporal processes are much less studied

(unsurprisingly, as they were first classified in 2017). The questions here

must be delicately posed: are we interested in smoothness in the spatial

component, the temporal one, or both? Recent work by Kühn and Schilling in

the context of spatio-temporal Lévy processes [KS19], discussed by Schilling

at a London Probability Seminar, indicates that in that scenario there is a
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trade-off between smoothness in space or smoothness in time. I intend to

explore whether similar behaviour exists for geo-temporal processes.

6.2.3 The SPDE approach

Throughout this thesis we have taken a very probabilistic view of our subject,

focussing on Gaussian processes through the behaviour of their covariance

functions. This, as we have seen, takes us a long way theoretically. In prac-

tice, it takes us less far – fully specifying the covariance of a geo-temporal

dataset is prohibitively expensive [PAF18]. Moreover, one of the most pop-

ular parametric families of covariances, the Matérn covariance

Mν(x) = σ2 21−ν

Γ(ν)
xνKν(x), x ≥ 0, (6.3)

with Kν a modified Bessel function, is not positive definite when x = d(s, t),

geodesic distance on S2 [Gne13]. An ingenious approach by Lindgren et al.

[LRL11] works around this limitation. Their idea is to model the field as the

solution to the SPDE

(κ2 −∆)αX(s) =W(s), s ∈ S2, (6.4)

where κ > 0, α > 0, ∆ is the Laplace-Beltrami operator and W is a white-

noise process. The solution X is a Gaussian process on S2 with Matérn

covariance (the parameter ν in the Matérn covariance function is linked to the

parameter α in the SPDE), found without specifying the covariance explicitly



6.2. Current and Future Directions 128

using a Gaussian Markov field approximation of the full process. This SPDE

model can be paired with a hierarchial model to create a spatio-temporal

random field [Cam+13].

This approach is used by a variety of practitioners, including by the team at

the Malaria Atlas Project to model the global endemicity of malaria-causing

species of the Plasmodium parasite [Bat+19]. I am joining this group as a

postdoctoral scientist in September 2019.
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Vol. 321. Sém. Prob. VII, Lecture Notes in Math. Springer, 1973,

pp. 61 –76.

[Far08] J. Faraut. Analysis on Lie groups. Vol. 110. Cambridge Studies

in Advanced Math. Cambridge University Press, 2008.

[Far12] J. Faraut. Asymptotics of spherical functions for large rank:

An introduction. Representation theory, complex analysis and

integral geometry. Ed. by B. Krötz, O. Offen, and E. Sayag.
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