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Abstract 
 

The extracellular contact electrogram, which is the signature of the interaction of 

electrical activation and architecture of the local myocardium, is recorded clinically in contact 

with myocardium. The morphology of the signal could show relationships between the local 

electrogram and conduction abnormalities that influence the electrophysiology. In this thesis, 

I sought to address the hypothesis that the local electro-architecture, which is responsible for 

identifiable features of local action potentials, can be predicted from specific characteristics of 

electrogram recordings using supervised machine learning algorithms. 

 

In addressing this hypothesis, I utilised in vitro multicellular preparations for obtaining 

unipolar electrogram data. The recordings were collected under a variety of experimental 

conditions, in order to investigate the effects of functional abnormalities, such as ion channel 

blockade and gap junction uncoupling, as well as structural determinants, such as increasing 

amounts of fibroblasts co-cultured with cardiac myocytes. A signal processing and feature 

extraction process was developed and applied on electrograms. The relationships between the 

abnormalities, which were introduced to experimental models, and specific electrogram 

characteristics were then investigated. Electrograms were then used inversely for the 

development of prediction models. To demonstrate the translational potential of these tools, 

they were tested on tissue slices derived from human end-stage heart failure hearts. It was found 

that EGM morphology was significantly modified due to the different heart failure phenotypes. 

These differences in morphology allowed accurate predictions. Paced data were also obtained 

from patients with a history of persistent AF.  

 

The functional and structural determinants of unipolar electrogram morphology, which 

are also responsible for a variety of cardiac arrhythmias, can be predicted accurately using 

supervised machine learning. By better understanding the role of electro-architecture on 

electrogram morphology and utilising machine learning, we are provided with new insights 

that could contribute to a progress in diagnostics and treatment of cardiac diseases. 
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 1.1 Overview  

 

The extracellular contact electrogram (EGM) is the signature of the interaction of electrical activation 

and architecture of the local myocardium and is the primary diagnostic tool in the cardiac catheter 

laboratory. An EGM is the summation of the electric fields of ions in the vicinity of the electrode. Both 

the ion flux across cell membranes, which produces the action potential, and the propagation of the 

action potential lead to variations in electric field strength at the electrode and the subsequent EGM 

morphology (1). Healthy myocardium gives rise to a simple EGM, but pathological conditions can lead 

to changes in EGM characteristics and as a result the morphology becomes more complex (2). EGMs 

are currently categorised clinically by largely binary descriptors, such as simple or complex, early or 

late, which do not provide significant information about the content of the signal (2,3). In order to make 

more effective use of EGMs for arrhythmia diagnosis, it is therefore necessary to systematically 

characterise cellular electrophysiology and the factors that mediate action potential propagation and 

understand their impact on the resulting EGM morphology. The EGM could then be used inversely for 

the identification of specific cellular and tissue characteristics and potentially provide a novel clinical 

diagnostic tool. 

 

There are a number of studies which have attempted to correlate cell structure and tissue architecture 

with function and have identified specific factors that can be responsible for the production of abnormal 

EGMs (4). EGM morphology can be modified due to conduction slowing, gap junction uncoupling, 

presence of fibrotic areas or electrical remodelling (4,5). These factors have been studied individually 

for their role in cardiac electrophysiology, but it is unclear how they are directly related to specific 

changes in EGM morphology and how different combinations of these structural and functional factors 

are implicated on arrhythmogenesis. For example, it has been suggested that EGM fractionation 

observed in atrial fibrillation (AF) is correlated to sites responsible for clinical AF maintenance (6). It 

is assumed that fractionation relates to an increase of fibrotic regions and thus, translates to reduced 

EGM voltage. However, it has been consistently reported (7) that there may be an inverse and counter-

intuitive relationship between voltage and fractionation in AF patients. In addition, emerging clinical 

evidence from persistent AF treatment by focal ablation has not shown any specific electro-architectural 

features to indicate these sites. 

 

The information contained in the electrical signal could be used for the improvement of diagnosis and 

treatment of cardiac arrhythmias. A wide variety of algorithms have been developed based on 

morphological, spectral or complexity parameters extracted from electrophysiology recordings (8). The 

combination of signal characteristics with machine learning techniques has been suggested to be a 
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useful approach for more efficient diagnosis. Machine learning, the scientific discipline that focuses on 

training computer models from data, uses statistical algorithms in order to group or find patterns in a 

dataset (9). Supervised machine learning is one of the main fields of machine learning and its goal is 

training of algorithms using predictors, in order to make predictions afterwards from new data (9,10). 

A number of efforts have been made over the past two decades, in order to classify electrocardiogram 

(ECG) recordings based on tissue architecture or pathological characteristics. There has been recent 

progress, in terms of algorithm development mainly focusing on ECG morphology analysis (11,12). 

Signal analysis techniques can be used to generate the features which are necessary during classification 

training in supervised machine learning.  

 

The main clinical EGM recording system in the clinic is the cardiac catheter. This is also used to deliver 

catheter ablation targeted in the area of atrial pulmonary veins for the treatment of abnormal action 

potential propagation. However, the success rate of catheter ablation is lower than expected (71). This 

is a motivation for better understanding in more detail the factors underlying abnormal EGMs. In 

addition, our understanding of the changes that occur during functional and structural remodelling in 

cardiac diseases, and the subsequent alterations of excitation patterns, are essential for improved 

diagnosis, prevention and treatment of arrhythmic and heart failure conditions. Hence an objective of 

this thesis is investigating how specific EGM morphology features, recorded from different 

experimental models, are modified by functional and structural determinants of cellular 

electrophysiology. The primary aim though is developing the capability to get more information out of 

the EGM than a simple binarisation. This knowledge is aimed to be used subsequently for predicting 

the local electro-architecture from a decomposition of the EGM morphology, which is also a prominent 

focus of the work presented in this thesis. 
 

 

 1.2 Electrical recordings  

Electrical activation can be measured at different scales ranging from the single cell to the body surface. 

This section presents the most common modalities for measuring electrophysiological activity. 

 

1.2.1 Cardiac Action Potential  
 

The action potential (AP) of a cardiac cell describes the changes in potential difference between the 

intracellular and extracellular spaces (transmembrane potential) and arises from the movement of ions 

across the cell membrane through ion-specific channels (Figure 1.1). The AP morphology varies not 
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only between species, but also between the different cell types in the myocardium. In general, the AP 

consists of five phases (13): 

a. Phase 0 (rapid depolarisation): the membrane potential increases to a threshold value (~ -

60mV), due to an inward current transmitted either from an applied stimulus or an adjacent cell. 

This results in the opening of Na+ channels leading to a sudden influx of Na+ ions and the rapid 

depolarisation of the membrane until the membrane potential reaches a positive overshoot of 

20-30mV at which the Na+ current, INa, is quickly inactivated. 

b. Phase 1 (rapid repolarisation): Na+ channels close and the K+ transient outward current (Ito) is 

activated, as K+ ions leave the cell. The membrane partially repolarises to -20 – 0mV. This part 

of the action potential morphology, called the notch, is only present in cells that express the 

transient outward current. 

c. Phase 2 (plateau): L-type Ca2+ channels (ICaL) open to provide depolarising current against the 

repolarising K+ currents (IKr and IKs) resulting to a plateau formation in the potential. 

d. Phase 3 (repolarisation): L-type Ca2+ channels close and the membrane repolarises mainly due 

to the inward rectifier K+ current (IK1). The rate of repolarisation is slower than the rate of 

depolarisation during phase 0. 

e. Phase 4 (resting phase): the resting membrane potential is ~ -80mV, as a result of the high 

intracellular K+ concentration compared to the extracellular K+ concentration. 

 

The time period following depolarisation during which the cell cannot generate a full AP is called the 

refractory period. This consists of an initial time period when the cell is completely unexcitable 

(absolute refractory period) and a small time period during repolarisation when a sufficient stimulus 

may cause a partial AP (relative refractory period). The time duration of the AP, measured at a 

particular level of repolarisation, e.g. 90% of repolarisation, is the action potential duration (APD). The 

time interval between action potentials is called diastolic interval (13).  

 

Optical mapping is the most prominent technique for capturing the local activation and repolarisation 

in multicellular preparations using fluorescent-voltage dyes. However, a significant drawback of this 

method is the difficulty on directly applying it on patients. Even though optical imaging would probably 

be the most informative technique for diagnosing abnormalities, technological advances have been 

made up to the point where optical mapping can be applied on intact large animal hearts in a 

Langendorff setup (471,472), but also in human hearts (14). Thus, it is necessary to use alternative 

methods for the clinical recording of the electrophysiological activity directly from cardiac arrhythmia 

patients. 
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Figure 1.1: Action potential waveforms in adult human ventricular (left) and atrial (right) myocytes. The active 
ion currents at each phase of the action potential are also presented. Reproduced from Nerbonne and Kass 
(13) with permission of the rights holder, The American Physiological Society. 
 

 

1.2.2 Unipolar electrogram 
 

Unipolar and bipolar EGMs represent the summation of electrical activity from all cells within the field 

of view of the intracardiac electrode catheter. Unipolar EGMs represent the difference between a 

recording electrode placed on the tissue surface and a reference (indifferent) electrode placed a large 

distance away from the area of interest. The sensing electrode is connected to the positive input of a 

differential amplifier and the indifferent electrode is connected to the negative input, in order to measure 

the signal (15). While bipolar EGMs are mainly used to identify the local activation time, the unipolar 

signal is used to define the activation time more accurately (16). 

 

The relationship between the slope of the AP, the slope of the extracellular EGM and the time of peak 

Na+ current has been investigated in a uniform cable model and it was found that the maximum positive 

slope of the AP, the maximum negative slope of the unipolar EGM and the peak Na+ current coincide 

in time (17). Since the peak Na+ current corresponds to the maximum rate of increase of the depolarising 

current, this can be defined to be the activation time. This leads to the standard definition of the AP 

activation time which is the time point of maximum positive slope. The extracellular unipolar EGM 

equivalent of the activation time is the point of maximum negative slope.   
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The main advantage of using unipolar EGMs is that they give an accurate measure of the activation 

time of the underlying tissue. Moreover, their morphology is easily interpretable as the passing of a 

wavefront across an electrode. Unipolar EGMs can be also used for identifying the repolarisation of the 

tissue. The activation-recovery interval, which is the time duration between the maximum negative 

slope of the clinically recorded EGM and the maximum positive derivative occurring close to the 

repolarisation wave peak, has been suggested to correlate with the duration of the cellular AP (18,19). 

A similar time period recorded in an in vitro research setting and occurring between the minimum EGM 

deflection and the peak of the T-wave, known as field potential duration (FPD), has been suggested to 

be equivalent to APD90 (20). However, a disadvantage of unipolar EGMs is that they include far-field 

electrical activity, making the analysis of unipolar EGM morphology more difficult. In particular, when 

analysing atrial signals, far-field signals from the larger ventricular depolarisation is often present (21). 

 

 

1.2.3 Bipolar electrogram 
 

In order to obtain bipolar EGMs, two electrodes are placed close to each other, usually within a few 

millimetres distance. This approach removes the far-field signal because this is similar at the two 

electrodes, leaving the local activity. The bipolar EGM approximates the first derivative of the unipolar 

EGM (15). Activation time in bipolar EGMs is typically defined as the time of maximum amplitude, 

although there are other definitions in the literature (22).  

 

The main disadvantage of bipolar EGMs is that the signal is dependent on the direction of the wavefront. 

In the case that the wavefront is parallel to the bipolar electrodes, the wavefront cannot be detected on 

the resulting bipolar EGM. In addition, it is more difficult to determine the activation time and to 

interpret the morphology of the signal. Bipolar EGMs are also sensitive to inter-electrode distance (23).  

 

1.2.4 Electrocardiogram 
 

The ECG is a non-invasive measurement of the electrical activity of the myocardium using electrodes 

placed on the body surface. The output from each pair of electrodes is known as a lead, with a total of 

twelve leads being used. The angle of view of the lead depends on the electrode location. For example, 

lead I is measured from the left arm to the right arm and is defined as having an angle of view of 0o 

(24). The main components of an ECG are the P wave which corresponds to the atrial depolarisation, 

the QRS complex which is the ventricular depolarisation, and the T wave which represents the 

ventricular repolarisation. Atrial repolarisation is hidden within the larger ventricular depolarisation and 
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therefore it cannot be seen on the ECG leads (25). Some of the benefits of using ECGs, compared to 

EGMs, in the clinic are that it is an inexpensive and non-invasive method, it is relatively easy to apply, 

it is highly informative and can provide additional electrical information, which may correspond to 

conditions such as the chest pain and shortness of breath, and it can detect any silent cardiac conditions 

as a result of a surgery. However, its main disadvantage is that it provides a static picture captured from 

a relatively long distance from the heart surface and it may not reflect severe or localised underlying 

cardiac issues (26).  

 

 

1.3 Circumstances that cause complex electrogram morphology 

Extracellular EGMs, which are invasively recorded directly from the heart, provide information about 

the functional state of the myocardium. The basic shape of an extracellular unipolar EGM is simple in 

the healthy myocardium. However, EGM morphology may be much more complex under pathological 

conditions, often consisting of multiple components and long duration. These are characteristics of 

abnormal conduction and arrhythmias in the underlying myocardium (4). Therefore, changes to the 

EGM morphology can be due to either functional abnormalities or the presence of non-conductive areas 

(27).  

 

1.3.1 Structural determinants influencing electrogram morphology  
 

A tissue-structure related parameter influencing EGM morphology is the anisotropy. Cardiac tissue is 

composed of fibres making it anatomically and electrically anisotropic (4). This is caused by the 

combination of cell morphology and the electric coupling between cells, mediated by gap junctions. 

The result of anisotropy is faster propagation in the direction of fibres, as opposed to the much slower 

propagation in the perpendicular direction of the fibres. The unipolar extracellular morphology at sites 

where the activation front runs in parallel to the fibre orientation is a biphasic deflection at the site 

where the activation passes (4). However, EGM morphology is more complex when a wavefront is 

recorded at sites where activation propagates orthogonal to the fibre orientation (28). Sudden changes 

in fibre orientation, leading to discontinuous conduction and complex EGM configuration, have been 

also observed in fibre disarray (29).  

 

In addition, complex EGMs may arise in regions with tissue discontinuities. These are usually areas 

with a sudden change in conduction velocity. The abrupt increase in the diameter of a myocardial bundle 

leads to a source-sink mismatch at the connection site. The current delivered by a small region may be 
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insufficient to trigger homogeneous activation of the thicker bundle resulting to conduction delay and 

a complex EGM (30). Such tissue discontinuities may be also present in regions where tissue types with 

different excitability or coupling characteristics are connected. An example of this case is the interface 

between myocytes and fibroblasts. Fibroblasts in between strands of myocytes are able to propagate the 

AP only after a large conduction delay (31).  

 

Another structural element known for affecting the electrophysiology, and subsequently the EGM 

morphology, is fibrosis. Fibrosis is the formation of elevated levels of fibrous connective tissue, such 

as during reparative or reactive processes, and it is quantified through the presence of collagen. Collagen 

is the main component of the acellular part of connective tissue (32). There are different types of fibrosis 

with variable degrees of density, from focal and compact, which is the case of scars, to patchy and 

diffuse (Figure 1.2) (32). This leads to separation of strands of myocardium which impacts on action 

potential propagation, forcing excitation waves to take anisotropic, circuitous paths (33) that may be 

responsible for the generation of re-entrant activation (34) (Figure 1.3). Fibrosis creates areas of 

conduction block and defines anchor locations for re-entrant activation (35,36). However, it is still 

unclear how fibrosis is involved in the generation or the maintenance of abnormal electrical conduction 

(32). Despite this fact, scar locations have been suggested to be responsible for complex fractionated 

atrial electrograms (CFAE) (37). The CFAE-targeted catheter ablation, which was considered to also 

target scar areas, has limited success though and it is a debatable method of treatment (32). 

 

Structural remodelling may occur in cardiac diseases and it involves changes in cell size, enhancement 

of collagen deposition and myocardial fibre disarray (4). Collagen deposition, and subsequently 

increased fibrosis, are a major component in the remodelling during a cardiac disease (38,39). The 

increased collagen deposition is linked to different forms of fibrosis (32), the electrical separation of 

myocytes and the reduced ability to support coherent wave fronts. 
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Figure 1.2: Types of human cardiac fibrosis in explanted hearts, as visualised with light microscopy. 
Collagen-dense areas are shown with red and these are stained with picroserious red. Interstitial fibrosis is 
the accumulation of collagen among groups of myocytes. Diffuse fibrosis is characterised by interspersed 
collagen among myocardial fibres. Patchy fibrosis separates myocardial strands over relatively long 
distances between them. Compact fibrosis involves the formation of large collagen-dense areas completely 
devoid of myocytes. Adapted from Rog-Zielinska et al. (32) with permission of the rights holder, Elsevier. 

 

 

Figure 1.3: Determinants of EGM morphology. (A) Activation induced at site A of an infarcted myocardium 
propagates following the indicated zig-zag route due to the complex distribution of myocardial bundles. (B) 
The presence of re-entrant activity in the LA leads to continuous activation patterns. This leads to a 
fractionated EGM. (Top right) Optical signal recorded at the asterisk. (Bottom right) Spectra derived from 
the optical signal (left), the periodic constituent (middle) – reflects the periodicity of the rotor - and the 
residual constituent (right) – reflects the tip meandering component of the rotor. Adapted from de Bakker et 
al. (4) with permission of the rights holder, Wolters Kluwer Health, Inc. 

 

 

1.3.2 Functional determinants influencing electrogram morphology  
 

Functional changes leading to a modified EGM morphology are ion channel and gap junction 

abnormalities (4,40). Gap junctions play a key role in the AP propagation by electrically connecting 

neighbouring cells (41,42). They are protein complexes that function as mediators of cell-to-cell 

coupling, they allow ion exchange between cells and the transfer of small molecules of up to 1kDa by 

directly linking the cytoplasm of neighbouring cells (43–45). The term “gap junctions” indicates the 

gap between adjacent cells, as there is a 2-3nm distance between them, proved by electron microscopy 

images.  
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Two connexon hemichannels form a gap junction and each connexon consists of six connexin subunits. 

Connexins are cell membrane proteins with four transmembrane domains, two extracellular loops and 

one intracellular loop. The main connexins expressed in the heart are connexin 43 (Cx43), Cx40 and 

Cx45. The expression of each connexin is region-specific in the mammalian heart, as showed in Figure 

1.4. Each connexon can be composed of combinations of six Cx43, Cx40 or Cx45 subunits and each 

gap junction channel may consist of combinations of two connexons. Thus, a connexon can be 

homomeric, when all connexins are the same, or heteromeric, when two or more connexins are different 

(46). Due to the differential Cx expression, the resultant action potential propagation is also varied in 

different parts of the heart, according to the localised physiological needs, i.e. differences in atrial and 

ventricular areas. 

 

 

Figure 1.4: Summary of typical connexin expression patterns in mammalian heart. Cx43, Cx40 and Cx45 
are the main cardiac connexins, but their distribution varies throughout the heart. Adapted from Severs et al. 
(43) with permission of the rights holder, Oxford University Press. 
 

Gap junctions also reduce repolarisation heterogeneities between adjacent myocytes and between 

different regions of the myocardium (47). Gap junction function alterations or remodelling of gap 

junctions are known to occur in almost all arrhythmogenic cardiac pathologies, including acute 

ischaemia (48,49), the mature, healed infarct (50) and the failing myocardium (51). Alterations in gap 

junctions lead to conduction slowing and prolonged APD, both of which increase the likelihood for 

arrhythmogenesis and are correlated with increased fractionation in unipolar extracellular EGMs (52). 

 

Ion channels are essential for the normal electrical and mechanical function of the heart (53). For 

example, loss-of-function mutations of K+ channel genes or gain-of-function mutations of the SCN5A 

gene, which is responsible for the expression of the α-subunit of the Na+ channel, are related to the long 

QT syndrome (LQTS) (53). This gene has also been correlated with other cardiac disorders, including 



 34 

AF, Brugada syndrome and idiopathic ventricular fibrillation (54). Na+ channels play a key role during 

phase 0 of the action potential, because when cardiac myocytes are excited by electric stimuli from the 

conducting cells or neighbouring cells, the membrane potential will rapidly depolarise  and then Na+ 

channels become activated (53).  

 

The depolarisation (phase 0) is followed by phase 1 of the AP, due to the closing or inactivation of Na+ 

channels but also because of the transient outward K+ current (Ito) and outward Cl- current. There are 

two identified classes of Ito: a) Ito1, which is independent of intracellular Ca2+ and sensitive to 4-

aminopyridine; and b) Ito2, which is Ca2+-dependent and selective to Cl- (55). The Ito channels are formed 

by four α-subunits of the Kv4 family together with the Kv subunit KChIP2C (55). Variations of Ito 

current density are region- and species-specific. These variations lead to profound changes in the 

magnitude and time course of ICaL resulting in corresponding changes in sarcoplasmic reticulum Ca2+ 

loading, release and contractility (56). 

 

The plateau (phase 2) of the action potential arises from the balance of the inward and outward current 

crossing the cell membrane. The inward current is induced by the opening of the slow-activated Ca2+ 

channels and the outward currents carried by Cl- channels and various K+ channels (53). The L-type 

Ca2+ channel family has four members which are expressed by the CACN gene family. Mutations in 

these genes have been found to promote early and delayed afterdepolarisations and the LQT syndrome. 

It has also been reported that mutations in the L-type Ca2+ gene family are responsible for shortening 

of the QT interval in families characterised by sudden cardiac death, AF and Brugada type I ECG 

pattern. Therefore, the clinical condition known as short QT syndrome has been introduced, in order to 

include these phenotypes (57). Moreover, reduced ICaL leading to loss of the AP plateau phase and 

reduced APD is known to be related with AF (58).  

 

The inactivation of slow inward Ca2+ and Na+ channels and the opening of various slow outward K+ 

channels lead to the plateau phase (phase 3) of the action potential. The K+ currents include the inward 

rectified K+ current (IK1), the ultra-rapid delayed rectifier K+ current (IKur), rapid and slow delayed 

rectifier K+ currents (IKr and IKs), acetylcholine-regulated K+ current (IKACh) and ATP-sensitive K+ 

current (IKATP) (59).  Malfunction of K+ channels, due to either congenital-encoded gene mutations or 

drug blockade has been found to alter not only the cardiomyocyte excitability, but also the electrical 

balance of depolarisation and repolarisation. Thus, these abnormalities usually cause a long QT interval 

and underlie a variety of cardiac arrhythmias. For this reason, K+ channels are important targets for anti-

arrhythmic drugs (59). 
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1.4 Atrial Arrhythmias  

 

1.4.1 Overview  
 

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans with a prevalence 

of around 20% in people over the age of 85 (60). It is major risk factor for stroke and is correlated to an 

increased risk of morbidity and mortality (61). Current anti-arrhythmic drug therapies have limited 

efficacy for clinical suppression of AF. Many of them have been proved to be less specific against atrial 

electrical activity leading to serious pro-arrhythmic effects (62). Catheter ablation is a superior method 

of treatment of AF with the long-term success varying between 50-80%. However, this depends on 

various factors: a) the type of AF, as the efficiency is lower for persistent AF than paroxysmal, b) the 

ablation strategy, i.e. pulmonary vein isolation gives better outcomes, and c) the number of procedures, 

as the AF freedom rate is around 80% for patients treated with multiple AF ablations, compared to 50-

60% following a single procedure (62). Therefore, a better understanding of the AF mechanisms that 

are involved in the initiation and maintenance of the disease is necessary and it may help the 

development of new therapies or the improvement of the existing ones. There are multiple hypotheses 

for the mechanistic basis of AF and different mechanisms involved in arrhythmogenesis and AF 

sustainability have been suggested. 

 

1.4.2 Mechanisms of atrial fibrillation 
 

The mother rotor hypothesis is one of the mechanisms believed to be involved in AF. According to this 

theory, the electrical activity during AF is characterised by rotational activity, termed rotors. These are 

defined as the organising source of functional re-entrant activity (63). AF is not entirely random, but 

there are hierarchical periodic rotors that drive the AF and act as sources of high frequency wavefronts 

(64). However, the presence of rotors in humans is not thoroughly proved and their existence is a current 

topic of debate (65), even though they have been detected in animal experimental models (66). Narayan 

et al. (67) though presented a clinical computational mapping tool, which is reported to identify rotors 

and focal sources in the human atria, which were then ablated. Their studies use the simultaneous 

collection of data from the majority of the atrial surface using a 64-pole catheter basket, while most of 

the other centres use only sequential mapping technology. Another study though suggested that the use 

of the ablation strategy developed by Narayan et al., which provides information about the localisation 

of rotors and is supposed to enable targeting rotors during catheter ablation, showed poor efficiency 

(68). Therefore, this raises questions about the limitations of applying such technologies during catheter 

ablation, and even the usefulness of rotors. 



 36 

 

Another mechanism suggested to be responsible for the AF maintenance is the presence of focal 

sources. These have been also detected in patients and targeted during catheter ablation in the 

CONFIRM (Conventional Ablation with or without FIRM) trial (67). A non-invasive method including 

a vest of electrodes, known as ECG imaging, has been used for the detection of focal sources, as well 

as electrical rotors (69). 

 

A third theory for AF maintenance involves the presence of multiple random wavelets. Under this 

hypothesis, AF is considered anarchical and disorganised and the activity is self-sustaining and 

independent of the initiating events (70). The disadvantage of this theory though is that it cannot explain 

the origins of the activity that causes the generation of the wavelets. If there were a number of wavelets, 

then these should join together and obliterate AF (64).  

 

It is clear that there are conflicting hypotheses about the mechanism of arrhythmogenesis. Studies using 

low-resolution global data acquisition report hierarchical rotors and focal sources, while studies that 

use high-resolution mapping catheters tend to suggest disorganised multiple wavelets.  

 

1.4.3 Electrical remodelling in AF  
 

Electrical remodelling occurs during AF and is one of the multiple factors affecting arrhythmia 

susceptibility, making AF a complicated disease. Multiple ion currents are altered during AF and these 

include IK1, IKACh, INa, ICaL, Ito and IKur. ICaL is usually reduced in chronic AF. This change affects the AF 

plateau phase, but this effect is smaller compared to the one due to IK1 (71). IK1 is the main determinant 

of the resting potential and it has been shown to increase in chronic AF. The increase of IK1 leads to a 

reduction of spiral wave meander and re-entry stabilisation, based on a computational modelling study 

(71). The same ion current change also increases dominant frequency, which occurs due to changes in 

AF and its rate dependence (72). 

 

1.4.4 Dynamics of intracellular Ca2+ cycling 
 

Intracellular Ca2+ cycling is another factor implicated in the complexity of AF with regional variations, 

which may lead to discordant alternans implicated in arrhythmia. It has been suggested that APD 

alternans and Ca2+ alternans usually happen simultaneously and the myocytes that were more prone to 

alternans suffered from disturbances in intracellular Ca2+ cycling (73). A combined clinical and 

modelling study showed that the differences between control and heart failure patients in the rate 

dependence of AP voltage can be predicted using a mathematical model with abnormal Ca2+ handling 
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due to reduced dynamics in the sarcoplasmic reticulum (74). Regional heterogeneities in the expression 

of Ca2+ cycling proteins and repolarising currents is an explanation suggested for the progression from 

concordant to discordant alternans. Another study, based on guinea pigs, found that transmural 

differences in sarcoplasmic reticulum Ca2+ cycling proteins take place and that could be the molecular 

basis for spatially heterogeneous susceptibility to AP alternans (75).     

 

1.4.5 Structural remodelling in AF 
 

Atrial myocytes are modified during AF and these changes include an increase in cell size, myolysis, 

perinuclear accumulation of glycogen, alterations in connexin expression, fragmentation of 

sarcoplasmic reticulum and changes in mitochondrial shape (76). These modifications are induced by 

prolonged rapid atrial pacing during AF. In addition, atrial fibrosis has been well documented in patients 

with lone AF involving severe hypertrophy (77). Electrical uncoupling and slow conduction can be 

provoked by structural remodelling, enhancing AF continuation without inducing changes in atrial 

action potential properties. The changes that take place during structural remodelling are less reversible 

and they persist even after the re-establishment of sinus rhythm (78). 

 

Fibrosis plays a key role in AF and its importance has been highlighted through quantifications that link 

the development of fibrosis on the atrial substrate with its effects on conduction slowing (79,80). The 

extent of fibrosis has been shown to increase the risk of re-entry and wave break (81). However, it is 

unclear from some of these studies whether structural remodelling is the cause or the effect of AF. A 

computational modelling study reported that structural discontinuities in a model of cardiac tissue 

increased the probability of alternans occurring at high pacing frequencies since the random barriers to 

excitation cause large spatial differences in activation time distribution (82). It was suggested in the 

same study that this phenomenon provided a substrate for re-entry formation. 
 

 

1.5 Ventricular Arrhythmias  

Ventricular arrhythmias are cardiac rhythm disturbances that occur in cardiac ventricles. This term often 

refers to the two most common ventricular arrhythmias which are ventricular tachycardia (VT) and 

ventricular fibrillation (VF). It may also encompass arrhythmias such as premature ventricular beats and 

bigeminy (83). VT is defined in humans as three or more consecutive beats that originate from the 

ventricles and the rate is greater than 100 beats per minute (bpm). ECG complexes obtained from a VT 

patient usually have a consistent QRS morphology, which is the characteristic of monomorphic VT. 

However, there are cases in which the beat-to-beat morphology of the QRS complex changes and this is 
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what defines polymorphic VT (83). Another way to categorise VT is based on duration. Non-sustained 

VT self-terminates within 30 seconds while sustained VTs lasts longer than 30 seconds.  

 

VF is defined as a rapid, irregular rhythm with more than 300 bpm. It is characterised by a variable QRS 

complex, amplitude and cycle length (83). An example of the variability of the signal is presented in 

Figure 1.5B. Ventricular tachycardia often degenerates into fibrillation leading to VF. VF is also 

haemodynamically unstable and is correlated to a cessation of cardiac output. 

 

Ventricular arrhythmias are responsible for the majority of 100,000 and 300,000 sudden deaths per year 

in the UK and USA respectively (84,85). Among the pathologies which are associated with ventricular 

arrhythmias are dilated cardiomyopathy, hypertrophic cardiomyopathy, congenital heart disease, 

inherited cardiac arrhythmia syndromes and chronic coronary artery disease (86,87).  

 

Figure 1.5: Example of unipolar EGM recording collected from mouse Langendorff-perfused hearts with 
VT (A) and VF (B). Hearts were paced at 10Hz from a bipolar electrode on the right atrium and the pacing 
artefacts (100ms apart) are marked with black dots below each EGM. P waves and QRST complexes are 
labelled for reference. The time scale is different between recordings. Adapted from Walker and Curtis (88) 
with permission of the rights holder, Oxford University Press. 

 

1.5.1 Ventricular arrhythmia mechanisms 
 

The three main mechanisms for ventricular tachyarrhythmias are the re-entry formation, the triggered 

activity and the enhanced automaticity (89–91). 

Re-entrant activation occurring in the ventricles is the same phenomenon that takes place in the atria. It 

is the phenotype during which the propagating wavefront fails to terminate and instead re-excites 

cardiac myocytes that have recovered from their previous refractory state. A perpetual re-entrant circuit 

is set up due to this re-excitation through which cardiac excitation can continue to propagate. Re-

entrants are categorised into anatomical, which take place around an anatomical obstacle, and functional 

re-entrants, where the anatomical obstacle is absent. Functional re-entrant activity may be formed based 
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on the leading circle theory, according to which the impulse propagation occurs around areas of 

refractory tissue, often referred to as areas of functional block (92). A second form of functional re-

entry is the spiral wave. Spiral waves, also known as rotors, defer from the leading circle, because its 

core is excitable but not excited. They are implicated as the main cause both for tachycardia and 

fibrillation (42,93). 

 

Triggered arrhythmias are the result of abnormal impulse generation, due to afterdepolarisations. 

Afterdepolarisations are extra depolarisations that occur following the initial depolarisation of a 

propagated action potential. If the afterdepolarisation is large enough to reach the threshold potential 

for activation of a regenerative inward current, then it may trigger further action potentials, which may 

be either single action potentials or a series of them (94,95). Afterdepolarisations are divided into early 

afterdepolarisations (EADs) and delayed afterdepolarisations (DADs) based on timing of the abnormal 

depolarisation. The abnormal depolarisation occurs during phase 2 or 3 of the action potential in EADs. 

EADs are often in the context of action potential prolongation or slowing, such as during bradycardia, 

LQTS or Brugada syndrome. AP prolongation leads to the time- and voltage-dependent recovery of the 

L-type Ca2+ channels which are inactivated following the initial depolarisation (94). The opening of a 

limited number of L-type Ca2+ channels leads to further inward currents that create the oscillations that 

are seen in phase 2 of the action potential during EAD. DADs occur during phase 4, after repolarisation 

is completed and before another action potential occurs. Cytosolic Ca2+ overload is a reason leading to 

DADs and this is often in pathological conditions such as heart failure, during acute reperfusion 

following ischaemia, during exposure to catecholamines or during digitalis intoxication. The increase 

of cytosolic Ca2+ concentration enhances the forward mode activity of the sarcolemmal Na+- Ca2+ 

exchanger (NCX), extruding one Ca2+ ion in exchange for three Na+ moving into the cell (96).  

 

Enhanced automaticity is the third mechanism which is responsible for tachyarrhythmias. Automaticity 

is a normal property of myocytes in the sinus node, the AV node and the His-Purkinje system. The basis 

of this is a spontaneous, gradual fall in the resting membrane potential during phase 4 of the action 

potential. This is the result of an interplay of several ionic currents, including the If current (97). 

Automation can be enhanced by alterations in the ion current activity, such as during sympathetic 

activation, leading to an increase in the rate of action potential generation. 
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1.6 Contemporary methods for evaluation of the atrial 
substrate in persistent AF 

The identification of sites which are crucial to the maintenance of AF is essential to effectively treat AF 

using catheter ablation. The morphology of the contact EGM is the primary tool of the cardiac 

electrophysiology for identifying such sites. Its analysis leads to the detection of distinct atrial regions 

which can be targeted during catheter ablation. The identification of various functional and structural 

parameters, such as ion channel blockade and the presence of extended fibrotic areas respectively, 

defining the AF substrate is challenging, due to the fact that this work has been mainly carried out in 

humans. Thus, the “learning-by-burning” concept is increasingly used for investigating how EGM 

morphology is affected by the atrial substrate. 

 

1.6.1 Voltage mapping 
 

It has been suggested that atrial voltage mapping may capture the electrophysiological health of the 

underlying atrial substrate in AF. This is supported by the fact that the presence of low voltage areas 

can predict the outcomes of catheter ablation of AF (98). The voltage recorded in AF exhibits spatio-

temporal variability highlighting the challenges of voltage mapping in AF (Figure 1.6). This led though 

to the adoption of an approach of mapping in sinus rhythm or during pacing, in order to study the 

underlying substrate more accurately. Low voltage areas are more often observed in permanent AF than 

in paroxysmal AF, as reported by studies that utilise voltage in paced rhythm (99) or in AF (100). Apart 

from the clinical variability described so far, there is also regional variation of low-voltage areas in AF 

patients. According to histological studies, it has been found that low-voltage regions are more often in 

the septum and posterior wall of the left atrium (LA) (101). However, the relationship between the 

anatomical location of scar and the AF drivers is yet to be elucidated. 

 

Some of the discrepancies in the interpretation of endocardial voltage mapping could be explained by 

the differences between unipolar and bipolar EGMs where the electrode orientation and its interaction 

with the propagating wavefront are crucial factors for the EGM voltage and morphology (102). The 

majority of clinical studies use bipolar voltage mapping, and thus the interaction between the activation 

wavefront and the bipoles may be the reason for the variability in recorded values.    
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Figure 1.6: Voltage gradient maps in sinus rhythm and atrial fibrillation. The overall voltage was adjusted 
demonstrating lower voltage in atrial fibrillation. Low-voltage bridges are detected in similar locations in 
both cases. The variation in the voltage gradient maps is unavoidable, due to the variation in endocardial 
surface sampling. However, the large-scale structures remain similar. Red arrows connect voltage regions 
which are similar in sinus rhythm and atrial fibrillation. Adapted from Bailin et al. (103) under the terms of 
the Creative Commons Attribution License. 

 

1.6.2 Complex Fractionated Atrial Electrograms 
 

CFAEs, such as the ones presented in Figure 1.7, are one of the characteristic features of the underlying 

substrate in AF. They have been observed in intra-operative epicardial mapping of human AF and are 

suggested to co-exist with slow conduction areas and pivot points where the wavefront activation turns 

around at the end of arcs of conduction block (104). This has been confirmed by a study which suggested 

that the EGM morphology during AF reflects the occurrence of various specific patterns of conduction 

(105). It was also postulated in the same study that the EGM morphology might be useful for the 

identification of regions with conduction abnormalities, which are also responsible for the sustainability 

of AF, due to structural modulations (105).  

 

However, there is a mixed clinical outcome following the use of CFAEs during catheter ablation. It was 

reported by Nademanee et al. that 70% of a cohort with equal numbers of paroxysmal and persistent 
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AF patients remained arrhythmia-free a year after the ablation procedure (106). However, many other 

clinical centres have not managed to reproduce these results. For instance, Oral et al. reported a success 

rate of 33% maintaining the sinus rhythm without medical therapy at a mean follow-up period of 14 

months after the CFAE-targeted ablation in 100 persistent AF patients (107). CFAE-targeted ablation 

has also been used as part of a multifaceted ablation strategy, but still with mediocre success compared 

to the results published by Nademanee et al (108,109). It has also been shown through a meta-analysis 

of CFAE ablation in addition to pulmonary vein isolation (PVI), that CFAE ablation increases the 

success rate of AF in persistent AF patients, but without significant benefit for paroxysmal AF patients 

(110). The relationship between CFAE and AF sites is poorly defined, as shown by Narayan et al using 

FIRM mapping (111). They reported that CFAE sites lie remote from AF sources and are not suitable 

targets for catheter ablation. Moreover, other groups demonstrated that CFAE regions could be detected 

in healthy tissue regions, as determined by voltage mapping in sinus rhythm combined with late-

gadolinium enhanced cardiac magnetic resonance imaging (LGE-CMRI) results (7,112). 

 

It becomes clear that the usefulness and the role of CFAE ablation in modification of the substrate is 

controversial, due to discrepancies in clinical outcomes and the lack of reproducibility. This variability 

is enhanced by the fact that the targeted areas seem to not correlate, in terms of structural abnormalities 

of the substrate, with CFAEs. The stability of CFAE in the context of a spatio-temporally variable 

rhythm is also debated. It has been suggested that an EGM signal of longer than 5sec duration is required 

to accurately characterise an area as a CFAE site, while recordings less than this can be misleading in 

targeting the appropriate sites and are not correlated with acceptable success rates (113). Fractionation 

has been observed to be transient in recordings at ganglionic plexi sites and at the posterior LA wall, 

which is contrary to other studies (114). 

 

Figure 1.7: Example of CFAEs with continuous prolonged activation complex over the posterior septal 
areas. CS = coronary sinus. Adapted from Nademanee et al. (106) with permission of the rights holder, 
Elsevier. 
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1.6.3 Dominant Frequency   
 

Dominant frequency refers to the frequency with the largest amplitude at the power spectrum of the 

EGM (115) (Figure 1.8). The spatial hierarchical organisation of local dominant frequency of the atria 

is believed to represent the fibrillatory conduction as a result of propagation waves emerging from focal 

sources which subsequently interact with anatomical and functional obstacles (116). Dominant 

frequency is pathophysiologically distinct from CFAE (116). It has been shown that when dominant 

frequency and CFAE are concomitantly mapped, areas corresponding to each one of them show limited 

overlap (117). Dominant frequency was used to overcome the limitations due to the chaotic nature of 

electrical activity during AF causing difficulties on observing the underlying patterns of depolarisation 

that may be important in the substrate for AF sustainability. This is due to the complex or noisy EGM 

obtained under these circumstances, such as the example of bipolar signal recording presented in Figure 

1.8. Thus, dominant frequency is used to detect areas of high frequency activation with greater accuracy, 

through the analysis of EGMs in the frequency domain by Fast Fourier Transform (FFT) (118,119).  

 

High dominant frequency regions have been detected in animal (120) and human (121) paroxysmal AF 

and especially at the pulmonary vein junctions and gradients toward the left and right atria. The 

distribution of high dominant frequency regions is more widespread in persistent AF. These are mainly 

detected outside the pulmonary vein regions (122). Dominant frequency analysis has been suggested to 

provide a mechanistic insight into understanding the persistence of AF and targeting these sites. The 

elimination of a left atrium-right atrium gradient is a marker for long-term freedom from both 

paroxysmal and persistent AF (122). However, these results are debatable, as other studies have 

demonstrated mixed outcomes with no additional benefit over pulmonary vein isolation alone in 

patients with paroxysmal or persistent AF (123). 

 

 

Figure 1.8: Bipolar recording of CFAEs (left) and the corresponding power spectra (right) following Fast 
Fourier Transformation from an LA site. The dominant frequency is shown in the power spectra and it was 
computed to be 12.7Hz. Adapted from Katritsis et al. (124) with permission of the rights holder, Taylor & 
Francis. 
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1.6.4 Shannon entropy 
 

Shannon entropy is a statistical measure of information content based on the distribution of amplitude 

values within the signal histogram (125,126). This has been recently used for the measurement of the 

information uncertainty of bipolar EGMs which are related to the spatial uncertainty of activation at the 

pivot point of curved wavefronts in AF (125). This idea is reflected to the relationship between the 

bipole with maximum Shannon entropy and the pivot zone. Therefore, it is suggested that Shannon 

entropy represents the differences in bipolar EGMs between the pivot and periphery at sites of rotational 

activity. This is used as an alternative mapping method for pivot identification. It has been suggested 

that high Shannon entropy signals have similar appearance to CFAEs, as concluded from sheep AF data 

(127). This is an alternative mapping method assisting mapping of locally stable rotors in AF (125). 

 

1.6.5 Late-gadolinium enhanced cardiac magnetic resonance imaging 
 

LGE-CMRI appears to be a method for detecting atrial structural remodelling, even though the level of 

its accuracy is controversial. It is used for delineating left atrial fibrosis in vivo and evaluating the 

structural remodelled substrate in AF patients (128).  This type of imaging has been applied on 

ventricular myocardium and it has proved to be an effective method to identify in vivo fibrotic non-

viable myocardium in coronary artery disease and cardiomyopathies (128). This technique is based on 

the principle that gadolinium has a differential uptake and washout kinetics in blood, healthy 

myocardium and myocardial scar (129). Ablative scar sites are represented by bright scar tissue with 

LGE-CMRI, but native scar is less enhanced and therefore these areas are darker on the final image. 

LGE-CMRI has shown to correlate to clinical parameters which are used as surrogate markers of LA 

structural remodelling, such as left atrial size and the persistence of AF (130). It has been reported that 

the evaluation of collagen content with Masson trichrome staining correlated with structural 

remodelling on LGE-CMRI on 10 patients with AF history (131). However, the use of this method is 

only limited to few specialist centres, where its use has been mainly evidenced. 

 

 

1.7 Machine Learning  

Electrograms provide information about tissue activation. However, there is limited experience on 

thoroughly analysing EGM morphology and correlate this with the underlying pathology. This 

challenge can be overpassed by finding previously unknown relationships. To do this, the knowledge 

can be sought by learning directly from the data using machine learning algorithms. 
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Machine learning is the scientific discipline extracting patterns from data (132). It arises at the 

intersection of statistics , which seeks to learn relationships from data, and computer science (9). It is a 

field within Artificial Intelligence (AI) which has been very successful in developing software for voice 

recognition, computer vision, natural language processing and robot control among other applications. 

A variety of machine learning algorithms have been developed, in order to cover a wide variety of data 

and problem types. The large variety of machine learning algorithms is the result of  the way they 

represent candidate programs and the necessity for different ways to search through the space of 

programmes (133). The main categories of machine learning methods are supervised machine learning, 

unsupervised machine learning and reinforcement learning. There are also modern blends across these 

categories. Such paradigms are the semi-supervised learning, which uses unlabelled data to handle 

labelled data in a supervised learning context, and discriminative training architectures developed for 

unsupervised learning with optimisation formulations that use labelled data (133). 

 

 

1.7.1 Supervised Machine Learning 
 

Supervised machine learning is the type of machine learning solely used in this thesis. The function 

approximation problem for these methods is the production of a prediction y* in response to a query x* 

using training data that take the form of a collection of (x,y) pairs. The inputs x are the training data and 

they may be numerical data or complex objects, i.e. documents, images, graphs. There has been much 

progress on the simple binary classification problem in which y takes on one of two values, even though 

there have been recent improvements on problems such as the multiclass classification (where y can 

take one of N labels) and general structured prediction problems (where y is a combinatorial object such 

as a graph, whose components are required to satisfy a set of constraints). The extracted model at the 

end of the training process can be applied to unknown data to predict the classification or outcome of 

each datum. This is expected to be done accurately once sufficient and suitable training data are used 

with an appropriate model (134).  

 

Supervised learning is based on the formation of predictions via a learned mapping f(x), which produces 

an output y for each input x. There are a variety of methods for this such as decision trees, decision 

forests, logistic regression, support vector machines, neural networks and Bayesian classifiers (135). 

There are a variety of algorithms for the estimation of these mappings and there are also generic 

procedures that combine the outputs of multiple learning algorithms, such as boosting and multiple 

kernel learning. The diversity of learning methods reflects the variety of their applications (133).  
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Features can be used to describe a signal recording and they are often represented by numbers which 

form feature vectors. Feature-based machine learning algorithms are an area of study within supervised 

machine learning and they use feature vectors both during the training process and the prediction stage. 

The selection of instructive features is critical for the effectiveness of a machine learning algorithm. 

However, using a large number of features may be counter-productive due to including less informative 

features in the training process or due to redundancy of information between features. Therefore, this 

issue can be eliminated by selecting a feature subset, which can enhance the ability of a training 

algorithm for accurate predictions (134).    

 

There are a variety of feature-based supervised learning algorithms. There are linear and non-linear 

classifiers. The linear ones are usually faster and more efficient in time constraint applications compared 

to the non-linear classifiers (136). However, the linear classifiers are generally less accurate. All 

classifiers use a weighted sum, as shown in equation 1.1, to make predictions, 

 

!(#) = &('	))))⃗ ∙ #⃗) = 	& ,-'.#.
.

/ 

 

where d is a set of classes (the output of classification), '	))))⃗  is a real vector of weights, #⃗ is the input 

feature vector to the classifier and f is a function that converts the dot product of the two vectors into 

the desired output. In other words, the output score equals to the function f that maps the result of the 

weighted sum onto the different classes with wi, the weights learnt during training and xi the training 

data. The weights can be computed using different approaches. Support vector machines search for the 

maximum margin between the hyperplane and the two data classes that are separated (137). Linear 

discriminant analysis computes weights that best separate inputs of different classes (138).  

 

Modern approaches involve the combination or improvement of simpler methods, such as decision 

trees, in order to enhance their efficiency. They may also help to overcome the over-fitting problem, 

which is a problem that often occurs with decision trees, because they fail to generalise (134). Bootstrap 

aggregation (Bagging) is an example of one such method (139). Random forests extend the bootstrap 

aggregation of decision trees by selecting random feature subsets when deciding how to split at each 

node of a tree (140).  

 

Also, a high-impact area of study within supervised machine learning is deep neural networks. This 

field involves multilayer networks of threshold units, each of which computes a simple parametrised 

function of its inputs (141,142). Deep networks use gradient-based optimisation algorithms to adjust 

(1.1) 
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parameters throughout a multi-layered network based on errors at its output. The internal layers of deep 

learning networks can be considered as providing latent representations of the input data. There are 

efforts to develop deep learning algorithms that discover useful representations of the input without the 

need for labelled training data (143). The general problem in this case is known as unsupervised 

machine learning (144). 

 

1.7.2 Unsupervised Machine Learning and Reinforcement Learning 
 

Unsupervised machine learning involves the analysis of unlabelled data under assumptions about 

structural properties of the data. There are dimension reduction methods, such as principal component 

analysis, manifold learning and random projections (135,144), that make different specific assumptions 

regarding the underlying manifold.  

 

Reinforcement learning is another major field of machine learning (145,146). This considers that the 

information of the training data is intermediate between supervised and unsupervised learning. The 

training data in reinforcement learning are assumed to provide only an indication as to whether an action 

towards learning is correct or not, instead of using training data that indicate the correct output for a 

given input. In case that an action is mistaken, the problem for the investigation of the correction action 

remains. 

 

1.7.3 Machine learning applications in cardiac electrophysiology 
 

Some of the various applications of machine learning techniques in the medical field include the 

detection or segmentation of anatomical structures (147), registration (148) and image recognition 

(149). Especially in the field of cardiology, machine learning offers the ability to make a variety of 

predictions. These are mainly related to improvements in the diagnosis and treatment of cardiac 

arrhythmia and cardiac disease events. A variety of data have been used for the development of 

predictive models, including 2D echocardiography (150), ECG (151,152) and EGM (153,154). The 

increasing need for automated high-throughput analysis of cardiac electrophysiology data from the cell 

membrane to the organ level is apparent, but remains unsolved (155).  

 

Regarding the use of cardiac electrophysiology digital signals, there is poor experience from literature 

on the development of predictive models based on contact intracardiac EGM data (156). Some of the 

most recent studies include the prediction of AF sub-types using a variety of features extracted from in 

silico or clinical contact EGMs (153,157) and the automated location of in silico re-entrant drivers using 

EGMs (158). 
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However, ECGs are widely used for classification purposes, because they are non-invasive widely 

available recordings which have the ability to provide adequate information about cardiac function 

(156). A number of studies have been published presenting algorithms for the analysis of ECGs and the 

subsequent use of these data for classification into different types of AF (159). In most cases the ECG 

analysis includes de-noising and correction of baseline wander prior to feature extraction. Neural 

networks (160–162) and recurrent neural networks (160,163) are increasingly preferred for 

classification training, but accurate classification results have been also reported using ensembles of 

decision trees (random forests) (164), multi-level binary classifiers (165) and least-squares support 

vector machine classifiers (166). Most recent advances in this field include the combination of 

classification approaches for more accurate predictions (161), the real-time feature extraction and 

classification using ECG data (167) and the diagnosis of specific cardiac abnormalities (168).  

 

Another application of machine learning in cardiac electrophysiology is relevant to the AF treatment. 

The combination of CFAE targeting with pulmonary vein isolation is a preferable strategy, as it is 

believed to reduce the long-term recurrence of AF (38). However, this approach is debatable due to the 

uncertainty on interpreting CFAE morphologies (36). For this reason, there are published methods such 

as the semi-supervised mapping (153) and the application of supervised learning algorithms that use 

features derived from combined extraction approaches (154), which can locate the distribution of 

different fractionated EGM patterns on the atria and improve the outcome of ablating drivers that 

maintain AF in persistent AF patients. Hajimolahoseini et al. (169) recently presented an algorithm to 

extract the active intervals of intracardiac bipolar EGMs during AF. The analysis included the 

characteristics of the signal waveform at its inflection points (IPs), which are the points at which the 

concavity of intracardiac EGMs changes from being convex to concave or vice versa. The signal 

features included the distance between the consecutive IPs, the slope of signal waveform at the IPs and 

the energy concentrated between them, which were all inspired by the way the electrophysiologists 

annotate the EGMs visually. The data were then used for an Expectation Maximization algorithm for 

Gaussian mixtures for automatic clustering. The important outcome of that study was the significant 

reduction of the mean computational time to 31ms per 1s recordings obtained from 10 channel EGMs 

which makes the algorithm able to be applied in real-time clinic applications.  

 

In addition to AF, VF and VT are studied for improvement of their diagnosis applying machine learning 

techniques. Both VF and VT are dangerous arrhythmic events leading to sudden death if no 

defibrillation shock is applied to the subject within a few minutes (170). A number of algorithms have 

been proposed for the efficient VF/VT detection based on processing the ECG signal, mainly in the 
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time-domain (171). The reason for this is that correct detection and classification of these arrhythmic 

events is of extreme importance for an automatic external defibrillator and patient monitoring. 

 

 

1.8 Outline of thesis  

The central hypothesis of this work is that EGM morphology is determined by identifiable features of 

local action potentials and the architectural determinants of their propagation and, inversely, the local 

electro-architecture in cell monolayers, tissue slices and the whole heart may be predicted from a 

decomposition of the EGM morphology using supervised machine learning methods.   

 

In order to address the hypotheses, there were a number of specific aims to the work described in this 

thesis: 

1. Modification of the action potential morphology and conduction velocity using a variety of ion 

channel blockers on cell monolayers, in order to investigate subsequent changes in EGM 

morphology. 

 

2. Induction of propagation discontinuities by introducing cellular scar, in order to record 

fractionated EGMs. 

 
3. Modulation of inter-cellular coupling on cell monolayers and tissue slices, in order to cause 

discontinuous conduction. 

 
4. Carrying out simultaneous optical mapping and EGM recordings, followed by histological 

analysis, using cell monolayers and myocardial slices, in order to correlate action potential and 

EGM morphology changes. 

 
5. Correlation of scar areas with specific EGM feature modifications using in vivo data. 

 
6. Development of unipolar EGM datasets obtained during experimental conditions with an 

increasing complexity (cell cultures – in vitro, tissue slices – ex vivo, human patients – in vivo), 

in order to investigate how the addition of an increasing number of factors may modify the 

EGM morphology. Also, datasets need to consist of an adequate size of data, in order to be able 

to proceed to machine learning and achieve high classification performance. 

 
7. Development of algorithms for EGM feature extraction using data obtained from cell 

monolayers, tissue slices and patients. 
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8. Investigation of supervised machine learning techniques for predicting functional and structural 

abnormalities 

 

Chapter 1 provides the background of the purpose of applying machine learning techniques, in order to 

seek a better understanding of the correlations between unipolar EGM morphology and pathological 

states. It details the electrophysiological substrate based on the contact EGM morphological analyses, 

such as fractionation, voltage and dominant frequency, and how this type of recording is compared to 

other types of data – bipolar EGM, ECG and LGE-MRI. Since the purpose of this thesis is the 

improvement of treatment against atrial and ventricular fibrillation, these cardiac arrhythmias are 

presented alongside our current knowledge about the EGM morphology that we obtain under each 

condition. 

 

Chapter 2 presents the biological techniques applied in this thesis. These include the methodologies that 

were followed, in order to set up the experimental models. Neonatal rat ventricular myocytes with 

fibroblasts and tissue slices derived from human healthy and heart failure cardiac samples were the in 

vitro and ex vivo models respectively. Persistent AF patients were also used for paced recordings. In 

addition, this chapter presents the experimental conditions for multi-electrode arrays and optical 

mapping, the main methods for electrophysiological recordings in this thesis, and techniques for 

investigating the histology of multicellular preparations. 

 

The algorithms for processing the unipolar EGM recordings that were obtained from different 

experimental models form the basis of Chapter 3. These algorithms involve the time-domain, time-

frequency and time-frequency domain analysis of the EGM, as well as the analysis of information 

theory features. Novel algorithms for morphological analysis were validated for their accuracy and 

consistency against manual measurements.  

 

The influence of ion channel blockade on EGM morphology was studied, and results were presented in 

Chapter 4. Chapter 5 presents the effects of gap junction uncoupling on EGM morphology recorded 

from multicellular preparations and Chapter 6 shows the effects of structural changes on EGM 

morphology, using variable amounts of fibroblasts in cell cultures, studying the degree of fibrosis in 

tissue slices and comparing scarred and non-scarred areas recorded from the left atrium of a patient with 

clinical history of persistent AF. Regarding all the above chapters, the EGM signal obtained from cell 

cultures was correlated with con-currently recorded action potentials, in order to confirm the above 

changes. 
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Chapter 7 presents the application of machine learning techniques on in vitro data for predicting the 

variety of functional and structural modifications that were characterised in previous chapters. A 

detailed analysis for the optimisation of the process is also presented, in order to achieve high 

classification accuracy. This included the investigation of multiple supervised learning algorithms and 

optimisation of specific parameters in the algorithm which seemed to perform the best. Chapter 8 

presents the capability of predicting factors that are responsible for a modified EGM morphology using 

the ex vivo and clinical data. Voltage, but not fractionation, was included in the feature subset for 

classifying EGMs obtained from tissue slices. This analysis showed that these two features are weak 

predictors, despite the fact that they are used in the clinic as markers for ablating locations which 

maintain AF. Both chapters showed that a combination of features extracted from different types of 

analysis achieved the optimum performance. 

 

The effects of different heart failure phenotypes on EGM morphology and how this is different from 

EGM obtained from rejected donor transplants are presented in Chapter 9. It was shown that each 

clinical phenotype resulted to a distinct morphology with phenotype-specific EGM modifications. 

These differences helped the development of a prediction model which can successfully predict these 

phenotypes from unipolar EGM morphology and using supervised learning algorithms.  

 

Chapter 10 summarizes the major findings from this thesis and expands on future directions for 

research. It suggests that supervised machine learning can be applied for predicting functional and 

structural determinants of EGM morphology using a combination of different types of data analysis. It 

also advises that supervised learning can be used for predicting heart failure phenotypes. 
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Materials & Methods 
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2.1 Introduction 

This chapter provides a general description of the materials and biological techniques used in this thesis. 

Methods covered in this chapter include EGM acquisition from in vitro and ex vivo models before and 

after the administration of ion channel or gap junction modulators, in vitro and ex vivo optical mapping 

of transmembrane voltage (Vm), acquisition of clinical recordings, immunofluorescence and second 

harmonic generation microscopy. Machine learning methods are also presented. Further specific details 

on methodology will be provided in the relevant chapters. 

 

The methodology, developed by combining the methods presented in this chapter, aimed to address the 

questions stated in Chapter 1. A schematic representation of this methodology is showed in Fig.2.1. It 

presents the route from obtaining the biological data, and especially cellular electrophysiology and 

imaging data, under a variety of experimental conditions for the understanding of the effects of these 

abnormalities on EGM morphology and followed by the application of supervised machine learning for 

developing models which can predict the same abnormalities. 

 

 

 

Figure 2.1: Overview of the methodology that was followed in this thesis towards the development of 
predictive models using supervised machine learning techniques. 
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2.2 Materials 

 
2.2.1 Cell Culture 
 

Neonatal rat ventricular myocytes (NRVMs) are preferred for studying the influence of functional and 

structural abnormalities on EGM morphology in this thesis. It is a well-established cell line that has 

been long used at cellular electrophysiology studies and for screening drug effects (40,172). 

 

NRVMs were obtained from Sprague-Dawley rats (0 to 3 days old). All procedures were conducted 

according to the standards set by the EU Directive 2010/63/EU and were approved by the Imperial 

College London Ethical Committee. Anaesthesia by isoflurane was followed by euthanasia carried out 

by cervical dislocation and assessed by cessation of circulation. The heart was then removed and 

dissected immediately. The vessels and atria were carefully removed to isolate the ventricles which 

were further dissected into 1-2mm3 pieces. Enzymatic digestion of ventricles was carried out using the 

gentleMACS neonatal heart dissociation kit (Miltenyi Biotec GmbH). The tissue and enzyme mix was 

incubated three times at 37oC for 15 minutes each time before being attached to the gentleMACS 

dissociator for gentle agitation. The digested sample was resuspended in 10.5mL M199 10% cell culture 

medium. The cell medium consisted of 100mL M199 (catalogue no.: 22350-029; Gibco), 10mL 

newborn calf serum (catalogue no.: NB-112/500; Biosera), 10μM/mL penicillin-streptomycin 

(catalogue no.: P0781; Sigma-Aldrich), 0.68mM L-glutamine (catalogue no.: G7513; Sigma-Aldrich), 

2μg/mL vitamin B12. The cell suspension was then passed through a 70μm pre-separation filter and 

centrifuged at 1000 rpm for 5 min. The cell pellet was re-suspended in 20mL M199 10% culture 

medium. The natural composition (NC) cell population was isolated at this stage, including myocytes, 

fibroblasts and endothelial cells. Fibroblasts were removed by preplating NC cells for 1 hour at 37oC/1% 

CO2. The remaining suspended cell population consisting of NRVM only was extracted after a final 

filtration through a 70μm pre-separation filter. Fibroblasts were incubated for 7 days at 37oC/1% CO2 

in T75 flasks and were provided with 10mL 10% M199.  

 

In addition, HeLa cells (catalogue no.: 93021013; ECACC) were grown in MEM medium 

complemented with 1% non-essential amino acids (catalogue no.: 11140-035; Gibco), 10% Foetal 

Bovine Serum (FBS), 10μL/mL penicillin-streptomycin and 2mM L-glutamine. Cells were maintained 

at 37oC in a 5% CO2-humidified incubator. 

 

Microelectrode array (MEA) dishes (MultiChannel Systems MCS GmbH, Germany), which are 

described in more detail in section 2.3, were prepared in a class II microbiological safety cabinet. Plates 

were coated with 30μL 0.2mg/mL collagen over the electrode matrix and left for 2 minutes. The same 



 55 

volume of double-distilled water from a Milli-Q Integral 3 water purification system (Merck) was used 

to wash each plate twice. The preparation was left in 1 mL double-distilled water for 1 hour and was 

then sterilised by UV light exposure for 1 further hour. A 30μL-cell medium drop with a total population 

of 200,000 cells was plated on each MEA dish. Cells were firstly rested for 30 minutes at 37oC/1% CO2, 

then additional 10% M199 medium was used to bring total volume up to 1mL/plate. Cell cultures were 

incubated in the above conditions with 10% M199 for the first 24 hours and then a daily replacement 

of 1mL 5% M199 (prepared as above, but with 5mL neonate serum) until electrophysiological 

measurements were recorded. 

 

2.2.2 Collection and preparation of tissue samples 
 

Human left ventricular transmural tissue samples were prepared from end-stage heart failure samples 

and explanted healthy donor hearts. There were 11 heart failure patients who consented to take part in 

the study and one organ donor, this heart was unsuitable for transplant and it could be used for research 

purposes. The patients’ demographics, indications for anti-arrhythmia treatment, the diagnosed heart 

failure subtype and the presence of a device implant are shown in Table 2.1. Table 2.2 also presents the 

reason for rejecting the donor sample as a transplant, alongside the donor’s history for alcohol 

consumption, smoking and the demographics. Heart failure samples were immersed in ice-cold 

cardioplegia solution (Harefield Hospital formulation) immediately after explantation and transported 

to the laboratory within one hour. Donor transplants may arrive later, but always less than 3 hours after 

explantation. Samples with an approximately 6 x 6 mm surface area were obtained and mounted using 

tissue adhesive Histoacryl® (catalogue No.: 1050044; B.Braun Surgical S.A., Spain) with epicardium 

down onto the specimen holder of a high precision vibrating microtome (7000smz, Campden 

Instruments Ltd., UK). Samples were in cold (4oC) oxygenated (100% O2) cutting Tyrode’s solution 

(140 mM NaCl, 6 mM KCl, 10 mM glucose, 10 mM HEPES, 1 mM MgCl2, 1.8 mM CaCl2, 3g/L 2.3-

butanedione monoxime (BDM), pH 7.4) during the preparation of 300μm-thick slices derived from the 

endocardial and epicardial sample areas (Figure 2.2). The advancement speed of the steel blade was 

0.04mm/s, the amplitude 2 mm and the vibration frequency was 80Hz. Slices were incubated in 

oxygenated ice-cold cutting Tyrode solution for at least 30 minutes prior to being placed in the centre 

of a MEA plate and obtaining the electrophysiological recordings in Tyrodes solution (140mM NaCl, 

4.5 mM KCl, 10 mM glucose, 10 mM HEPES, 1 mM MgCl2, 1.8 mM CaCl2, 1g/L BDM). This study 

was supported by the supply of human tissue samples from the Cardiovascular Research Centre Biobank 

at the Royal Brompton and Harefield NHS Foundation Trust (NRES ethics number for biobank 

samples: 09/H0504/104+5; Biobank approval number NP001-06-2015). Informed consent was 

obtained from each patient involved in this study. This study was also supported by the supply of human 

tissue samples from NHS Blood and Transplant (REC reference 16/LO/1568). Informed consent was 
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obtained from the donor’s next of kin. All procedures described in this thesis were carried out in 

accordance to the Human Tissue Act 2004 (c30). 

 

 

 

Figure 2.2: (Α) The vibratome used for producing tissue slices. (B) A block of tissue is mounted on the 
specimen holder using Histoacryl® during slicing. The tissue is submerged in a waterbath full of cold and 
oxygenated Tyrodes solution. (C) A tissue slice placed on top of the electrode matrix of a micro-electrode 
array dish. A metal ring is placed on top of the slice, in order to keep it in contact with the electrodes while 
it is perfused.  
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Table 2.1: Heart failure patient characteristics. Slices derived from explants 1-9 could be stimulated, but not for slices derived from the rest. IHD: ischaemic heart disease; 
DCM: dilated cardiomyopathy; LVAD: left ventricular assist device 

# of explanted heart Age Gender (M/F) HF phenotype Arrhythmia (Anti-arrhythmic drugs) Ca2+ antagonist Device implantation 

1 60 F IHD No No Yes (CRT-D) 

2 57 F DCM Yes (amiodarone) No Yes (LVAD) 

3 38 F HCM Unknown Unknown Yes (CRT-D) 

4 65 M IHD No No No 

5 28 M DCM No (but digoxin treatment) No No 

6 32 M DCM Yes (digoxin) No No 

7 67 M IHD No No No 

8 23 M Lymphocyte myocarditis No No No 

9 20 F DCM No No No (pre-LVAD patient) 

10 50 M 
DCM (sample was ischemic for 

30min post explantation) No No Yes 

11 30 F DCM Yes (amiodarone) No Yes (LVAD + ICD) 

 

Table 2.2: Characteristics of the donor of rejected heart transplant. OCS: organ care system 

Age 
Gender 
(M/F) 

History of 
hypertension 

History of cardiothoracic 
disease 

History of smoking 
Donor alcohol 
consumption 

Note 

48 M No No No Light drinker – 1-2u/day Rejected due to degeneration on 
OCS. 
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2.2.3 Ion channel and Gap junction modulators 
 

In the experiments described in this thesis, pharmacological ion channel modulators were used to 

modify ion channel activity. All agents were sourced from Sigma-Aldrich, unless otherwise stated. The 

K+ channel blockade was achieved using 4-aminopyridine (4-AP; catalogue no.: 275875), which is an 

Ito blocker, E-4031 (catalogue no.: M5060), a IKr blocker, or HMR-1556 (Tocris Bioscience), which is 

a IKs blocker. In order to achieve the enhancement of K+ channel activity, IKATP activation was carried 

out using pinacidil (Enzo Life Sciences). Lidocaine (catalogue no.: L7757) was used for Na+-channel 

blockade, nifedipine (catalogue no.: N7634) for the blockade of L-type Ca2+ channels and ORM-10103 

(catalogue no.: SML0972) for the inhibition of the Na+/ Ca2+ exchanger activity. To reduce gap junction 

coupling, carbenoxolone (CBX; catalogue no.: C4790) was used.  

 

 

2.3 Microelectrode array recordings 
 

The electrophysiological properties of cardiac myocytes were assessed using the USB-MEA60-Inv 

MEA system (MultiChannel Systems, Reutlingen, Germany). An MEA plate consists of 60 gold 

electrodes arranged on an 8 x 8 matrix (inter-electrode space: 700μm, electrode diameter: 100μm) with 

missing electrodes in the corners of the matrix (Figure 2.3). Stimulation was carried out using a STG 

stimulus generator programmed by MC Stimulus II software (version 3.4.4, MultiChannel Systems). A 

biphasic stimulus (2 ms duration; 120% of the threshold; voltage: 500-1000 mV) was applied for several 

minutes from the 6 electrodes located on one of the four external rows of the matrix to reach steady 

state before obtaining 10sec recordings in incremental rates until loss of 1:1 capture. In the cases of 

recording fibrillation, 30sec recordings were obtained. The temperature was kept stable at 37oC during 

stimulation and recording. Unipolar extracellular EGMs were recorded at a sampling frequency of 

25kHz.  

 

The responsiveness of cells to ion channel or gap junction modulators was tested 2-4 days after seeding 

cells on MEA dishes. Control recordings with NRVM administered with 1mL of Hank’s buffered saline 

solution (HBSS) were obtained before changing the control solution for 1mL of incremental 

concentrations of each pharmacological agent. Signals were displayed and data were analysed offline 

using MC Rack software (v4.6.2, MultiChannel Systems).  

 

A limitation of this technique is related to the fact that an electrode can only faithfully record up to a 

certain frequency, because of the nature of the electrode-solution/tissue interface, i.e. when current 
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passes through an electrode, hydrolysis occurs in the solution resulting to the formation of bubbles at 

the surface which reduce the frequency range, or when electrodes are in contact with tissue, impurities 

of the tissue may attach on the electrodes causing the same problems with frequency range. This restricts 

the ability to record at high frequencies and the highest sampling frequency would be the equivalent to 

AP upstroke duration – if AP upstroke is 1ms, this is equivalent to approximately 1kHz. The frequency 

limit imposed by the recording system, and therefore the MEA system, should be ideally at least 10 

times that of the signal which is intended to be recorded. The frequency response of an electrode can 

be tested by injecting an artificial current through the MEA at different frequencies and record the 

voltage. If the artificial signals were sine waves, the amplitude would start to decrease as the frequency 

increases. In this case, the attenuation of signal would be assumed to be at greater frequencies than the 

recorded signal.  

 

 

Figure 2.3: (A) 60-electrode MEA dish with the same electrode arrangement as the one used for obtaining 
EGM data for this thesis. The reference electrode (indicated with a white arrow) can be seen on the left side 
of the electrode matrix. This electrode arrangement was used mostly for unipolar extracellular recordings. 
(B) The MEA was used for recording EGMs, as presented in this screenshot. Right, Representative EGM 
acquired from NRVM monolayer. (C) Representative EGM obtained from a left ventricle tissue slice derived 
from a donor heart. This EGM was obtained using the same MEA dish as for data collected from cell 
monolayers.  
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2.4 Clinical recordings 
 

Eight patients with symptomatic persistent AF, based on the AF classification guidelines published by 

AHA/ACC/HRS/ESC (Norman, 224), who presented for their first ablation to Imperial College 

Healthcare NHS Trust were prospectively enrolled for experimental purposes. The study was approved 

by the Local Research and Ethics Committee for Imperial College Healthcare NHS Trust and written 

informed consent were obtained from all patients. 

 

Electroanatomic mapping technology records both electrical and spatial positioning data from the 

electrodes on an intra-cardiac mapping catheter. During this process, and prior to gathering mapping 

data, the catheter was systematically moved around the full extent of the chamber and spatial electrode 

position data were collected to generate a point cloud from which a surface representation of the 

endocardial surface was computed. Sequentially acquired unipolar electrical data were then collected 

and projected onto the surface. 

The electro-anatomic data, which were used for the purpose of this thesis, were collected by Dr Norman 

Qureshi using a 20-electrode double-loop AFocusII high density mapping catheter (InquiryTM 

AFocusIITM, Abbott, USA) at a sampling frequency of 2034.5 Hz. Electrodes are 2mm in size with a 

circumferential spacing of 4mm (Figure 2.4). The catheter was placed in tangential contact with several 

regions of the left atrial endocardial surface, including the roof and the posterior wall. For each position, 

unipolar EGM data were collected concurrently from all 20 electrodes under paced rhythm at cycle 

lengths of 250ms, 300ms, 450ms and 600ms, as well as from a fixed decapole catheter positioned in 

the coronary sinus. The signals were also converted to units of seconds (t) using t=n/f, where n is the 

number of each recorded sample, the sample number, and f is the sampling frequency at 2034.5Hz. This 

type of analysis was developed by Dr Rheeda Ali and the outcomes of this analysis were also used for 

this thesis.  

 

The patient-specific intensity map was derived from manual segmentation of the LGE-MRI and 

subsequently voxel intensities along a 3mm inward normal were projected onto the segmented atrial 

shell by Dr Norman Qureshi. Algorithms developed by Ali et al. (173) were used by Dr Rheeda Ali for 

registration between the electro-anatomical surface and the LGE-MRI surface. During this process, a 

non-rigid surface registration, initialised from the automatic landmark registration, provided the 

transformation to map the electrode locations onto the LGE-MRI surface. In addition, a method for 

operator-independent quantification of LGE that correlates with collocated EGM signals was applied 

using an in-house MATLAB script developed by Dr. Rheeda Ali. This technique was based on the 

construction of a scar map expressing intensity as multiples of standard deviation (SD) above blood 
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pool mean (174). The result was the correlation of EGMs with non-scar areas (<0 SD above blood pool 

mean) or scar regions (>2 SD above blood pool mean) (by Dr Rheeda Ali). 

 

Figure 2.4: (Left) The 7F Inquiry AFocusII catheter with 4F double loop that was used for the acquisition 
of EGM data. The electrode spacing is 4mm and the loop diameter was 20mm. Adapted from 
www.cardiovascular.abbott/us/. (Right) The numbering and arrangement of electrodes on the AFocus II 
catheter. 

 

Figure 2.5: Optical mapping system. (A) Schematic diagram of the optical mapping system in which details 
related to the light source are visible. (B) A LED light source, located on the back side of the system, was 
directed towards the sample stained with voltage-sensitive dye. The emitted light passes through two 
dichroic mirrors. Both lights are detected by a sCMOS camera in the end.  
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2.5 Optical Mapping 

Optical mapping is a non-invasive method for recording biological data simultaneously over multiple 

sites. One application of this technique is the optical mapping of transmembrane voltage (Vm) transients 

using fluorescent voltage-sensitive dyes, which were also used in this study. 

 

2.5.1 Principles of optical mapping of transmembrane voltage (Vm) 
 

An optical mapping system consists of four components: (1) the biological sample stained with a 

voltage-sensitive dye, (2) a light source, (3) a system of optics, and (4) a photodetector. During the 

optical mapping experiment, the sample is stained with a voltage-sensitive dye, which binds to the cell 

membrane. The dye is then excited by a light source with the appropriate excitation wavelength. When 

the dye returns to its ground state from its excited state, it emits photons of a wavelength that is longer 

than that of the excitation light. The system of optics then filters the emitted photons and focuses the 

light onto a photodetector, which quantifies the amount of emitted light. The change in the quantity of 

filtered light detected by the photodetector is proportional to changes in transmembrane voltage, as a 

result of the unique property of voltage-sensitive dyes. This results to the non-invasive assessment of 

transmembrane voltage changes.  

 

2.5.1.1 Voltage-sensitive dyes 
 

There is a variety of potentiometric dyes, which are designed to allow measurement of transmembrane 

voltage changes. Some examples include di-4-ANNEPS, di-8-ANNEPS and RH237. These dyes exhibit 

voltage-dependent shift of their emission spectra. When the dye is excited, at resting membrane 

potential, it will emit photons with a specific emission spectrum when returning to the ground state. 

However, when the cell is depolarised, the emission spectrum is blue-shifted towards shorter 

wavelength. By using appropriate filters to select for light above certain wavelength, a decrease in signal 

intensity will accompany membrane depolarisation.  

 

2.5.1.2 Motion artefact 
 

One of the main technical challenges of optical mapping studies is dealing with motion artefact. The 

vigorous contractions of tissue slice, or even the minor contraction of a cell culture, move the sample 

and prevent the recording of optical action potential signals from the same site over the course of a 
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cardiac cycle. Multiple strategies have been developed to reduce or eliminate motion artefact. 

Pharmacological agents are a popular strategy to remove motion artefact and have been used to 

uncouple cardiac excitation from contraction, thus removing motion without altering electrical activity. 

Excitation-contraction uncouplers include BDM, which is a non-competitive inhibitor of myosin II, and 

cytocholasin D, an agent that inhibits actin filament polymerisation (175). However, both of these 

agents have been shown to alter action potential, they have off-target pharmacological effects on ion 

channels and they modify restitution and Ca2+ handling (176,177). BDM was used during experiments 

with tissue slices in this thesis. Blebbistatin is a relatively new excitation-contraction uncoupler that 

acts as inhibitor of adenosine triphosphatases (ATPases) associated with class II myosin isoforms (178). 

It has no significant effects on pacemaker activity, conduction, repolarisation and intracellular Ca2+ 

cycling (179). However, there are reports showing that blebbistatin can prolong monophasic action 

potential durations, as well as increasing the maximum slope of restitution and altering fibrillation 

threshold (180).  

 

There is a number of studies concentrated on applying the ratiometry approach for quantitative 

measurements of transmembrane potential with dyes. This method is based on simultaneous recordings 

of fluorescent signal at two different wavelength ranges, one where the dye exhibits a larger voltage-

dependent response and another at a wavelength where the potentiometric dye exhibits an inverted or 

no voltage-dependent response. The ratio of these two signals results in an optical signal free of, or with 

significantly reduced, motion artefact. A weakness of this method though is that it works well with 

relatively weak contractions and with biphasic action spectra of fluorescent dyes (181). This method 

was used when acquiring recordings from cell monolayers in this thesis and it was combined with BDM 

when obtaining data from tissue slices. 

  

2.5.1.3 Optics 
 

Fluorescent light emitted from the biological sample must be filtered and focused onto a detector. The 

optics of an optical mapping system typically consists of a collecting lens, one or more dichroic mirrors, 

focusing lenses and filters. The light from the preparation passes through the collecting lens before 

being split with dichroic mirrors, which will reflect light below a certain wavelength, whilst allowing 

light above that wavelength to pass through. The light then passes through the appropriate emission 

filter and is focused onto the detector or camera.  
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2.5.1.4 Detectors 
 

Detectors are necessary for the detecting the optical signals, measure their intensity and convert that 

into an electrical signal. Three main types of photodetectors are used for cardiac optical mapping 

experiments: (1) photodiode arrays (PDAs), (2) charge-coupled devices (CCDs), (3) complementary 

metal-oxide semiconductor (CMOS) detectors. Even though PDAs and CCD cameras are the two main 

forms of detectors, over recent years, CMOS cameras have been developed for optical mapping and 

these newer cameras have both excellent temporal and spatial resolutions. For the experiments 

described in this thesis, a sCMOS camera was used.  

 

 

2.5.2. Optical mapping protocol 
 

Optical mapping was carried out in combination with MEA recordings for the purpose of the work 

presented in this thesis. Figure 2.5 shows a schematic representation of the custom-made optical system 

used for simultaneous membrane voltage and MEA recordings (supplied by Cairn Research, UK). The 

system was built around an upright microscope (Eclipse FN1, Nikon Instruments Europe B.V.) with a 

modified stage height to hold the amplifier of the MEA system. Excitation light (470nm) was supplied 

by an OptoLED system (Cairn Research, UK) which provided controlled illumination and modulation. 

The light was passed through an emission filter of 470/40nm. Light was collimated to the MEA dish by 

a water dipping objective lens with magnification 20x (NA: 1.0 20x, XLUMPLFLN20XW PL 

FLUORITE OMJ, Olympus). Samples were stained with 40μM di-8-ANNEPS (Molecular Probes®, 

Invitrogen) diluted in 1mL HBSS with 2.5μL Pluronic® F-127 (Life Technologies, USA).  
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Figure 2.6: (Top) Part of a NRVM monolayer on top of a single electrode and stained with di-8-ANNEPS 
as captured using the optical mapping system. The same group of cells as seen with simultaneous excitation 
of green (left) and red light (right). Middle, Fluorescence intensity changes over time used for recording the 
AP. Simultaneously collected fluorescence at 525/36nm (green) and 628/32nm (red), both expressed as 
percentage change of normalised signal (Fn). (Bottom) Signal correction by 628/525nm ratiometry expressed 
as percentage of normalised Rn.  

 
The emitted fluorescence was collected by the same objective lens and passed through dichroic mirrors. 

Using a 560nm edge BrightLine® single-edge dichroic beamsplitter, located in an Optosplit II ‘LS’ 

emission image splitter (x1.0 magnification), the fluorescent light was divided into two beams that were 

passed through emission filters (525/36nm and 628/32nm). Subsequently, the light was focused onto a 

complementary metal-oxide semiconductor camera (Zyla 10-tap sCMOS, Andor Technologies Ltd., 

Belfast, UK) for the detection of the dual wavelength optical signal with a spatial resolution of 400 x 

885 pixels at 525.39 frames/sec. The light intensity measurements were recorded using the Andor Solis 

software platform (version 4.23.30008, Andor Technologies Ltd.).  

However, the INa activation lasts at most 1-2ms meaning that the temporal resolution of the sCMOS 

camera may be inadequate in some occasions to properly capture the AP upstroke, as the camera may 

be able to record maximum 1.05 frames within 2ms, and unable to capture faster activations. Due to 

this fact and the low voltage stimulation leading to delayed initial depolarisation, as firstly described by 

Hodgkin and Huxley (475), the AP upstroke duration was measured to be longer than the actual INa 

activation. These results are presented in Chapters 4 and 5. However, the modulation of upstroke 

duration was correlated to conduction velocity and subsequent EGM duration prolongation, as recorded 

through simultaneous optical imaging and EGM recordings, presented in section 4.2.4. The limiting 
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factor of temporal resolution did not affect our results, as optical imaging was used in this thesis with 

the intention to show how changes in AP morphology directly manifest in unipolar EGM morphology, 

and the focus of this research is the analysis and accurate measurement of EGM features. 

 

2.5.3 Optical mapping data analysis 
 

Optical mapping data were analysed offline using GraphPad Prism (version 6.0f for MacOS X, 

GraphPad Software, La Jolla California, USA). The data were spatially smoothed using 3 averaging 

neighbours and 4th order of the smoothing polynomial. Action potential data were undertaken with 

emission ratiometry (181). The ratiometric signal analysis was achieved by using the fluorescence 

signals of opposing ΔF (green and red fluorescence). The ratio signal, collected at both wavelengths, 

was extracted for the attenuation of any motion artefacts, since motion artefacts can appear as a common 

change on both wavelengths and consequently, they can be cancelled out by the ratiometric calculation. 

As a result, the introduction of excitation-contraction uncouplers, such as blebbistatin, is not necessary 

with our system. Analyses were carried out using a custom-written macro in GraphPad Prism for drift 

removal and normalisation of raw data before calculation of AP morphology. Data analysis included 

the measurement of action potential duration at 50% and 90% of repolarisation (APD50 and APD90 

respectively) and upstroke duration.  

 

 

2.6 Immunofluorescence 

 
2.6.1 Principles of immunofluorescence 
 

Immunofluorescence is a method used to determine the location and distribution of specific proteins. It 

is based on the principle of specific interactions between an antibody and its corresponding target, the 

antigen, which is found on the substrate. The primary antibody is designed to bind specifically to the 

protein under investigation. This antibody is produced by an animal which was previously injected with 

a peptide sequence from the protein under investigation. The animal recognises the peptide as a foreign 

protein and raises an immune response against it.  As part of this reaction, B-lymphocytes secrete 

antibodies that specifically target that peptide sequence. The antibody is then purified from the serum 

of the animal to be used against the protein of choice in immunofluorescence experiments. The 

incubation of the sample with the primary antibody is followed by the incubation with a secondary 

antibody that specifically targets the primary antibody. Secondary antibodies are conjugated to a 

fluorescent marker, which can be visualised under a microscope using an epifluorescence filter or by 
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confocal microscopy. The series of specific binding between the protein of interest, the primary 

antibody and the secondary antibody means that the locations of the fluorescent signal as visualised 

under the microscope correspond to the locations of the protein of choice. Although an excellent 

technique for protein localisation, some limitations include potential false-negatives due to poor 

antibody penetrance into tissue and false-positive due to non-specific antibody binding.  

 

2.6.2 Immunofluorescence protocol 
 

Some of the experiments related to immunolabelling NRVM/fibroblast co-cultures or NRVM cultures 

following the administration of lidocaine, HMR-1556 and pinacidil were performed by Efthyvoulos 

Sokratous, Kai Wang and Alec Saunders, who were fourth-year Imperial College London medical 

students doing BSc projects under my supervision. Firstly, cell samples were washed once with 

Phosphate Buffered Saline (PBS) and then they were fixed with 100% methanol at -20oC for 5 minutes. 

The remainder of the protocol was carried out at room temperature. Following 5 washes with 1mL PBS, 

cells were incubated for 10min with 1mL permeabilisation solution containing 0.1% Triton X100 in 

PBS. Samples were washed again 5 times with 1mL PBS and then they were incubated for 1 hour with 

a blocking buffer consisting of 5% Bovine Serum Albumin (BSA), 0.05% Tween-20, 20% horse serum 

and made up in PBS. This was followed by an overnight incubation at 4oC with the primary antibodies 

against a-actin (diluted 1:1000; Abcam – catalogue number: ab137346), vimentin (diluted 1:5000; 

ThermoScientific – catalogue number: PA1-16759) and aSMA (diluted 1:1000; Dako – catalogue 

number: MO85127-2), which were used as markers of cardiac myocytes, fibroblasts and myofibroblasts 

respectively. All primary antibodies were administered in a blocking buffer solution. Following 

incubation with the primary antibodies, samples were again washed 5 times with PBS before incubation 

with the secondary fluorescent antibodies. A mixture of a goat Alexa Fluor®568-conjugated anti-

chicken antibody (A11041), a donkey Alexa Fluor®488-conjugated anti-rabbit antibody (A21206) and 

a goat Alexa Fluor®647-conjugated anti-mouse antibody (A32728) were used in a dilution of 1:400 in 

PBS for 1hr incubation at room temperature. All secondary antibodies were purchased from 

ThermoFisher Scientific. Cell samples were then washed 5 times with PBS before being mounted with 

Vectashield H-1200 non-hardset mountant containing DAPI (Vector Laboratories, UK) and a 19mm 

glass coverslip was placed onto each cell culture. Immunolabelled samples were stored at 4oC in the 

dark to preserve fluorescence until use.  
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2.6.3 Cell Tracking System  
 

HeLa cells were labelled with the short-term cell tracking dye CellTrackerTM Red CMTPX (C34552, 

ThermoFisher Scientific), which is a fluorescent dye with excitation/emission wavelengths at 

577/602nm. It is not a technique related to any antibodies, as the whole cell is stained, and it is more 

appropriate for monitoring the location of specific cells, as it is transferred to the daughter cells, but not 

the adjacent cells in a population. This method was preferred instead of the traditional 

immunofluorescence, due to the difficulty finding a protein-marker that could distinguish efficiently 

HeLa cells from NRVMs.  

 

Firstly, in order to isolate the amount of HeLa cells that was needed for experiments, cells were treated 

with trypsin without ethylenediaminetetraacetic acid (EDTA) at 37oC/5% CO2 for 5 min. The equal 

amount of trypsin inhibitor was then added, in order to end trypsin activity. Cells could be easily 

removed from the Petri dish where they were growing and they were centrifuged at 1000 rpm for 5min. 

The cell pellet was resuspended at 4mL 10% MEM medium and the appropriate number of cells was 

isolated from the resuspension. CellTrackerTM Red CMTPX was supplied in lyophilised form 

containing 50μg powder, that was dissolved into 7.3μL sterile dimethyl sulfoxide (DMSO), in order to 

prepare 10mM stock solution. This solution was diluted to 5μM using serum-free MEM solution 

containing 1% non-essential amino acids, 10μL/mL penicillin-streptomycin and 2mM L-glutamine. 

The cell pellet of needed amount of HeLa cells was resuspended by 200μL of 5μM CellTrackerTM Red 

CMTPX and cells were then incubated for 45min at room temperature in rotation and dark. This was 

followed by a 1000 rpm centrifugation for 5min and double wash with 10% MEM solution, in order to 

remove any excess dye. In the end, HeLa cells were mixed with NRVMs. The final cell population 

consisted of 5% HeLa cells and 95% cardiac myocytes. Cells were seeded onto MEA dishes and they 

were provided with 10% M199 solution supplemented with 0.12% 5’-bromo-2’-deoxyuridine (BrdU; 

B5002 – SAFC), in order to inhibit the uncontrolled cell growth of HeLa cells. Cell cultures were 

incubated at 37oC.1% CO2 and they were provided with 5% M199 solution supplemented with 0.12% 

BrdU from the next day after seeding. HeLa cells retained fluorescent signal until 5 days after staining. 

NRVMs were not affected by CellTrackerTM Red CMTPX or BrdU. 

 

 

2.6.4 Analysis of target-protein distribution 
 

Images were acquired with a Zeiss AxioObserver inverted widefield microscope using a 10x/0.3 

objective lens and ZEN software (ZEN 2012, Carl Zeiss Microscopy GmbH). A custom-made macro 

for FIJI (Image J, v2.0.-rc-43/1.51a), developed by Dr Stephen Rothery (Facility for Imaging by Light 
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Microscopy), was used for the assessment of individual electrodes covered by target proteins or HeLa 

cells. The macro scanned the area of the MEA covered by electrodes, it detected each electrode and 

captured the electrode area, which was manually indicated in the beginning of the process and it was 

the same for all electrodes. A threshold was added on the image obtained from the whole cell culture 

or the stack of images of individual electrodes, and it was adjusted, in order to collect the signal coming 

from the target only. The target was the area covered by vimentin or HeLa cells in most cases. Based 

on that signal, the area covered by a target protein or cell type was measured as the percentage out of 

the total electrode area. 

 

 

2.7 Second-harmonic generation microscopy 

 

2.7.1 Principles of second-harmonic generation microscopy 
 

Second-harmonic generation (SHG) is the optical phenomenon that takes place when the electric field 

of the exciting light is sufficiently strong to deform a molecule. If the molecule is not symmetrical, the 

resulting anisotropy creates an oscillating field at twice the frequency, the second harmonic (182). This 

means that there is greater ability to generate second harmonics when molecules are non-

centrosymmetric. Collagen is the most important extracellular structural protein of vertebrates (182). 

The collagen molecule is non-symmetric and is arranged in a triple helix. As a result, collagen SHG 

microscopy has recently become a robust tool for imaging tissue structure with cellular resolution, in 

both in vivo and ex vivo preparations (183). Since fibrosis, which occurs under myocardial infarction 

or other reparative or reactive cardiac processes, is quantified through the presence of collagen (32), it 

is wise to use this molecule for imaging structural modifications of the cardiac tissue. Collagen I 

molecules, that are predominantly produced in fibrotic regions, are particularly interesting because they 

are thick, with diameters comparable to the wavelength of visible light (183).  

 

 

 

2.7.2 Second-harmonic generation microscopy protocol 
 

Tissue slice was placed on a 35mm-uncoated imaging dish with low walls (catalogue no.: 80131, ibidi). 

PBS was applied on the slice and a 19mm glass coverslip was placed on top, in order to keep the tissue 

slice flat. An adapted protocol previously described by Williams et al. (183) was used for the 
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visualisation of collagen fibres. Tissues were visualised using a Leica SP5 two-photon upright confocal 

microscope. This microscope was equipped with a Spectraphysics Mai Tai 690-1020 DeepSee 

multiphoton laser and a motorised stage. The multiphoton was tuned to 860nm and simultaneous dual 

imaging was performed for both collagen I (SHG) detection at 430nm and for cytoplasmic detail 

(autofluorescence) at 500-550nm. Z-series of images were collected with water dipping objectives 

(HCX IRAPO L25x/0.95W) throughout the slice. Images were acquired with a 25x magnification and 

256x256 or 512x512 resolution and were processed with ImageJ (National Institutes of Health, USA).   

 

 

2.8 Statistical analysis 

Data are expressed as mean ± SEM. Statistical analysis was carried out using GraphPad Prism software 

(version 6.0f for MacOS X, GraphPad Software). Statistical significance was evaluated using student’s 

t-test (two-tailed), one-way analysis of variance (ANOVA) for unpaired data or ordinary two-way 

ANOVA followed by Bonferroni multiple-comparison post hoc analysis where appropriate. Baseline 

and post-modification data are unpaired, unless otherwise stated. The comparison of MEA recordings 

with optical mapping was validated with linear regression analysis (confidence interval: 95%) for 

correlation of corresponding characteristics measured with each technique. The APD90/FPD 

relationship was compared between the control and modulated data groups by correlation coefficient. 

All numerical data are presented as mean ± SEM and p-value of <0.05 was considered as significant. 

 

 

2.9 Machine learning techniques 

Machine learning refers to the process of training computational or statistical algorithms to perform 

pattern recognition, classification and prediction directly from example data. The main classes of 

machine learning are  supervised, in which case the algorithms learn to make predictions from training 

data for which outcomes are provided, and  unsupervised, which finds patterns in the data with more 

limited guidance (184). Other categories of machine learning methods are reinforcement learning and 

semi-supervised learning (184). This thesis is focused on supervised machine learning. 

2.9.1 Supervised machine learning 
 

Every instance of data used by machine learning algorithms is represented by the same set of features. 

The first step towards the development of a prediction model in feature-based supervised machine 

learning is constructing the training dataset. The data must be characterised by a set of chosen features 



 71 

(10). An approach to this is that an electrophysiologist can suggest which features are necessary to best 

describe the data. Alternatively, a “brute-force” approach could be taken in which the measurement of 

a wide range of features, that characterise the signal, are computed in the hope that these include all the 

necessary information. However, the latter strategy may contain noise and significant pre-processing 

may be required (185). 

 

A critical step in the process is choosing the classification learning algorithm. Once we are satisfied 

with the training performance and the preliminary testing, the classifier can be available for routine 

predictions using unlabelled instances to classes. A classifier is usually evaluated according to the 

classification accuracy, which is the percentage of correct predictions divided by the total number of 

predictions, and how well its general classification performance is. A popular method for the calculation 

of a classifier’s accuracy is cross-validation. In this technique, the training set is divided into mutually 

exclusive and equally-sized subsets and multiple rounds of training occur using a combination of 

randomly selected subsets. Cross-validation does assess accuracy, but its primary role is to test how 

well the algorithm generalises to unseen data. (10).  

 

A total of 20 supervised machine learning algorithms were considered in this thesis. These belong to 4 

families of machine learning algorithms: k-Nearest Neighbours, Support Vector Machines, Linear 

Discriminant Analysis and Decision Trees. The default MATLAB parameter values were initially used 

for screening them and searching the most appropriate method for the training dataset. Details of each 

method are presented below. 

 

A. k-Nearest Neighbours: This method is based on the principle that the observations from the 

training dataset exist in feature-space to other instances with the same or similar features. In 

the case that instances are labelled with a class, then the label of an unknown instance can be 

estimated by the class of its nearest neighbours. The kNN method locates the k nearest instances 

to the target-instance and determines its class by the class with the highest frequency among 

the k neighbours (Figure 2.6). For this thesis, k=1 (KNN fine), k=5 (KNN medium) or k=10 

(KNN coarse) neighbours were considered for the classification of new data with 10-fold cross-

validation during the training process. The Euclidean distance between m number of 

observations x and y was measured using the following equation (2.1): 
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The metric applied for the calculation of the relative distance between observations used 

normalized observations, in order to give them equal weighting. This process minimized the 

distance between two similarly classified observations and maximized the distance between 

observations belonging to different classes (10,186).  

 

Figure 2.7: k-Nearest Neighbour illustration. The algorithm decides how new data are classified based on 
the class with the highest frequency in their vicinity. In this case, k=4 neighbours or k=6 neighbours may be 
considered for determining the class of the new data.  

 

 

B. Support Vector Machines (SVM): SVM is based on the notion that a hyperplane is constructed 

separating two classes such that the separation, also known as margin, is maximized (10). 

Creating the largest possible distance between the separating hyperplane and the observations 

on either side of it has been proved to reduce the generalization error. For linear separation of 

data (linear SVM), a pair (w,b) exists such that: 

 

34#5 + 7	 ≥ 1, :;<	=>>	#5 ∈ @ 

34#5 + 7	 ≤ −1, :;<	=>>	#5 ∈ B    (2.2) 
 

where w is the weight vector, b the bias and xi is the input vector. P and N correspond to the 

margins on each side of the hyperplane (Figure 2.7). The discriminant function is given by 

equation (2.3): 

:3,7(#) = CDE(34# + 7)    (2.3) 

 
The hyperplane is found by minimising the squared norm of the separating hyperplane. Once 

the optimum hyperplane is computed, the data lying on its margin are known as support vector 

points and the solution is represented as a linear combination of only these points and the rest 

are ignored. 



 73 

 

Figure 2.8: An illustration of Support Vector Machine (SVM) for binary classification. An SVM finds the 
hyperplane that separates the data points of one class from those of the other class. The optimal hyperplane 
is the one that separates the classes with the largest margin between the two classes. There are no data points 
within the margin, but they can be on its borders. Adapted from Zhang & Suganthan (187). 

 

C.  Discriminant Analysis: Both Linear Discriminant Analysis (LDA) and Quadratic Discriminant 

Analysis (QDA) were used in this thesis (Figure 2.8). They are both types of Bayesian 

classifiers and assume that the data have a Gaussian distribution.  

Since they are Bayesian classifiers, both methods predict according to the Bayes theorem, 

described by equation (2.4): 

 

@(F = G|H = #) = 	 IJ(K)LJ
∑ IN(K)LNO
NPQ

  (2.4) 

 

where k and l are two different classes. This means that the classifier was given an input X that 

is the feature vector x. x consists of P different predictors, one for each input dimension. Then, 

a covariance matrix 	RG = R"G is computed in LDA with respect to each possible output class, 

i.e. k, l. the classifier computes @(F = < ∨ H = #), which is the probability that the actual 

output is r with x being the input. The class that returns the maximum value for the above-

mentioned probability is given as the output of the classifier. Regarding LDA, @T(H ∨ F) was 

estimated, instead of estimating @(H ∨ F), in order to compute how data points were distributed 

in the p-dimensional space (135).  

 

The difference between LDA and QDA is that while LDA assumes the same covariance matrix 

Σ for all k classes, there are no assumptions on the covariance matrices Σk in QDA (135). 

Essentially, LDA computed a separate μk for each class using data points that belonged to it, 
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but Σ was computed using the entire training data. And this common covariance matrix was 

used in the computations corresponding to every class. QDA, on the other hand, computed a 

separate Σ and μk for each possible output class.  

 

 

Figure 2.9: Illustration of linear (left) and quadratic (right) discriminant analysis. The linear/quadratic 
discriminant boundary separates the data into two classes. Linear discriminant analysis correctly separated 
81.5% of data in this example, while the quadratic discriminant function improved classification by correctly 
separating 85.5% of data. Adapted from Kemp et al. (188). 

 
 
D.  Decision Trees: A decision tree is a hierarchical partitioning of the observation-space based on 

a sequence of conditions. This forms a tree structure, whereby the edges are sub-regions of the 

observation-space and the nodes are conditions which define the partitioning (Figure 2.9). The 

nodes and the edges are therefore organized in a tree structure. There are two types of nodes in 

a decision tree, the split nodes (internal) and the leaf nodes (terminal). Each split node is 

associated with a test function which is used to split the incoming data according to a variety 

of attributes. Each leaf corresponds to the final decision, i.e. classification label. Decision trees 

are not sensitive to aberrations during training (189). However, the disadvantage of the decision 

tree model is that it can easily overfit the training dataset and the final prediction model may 

be inefficient on the test dataset.    
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Figure 2.10: Example of a decision tree illustration with its root at the top. Based on a condition (internal 
node), the tree splits into branches (edges). The end of a branch that does not split anymore is the decision 
(leaf node).  

 
To address the susceptibility of decision trees to overfitting, a more efficient way is by 

aggregating the predictions given by several of them for the same problem. This strategy can 

be also used to improve the accuracy of decision trees. 

 
Bagging – The Bootstrap Aggregating (Bagging) method is a popular Ensemble method. The 

idea of Bagging is to simultaneously train multiple bootstrap samples from the original training 

dataset using the unmodified learning algorithm and then average all trained models. Bagging 

is a randomization method, due to the introduction of some random perturbation in the process 

that generates an ensemble of M bootstrap samples from a learning sample. The randomness of 

the model helps to reduce the redundancy of explanatory variables and the individual bootstraps 

are diversified (190–192). The final prediction is obtained by aggregating the predictions 

computed from the individual subsets. The final ensemble model has less variance than its 

components. Random forests can be used in combination with Bagging, and this is the 

methodology used in this thesis. This approach involves the creation of deep trees fitted on 

bootstrap samples (Figure 2.11). However, random forests sample not only over the 

observations, but also over features keeping a random feature subset to build the tree. Bagging 

considers all features by default when training each bootstrap. The addition of random forests 

makes bootstrap samples even less correlated and the decision making process becomes more 

robust to missing data. 

 

Important parameters for the development of a Bagging Ensemble-based prediction model are 

the leaf size and the number of trees. The leaf size is tuned to determine the predictive ability 

of each model and corresponds to the depth of the tree. A small leaf size results to deep trees 
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that have adequate generalization ability, but they need more training and prediction time and 

the process is more computationally expensive. Large leaf size corresponds to shallow trees 

that need less training time and memory, but the accuracy of the model is not necessarily high 

in the end. The number of trees is used to control the size and the overall performance of the 

ensemble model (193).   

 

 

Figure 2.11: Schematic representation of the Random Forests algorithm based on the Bagging method. The 
process involves 4 stages. Stage 1: M subsets are sampled from the original training dataset using the 
bootstrap method. Stage 2: M independent decision trees are built for model training. Stage 3: Prediction is 
obtained from each bootstrap tree over M replications. Stage 4: The final prediction is made based on average 
or majority voting.  

 

The out-of-bag (OOB) observations were used as a way to compute the test error of a model 

produced while applying the Bagging Ensemble method.  OOB corresponds to the subset of 

observations not selected for training each decision tree. The response for an observation is 

made using each of the trees for which that observation was an OOB. The majority vote of 

predictions for a single observation indicates a single OOB prediction for that observation. The 

same process is repeated for each OOB observation and in the end an overall out-of-bag 

classification error is computed. This metric is an estimate of the test error, since all 

observations not used during training of each decision tree are used. It can be used as an 

alternative validation method to cross-validation, which can be computationally expensive for 

large datasets (194). 
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Boosting – Boosting is another Ensemble method used in this thesis. The main idea of boosting 

is also to combine the predictions of several models and obtain a stronger learner with better 

performance. However, unlike Bagging which aims at reducing variance, Boosting builds the 

models sequentially. This means that each model in the sequence is built to address the 

deficiencies of the previous models in the sequence. Each new model focuses on the most 

difficult observations to fit up to now, ending up with a strong learner at the end of the process 

with lower bias. Random forests can be used here too, but it is not necessary. These were not 

used in this thesis. Boosting is mainly preferred for base models with low variance but high 

bias, such as shallow decision trees with only a few depths, which are also less computationally 

expensive to fit.  

 

RUSBoost – The Random Under-Sampling Boosting (RUSBoost) is another method applied in 

this thesis and it is prominently used for classifying imbalanced data, i.e. some class in the 

training dataset with K classes has many fewer observations than another. The algorithm takes 

N members of the class with the fewest members in the training dataset as the basic unit for 

sampling. Classes with more members are sampled by taking only N observations of every class 

(195). A weighted pseudo-loss for N observations and K classes was also computed, as a 

measure of the classification accuracy from any learner in an ensemble. This takes into account 

the confidence of making predictions.  

 
 

2.9.2 Feature selection 
 

Feature subset selection is the process of identifying and removing irrelevant and redundant features  

(196). It reduces the data dimensionality and enables machine learning algorithms to operate faster and 

more efficiently (10). 

 

Feature selection was carried out using the Sequential Forward Selection (SFS) method developed by 

A.W. Whitney (197). This is a bottom-up search procedure starting from an empty feature matrix D 

which iteratively adds features. A subset D* of measured EGM features was incrementally constructed. 

During each iteration, a proposed feature was selected from the pool of remaining features not already 

included in D*. The algorithm terminates when no additional features provide a significant improvement 

in the ability of the classification algorithm to differentiate the classes. The classification method used 

during the SFS process was the same with the method next applied for classification training. Four main 

families of classification methods were used for SFS: kNN, Decision Trees, including Ensemble 
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Bagging for optimization of the performance, LDA and SVM, as previously presented. Due to this 

variability, a different feature subset was selected after the application of each algorithm.  

 

Each feature subset was tested during classification training using the same algorithm which was 

applied during feature selection. The fact that significantly higher classification performance was 

achieved using the feature subset extracted through the SFS process showed that feature selection was 

a meaningful step during the machine learning process. Also, the relatively limited size of the training 

dataset used during this research, which is a reason for overfitting and subsequently false positive 

classifications (196), made the application of feature selection necessary. Lastly, the feature selection 

provided feature subsets which could be related to the experimental conditions and were biologically 

meaningful. These findings, in addition to the general contribution of feature selection towards the 

production of effective predictive models, are presented in Chapter 7-9. The EGM features used for 

feature selection, as well as the algorithms used for the detection and measurement of them, are 

presented in detail at Chapter 3. 

 

2.9.3 Assessment of predictions by cross-validation 
 

Cross-validation is a resampling procedure primarily used in applied machine learning to estimate the 

skill of a machine learning model on unseen data. That is to use a limited sample in order to estimate 

how the model, which is under development, is expected to perform in general when used to make 

predictions on data not used during the training of the model. Cross-validation is a popular method 

because it results in a less biased or less optimistic estimate of the model skill than other methods, such 

as a simple training/testing data split (474).  

Applying a k-fold cross-validation, the training dataset is randomly divided into k equally sized subsets, 

as presented in (2.5), 

 

> = 	 >1 ∪ >. ∪ …∪ >W (2.5) 
 

The value of k was k=10, which is a default value and has been found through experimentation to 

generally result in a model skill estimate with low bias. The value of k is usually 5 or 10 and, as k gets 

larger, the difference in size between the training set and the resampling subsets gets smaller. As the 

difference decreases, the bias of the technique becomes smaller (474). A model is inferred by the 

learning algorithm from each subset of observations 	 X
XY,
5 = 1,… , G and its performance is determined 

on the held-out sample, li. The k=10 subsets are separately used to train 10 models and each model is 
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tested using a unique test set. The final performance is computed as the average performance over all 

these models (198).  

 

 

2.9.4 Measurement of classification performance 
 

The classification accuracy of each supervised machine learning algorithm was assessed by estimating 

seven statistical indices that are used in multi-class classification (199,200): average classification 

accuracy, average per-class classification error (error rate), average per-class agreement of the data 

class labels with those of a predictor (precision), sensitivity (Se), specificity (Sp), positive predictive 

value (PPV) and negative predictive value (NPV). Sensitivity is the true positive rate of predictions, 

meaning the ability to correctly classify an observation. Specificity is the true negative rate, which 

measures the proportion of actual negatives that are correctly identified as such – the percentage of 

baseline EGMs, which are correctly classified as not being influences by any cellular modulation. Given 

an individual class Ci, the assessment is defined by the true positive (tpi), true negative (tni), false 

positive (fpi) and false negative (fni) data corresponding to each class. The formula used for the 

calculation of each performance index, following classification training for l classes, is presented in 

Table 2.3. 

 

In addition, the classification training was evaluated using a receiver operating characteristic (ROC) 

curve that plots the true positive rate (sensitivity) versus the false positive rate for different values of a 

threshold, which was used in classification problems to achieve different compromises between 

sensitivity and specificity (201). ROC graphs are two-dimensional with the tp rate plotted on the y-axis 

and the fp rate plotted on the x-axis showing different trade-offs between tp and fp. It is a technique to 

visualize the classification performance and compare the efficiency of training methods. The quality of 

a ROC curve was assessed by the area under the curve (AUC). The AUC represents the probability of 

a classifier ranking randomly chosen positive instances higher than randomly selected negative 

instances. Its values are always between 0 and 1. However, random guessing produces a diagonal curve 

in the ROC and therefore, AUC can never be less than 0.5, which was also the case in the analysis 

presented in this thesis. 

 

 

 

 

 



 80 

Table 2.3. Equations for assessing the multi-class classification of a dataset into l classes. tpi – true positive 

data of class Ci, fpi – false positive, fni – false negative for class Ci, tni – true negative.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Statistical index Formula 

Classification accuracy ∑ Z[, + ZE,
Z[, +	:E, +	:[, +	ZE,

/
,01

\  

Error rate ∑ :[, + :E,
Z[, +	:E, +	:[, +	ZE,

/
,01

\  

Precision ∑ Z[,
Z[, + :[,

/
,01

\  

Recall ∑ Z[,
Z[, + :E,

/
,01

\  

Sensitivity (Se) Z[,
Z[, + :E,

 

Specificity (Sp) ZE,
ZE, + :[,

 

Positive Predictive Value (PPV) Z[,
Z[, + :[,

 

Negative Predictive Value (NPV) ZE,
ZE, + :E,
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Chapter 3 
 
Development of automated electrogram 
morphology analysis  
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3.1 Introduction 

A number of factors may lead to an unsatisfactory classifier during machine learning. If the 

dimensionality of the data is too high, this may lead to overfitting in which the algorithm learns the 

training data but does not generalise to unseen data. The choice of features may also insufficiently 

capture the important characteristics of the data necessary to distinguish classes. Furthermore, if the 

dataset is imbalanced, in that the number of examples from one class is significantly different to the 

number from another class, then the training process may be biased over the leading class (202). 

Therefore, it becomes clear that signal analysis and feature extraction are essential for the development 

of an efficient classifier in supervised machine learning. The remainder of this chapter describes the 

EGM features considered for analysis, the development of algorithms for EGM morphology analysis 

and feature extraction and the validation of accurate detection of some of the features.  

 

3.1.1 Digital signal processing in cardiac electrophysiology 

 

Digital signal processing (DSP) is the group of mathematical techniques used to manipulate signals that 

originate as sensory data from the real world. These signals are analysed after they have been converted 

into a digital form (203). This conversion process starts with analogue input signals, which are 

continuous in time and amplitude, and a transducer is used to convert the input into analogue electrical 

signal, i.e. voltage. A filtering process follows, in order to limit the frequency range of analogue signals 

prior to sampling, which also serves to attenuate any signal distortions. The output of the analogue filter 

is then sampled and converted into a digital signal, which is discrete in both time and amplitude. DSP 

is already used in a range of medical instruments, such as ECG analysers, X-rays and medical image 

systems, providing useful information for precise diagnoses (204). The digital signal is then processed 

according to filtering or other algorithms depending on the application (204). 

 

DSP plays an important role in the electrophysiology laboratory, because successful mapping and 

ablation is dependent on acquiring multiple, low-amplitude, intracardiac signals in the presence of 

numerous sources of signal noise and interference. The recordings also need to be displayed in a simple 

and clinically relevant fashion with minimal or no artefacts (205). The first problem that has to be 

resolved using DSP techniques is the interference of leakage current, due to the presence of various 

devices in the electrophysiology (EP) lab, with intracardiac signals. The result may be low signal-to-

noise ratio. In order to distinguish signal from noise, good electronic design is necessary, including the 

placement of pre-amplifiers and amplifiers close to the signal source, the patient, the electric isolation 
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of patient, the power sources being routed carefully away from the patient table and cable shielding, 

which helps to shunt capacitively coupled interference to the ground reference of the electronic system.  

 

Both visual review by experienced electrophysiologists and computation of EGM features are highly 

dependent on the signal quality. However, undesirable components such as high and low frequency 

noise, the ventricular far field, power line hum, and other parasitic frequencies overlay the EGM of 

interest (476). Filtering is useful to effectively enhance certain portions of the frequency spectrum while 

rejecting unwanted portions of the signal, thus increasing the signal to noise ratio (SNR). Filtering is 

performed at various stages of the electronic system and includes combinations of passive and active 

filters in conjuction with digital filters. Passive filtering is applied by resistors, capacitors and inductors, 

while active filtering is carried out by operational amplifiers. Digital filters use a combination of DSP 

hardware and software algorithms (205). Not only EGMs, but also ECGs are contaminated with 

baseline wander, high-frequency noise caused by electromyography and motion artefacts during 

collection and transmission. These components overlap the cardiac component in both spatiotemporal 

and frequency domains resulting to fairly difficult extraction of weak cardiac components from the 

corrupted ECGs. Indeed, ECG signal denoising is important for improving the quality of ECG signals 

(477). However, ECGs require different filtering process from intracardiac EGMs, due to differences 

in frequency content. Different cut-off frequencies are used depending on the components of the signal 

derived from various parts of the cardiac tissue, such as His bundle, pulmonary veins and Purkinje-fibre 

area. In electro-anatomic mapping systems, such as Carto 3, the filter selection is carried out both in the 

signal acquisition system and the mapping system. A range of 16-500Hz is suggested by the 

manufacturer of this system, but this can be adjusted in the Carto 3 system depending on a set of EGMs 

(205). The SNR of EGM and ECG recordings cannot be compared, as it heavily depends on the 

denoising method and the scholastic investigation of EGM noise quantification methods has been quite 

recent (476). Despite the current ability to remove far field noise occurring equally in both unipolar 

leads and overcoming the loss of spatial accuracy and morphological features, as well as the dependence 

on the direction of excitation propagation, SNR is one of the reasons why unipolar EGMs are rarely 

used. The lack of efficient noise removal methods, specifically adopted to unipolar EGMs, is a limiting 

factor. Even the removal of far field noise is demanding because the components do not simply cancel 

out, as opposed to bipolar EGMs where this process is simpler (476). 

 

3.1.2 Electrogram morphology analysis 

 

The analysis of digitally sampled intracardiac EGMs is commonly used for the automated 

characterisation and identification of activation patterns of cardiac arrhythmias. There are a number of 



 84 

algorithms based on time-domain and spectral analyses which have been implemented in clinical 

electro-anatomical mapping systems for automated signal processing. The results of these analyses are 

used to guide mapping and ablation therapy. 

 

The interval confidence level (ICL) is a time-domain method suggested by Nademanee et al. (106) for 

quantification of CFAEs recorded during atrial fibrillation. The algorithm used in this method counts 

the local maxima and local minima based on a fixed noise threshold. The blanking time between two 

peaks is pre-defined by a duration interval. If the time duration between two adjacent peaks is smaller 

or larger than the set blanking interval, then both peaks are considered invalid and excluded from the 

analysis (206). This method is embedded in the CARTO mapping system (Abbott, IL, USA). Another 

similar algorithm uses the mean of R-peak intervals as an alternative to the previous method. Peaks that 

are above the pre-defined fixed noise threshold are considered to be valid and the duration between two 

consecutive peaks has to be greater than the mean fractionation interval (206). This algorithm is 

implemented in the EnSite NavX mapping system (Abbott). However, while some studies have shown 

the efficacy of these algorithms for identifying critical sites of ablation (37,108,207), others have shown 

more moderate success rates (107,208). 

 

Frequency-domain methods have also been considered. The Fourier transform decomposes a signal into 

a sum of sinusoidal waves of different frequencies. From this, the dominant frequency (DF) can be 

computed, defined as the frequency component with greatest energy in the signal. Many studies have 

used the DF as a measure to identify fast-firing locations in the atria which are considered drivers for 

catheter ablation (118,209,210). Regularity index (RI) is another commonly used frequency-domain 

feature. The RI is calculated as the ratio of the power of the DF, and its surrounding 0.75Hz frequency 

band, to the power of the other harmonics in a bandpass frequency range. It is usually used as a 

reliability parameter for DF (118,209,210). However, the DF and RI algorithms have showed only 

modest efficacy in the clinic, similar to time-domain methods (211).  

 

Due to weaknesses of the methods previously described and insufficient characterisation of EGM 

morphology, it is not possible to efficiently correlate EGMs to any abnormalities of the electro-

architecture. Thus, there is a need for extended study of EGM morphology and the analysis of new 

features (153). To date, feature extraction from CFAEs is carried out mainly based on either time-

domain or non-linear features. However, a modern approach is the combination of these features, which 

is considered to achieve a better ablation performance (153,212,213).  There are published methods for 

automated CFAE analysis, based on time-domain, wavelet- and non-linear-based descriptors and the 

results are used for supervised classification of CFAEs based on different CFAE transition stages (213). 
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This chapter presents the algorithms used in this thesis for processing the EGM recordings obtained in 

vivo, in vitro and ex vivo, in order to extract features that characterise EGMs. Some of these algorithms 

had already been available through MATLAB, but the ones that I developed are stated. The feature 

vectors extracted in the end of the signal processing analysis are used afterwards for creating datasets. 

These are necessary for the application of supervised machine learning techniques and the development 

of predictive models, as described in Chapter 5. Chapter 3 also presents the validation of time-domain 

analysis algorithms that I developed. 

 
 
 

3.2 Methods  

 

3.2.1 Electrogram features: An overview 
 

Automated analysis of the EGM signal was performed using custom-written code (MATLAB R2016b). 

The code detected and quantified 37 time-domain, frequency-domain and time-frequency features, 

including features based on information theory and non-linear dynamics. These were features 

previously published to be extracted from clinical EGM and ECG recordings. When analysing the in 

vitro and ex vivo data, only the 36 central electrodes of the 8 x 8 matrix were analysed to exclude the 

stimulation electrodes along the outer lines of the matrix. These electrodes either recorded no 

discernible EGM signal or contained high levels of noise due to stimulation. Even though normal EGM 

signal might be obtained from the boundary electrodes on the opposite side of the array to the stimulus 

line, the boundary electrodes on the four sides of the MEA were always excluded in order to consistently 

analyse the data.  

 

3.2.2 Stimulus artefact removal 
 

During electrical stimulation of cardiac cells – under the in vitro, ex vivo or in vivo experimental 

conditions – the recorded EGM is contaminated by a stimulus artefact. The degree of contamination 

depends on the stimulation technique, the recording conditions and the experimental model (214). The 

magnitude of the stimulus artefact dominates the signal emitted from the cells and in the worst case 

exceeds the dynamic range of the EGM resulting either in a flat line recording or an EGM without clear 

onset.  
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Since the morphology of the stimulus artefact was variable between recordings, as shown in Figure 3.1, 

an adaptable method of removal was needed. The sample of largest magnitude within the 10sec 

recording – which is the total duration of each electrical recording - was found and all maxima greater 

than 60% of this value were identified. This threshold was selected, in order to confirm that all R-peaks 

and stimulus artefacts are included in analysis. By examining the first two of these peaks, four cases 

were considered. If the first peak was lower and >0.5ms apart from the second peak, then the stimulus 

artefact was not filtered or removed (Figure 3.1C-D). Thus, the EGM was kept unmodified. However, 

in case the first peak was <0.5ms apart from the second peak – the voltage was not considered in that 

case – then that was part of the same EGM, any stimulus artefact did not reach the threshold and was 

not detected, and the locations of both peaks were used for computing the EGM fractionation at a later 

stage of the feature extraction. The 0.5ms was used, because it was found that this was the longest time 

interval between two detected peaks in a double-peaked EGM. 

 

When the first peak was higher and >0.5ms apart from the second peak, which was the most frequent 

case, that meant that there was a stimulus artefact obstructing the EGM and the mean baseline voltage, 

Vb, was computed as the average voltage of the first 40ms (1,000 samples). The stimulus artefact region, 

RSA, was then used, which was empirically determined as 100-200 samples on either side of the stimulus 

artefact peak depending on the stimulus artefact amplitude. The artefact region RSA was then replaced 

by the mean baseline voltage, Vb, as illustrated in Figure 3.1B. In case the first peak was higher than 

the second peak and they were separated by less than 0.5ms, these were considered part of a fractionated 

EGM and no further action was taken by the algorithm. The processed signal was then used as input for 

the following steps of the feature extraction process. 

 

 

3.2.3 Time-domain feature extraction 
 

Features based on time-domain analysis of EGM morphology were derived from the morphology of the 

QRS complex and T wave. The QRS complex is defined here as the interval between the EGM onset 

and the EGM offset. An EGM was detected as a single QRS-T part of the signal, as opposed to the 

whole recording. The algorithms presented in this chapter were developed by me, unless otherwise 

stated.  R-peak was detected as the highest voltage point of each EGM, which was also greater than 

60% of the sample of largest magnitude – as presented in section 3.2.2. S-peak was defined as the point 

of lowest voltage within 4ms (100 samples) following each R-peak. The EGM amplitude was defined 

as the voltage difference between R- and S- peaks. The amplitude was measured for each EGM 
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throughout a 10sec recording, as pacing resulted in multiple EGMs per recording. Therefore, the 

average EGM amplitude was also calculated. However, the amplitude of the first EGM also formed a 

 

 

Figure 3.1: Representative stimulus artefacts in EGM recordings obtained from NRVM monolayers. (A) 
Example of a stimulus artefact with a peak higher than the R-peak of the subsequent EGM. This was the 
most common case among recordings obtained both from cell cultures and tissue slices. (B) The EGM 
recording presented in (A) following stimulus artefact removal and its replacement with the mean baseline 
voltage. (C) Example of a stimulus artefact with a peak of lower magnitude than the R-peak of the EGM. 
(D) Example of a stimulus artefact with no peak. 

 

feature. Since voltage alternans is known to be related to vulnerability to arrhythmias (215,216), the 

variance of EGM amplitude was also measured. RS interval was computed as the time duration between 

R- and S-peaks. Fractionation index was defined as the number of positive deflections above 60% of 

the sample of largest magnitude of each EGM within a 10sec recording. Some of these features were 

detected on the EGMs presented in Fig. 3.4. 
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The RR interval was calculated as the time difference between adjacent R-peaks. If X is a vector of 

length m, where X(1), X(2) etc. are the R-peaks, then A is a vector of length (m-1). The elements of A 

are the differences between adjacent elements of X: 

 

] = [H(2) − H(1)H(3) − H(2)…H(\) − H(\ − 1)] 

 

The RR interval was defined as the average value of the elements of A: 

bb	5EZc<d=> = 	
∑(])
(\ − 1)

 

 

The EGM onset was defined as the first recorded sample at 10% above Vb and before the first R-peak, 

in order to eliminate noise observed close to the baseline signal. The EGM offset was detected as the 

first sample following the S-peak and passing above the 10% threshold below baseline signal. The EGM 

offset detection occurred within a time window that included the S-peak location and 8ms (200 samples) 

following that. EGM duration was measured as the time difference between the EGM onset and offset. 

QS interval was the time difference between the EGM onset and the S-peak.  

 

If y is the signal recording over the first second, the local minimum of the first derivative y¢ on the 

interval [R-peak location, S-peak location] was measured, in order to extract the time of the (-dV/dt)max 

between R- and S-peaks. Based on the location of (-dV/dt)max, the width of R- and S-peaks were 

calculated as the time duration between the EGM onset and the (-dV/dt)max and the time duration 

between the (-dV/dt)max  and the EGM offset respectively.  

 

There are features extracted during digital signal analysis which may depend on one another. The 

construction of new features from the basic feature set is a technique best known as feature construction 

(217). The same strategy was followed in this thesis. Based on the amplitude and RS interval, the 

average gradient of the signal between R- and S-peaks was calculated as: average gradient = first EGM 

amplitude / RS interval. In a similar way to this, the gradient between the S-peak and the EGM offset 

and the gradient between the EGM onset and the R-peak were calculated. The amplitude of each peak 

was also measured, as the voltage change between EGM onset and R-peak or the voltage change 

between S-peak and EGM offset. Based on these measurements the ratio (R-peak amplitude)/(S-peak 

amplitude) was calculated.  The previously described features were also used as the basis for the 

calculation of: 

(3.1) 

(3.2) 
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 (R-peak width) / (S-peak width) and (R-peak width) / (EGM duration)  (3.3) 

 

The manual detection of T-waves was based on the detection of the positive deflection following the 

QRS complex in the EGM signal. The automated detection of T-waves was based in the idea presented 

by M. Nair (473) which involved a number of filtering steps, in order to make T-waves more prominent 

on the EGM signal. However, this was adopted to the data obtained during this research and a quite 

different filtering process was followed. Firstly, a 2nd order Chebyshev type I filter (218) designed for 

the bandwidth of 0.5-10 Hz was implemented. In addition, a 19th order Savitzky-Golay filter with a 

frame length of 20 was applied (219). These conditions were optimised in order to filter the signal 

enough without causing signal distortions, i.e. amplitude reduction. The above filters acted to eliminate 

high frequencies from the signal. The QRS complex was then replaced by a mean baseline signal. 

Removing the QRS complex made the T-wave the dominant feature in the processed signal. Finally, 

the peak of T-waves could be detected using the approaches described earlier for the R-peak detection. 

The location of a T-wave was used for measuring three time-domain features. QT interval was 

calculated as the time duration between the EGM onset and the location of the T-wave peak. Field 

Potential Duration (FPD), which is equivalent to the APD at 90% of repolarisation (40), was equal to 

the time duration between the location of S-peak and the T-wave peak. The T-wave amplitude was 

measured as the voltage change between the baseline signal and the T-wave peak. 

 

 

Table 3.1: List of time-domain features measured in this thesis.  

Time-domain features 

1. amplitude of first EGM 
7. gradient between EGM 
onset – R-peak 

13. R-peak amplitude/S-
peak amplitude 

2. average EGM amplitude 
8. gradient between S-peak – 
EGM offset 14. EGM duration 

3. variance of EGM amplitude 9. RR interval 15. fractionation index 

4. average RS interval 10. R-/S-peak width 16. QT interval 

5. QS interval 11. R-width/S-width ratio 17. Field Potential Duration 

6. signal gradient between R-
/S-peaks 

12. R-width/EGM duration 
ratio 18. T-wave amplitude 
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3.2.4 Frequency-domain EGM features 
 

Dominant frequency (DF) is the main frequency-domain feature and it is based on the application of 

FFT (220). DF is defined as the frequency with the maximum power in the Fourier spectrum of a signal.  

 

The DF calculation was based on the method presented by Telgarsky (115). Based on this, the signal 

was first pre-processed. The Chebyshev type I bandpass filter, followed by rectification, was applied 

(Figure 3.2B-C). The resulting filtered waveform was filtered once more using a 20Hz low-pass 2nd 

order Butterworth filter (Figure 3.2D). These pre-processing steps, which were optimised for the EGMs 

collected at 25 kHz sampling frequency, enhanced the periodicity of the recordings obtained at 1-5Hz 

pacing for the purposes of this thesis. Moreover, this algorithm is proved to diminish the effects of 

changing EGM morphology or amplitude due to electro-architectural factors (118). The signal was then 

de-trended by subtracting the mean signal from the data. The FFT was then applied to obtain the power 

spectrum of the signal. DF was computed as the frequency of maximum energy in the power spectrum.  

 

Power spectral density (PSD) is a type of frequency-domain analysis in which a signal is subjected to a 

probabilistic spectrum of harmonic loading to obtain probabilistic distributions of frequency 

components for dynamic response (221). PSD is deterministic and independent of time. The most 

common way of generating a power spectrum, in order to compute PSD, is using the discrete Fourier 

transform (221). If we take a sample of the function f(t) at equal intervals, the FFT can be applied to 

compute its discrete Fourier transform according to (3.4), 

:W = 	* :ec.L,eW/g
gh1

e0i
 

where N is the total size of samples ranging over integer values.  

 

The periodogram, which is a graphical data analysis technique for examining frequency-domain 

models, was used as an estimate of the spectral density of a signal to identify the dominant periods 

(frequencies) of a time series (222). The periodogram is the Fourier transform of the biased estimate of 

the autocorrelation sequence.  For a signal xn sampled at f samples per unit time, the periodogram is 

defined as shown by Eq. 3.5:  
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(3.5) 

k = 0, …, N-1 (3.4) 
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where Δt is the sampling interval, N is the number of observations in the signal, Δ is (N+1)/2 for N odd 

and (N+2)/2 for N even. For a one-sided periodogram, the values at all frequencies except 0 and the 

Nyquist, 1/2Δt, are multiplied by 2 so that the total power is conserved. 

The periodogram then consists of a vertical axis which is the spectrum estimate at the given frequency, 

and a horizontal axis representing the Fourier frequencies (1/N, 2/N, …., (N/2)/N) where N is the 

number of observations in the signal. 

 

Data windowing is important when calculating the periodogram estimate. The window function for the 

periodogram estimate is: 

 
n(C) = 	

1
B. o

sin	(sC)

sin	(sCB )
t

.

 
(3.6) 

 

This window function is a function of s, the frequency offset in bins. W(s) has oscillatory lobes, but 

apart from these, it falls off only about as W(s) » (πs)-2. This is not a rapid fall-off and it results in 

significant leakage from one frequency to another in the periodogram estimate. The solution to the 

problem of leakage is data windowing. Therefore, according to P.D. Welch (223), when Welch’s data 

windowing method is implemented, Eq. 3.6 is modified. For each segment of N sampled points for 

periodogram spectral estimation, an infinite run of sampled data is multiplied by a window function in 

time, one that is zero except during the total sampling time ΝΔ and is unity during that time. That means 

that the data are windowed by a square window function. According to the convolution theorem, the 

Fourier transform of the product of the data with this square window function is equal to the convolution 

of the data’s Fourier transform with the window’s Fourier transform. Thus, Eq. 3.6 is modified as 

 

 
n(C) = 	

1
B. k* c.L,uW/g

gh1

W0i

k

.

 
(3.7) 

 

The square window function turns on and off rapidly due to large s values. In order to solve this, the 

input data cj, j = 0,…,N=1 are multiplied by a window function wj, which changes more gradually from 

zero to a maximum and then back to zero as j ranges from 0 to N.  
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Figure 3.2: Representative resulting signals and corresponding power spectra after each step of analysis 
during the filtering protocol, in order to compute the dominant frequency. (A) The signal and power spectrum 
before the application of filters. (B) The signal and power spectrum after bandpass filtering at 40-250Hz. 
(C) Signal after rectification. (D) The signal and power spectrum after the application of a low-pass 2nd order 
Butterworth filter with a 20Hz cut-off frequency. The power spectrum shows that the DF of the signal is 
1.76. DF = dominant frequency. 
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For the PSD analysis performed in this thesis, the Hamming window was used, 

3e = 	
1
2
v1 − w;C x

2sy
B z{ 

The Hamming window does not go exactly to zero at the ends. 

All the above equations for the calculation of the periodogram during PSD were implemented in 

MATLAB functions that were used for this type of analysis. The periodogram was subsequently used 

to extract features, which include the mean and median frequency of periodogram estimates, the 

maximum estimate and the standard deviation of estimates. Moreover, the skewness and kurtosis of 

periodogram estimates were measured. The skewness, which is a measure of the degree of asymmetry 

of a given distribution around the mean (224), was defined as 

C = 	
1
E∑ (#, −	 #̅)}l
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Kurtosis, which characterizes the relative distortion of a signal compared to the normal distribution 

(224), was defined as  

G = 	
1
E ∑ (#, −	 #̅)Ål

,01

Ç1E∑ (#, −	 #̅).l
,01 É

. 

 

Both in Eq.3.9 and Eq.3.10, x is the PSD estimates, n the number of estimates and i is the value for bias 

correction. 

 

Table 3.2: List of frequency-domain features measured by using the algorithms presented in section 3.2.4. 

 

Frequency-domain features 

1. Dominant frequency 5. Skewness of PSD estimates 

2. Mean of PSD estimates 6. Kurtosis of PSD estimates 

3. Median of PSD estimates 7. Standard deviation of PSD estimates 

4. Maximum PSD estimate  

 

 

(3.8) 

(3.9) 

(3.10) 
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3.2.5 Time-frequency EGM features 
 

Time-frequency analysis offers simultaneous interpretation of the signal both in time and frequency 

allowing local, transient or intermittent components to be elucidated (225). The Continuous Wavelet 

Transform (CWT) of the EGM signal, f(t), is useful when features in the signal are localised in time 

allowing for sophisticated filtering to obtain only parts of signal that are of interest. CWT was applied 

in the research presented in this thesis and it was based on Morlet wavelet (226), which is given by: 

 
:(Z) = 	

1
√sÖ

c.,LIÜách
àâ
ä  

(3.14) 

where β is a bandwidth parameter and fc is the wavelet centre frequency given by the positive solution 

to,  

:ã = å
1

1 −	chçIÜ  
  (3.15) 

Centre frequency can be solved by a fixed-point iteration starting at fc = σ. The parameter σ allows trade 

between time and frequency resolutions. An example of the result of EGM  

 

The CWT of a signal f(t), for a scale parameter α>0 and parameter bÎÂ, is defined by Eq. 3.16, (226): 

é(=, 7) = 	è :(Z)
1
ê
ë ∗ x
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While ψ(t) is a continuous function in both time and frequency domains and it is called the mother 

wavelet, the ψ*(t), which is present in (3.16), represents the complex conjugation. The cwt coefficients 

are obtained by varying the values of scale parameter a and position parameter b. 

 

Wavelet modulus maxima are used for location characterising singularities in wavelet space (226). 

Morlet wavelet could provide us with the ability to extract continuous modulus maxima across scales 

in wavelet space. Modulus maxima are defined as any point b0 in wavelet space C(a,b) (Eq. 3.16) with 

local extremum b=b0. When b varies, this implies that 

 

ïñ(êi, 7ó)ï7 = 0 

 

In addition, the conversion from wavelet scale to wavelet frequency was applied to Morlet wavelet and 

this was defined by the following equation: 

(3.17) 

(3.16) 
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(3.18) 

 

With a being the wavelet scale, fc is the centre frequency of the wavelet in Hz as defined by Eq. 3.15, f 

is the pseudo-frequency corresponding to the scale a in Hz and Δt is the sampling period, Δt = 1/fs (fs, 

sampling frequency). 

 

An energy density analysis over frequency was also carried out. The energy of signal at each scale was 

calculated as,  

ôö =* |(é=, 7)|.
ö01

 

and the energy was then expressed as a percentage, 

%ô =	
ôö
Röúö

∗ 100 

The variance of signal energy across all scales was also measured by, 

å. = 	
R(úö − ù).

û
 

where Ea on each scale a is defined by Eq. 3.19, μ is the mean energy across all scales and N is the 

number of scales a in the distribution. 

 

Scale value, a, determines the degree to which the wavelet is compressed or stretched. The high scale 

CWT coefficients represent the coarse-scale features in the signal. On the contrary, the low scale CWT 

coefficients represent the fine-scale features in the signal. Therefore, the modulus maximum 

corresponds to the minimum scale a. The energy correlating to that scale was used for Eq. 3.20. Scales 

corresponding to the minimum and maximum energy of the signal, as these are measured by Eq. 3.19, 

were also extracted. Moreover, these scales were used for the measurement of subsequent pseudo-

frequencies, f, using Eq. 3.18. An example of the visual outcome applying CWT on EGMs is presented 

in Fig. 3.3. This presents an EGM obtained from a NRVM monolayer which was used for the extraction 

of a 2D scalogram which is the visual representation of a wavelet transform. The scalogram consists of 

the absolute value of the CWT coefficients of a signal enabling multi-resolution analysis. Since CWT 

allows the spatiotemporal analysis of a signal, Fig. 3.3 shows the temporal colocalization of the EGM 

and the subsequent magnitude of CWT coefficients. 

 

(3.19) 

(3.20) 

(3.21) 
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Table 3.3: List of time-frequency features computed in this thesis by using the algorithms presented in 
section 3.2.5. 

 

Time-frequency features 

1. Maximum modulus 4. Pseudo-frequency corresponding to minimum energy 

2. Variance of signal energy 5. Pseudo-frequency corresponding to maximum energy 

3. Scale corresponding to 
minimum/maximum energy 

 
6. Percent of energy 

 

 

 

3.2.6 Features based on information theory 
 

Entropy is a statistical tool that quantifies a time series in terms of the information size. In other words, 

entropy can analyse the amount of randomness in the signal (227). The Shannon entropy applied in this 

thesis was based on the method suggested by C.E. Shannon (126). A discrete probability space of a 

dynamic system, which was the EGM signal in this case, was used for the measurement of Shannon 

entropy and this was described as A = (A | P). The total number of elements in A is N and the 

characteristic elements was defined as A={a1,…,ak}. The relevant probability set was P={p1,…,pk} with 

1<k<N. Each element ai had probability pi=Ni/N (0<pi<1, ), where Ni was the total number of elements 

ai in A. Therefore, the entropy of space A was defined by Eq. 3.22: 

 

 

 

(3.22) 

 

Shannon entropy (ShanEn) though was the average information content of A. It measured the degree of 

uncertainty that existed in the dynamic system as: 

 

 

(3.23) 

 

Logarithmic energy (LogEn) entropy was also used during EGM morphology analysis. LogEn of A was 

defined by the following equation (228): 
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(3.24) 

 

The dynamic system A in this study consisted of 250,000 events recorded during the 10sec stimulation.  

 

Autocorrelation function (ACF) has been used for studying the AF and VF signal for many decades 

(229,230). The formula for computing the normalised ACF in this thesis was given as 

 

 

 

 

(3.25) 

with x being the signal to be analysed and N the number of signal segments. The direct calculation of 

the ACF required approximately N-k multiplications at lag k, with 0 < k < x, in addition to 

approximately N multiplications at the first lag. The above equation (Eq. 3.25) corresponded to the 

calculation of correlation coefficient between a signal and a k-lagged version of itself (231). The 

standard deviation of the acf(k) was then extracted, which was an EGM feature used in further analyses.  

 

Mutual information was another feature based on information theory that was applied for EGM feature 

extraction. Mutual information is defined as the measurement of the general dependence of two 

variables and it provides a better criterion for the choice of time delay, comparing to the ACF that only 

measures linear dependence and the time delay is chosen arbitrarily (232).  It is suggested that for 

chaotic oscillations, i.e. like the EGM signal collected during fibrillation events, the mutual information 

gives a more reliable value of time delay (233). Mutual information was computed between 1sec sub-

segments of the EGM signal using the appropriate MATLAB function and based on the method 

developed by Fraser and Swinney (232). In the end, the mean mutual information was measured and 

used for characterising an EGM. 
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Table 3.4: List of features which are based on information theory and which are computed using the 
algorithms presented in section 3.2.6. 

 

Features based on information theory  

1. Standard deviation of 
autocorrelation function 

3. Shannon Entropy 

2. Mutual information 4. Log Energy Entropy 

 

 

 

3.2.7 Computational time for morphology analysis 
 

The computational time was variable and dependent on signal complexity. Based on the analysis of 150 

randomly selected electrodes, the computational time for feature extraction from a single electrode was 

18.84 ± 5.2sec for cell cultures and 28.18 ± 0.9sec for tissue slices. However, the EGM analysis was 

carried out automatically on the whole electrode matrix analysing 36 electrodes in total, as previously 

explained, and therefore the computational time in that case was 10.38 ± 0.5min for cell monolayers 

and 17.15 ± 0.5min for tissue slices. The duration of feature extraction in clinical EGMs was 17.4 ± 

3.5sec for individual traces (mean ± S.D. time from 100 EGMs). The duration of analysis was highly 

variable among datasets obtained from the patients, due to different amounts of available traces 

correlating to <0 S.D or >2 S.D. of blood pool mean regions. 
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Figure 3.3: Example of an EGM obtained from a NRVM monolayer (top) with the subsequent 
decomposition of the CWT time series using the Morlet wavelet. The processed CWT time series is 
represented as a scalogram (bottom), which shows the percentage of energy for each wavelet coefficient over 
time. The colour codes the density of the signal component in the corresponding frequency with brighter 
colours (towards higher magnitude) representing a higher density. 

 

 

 

3.3 Results  

3.3.1 Quantification of electrogram features 
 

The elimination of the stimulus artefact did not distort the overall signal and it did not affect EGM 

morphology, as there was no interaction of the stimulus artefact removal algorithm with the signal 

within the EGM onset/EGM offset interval. As presented in Figure 3.4, the morphology of the signal 

collected in each case showed a different level of complexity. However, all main morphological 

characteristics, which are the basis for the successful analysis of all time-domain features, could be 

detected. These characteristics are the R- and S-peaks, the EGM onset/offset and the location of (-

dV/dt)max. 



 100 

 

Figure 3.4: Examples of unipolar EGM recordings obtained from different settings. (A) A 10-sec unipolar 
extracellular signal collected from NRVM monolayer and a single EGM, where the main time-domain 
features are detected. (B) EGM recording obtained from a tissue slice derived from heart-failure transplant 
and a single EGM from the same recording, which has a more complex morphology than the EGM presented 
in (A). (C) EGM recording obtained from the posterior LA of a persistent AF patient and an EGM from the 
same recording with the basic time-domain features detected on it.   
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3.3.2 Verification of automated feature analysis  
 

A group of automatically calculated time-domain features were compared against manual calculation 

of the same features that I carried out, in order to assess their accuracy. These features included the 

amplitude of the first EGM, EGM duration, fractionation index, the width of R- and S-peaks. This is an 

important step, since the majority of the algorithms for measuring time-domain features were not 

implemented into MATLAB functions and I had to develop them. Also, this analysis would show 

whether morphological characteristics, such as the EGM onset/offset and the local maxima/minima, 

were correctly detected. For this analysis the number of EGMs obtained before and after each 

modulation was the same (n=50 EGMs) and this size of data was maintained throughout analysis for 

all modulations. The same EGMs were used for manual analysis, as well as automated analysis, in order 

to be consistent. 

 

 

Figure 3.5: Time-domain features, including EGM amplitude, EGM duration, fractionation index, R-/S-
peak width, were measured both manually and using the automated feature extraction method. Features 
changed only due to the administration of pharmacological agents, i.e. 40μΜ CBX or 20μM lidocaine, or 
due to the increased amounts of fibroblasts (FB) in the cell culture, but the analysis method gave the same 
results in each case. The number of EGMs that were analysed before and after each modulation were equal 
and the same throughout analysis (n = 50 EGMs in each group). All bar charts represent mean ± S.D.; *p £ 
0.5, **p £ 0.01, ****p £ 0.0001. 
 

As it can be seen on Figure 3.5, each functional and structural modifier was assessed using a specific 

EGM feature, despite the fact that each intervention may have changed multiple other features. The 

two-way ANOVA test showed that the EGM amplitude was the same between the manual and the 

automated analysis both before and after the administration of 40μM CBX at NRVM monolayers. The 
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same occurred for EGM duration, R-peak width and S-peak width before and after the administration 

of 20μM lidocaine in +20%FB cell cultures and for fractionation index measured in MO and +20%FB 

cell cultures. The size of each feature as measured either with the manual analysis or the automated 

analysis before and after the modification is showed at Table 3.5. These results show that there was no 

change between the manual and automated detection, meaning that the EGM morphological 

characteristics were correctly detected, and the algorithms functioned as expected.  

 

Table 3.5: Manual and automated measurement of representative time-domain features. The values of 
each feature are presented as mean ± S.D (n=50 for both control/modification data). The percentage of 
difference between each pair of measurements is also presented. 

 

 Control Modification 
 Manual 

analysis 

Automated 

analysis % difference 

Manual 

analysis 

Automated 

analysis % difference 

EGM amplitude (μV) 354.7 ± 96 326.9 ± 106 -10.6 – -16.2 81 ± 39.8 94.2 ± 53.4 -0.9 – +12.2 

EGM duration (ms) 3.63 ± 0.8 3.75 ± 0.8 2.7 – 4.2 4.2 ± 0.7 4.47 ± 0.6 3.5 – 10.6 

Fractionation index 1.13 ± 0.3 1.06 ± 0.3 -4.9 – -7 1.42 ± 0.8 1.19 ± 0.4 -8.4 – +17.4 

R-peak width (ms) 2.38 ± 0.2 2.45 ± 0.4 -6.4 – +10.5 3.02 ± 1 3.3 ± 1.2 4 – 11.9 

S-peak width (ms) 1.32 ± 0.4 1.38 ± 0.4 3.5 – 6.5 1.54 ± 1 1.67 ± 1 5 – 14 

 

 

3.3.3 The T-wave detection 
 

As described in section 3.2.3, the approach for the detection of T-wave peak involved a series of filters, 

in order to make the T-wave more prominent and its detection easier. Figure 3.6 presents examples of 

the application of that method on EGMs obtained from NRVM cultures and tissue slices from failing 

heart. The automated T-wave detection was validated in a group of 390 EGMs obtained from cell 

monolayers and 145 EGMs from tissue slices. The validation showed that T-waves could be detected 

effectively using the automated method. In specific, T-waves were correctly identified in 231 EGMs 

(59.2%) using the morphology analysis algorithm, they were erroneously detected in 125 EGMs 

(32.1%) and there was no T-wave detection in 34 cases (8.7%). In tissue slices, the T-wave was 

precisely identified 87 times (60%), while it was incorrectly identified in 58 EGMs (40%). The manual 

identification of T-waves was proved to be more reliable and this was confirmed by quantifying the 

APD90 using concurrent optical imaging data, as presented in more detail in Chapter 4. 
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Figure 3.6: The process to identify a T-wave in EGM signal obtained from NRVM monolayers (A, C) and 
tissue slices from failing heart (B, D). (A) EGM recording where the T-wave is obvious, even though 
shallow, in the original signal. The T-wave was efficiently detected in the filtering process. (B) EGM signal 
from a tissue slice with an originally prominent T-wave, which was also successfully identified in the end. 
(C) An EGM with flattened T-wave. The filtering method did not identify the correct T-wave and the 
detected location is only part of the baseline signal. (D) An EGM obtained from a tissue slice where the 
wrong wavelet was identified as a T-wave. The proper T-wave follows the detected one.     

  

One reason for the low accuracy of the algorithm is the absence of T-waves or the presence of shallow 

T-waves, as is the case in Figure 3.6C. These are issues prohibiting the manual detection of T-waves 

too.  This problem mostly occurred in cell monolayer data though. Another reason for the less effective 

automated detection of T-waves can be the abnormal ST-segment morphology, especially in EGMs 

collected from tissue slices. There were a number of observations similar to the one presented in Figure 

3.6D, where the ST-segment formation could be interpreted as an elevated J wave-like formation or an 

inverted T wave. This abnormality led to the identification of the wrong peak as the one belonging to a 



 104 

T-wave. T-waves could not be detected in any of the clinical recordings, either manually or by the 

automated method, due to the noise of the signal.  

 

 

3.4 Discussion 

 

This chapter presents the algorithms that were used for automatically processing unipolar extracellular 

EGMs collected from cell monolayers, tissue slices and patients, and the algorithms used to analyse 

EGM morphology and compute signal features. Some of the time-domain analysis algorithms were also 

validated for their accuracy against manual measurements. The automated analysis was preferred 

because it is faster than the manual analysis and in order to reduce the errors due to human interaction 

and increase the consistency of results. Also, the automated analysis enables the extraction of complex 

non-morphological features. 

 

Supervised machine learning needs a dataset of labelled instances, which are characterised by an array 

of features. One strategy is that the feature selection is undertaken by an electrophysiologist, because 

he/she is supposed to have a clear understanding about those which are most informative  (10). 

However, our experience of using unipolar extracellular EGMs for identifying specific cellular and 

structural abnormalities is currently poor and the contact intracardiac EGM morphology has not been 

exhaustively investigated. Thus, a range of 37 features was chosen, including those with known clinical 

relevance, such as the fractionation and peak-to-peak voltage (37), the dominant frequency (118) and 

the Shannon entropy (127). Other features were chosen based on current trends in the analysis of EGMs 

for machine learning  (153) and the rich experience of training algorithms to classify the 

electrocardiogram (ECG), which is collected from the body surface. The features that were presented 

in this chapter were derived from time-domain, frequency-domain and time-frequency analysis, in 

addition to features based on information theory and non-linear dynamics. This combination of 

characteristics was used for the analysis of unipolar extracellular EGMs obtained from NRVM 

monolayers, tissue slices derived from healthy and failing hearts and persistent AF patients.  

 

Early attempts to use the ECG morphology for improving the diagnosis of cardiac arrhythmias occurred 

in the late 1990s (234). A number of morphological ECG features were used for the development of a 

dataset which was later used for supervised machine learning (234). Some of those features were also 

used here, even though they were adapted for EGM morphology, such as the CWT-based features from 

the time-frequency analysis. There is an increasing number of studies over the last decade which attempt 
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to develop ECG morphology-based predictive models focused on the improvement of AF treatment 

(213,235), as these are more accessible and non-invasive electrical recordings.  Since there is a necessity 

for more accurate discrimination of AF types, research groups used not only time-domain ECG features, 

but also characteristics based on atrial activation times, frequency-domain analysis, signal quantization 

and the morphological similarity of activation waves, in order to describe the state of organisation of 

CFAE (213,235), which are intact recordings collected from the cardiac surface. The approach of 

combining features obtained from different types of signal processing has been recently adopted by 

researchers who are interested in intracardiac EGMs, in order to optimise the catheter ablation strategies 

for more efficient treatment of any AF condition (157,212,213). The features used in those EGM studies 

were mostly based on previous ECG studies and they only extended to the use of innovative time-

frequency and non-linear dynamics features (153,157). A similar approach is also followed in this 

thesis. 

 

The majority of algorithms for time-frequency analysis and information theory features were directly 

available in the MATLAB environment, which was used for the development of the signal processing 

script and the automated feature extraction. Other features, such as dominant frequency and T-wave 

detection, were based on previously published algorithms. However, the algorithms for the 

identification of QRS complex components were original. For this reason, they were validated, and they 

were proved to be accurate since there was no difference in measuring some of the time-domain analysis 

manually or by applying the automated method. The detection of the QRS complex is challenging, due 

to its time-varying morphology which may be caused by physiological variation factors. Previously 

published methods for the automated detection of the QRS complex were based on ECG recordings. In 

most cases, they included a pre-processing stage consisting of both linear and non-linear filtering of the 

ECG for the exact determination of the temporal location of the assumed QRS candidate (236). This 

was followed by one of different approaches for signal analysis, including methods based on signal 

derivatives and digital filters and wavelet-based QRS detection methods (237). The former approaches 

attenuate signal components, such as P-wave, T-wave, baseline drift and signal noise and the application 

of filters in order to make the QRS complex more prominent. Wavelet-based methods convert the signal 

into a time-scale representation using wavelet transform, which uses a set of functions that allows a 

variable time and frequency resolution for different frequency bands. The peak detection can then be 

carried out using the wavelet transform output and the wavelet coefficients. Apart from these 

approaches, which have been applied for detecting T-wave parameters, others are based on Hilbert 

Transform, mathematical morphology and matched filters (237). The method for QRS complex that 

was presented in this chapter was preferred compared to previous methods, because it allowed minimal 

distortions on the original signal, it could be easily applied both for in vitro and ex vivo data that have 
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different degree of noise and the results could be easily validated for accuracy and precision of feature 

detection. 

 

 

3.4.1 Limitations 
 

In this chapter, I aimed to apply a method for the detection of T-wave peak and the subsequent 

computation of features related to it, which have more clinical importance and are currently used in the 

clinic for the identification of arrhythmic conditions, such as QT interval, or features with an 

experimental importance for characterising EGM morphology changes, such as FPD and T-wave 

amplitude. However, due to the absence of a detectable T-wave in recordings obtained from cell 

monolayers and the variable ST-segment morphology in EGMs obtained from tissue slices, the 

algorithm was susceptible to errors. Moreover, the noise that occurred in the clinical EGM recordings 

could not be eliminated efficiently, due to the low frequency of the noise and its high voltage. Thus, 

any low-pass or bandpass filters applied to optimise the EGM signal affected significantly the 

morphology of the EGMs. Another problem due to the noise was the inability to detect T-waves both 

manually and using the automated analysis. Time-frequency analysis may be also affected by this fact. 

In conclusion, the T-wave detection presented in this chapter could be still used for the detection of T-

wave features, extending that to mainstream and clinically relevant features, but as already presented 

in section 3.3.3 and discussed this heavily depends on signal quality. Therefore, and in order to be 

consistent throughout data analysis, any T-wave related features presented in next chapters, mainly 

FPD, were manually analysed, as it seems that this method could give safer results. 

 

 

3.5 Conclusions 

Our knowledge about the relationship of the cardiac electro-architecture leading to cardiac arrhythmias 

and the subsequent unipolar EGM morphology is still limited, and there is no universal set of features 

to be used for the characterisation of an EGM. The same occurs regarding the mathematical techniques 

for feature extraction, especially for recordings obtained from cell monolayers and tissue slices, since 

a standard method does not exist. Combining the signal processing techniques presented in this thesis, 

this gap in knowledge and signal processing experience is attempted to be reduced. Furthermore, the 

application of these algorithms on unipolar extracellular EGMs obtained using MEAs has shown that a 

number of features can be reliably detected, even though there is still space for improvement regarding 

some of the features. 
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Chapter 4 
 
Characterisation of EGM morphology modifications 
due to ion current modulations   
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4.1 Introduction 

 

As already mentioned in the introduction chapter of this thesis, it remains unclear how the cellular and 

tissue level factors specifically influence EGM morphology. Ion channel abnormalities, tortuous 

conduction paths through fibrotic tissue, conduction slowing, rotational activity, wavefront collision 

and far-field signals are some of the mechanisms that lead to complex EGMs (242). There has been the 

assumption for the last decade that complex fractionated EGMs represent areas of disease (106). Based 

on this, there was a trend ablating these sites as a way to treat atrial fibrillation. The improvement of 

catheter ablation treatment is restrained by such simplistic assumptions and no recent increase in 

success rates has been achieved (174,243). A greater understanding of the cellular and tissue-level 

abnormalities implicated in the cardiac cell function and leading to specific modifications of EGM 

morphology could be beneficial for ablating strategies targeting the underlying aetiology.  This chapter 

aims to examine this relationship and it is mostly focused on the effects of ion channel blockade on 

EGMs obtained from cell cultures and how these modulations are evaluated by corresponding 

modifications in AP morphology. It is believed that once the forward relationship of abnormalities 

leading to specific EGM changes is established, then the reverse pathway of predicting these 

abnormalities can be clear as there will be a biological meaning alongside the machine learning 

predictions. 

 

 

4.1.1 Simultaneous electrogram and action potential recordings 

 

Cardiac mapping for examination of the spatiotemporal distribution of excitation is carried out either 

by extracellular potentials (Ve) or optical transmembrane potentials (optical Vm) (244). An accepted 

approach to determine excitation time at a given location is to identify the time of the maximum 

downward or upward slope of the deflection that occurs in the Ve or optical Vm (244). Different methods 

have been developed for the characterisation of EGM correlates of AP changes (40,244,245). Some of 

these methods combine extracellular recordings of electrical activity using MEAs with simultaneous 

patch clamp recordings in the vicinity of individual microelectrodes for AP recordings (246,247). Other 

methods combine MEAs with optical mapping in a variety of settings, as different microelectrode 

arrangements and optical mapping devices are used. Our team has recently developed a system which 

allows co-localised and concurrent recordings at a single cell resolution within 2D multicellular 

preparations (40). Three-dimensional simultaneous recordings have been also presented using elastic 

membranes, which incorporate multifunctional sensors, electronic and opto-electric components, 
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shaped to match the epicardium (248). Such systems can be used for direct and comprehensive 

investigations of how cellular level heterogeneities, which affect AP morphology and its propagation, 

impact EGM morphology. 

 

 

4.1.2 AP and EGM morphology affected during electrical remodelling 
 

Some of the features that characterise the waveform of the extracellular EGM can be satisfactorily 

predicted from the action potential shape using systems for simultaneous EGM and optical mapping 

recordings, as already described. For example, highly selective hERG channel blockers are expected to 

prolong both APD and FPD (249). In addition, it has been shown that L-type Ca2+ channel blockade 

using nifedipine shortens both APD90 and FPD in NRVMs (40), rabbit Purkinje fibres (250) and guinea 

pig papillary muscle (251). However, the effects of multichannel blockers, such as quinidine or 

flecainide, on AP shape are difficult to predict (249). Since there is variable contribution of individual 

channels on AP shape depending on species and location within the heart of one species, the effect of a 

pharmacological agent may depend on the predominating conductance during the plateau or 

repolarisation phase and any overlapping active concentration ranges. Thus, these phenomena may 

result in simultaneous APD prolongation and shortening (252). Similar experimental difficulties may 

also occur when combinations of ion channel blockers are used (249). The result is limited applications 

of concurrent EGM and AP recordings in cardiac electrophysiology and still a poor understanding of 

electrical remodelling factors being responsible for a particular EGM morphology.  

 

The variability of EGM morphology has not been fully characterised and, as it has become clear through 

in vitro and in vivo studies, we have a limited understanding of the underlying mechanisms leading to 

EGM modifications. In vitro models are preferred for this investigation because of the degree of 

manipulation which is possible, compared to in vivo experimental conditions and the reduction of 

complexity such that changes can be more directly correlated with a single phenomenon. In addition, 

NRVM monolayers are a well-established cell model in cardiac electrophysiology and thoroughly 

characterised (172).  

 

Therefore, I sought to investigate how specific ion channel abnormalities, related to a variety of cardiac 

diseases, change the EGM morphology and which is the EGM morphology that could characterise each 

one of these heterogeneities. The hypotheses to be addressed were: 

1. The Na+-channel blockade can modify both the upstroke duration and the EGM duration. 

2. K+ blockers lead to APD and FPD prolongation. 
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3. K+ current enhancement and L-type Ca2+ channel blockade can decrease both APD and FPD. 

4. EGM morphology is determined by identifiable features of local action potentials and the 

architectural determinants of their propagation.  

5. Characterisation of more complex additional features will identify further EGM modification 

occurring upon ion channel blockade. 

 

For this purpose, the following studies described in this chapter were carried out:  

1. to change the action potential morphology and conduction velocity using a variety of 

pharmacological agents, 

2. to conduct simultaneous optical mapping and EGM recordings, in order to confirm EGM morphology 

changes due to specific abnormalities, and 

3. to fully characterise the EGM morphology that occurs following the reduced ion channel function in 

vitro and identify modifications on specific features. 

       

 

4.2 Methods 

 

4.2.1 In vitro model of cellular component of scar 
 

The isolated cells were seeded on MEA plates as described in section 2.2.1. As a model of cellular scar, 

four experimental cell groups were used in this thesis: ‘myocytes only’ (MO), which were the after 

preplating cells received in the end of the cell isolation process (presented in section 2.2.1), the ‘natural 

composition’ (NC) cell population isolated from neonatal rat ventricles, and myocytes mixed with low 

(+20%) or high (+40%) amounts of cultured fibroblasts. Regarding the MO and NC groups, 200,000 

cells were plated on the collagen substrate prepared on each MEA dish. In NRVM/fibroblast co-

cultures, the low-fibroblast cell culture contained 80% after preplating NRVMs (180,000 cells) and 

20% 1-week old cultured fibroblasts (20,000 cells), and the high-fibroblast cell culture contained 60% 

after preplating NRVMs (160,000 cells) and 40% 1-week old cultured fibroblasts (40,000 cells). Cells 

were mixed as appropriate prior to seeding on MEA dishes, in order to ensure the homogeneous 

distribution of fibroblasts.   
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4.2.2 Ion channel blockade  
 

The ion channel activity of cell monolayers was modified using pharmacological agents, as mentioned 

in section 2.2.3. A range of concentrations was studied for each of the ion channel modulators. The 

responsiveness of cells to Na+ channel blockade was achieved using increasing concentrations of 

lidocaine (myocytes only/NC: 0 – 100μΜ; low/high fibroblast – NRVM co-cultures: 0 – 50μM). K+ 

channel blockade was carried out using 4-aminopyridine (4-AP) for Ito blockade (myocytes only/NC: 0 

– 1.5mM; NRVM/low fibroblast co-culture: 0 – 300μM), E-4031 for IKr blockade (myocytes 

only/NC/NRVM-low fibroblast co-cultures: 0 – 10μM; NRVM/high fibroblast co-cultures: 0 – 1μΜ) 

and HMR-1556 for IKs blockade (myocytes only/NRVM-low fibroblast co-cultures: 0 - 30μΜ; NC: 0 – 

100μM). The opening of KATP channels was achieved using pinacidil (0 – 30μM). Nifedipine was used 

for L-type Ca2+ channel blockade (myocytes only/NC: 0 – 10μΜ; NRVM/low- or high-fibroblast co-

cultures: 0 – 30μΜ). Electrical remodelling was also achieved by the administration of a mix of 

lidocaine and nifedipine (Tables 4.1 – 4.2). All agents were dissolved in HBSS supplemented with 1mM 

MgCl2 and 1.5mM CaCl2.  

 

Cell responsiveness was tested 3-4 days after plating cells on MEA dishes. Cell monolayers consisting 

of NRVMs were decided to be ready for electrical remodelling experiments when conduction velocity 

was >20cm/sec. However, this rule was not applied on the NC monolayers and co-cultures of NRVM 

and fibroblasts, as the conduction velocity was ranging between 12-19cm/sec at the baseline state in 

these cases. EGM data obtained from the range of concentrations for each pharmacological agent, and 

according to the protocol presented in section 2.3, were firstly used for the creation of dose response 

curves corresponding to each cell culture group and modification. The IC50 of each drug was extracted 

using the dose response curves and dual modality performance experiments were carried out using that 

concentration. The automated EGM morphology analysis was applied on EGMs collected before and 

after the administration of a drug concentration close to the IC50. Details of the concentrations used are 

presented in the following sections of this chapter.  

 

 

4.2.3 Measurement of conduction velocity across each MEA 
 

A custom in-house MATLAB script was used for the calculation of conduction velocity with the 

acquired MEA data and the generation of isochronal maps for the demonstration of wave propagation. 

The conduction velocity across each array was measured using electrode activation times, (-dV/dt)max, 

at each electrode and its four neighbouring electrodes, in order to create conduction vectors.  These 
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vectors were used for identifying the direction of wavefront propagation as described by Salama et al. 

(253) and the creation of isochronal activation maps (Figure 4.1). 

 

 

Figure 4.1: Conduction velocity measurement across MEA. (Left) The MEA is arranged in a series of grids 
with stable inter-electrode distance. Thus, the calculation of the average conduction velocity can be carried 
out using the activation time of each electrode in position a, β and its neighbours. Adapted by Salama et al. 
with permission of the rights holder, Wolters Kluwer Health, Inc. (Right) Isochronal activation map 
representing the wavefront propagation in a cell culture. 

 

 

4.2.4 Synchronisation of dual modality concurrent electrogram and 
action potential recordings 

 

A custom-made optical system, developed by our team (40),  was used for simultaneous membrane 

voltage and MEA recordings (supplied by Cairn Research, UK) (Figure 2.4). The stage height of the 

upright microscope in this optical system was modified, in order to hold the amplifier of the MEA 

system. During dual modality recordings, the MEA plate was connected to the amplifier and the 

amplifier was loaded on the microscope stage. A BNC connector was built into the MEA stimulator to 

deliver a signal at the time of stimulus to an external hardware, thus the optical imaging system. for the 

generation of a blank frame synchronised with the MEA stimulation. A BNC sync cable connected the 

MEA stimulator to the optical mapping camera, in order to transfer the output signal to the camera. 

Therefore, the output signal of the MEA stimulator was used for triggering the optical imaging system 

for recordings for as long as the MEA recordings last ensuring the synchronization between systems. 

The synchronised trigger resulted to the production of a false stimulation artefact on the optical 

recording which confirmed the accurate time correlation between the two recording systems in the final 

results. MEA recordings were made for 10sec and during this time period 5-sec ratiometric voltage 

optical mapping recordings were simultaneously obtained. The blanking circuit implemented in the 
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MEA amplifier and the ability of the stimulator to create automated trigger pulses also ensured the 

synchronisation of recordings. Also, these MEA components made sure that the optical imaging 

recordings would stop simultaneously with the MEA recordings. More in-depth information about the 

MEA and optical mapping systems used for concurrent recordings are presented on Chapter 2 (MEA: 

section 2.3; optical mapping: section 2.5.2). 

 

The IC50 of each pharmacological agent was used for dual modality experiments. Control recordings 

were firstly obtained, and these were followed by the administration of a drug and the incubation of 

cells/slices with it for 5min. Simultaneous EGM and optical mapping recordings were then obtained, in 

order to study the effects of electrical remodelling on EGM and AP morphologies. The same procedure 

was followed for each type of cell culture. For the correlation of MEA and optical imaging recordings, 

the linear regression of simultaneously occurred feature changes in recordings were analysed.  

 

EGM duration was indirectly correlated to AP upstroke duration and FPD was directly correlated to 

APD90. EGM duration was analysed using the automated method presented in section 3.2.3. FPD 

measurements presented in this and following chapters is derived from manual analysis, and therefore 

this analysis was separate from the automated analysis for the rest of EGM features which was presented 

in Chapter 3. The manual analysis was conducted as presented in chapter 3 and (40), and this occurred 

the time duration between S-peak and the peak of the following T-wave. 

 

 

4.2.5 Statistical analysis 
 

All data are presented as mean ± SEM. A two-tailed Wilcoxon matched-pairs signed rank test was used 

for the analysis of dual modality performance data. Linear regression analysis with 95% confidence 

interval was used for investigating the relationship between AP and EGM characteristics. In order to 

investigate the quality of linear regression, r2 and the slope are reported. In addition, and as a way to 

study how well the model fits the data, the standard deviation of the residuals was used. The residual is 

the vertical distance of a point from the fit line. Sy.x was used for this purpose and this is measured 

from the following equation: 

ü%. # = 	°
∑(<cC5ì¢=>).

E − £
 

where n – K is the denominator, with K being the number of parametres fit by regression. The value n-

K is the number of degrees of freedom of the regression. In cases of linear regression using data obtained 

(4.1) 
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from one type of cell culture or tissue slices, then the Sy.x is the same as RMSE. However, when linear 

regression with data obtained from multiple types of cell culture occurs, then Sy.x is larger than RMSE, 

but is also a better estimate of goodness-of-fit. 

Two-tailed t-test for non-parametric data (Mann-Whitney test) was used for the analysis of EGM 

features before and after the administration of pharmacological agents unless otherwise stated. A value 

of p<0.05 was considered significant (*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001). 

 

 

 

4.3 Results 

4.3.1 The effects of Na+ channel blockade on EGM and action potential 
morphology 
 

Na+ channel blockade using the IC50 of lidocaine (27μM) increased both the upstroke duration (control: 

16.77±0.2 ms; lidocaine: 17.36±1 ms; n = 6 arrays; p<0.05) and the EGM duration (control: 3.03±0.5 

ms; lidocaine: 4.02±1 ms; n = 6; p<0.0001; mean ± SEM) during concurrent optical mapping and MEA 

recordings on myocyte only NRVM monolayers (Figure 4.2A-B). A direct correlation between 

conduction velocity and EGM duration, and therefore upstroke duration, was showed by linear 

regression analysis (Control: n=9 EGMs, lidocaine: n=27 EGMs; r2=0.61, Sy.x = 4.3, slope = -9.52±1.3, 

p<0.0001) (Figure 4.2C). The Bland-Altman plot revealed that EGM duration was systematically 

0.77ms longer on average after INa blockade (Figure 4.2D). The differences did not seem to be affected 

by the average EGM durations. 

 

In order to investigate the combined effect of functional and structural modifications on EGM 

morphology, Na+ channel blockade was firstly inserted in NC cell cultures and co-cultures of NRVMs 

with different amounts of cultured fibroblasts. The IC50 was calculated for each cell group separately 

using conduction velocity data obtained at 1Hz (NC: 370nM, Low %FB: 701.8nM; High %FB: 9.7μM) 

(Figure 4.3A-C). The analysis of simultaneous optical mapping and MEA recordings showed that the 

upstroke duration did not change significantly within each group following the addition of lidocaine 

(NC: control – 15.94±0.4ms, n=8 arrays, lidocaine - 16.68±1ms, n=5 arrays; +20% FB: control – 

16.54±1.3ms, n=4 arrays, lidocaine – 10.03±4.4ms, n=4; +40% FB: control – 16.05±0.3ms, n=5 arrays, 

lidocaine – 15.58ms, n=1; mean ± SEM) and there was no difference among groups (p = 0.91) (Figure 

4.3D). EGM duration was affected by the amount of cellular scar (p=0.004), but not by the Na+ channel 

blockade (p=0.097) (Figure 4.3E). No differences in EGM duration were observed within each group. 
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Figure 4.2: Effects of Na+ channel blockade using lidocaine on action potential upstroke, EGM duration and 
conduction velocity in NRVM monolayers. (A) Action potential upstroke, recorded by NRVM cultures (n=8), 
was increased after the administration of 27μM lidocaine compared. (B) The same lidocaine concentration 
simultaneously prolonged EGM duration, as shown by the unpaired Student’s t-test (two-tailed). (C) Correlation 
of EGM duration with conduction velocity before and after Na+ channel blockade (r2=0.61, Sy.x=4.3, p<0.0001). 
(D) Bland-Altman plot for EGM duration at baseline and after INa blockade. The middle bold line is the average 
difference between the baseline and INa blockade. Two additional lines are the upper and lower bounds of the 
limits of agreement. (E) (Top) An example of overlapped action potential traces, where the prolonged upstroke 
duration after the administration of lidocaine is showed. (Bottom) Superimposed EGMs obtained before and after 
Na+ channel blockade from the same. Action potentials and EGMs were recorded from the same electrode shown 
on the left. (F) Isochronal activation maps for the wavefront propagation before (left) and after (right) the Na+ 
channel blockade using lidocaine. All bar charts represent mean±SEM; *p<0.05; ****p<0.0001. Adapted from 
Chowdhury, Tzortzis et al. (40).  
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Conduction velocity changed due to both the amount of cellular scar (p<0.0001) and Na+ channel 

blockade (p=0.007). There was a significant reduction in conduction velocity even within each cell 

group following the addition of lidocaine (NC: control - 21.62 ± 6.9cm/s, lidocaine – 14.6±7.6cm/s, 

n=7 arrays; +20% FB: control – 8.65±3.5cm/s, lidocaine – 6.4±2.5cm/s, n=5; +40% FB: control – 

24.62±4.5cm/s, lidocaine – 16.24±4.7cm/s, n=5; p<0.01; mean ± SEM) (Figure 4.3F). A direct 

correlation between conduction velocity and EGM duration was revealed during linear regression 

analysis (r2=0.62, slope = -2.9±0.4, p<0.0001), but even though that relationship was maintained within 

the NC (r2 = 0.64, Sy.x = 4.9, slope = -5.17±1.2, p=0.001, n=13 EGMs) and +20% FB groups (r2=0.51, 

Sy.x = 2.3, slope = -1.05±0.4, p=0.03, n=9 EGMs), it was not present in the +40% FB group (r2=0.27, 

Sy.x = 5.6, slope = -3.7±2.2, p=0.12, n=10 EGMs) (Figure 4.3G). APD90 and FPD were also affected 

by the amount of cellular scar (p=0.01 and p=0.049 respectively), and not by Na+ channel blockade 

(Figure 4.3H-I). Linear regression analysis showed a direct correlation between APD90 and FPD (NC: 

n=122 EGMs, +20% FB: n=71 EGMs, +40% FB: n=106 EGMs; r2 = 0.76, slope = 0.86 ± 0.03, 

p<0.0001) (Figure 4.3J). 
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Figure 4.3: (A-C) Dose response curves generated after treating NC cultures (A) and co-cultures of NRVMs with low (B) or high amounts of fibroblasts (C) with a 
range of lidocaine concentrations. The IC50 of each type of cell culture was extracted using the dose-response curves. (D-F) Effects of Na+ channel blockade on the 
upstroke duration (D), the EGM duration (E) and the conduction velocity (F) obtained from each cell culture type using lidocaine (IC50). (G) Linear regression analysis 
for the relationship between conduction velocity and EGM duration. (H-I) Effects of lidocaine activity on the APD90 (H) and FPD (I) obtained from each cell culture. 
(J) Linear regression analysis for the relationship between APD90 and FPD extracted from the optical mapping and MEA data of each cell culture. Mean ± SEM; 
*p<0.05; **p<0.01;***p<0.001. 



 118 

4.3.2 EGM and action potential morphology manifestations of transient 
outward K+ current blockade 
 

During dual modality experiments, the blockade of the transient outward K+ (Ito) current, due to use of 

4-AP, resulted in significant effects both on AP duration and FPD (Figure 4.4). Cells were stimulated 

at progressively reducing pacing intervals from 1000 to 250 ms both before and after the administration 

of 4-AP (IC50 = 739.9μM) resulting to electrical restitution (Figure 4.4B-C). FPD was measured 

manually, as presented in section 4.2.4, due to the automated detection inefficiency as presented in 

3.3.3. T-waves were manually detected as explained in section 3.2.3. APD at 90% repolarisation 

(APD90) was affected by pacing cycle length (control: 1Hz 139.7±19.2 ms, 4Hz 118.7±9.4ms, n=4 

arrays; 4-AP: 1Hz 154.6±29.7 ms, 4Hz 116.3±14.7 ms; n=4; p = 0.04; mean ± SEM) (Figure 4.4B). 

Both pacing rate (p = 0.04) and Ito blockade (p = 0.02) affected FPD (control: 1Hz 107.09±12.9 ms, 

4Hz 87.3±20.3 ms, n=4; 4-AP: 1Hz 140±18 ms, 4Hz 105±16.6 ms, n=4; mean ± SEM) (Figure 4.4C), 

which was manually measured. Linear regression analysis showed strong correlation between APD90 

and FPD (Control: n = 50 EGMs, 4-AP: n = 41 EGMs; r2=0.76, Sy.x = 13.3, slope=0.9±0.07, p<0.0001) 

(Figure 4.4D). The APD90/FPD linear relationship did not show significant differences before and after 

the Ito blockade (control: r2=0.5, slope=0.63, p=0.06; 4-AP: r2=0.62, slope=0.83; p=0.18). The Bland-

Altman plot revealed that FPD was systematically 14ms longer on average after Ito blockade (Figure 

4.4E). The differences did not seem to be affected by the magnitude of average FPD. 

 

The IC50 of 4-AP (803.3μM) for NC cell cultures was measured based on the change of FPD at 1Hz 

EGM data. The Ito blockade at NC cell cultures had as a result the prolongation of APD90 at 1Hz (control: 

104.9±13.4ms, 4-AP: 125.9±10.7ms, n=1 array, p=0.016) (Figure 4.5B). There was also a trend towards 

prolongation of FPD at 1Hz (control: 106.2±19.7ms, 4-AP: 128.5±18.6ms, n=1, p=0.16; mean ± SEM) 

(Figure 4.5C). Electrical restitution occurred when stimulating cells at progressively reduced pacing 

intervals from 1000 to 250ms both in control state and after the Ito blockade (Figure 4.5D-E). Both 

APD90 (control: 1Hz 132.3, n=1 array, 4Hz 93.6±1.77, n=3 arrays; 4-AP: 1Hz 133.2±6.9, n=4, 4Hz 

105.1, n=1, p=0.001; mean ± SEM) and FPD (control: 1Hz 144, n=1, 4Hz 102±8.6, n=3; 4-AP: 1Hz 

144±19.9, n=4, 4Hz 126, n=1, p=0.04; mean ± SEM) were affected not only by Ito blockade, but also 

by the pacing rate (p<0.01 and p<0.05 respectively). There was also a direct relationship between APD90 

and FPD (r2=0.64, Sy.x=12.6, slope = 1.04±0.2, p<0.0001; n=19 EGMs) (Figure 4.5F).    

 

The FPD results presented in this section involved the correct manual detection of T-waves. A T-wave 

was detected as the positive deflection after each QRS complex, a curve that can be seen after that 

complex. Due to the shallowness of the T-wave though in some occasions, this might be more difficult 

to be seen in certain examples, as the one presented in Fig. 4.5G.  
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Figure 4.4: (A) Dose response curve for the extraction of IC50 of 4-AP following the administration of myocyte 
only NRVM cultures with a range of 4-AP doses. (B-E) Correlation between APD90 and FPD in NRVM cultures 
following the Ito current blockade using 739.9μM 4-AP. APD90 restitution curve (B) and FPD restitution curve 
(C) (control: n=4 arrays; 4-AP: n=4 arrays). Both APD90 and FPD changed significantly across the range of pacing 
rates (p<0.05), but only FPD was affected by Ito blockade (p<0.05, ordinary two-way ANOVA). (D) Linear 
regression correlating APD90 with FPD, using data obtained before and after the administration of 4-AP (r2=0.76, 
Sy.x=13.3, p<0.0001). (E) Bland-Altman plot for FPD at baseline and following the administration of 4-AP. The 
middle bold line is the average difference between the baseline and Ito blockade. Two additional lines are the 
upper and lower bounds of the limits of agreement. (F) Superimposed raw traces derived before and after Ito 
current blockade (top) and the concurrent EGMs (bottom). All traces were obtained from the same electrode 
indicated on the left. Mean ± SEM; *p<0.05. 
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Figure 4.5: (A) Dose response curve for the extraction of IC50. (B-C) APD90 (B) increased (p = 0.016 following 
the administration of 4-AP on NC cell culture, and there was a trend for simultaneous FPD increase (C), which 
was not significant (p = 0.16) (control: n=1 array; 4-AP: n=1 array). (D-E) APD90 and FPD restitution curves 
showing that both pacing rate and 4-AP had a significant effect on both. (F) Linear regression analysis for the 
relationship between APD90 and FPD (r2 = 0.64; Sy.x=12.6, slope = 1.04 ± 0.2; p<0.0001). (G) Bland-Altman 
plot for FPD at baseline and following the administration of 4-AP on NC cell culture. The middle bold line is the 
average difference between the baseline and Ito blockade. Two additional lines are the upper and lower bounds of 
the limits of agreement.  (H) Superimposed raw traces (top) and EGMs (bottom) obtained simultaneously before 
and after the administration of 4-AP (IC50) on NC cell population. Mean ± SEM. *p<0.05; **p<0.01; 
****p<0.0001. 
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4.3.3 The effects of L-type Ca2+ current blockade on EGM and action 
potential morphology 
 

Rate adaptation of APD90 and FPD was observed, through manual analysis of both features, before ICaL 

blockade using the IC50 of nifedipine (772nM). The ICaL blockade caused both APD90 (control: 1Hz 

143.44±29 ms, 4Hz 116.13±18 ms; nifedipine: 1Hz 111.3±23 ms, 4Hz 107±19 ms, n=8 arrays, p<0.001) 

and FPD (control: 1Hz 138.3±29 ms, 4Hz 108.8±19 ms; nifedipine: 1Hz 98.5±31 ms, 4Hz 92.4±17 ms, 

n=8, p<0.0001) abbreviation (Figure 4.6B-C). However, following the addition of nifedipine both 

indices were not affected significantly by pacing rate. There was a strong correlation between APD90 

and FPD as shown by linear regression analysis (r2=0.86, Sy.x=12, slope = 0.93±0.04, p<0.0001; n=49) 

(Figure 4.6D). The APD90/FPD correlation was similar before and after the administration of nifedipine 

(control: r2=0.84, slope=0.74; nifedipine: r2=0.81, slope=0.75; p=0.65; n=49). The Bland-Altman plot 

revealed that FPD was 29ms shorter on average after ICaL blockade in a stable basis (Figure 4.6E). The 

differences did not seem to be affected by the magnitude of average FPD and approximately 4.6% of 

the differences were out of the limits of agreement for FPD. 

 

 

The IC50 of nifedipine for NC cell cultures was 65nM. No restitution curve could be created, using the 

dual modality performance experiments, as cells could be stimulated only at 1Hz and 2Hz. The data 

obtained from concurrent optical mapping and MEA showed that APD90 was reduced after the ICaL 

blockade (control: 250.2±14.2ms, n=7 APs; nifedipine: 230.2±21.4ms, n=12 APs; p=0.04; mean ± 

SEM) (Figure 4.7B). FPD was simultaneously shortened after the addition of nifedipine (control: 

247.7±18.3ms, n=7 EGMs; nifedipine: 225.7±25.3ms, n=12 EGMs; p=0.04; mean ± SEM) (Figure 

4.7C). Linear regression analysis showed a strong correlation between APD90 and FPD (r2=0.59, 

Sy.x=14.4, slope = 0.91±0.15, p<0.0001, n=19). Conduction velocity did not change significantly due 

to nifedipine (control: 16.83±5.9cm/s, nifedipine: 12.74±3.2cm/s, n=3, p=0.25; mean ± SEM) (Figure 

4.7E). The Bland-Altman plot revealed that FPD was systematically 22ms shorter on average after ICaL 

blockade in NC cell monolayers (Figure 4.7F). The differences seem to be affected by the magnitude 

of average FPD, as there is a trend towards decrease, but this may be biased by the limited of data. 
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Figure 4.6: (A) Dose response curve for the measurement of the IC50 of nifedipine based on the effect of 
ICaL blockade on FPD. (B-C) Correlation between APD90 and FPD in cardiac myocyte monolayers after the 
L-type Ca2+ channel blockade using 772nM nifedipine. APD90 (B) and FPD (C) restitution curves (control: 
n=8 arrays; nifedipine: n=8 arrays). APD90 and FPD were significantly affected by nifedipine (p<0.001 and 
p<0.0001 respectively, ordinary two-way ANOVA), as shown following the manual analysis of both 
features. (D) Linear relationship between APD90 and FPD (r2=0.86, p<0.0001). (E) Bland-Altman plot for 
FPD at baseline and following ICaL blockade in NRVM cells. The middle bold line is the average difference 
between the baseline and ICaL blockade. Two additional lines are the upper and lower bounds of the limits of 
agreement. (F) Superimposed action potential traces (top) and EGMs (bottom) before and after the 
administration of nifedipine. All traces were derived from the same electrode, shown to the left. Mean ± 
SEM; ***p<0.001; ****p<0.0001. 

   

 

 



 123 

 

Figure 4.7: (A) Dose response curve for the extraction of IC50 of nifedipine after its administration on NC 
cultures. (B-C) Mann-Whitney test results presenting the effect of ICaL blockade on action potential (B) and 
EGM morphology (C) using nifedipine. APD90 and FPD manually annotated data were used for this analysis. 
(D) Linear regression analysis for the relationship of FPD and APD90 (r2 = 0.69; Sy.x=14.4, slope = 0.91± 
0.15; p<0.0001; n=19). (E) No significant change of conduction velocity was observed following nifedipine 
administration (p=0.25). (F) Bland-Altman plot for FPD at baseline and following ICaL blockade in NC cell 
monolayers. The middle bold line is the average difference between the baseline and ICaL blockade. Two additional 
lines are the upper and lower bounds of the limits of agreement. (G) Isochronal maps for the wavefront 
propagation before (left) and after (right) the ICaL blockade. (H) Superimposed action potential traces (top) 
and EGMs (bottom) before and after the administration of nifedipine in NC cells. All traces were derived 
from the same electrode, shown to the left. All bar charts are mean ± SEM. *p<0.05. 
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 4.3.4 IKr-related EGM and action potential morphology modifications 
 

IKr blockade was carried out using E-4031. The IC50 of E-4031 (303.3nM) was calculated as the average 

of IC50 concentrations for 1Hz (332.4nM) and 4Hz (274.1nM) data, which were the lowest and highest 

stimulation rates respectively at preliminary experiments. Following manual analysis of APD90 and 

FPD, it was concluded that both IKr blockade and the pacing cycle length increased APD90 (control: 1Hz 

160.69±32.5 ms, 5Hz 125.74±2.8 ms, n=8 arrays; E-4031: 1Hz 216.34±47.8 ms, 4Hz 136.28±0.7 ms, 

n=4 arrays; p<0.0001 for both factors; mean ± SEM) and FPD (control: 1Hz 141.34±28.5 ms, 4Hz 

113.37±17.9 ms, n=8; E-4031: 1Hz 206.4±28.8 ms, 4Hz 127.38±12.5 ms, n=4; p<0.0001; mean ± SEM) 

(Figure 4.8B-C). Linear regression analysis showed a correlation between APD90 and FPD (r2=0.71, 

Sy.x=21.6, slope = 0.76, p<0.0001, n=83) and this relationship was stronger after the administration of 

E-4031 (Control: n=16, r2=0.38, Sy.x=20, slope = 0.49±0.17, p=0.01; E-4031: n=67, r2=0.79, 

Sy.x=18.9, slope=0.77±0.05, p<0.0001) (Figure 4.8D).  The Bland-Altman plot revealed that FPD was 

systematically 37ms longer on average after IKr blockade (Figure 4.8E). The differences did not seem 

to be affected by the magnitude of average FPD and approximately 6% of the differences were out of 

the limits of agreement for FPD. 

 

 

The dose response curve corresponding to NC culture EGM data (Figure 4.9A) was used for the 

extraction of the IC50 of E-4031 (49.6nM). The increased amount of fibroblasts in this type of cell 

culture compared to the myocyte only culture meant that there should theoretically be a smaller IKr 

current in those cell cultures and thus, the effect of E-4031 would be different. That dose response curve 

was based on the manual measurement of FPD in 1Hz data. NC cell cultures could be stimulated up to 

2Hz, therefore the limited stimulation range prohibited the creation of restitution curves. There was a 

trend towards APD90 prolongation following the addition of E-4031 (control: 1Hz 226.6±3.5ms, E-

4031: 1Hz 247.9±7.4ms, n=2 arrays, p=0.16; mean ± SEM) (Figure 4.9B). A significant increase in 

FPD was also seen at 1Hz (control: 1Hz 215.5±5ms, E-4031: 1Hz 269.8±6.8ms, n=2, p=0.016; mean ± 

SEM) (Figure 4.9C). Linear regression analysis showed a direct relationship between APD90 and FPD 

(r2=0.52, Sy.x=22.2, slope=1.25±0.3, p=0.0007, n=18) (Figure 4.9D). FPD was systematically 55ms 

longer on average after IKr blockade, as the Bland-Altman plot shows in Figure 4.9E. Unclear 

conclusions are made about the effect of the magnitude of average FPD on differences between E-4031 

and baseline data, due to the limited amount of data. 
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Figure 4.8: Effects of IKr current blockade using 303.3nM E-4031 on action potential duration and FPD. 
APD90 (B) and FPD (C) restitution curves (control: n=8 MEA plates; E-4031: n=4 MEAs). APD90 and FPD 
manually annotated data showed that both are affected by pacing rate and the E-4031 activity (all p<0.0001, 
ordinary two-way ANOVA). (D) Linear regression analysis showing the linear relationship between APD90 
and FPD (r2=0.71, p<0.0001). (E) Bland-Altman plot for FPD at baseline and following IKr blockade in NRVM 
cell monolayers. The middle bold line is the average difference between the baseline and IKr blockade. Two 
additional lines are the upper and lower bounds of the limits of agreement. (F) Superimposed raw traces (top) 
and EGMs (bottom) obtained before and after IKr blockade from the same electrode to the left. Mean ± SEM; 
****p<0.0001. 
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Figure 4.9: (A) Dose response curve for the effect of a range of Ε-4031 concentrations on the FPD obtained 
from NC cell cultures. (B) No significant change of APD90 was caused by 4-AP (p=0.16). (C) IKr blockade 
increased significantly the FPD (p=0.02). (D) Linear regression analysis showed FPD and APD90 trended 
towards a linear relationship between them (r2=0.52, Sy.x=22.2, slope=1.25 ± 0.3, p=0.0007, n=18). (E) 
Bland-Altman plot for FPD at baseline and following IKr blockade in NC cells. The middle bold line is the average 
difference between the baseline and IKr blockade. Two additional lines are the upper and lower bounds of the 
limits of agreement. (F) Superimposed action potentials (top) and EGMs (bottom) obtained simultaneously 
before and after the IKr blockade. Mean ± SEM. APD90 and FPD plots are from manually annotated data. 
*p<0.05. 

 

4.3.5 The effects of IKs blockade on EGM and action potential 
morphology 
 

HMR-1556, which is a IKs blocker, was used for its effect on EGM morphology. The calculation of its 

IC50 (450.5nM) was based on the effect on FPD, even though there was no clear FPD prolongation 

(Figure 4.10A). However, a trend towards electrical restitution was observed, as a result of the effect of 
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pacing frequency both on APD90 (control: 1Hz 175±11.7ms, 3Hz 144±0.5ms; HMR-1556: 1Hz 

194±20.7ms, 3Hz 148.3; n = 2 arrays; p=0.06; mean ± SEM) and FPD (control: 1Hz 178.5±17.6ms, 

3Hz 143.5±14.4ms; HMR-1556: 1Hz 196.5±24.7, 3Hz 150ms; n = 2 arrays; p = 0.16; mean ± SEM) 

(Figure 4.10B-C). There was no significant difference due to the HMR-1556 activity (APD90: p = 0.2; 

FPD: p = 0.45). But the linear regression analysis showed a correlation between APD90 and FPD 

(r2=0.89, Sy.x=8.1, slope = 1.04±0.07, p<0.0001, n=30) (Figure 4.10E). This correlation was also 

present before and after the IKs blockade (p = 0.14). The Bland-Altman plot revealed that FPD was 

systematically only 19ms longer on average after IKs blockade with HMR-1556 (Figure 4.10F). The 

differences did not seem to be affected by the magnitude of average FPD and none of the differences 

were out of the limits of agreement for FPD. 

 

 

The IC50 of HMR-1556, which was used in dual modality experiments on NC cell cultures, was 740nM. 

This was based on changes in the FPD over a range of HMR-1556 concentrations (10nM – 100μM) 

(Figure 4.11A). However, no significant difference in APD90 (1Hz control: 225.7±11.5, HMR-1556: 

223.4±8.2ms, n = 2 MEAs, p = 0.96; mean ± SEM) and the FPD (1Hz control: 212.2±10ms, HMR-

1556: 212.5±8ms, n = 2, p = 0.87; mean ± SEM) was observed after the IKs blockade using the IC50 of 

HMR-1556 (Figure 4.11C-D). The linear regression analysis showed direct correlation between APD90 

and FPD (r2 = 0.76, Sy.x=15.4, slope = 0.81±0.09, p<0.0001, n=26), which was the same before and 

after the administration of HMR-1556 (p=0.73). Conduction velocity was maintained stable over the 

range of drug doses (n = 3 MEAs, p = 0.53). FPD was systematically only 13ms longer on average after 

IKs blockade with HMR-1556 in NC cell monolayers (Figure 4.11F).  
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Figure 4.10: Correlation between APD90 and FPD in NRVM cultures after IKs blockade using HMR-1556. 
APD90 (B) and FPD (C) restitution curves show that neither pacing rate nor IKs blockade have a significant 
effect on APD90 and FPD. (D) No significant change of APD90 and FPD was observed when NRVMs were 
treated with IC50 concentration of HMR-1556 (control: 6 EGMs; HMR-1556: 8 EGMs) followed by pacing 
at 1Hz. (E) Linear relationship of APD90 and FPD (r2=0.89, Sy.x=8.1, p<0.0001). (F) Bland-Altman plot for 
FPD at baseline and following IKs blockade in NRVM cell monolayers. The middle bold line is the average 
difference between the baseline and IKs blockade. Two additional lines are the upper and lower bounds of the 
limits of agreement. (G) Superimposed raw traces (top) and EGMs (bottom) obtained from the same electrode 
(left), showing the changes at APD90 and FPD. Mean ± SEM. APD90 and FPD plots were made using 
manually annotated data. 
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Figure 4.11:  (A) Dose response curve for the calculation of the IC50 of HMR-1556 in NC monolayers 
based on the effect of IKs blockade on FPD. (B) Conduction velocity of NC cell cultures remained stable 
throughout the administration of a range of HMR-1556 doses (n = 3 arrays). (C-D) APD90 (C) and FPD (D) 
did not change following the IKs blockade using HMR-1556 (IC50) on NC cell cultures (n = 2 MEAs). (E) 
Linear regression analysis for the relationship between APD90 and FPD before and after the administration 
of HMR-1556. (F) Bland-Altman plot for FPD at baseline and following IKs blockade in NC cell monolayers. 
The middle bold line is the average difference between the baseline and IKs blockade. Two additional lines are the 

upper and lower bounds of the limits of agreement.  Mean ± SEM. APD90 and FPD plots were made using 
manually annotated data. 

 

 

 

4.3.6 EGM and action potential morphology modifications following KATP 

channel opening 
 

The calculation of IC50 of pinacidil (1.98μM) was based on the drug effect on FPD (Figure 4.12A). The 

data obtained from concurrent optical mapping and MEA recordings showed that APD90 was 

significantly reduced due to pinacidil (control: 220.5 ± 16ms, pinacidil:164.2 ± 8ms; n = 2 MEAs; p = 
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0.04; mean ± SEM) (Figure 4.12B). FPD was also shortened (control: 223.6 ± 13ms; pinacidil: 166.1 ± 

9.5ms; n = 2 MEAs; p = 0.005; mean ± SEM) (Figure 4.12C). Electrical restitution could not be studied, 

due to the limited ability to capture EGMs at higher frequencies than 2Hz. A direct correlation between 

APD90 and FPD was observed (r2 = 0.84, Sy.x=11.2, slope = 0.72, p<0.0001, n=44) (Figure 4.12D). 

The Bland-Altman plot revealed that FPD was systematically 61ms shorter on average after KATP 

channel blockade with pinacidil in NRVM monolayers (Figure 4.12E).  

 

 

Figure 4.12: Effect of K+ current enhancement using pinacidil on AP duration and FPD. Both APD90 (B) 
and FPD (C) decreased significantly after the administration of 30μM pinacidil on NRVM monolayers 
(p=0.04 and 0.005 respectively). (D) Linear regression analysis for the relationship between APD90 and FPD 
(r2=0.84; Sy.x=11.2; p<0.0001). (E) Bland-Altman plot for FPD at baseline and following KATP channel opening 
in NRVM cell monolayers. The middle bold line is the average difference between the baseline and IKs blockade. 
Two additional lines are the upper and lower bounds of the limits of agreement.  (F) Superimposed raw traces 
(top) and EGMs (bottom) showing that both APD90 and FPD are shortened after the administration of 
pinacidil. Mean ± SEM; *p<0.05; **p<0.01. APD90 and FPD plots were made using manually annotated 
data. 



 131 

4.3.7 EGM and action potential morphology manifestations of double 
ion channel blockade 
 

The simultaneous Na+ and L-type Ca2+ channel blockade was carried out by concurrently treating 

NRVMs with lidocaine and nifedipine. A range of dose combinations were used based on the IC50 of 

each ion channel blocker (Table 4.1). Following the administration of “combination 4”, the double ion 

channel blockade had a disrupting effect on cells by initially inducing fibrillation. Even higher doses 

managed to immediately interrupt the electrophysiological activity, and therefore no high enough 

concentrations could be used, comparing to the individual use of lidocaine or nifedipine. Dose response 

curve for each ion channel blocker indicated concentrations close to the ones from “combination 3”, 

and therefore that one was used for dual modality experiments. Conduction velocity was not affected 

by any drug combination (p=0.81), but EGM duration was affected by increasing doses (control: 

2.39±0.01ms, drug comb.4: 2.5±0.2ms, n=3 arrays, p<0.001; mean ± SEM) (Figure 4.13A-B). While 

APD90 showed a trend towards reduction following the ion channel blockade (control: 1Hz 

195.2±30.5ms, ion channel blockade: 1Hz 178.2±23ms, n=5 APs, p=0.15; mean ± SEM) (Figure 

4.13C), FPD was significantly abbreviated (control: 1Hz 229±17.5ms, ion channel blockade: 1Hz 

188.5±24ms, n=5 EGMs, p<0.05; mean ± SEM) (Figure 4.13D). Linear regression analysis showed a 

strong correlation between APD90 and FPD (r2=0.84, Sy.x=12.7, slope = 1.01±0.16, p=0.0002, n=10) 

(Figure 4.13F).   

 

Table 4.1: Combination of lidocaine/nifedipine concentrations used for double ion channel blockade 
treatment of myocyte only NRVM cultures. The concentration of each drug was based on its IC50.  

  Lidocaine (μM) Nifedipine (μM) 

Combination 1 (0.75x IC50) 20.25 0.58 

Combination 2 (IC50) 27 0.77 

Combination 3 (1.5x IC50) 40.5 1.16 

Combination 4 (2x IC50) 54 1.54 

 

 

A range of combinations of lidocaine and nifedipine were used for double ion channel blockade in NC 

cell monolayers (Table 4.2). These concentrations were based on the IC50 of each drug. Separate dose 

response curves for lidocaine and nifedipine were made for the extraction of IC50 (lidocaine: 904.5nM, 

nifedipine: 96nM). The dose response curve for lidocaine was based on EGM duration data (Figure 

4.14A), since conduction velocity remained stable throughout the range of ion channel blockers that 

was tested on NC cultures (p = 0.52) (Figure 4.14C). The dose response curve for nifedipine was based 

on the FPD (Figure 4.36B). 
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The final combination of drug doses, which was also used for the dual modality experiments was 

combination 7, according to Table 4.2 (lidocaine: 740nM, nifedipine: 130nM), since that was between 

the drug combinations which were closer to the new IC50. Doses higher than 5μM lidocaine and 300nM 

nifedipine prohibited optical mapping and EGM recordings due to the absence of electrophysiological 

activity. Following the double ion channel blockade by lidocaine and nifedipine, no significant changes 

were observed on APD90 (1Hz control: 281.4±1.9ms, ion channel blockade: 247.9±16.4ms, n = 1 array, 

p = 0.06), FPD (1Hz control: 249.4±7ms, ion channel blockade: 241.5±9.9ms, n=1, p = 0.63), upstroke 

(1Hz control: 16.58±0.1ms, ion channel blockade: 15.72±0.2ms, n=1, p = 0.06) and EGM duration (1Hz 

control: 3.15±0.1ms, ion channel blockade: 3.4±0.2ms, n=1, p = 0.4) (Figure 4.14D-G).  There was also 

no linear relationship between APD90 and FPD (r2 = 0.39, slope = 0.33±0.18, p = 0.13). 

 

Figure 4.13: (A) Conduction velocity remains stable and is independent of any combination of 
lidocaine/nifedipine concentrations (p=0.81). (B) EGM duration increases due to the combined ion channel 
blockade (p=0.0007). (C) APD90 does not change significantly (p=0.15), when NRVM cultures are treated with 
40.5μM lidocaine and 1.16μM nifedipine, but FPD (D) is reduced after the ion channel blockade (p=0.16). APD90 
and FPD plots were made using manually annotated data. (E) Isochronal maps presenting the activation wavefront 
propagation and the conduction velocity in each occasion. The last isochronal map (right) presents a different 
direction of the activation wavefront, due to the fibrillation that occurs when cells are treated simultaneously with 
high doses of lidocaine (54μM) and nifedipine (1.54μM). (F) Linear regression analysis for the relationship 
between FPD and APD90 before and after the double ion channel blockade. (G) Superimposed raw traces (top) 
and EGMs (bottom) obtained simultaneously from the same electrode before and after the combined 
administration of lidocaine and nifedipine.  Mean ± SEM; *p<0.05; ***p<0.001. 
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Table 4.2: Combination of lidocaine/nifedipine concentrations used for double ion channel blockade 
treatment of myocyte only NRVM cultures. The concentration of each drug was based on its IC50 from 
experiments on NC cell cultures using individual ion channel blockers. 
 

  Lidocaine (nM) Nifedipine (nM) 

Combination 1 0.25x IC50 92.5 16.25 

Combination 2 0.5x IC50 185 32.5 

Combination 3 0.75x IC50 277.5 50.25 

Combination 4 IC50 370 65 

Combination 5 1.25x IC50 462.5 81.25 

Combination 6 1.5x IC50 555 97.5 

Combination 7 2x IC50 740 130 

Combination 8 3x IC50 1,110 195 

Combination 9 - 5,000 300 

 

 

 

 

 

Figure 4.14: (A) Dose response for the calculation of IC50 of lidocaine, based on the effect of Na+ channel 
blockade on EGM duration, when this is administered on NC cell cultures. (B) Dose response curve for the 
extraction of IC50 of nifedipine based on the effect of ICaL blockde on FPD. (C) Conduction velocity remained 
stable throughout the administration of any combination of lidocaine and nifedipine. (D-G) No significant 
change was seen in the APD90 and upstroke duration in action potential morphology and the FPD and EGM 
duration in EGMs following the double ion channel blockade. Mean ± SEM.  
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4.3.8 Comparative analysis of EGM features across different in vitro 
models 
 
The experiments presented so far in this chapter prove the efficiency of the pharmacological 

agents presented in section 4.2.2, in terms of modifying EGM morphology. Therefore, I 

proceeded into further investigating the specific changes. Comparing the effects of the various 

forms of ion channel modulations either in isolation or in combination with differential 

amounts of fibroblasts in NRVM cell cultures, it was observed that they caused significant 

changes to the majority of features in overall. The comparisons were made between groups of 

EGM collected from a number of MEA dishes used across experiments. Table 4.3 presents the 

overall number of EGMs used per experimental condition and the number of cell cultures used 

to obtain them. Control data for each type of cell culture were obtained from all experiments 

carried out on the same type of cell monolayer, even though control data were always recorded 

prior to the addition of a pharmacological agent. The data obtained before and after ion channel 

blockade or opening on the same cell group were compared, as presented in Figures 4.15-4.25. 

 

Features were measured from EGMs obtained from the same type of cell culture. When 

comparing the modifications caused by the same modulation, it was observed that each feature 

was significantly different (p<0.0001 in majority of cases). Exemptions to this were the S.D 

EGM amplitude measured in +20% FB and +40% FB cultures (p=0.03 and p=0.002 

respectively; Fig.4.15), R-/S-width ratio in +20% FB and +40% FB cultures (+20%FB: p=0.12 

– non-significant; +40%FB: p=0.0002; Fig.4.18), R-width/EGM duration in +20%FB (p=0.17 

– non-significant; Fig.4.19), peak ratio in +20%FB (p=0.002; Fig.4.19) and the S.D. 

autocorrelation measured from +20%FB data (p=0.003; Fig.4.25). In addition, comparisons of 

the functional and structural modulations in overall for the same feature showed that all feature 

modifications were significantly different among modulations (p<0.0001). A detailed 

presentation of all changes happening under each experimental condition individually, and not 

comparing to other conditions as in this chapter, is presented in Appendix A (sections I-VII). 
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Table 4.3. Number of EGMs collected per experimental condition from a number of arrays (cell cultures) 
under control conditions and following the administration of each pharmacological agent using the range 
of concentrations presented in section 4.2.2.  

 

 # EGMs # arrays  # EGMs # arrays 

Control - MO 347 28 KATP opening 125 6 

Ito blockade 118 4 Control – NC 493 36 

IKr blockade 112 5 NC+Ito 
blockade 

138 6 

INa blockade 149 8 NC+IKr 
blockade 

126 6 

IKs blockade 109 5 NC+IKs 
blockade 

111 6 

INa+ICaL 

blockade 
117 6 NC+INa 

blockade 
139 7 

ICaL blockade 113 8 NC+ICaL 
blockade 

104 5 

Control - 
+20%FB 

268 28 NC+INa+ICaL 
blockade 

107 6 

+20%FB + Ito 
blockade 

150 8 +20%FB + IKr 
blockade 

68 4 

+20%FB + IKs 
blockade 

51 3 +20%FB + INa 
blockade 

131 6 

+20%FB + ICaL 
blockade 

126 7 Control - 
+40%FB 

221 12 

+40%FB + IKr 
blockade 

56 3 +40%FB + INa 
blockade 

53 6 

+40%FB + ICaL 
blockade 

75 3  
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Figure 4.15. Bar charts presenting the modification of the EGM amplitude of the first EGM in a recording, the average EGM amplitude and the S.D. EGM amplitude 
due to ion channel blockade in different types of NRVM cell culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with 
p<0.0001, apart from a few exeptions. Kruskal-Wallis test analysis for non-parametric data. All bar charts represent mean±SEM (n values presented in Table 4.3). 
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Figure 4.16. Bar charts presenting changes in RS interval, QS interval and the RS interval gradient, due to ion channel blockade in different types of NRVM cell 
culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with p<0.0001, apart from a few exeptions. Kruskal-Wallis test 
analysis for non-parametric data. All bar charts represent mean±SEM (n values presented in Table 4.3). 
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Figure 4.17. Modification of the EGM-onset-to-R peak gradient, S-peak-to-EGM offset gradient and R-peak width, due to ion channel blockade in different types of 
NRVM cell culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with p<0.0001, apart from a few exeptions. Kruskal-
Wallis test analysis for non-parametric data. All bar charts represent mean±SEM (n values presented in Table 4.3). 
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Figure 4.18. Bar charts presenting the modification of the S-peak width, R-/S- width ratio and EGM duration, due to ion channel blockade in different types of NRVM 
cell culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with p<0.0001, apart from a few exeptions. Kruskal-Wallis 
test analysis for non-parametric data. All bar charts represent mean±SEM (n values presented in Table 4.3). 
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Figure 4.19. Bar charts presenting the modification of the R-width:EGM duration ratio, R-/S-peak ratio and fractionation index due to ion channel blockade in different 
types of NRVM cell culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with p<0.0001, apart from a few exeptions. 
Kruskal-Wallis test analysis for non-parametric data. All bar charts represent mean±SEM (nvalues presented in Table 4.3). 



 141 

 
Figure 4.20. Bar charts presenting the modification of the dominant frequency, Shannon entropy and logarithmic energy entropy due to ion channel blockade in 
different types of NRVM cell culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with p<0.0001, apart from a few 
exeptions. Kruskal-Wallis test analysis for non-parametric data. All bar charts represent mean±SEM (n values presented in Table 4.3). 
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Figure 4.21. Bar charts presenting the modification of the percent of energy, maximum modulus and variance of energy due to ion channel blockade in different types 
of NRVM cell culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with p<0.0001, apart from a few exeptions. Kruskal-
Wallis test analysis for non-parametric data. All bar charts represent mean±SEM (n values presented in Table 4.3). 
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Figure 4.22. Bar charts presenting the modification of the frequency of maximum wavelet energy, frequency of minimum energy and the scale of maximum energy 
due to ion channel blockade in different types of NRVM cell culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with 
p<0.0001, apart from a few exeptions. Kruskal-Wallis test analysis for non-parametric data. All bar charts represent mean±SEM (n values presented in Table 4.3). 
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Figure 4.23. Bar charts presenting the modification of the scale of minimum energy, mean frequency of PSD estimates and the median frequency of PSD estimates 
due to ion channel blockade in different types of NRVM cell culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with 
p<0.0001, apart from a few exeptions. Kruskal-Wallis test analysis for non-parametric data. All bar charts represent mean±SEM (n values presented in Table 4.3). 
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Figure 4.24. Bar charts presenting the modification of the maximum PSD estimate, the skewness of PSD estimates and the S.D. of PSD estimates due to ion channel 
blockade in different types of NRVM cell culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with p<0.0001, apart 
from a few exeptions. Kruskal-Wallis test analysis for non-parametric data. All bar charts represent mean±SEM (n values presented in Table 4.3). 
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Figure 4.25. Bar charts presenting the modification of the kurtosis of PSD estimates and the S.D. of autocorrelation due to ion channel blockade in different types of 
NRVM cell culture with the presence of various amounts of fibroblasts. Majority of comparisons are significant with p<0.0001, apart from a few exeptions. Kruskal-
Wallis test analysis for non-parametric data. All bar charts represent mean±SEM (n values presented in Table 4.3).
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4.3.9 EGM morphology across different types of K+ current modulation 
 

The results of automated feature extraction taken under baseline and following exposure to a K

+

 current 

related drug (n=72 EGMs for 750μM 4-AP, n=73 EGMs for 300nM E-4031, n=27 EGMs for 1μM 

HMR-1556, n=73 EGMs for 3μM pinacidil) were then compared. K

+

 current enhancement with 

pinacidil had different effects to K

+

 current blockade with 4-AP. E-4031 and HMR-1556 in many cases 

(Figures 4.32-34). There were only three features modified due to pinacidil, but not any due to an ion 

channel blocker (RR interval: p<0.0001; Frequency of minimum energy: p<0.0001; Log energy 

entropy: p<0.0001) (Figure 4.26).  

 

 

Figure 4.26: Features changed by K

+

 current enhancement with pinacidil, but not by K

+

 current blockade 

by 4-AP, E-4031 or HMR-1556. There is no significant difference among control, 4-AP. E-4031 and HMR-

1556 data. Kruskal-Wallis test analysis. All bar charts represent mean±SEM; ****p<0.0001. (Control: 

n=190 EGMs; 4-AP: n=72 EGMs; E-4031: n=73 EGMs; HMR-1556: n=27 EGMs; pinacidil: n=73 EGMs). 

 

 

FPD was the only feature measured manually compared to the rest and it was found that it changed in 

opposing directions in response to blockade (control: 156.2 ± 8.7ms vs. 4-AP: 164.7 ± 6.6ms – p=0.47; 

E-4031: 207.7 ± 15ms – p=0.003; HMR-1556: 196.2 ± 8ms – p=0.047; mean ± SEM) and enhancement 

(pinacidil: 146.6 ± 2.9ms – p = 0.01) (Figure 4.27). However, pinacidil influenced EGM features in the 

same direction as some of the K

+

 current blockers in some occasions. Such an example is EGM 

amplitude, where 4-AP caused a voltage reduction (control: 574.5 ± 31μV vs. 4-AP: 305.3 ± 21μV; 

p<0.0001), while E-4031, HMR-1556 and pinacidil caused an increase (E-4031: 1044 ± 73μV – 

p<0.0001; HMR-1556: 758.2 ± 73μV – p=0.003; pinacidil: 737.3 ± 60μV – p=0.007). There were also 

instances, such as RS interval, S-peak width, scale of minimum energy and mutual information (Figure 

4.27-4.), in which pinacidil did not have any effect on EGM features compared to the ion channel 

blockers.  
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Figure 4.27: Features mainly changed in an indiscriminate manner following drug exposure. With the 

exception of FPD, all features were quantified by automated feature extraction. The feature may be changed 

solely by one drug (such as EGM duration), by two drugs (such as EGM amplitude) or by all of them (such 

as FPD). FPD changes agree with ion channel blocker activity. Kruskal-Wallis test analysis. All bar charts 

represent mean±SEM; **p<0.01; ***p<0.001; ****p<0.0001. (Control: n=190 EGMs; 4-AP: n=72 EGMs; 

E-4031: n=73 EGMs; HMR-1556: n=27 EGMs; pinacidil: n=73 EGMs). The FPD bar graph were made 

using manually annotated data. 
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Figure 4.28: Features changed in an indiscriminate manner following drug exposure. Features changed in 

this way would not be informative enough when attempting  to distinguish K

+

 current enhancement from 

blockade. Kruskal-Wallis test analysis. All bar charts represent mean±SEM; ****p<0.0001. (Control: n=190 

EGMs; 4-AP: n=72 EGMs; E-4031: n=73 EGMs; HMR-1556: n=27 EGMs; pinacidil: n=73 EGMs). 

 

 

 

4.4 Discussion 

With the characterisation of EGM morphology following the modification of ion channel activity in 

cell monolayers, it was demonstrated that EGM morphology alterations can be extremely variable. 

These modifications are mainly dependent on the role of the function which is disrupted. Even though 

the average morphology changes in overall, not all features are significantly modified. Furthermore, 

there is always a different group of EGM characteristics that is related to these changes making it the 

EGM signature following abnormalities at cellular level. 
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As AP morphology is better characterised following ion channel modifications, specific AP features 

were investigated along their EGM correlates. That was the method in order to confirm the EGM effects 

due to changes in cellular function. Although there was discernible relationship between AP and EGM 

morphology features, this could not be achieved for the majority of characteristics analysed in this 

study, due to lack of knowledge on them. All but time-domain features were particularly under that 

category. 

 

All modifications and comparisons among experimental conditions presented in this chapter can justify 

the features selected during the automated feature selection process applied for the Chapter 7 findings 

and partially explain the machine learning results that followed in the same Chapter. 

 

4.4.1 Na+ channel blockade effects on EGM morphology 
 

The effects of Na

+

-channel deficiency on EGM morphology were assessed by exposing MO, NC 

cultures and NRVM/fibroblast co-cultures to increasing lidocaine concentrations. Lidocaine is a well-

known class I antiarrhythmic that inhibits ionic currents through selectively binding on voltage-gated 

Na

+

 channels (254,255). The highest dose of lidocaine in each cell group was decided based on the fact 

that one-to-one capture was lost beyond these concentrations. A similar approach was used by Anderson 

et al. (256). That team suggested that thee prolongation of QRS complex when combined with loss of 

one-to-one capture and increasingly distorted patterns during fixed-rate pacing were indications of 

progressive Na

+

-channel block (256). This study also showed that conduction velocity and EGM 

duration were inversely affected by lidocaine activity, leading to a strong relationship between upstroke 

duration and EGM duration. These findings agree with previous publications about conduction velocity 

reduction and upstroke duration increase due to Na

+

-channel blockade (256,257). 

 

However, upstroke duration and EGM duration did not change when there was an increased amount of 

fibroblast in cell culture, i.e. NC, +20% FB, +40% FB, while conduction velocity was influenced both 

by Na

+

-channel block and the increased presence of fibroblasts. EGM amplitude was affected in all 

types of cell monolayer though in different ways suggesting that it is a sensitive parameter for the 

assessment of fibroblast burden and low-level Na

+

 channel block. Thus, EGM amplitude could be used 

as a marker for evaluating the severity of conditions related to simultaneous Na

+

-channel deficiency 

and irregular levels of fibroblast amounts. In the clinic, this could be useful for the improvement of the 

recent approach of therapeutic ablation in Brugada Syndrome (BrS) (258,259). EGM amplitude could 
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help assess the severity of the arrhythmic substrate after identifying responsible regions using other 

markers, such as fractionation (6).  

 

EGM amplitude and fractionation may not be enough though for the accurate evaluation of a condition 

(7). Therefore, the fact that a relatively large number of EGM features were observed to notably change 

following the addition of high lidocaine doses in each type of cell culture suggests that other EGM 

features, beyond the traditional ones, need to be considered.  

 

4.4.2 Transient outward K+ current effects 
 
Transient outward K

+

 current, which is involved in the early repolarisation phase, is the net result of K

+

 

flux through two different types of channel. This channel activity is responsible for the fast I
to
 (I

to,f
) 

current, mediated by channels that recover inactivation in less than 100ms, and the slow I
to
 (I

to,s
) current, 

in which the recovery takes a few seconds (260,261). The expression of I
to,f

 and I
to,s

 channel proteins 

may vary with species, developmental stage and region of the heart (260). I
to,f

 is usually more prominent 

in ventricular epicardial myocytes rather than endocardial cells. I
to,f

  and I
to,s

 have similar contributions 

to total I
to
 in neonatal rodent ventricular myocytes (262,263), as the NRVMs used in this study.  

 

Changes in the early repolarisation phase affect the AP morphology. In specific, increased I
to
 current is 

correlated to AP shortening (262) and a decrease in I
to
 density, which is associated with aging, leads to 

AP prolongation (264). This is in agreement with the findings of this study, as it was shown that a 

reduction in I
to
 current in MO and NC cell cultures using 4-aminopyridine prolonged the APD. FPD, 

which is poorly studied in cell cultures, was found to be directly correlated to APD
90

 and to be 

influenced by I
to
 on the same way. The administration of 4-aminopyridine on MO and NC monolayers 

resulted to APD
90

 and FPD prolongation and a strong linear correlation between these two parameters. 

These results make a connection between optical mapping and EGM data collection showing that EGM 

morphology changes could be used for the prediction of adjacent AP modifications and subsequently 

functional changes at cellular level. 

 

It was also observed that a large number of EGM features changed following the administration of 4-

aminopyridine. 4-aminopyridine is a non-specific blocker of I
to
 and especially selective for the Ca

2+

-

independent (59,265) and 4-aminopyridine sensitive component often termed as I
to1

 (266). This fact 

may explain any unexpected alterations, such as the significant increase of EGM amplitude variation in 

NC cell cultures and the fractionation of data obtained from NRVM/+20% FB co-cultures. Another 

interesting effect of the 4-aminopyridine activity was the alteration of RR-interval in NC (reduction) 
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and NRVM/+20% FB co-cultures (increase). I
to
 downregulation and AP prolongation, both caused by 

4-aminopyridine, enhance arrhythmia vulnerability when they are both present in disease states (260). 

In addition to re-entry predisposing changes in refractoriness dispersion (267), triggered activity is often 

associated with increased AP duration (260). The Ca

2+

 influx enhancement, due to the 4-aminopyridine 

activity, leads to a greater cell and sarcoplasmic reticulum (SR) Ca

2+

 load. The SR Ca

2+

 overload 

influences the SR Ca

2+

 release facilitating arrhythmogenesis (260,268). This could explain the fact that 

RR-interval was diminished following I
to
 current blockade. 

 

4.4.3 L-type Ca2+ channel blockade effects 
 
Nifedipine is a well-studied L-type Ca

2+

 channel blocker (269). The present study demonstrated through 

optical mapping that nifedipine leads to decrease of APD
90

 in MO and NC cell cultures, as a result of 

the loss of the plateau phase. This indicates the successful L-type Ca

2+

 channel blockade and allows the 

assumption that the simultaneous decrease of FPD on unipolar extracellular EGMs is due to the same 

fact. 

 

L-type Ca

2+

 channel modulations, more often due to gene mutations, are responsible for QT interval 

shortening and the short QT syndrome (270). This clinical condition is related to families characterised 

by sudden cardiac death, atrial fibrillation and Brugada type I ECG pattern (57). There is poor 

knowledge on the EGM effects of L-type Ca

2+

 channel deficiency or blockade on cultured ventricular 

monolayers and since the dual modality experiments showed that I
CaL

 blockade could be predicted by 

analysing the FPD, it would be interesting to confirm QT shortening on NRVM/cultured fibroblast co-

cultures. However, the inability for accurate T-wave detection, as described in Chapter 3, was a 

prohibiting factor. It was also observed that a relatively small number of features were altered. This 

could be a result of the specific pharmacological activity of nifedipine among a variety of L-type Ca

2+

 

antagonists, such as verapamil and diltiazem (271).  

 

 

4.4.4 The influence of rapidly activating delayed rectifier K+ current on 
EGM morphology 
 
The ventricular action potential of most species is terminated by the delayed rectifier K

+

 current (I
K
). It 

consists of a rapidly activating (I
Kr

) and slowly activating (I
Ks

) component (272). E-4031, a class III 

anti-arrhythmic agent (273), has been shown to prolong APD in guinea pig ventricles and papillary 

muscles derived from adult rats and guinea pigs (274) by blocking ERG channel, the rat analogue of 
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HERG channel (275). In a similar way, the optical mapping results showed that E-4031 significantly 

prolonged APD
90

. This effect took place simultaneously with the FPD prolongation and a direct 

correlation between these AP and EGM characteristics was found. This agrees with previous 

publications reporting that the blockade of HERG channel by class III anti-arrhythmics is responsible 

for APD prolongation alongside prolonged QT interval, as measured by body surface ECG, and 

subsequent long QT syndrome (LQTS) or Torsades de Pointes (TdP) (276).  

 

Loss of one-to-one capture, indicating fibrillation event, was observed on EGM data collected from NC 

and +40% FB cell cultures. This change was accompanied with extended RS interval in NC cultures 

and diminished EGM amplitude and enhanced voltage variability within electrode recordings in +40% 

FB monolayers. There are a number of assumptions that can be made for the reason of these effects. 

Even though it is known that ERG channels are responsible for the generation of I
Kr

 current in rats 

(275), it does not seem that the ERG subunits are expressed in fibroblasts extracted from neonatal rat 

ventricles (277). This suggests that I
Kr 

may be absent from neonatal rat ventricular fibroblasts, and 

therefore the total I
Kr

 current of NC and +40% FB cell cultures could be lower than normal in any 

experimental model of this study. As a result, the I
Kr 

density may be lower in these types of cell culture 

and the effect of E-4031 is more severe. However, the variable time-domain feature modifications may 

be due to the different electrophysiological characteristics between cultured and naturally occurring 

fibroblasts. Fibroblast culture produces phenotypic changes resulting in activation of pathological 

signalling pathways and the expression of myocyte-like characteristics, such as increased connexin 

expression and electrical coupling (278,279). Thus, the electrophysiological mechanisms must be 

different between NC and +40% FB cultures.  

 

4.4.5 Slowly activating delayed rectifier K+ current related changes 
 
The slowly activating delayed rectifier K

+

 current (I
Ks

) is one of the K

+

 currents, the other being I
Kr

, 

predominantly contributing to repolarisation of the cardiac action potential (280,281). The inhibition of 

these currents, resulting to AP prolongation, is considered to be antiarrhythmic and proarrhythmic 

depending on conditons (281,282). Even though the effects of I
Kr

 blockade are well investigated, there 

is poor knowledge about the ways that I
Ks

 blockade influences cellular electrophysiology, due to the 

lack of available highly selective I
Ks

 blockers (283). HMR-1556 ((3R,4S)-(+)-N-[3-hydroxy-2,2-

dimethyl-6-(4,4,4-trifluorobutoxy)chromatin-4-yl]-N-methylmethanesulfonamide is a novel 

chromanol  developed approximately a decade ago as a selective I
Ks

 blocker (283–285). The effects of 

HMR-1556 in NRVMs were previously untested. The range of doses used in this study was broader 

than that used for the initial characterisation of the drug in isolated guinea pig ventricular myocytes 
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(285). Despite this fact, no changes could be provoked either on APD
90

 or FPD measured on myocyte 

only and NC cell cultures in response to HMR-1556. This was unexpected considering the specificity 

of HMR-1556 for I
Ks

 current (283,285) and the role of I
Ks

 in repolarisation in NRVMs paced at 1Hz 

(286). This effect could be explained by HMR-1556 applications in other experimental models, where 

it was shown that the combined blockade of I
Kr

 and I
Ks

 was necessary for APD prolongation following 

the administration of HMR-1556 (287). 

 

Apart from FPD, other components of EGM morphology were also affected by HMR-1556. These 

features were influenced in variable ways depending on the type of K

+

 blockade (I
to
, I

Kr
, I

Ks
). This 

suggests that EGM feature extraction, as applied in this study, could be used in order to make refined 

discriminations about the function of specific currents. In addition, the pattern of EGM morphology 

changes was very similar between NC and +20% FB cell cultures, but completely different to the one 

observed in EGMs recorded from myocyte only cell cultures. The increased presence of fibroblasts in 

NC and NRVM/FB co-cultures could explain this, but there is no clear biological explanation for this 

observation warranting further investigation nonetheless. I
Ks

-induced modifications are better 

investigated using ECG on the context of LQTS and much less work has been carried out on how EGM 

morphology may be affected (288). The results presented in this study are a first step towards this.  

 

4.4.6 K+ current enhancement alters EGM morphology 
 
Cardiac K

ATP
 channels are closed under normal conditions and their contribution to the AP is limited. 

The imposition of ischaemia and other metabolic stressors provoke the opening of ion channels to 

provide outward current that leads to AP abbreviation. The enhancement of I
KATP

 in this study was 

achieved by using pinacidil, a drug which has been showed to influence the transient outward current 

in some models (289). As a result, the dual modality data showed that APD
90

 and FPD were reduced. 

This agrees with the current knowledge that the enhancement of transient outward K

+

 current 

abbreviates the AP. The AP plateau (phase 2) becomes shorter limiting Ca

2+

 influx to reduce 

contractility and preserve cell energy supplies (290). Moreover, previous patch clamp studies showed 

that pinacidil enhanced I
KATP

 in NRVMs resulting to the abbreviation of FPD (291) in a similar way as 

presented in this study.  

 

Further to the initial characterisation of FPD, any alterations to non-conventional EGM morphology 

features were assessed. A number of features were changed following the administration of pinacidil 

and in some cases these modifications were opposing to K

+

 current blockade effects. This is another 

indication within this study that the performed EGM morphology analysis has the ability to distinguish 
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functional modulations. ECG analysis in the time-frequency domain is well established, but there is 

much less experience on analysing EGMs in this way (292). These findings characterise the differences 

in EGM morphology alterations between K

+

 current blockade and enhancement.  

 

There were also features affected by drug exposure, but not enough to be informative for distinguishing 

K

+

 current enhancement from blockade. Finally, there were features altered in the same direction by 

pharmacological agents with opposing effects, which is an indication of low specificity. For instance, 

pinacidil is known to reduce I
to
 in relatively low concentrations in canine ventricular myocytes (13). 

Since this is an effect of mimicking the 4-AP activity, it could also explain the fact of similar effects 

between drugs with opposing activity.  

 

 

4.4.7 Investigating the effects of double current blockade 
 
Ion channel remodelling occurs in a variety of cardiac diseases and rhythm disturbances. These 

alterations may be part of the homeostatic adaptive response to the primary abnormality, but they can 

also result in secondary cardiac dysfunctions (293). In many occasions multiple ion channel 

dysfunctions may take place simultaneously, such as in congestive heart disease, myocardial infarction 

and atrial fibrillation (293). I
Na

 and I
CaL

 currents can be concurrently downregulated, but this is also 

species specific (293). It has been observed that I
Na 

may not be reduced in AF patients due to no changes 

in I
Na 

density (294) or the expression of α-subunits of Na

+

 channels at the mRNA level (295). There is 

lack of experience on the effects of double ion channel blockade on AP and EGM morphology, 

especially on NRVM and this study used myocyte only and NC cell cultures for proof-of-concept 

investigations.  

 

It was observed that APD
90

 and FPD were both abbreviated in myocyte only, but not in NC cultures, 

following the concurrent I
Na

 and I
CaL

 blockade using lidocaine and nifedipine. This could be the result 

of I
CaL

 blockade. Ca

2+

 reduction is an adaptation mechanism in atrial myocytes during AF, as a result 

of increased atrial Ca

2+

 loading during tachycardia (296), in order to minimise potentially lethal Ca

2+

 

overload (297). The I
CaL

 reduction may be one of the AF consequences, but it is also one of its 

maintenance contributors. By blocking the I
CaL

 current in this study, I managed to reproduce the APD 

reduction which is typical of atrial tachycardia remodelling (293,298). On the other hand, the reason 

that I
Na

 reduction did not manage to prolong upstroke duration and EGM duration or lead to conduction 

slowing is unclear. Conduction slowing was not statistically significant. However, there was either 

rotational activity on cell monolayers on highest lidocaine/nifedipine doses or loss of cellular 
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electrophysiology activity. Previous studies showed that when I
Na

 is decreased, especially due to loss-

of-function mutations, it can promote AF by slowing conduction velocity and causing reentrant activity 

(54).  

 

RR interval was the only time-domain characteristic to be modified in myocyte only cell cultures, while 

the rest of features belonged to time-frequency domain and frequency-domain analysis. However, a 

different group of features was influenced in NC monolayers which included the voltage elimination, 

which could be the result of I
Na

 reduction (293). No changes in upstroke duration or EGM duration were 

found though which is contradicting since I
Na

 regulates the depolarisation (293).  

 

4.5 Limitations 

There is no doubt that T-waves are routinely used in the clinic for the assessment of clinical conditions, 

such as Torsades de Pointes (TdP) and long QT syndrome (LQTS) (276,288,299). It is also the main 

way of studying the effects of ion channel remodelling in repolarisation (281,288). Therefore, one of 

the major limitations of this study arose from the absence of automated detection of T-waves, and the 

subsequent analysis of T-wave related features, such as FPD, T-wave amplitude and duration. This 

would allow us to investigate how the QT interval is modified under functional modulations, not only 

in cell monolayers but also in tissue slices. Apart from the dual modality experiments conducted during 

this study, the effects on repolarisation were assessed using EGM measures only. This may be 

unimportant though given the close correlation noted between APD
90

 and FPD in this investigation and 

elsewhere (40). The reasons behind this limitation have been discussed in Chapter 3. 

 

The generation of the action potential and the regional differences that are observed throughout the 

heart are the result of the greater complexity of ion channel function consisting of a network of ion 

channels distributed on the cell membrane (300). Even though the main ion currents were studied in 

isolation for the purposes of this study, there are a number of additional ones which still remain to be 

investigated for their influence on EGM morphology. These currents include I
Kur

, I
KAch

, I
K1

, NCX and 

I
f
 (300). Since each one of these currents play a key role in the generation of a normal action potential 

and abnormalities on them are related to cardiac diseases, it would be interesting how they affect EGM 

morphology both in isolation and in combination with other ion currents.  

 

The majority of ion channel studies are focused on AP changes and regarding EGM morphology, these 

are limited to basic time-domain characteristics. However, the EGM morphology analysis showed that 

a variety of features belonging to varied types of data analysis can be affected. Our current knowledge 



 157 

about the role of ion channel deficiencies on cardiac arrhythmias makes it difficult to suggest any 

mechanisms which are responsible for changes in time-frequency domain and frequency-domain 

analysis feature. Even though modulation-specific patterns were found, it would be interesting to 

understand the reasons behind each modification. 

 

Dual modality experiments combining optical mapping and MEA recordings at multicellular 

preparations were carried out in this study. This provided direct and concurrent validation of how AP 

changes at a single cell level can manifest on EGM morphology. However, these experiments were not 

conducted on each type of cell culture treated with each modulator, due to difficulties in preparing cell 

monolayers that could be stimulated and the variability of the quality of samples. 

 

 

4.6 Conclusions 

The effects of ion current modifications on EGM morphology, either in isolation or combined with 

cellular scar, were systematically demonstrated in this chapter. Some of the EGM features were 

primarily correlated to AP morphology changes, in order to validate the effect of the pharmacological 

agents used in this study. It was found that a number of EGM features changed in each case, and while 

there may be similarities in a few cases, the extent to which features were modified was unique for each 

type of modification. Therefore, these features could be used to distinguish the groups when a 

modification is unknown. It can be suspected that each drug used in this thesis has relatively specific 

effects compared to the rest and any morphology changes constitute the EGM signature characterising 

a specific modulation. In overall, interesting insights were gained on the way that EGM morphology 

can be affected and this knowledge could promote further studies for the understanding of the 

underlying mechanisms that occur on ion current abnormalities.   
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Chapter 5 

 

EGM morphology effects of gap junctional block 

in multicellular preparations 
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5.1 Introduction 

Gap junctions are transmembrane channels that facilitate intracellular coupling and allow the transfer 

of ions and small molecules between cells by directly linking the cytoplasmic components of 

neighbouring cells (43–45). The involvement of gap junctions on the electrical coupling between cells 

plays a key role in allowing the orderly spread of electrical excitation across the myocardium. Gap 

junction remodelling, which involves alterations in expression, function and distribution, is known to 

affect cardiac impulse propagation and is also related to cardiac pathologies and cardiac arrhythmias 

(43,44). Gap junction remodelling is related to changes in gap junction function, such as the 

phosphorylation state, or structural modifications, such as changes in expression levels or the cellular 

localisation of connexin. Multiple studies have showed that the altered gap junction localisation and 

expression levels contribute in arrhythmogenesis both in human and animal models (44,301,302). Cx43 

may change its cellular localisation from the intercalated disc at the ends of myocytes to the lateral 

membrane away from the intercalated disc. This phenomenon is known as lateralisation (303). 

Structural remodelling has been also associated with conduction slowing in dilated cardiomyopathy 

(304), ischaemia (305), heart failure (306) and atrial fibrillation (307). 

 

Pharmacological gap junction modulators are potential anti-arrhythmic agents, because gap junction 

abnormalities have been found to be part of arrhythmogenic mechanisms (308). These drugs modulate 

the gap junctional intercellular communication either by uncoupling or coupling. The uncoupling 

involves the enhancement of the intercellular electric resistance, while coupling includes the opposite 

mechanism. A number of agents are currently available for gap junction modulations. Lyophilic agents, 

such as heptanol, octanol, myristoleic acid and carbenoxolone act as uncouplers (309–311). AAP10 and 

rotigaptide are known for enhancing gap junctional intercellular communication (312,313).  

 

According to previous studies on isolated rabbit ventricular myocytes, carbenoxolone, and consequently 

conduction slowing, is responsible for voltage reduction and a decrease in the steepest negative slope 

of unipolar extracellular EGMs (314). Fractionation has been also related to modulated intercellular 

communication due to changes in atrial Cx40 and Cx43 distribution (315), which has been suspected 

to be another way of gap junction remodelling (43). Moreover, we have shown that carbenoxolone leads 

to abbreviated APD
90

 and consequently FPD in myocyte only NRVM cultures (40). It is unclear though 

how EGM morphology obtained from isolated cells may be further modified due to the gap junctional 

block. A better characterisation of EGM morphology following gap junction uncoupling is necessary, 

in order to accurately distinguish this type of remodelling from ion current abnormalities, as discussed 

in Chapter 4, using EGM features in addition to the conventional ones of voltage and fractionation.  
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As it has already become clear through in vitro and in vivo studies, and as it was presented in Chapter 

1, there is a limited understanding of the underlying mechanisms leading to EGM modifications. In 

vitro and ex vivo models are preferred though for the present investigation because of the degree of 

manipulation which is possible, compared to an in vivo experimental setting. On one hand, NRVM 

monolayers are well established and characterised (172). On the other hand, thin tissue slices of the 

human myocardium retain structural and functional properties of native myocardium and remain viable 

for several hours ex vivo (20). In addition, conduction velocities in such in vitro and ex vivo models are 

similar and representative of in vivo findings (20). 

 

In this part of the thesis carbenoxolone was used as a tool to investigate the role of gap junction 

uncoupling on specific modifications of EGM morphology. The hypotheses to be addressed were: 

1. APD modifications due to gap junction uncoupling can be correlated to modified EGM 

features. 

2. Administration of carbenoxolone in NRVM monolayers will lead to conduction slowing and 

fractionated and low voltage EGM due to reduction in intercellular communication. 

3. Conduction slowing due to gap junction uncoupling is presented through additional feature 

alterations.  

4. Administration of carbenoxolone in tissue slices will have similar effects on EGM morphology 

as in cell cultures. 

 

For this purpose, the effect of gap junction uncoupling was investigated by administering CBX in the 

different types of cell culture, presented in section 2.2.1, and carrying out the dual modality technique 

showed in section 4.2.4. EGM and action potential recordings were analysed and correlated to each 

other. The range of 5μM – 100μΜ CBX was investigated in each culture – higher doses were toxic for 

NRVMs. The EGMs, recorded in the baseline level and following gap junction uncoupling by the CBX 

concentration closest to the IC
50

 for each culture, were analysed using the automated feature analysis 

presented in Chapter 3. 
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5.2 Results 

 

5.2.1 The effects of gap junction uncoupling on cellular EGM 
morphology 
 

Gap junction uncoupling was carried out on myocyte only NRVM cultures using CBX. The IC
50

, which 

was used during concurrent optical mapping and MEA recordings, was 15.8μM. This was calculated as 

the average of IC
50

 concentrations at 1Hz and 5Hz (16.7μM and 14.9μM respectively) (Figure 5.1A). 

Electrical restitution occurred by stimulating cells at progressively reduced pacing cycle lengths from 

1000 to 200ms both before and after the administration of CBX. Both APD
90

 (control: 1Hz 

190.78±48ms, 5Hz 125.7±3ms, n=6 arrays; CBX: 1Hz 151.5±37ms, 4Hz 115.7±17ms, n=5 arrays; 

p<0.01; mean ± SEM) and FPD (control: 1Hz 191.5±47ms, 4Hz 113.4±18ms, n=6 arrays; CBX: 1Hz 

149.8±46ms, 4Hz 88.3±27ms, n=5 arrays; p<0.001; mean ± SEM) were affected not only by gap 

junctional block, but also by pacing rate (APD
90

: p<0.001; FPD: p<0.0001) (Figure 5.1B-C). Linear 

regression analysis showed a direct correlation between APD
90

 and FPD (r

2

=0.82, Sy.x=18.7, slope = 

1.14±0.07, p<0.0001, n=59) and there was no significant change in correlation coefficients and slopes 

when this relationship was studied before or after gap junction uncoupling (control: r

2

=0.85, slope = 

1.079±0.09; CBX: r

2

=0.72, slope = 1.1±0.14; p=0.06) (Figure 5.1D). The Bland-Altman plot revealed 

that FPD was systematically 38ms shorter after the administration of CBX (Figure 5.1E). The 

differences did not seem to be affected by the magnitude of average FPD and approximately 7% (2 out 

of 28) of the differences were out of the limits of agreement for FPD. 

 

The automated analysis of EGM morphology showed that 20 features changed (Figure 5.2A) due to the 

administration of 20μM CBX, the closest concentration to the IC
50 

from those tested in the range of 

5μM – 100μM. Significant changes mostly involved reductions of feature characteristics, such as the 

average EGM amplitude (control: 392.4±8ms; CBX: 85±2ms; p<0.0001; mean ± SEM). Among the 

features that increased was fractionation index (control: 1.2±0.04; CBX: 2.7±0.1; p<0.0001) and RS 

interval (control: 0.55±0.02ms; CBX: 1.74±0.08ms; p<0.0001; mean ± SEM). In overall, all extracted 

features were modified to some extent (Figure 5.2B). 

 

Concurrent optical mapping and MEA experiments were carried out on NC cell cultures and 

NRVM/+20% fibroblasts co-cultures, in combination with gap junction uncoupling. For that purpose, 

the IC
50

 of CBX was used, which was extracted from dose response curves based on data collected from 

each cell group (NC: 38.8μM; Low %FB: 2.65μM) (Figure 5.3A-B). Rate adaptation of APD
90

 and FPD 
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before and after the gap junction uncoupling at NC monolayers was seen (p=0.0015 and p=0.0008 

respectively) (Figure 5.3C-D). 

 

 

Figure 5.1: (A) Dose response curve for the effect of CBX on CV at 1Hz and 5Hz, in order to extract the 

average of IC
50

 at both frequencies. (B) APD
90

 restitution curve showing that it is affected both by pacing 

rate (p=0.007) and gap junction uncoupling (p=0.0002). (C) Restitution curve presenting how FPD was 

affected by pacing rate (p<0.0001) and CBX activity (p=0.0008). Control: n=6 arrays; CBX: n=6 arrays both 

for (B) and (C). APD
90

 and FPD plots were made using manually annotated data. (D) Linear relationship 

between FPD and APD
90

 (r

2

=0.82; Sy.x=18.7, slope=0.99; p<0.0001, n=59). (E) Bland-Altman plot for FPD 

at baseline and following gap junction uncoupling using CBX in NRVM cell monolayers. The middle bold line 

is the average difference between the baseline and gap junction coupling. Two additional lines are the upper and 

lower bounds of the limits of agreement.  (F) Isochronal activation maps for the wavefront propagation before 

and after gap junction uncoupling in myocyte only cell cultures. (G) Superimposed action potentials (top) 

and EGMs (bottom) obtained from the same electrode (left) before and after gap junction uncoupling. Mean 

± SEM; **p<0.01; ***p<0.001; ****p<0.0001.      
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However, there was no change in APD
90

 and FPD due to the CBX activity (p=0.48 and p=0.57 

respectively). There was also no observed difference in APD
90

 in NC and +20% FB cell cultures (NC: 

1Hz control – 170.8±6.3ms, CBX - 208.5±24.7ms, n=4 arrays; +20% FB: 1Hz control – 206ms, CBX 

– 210.9ms, n=1 array, p=0.48; mean ± SEM) (Figure 5.3E). Furthermore, no FPD change was observed 

in both cell groups (NC: 1Hz control – 167.2±8.7ms, CBX - 185±25.5ms, n=4 arrays; Low% FB: 1Hz 

control – 193ms, CBX – 231ms, n=1, p=0.39; mean ± SEM) (Figure 5.3F). Linear regression analysis 

showed a direct correlation between APD
90

 and FPD measured on data obtained from both types of cell 

culture (r

2

 = 0.65, Sy.x=21.1, slope = 0.97±0.07, p<0.0001, n=104) and there was a linear relationship 

even within each group (NC: r

2

 = 0.56, Sy.x=19.1, slope = 0.88±0.1, p<0.0001, n=90; Low %FB: r

2

 = 

0.49, Sy.x=28.8, slope = 0.82±0.2, p = 0.005, n=14) (Figure 5.3G).  Conduction velocity was affected 

both by the type of cellular scar (p=0.012) and gap junction uncoupling (NC: 1Hz control – 

22.22±1.2cm/s, CBX – 7.7±1.8cm/s, n = 4 arrays; Low %FB: 1Hz control – 5.86cm/s, CBX: 2cm/s, n 

= 1; p = 0.027; mean ± SEM) (Figure 5.3H).  
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Figure 5.2: EGM morphology modifications due to gap junction uncoupling when 40μM CBX were 

administered on myocyte only cultures. (Α) Features significantly changed due to CBX. Mann-Whitney test 

analysis. (Β) Quantification of EGM morphology changes following gap junction uncoupling using 40μM 

CBX as compared to the average control EGM morphology. All bar charts represent mean±SEM; *p<0.05; 

**p<0.01; ***p<0.001; ****p<0.0001. (Control: n = 481 EGMs; CBX: n=446 EGMs).
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Figure 5.3: (A-B) Dose response curves showing the effect of a range of CBX doses on the conduction 

velocity measured on natural cell composition (A) cultures and co-cultures of NRVMs with low amount of 

cultured fibroblasts (B). (C-D) Restitution curves showing that APD
90

 (C) was affected by the pacing cycle 

length only (p=0.002), and gap junction uncoupling did not cause significant changes either on APD
90

 or 

FPD (D), obtained from NC culture data. (E-F) No significant changes due to CBX activity were observed 

on the APD
90

 (E) or FPD (F) obtained from 1Hz recordings. APD
90

 and FPD plots were made using manually 

annotated data. (G) Linear regression analysis showed a trend towards a linear relationship between APD
90

 

and FPD measured from NC and low amount of fibroblasts cell cultures. (H) Two-way ANOVA showed 

that conduction velocity was significantly reduced due to gap junction uncoupling in both groups. (I-J) 

Isochronal activation maps before and after gap junction uncoupling in NC cell cultures (I) and co-cultures 

of NRVM with low amount of fibroblasts (J). Mean ± SEM. *p<0.05; **p<0.01.  
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Figure 5.4: Modifications on EGM morphology due to gap junction uncoupling when 40μM CBX were 

administered on NC cultures. (A) Features significantly changed due to CBX activity. Mann-Whitney test 

analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (B) 

Quantification of EGM morphology changes following gap junction uncoupling as compared to the average 

control EGM morphology. (Control: n = 64 EGMs; CBX = 43 EGMs).
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Figure 5.5: EGM morphology modifications due to gap junction uncoupling when 3μM CBX were 

administered on NRVM/+20% fibroblast co-cultures. (A) Features significantly changed due to CBX. Mann-

Whitney test analysis. (B) Quantification of EGM morphology changes following the enhancement gap 

junction uncoupling using 3μM CBX on NRVM/20% fibroblast co-cultures when compared to the average 

control EGM morphology. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001. (Control: n = 29 EGMs; CBX: n=24 EGMs). 

 

 

 



 168 

 

Gap junction uncoupling in NC cultures using 40μM CBX significantly affected 18 EGM features 

(Figure 5.4A). In this group, there was an equal amount of features that increased, such as fractionation 

index (control: 1.45±0.1; CBX: 4.5±0.3; p<0.0001; mean ± SEM), which changed by +210% compared 

to control data, and RS interval (control: 2.2±0.5ms; CBX: 2.7±0.3ms; p<0.0001; mean ± SEM), or 

decreased, such as the average EGM amplitude (control: 514±31μV; CBX: 98.4±9.7μV; p<0.0001; 

mean ± SEM). Regarding the data obtained from co-cultured NRVMs with +20% cultured fibroblasts, 

22 features were modified due to gap junction uncoupling using 3μM CBX (Figure 5.5A). These also 

included the average EGM amplitude (control: 374±53μV; CBX: 152±27μV; p<0.0001; mean ± SEM) 

and EGM duration (control: 7.8±0.9ms; CBX: 13±1.3ms; p = 0.004), but not fractionation index 

(control: 3.2±0.3; CBX: 3.5±0.27; p = 0.35), which was modified in other cell culture groups due to 

intercellular uncoupling (Figure 5.5A). 

 

 

5.2.2 Effects on upstroke heterogeneity and fractionation at the single 
cell level 
 

Dual modality recordings obtained before and after the administration of 15.8μM (IC
50

) CBX were 

analysed for individual myocytes belonging on the same group of cells on top of an electrode. The 

purpose of this was the investigation of the possible AP upstroke timing heterogeneity, alongside EGM 

fractionation. It was observed that the time point of the upstroke peak was similar for all traces derived 

from the same electrode at the baseline state (Figure 5.6C). However, the timing of the upstroke peak 

was spread across an electrode following gap junction uncoupling (Figure 5.6D). The larger distribution 

of the upstroke peak time point was concurrent with an increase of EGM fractionation. Linear regression 

analysis using data obtained from 7 cells before and after the addition of CBX showed that fractionation 

was directly correlated to the time difference (ΔT) between upstroke peak time points of two cells 

located across an electrode (r

2

=0.74, Sy.x=0.52, slope=0.57, p<0.0001, n=14 electrodes - with 

approximately 3 cells tested on each electrode) (Figure 5.6B). 
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Figure 5.6: Single cell level correlation of action potential dispersion and EGM fractionation. (A) NRVM 

monolayer obtained by optical imaging, where the outlines of three neighbouring myocytes are highlighted. 

The cells are placed in a series across the electrode. (B) Linear regression graph presenting the correlation 

between fractionation and the time dispersion of upstroke peaks for cells in positions 1 and 3 on the electrode 

before and after the administration of 15.8μM CBX (r

2

=0.74, Sy.x=0.52, slope=0.57, p<0.0001). (C) (Top) 

Action potentials obtained from three single myocytes located in positions 1-3, as shown in (A), at the 

baseline state. Upstroke duration is the same for all cells. (Bottom) EGM obtained from the same group of 

cells before gap junction uncoupling. (D) (Top) Superimposed action potentials obtained from the same cells 

as in (C) after the addition of CBX. Upstroke duration increases alongside the AP propagation. (Bottom) 

The corresponding EGM showed decreased amplitude, increased fractionation and prolonged EGM duration 

due to gap junction uncoupling. Adapted from Chowdhury, Tzortzis et al. (40). 

 
 

5.2.3 The effects of gap junction uncoupling on human ventricular slice-
derived EGM morphology 
 

Simultaneous MEA and optical mapping recordings were obtained between 0.2Hz to 1Hz from ex vivo 

adult human cardiac slices. These slices were derived from the epicardial (n=8) and the endocardial 

(n=8) left ventricular wall. The intact slice results reconfirmed those of the cell monolayer models about 

the direct relationship between APD
90

 and FPD both in the epicardial and the endocardial samples at 

the baseline status (r

2

=0.64, p<0.0001) (Figure 5.7A-B). In addition, the effects of gap junction 

uncoupling by CBX were studied. Dose response experiments for CBX were not carried out on slices 

and the same IC
50

 of CBX, as the one used for experiments on myocyte only cell cultures, was used 

which was 15.8μM. Cx43 is the main connexin expressed in adult human ventricles and cultured 
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NRVMs (316,317). The slices used for this purpose (n=4) were derived from the endocardial side of 

the same left ventricular sample. Adjacent slices were alternatively used as control samples and CBX 

treatment (Figure 5.7A). The collagen coverage, as a marker of the size of fibrotic regions, was 22.6 ± 

0.4% of the total area in slices used as control (n = 2) and 23.3 ± 2% in slices perfused with CBX (n = 

2) (Figure 5.7B). There was no significant difference in the amount of collagen area between the groups 

of slices. The analysis showed that gap junction uncoupling modified APD
90

 (control: 0.2Hz 883.6 ± 

77ms, 1Hz 522.6 ± 194.6ms; CBX: 0.2Hz 481.3 ± 122.8ms, 1Hz 445.5±50.6ms; n=8; p<0.0001; mean 

± SEM) and restitution was seen due to stimulation frequency (p<0.01). There was also a significant 

interaction between these factors (p<0.05, ordinary two-way ANOVA) (Figure 5.8D). FPD was affected 

by pacing frequency (control: 0.2Hz 603.9 ± 33.2ms, 1Hz 522.5 ± 135.1ms; CBX: 0.2Hz 622.5 ± 

46.3ms, 1Hz 455.7 ± 45ms; n=4; mean ± SEM), but not by gap junction uncoupling (Figure 5.8E). A 

linear relationship between APD
90

 and FPD was observed (r

2

=0.64, slope = 0.39, p<0.0001). This 

relationship was not significantly different between the before and after gap junction uncoupling data 

(control: r

2

=0.63, slope = 0.51; CBX: r

2

=0.77, slope = 0.68; p = 0.24; mean ± SEM) (Figure 5.8F). 

Linear regression analysis showed that there was no correlation between conduction velocity and EGM 

duration (r

2

=0.14, slope= -0.14±0.08, p=0.1) (Figure 5.7G), despite the decrease in conduction velocity 

(control: 12.92 ± 1.5cm/s; CBX: 7.9 ± 0.7cm/s; p=0.008; mean ± SEM). EGM duration remained stable 

(control: 39.5 ± 4ms; CBX: 33.2 ± 2.7ms; p=0.23; mean ± SEM).  

 

 

Figure 5.7: Quantification of collagen coverage on slices derived from human left ventricle. (A) Adjacent 

slices stimulated for obtaining EGM data before (control) and after (CBX) the perfusion with CBX. Two 

slices were used per condition. (B) The bar graph presents no difference on the size of collagen coverage 

between slices used in experiments (Control: n=2; CBX: n=2). Mann-Whitney t-test. Bar charts represent 

mean ± SEM. ns = non-significant. 
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A thorough analysis of EGM morphology with or without gap junctional block using 15.8μM CBX 

showed that 25 features were affected (Figure 5.9A). These were features belonging to all types of EGM 

analysis, i.e. time-domain, frequency-domain, time-frequency. Voltage was increased (control: 2423 ± 

272.5μV, n=55 EGMs; CBX: 3429 ± 328μV, n=40 EGMs; 2 slices each; p = 0.006; mean ± SEM), 

EGM duration was abbreviated (control: 40.1±0.9ms; CBX: 17.6±1ms; p<0.0001; mean ± SEM) and 

fractionation index was also reduced (control: 4.27±0.4; CBX: 2.6±0.3; p<0.0001; mean ± SEM). Gap 

junction uncoupling affected EGM morphology the opposite way when CBX was applied on NRVM 

cultures, as presented in section 5.2.1. The EGMs used in this analysis were collected throughout the 

slice surface and there was no relationship with specific scarred or non-scarred regions. Comparing the 

average EGM morphology following CBX administration with the control morphology, it can be seen 

that half of features increased and the rest decreased (Figure 5.9B). Dominant frequency was the only 

characteristic that remained unaffected.   
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Figure 5.8: (A-B) Correlation between APD
90

 and FPD in human ventricular slices obtained from the 

epicardium (n=36 EGMs, obtained from 8 slices in total) (A) and the endocardium (n=29 EGMs obtained 

from 6 slices in total) (B). MEA and optical mapping recordings were obtained simultaneously, and the 

results show that APD
90

 and FPD have a linear relationship (epicardium: r

2

=0.64; slope=0.76; p<0.0001, 

endocardium: r

2

=0.64; slope=0.69; p<0.0001). (C) Action potential (top) obtained from human epicardial 

slice and the concurrent EGM (bottom), both derived from the same electrode on the left. (D-E) Restitution 

curves showing that APD
90

 changed significantly due to the pacing rate (p<0.01) and the gap junction 

uncoupling (p<0.001) (D), while FPD was affected by the pacing rate only (p<0.001) (E). APD
90

 and FPD 

plots were made using manually annotated data. (F) Linear regression analysis for the relationship between 

APD
90

 and FPD before and after the administration of CBX. (G) No correlation was observed between 

conduction velocity and EGM duration, as measured before and after gap junction uncoupling (r

2

=0.14; 

slope=-0.14±0.08; p=0.1). (H) Isochronal maps of the wavefront propagation before and after the CBX 

administration in adjacent tissue slices. All bar charts represent mean ± SEM; **p<0.01; ***p<0.001.  
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Figure 5.9: (A) Modified EGM features due to gap junction uncoupling when human left ventricle tissue 

slices were perfused with 15.8μM CBX. Mann-Whitney test analysis. (B) Quantification of EGM 

morphology changes following gap junction uncoupling using 15.8μM CBX on humna left ventricle tissue 

slices when compared to the average control EGM morphology. All bar charts represent mean±SEM; 

*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (Control: 2 slices, n = 55 EGMs; CBX: 2 slices, n=40 

EGMs.
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5.3 Discussion 

 

The main findings of this part of the thesis are that CBX shortened both APD
90

 and FPD in MO cell 

cultures and tissue slices, while the direct relationship between them was maintained following gap 

junctional block. EGM morphology changed dramatically in all experimental models, including new 

features in addition to the traditional ones of voltage and fractionation. However, despite the fact that 

CBX led to conduction slowing in tissue slices, the EGM feature alterations were made towards the 

opposite direction than the changes that were observed in vitro. Based on these results, the initial 

hypotheses can be accepted apart from the one stating that gap junction uncoupling should affect EGM 

features on a similar way in in vitro and ex vivo models. 

 

 

5.3.1 In vitro gap junction uncoupling influence on EGM morphology  
 

CBX, a well investigated anti-ulcer drug, has been also studied for its ability to block gap junctions 

(318). Gap junction uncoupling due to CBX leads to conduction slowing and increased fractionation, 

as shown from data obtained from the left ventricle of hypertrophic cardiomyopathy patients (15), right 

atrial and right ventricular activation mapping on humans in sinus rhythm (16) and isolated rabbit left 

ventricular myocytes (12). The findings from MO and NC cell cultures were in agreement with this. 

However, no increased fractionation was observed in NRVM/+20% FB co-cultures. A general 

observation that has to be acknowledged though was the fact that the blockade of intercellular electrical 

coupling using CBX changed all computed features.  

 

The optical mapping data presented significantly abbreviated APD
90

 in MO cultures, while this was not 

the case in NC and +20% FB cell cultures, where both characteristics remained stable. There is limited 

understanding about the effects of gap junction uncoupling on AP morphology and duration. It has been 

suggested that CBX can either prolong APD in perfused adult rat hearts (319) or it had no effect on the 

AP of rabbit ventricular myocytes (314,320). Cx40 and Cx43 knock-out experiments on neonatal 

murine ventricular myocytes caused gap junction uncoupling and APD shortening (321). It could be 

suspected that these were species- and age-specific results. Since there is poor knowledge on the effects 

of gap junctional block on NRVMs, it can be suggested that this type of functional manifestation 

shortens APD
90

. It could be suspected that the CBX effects are species specific, but without further 

mechanistic explanations to be given, as the effects of gap junction uncoupling on AP are unclear.  
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Data obtained from concurrent optical mapping and MEA recordings were analysed not only in groups 

of cells, but also at the single cell level. AP and EGM morphology were studied before and after the 

administration of CBX on individual cells. It was observed that the gap junction uncoupling by CBX 

leads to APD dispersion. These findings agree with previous studies which showed that the in vitro 

intercellular uncoupling can cause intercellular activation delays and multiphasic optically recorded AP 

upstrokes (41,322). The findings presented in this chapter showed that there was no fractionation before 

the administration of CBX, but this was detected following gap junction uncoupling. There was an 

activation delay in the experimental model which correlated with fractionation. Gap junction 

uncoupling is associated with the subsequent discontinuity in AP propagation (320), which may explain 

the fractionation identified on the data. As it was also presented in Chowdhury et al. (40), the ΔT of 

action potential upstroke was correlated with EGM fractionation proposing that the discontinuous 

propagation in cellular preparations, where there are normally linear propagating wave fronts, can lead 

to EGM fractionation. 

 

 

5.3.2 Ex vivo gap junctional block effects  
 

Myocardial slices obtained from adult human ventricles have been an increasingly used model in 

cardiac electrophysiology, because they retain the multicellularity, complex architecture and 

electrophysiology of adult cardiac tissue compared to in vitro experimental models. Their thin structure 

allows oxygen and metabolic substrate diffusion into the inner cells maintaining the tissue viability in 

vitro (20). Tissue slices have been produced from a variety of mammals, such as rabbits (323), guinea 

pigs (323,324), mice (325,326), rats (326,327), dogs (20,328) and human biopsies (20,40,328,329). 

These have been studied for the electrophysiology as well as for fibrosis.  

 

Epicardial left ventricular slices derived from human failing heart were used in this study. Tissue 

anisotropy has to be taken on account though during the analysis of these data. The fibre orientation, 

which is observed in Figure 5.7, seems to be variable between samples, even though it was not 

quantified. It is well established that the difference in conduction velocity between the longitudinal and 

transverse direction in a bundle of parallel muscle fibres is a pro-arrhythmic factor. Conduction is faster 

in the longitudinal compared to the transverse direction and thus, conduction velocity is considered to 

be anisotropic (330). Apart from fibre orientation, previous studies associated conduction velocity with 

EGM amplitude and fractionation, which can be a weak correlation, as there are counter-intuitive 

findings (331,332). However, there is the general notion that transverse conduction to myocardial fibres 

is related to increased fractionation (332). Since fibre orientation on tissue slices could not be identified 
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using MRI, it would be arbitrary to make any conclusions about tissue anisotropy. Therefore, it can 

only be assumed that it is an additional factor affecting EGM features. 

 

A dual modality system combining optical mapping and MEA recordings  (40) was used for concurrent 

AP and EGM recordings from the same area of a slice. It was shown that a direct correlation between 

FPD and APD
90

 exists, even though FPD showed a trend towards abbreviation while APD
90

 was 

significantly shortened. The linear relationship between these characteristics was present before and 

after gap junction uncoupling. This further validated the results obtained from our in vitro experiments 

in a more complex ex vivo intact tissue model and demonstrated the translational benefits of combining 

optical mapping with MEA recordings.  

 

Regarding the automated EGM morphology analysis, a large number of features were modified 

following gap junction uncoupling. Among these changes, it was observed that EGM amplitude 

increased while EGM duration and fractionation both decreased. The decreased intercellular coupling 

leads to conduction slowing, which was also observed in the experiments presented in this chapter. That 

means action potential needs more time to pass across an electrode and therefore, it can be concluded 

that gap junction uncoupling results to prolonged EGM duration (40). In addition, as EGM amplitude 

is associated to the degree of depolarisation, the amplitude is theoretically expected to be lower after 

gap junction uncoupling has occurred, due to the reduced ion flux and the discontinuous action potential 

propagation (40). The fact that conduction slowing was caused after the addition of CBX is a persuasive 

fact that gap junction uncoupling occurred. It has been shown that CBX has the ability to reduce 

conductance without affecting excitability, even though the exact molecular mechanism is not clear 

(314). A study on isolated ventricular and atrial rabbit myocytes showed that CBX can lead to Cx43 

de-phosphorylation and it does not affect any ion currents (314). In addition, the particular slices which 

were perfused with CBX solution were derived from a failing heart diagnosed with DCM. DCM has 

been linked to reduced ventricular Cx43 expression levels in ventricles, gap junction heterogeneity and 

re-organisation, probably due to the decreased Cx43 protein levels, leading to conduction slowing and 

a propensity to arrhythmias (333,334). However, the counter-intuitive effects of CBX in the 

experimental model of the present study cannot be explained by these changes. An explanation to the 

increased EGM amplitude could be the increased intracellular resistance due to gap junction blockade. 

This effect would limit the spread of local circuits generating AP. These local circuits normally 

discharge the cell membrane capacitance in the unexcited cell regions in front of an AP wavefront 

depolarising the membrane potential to threshold in this region. Thus, the increased charge density due 

to the increased intracellular resistance would lead to faster depolarisation of the unexcited cell 

membrane near the AP wavefront, as the local charge density is greater. As a consequence, the 

conduction velocity may be diminished. This overall change manifests itself as a greater dV/dt for the 
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AP upstroke and therefore, increased EGM amplitude in extracellular recordings, such as the ones 

conducted for this research. This theory is supported by the research carried out by Rohr & Kleber (41, 

478) and Jabr et al. (479). 

 

By observing the slices used in this study, it can be easily noticed that they had a discontinuous structure 

due to the presence of patchy and interstitial fibrosis. Fibrotic areas were identified by the fluorescence 

signal emitted from collagen I molecules and by applying SHG microscopy. According to the theory 

developed by Rohr et al. (335), the modification of intercellular electrical coupling in a sample with 

well coupled cells, which also contains structural heterogeneity and discontinuities, can have 

completely different effects on action potential propagation than what normally happens in linear or 

continuous excitable structures (43,335). The action potential propagation can fail in a large mass of 

tissue receiving a limited amount of depolarising current from a small group of cells. Gap junction 

uncoupling under these conditions may overcome the conduction block and the tissue may bear pro-

arrhythmic effects since there will still be slow conduction (43,335). The reduction of intercellular 

coupling should be of magnitude sufficient to decrease coupling (43). Such a protective response, which 

is important for protecting conduction in a diseased ventricle, could also explain the counter effects 

observed in this work. However, further investigation on this matter has to be carried out, as a limited 

number of samples were used for this study. 

 

 

5.4 Conclusions 

Gap junction uncoupling was shown to reduce conduction velocity in vitro and ex vivo and lead to 

dramatic changes on EGM morphology. Since the effects of CBX on AP morphology had been poorly 

studied, it was interestingly shown that the use of a gap junction uncoupler reduces AP duration, due to 

its effects on the repolarisation phase, as also confirmed by adjacent changes on FPD. In corroboration 

with our findings from gap junction uncoupling on cell cultures, we have also demonstrated that the 

blockade of intercellular coupling leads to inverse and counterintuitive results on ex vivo data. These 

were shown to be mainly limited to time-domain analysis features. An explanation for this could be the 

high amount of fibrosis, as quantified by the size of collagen coverage, which is responsible for a 

compensation mechanism, when intercellular uncoupling concurrently occurs in highly heterogeneous 

tissue regions. The findings of this section will provide a better understanding during the development 

of a predictive model presented in later chapters of this thesis. Features selected during the development 

of a predictive model can become biologically meaningful and the reasons behind the better or worse 

predictability of gap junction uncoupling, when compared to other types of cellular electrophysiology 

abnormalities, can be revealed. 
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Chapter 6 

 

Evaluation of EGM morphology modifications 

due to structural remodelling 
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6.1 Introduction 

 

6.1.1 Structural remodelling affects cardiac electrophysiology 
 
In addition to the functional parameters of cardiac electrophysiology, i.e. ion currents and intercellular 

communication, presented in Chapters 4 and 5, the focus of the present section is the role of structural 

factors on influencing the EGM morphology. Our knowledge about the effects of fibrosis on 

morphological characteristics comes from clinical studies, but also animal and computational studies. 

CFAEs have been thought to represent continuous re-entry or fibrillation waves into a certain area of 

the left atrium. These areas have been targeted as part of AF substrate remodelling, and despite the fact 

this strategy was initially adopted because of promising outcomes (106), its efficiency is questionable 

due to poor reproducibility of clinical outcomes across other groups (336,337). The underlying 

pathophysiological mechanism of atrial EGM fractionation is inadequately understood, and this may be 

part of the divergent and limited success rates of catheter ablation strategies targeting CFAEs. 

 

Clinical success has been improved when targeting low voltage endocardial EGMs, which are often 

considered to be a surrogate marker of scar (338,339). Structural remodelling that occurs in AF, leading 

to extended scar regions, creates a substrate for re-entry and conduction slowing sustaining rotor 

activity. Localised rotational activity detected with multipolar endocardial mapping tends to co-localise 

with areas of low voltage EGMs (340). However, even this theory has inconsistencies. The in vivo 

detection of scar areas is usually carried out using LGE-MRI and there is the general notion that a 

chaotic electrical activity and fractionation are associated with fibrotic change and translate to reduced 

EGM voltage. However, there is a consistent reported inverse and counterintuitive relationship between 

EGM characteristics (voltage and fractionation) and atrial fibrosis in AF patients (332). Jadidi et al. (7) 

showed that the majority of CFAE sites detected in their clinical study were not related to fibrotic areas, 

but healthy atrial tissue with unidentifiable fibrosis by MRI. There was also a proportion of CFAEs 

detected in areas of patchy fibrosis, where the electrical activity was similar to non-fibrotic areas, and 

a smaller proportion of CFAE sites were detected in the border zone of or within dense fibrosis regions 

(7).  

 

The fact that EGM morphology cannot be easily correlated to clinical phenotypes has led to intense 

study of the underlying mechanisms at a cellular level. Cardiac scar tissue is a dynamic living structure 

consisting of cellular and acellular components (341,342). The extracellular matrix (ECM), which has 

increased presence in scar, is interlaced with phenotypically various types of cells: fibroblasts and 

interstitial fibroblast-like cells, endothelial cells, surviving cardiac myocytes, immune cells, neurons 
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and adipocytes (343,344). The impact of scar on electrical activity is still a topic under investigation 

(345). Fibrosis exhibits variable degrees of density leading to the separation of myocardium strands and 

forcing excitation waves to take anisotropic, circuitous paths (33). This is one of the suggested 

mechanisms of arrhythmogenesis. However, it is still unclear how scar is involved in either the active 

generation or the passive maintenance of abnormal electrical conduction episodes (32). It has been 

shown that fibroblasts interact with myocytes via structural, electrical and paracrine pathways, which 

have been assessed for their role in arrhythmogenesis. Pedrotty et al. (346) have suggested a mechanism 

according to which NRVM growing in cell culture medium derived from cultured of neonatal rat 

fibroblasts show prolonged APD and significant conduction slowing. These electrophysiological 

changes were proposed to be caused by paracrine factors which are normally secreted by cardiac 

fibroblasts. This agrees with findings from Guo et al. (347), who reported that cardiac myocytes 

provided with cultured fibroblast-derived medium can result to APD prolongation and downregulation 

of the K
v
4.3 subunit gene, which is implicated to the I

to
 current.  

 

Repolarisation dispersion plays a key role for the initiation and maintenance of arrhythmogenesis and 

combined with conduction slowing promotes re-entrant tachycardia initiation (301). However, it seems 

that the duration of repolarisation depends on the presence of scar and scar border zone in cases of heart 

failure, and thus APD becomes heterogeneous. In addition to the in vitro research, data obtained from 

VT patients resistant to medical therapy or recurrent implantable cardioverter-defibrillator shocks 

showed that the activation recovery interval (ARI) was prolonged in areas of myocardial scar compared 

to areas with normal voltage (348). The transmural ARI was also decreased in scar regions. These 

effects were focused on scar areas and they were not present in the rest of tissue. An explanation for 

these findings could be the downregulation of Cx43 expression in scar regions or the upregulation of 

I
Ca

, which is an adaptive mechanism for Ca

2+

 overloading in a cell for contractility enhancement (348). 

Also, APD prolongation and dispersion of the refractory period have been detected in remodelled LV 

of human failing hearts (349). Thus, it would not be surprising if scar tissue consequently affected the 

cardiac AP recorded in the experimental models presented in this chapter.  

 

Apart from the production of ECM components and enzymes, regulated by signalling molecules with 

autocrine and paracrine effects (31,32,278,350), fibroblasts also express ion channels and stretch-

activated channels (351). It has been suggested that fibroblasts can be electrically coupled to cardiac 

myocytes via gap junctions (32,80,350–352). Thus, fibroblasts are part of tissue conductivity, they alter 

cardiac electrophysiology and they can possibly act as passive inexcitable conductors over a maximum 

distance of 300μm (31). Therefore, this mechanism could explain whether fibroblasts are directly 

involved in arrhythmogenesis and if they can influence EGM morphology. 
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6.1.2 The role of myofibroblasts 
 
Myofibroblasts are phenotypically transformed fibroblasts and express a-smooth muscle actin (aSMA), 

as well as integrins, fibronectin and connexins 43 and 45 (Cx43/45). aSMA is not found in fibroblasts 

and allows contractility similar to that of smooth muscle cells. Myofibroblast proliferation and 

migration mainly occurs in myocardial remodelling in dilated, ischemic, hypertrophic, hypertensive 

cardiomyopathies (353) and arrhythmogenic right ventricular cardiomyopathy (354). Myofibroblasts 

also contribute in atrial fibrosis, as part of the maladaptive atrial response in AF (355). The enhanced 

myofibroblast proliferation under these situations is accompanied by collagenous matrix accumulation 

leading to fibrosis (353). The primary drivers of this phenotypic shift of fibroblasts are altered 

mechanical activation and inflammatory cytokines, specifically the transforming growth factor-beta1 

(TGF-b1) and platelet-derived growth factor (PDGF) (356,357).  

 

The myofibroblast-to-myocyte interaction has been reported in multiple in vitro studies. Myofibroblasts 

are not excitable, like fibroblasts, and are not directly involved in conduction in the post-myocardial 

infarction heart. They are believed to block conduction, due to their presence among myocytes, thus 

increasing the distance between adjacent myocytes and decreasing the intercellular coupling via gap 

junctions. However, it has been suggested that there is gap junction uncoupling between myofibroblasts 

and myocytes (358). This is supported by the expression of Cx43 and Cx45 in myofibroblasts and the 

presence of this intercellular coupling between myofibroblasts (278) and neonatal myocytes when they 

are cultured together. It is still unclear though if this coupling exists in vivo and how important it is for 

cardiac electrophysiology (358). Myofibroblasts also have relatively high membrane resistance with no 

significant difference in the electrical activity between two coupled myocytes and a myofibroblast 

coupled with another cardiac myocyte (359). On the other hand, fibroblasts also couple with myocytes 

in vitro and in situ, but connexins appear to be located at punctuate contacts. These are orders of 

magnitude smaller intercellular couplings compared to the ones in myocyte-myocyte couplings (360). 

However, this type of intercellular communication is able to depolarise the myocyte membrane 

potential sufficiently in order to cause automaticity and changes in conduction velocity, mainly when 

they fill interstitial spaces and not when fibroblasts are inserted on top of myocytes. Fibroblasts can 

also change conduction by creating zig-zag conduction pathways and they break the intercellular gap 

junction coupling between myocytes (361).  

 
As it appears from what has been presented so far in this chapter, the intercellular interaction and a 

balance of structural characteristics are essential for the normal AP propagation and the sustainability 

of health cardiac electrophysiology. Thus, the rest of this chapter will investigate the effects of variable 
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structural characteristics on EGM morphology. For this purpose, different experimental models were 

used. The hypotheses to be investigated were:  

1. The cellular scar, added in cell cultures, is responsible for prolonged APD, and subsequently 

FPD. 

2. Myofibroblasts can alter EGM parameters. 

3. Fibrosis burden in tissue slices correlates inversely with APD and FPD.  

4. Cellular scar and tissue slice fibrosis modify not only the conventional features of voltage and 

fractionation, but also more complex EGM parameters.  

5. The amount of cellular scar and tissue fibrosis is related to the level of feature modifications. 

6. In vivo scarred regions are responsible for changing the EGM morphology compared to non-

scarred areas. 

 

The aim of this chapter was to address these hypotheses by: (1) focusing on the effects of fibroblasts, 

which is the cellular component of scar, and fibrosis using ex vivo and in vivo EGM data, (2) focusing 

on the electrophysiological properties of myofibroblasts and how these affect EGM morphology, (3) 

carrying out concurrent in vitro and ex vivo optical mapping and EGM recordings, and (4) fully 

characterising the EGM morphology that occurs in each experimental model. The information obtained 

from this body of work, after answering the above hypotheses, will help better understand the features 

selected during the supervised machine learning process for predicting the conditions presented in this 

chapter. 

 

 

 

6.2 Results 

 

6.2.1 In vitro effects of cellular scar on EGM morphology 
 

Control EGM data, collected at 1Hz from the different types of cell cultures presented in section 2.2.1, 

were analysed. The percentage of total area of cell cultures covered by vimentin was considered to 

correspond to the non-myocyte cellular component of the cell culture. Vimentin is used as a fibroblast 

marker by convention, even though it is also found in myofibroblasts. Our results showed that MO cell 

cultures had 35.7±2% coverage (n = 8 MEAs; mean ± SEM), NC cell cultures had 63.9±4.5% (n = 28 

MEAs), the co-cultures of NRVM with +20% of cultured fibroblasts had 72.7±3.5% coverage (n = 16 

MEAs) and the co-cultures of NRVM with +40% of cultured fibroblasts had 76.2±3.4% coverage (n = 
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16 MEAs) (Figure 6.1). MO cultures had significantly less vimentin signal, and subsequently 

fibroblasts, than the NC cell monolayers (p<0.01), the +20% FB cell cultures (p<0.01) and the +40% 

FB monolayers (p<0.0001) (Figure 6.1). 

 

 

Figure 6.1: Immunostaining for fibroblast quantification. (Left) MEA plates immunostained for vimentin 

following electrical recordings to accurately quantify fibroblast burden. Representative examples of different 

burdens of fibroblast in each group, the red representing the vimentinstaining of fibroblasts. (Right) 
Quantification of fibroblast burden in each experimental group as a percentage of total area of MEA plate 

covered by fibroblasts. Myocyte only (MO) (n=8), Natural Composition (NC) (n=28), +20%FB (n=16), 

+40%FB (n=16). Kruskal-Wallis test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; 

***p<0.001; ****p<0.0001. 

 

 

Concurrent optical mapping and MEA experiments were carried out on the different types of cell culture 

preparations, as shown in section 4.2.4. It was observed that APD
90

 was increased in cell cultures with 

higher amount of fibroblasts, compared to MO monolayers, and it was also dependent on the amount 

of fibroblasts (MO: 167.3±7.8ms; NC: 211.2±9.7ms; +20% FB: 231.3±19.6ms; +40%FB: 209±8.8ms; 

p = 0.002; mean ± SEM) with significant difference between MO and NC (p<0.05) and between MO 

and +20%FB (p<0.05) (Figure 6.2A). A similar pattern of FPD manifestation was also observed (MO: 

151.2±7.4ms; NC: 205±9.2ms; +20%FB: 220±18ms; +40%FB: 202.3±9.6ms; p<0.0001; mean ± SEM) 

with significant change between MO and NC cultures (p<0.0001) and MO and +20%FB monolayers 
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(p<0.05) (Figure 6.2B). Linear regression analysis showed a direct correlation between APD
90

 and FPD 

measured on data obtained from all cellular experimental models (r

2

 = 0.85, Sy.x=18.2, slope = 1 ± 

0.05, p<0.0001, n=59) and there was a linear relationship even within each group (MO: r

2

 = 0.78, 

Sy.x=20.1, slope = 0.99 ± 0.1, p<0.0001, n=34; NC: r

2

 = 0.81, Sy.x=17.8, slope = 0.9 ± 0.1, p<0.0001, 

n=16; +20% FB: r

2

 = 0.95, Sy.x=9.9, slope = 0.89 ± 0.1, p = 0.004, n=5) (Figure 6.2C). However, there 

was no strong APD
90

/FPD relationship within the +40% FB cell cultures (r

2

 = 0.72, Sy.x=13, slope = 

0.92 ± 0.3, p = 0.07, n=5). 

 

 

 

Figure 6.2: Effects of fibroblast burden on APD
90

 and FPD. (C) Linear regression analysis for the 

relationship between APD
90

 and FPD. The direct relationship between these features was maintained in all 

types of cell culture. All bar charts represent mean ± SEM; *p<0.05; ***p<0.001. APD
90

 and FPD plots 

were made using manually annotated data. 

  

 

Following the automated EGM morphology detection and quantification for measuring 35 features, it 

was found that 9 of them were significantly affected by the type of cell culture (Figure 6.3). The EGM 

amplitude was significantly higher for the NC and +20% FB cell cultures compared to the MO cultures 

(MO: 546.2±70μV; NC: 1312±199μV; +20% FB: 1217±129μV; p = 0.005; mean ± SEM). Regarding 

fractionation, that was the same among the MO, NC and +20% FB groups, but significantly higher for 

the +40% FB group when compared to the MO cell cultures (ΜO: 1.04±0.01; +40% FB: 2.3±0.7; p = 

0.016; mean ± SEM). Apart from the time-domain features, it was observed that maximum modulus 

was significantly increased at +20% FB and +40% FB cell cultures compared to the MO cultures (MO: 

1.14e+009 ± 3.6e+008; +20% FB: 1.67e+009 ± 2.1e+008; High %FB: 1.75e+009 ± 2.5e+008; p = 

0.006; mean ± SEM). Among other features the kurtosis and skewness of PSD estimates were 

significantly reduced in +40% FB data compared to the MO and +20% FB EGMs (Skewness – MO: 

242.2± 17; +20% FB: 245±11.5; +40% FB: 160.7±13; MO/+40%FB – p<0.01; +20%FB/+40%FB – 
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p<0.05 / Kurtosis – MO: 71,197±6940; +20%FB: 70,511±5425; +40%FB: 34,639±5141; MO/+40%FB 

– p<0.05; +20%FB/+40%FB – p<0.05; mean ± SEM) (Figure 6.3). 

 

 

 
Figure 6.3: EGM properties showing significant differences among cell groups with various amounts of 

fibroblasts. Kruskal-Wallis test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; 

***p<0.001; ****p<0.0001. 

 

 

6.2.2 EGM morphology changes compared across modulations 
  

Following the analysis of EGM morphology modification per modulation, an overall comparison of 

feature changes was carried out. Figure 6.4 presents a clustered heatmap, created using Clustergrammer 

(362), showing the amount of feature alterations in each abnormality based on the average EGM 
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recorded in myocyte only cultures. The heatmap presents clusters of similar feature modifications on a 

variety of biological experimental modulations. The range of modifications was between -99 to +683%. 

It was observed that the majority of features, belonging to EGMs obtained from myocyte only cultures 

with ion channel blockade or gap junction uncoupling, were dramatically decreased following the 

modification. However, there were exceptions on this, such as the I
Kr

, I
Ks

 and K
ATP

 data. Moreover, 

there is variability among K

+

 channel blockers depending on their target. Time-frequency features 

increased following the opening of K
ATP 

channels, as opposed to any K

+

 channel blockade. Time-

domain features, such as EGM amplitude, RS/QS-interval and RS gradient were predominantly 

enhanced with the increased presence of fibroblasts in cell cultures (NC, +20% FB, +40% FB cell 

cultures) either with or without the concurrent presence of functional modulations. On the contrary, 

there was greater reduction of time-frequency and frequency-domain features with the presence of 

functional modifications in MO cell cultures compared to the rest types of cell cultures. 

 

Among other findings, it was interestingly found that gap junctional blockade using CBX on NC 

monolayers and NRVM/FB co-cultures affected the EGM morphology in a similar way to I
to
 blockade. 

It was observed in both cases of functional modifications that fractionation, RS interval, R-peak width, 

QS interval, EGM duration and S-peak width were dramatically increased, while EGM gradient, EGM 

amplitude and a variety of time-frequency and frequency-domain features, such as maximum modulus, 

variance of energy, Shannon entropy and the standard deviation of PSD estimates, decreased. Regarding 

the latter group of time-frequency and frequency-domain features, these were found to be significantly 

increased in a different cluster mainly consisting of I
CaL

, I
Na

, I
Ks

 and K
ATP

 blockade in various cellular 

experimental models with no clear focus on any of them. 
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Figure 6.4: Heatmap presenting EGM feature changes per modulation. It was created using the 

Clustergrammer software. The colours range between red for minimum feature reduction (-99%) to green 

for maximum feature enhancement (+683%) of the average EGM feature measurement. The average control 

myocyte only EGM morphology was used as the base of measurements, and for this reason this data group 

is not presented on the heatmap.  

 

 

6.2.3 Investigating EGM morphology discrepancies 
 
Comparing the EGM data collected from different cell groups, it was counterintuitively observed that 

increased amounts of fibroblasts were correlated to increasing voltage of the signal. In order to 

investigate these inverse results in more depth, NRVMs were co-cultured with the 

electrophysiologically inactive HeLa cells, in order to investigate the EGM morphology effects of the 

electrophysiological activity of this cell culture. The total area of the cell culture covered by HeLa cells 
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was quantified by using the fluorescence excited by HeLa cells which were previously stained using 

the CellTracker Red CMTPX system. The CellTracker staining protocol is presented in detail in section 

2.6.3. This coverage was similar to the one by fibroblasts (NRVM/HeLa: 50.9 ± 1%; MO: 35.7 ± 2%; 

NC: 63.9 ± 4.5%; +20% FB: 72.7 ± 3.5%; +40% FB: 76.2 ± 3.4%; p<0.0001; mean ± SEM) (Figure 

6.5A). EGM morphology analysis showed that the EGM amplitude was significantly lower in 

NRVM/HeLa co-cultures compared to any other cell group (NRVM/HeLa: 331.4 ± 68.5μV; ΜO: 546.2 

± 70μV; NC: 1312 ± 199μV; Low %FB: 1217 ± 129.7μV; High %FB: 1225 ± 317μV; p = 0.001; mean 

± SEM) (Figure 6.5B) and the fractionation was equally increased in the +40% FB cell group 

(NRVM/HeLa: 1.9 ± 0.2; MO: 1.04 ± 0.01; NC: 1.3 ± 0.14; +20% FB: 1.2 ± 0.07; +40% FB: 2.3 ± 0.7; 

p = 0.002; mean ± SEM) (Figure 6.5C).  

  

 

Figure 6.5: Evaluation of the EGM morphology effects with the absence of normal gap junctions. (A) Non-

myocyte coverage in different cell groups. The size of area covered by HeLa cells was quantified in 

NRVM/HeLa co-cultures, while the size of area covered by vimentin, the fibroblast marker, was measured 

in the rest of cell groups. (B-C) Significant differences in voltage (B) and fractionation (C) were observed 

among cell groups. Kruskal-Wallis test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; 

***p<0.001; ****p<0.0001.    

 
 

6.2.4 Myofibroblasts influence EGM morphology 
 

For the purpose of this study, a myocyte was defined as a cell with positive stain for α-actinin, 

fibroblasts and myofibroblasts were positive for vimentin, and αSMA was used as a myofibroblast 

marker. The MO group was used as control containing mainly NRVMs, the fibroblast (FB) group was 

the natural cell composition group which was hypothesised to include more fibroblasts than 

myofibroblasts, and the myofibroblast (MFB) group was co-cultures of NRVMs with low amount 

(+20%) of cultured fibroblasts, which were supposed to have differentiated into myofibroblasts.  
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The area coverage of vimentin was significantly lower in the myocyte group compared to the FB group 

(p<0.001) and the MFB group (p<0.05) (MO: 38 ± 1.7%; FB: 65.6 ± 4.4%; MFB: 61.3 ± 4%; p<0.0001) 

(Figure 6.6A). The percentage of total area covered by αSMA was also significantly decreased in the 

MO group compared to the FB (p<0.0001) and MFB (p<0.0001) groups (MO: 11.6 ± 1.1%; FB: 54.3 

± 2.9%; MFB: 82.6 ± 2.6%; p<0.0001; mean ± SEM) (Figure 6.6B). EGM amplitude was significantly 

higher in the MFB group (p<0.05) and there was also a trend towards an increase in the FB group (MO: 

556.2 ± 82μV; FB: 1205 ± 280μV; MFB: 1333 ± 170μV; p = 0.03; mean ± SEM) (Figure 6.6C). 

Regarding the rest of features which showed significant change, they were increased in the MFB group 

and there was a trend towards an enhancement of the same features in FB data (Figure 6.6D-G). This 

was observed for: RS gradient (p=0.18, p<0.05), EGM onset to R-peak gradient (p = 0.051, p<0.05), S-

peak to EGM offset gradient (p = 0.059, p<0.01) and maximum modulus (p = 0.059, p<0.05). The p-

values correspond to the difference between the MO and FB groups and between the MO and MFB 

groups respectively. There was no significant change between FB and MFB groups for any of the 

characteristics. 

 

 
 

Figure 6.6: EGM morphology modifications showing a significant difference in the myocyte only group 

compared to either the fibroblast or the myofibroblast group or both. MO, Myocyte only group: n = 13 cell 

cultures; FB, fibroblast group (natural cell composition): n = 12 cell cultures; MFB, myofibroblast group 

(NRVM/20% cultured fibroblasts): n = 10 cell cultures. Kruskal-Wallis test analysis. All bar charts represent 

mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 
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6.2.5 Ex vivo effects of fibrosis on AP and EGM morphology 
 
Fibrosis was quantified on human tissue slices by measuring the amount of slice area covered by 

collagen, which is a marker of fibrosis. SHG imaging data (Figure 6.7) presented that collagen coverage 

was between 6-24% of slice area in heart failure and donor samples used in dual modality performance 

experiments (Figure 6.9A). According to that information, and because there is no convention for 

describing tissue slice fibrosis, the samples were sorted into three groups based on their collagen 

coverage: “low” - <10% (n=7 slices), “moderate” – 10–20% (n=5 slices) and “high” - >20% (n=7 

slices).  

 

Examples of EGMs obtained from tissue slices with various collagen coverage are presented in Figure 

6.8. APD
90

 was significantly different among groups (low: 473.7±22.3ms; moderate: 376.7±46ms; 

high: 393.1±22ms; p = 0.035; mean ± SEM) (Figure 6.9B), but no differences were observed regarding 

FPD (low: 432.6±19ms; moderate: 365.1±41ms; high: 378±20ms; p = 0.36; mean ± SEM) (Figure 

6.9C). Linear regression analysis showed a correlation between APD
90

 and FPD (r

2

 = 0.69, Sy.x=59.3, 

slope = 0.71 ± 0.07, p<0.0001, n=49) and this relationship was maintained even within each group with 

no differences between groups (p=0.99) (Figure 6.9D). Conduction velocity was the same among 

groups (low: 11.5 ± 1.9cm/s; moderate: 9.5 ± 2.2cm/s; high: 13.5 ± 1.5cm/s; p=0.43; mean ± SEM) 

(Figure 6.9E). No significant differences were observed in EGM duration (low: 41.5 ± 2.7ms; moderate: 

34.4 ± 2ms; high: 37.6 ± 3.7ms; p = 0.13; mean ± SEM) (Figure 6.8F). Moreover, no linear relationship 

was found between conduction velocity and EGM duration (r

2

=0.1, Sy.x=9.2, slope = -0.77 ± 0.66, p = 

0.29, n=13) (Figure 6.9G). 

 

EGM features were computed for data collected from slices with low (n = 9 slices), moderate (n = 7 

slices) and high (n = 7 slices) collagen coverage. In total, 487 EGMs were analysed. Following the 

EGM morphology analysis, it was observed that 27 features significantly changed between groups 

(Figure 6.10). These were features belonging to all types of EGM morphology analysis. It is interesting 

that slices with moderate collagen coverage differed significantly from the rest of groups for a number 

of features, including EGM amplitude (Low: 2809 ± 143μV; Moderate: 1985 ± 179μV; High: 2669 ± 

182μV; p<0.001 (Low vs. Moderate) / p<0.05 (Moderate vs. High)), RR interval (Low: 1026 ± 38ms; 

Moderate: 1595 ± 79ms; High: 1024 ± 14ms; p<0.0001 (Low vs. Moderate) / p<0.0001 (Moderate vs. 

High)), dominant frequency (Low: 0.96 ± 0.02Hz; Moderate: 0.81 ± 0.03Hz; High: 0.97 ± 0.01Hz; 

p<0.0001 (Low vs. Moderate) / p<0.0001 (Moderate vs. High); mean ± SEM) and all time-frequency 

features. There was no change between slices with low and high collagen coverage (Figure 6.10).  
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Surprisingly, fractionation did not change among groups (Low: 4.3 ± 0.3, Moderate: 5.2 ± 0.4, High: 

4.4 ± 0.3; p=0.13; mean ± SEM). 

 

  
 

Figure 6.7: Human left ventricle tissue slices visualised in three different ways. (Top) Photos showing the 

slices placed on top of electrodes in a MEA plate. The reference electrode can be seen on the top side. 

(Middle) The same slices, and with the same orientation as on the top photos, scanned by SHG microscopy 

for quantification of collagen burden. Representative examples of slices with different sizes of collagen 

covered areas are presented here. Green represents collagen and red corresponds to the autofluorescence 

signal emitted from the rest of tissue areas. (Bottom) Isochronal activation maps for the wavefront 

propagation in each slice. Regarding the middle slice (moderate coverage), the conduction slowing observed 

in the top right area of the CV map corresponds to the fibrotic area captured during SHG imaging.  
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Figure 6.8: Representative examples of EGMs obtained from tissue slices with different collagen 

coverage. Here, 200msec of each recording are showed emphasising the variability of the QRS complex 

morphology. 
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Figure 6.9: (A) Frequency distribution graph of the collagen coverage on human ventricular tissue slices used on dual modality experiments. These tissue slices 
were divided into three groups: “Low” – <10% collagen coverage (n=7 slices), “Moderate” – 10.1-20% collagen coverage (n=5 slices), “High” - >20% collagen 
coverage (n=7 slices). (B) Quantification of APD90 in each experimental group. One-way ANOVA showed that APD90 is significantly different among groups 
(p=0.041), even though Tukey’s post-hoc test did not show sinificant differences. (C) FPD in each group of slices. (D) Linear regression analysis showed significant 
correlation between APD90 and FPD (r2 = 0.69, Sy.x=59.3, slope = 0.71±0.07, p<0.0001). (E-F) Conduction velocity (E) and EGM duration (F) did not show any 
significant differences among collagen coverage groups. (G) No linear relationship between conduction velocity and EGM duration (r2=0.1, Sy.x=9.2, slope= -

0.77±0.66, p=0.29). All bar charts represent mean ± SEM; *p<0.05. APD90 and FPD plots were made using manually annotated data.
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Figure 6.10: EGM properties modified due to differences in the size of collagen coverage, and subsequently 
the extent of fibrosis, in human left ventricle tissue slices. Low, <10% collagen coverage: n = 9 slices (165 
EGMs in total); Moderate, 10-20% collagen coverage: n = 7 slices (102 EGMs in total); High, >20% collagen 
coverage: n = 8 slices (130 EGMs in total). Kruskal-Wallis test analysis. All bar charts represent mean±SEM; 
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 
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6.2.6 In vivo effects of scarred areas on EGM morphology 
 
Unipolar EGMs, collected in patients with AF during electrical stimulation of regions of the LA 

endocardium at 3Hz (Figure 6.11), were analysed for their morphology. These data were obtained from 

8 patients and consisted of 348 EGMs derived from control locations and 126 EGMs collected from 

scarred regions (³2 S.D. blood pool mean). Scarred locations were defined as locations of the LA where 

the atrial intensity at each voxel, measured by LGE-MRI, was expressed as 2 S.D. above the blood pool 

mean (>2 S.D.). Control locations were defined as the locations where the raw atrial intensity was ≤0 

S.D. below the blood pool mean. Data analysis showed no difference in voltage between control and 

scar locations (control: 2.17 ± 0.1mV; scar: 1.96 ± 0.1mV; p=0.28; mean ± SEM) (Figure 6.12). 

However, there were 15 features that were significantly altered. These included RS interval (control: 

23 ± 1ms; scar: 36.3 ± 2.3ms; p<0.0001; mean ± SEM), EGM duration (control: 63.3 ± 1.3ms; scar: 85 

± 3.4ms; p<0.0001), fractionation (control: 2 ± 0.1; scar: 2.3 ± 0.2; p=0.008; mean ± SEM) and 

logarithmic energy entropy (control: 2273 ± 145; scar: 2842 ± 176; p = 0.0003; mean ± SEM) (Figure 

6.13). Among the modified time-frequency characteristics were maximum modulus (control: 3.42 ± 

0.1; scar: 3 ± 0.2; p = 0.0008; mean ± SEM) and variance of energy (control: 225x103 ± 12x103; scar: 

123x103 ± 14.2x103; p<0.0001; mean ± SEM) (Figure 6.13). 

 

Figure 6.11: Representative examples of 2.5msec clinical recordings obtained at 3Hz from the non-scar 
and scar regions of the LA posterior wall. (Top) The original recording includes the noise. EGM amplitude 
alternans recorded in scar regions is also presented here. (Bottom) The first msec of each recording is zoomed 
in.  
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Figure 6.12: EGM amplitude was no different between control (£0 S.D. blood pool mean) and scarred 
regions (³2 S.D. blood pool mean). Unipolar paced EGM recordings were collected from 8 AF patients 
(control: n = 348 EGMs; scar: n = 126 EGMs in total). Mann-Whitney t-test. Bar charts represent 
mean±SEM; ns = non-significant. 

 

 

 

 
 

Figure 6.13: EGM morphology modifications due to the presence of scar, as measured on 3Hz data 
collected from control (£0 S.D. blood pool mean) and scarred regions (³2 S.D. blood pool mean) of the LA 
endocardium (control: n = 348 EGMs; scar: n = 126 EGMs in total). Mann-Whitney test analysis. All bar 
charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 

 



 197 

6.3 Discussion 

 

This chapter focused on the characterisation of EGM morphology as affected by in vitro modifications 

of structural parameters and any ex vivo or in vivo structural abnormalities. A general observation is 

that depending on the experimental model both the cellular component of scar and fibrosis can affect 

EGM morphology and lead to conduction slowing. It was also observed, mainly on in vitro and in vivo 

results, that feature modifications can be dependent on the amount of cellular scar or the degree of 

fibrosis respectively. An additional aim of this study was the investigation of the effect of 

myofibroblasts on cardiac electrophysiology by identifying alterations in EGMs. The data presented in 

this chapter were obtained from experimental models with increasing complexity. However, it is hard 

deriving conclusions for a model based on another, due to the different metrics for non-conductive 

tissue applied in each case and the specific electro-architectural characteristics, e.g. 2D structure in cell 

cultures and tissue slices vs 3D structure in the LA.  

 

 

6.3.1 Fibroblast effects of EGM morphology 
 

It was sought to be investigated how fibroblasts and conduction slowing affect EGM morphology in a 

2D cellular model of scar. For this purpose, NC and NRVM/fibroblast co-cultures with +20% or +40% 

FB were compared to MO preparations, in order to assess the effects of fibroblast burden. All types of 

cell culture had significantly higher fibroblast coverage compared to MO monolayers, but there were 

no significant differences among NC, +20% FB and +40% FB cell cultures. However, it was shown 

that the degree of EGM fractionation did not agree with the fibroblast burden, as there was a significant 

increase of fractionation solely in the +40% FB group and it was maintained low for the rest of cell 

groups. Computational models of fibrosis reached similar conclusions revealing discontinuous 

conduction and EGM fractionation with high amounts of fibrosis implemented in the model (363). 

Similar to Jacquemet et al. (364), whose study presents the introduction of microfibrosis via collagenous 

septa in a computational model of cardiac monolayer leading to increased fractionation, the results 

presented in this chapter suggest that fractionation can be also enhanced by significantly increasing the 

fibroblast burden. This is explained by the fact that high amounts of fibroblasts intermingled amongst 

myocytes create a heterogeneous substrate which is responsible for conduction slowing, discontinuous 

propagation and conduction delays across electrodes (4). The absence of increased fractionation in the 

NC and +20% FB cellular models, when compared to the MO monolayers, suggests that structural 

abnormalities in these cell cultures were insufficient to lead to discontinuous conduction. Therefore, we 

could propose the presence of a dose-dependent or a threshold effect of the fibroblast burden.  

 



 198 

FPD and APD90, which are equivalent characteristics (20,40), were prolonged in NC and +20% FB cell 

cultures compared to MO monolayers proposing that the coupling between myocytes and fibroblasts 

leads to slower repolarisation. The reason for this might be the heterogeneous coupling between 

myocytes and fibroblasts through gap junctions that can be formed not only by myocytes, but also in 

vitro by isolated fibroblasts (352,360). Moreover, due to the separation of myocytes by fibroblasts, there 

is reduced myocyte-to-myocyte coupling leading to enhanced APD in myocytes. The disruption of 

normal intercellular coupling is a substrate for discontinuous propagation promoting functional 

conduction blocks and even abnormal wave propagation (31).   

 

Contrary to what was expected, increased fibroblast burden did not demonstrate amplitude reduction 

when compared to the MO group. This disagrees to what has been suggested by in vivo studies 

(6,106,365), which present that there is an inverse relationship between endocardial voltage of pacing 

or AF data and fibrosis, as determined by LGE imaging (365). However, the in vitro results presented 

here agree with the ex vivo findings next presented. In fact, the experimental model used in this thesis 

for extracellular recordings does not mimic the in vivo fibrosis, which is characterised by increased 

fibroblasts content and elevated amount of extracellular matrix (352). A reason for the higher EGM 

amplitude in NC and NRVM/FB co-cultures could be the number of myocytes on top of an electrode. 

The area under the EGM represents the total ion exchange (242), and therefore a large number of 

myocytes and higher cellular density may lead to higher ion exchange and increased EGM amplitude. 

This suggestion can be supported by clinical studies where it was presented that endocardial voltages 

were lower in scar LA regions. High collagen deposition and low cardiac myocyte population were 

found in this areas, as opposed to patchy fibrotic or healthy areas, where collagen deposition was lower, 

the myocyte population was elevated and the EGM amplitude was higher (7).    

 

In order to investigate whether the higher EGM amplitude was a result of possibly enhanced 

conductivity due to changes in the electrophysiology of cultured fibroblasts, e.g. enhanced intracellular 

communication, cardiac myocytes were co-cultured with HeLa cells. HeLa cells do not express Cx43 

and for this reason this is a commonly used cell line for transfections with the Cx43 gene (366). The 

HeLa cell coverage on cell cultures was similar to the fibroblast one in the NC cell group. The result 

was that the voltage of the signal recorded from NRVM/HeLa co-cultures was lower than the MO 

preparations and in fact it was the lowest voltage recorded in vitro under baseline conditions for the 

purposes of this thesis. EGM fractionation was also comparable to the one measured in EGMs obtained 

from +40% FB cultures. That confirmed that there are less gap junctions formed in the NRVM/HeLa 

co-cultures compared to the rest of cell preparations giving rise to EGMs with low amplitude. These 

experiments also proved that the absence of gap junctions can result to discontinuous action potential 

propagation, and therefore fractionated and low voltage signal. However, it appears that further 
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investigations need to be carried out in order to explain the increased EGM amplitude recorded in 

NRVM/FB co-cultures. 

 

Moreover, K+-related pharmacological agents with opposite activity were applied on the NRVM/FB 

co-cultures. Following clustering, it was observed that time-frequency features changed towards the 

opposite direction after the enhancement of KATP current using pinacidil compared to the effects of K+ 

channel blockade by 4-AP (Ito current blockade) or E-4031 (IKr current blockade). These findings agree 

with feature modifications presented in Chapter 4 of this thesis about individual ion channel 

modulations. In addition, specific time-frequency and frequency-domain features were predominantly 

increased after the blockade of ICaL, INa, IKs and KATP. There is no previous experience on such EGM 

modifications, in order to explain any mechanistic insights, but these findings suggest that a common 

ion exchange mechanism may be influenced in myocyte/fibroblast co-cultures. However, each ion 

current plays a different role, and thus the blockade of each ion channel variably affects the degree of 

EGM modifications.   

 

 

6.3.2 The role of myofibroblasts  
 

Myofibroblasts are not considered to be part of healthy cardiac tissue and they usually appear following 

cardiac injury (358,367). They migrate to and are highly attracted by chemokines released at the site of 

injury. It has been found that myofibroblasts also produce cytokines, as a way to maintain the 

inflammatory response to injuries by themselves (358). Myofibroblasts have contractile ability, because 

a system of microfilaments connected to extracellular fibronectin has been found enabling cells to 

generate force to the extracellular matrix. Levels of aSMA, a myofibroblast marker (368), and therefore 

myofibroblast expression, are enhanced between 5 to 14 days following cardiac injury, and this is 

followed by a decrease in aSMA expression levels (358,369). This agrees with our findings about 

increased aSMA signal, and consequently enhanced amount of myofibroblasts, on NRVM/cultured 

fibroblast co-cultures. These fibroblasts had been cultured in low density, progressively leading to high 

cell density due to proliferation, for 7 days prior to be mixed with NRVMs. Recordings were obtained 

2-4 days following seeding on MEA plates, as presented in section 2.3. These are experimental 

conditions that according to previous in vitro studies stimulate fibroblasts to differentiate into 

myofibroblasts (358,370), supporting the belief that the NRVM/fibroblast co-cultures in this study 

mainly consisted of myofibroblasts.  

 

Fibroblasts usually express Cx43 and Cx45, which participate in gap junction formation (358). 

However, these connexins seem to be upregulated in myofibroblasts suggesting enhanced intercellular 

coupling (34,358). It has been supported that when myofibroblasts, derived from in vitro fibroblast 
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differentiation, are co-cultured with NRVMs, hetero-cellular gap junctions are formed between 

myofibroblasts and myocytes and homo-cellular gap junctions between cells of the same type (34). It 

is likely though that myofibroblasts create a barrier to normal conduction activity, because it is 

suggested that they are not as excitable as myocytes and they are intercalated among myocytes 

increasing the distance between neighbouring myocytes (358). This could explain the fact that a number 

of EGM features were influenced by the presence of myofibroblasts.  

 

A limited number of features were modified due to the presence of myofibroblasts. These were EGM 

amplitude, EGM onset to R-peak gradient, S-peak to EGM offset gradient, RS gradient and the 

maximum modulus, which was the only affected time-frequency analysis feature. Apart from maximum 

modulus, the rest of EGM features correlate to the depolarisation phase of cardiac myocytes. These  

changes could be explained by the depolarising effect of myofibroblasts on myocyte electrophysiology, 

as demonstrated by Miragoli et al. (34,371). According to that study, myofibroblasts have a relatively 

depolarised resting phase of -50mV or less, which affects the more negative myocyte resting membrane 

potential of » -70mV and it leads to its increase to -65 to -56mV (371). This effect was found to be 

more prominent when the amount of myofibroblasts exceeded 15% in the co-culture with myocytes, 

which was also the case in our experimental model. Thus, the depolarisation could be more spontaneous 

(371). Since EGM duration corresponds to the upstroke duration of depolarisation in an action potential 

(40), we could suspect that this effect of myofibroblasts leads to reduced EGM duration and higher 

EGM amplitude, and thus to increased gradients.   

 

 

6.3.3 Characterisation of EGM feature modifications in adult human 
ventricular slices 
 

The method used in this study for the investigation of fibrotic regions in adult human ventricular slices 

was SHG microscopy (372,373). This imaging method has been used multiple times for the 

visualisation of collagen distribution within a human myocardial slice (326,329,372). However, 

previous studies did not attempt to quantify fibrosis based on the amount of collagen, which is captured 

by SHG imaging. Thus, it is suggested that the size of the tissue area covered by collagen could be used 

both as a measure for quantifying fibrosis and as a marker of the potential of a tissue slice to be used 

for EGM recordings. The latter is a result of the observation that tissue slices, derived from heart failure 

myocardia, with a collagen coverage of over 24% could not be stimulated and no EGMs could be 

obtained from them. This is a confirmation that extended fibrotic areas obstruct the normal action 

potential propagation (32). 

 



 201 

There is poor knowledge on EGM morphology recorded from human myocardial tissue slices. This has 

been mainly focused on the investigation of FPD modifications (20,40,249), due to the interest on 

assessing new anti-arrhythmic and non-cardiac drugs for effects on APD and any possible induction of 

QT prolongation (20,374). FPD recorded in slices in this present study was similar to the APD recorded 

simultaneously from them under the same experimental conditions using a novel apparatus for 

concurrent MEA and optical mapping recordings developed by Chowdhury, Tzortzis, et al. (40). These 

results were similar to data obtained from multicellular preparations, such as ventricular slices (20) or 

wedges (349) and papillary muscles (375) under comparable conditions. The FPD values were longer 

than those reported for human ventricular tissue collected from healthy donor hearts (349,376) and the 

APD measurements agree with previous findings that the APD is prolonged in heart failure (377). Slices 

benefit from inclusion of the several cell types that are found in the native tissue, such as myocytes, 

fibroblasts and endothelial cells (20).  

 

Voltage and fractionation counter-intuitively changed among the groups of data, which were based on 

collagen coverage. The average EGM amplitude was enhanced due to the increased collagen coverage, 

while fractionation was not affected. Both observations do not agree with our knowledge about the 

effects of fibrosis, as it is known that voltage decreases and fractionation increases in scarred regions 

(6,106,127). However, a number of additional non-conventional features were influenced by the amount 

of collagen coverage, and therefore fibrosis, in tissue slices. These included RS gradient, S-peak width, 

Shannon entropy, S.D. EGM amplitude, variance of signal energy, EGM duration and autocorrelation. 

Regarding Shannon entropy, EGMs obtained from slices with >20% collagen coverage had higher 

Shannon entropy than the EGMs obtained from slices with 10-20% collagen coverage. This agrees with 

previous findings presenting Shannon entropy as a method for quantifying the complexity of EGMs 

obtained from scar regions, even though these referred to CFAE signals (127). Moreover, on the same 

way that increasing cellular scar in cell cultures leads to maximum modulus enhancement and a 

reduction of the skewness and kurtosis of PSD estimates, as earlier presented in this chapter, the same 

effects were observed on slices belonging to the moderate and high collagen coverage groups. This 

could suggest that abnormalities in conduction propagation comparably influence these time-frequency 

and frequency-domain features in multicellular preparations. 

 

 

6.3.4 The in vivo relationship between EGM morphology and atrial 
fibrosis 
 

This chapter also presented the analysis of paced EGM signal obtained from the LA of patients with 

persistent AF. Even though these data are not representative of arrhythmic events, they provide 

information about the ways that scar can manifest EGM morphology compared to non-scarred regions. 
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LA scar was quantified automatically using a method that collocated voltage mapping results with LGE 

imaging data used for the construction of a LA surface scar map (174). This map expressed the 

gadolinium signal intensity as multiples of SD above blood pool mean, as described in section 2.4. Scar 

has been originally defined as a region with >3 SD above blood pool mean (174), but for the purposes 

of this thesis and due to lack of adequate EGM data, regions with >2 SD blood pool mean were included 

as scarred regions. LA areas with <0 SD blood pool mean were defined as non-scar regions.  

 

It is supported that the underlying atrial substrate, represented by low voltage areas, can predict the 

outcomes of catheter ablation of AF (98). Low-voltage areas may represent regions of slow conduction 

as a manifestation of underlying fibrosis or wave collisions representing more functional 

electrophysiologic change and these regions have been suggested to be crucial for the AF maintenance. 

Current catheter ablation strategies are mainly focused on targeting potential AF drivers involving 

targeting low voltage regions. Low voltage areas are more represented in persistent AF than in 

paroxysmal AF, as shown by studies utilising voltage in paced-rhythm (99) and AF (100) recordings. 

However, the results presented in this chapter do not agree with the literature, because there was no 

clear reduction of EGM amplitude for statistically significant conclusions. These findings are also 

opposite to the fact that the analysed data were obtained from the LA posterior wall, which is known 

from histological studies to be more prominent to low-voltage areas in patients with AF (101). 

 

Another characteristic feature of the underlying substrate is the presence of fractionated EGMs, which 

are believed to coincide with areas of slow conduction or pivot points where the activation wavefront 

turns around at the end of a functional block (104). The study presented here showed that fractionation 

was indeed increased in scarred regions. This also agrees with previous studies by Nademanee et al., 

where it was reported that fractionated signal obtained from persistent AF patients was believed to 

collocate with scar areas responsible for AF occurrence and regions targeted during catheter ablations 

(6,106).   

 

The rest of features that were modified due to the presence of scar included EGM duration, RS interval, 

the width of R- and S-peaks, logarithmic energy entropy, maximum modulus, the variance of energy 

and dominant frequency. EGM duration and RS interval were both prolonged in scarred areas, which 

could be justified by the slower conduction. In general, these findings supported our initial hypothesis 

that scar is responsible for modulating EGM features and generating a morphology which is distinctive 

from the one recorded in healthy/non-scarred areas. 
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6.4 Limitations 

Cultured fibroblasts were used during the preparation of the in vitro experimental models and they were 

co-cultured with myocytes. The purpose of these fibroblasts was to be used as a way to mimic the 

pathological conditions. However, fibroblasts isolated from rat diseased hearts should be ideally used, 

in order to reproduce the myocardial conditions.  

 

An additional limitation of the above study is the lack of a reliable method for quantifying fibrosis in 

tissue slices. The method presented here uses the total size of the area covered by collagen I molecules, 

which are part of ECM. Even though SHG microscopy has been the standard method for non-invasive 

imaging of fibrotic areas in different types of tissue (329,372,378,379), this method has not been 

standardised and verified for quantification purposes, but only for qualitative observations. 

Consequently, apart from the types of fibrosis based on histology (20,32,380), there is currently no 

categorisation system based on quantification measurements. Thus, apart from the type of categorisation 

presented in this chapter, tissue slices could be classified in a variety of other possible ways, including 

the use of a collagen coverage percentage as a cut-off or dividing samples into two groups, based again 

on collagen coverage.   

 

The ex vivo slice data presented in this chapter generally present that the degree of feature modifications 

is independent of the amount of fibrosis. A variety of features are significantly eliminated in the 

moderate collagen coverage group compared to the other ones and there may be no difference between 

the low and high coverage groups. Even though such trends seem impossible to be explained with 

electrophysiology terms, this may be a result of the categorisation method followed in this chapter.  

 

 

6.5 Conclusion 

In this chapter, it was shown how EGM morphology is modified due to the effect of a modified structure 

of the preparation. These changes involved the cellular component of scar in 2D cell preparations, 

variable amounts of fibrosis in tissue slices derived from heart failure myocardium and the presence of 

scarred regions in the posterior LA endocardium. It was found that such in vitro and ex vivo structural 

abnormalities modify not only the conventional features of voltage and fractionation, but also other 

morphological and complex EGM features. The amount of cellular scar is not always correlated to the 

degree of feature modifications. It can be also suggested that EGMs dramatically change due to in vivo 

scar presence, but voltage is not one of the features that change, as is conventionally considered. These 

findings will be useful when developing predictive models based on each experimental model. The ex 
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vivo and in vivo models especially have been investigated very little or not at all for the effects of 

functional abnormalities in this thesis, and there is a focus on structural abnormalities instead. Thus, the 

features used for predicting unlabelled EGMs, which are obtained under the conditions presented in this 

chapter, will be meaningful and the way that predictions occur will be clearer. 
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Chapter 7 
 
Predicting functional and structural abnormalities 
from cellular EGM morphology 
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7.1 Introduction 

 

Primary cultures of NRVMs and FBs are widely used in vitro in cardiac research (381). Their 

advantages include the ability to study pathophysiological processes in an experimental setting that 

lacks the influence of hemodynamic factors existing in vivo and the feasibility to artificially control 

other concomitant factors using pharmacologic methods (381). In addition, the co-culture of NRVM 

and FBs provides the ability to robustly investigate a variety of parameters that affect cellular 

electrophysiology. This is allowed not only by the feasibility of growing both cell types, but also by the 

presence of gap junctional coupling between both cell types (279). Fibroblasts act as current sinks and 

impose an electrical load when electrically coupled to myocytes. Moreover, the resting membrane 

potential of FBs has been shown to be more positive compared to myocytes (382) and may become 

more hyperpolarized with activation (383). It has been suggested by experimental studies that the 

increased myocyte/FB coupling may lead to APD changes, electrotonic depression of myocytes, 

arrhythmogenic excitability gradients, altered conduction and unidirectional block (31,356,384–386). 

These are all factors that may influence the unipolar extracellular EGM morphology (242) and it worth 

investigating how each one of them affects specific EGM features. However, the aim of the work 

presented in this thesis is bi-directional. Thus, apart from the elucidation of functional and structural 

factors affecting the EGM morphology, it is aimed to be investigated how the same factors can be 

predicted using EGM features.  

 

Functional abnormalities, such as gap junction uncoupling and ion channel blockade, are more difficult 

to detect, as opposed to the investigation of the cardiac tissue structure through LGE-MRI or 

histological techniques. For this reason, there are examples of drugs in late-stage development or with 

market approval, such as clobutinol, sibutramine, tegaserod, which are then withdrawn due to 

previously undetected drug-induced cardiotoxicity (387,388). Better safety has been recently facilitated 

through the adoption of US Food and Drug Administration guidelines that recommend screening new 

drugs with the hERG inhibition assay (387). Therefore, it becomes clear that there is a necessity for 

more accurate and faster pre-clinical detection methods leading to the emergence of a variety of 

screening platforms (387,389). The focus of this thesis is to predict the variety of factors that are known 

to cause disruptions in conduction velocity and action potential propagation using the EGM 

morphology. For this reason, there has been an increasing interest over the last decade for the 

development of predictive models using supervised machine learning methods. 

 

Machine learning includes a variety of statistical methods which aim to build predictive models given 

a dataset. These techniques are an approach to optimize the utility of datasets generated from screening 

pharmacological agents and they enable handling multidimensional datasets in an automated fashion 
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(390). All these methods have proved their performances in many different scenarios of classification, 

when applied to biological data (389). In this chapter, it is hypothesized that multiclassification 

algorithms can be used to predict functional and structural abnormalities that take place in vitro using 

the unipolar extracellular EGM morphology. In order to address this, the aims were: 

1. to create an EGM morphology database with data obtained  

a. from a variety of in vitro experiments where cardiac disease-related functional 

modifications were caused by target-specific agents and 

b. from a number of in vitro conditions mimicking structural abnormalities that can be 

proarrhythmic or related to heart failure and responsible for abnormal action potential 

propagation, 

2. the development of a process for automated feature selection, classification training and 

validation of the final prediction model through unlabelled data, 

3. to investigate a variety of classifiers, in order to find the most effective ones for analysing 

EGM morphology data related to targeted pharmacological agent effects, 

4. to develop a model that has the ability to predict the heart-related drug-specific effects of 

various pharmacological agents and other structural in vitro conditions can be used to decode 

functional and structural abnormalities which are typically related to a number of cardiac 

diseases. 

 
EGMs, which were obtained under the experimental conditions presented in Chapters 4-6, were 

described by values for each one of the time-domain, frequency-domain and time-frequency features 

that was introduced in Chapter 4. The process that I followed to elucidate the aims of this chapter 

included the methods presented in section 2.9. Firstly, training and test datasets were created consisting 

of EGMs obtained from all in vitro conditions presented in Chapters 4-6. The SFS method was applied 

on the training dataset for selecting a feature subset used during classification training. The model, 

which was extracted in the end of training, was applied on the test dataset of unlabelled EGMs for 

predicting the functional and structural abnormalities that occurred when these were obtained. 

 
 
 
7.2 Methods 

The experimental data used in this Chapter are the ones presented in Chapter 4 and derived under a 

variety of functional and structural modulations in cell monolayers. EGM morphology analysis was 

carried out using the methods presented in Chapter 3 and feature arrays were created in order to describe 

the morphology of individual EGMs. Based on these arrays, a dataset was created. EGMs were 

randomly selected using Matlab to create the training and test datasets. The training dataset consisted 
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of 59.7% of the initial pool of EGM data and the test dataset consisted of 40.3% of the same initial 

dataset. No EGMs were included in both datasets, because each EGM was selected only once. 

 

Feature selection was carried out using the SFS method presented in section 2.9.2, in order to exclude 

the less informative feature and keep only those that can show differences between data and across all 

classes. The training dataset was used for this purpose. 

 

The subset of data created after feature selection was used for classification training. The machine 

learning techniques used for this purpose were based on SVM, kNN, Decision trees and Discriminant 

Analysis, as presented and described in detail in section 2.9.1. Each classification training was assessed 

using specific metrics (average accuracy, error rate, precision, sensitivity, specificity, PPV, NPV) which 

are presented in section 2.9.4. The exported predictive model, following the application of the most 

efficient machine learning technique, was validated by providing the test dataset. The results of this 

prediction were used for assessing the performance of the model. 

 
 

 

 

7.3 Results 

 

7.3.1 Data used for supervised machine learning 
 

Following the rejection of poor-quality signals collected from all MEA experiments presented so far, a 

total of 4,022 EGMs were analysed. These signals were obtained from a total of 24 functional and 

structural modulations either in isolation or in combination, as presented in Chapters 4-6 (Table 7.1). 

Regarding the functional abnormalities that were introduced to +20% FB and +40% FB cell cultures, 

the +40% FB data were combined with the corresponding +20% FB data (High % FB). The reason for 

this is that the size of data obtained from the +40% FB cell cultures were not adequate to be used both 

during training and evaluation of the prediction model. In addition, the morphology changes were not 

significantly different between these data groups at the baseline state or following the introduction of 

specific types of ion channel blockade, as presented in Chapter 4.  

 

The EGM features extracted from the automated analysis, which was presented in Chapter 3, formed a 

matrix of 36 features. These EGMs were obtained both during the concurrent MEA/optical mapping 

experiments (IC50 drug concentration) and during titration experiments for each of the pharmacological 

agents used in this thesis – data collected after the addition of the drug concentration closest to the IC50 

were used here. The data were partitioned into a training dataset, used for classification training, and a 
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test dataset, used for evaluation of predictive models. The training dataset consisted of 2,400 randomly 

selected EGMs (59.7% of total EGMs) and the test dataset consisted of the remaining 1,622 EGMs 

(40.3% of the total) (Table 7.2). The training dataset consisted of 100 EGMs per class, in order to have 

an equal amount of data representing each condition during classification training and avoid the biased 

analysis. 

 

Table 7.1. Total number of EGMs collected under a variety of experimental conditions from cell cultures, 
which were analysed and further used for the development of training and test datasets. 
 

 # of EGMs 
analysed  # of EGMs 

analysed  # of EGMs 
analysed  # of EGMs 

analysed 

Control 
(MO) 347 ICaL 

blockade 113 NC + IKr 

blockade 
126 

 

High % FB 
+ GJ 

uncoupling 
113 

Ito blockade 118 KATP 
opening 125 NC + IKs 

blockade 111 
High % FB 

+ Ito 

blockade 
110 

IKr blockade 112 GJ 
uncoupling 179 NC + INa 

blockade 139 
High % FB 

+ IKr 
blockade 

124 

IKs blockade 109 NC 493 NC + INa + 
ICaL 107 

High % FB 
+ IKs 

blockade 
111 

INa blockade 149 NC + GJ 
uncoupling 103 NC + ICaL 

blockade 104 
High % FB 

+ INa 
blockade 

184 

INa + ICaL 117 NC + Ito 
blockade 138 High % FB 489 

High % FB 
+ ICaL 

blockade 
201 

TOTAL 4,022 
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Table 7.2. Number of EGMs collected per experimental condition used for classification training and evaluation of predictive models.  

 
 

 # of EGMs analysed  # of EGMs analysed  # of EGMs analysed 
 

 # of EGMs analysed 

 Training Test  Training Test  Training Test  Training Test 

Control (MO) 100 247 ICaL blockade 100 26 NC + IKr 

blockade 100 26 High % FB + GJ 
uncoupling 100 13 

Ito blockade 100 18 KATP opening 100 11 NC + IKs 
blockade 100 11 High %FB + Ito 

blockade 100 10 

IKr blockade 100 12 GJ uncoupling 100 79 NC + INa 
blockade 100 39 High %FB + IKr 

blockade 100 24 

IKs blockade 100 9 NC 100 393 NC + INa + 
ICaL 100 7 High %FB + IKs 

blockade 100 11 

INa blockade 100 49 NC + GJ uncoupling 100 3 NC + ICaL 
blockade 100 4 High %FB + INa 

blockade 100 84 

INa + ICaL 100 17 NC + Ito blockade 100 38 High % FB 100 389 High %FB + ICaL 
blockade 100 101 

Total # of EGMs for Training dataset 2,400 

Total # of EGMs for Test dataset 1,622 
TOTAL 4,022 
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7.3.2 Feature selection for predicting functional and structural 
modulations 
 

The SFS method for automated feature selection was only applied to the training dataset. The number 

of features used by the classifier was reduced to a subset with a variable number of features depending 

on the method used during the SFS process. Features derived from any type of morphology analysis 

were included in the final feature subsets. Twenty-two features were selected using the LDA method, 

12 by applying kNN, 11 using SVM and 12 using the Bagging Decision Trees (TreeBagger) algorithm 

(Appendix B-I).  

 
 
7.3.3 Identification of the optimal classifier 
 

Initially, a comparison of 20 machine learning algorithms was undertaken, in order to identify those 

which are most suitable for the specific classification problem. A training dataset consisting of the 24 

classes presented in Table 7.2 (2,400 EGMs) was used for this purpose. The performance of each 

classifier was assessed by the average classification accuracy (Table 7.4). The highest accuracy was 

achieved by the Bagging Ensemble method (85.8%) and the lowest classification accuracy 

corresponded to simple decision trees with coarse distinctions between classes, where the maximum 

number of splits was 4 (18.2%). Comparing the four families of supervised machine learning methods, 

it was observed that there was significant difference in average classification accuracy between them. 

However, the SVM, kNN and Ensemble methods tend to have better performance on the same training 

dataset (Table7.3).  

 

Since the Bagging Ensemble method had the best performance, it was chosen for use in subsequent 

analysis and further optimized. Table 7.4 lists the order that the features were selected during the SFS 

process. Assessing how each of these features affects classification accuracy, it was found that using 

the frequency of maximum energy in isolation gave an accuracy of 44.3%, which increased with the 

step-wise addition of the next 5 features (logarithmic energy entropy, QS interval, mutual information, 

maximum modulus, frequency of minimum signal energy) reaching the 82.2% of accuracy (Figure 7.1). 

However, there was not significant change after the addition of the rest of features and the classification 

accuracy was only increased to 85.8% in the end. That shows that the first 6 features selected during 

the SFS process were the most discriminative. 

 

 

 



 212 

Table 7.3. Classification performance for each of the classification methods considered. This is the 
average classification accuracy which is used as an index of the performance on the overall training 
dataset.  

 
Prediction method Accuracy (%) Prediction method Accuracy (%) 

Ensemble (bagging) 85.8 KNN (cubic) 60.5 

SVM (Cubic) 75.2 Ensemble (boosted) 58.2 
SVM (Quadratic) 74.6 Ensemble (subspace KNN) 56.8 

KNN (fine) 71.1 SVM (Fine Gaussian) 54.1 

KNN (weighted) 69.9 Ensemble (subspace 
discriminant) 53.1 

SVM (Linear) 69.9 Decision Tree (medium) 44.5 

Decision Tree (fine) 67.7 Linear Discriminant Analysis 44.3 

KNN (medium) 64.6 Quadratic Discriminant 
Analysis 42.6 

KNN (cosine) 63.3 KNN (coarse) 39.7 
Ensemble (RUSBoosted 

Trees) 61.4 Decision Tree (coarse) 18.2 

 

 

Table 7.4. Feature subset extracted by forward SFS using the Ensemble Bagging method during feature 
selection process listed in order of significance from the most to the least important. 

 

EGM features selected during Sequential Forward Selection 

1. Frequency of maximum energy 7. Variance of signal energy  

2. Logarithmic energy entropy 8. Kurtosis of PSD estimates 

3. QS interval 
9. Scale at minimum signal 
energy 

4. Mutual Information 10. Maximum PSD estimate 

5. Maximum modulus 
11. Median frequency of PSD 
estimates 

6. Frequency of minimum signal 
energy 

12. S.D. EGM amplitude 
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Figure 7.1: Classification performance achieved using in vitro data. Starting from the most discriminative 
feature, additional features were included during training in the order of selection. The initial increase phase 
in the curve is followed by a plateau, as the addition of more features does not make significant difference 
in classification performance. 
 

 

The parameters of the Bagging ensemble method were optimised. The out-of-bag error, which is the 

average predictive accuracy for each training sample when not included in the training, was estimated 

for trees with 5 different leaf sizes (1, 5, 10, 15, 20) and different ensemble sizes (1–500 trees), in order 

to identify the optimal parameters for the minimization of prediction error (Figure 7.2). Classification 

training using the minimum leaf size of one resulted to the minimum out-of-bag classification error and 

it remained stable above 50 trees. The out-of-bag classification error was significantly different across 

leaf sizes (leaf size 1: 0.16 ± 0.002, leaf size 5: 0.18 ± 0.002, leaf size 10: 0.2 ± 0.003, leaf size 15: 0.22 

± 0.002, leaf size 20: 0.25 ± 0.002; p<0.0001). Based on these findings, a leaf size of 1 and 50 trees 

were chosen as the optimal conditions for classification training using the Bagging Ensemble method.  

 
 

Figure 7.2: Optimisation of the Ensemble Bagging method. Out-of-bag classification errors measured for 
five leaf sizes (1, 5, 10, 15, 20) as a function of number of grown decision trees. A variety of ensemble sizes 
with up to 500 decision trees were investigated using the same training dataset.  
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7.3.4 Predicting functional and structural modulations using cellular 
EGMs 
 

Classification training was carried out using the optimal conditions for the performance of Bagging 

ensemble method. This algorithm was applied on the training dataset using 14 features and EGMs were 

classified against 28 classes of functional and structural modifications. The result was a classification 

accuracy of 85.8% with error rate of 4.4% and precision 85% (Table 7.5). Figure 7.3 presents the per-

class predictions. It is shown that data correlated to 20 modulations were correctly predicted at a rate of 

>75%. Table 7.5 presents the details of the assessment of classification training performance. It was 

observed that the sensitivity of the control group for each type of cell culture (MO, NC, +20%FB, 

+40%FB) was much lower than the rest of modulations within each cell group. In correlation with the 

confusion matrix from Figure 7.3, the control groups resulted to a higher number of false negative 

classifications compared to the rest of classes, which could be the reason for low sensitivity. There is 

high confidence in the results presented in this confusion matrix, since all classes of the training dataset 

had an equal size (n = 100 EGMs per class), in order to avoid any biased predictions. 

 

The receiver operation characteristic (ROC) was used as a more specific measure of accuracy as a 

function of the false positive rate. It is another way to visualise the classification performance. Figure 

7.4 presents the ROC curves for the modifications with the highest true positive/false positive rate, 

which is gap junction uncoupling in MO monolayers, and the lowest true positive/false positive rate at 

the +20% FB data. The area under the curve (AUC) is indicative of the overall accuracy of the model 

with AUC=1 indicating zero errors in classification. AUC for gap junction uncoupling was 0.99 and for 

+20% FB was 0.89, indicating high prediction accuracy for both conditions. The rest of classes had in-

between AUC results. 
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Figure 7.3: Classification performance achieved on the EGM signal dataset by Bagging ensemble 
classification. The dataset consisted of all functional and structural modifications applied on cell cultures. 
The confusion matrix presented here was determined by the known and predicted classes using the training 
dataset. The rows correspond to the true class, the columns show the predictions and the diagonal cells show 
for what percentage of the observations the trained network correctly estimated the classes. Green cells 
correspond to correct predictions.  
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Figure 7.4: ROC curves obtained after classification training using the Ensemble Bagging method. The 
curves correspond to data obtained from MO culture with gap junction uncoupling (A) and +20% FB 
monolayers at the baseline state (B), which are the modifications with the most and the least correctly 
classified EGMs respectively. 

 

 
 

The lowest rates of correct predictions were achieved at the baseline class of each type of cell culture. 

These poor predictions were due to the fact that the EGMs obtained from baseline classes had hardly 

different SFS features from a group of other classes. This resulted to high false negative rates and 

consequently low sensitivity. This became obvious on the confusion matrix presented on Figure 7.3, 

across the row corresponding to each baseline class (MO, NC, High % FB), where red cells indicate 

horizontally the classes that were false negatively detected. In specific, the baseline of MO cultures was 

mainly confused with the INa blockade at MO cell cultures and functional abnormalities at the NC and 

High % FB cultures. The baseline of NC was confused with various functional abnormalities at NC and 

High % FB cell cultures. The baseline class of High % FB cultures was poorly predicted due to the 

misclassification of data mainly for High % FB + IKr blockade data and EGMs obtained from a variety 

of functional abnormalities in NC cell cultures. Figures 7.5-7.7 confirm the absence of statistically 

significant differences between the baseline and the rest of classes for each cell group (MO, NC, High% 

FB), apart from a few exemptions indicated on each figure. This might be the reason for high false 

negative rates, the relatively higher number of false predictions for the baseline state of each cell group, 

as shown in the confusion matrix of Fig.7.3, and subsequently the reduced precision and classification 

accuracy.  
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 Control (MO) KATP opening ICaL blockade INa blockade IKr blockade 
Gap junction 
uncoupling 

INa + ICaL Ito blockade 

Sensitivity (%) 56.7 93 97.7 95.2 100 100 100 92.8 

Specificity (%) 97.1 98.1 97 95.3 96.1 100 100 95.9 

PPV (%) 82.2 55.4 83.3 57.8 66 100 100 65 

NPV (%) 92.9 99.2 99.5 99.6 100 100 100 99.9 

 NC 
NC + ICaL 
blockade 

NC + INa + ICaL NC + INa blockade 
NC + Ito 
blockade 

NC + IKs 

blockade 
NC + IKr 
blockade 

NC + Gap junction 
uncoupling 

Sensitivity (%) 48.4 70.5 88 98 81.7 89.5 93.7 94.2 

Specificity (%) 96.1 94.9 95.2 92 97.3 97.4 98.1 97.9 

PPV (%) 92.3 65.4 53.2 69.5 49.5 61.1 77.2 98 

NPV (%) 78.5 97.8 99.2 99.9 98 99 99.3 97.9 

 IKs blockade High %FB 
High %FB + ICaL 

blockade 
High %FB + IKs 

High %FB + INa 
blockade 

High %FB + Ito 
blockade 

High %FB + 
IKr blockade 

High %FB + Gap 
junction uncoupling 

Sensitivity (%) 98.3 52.4 93.3 90.1 98.2 92.7 87.7 95.1 

Specificity (%) 97.5 98.5 92.2 94.7 92.5 91.3 89.9 99.2 

PPV (%) 85.7 78.2 67.9 60.2 69.5 80 81.4 95.3 

NPV (%) 99.3 89.6 99.6 99.6 99.9 98.3 93.1 99.5 

 

Overall performance 

 
Precision (%) 85 

Error rate (%) 4.4 

Classification accuracy (%) 85.8 

 

Table 7.5. Assessment of classification training using training dataset. The classification training was carried out against 24 classes. Statistical indices (sensitivity, 
specificity, PPV, NPV) were calculated separately for each class and average indices (precision, error rate, classification accuracy) were measured for the overall 
performance. 
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Figure 7.5: Bar graphs presenting how the SFS features used during classification training changed across 
a range of classes which resulted to high false negative rates, and consequently low sensitivity, in relation to 
the control (MO baseline) class. Two-way ANOVA and multiple t-test analysis within each group of classes 
showed no significant changes between control and the rest of classes for any feature, apart from a few 
exceptions. Classes are grouped together per feature and dashed lines distinguish the analysis per feature. 
Normalised units correspond to the division of each feature measurement by the highest measurement for 
that particular feature. Mean ± SD; *p<0.05. 
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Figure 7.6: Bar graph analysis presenting no significant differences between the baseline state of NC cell 
cultures and the rest of classes with which a high false negative rate was found comparing the SFS feature 
changes. Two-way ANOVA and multiple t-test analysis within each group of classes were carried out. 
Classes are grouped together per feature and dashed lines distinguish the analysis per feature. Normalised 
units correspond to the division of each feature measurement by the highest measurement for that particular 
feature. Mean ± SD. 
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Figure 7.7: High false negative rates for the baseline class of High % FB cell cultures can be explained by 
the absence of significantly different SFS features between that class and a group of others. There is an 
exception on this regarding the S.D. EGM amplitude and variance of energy between the High % FB and 
NC + INa blockade classes. Classes are grouped together per feature and dashed lines distinguish the analysis 
per feature. Normalised units correspond to the division of each feature measurement by the highest 
measurement for that particular feature. Mean ± SD; *p<0.05. 
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7.3.5 Validation of prediction model  
 

The prediction model produced at the end of the process described so far was evaluated using a test 

dataset of 1,622 EGMs. The number of tested EGMs corresponding to each class is presented in Table 

7.2. These data were obtained under the same experimental conditions as those that were used for the 

training dataset and they were not included in the training dataset. The performance assessment 

demonstrated high classification accuracy in overall (86.6%) (Table 7.6).  The data analysis following 

the prediction model validation agreed with the training results regarding the low predictability of 

EGMs obtained from MO, NC and High % FB cell preparations at the baseline state, because the 

sensitivity was lower than the rest of classes (MO: 41.2%, NC: 53.4%, High % FB: 66%).   

 

Figure 7.8: Confusion matrix presenting how the predictive model presented in section 7.3.4 performed in 
each class of the test dataset. The test dataset consisted of 1,622 EGMs derived from functional and structural 
modifications applied on cell cultures. The confusion matrix presented here was determined by the known 
(true) and predicted classes using the test dataset. The rows show the true class, the columns show the 
predictions and the diagonal cells show for what percentage of the observations the model correctly estimated 
the classes. Green cells correspond to correct predictions. The true positive and false negative rates (correct 
or incorrect classifications respectively) are presented in each square of the matrix. 
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Table 7.6. Evaluation performance of prediction model using a test dataset. The model was developed for predicting 24 classes. Statistical indices (sensitivity, 
specificity, PPV, NPV) calculated separately for each class and average indices (precision, error rate, accuracy) measured for the overall performance. 
 

 Control (MO) KATP opening 
ICaL blockade 

INa blockade IKr blockade 
Gap junction 
uncoupling 

INa + ICaL 
Ito blockade 

Sensitivity (%) 41.2 93.3 74 95.2 99.8 99.1 95.2 92.8 

Specificity (%) 98.6 98.8 97.1 95.3 96.3 100 96.3 95.9 

PPV (%) 90.3 56 48 57.9 70.1 100 90.9 65 

NPV (%) 84 99.8 99.6 99.7 99.8 99.9 95.3 99.9 

 NC NC + ICaL 
blockade 

NC + INa + ICaL NC + INa blockade NC + Ito 
blockade 

NC + IKs 
blockade 

NC + IKr 
blockade 

NC + Gap 
junction 

uncoupling 

Sensitivity (%) 53.4 71.9 88 98 81.7 89.5 93.7 94.2 

Specificity (%) 97 95.1 95.2 92 97.3 97.4 98.1 97.9 

PPV (%) 90 68.2 53.2 69.5 49.5 61.1 77.2 98 

NPV (%) 78.6 97.8 99.2 99.9 98 99 99.3 97.9 

 IKs blockade High %FB 
High %FB + ICaL 

blockade High %FB + IKs 
High %FB + INa 

blockade 
High %FB + Ito 

blockade 
High %FB + 
IKr blockade 

High %FB + 
Gap junction 
uncoupling 

Sensitivity (%) 95 66.0 94.1 95.1 77.2 84.9 80 96.7 

Specificity (%) 96.1 96.4 95.5 95.4 99 97.5 96.6 97.9 

PPV (%) 77.9 85.8 27.1 80.2 80.2 68.4 20 98.2 

NPV (%) 95.9 90.6 99.9 95.6 99.6 98.8 99.8 96.4 

 

Overall evaluation performance 

 
Precision (%) 79.2 

Error rate (%) 5.2 

Classification accuracy (%) 86.6 
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The confusion matrix presented in Fig. 7.6 confirms the low predictability of these three classes: MO, 

NC and High % FB, also presented in Table 7.6. It becomes clear from the confusion matrix that a high 

percentage of data are incorrectly classified and a result a characteristic column of false negative rates 

is formed for each one of these classes. The sensitivity and specificity were >80% for the majority of 

the rest of classes and the overall error rate was 5.9%. This is also visualised on the confusion matrix. 

Even though the size of test data are unequal across classes, this does not affect the validation results. 

Each EGM is examined individually against all classes of a predictive model, in order to make a 

prediction. The equal representation of all classes is crucial in training datasets, which is indeed equal 

in this case, as already presented in Table 7.2, and not in test datasets. 

 
 
7.3.6 Predictive modelling differences between functional and structural 
abnormalities  
 
The predictability of functional modulations in isolation, consisting of ion channel blockade and gap 

junction uncoupling in MO cell cultures, was also investigated and compared to the predictability of 

structural modifications. The structural abnormalities consisted of the three different baseline types of 

cell culture with various amounts of fibroblasts (MO, NC, High % FB). This analysis was carried out 

in order to search whether such a large number of classes and the high degree of problem complexity, 

as the one investigated in previous section, are factors that prohibit the performance of classification 

training. 

 

The same process as described in previous sections was followed for the development of a predictive 

model focused on functional modulations and 7 features were selected by SFS using the TreeBagger 

algorithm. The training dataset used for this purpose consisted of 900 EGMs in total obtained from 

different types of functional abnormalities at MO cultures. These randomly selected EGMs were chosen 

anew, and the datasets used for classification and validation were different from those used in previous 

section. Features indicated during the SFS process were used for classification training (Appendix B-

II). The average accuracy following the classification training was 96.7% and as it can be observed 

from the confusion matrix (Figure 7.9A) some classes had a better predictability than others. The results 

of the training were different for the same classes compared to the ones presented in the previous 

section. This is due to the use of a different training dataset and the decreased number of classes 

involved in classification. However, better classification results were achieved (Table 7.7) compared to 

the use of both functional and structural abnormalities, as presented in previous section. Figure 7.9B 

presents the ROC curves of an example of a class with high percentage of positive predictions (INa+ICaL, 

AUC = 0.99) and the class with the lowest percentage of positive predictions, which is the baseline MO 

cell monolayer (AUC = 0.85). These ROC curves visualise the predictability of each class by showing 

how the ratio of true positive rate by false positive rate change.  
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Figure 7.9: Classification performance following training for the functional modifications. (A) Confusion 
matrix presenting the classification performance using a training dataset consisting of EGMs obtained with 
or without the presence of functional modulations in MO preparations. The panel was determined by the 
known and the predicted class data during classification training. The data were described by time-domain, 
time-frequency, frequency-domain and information theory-based features. Green cells correspond to correct 
predictions. (B) ROC curves corresponding to the class with the highest (INa+ICaL) and the lowest (MO) 
percentage of positive predictions. 
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Table 7.7. The 10-fold cross-validation classification training performance was assessed. Classification 
performance indices were calculated for the performance per class (Se, Sp, PPV and NPV) and the overall 
performance (precision, error rate, accuracy).  
 

 
Control 
(MO) 

Gap 
junction 

uncoupling 
ICaL 

blockade 
IKr 

blockade 
INa 

blockade 
INa+ICaL 

blockade 
Ito 

blockade 
KATP 

blockade 
IKs 

blockade 

Sensitivity (%) 41.4 100 87.9 87.9 86.1 100 94.8 91.4 88.2 

Specificity (%) 97.6 99.7 96.8 98.1 95.8 99.3 97.4 98.2 98.3 

PPV (%) 72.7 98.3 80.9 87.9 75.8 90.9 84.6 88.3 83.4 

NPV (%) 91.6 100 98.1 98.1 97.9 100 99.2 98.7 98.4 

Precision (%) 98.1 
Error rate (%) 3.3 
Classification 
accuracy (%) 96.7 

 

 

 

Table 7.8. Validation performance of the model developed for predicting functional abnormalities using a 
test dataset with 9 classes. Statistical indices (sensitivity, specificity, PPV, NPV) calculated separately for 
each class and average indices (precision, error rate, accuracy) measured for the overall performance. 

 

 Control 
(MO) 

KATP 
opening 

ICaL 
blockade 

INa 
blockade 

IKr 
blockade 

Gap junction 
uncoupling 

Ito 
blockade 

INa+ICaL 
blockade 

IKs 
blockade 

Sensitivity 
(%) 49.7 66.7 89.4 86.2 86.7 97.5 100 82.2 80.1 

Specificity 
(%) 

95.7 91.7 86.7 86.1 91.6 100 88.5 89.5 90.3 

PPV (%) 91.4 50.4 52.2 62.6 48.9 100 50.2 85.3 82.9 

NPV (%) 68.2 98.4 99.4 97.2 99.4 98.6 100 90.1 92 

Precision 
(%) 60.4 

Error rate 
(%) 10.5 

Average 
accuracy 
(%) 

86.8 

 

 

 

The prediction model was validated using a test dataset of 468 EGMs. The performance assessment 

showed an average classification accuracy of 86.8% and error rate of 10.5%. Apart from the control 

and KATP classes, which showed the lowest sensitivity (49.7% and 66.7% respectively), this was >80% 

for the rest of classes confirming the classification training results (Table 7.8). 
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In order to investigate the predictability of control groups, where no functional abnormalities were 

included, the above process was following as well. Again, the data used for representing these classes 

and for constructing the training and test datasets were different from the ones previously used as they 

were selected anew. The training dataset consisted of 400 EGMs. The performance analysis following 

classification training showed that comparable correct predictions were made among classes (Table 

7.9). The correct predictions ranged between 71-81% (Figure 7.10). The prediction model was 

evaluated using a test dataset of 1,029 EGMs. The classification accuracy was 88.1% and the error rate 

9.8%. The rest of performance indices (sensitivity, specificity, PPV, NPV) were also similar among 

classes (Table 7.10). The average accuracy following the classification training for the baseline of 

different types of cell culture (MO, NC, High % FB) was 84.9%. 

 

 
 

Figure 7.10: Classification performance following training and using an EGM dataset consisting of data 
obtained from the four different types of cell monolayer used in this thesis at the baseline state. (A) Confusion 
matrix determined by the known and predicted groups as developed during classification. (B) ROC curves 
corresponding to each in vitro experimental model and obtained after classification training.   

 

Table 7.9: Assessment of the classification training performance using EGMs obtained from cell cultures 
with different amounts of cellular scar. Classification performance indices were calculated for the 
performance per class (Se, Sp, PPV and NPV) and the overall performance (precision, error rate, accuracy).  

 

 Control (MO) NC High % FB 

Sensitivity (%) 90.7 84.3 90.8 

Specificity (%) 94.1 93.9 97.3 

PPV (%) 86.5 84.9 92.4 

NPV (%) 96 93.7 96.2 

Precision (%) 89.1 
Error rate (%) 6.2 
Classification accuracy (%) 93.8 
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Table 7.10: Evaluation of the prediction model based on the different types of cell culture used in this 
thesis. Statistical indices (sensitivity, specificity, PPV, NPV) calculated separately for each class and 
average indices (precision, error rate, accuracy) measured for the overall performance. 

 

 Control (MO) NC High % FB 

Sensitivity (%) 89.6 82.5 87.2 

Specificity (%) 89.2 93.6 90.9 

PPV (%) 89.3 89.6 66.5 

NPV (%) 89.5 89.6 97.2 

Precision (%) 82.2 
Error rate (%) 9.3 
Classification accuracy (%) 89.4 

 

 

 
 
7.4 Discussion 

In this chapter, a framework for classification of functional and structural abnormalities that occurred 

in vitro using unipolar extracellular EGMs was presented. Different types of cell culture were used 

where functional abnormalities were pharmacologically introduced. High-dimensional EGMs were 

projected to a low-dimensional feature space, and supervised machine learning tools were used to train 

a model and make predictions. The abnormalities could be predicted with high specificity and accuracy. 

EGMs were classified into 24 classes using 4 time-domain, 5 time-frequency and 4 information theory 

characteristics. Twenty feature-based supervised learning methods were compared. The outcome of this 

investigation is that the EGM morphology can be used to accurately predict a variety of localized 

cellular abnormalities, but the complexity of a dataset combined with the size of data can be critical 

factors for the efficiency of a predictive model. 

 

7.4.1 Features describing the datasets and data reduction 
 
EGM correlates of AP changes have been previously characterized (247), but more extensively 

presented in Chapters 4-6 of this thesis. As a result, the effects of a range of functional and structural 

modulations can be theoretically predicted. However, the inverse problem of predicting abnormalities 

from EGM morphology has been studied to a much lesser extent. Previous machine learning studies 

using unipolar EGM data obtained from AF patients have been published, but these mostly focused on 

the classification of AF phenotypes based on the presence of scarred regions and they completely 

ignored the presence of electrical remodelling and any cellular level changes (154,391). As is the case 
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with the work presented in this chapter, the nature of the outputs becomes multidimensional when 

multiple experimental conditions are present or a multiplex system is used (392). This chapter reported 

the use of unipolar EGM morphology for predicting numerous cellular abnormalities, which are known 

to be linked with a number of heart failure and arrhythmogenic phenotypes. While distinctive from 

clinical EGMs, the data used in this chapter enabled the capabilities of supervised learning algorithms 

to be assessed in a controlled context and ensure signals could be labelled accurately. Therefore, an 

additional advantage of the work presented in this chapter compared to previous studies, which also 

used in vitro data, is that modifications were studied in a step-wise manner. EGMs were obtained not 

only from isolated modifications, but also from combinations of them.  

 

Feature extraction was carried out based on time-domain morphology analysis (393,394), time-

frequency, frequency-domain and non-linear features (125,395). Their combination has been reported 

to achieve better performance (213). Obtained results show that the mixture of features can more 

efficiently predict the variety of abnormalities that were investigated. The training results clearly 

support this statement: selected time-domain features (53.2%), selected time-frequency features 

(65.3%), combined time-domain and time-frequency features (70.2%). The addition of frequency-

domain and information theory-based features achieved the optimum classification performance. These 

findings agree with clinical studies that had been conducted for simulation modelling (125) or human 

(396) and animal (397) models, where it was suggested that the combination of EGM features is a 

promising method for accurate discrimination of arrhythmogenic substrates. This implies that the 

particular combination of features better describes EGMs derived from specific conditions. 

 

The model reduction, through the automated feature selection, was determined by the TreeBagger 

algorithm. However, it cannot be concluded whether the SFS features agree with the a priori knowledge 

about effects of specific cellular abnormalities on EGM morphology, due to the large number of 

abnormalities investigated during classification and the complexity of the dataset. SFS-selected features 

may be the result of different abnormalities. It should be mentioned though that, regarding the 

classification based on structural modifications, the R-peak width was included in the final feature 

subset. Even though this feature was not increased significantly, as shown in the heatmap of section 

6.2.2, its prolongation was responsible for the increased EGMonset-to-Rpeak gradient in all NRVM/FB 

co-cultures presented in section 6.2.1. This feature was also included in the feature subset for classifying 

tissue slices according to the amount of fibrosis in Chapter 8. Thus, it could be suggested that R-peak 

width is a strong predictor of the amount of cellular scar through its prolongation under these 

circumstances. The R-peak prolongation is justified by the conduction slowing that occurs in a region 

with increased amount of fibroblasts, due to the increased time that it takes for the action potential to 

pass across an electrode (242). Apart from that feature, there were no similarities between the subsets 

selected for predicting functional or structural abnormalities in isolation. This could suggest that each 
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group of modifications is responsible for different effects in electrophysiology and subsequently for 

changing a different set of EGM features. 

 

However, a number of other features were also identified by feature selection as providing useful 

information to distinguish abnormalities, even though their relationship with electrical remodelling is 

not currently understood, as discussed in chapter 4. This suggests that time-frequency and time-domain 

features both capture valuable information about underlying electro-architectural modifications and 

should be taken into consideration alongside traditional time-domain characteristics when quantifying 

abnormalities. Predictions based on a range of these features were characterized by higher sensitivity 

and specificity. 

 

The correlation of EGM features with the various interventions presented in this chapter, as well as 

chapters 4-6, and ECG features is not possible. Even though a number of the EGM features used in this 

thesis were initially studied in ECGs, there have not been successful publications presenting the effect 

of specific electro-architectural factors on ECG features in a similar way as presented in this thesis. The 

use of these ECG features is limited in the use of classification and predictive modelling for cardiac 

diseases, such as AF, without interest on the disease-specific electrophysiology factors responsible for 

modifying these particular features under these circumstances. For this reason, the EGM approach 

presented in this thesis using in vitro and ex vivo data could be considered as superior, because the 

majority of features used for machine learning can be traced back to cellular level electrophysiology 

abnormalities, also responsible for a variety of cardiac diseases, that took place when the EGM data 

were collected. Therefore, the SFS feature subsets presented in this chapter are meaningful and 

supported by experimental data, like the ones presented in previous chapters.  

 

 

7.4.2 Classification training for in vitro cellular level abnormalities 
 
The Bagging Ensemble method was chosen for all classification cases in this chapter. This algorithm 

provided a relatively high accuracy of classification and ease of interpretation when compared to other 

supervised machine learning approaches. A variety of conditions were firstly examined for the effects 

on predictive performance. The conditions that yielded the best performance in predicting both 

functional and structural abnormalities achieved a classification accuracy of 85.8%. For some of the 

modifications, such as gap junction uncoupling, cellular changes were correctly identified with 100% 

specificity, because of the significant change of the majority of morphology characteristics making 

those classes easily distinguished from the rest.  
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The preferred leaf size for classification training was one, as the highest accuracy was achieved under 

these conditions. This leaf size results in a deep tree with good generalization ability and is correlated 

to high accuracy, even though it requires more training time compared to larger leaf sizes (193). A large 

leaf size results in shallow trees, it does not guarantee better classification performance and it is not 

recommended for complex datasets. Despite the advantage of using small leaf size, as it was presented 

in this chapter, this strategy has a significant weakness which must not be overlooked. Using a small 

leaf size and training data with noise or a small training dataset, which struggles to produce a 

representative sample of the true target function, result to deep trees that overfit the training data. 

Overfitting can occur in a hypothesis space H, when a hypothesis hÎH gives smaller error than 

hypothesis h’ÎH over the training examples (132). That practically means that an EGM could be mis-

classified, because the generalisation error is smaller when this classification takes place instead of the 

right one. This phenomenon is linked to the relatively small size of the training dataset or the fact that 

each class may consist of a small number of observations. It could be considered that this was the case 

with the classification training that is presented in this chapter. However, the use of separate training 

and validation datasets, which was preferred here, is a common approach to avoid overfitting. Even 

though the learner may be misled by random errors and coincidental regularities within the training set, 

the validation set provides a safety check against overfitting and is unlikely to exhibit the same random 

fluctuations of the training set (132). 

 

The sensitivity was much lower for the baseline status of each type of cell culture using the Bagging 

Ensemble method, as it ranged between 40-70%. The reason for this is the high false negative rate. SFS 

features were chosen based on the fact that they can maximize the differences among all classes. 

However, it was proved that it does not mean that the same features are the optimal ones for 

distinguishing individual features, such as the control cell group, from the rest. The absence of 

significant differences between the morphology of baseline classes and multiple other classes, focusing 

on the SFS features, resulted in the inability to efficiently distinguish the classes during training. In 

addition, the validation of classification training results using the functional modifications in isolation 

showed that the model is characterised by high accuracy, but low precision (60.4%) and high error rate 

(10.5%). These additional parameters show that the predictive model based on functional modifications 

is weak. On the contrary, the model based on the different types of cell culture showed a performance 

during validation which was as high as during the classification training. A reason for this difference 

could be the small number of observations per class in the first case compared to the high number of 

EGMs per class in the second case of structural modifications-based predictive model. The high 

performance of both training and validation using data derived from all classes could be a compromise 

for the low predictability of a high number of functional modifications. 
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The most common misclassifications were the false positive classification of control cells as INa 

blockade, the gap junction uncoupling of high %FB cell cultures for the gap junction uncoupling of NC 

cultures and the false positive classification of NC cultures as variable modifications. Despite using 

lidocaine and carbenoxolone at concentrations close to their IC50, their cellular effects were smaller 

compared to the rest of pharmacological agents. This problem could be solved either by computing 

additional EGM features, training on more data or by applying higher concentrations of these drugs, in 

order to make the feature changes more prominent. Heylman et al. (155) also proposed the same 

solutions as a way to reduce any misclassifications when applying isoproterenol on hiPS cardiac 

myocytes. Overall, while the classification performance shows that the prediction model had the 

capability to predict the abnormalities that take place on the substrate, there are opportunities to further 

improve model performance and obtain higher assessment scores and reduction in errors. 

 

In general, supervised learning allows data-driven predictions and classification of unknown drug 

treatments (140), and subsequently functional modifications. Unknown drugs, and subsequently their 

effects, could be also classified by simple comparison of their effect on specific morphology parameters, 

but only one-dimensionally on a parameter by parameter basis (155). Supervised learning augments 

then these individual parameter comparisons by synthesizing all parameter data from multiple drug 

treatments and determining the relative contribution of each parameter to the classification of each drug. 

For this reason, multiple pharmacological agents could be used for a specific ion channel blockade and 

this is something that could be carried out in the future for the improvement of the predictive model 

presented in this chapter (155). This is important because many drugs may affect multiple EGM 

parameters and to varying degrees, due to their low level of specificity for an ion channel, such as 4-

aminopyridine (398).   

 
 
 
7.5 Limitations 

 
A potential limitation of the work presented in this chapter is the limited number of modifications that 

were investigated compared to the complexity and variety of arrhythmogenic conditions that take place 

in the heart. Due to the fact that many events of electrophysiological remodelling coexist, it is difficult 

to distinguish the contribution of each abnormality (399). Thus, prediction models should be developed 

in future which incorporate the information about EGM modifications when more combinations of ion 

channel blockade simultaneously occur or functional abnormalities combined with structural 

modulations, such as cellular anisotropy or patterning. In addition, the present predictive models 

presented in this chapter could be further optimised by including a larger number of EGMs per class, in 
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order to improve the predictability of such a large number of modifications and avoid problems, such 

as overfitting and low precision of the model. 

 

Classification training was carried out using the algorithms provided on MATLAB. However, there are 

supervised learning algorithms which were not investigated in this thesis. Such a classifier is the 

optimum path forest (OPF), which is considered to be a fast, simple, multi-class and parameter 

independent method (400). Another method that was not tested was adaptive boosting (AdaBoost), 

which is an ensemble learning algorithm that can be used for multi-class training and is more resistant 

to overfitting than many other algorithms (401). Such methods can be impressively efficient and 

significantly reduce the computational time when large datasets are used. 

 
 
 
7.6 Conclusions 

 

This chapter presented the successful prediction of a variety of functional and structural modifications, 

either in isolation or combinations of them, applying supervised machine learning algorithms on 

unipolar extracellular EGMs obtained in vitro. The prediction of these abnormal conditions using 

unlabelled data was carried out with high sensitivity and specificity. A combination of selected features 

which were extracted using different types of signal analysis were necessary, in order to achieve high 

classification performance. A biological relationship was found between SFS-selected features and 

specific predicted abnormalities, which was explained by findings presented in early chapters of this 

thesis. The overall goal of this approach and application of machine learning is to render contact EGMs 

more useful for more effective diagnosis of cardiac diseases and personalized pharmacological and 

interventional antiarrhythmic strategies.  
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Chapter 8 
 
Predicting fibrosis from ex vivo and in vivo 
obtained EGM morphology 
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8.1 Introduction 

 

8.1.1 Applications of supervised machine learning in cardiac 
electrophysiology 
 

Even though EGM morphology has been poorly correlated to specific electro-architecture determinants, 

it has been used for correlations to arrhythmic conditions and mainly for predicting AF phenotypes and 

AF-related structural abnormalities. The mechanism of AF remains unclear, but it has been suggested 

that EGM morphology during AF may be correlated with different types of conduction, such as 

conduction slowing, a collision of activation waves or reentrant circuits and conduction blocks (93). 

High-frequency EGM recordings or signals with chaotic patterns are also associated with AF (70,402). 

Therefore, catheter ablation strategies which are EGM-guided are developed as an alternative to 

ablations targeting CFAE or localized reentrant sources driving AF (403). The lack of a strict CFAE 

definition leaves the decision of selecting the target sites for ablation on the expertise of the 

electrophysiologist and leading to inefficient ablations (153,404).  

 

Fractionation has been proposed as an alternative method for identifying possible target areas (405). 

Since the simplistic characterization of the different levels of fractionation has been inadequate though, 

a recent study by Orozco-Duque et al. (153) suggested different types of analysis of CFAE recordings, 

including time-domain, frequency-domain and time-frequency analysis. This aimed to distinguish each 

level of fractionation by building a single map encoding waveform differences of CFAE upon the 

anatomical atrial structure. Since the EGM signal can be labelled for different types of fractionation, 

supervised learning has been considered the most appropriate machine learning method (153).  

 

Despite the fact that contact EGMs are useful for performing ablation procedures, the analysis of the 

ECG is more prevalent, due to the wide availability of this type of data. The majority of machine 

learning applications in cardiac electrophysiology are based on ECG (156). ECG morphology has been 

used for distinguishing VF and VT arrhythmic events (171) as well as AF (406).  

 

 

8.1.2 Clinical relevance of classifying cardiac arrhythmias  
 

There is a large number of publications, especially over the last decade, which present applications of 

machine learning methods in cardiology. There is a flexibility in the type of data to be used, and thus 

imaging data, i.e. LGE-MRI and echocardiography, and electrophysiology data, i.e. EGM, ECG and 

optical imaging, have been used for predictive modelling. Machine learning offers the ability to make 
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predictions for the improvement of diagnosis and the optimisation of treatment methods for cardiac 

arrhythmias. 

 

The most routine ablation strategy for treating AF is the pulmonary vein isolation. The combination of 

CFAE targeting with pulmonary vein isolation though is increasingly used, as it is suggested to reduce 

the long-term AF recurrence (38). However, this approach is debatable due to the uncertainty on 

interpreting CFAE morphologies (36). For this reason, there are published methods such as the semi-

supervised mapping (153) and the application of supervised learning algorithms that use features 

derived from combined extraction approaches (154), which can locate the distribution of different 

fractionated EGM patterns on the atria and improve the outcome of ablating drivers that maintain AF 

in persistent AF patients. Another example of machine learning application in cardiac electrophysiology 

is a recent study by Hajimolahoseini et al. (169). They presented an algorithm to extract the active 

intervals of intracardiac bipolar EGMs during AF. The analysis included the characteristics of the signal 

waveform at its inflection points (IPs), which are the points at which the concavity of intracardiac EGMs 

changes from being convex to concave or vice versa. Signal features included the distance between the 

consecutive IPs, the slope of signal waveform at the IPs and the energy concentrated between them, 

which were all inspired by the way the electrophysiologists annotate the EGMs visually. The data were 

then used for an Expectation Maximization algorithm for Gaussian mixtures for automatic clustering. 

The important outcome of that study was the significant reduction of the mean computational time to 

31ms per 1s recordings obtained from 10 channel EGMs which makes the algorithm able to be applied 

in real-time clinic applications.  

 

In addition to AF, VF and VT are studied for improvement of their diagnosis by applying machine 

learning techniques. Both VF and VT are dangerous arrhythmic events leading to sudden death if no 

defibrillation shock is applied to the subject within a few minutes (170). A number of algorithms have 

been proposed for the efficient VF/VT detection based on processing the ECG signal, mainly in the 

time-domain (171). The reason for this is that correct detection and classification of these arrhythmic 

events is of extreme importance for an automatic external defibrillator and patient monitoring. 

 

 

8.1.3 Experimental models for the development of prediction models  
 

There are numerous studies presenting ECG or EGM data obtained from patients with different types 

of cardiac arrhythmia or heart failure. It is understood that these data are directly linked to 

pathophysiological or electro-architectural abnormalities that may occur during an arrhythmic event. 

Even though extensive research into the cardiac arrhythmia and heart failure mechanisms has been 

carried out using animal models as well, it is rare conducting these studies in the human myocardium. 
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This is due to the limited availability of human samples and the lack of representative experimental 

models that can be prepared from small biopsies (20). The use of intact sections of the human 

myocardium is an alternative solution to this problem, which has been increasingly preferred over the 

last decade. There have already been studies using samples derived from the trabeculae (376), papillary 

muscles (407) and ventricular wedges (349).  

 

Another approach is using thin slices of viable cardiac tissue. These slices retain the structural and 

function properties of native myocardium and remain viable for several hours in vitro (323,408). There 

is a number of studies presenting electrophysiological data obtained from this type of experimental 

model. It has been showed that tissue slices obtained from adult human heart failure samples maintain 

electrophysiological, structural and biochemical characteristics representative of native myocardium 

(20). Regarding EGM morphology, Camelliti et al. (20) observed that the FPD recorded in slices was 

similar to APD measured under comparable experimental conditions using intracellular microelectrodes 

or optical mapping in multicellular preparations, such as papillary muscles and ventricular wedges. In 

addition, compared with single cells or cell culture, slices benefit from inclusion of the several cell types 

that are included in the native tissue, such as myocytes, fibroblasts and endothelial cells (20). These are 

advantages of slices over single cell experimental models and cell culture, as their electrophysiological 

characteristics reflect a more in vivo profile. 

 

Machine learning processes need large datasets, in order to generalise sufficiently to make accurate 

predictions on new observations. The collection of data from tissue slices exposes a number of technical 

challenges. This is not only due to the limited availability of cardiac samples, that can be used for tissue 

slices, but also due to the fact that consistent vital cardiac slices with uniform thickness and minimal 

tissue damage are necessary for electrophysiological experiments and consistent signal recordings. 

Moreover, sufficient oxygen diffusion to all cells inside the section has to be maintained throughout 

recordings (324). These conditions make slices a less attractive experimental model compared to tissue 

wedges, cell culture and isolated cells, and result to small datasets. It becomes clear that the collection 

of slice data for machine learning applications is a demanding task and for this reason, there are very 

few published studies using this model. The collection of signal recordings from patients may be an 

easier task, as intracardiac EGMs can be obtained during catheter ablation procedures (153). The 

disadvantage of this data collection process though is the variability of the tissue substrate, such as wall 

thickness, the clinicopathological characteristics of the subject and any functional abnormalities, i.e. 

ion channel, gap junction abnormalities, which are virtually impossible to be measured in vivo. 

Therefore,  in vivo EGM datasets are small, as they include only a few hundreds of EGMs, collected 

from a relatively small number of patients (153,391), when compared to the ECG datasets which are 

larger and contain hundreds to thousands of data recordings (409–411). 
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In this chapter, I sought to investigate the prediction of structural determinants of EGM morphology 

using supervised machine learning methods. For this purpose, the aims of this chapter were to: 

1. group the ex vivo data using a structure-based system, 

2. search the supervised learning algorithms, in order to find the most suitable for the ex vivo or in vivo 

data, 

3. optimize the learning process for the development of a predictive model, and 

4. assess the classification performance and validate the extracted model. 

 
The methods used in this chapter for the elucidation of the above aims have already been described in 

detail in Chapter 2 of this dissertation. These include the collection of LV slices from end-stage heart 

failure human hearts and one rejected donor heart and SHG microscopy for obtaining data regarding 

the collagen disposition in slices. Even though, the ex vivo data presented in Chapter 6 were organised 

into three groups, based on the percentage of collagen coverage, it was preferred to use different groups 

and perform binary classifications for this chapter. This was forced by the necessity for an adequate 

number of training data and in order to investigate the role of collagen coverage in more detail. 

Furthermore, clinical recordings were used for the purposes of this chapter and the application of 

supervised machine learning algorithms for classification training and predictive modelling was carried 

out. 

 

 

 
8.2 Results 

 

8.2.1 Collagen coverage: the fibrosis measure on tissue slices 
 

In order to quantify fibrosis, the area of tissue slice covered by collagen type I molecules was measured 

using the data collected during the performance of SHG microscopy, as described in section 2.7. These 

data were imported to FIJI for the quantification of the size of collagen-covered area in the same way 

as presented in section 2.6.4, where a threshold was set on the image and that was adjusted for the signal 

collection solely from collagen. These measurements were derived using SHG images obtained from 

heart failure (n=29) and donor heart (n=2) slices. Most of the slices were used for EGM recordings 

(n=24), but there was a minority which could not be stimulated (n=7). It was found that EGMs were 

obtained from slices with a collagen coverage of 4-24% of the slice area, while slices with >25% 

coverage could not be stimulated. 
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Figure 8.1: Frequency distribution graph of tissue slices used in this thesis based on the percentage of the 
area of each slice covered by collagen. The majority of slices (black; n=24) could be used for EGM 
recordings. The dashed line represents the middle point of the group of these samples corresponding to 15% 
collagen coverage. There were slices (red; n=7) that could not be stimulated, and no EGM recordings were 
obtained from them. 

 

 

 

 

 

8.2.2 Feature selection using ex vivo EGMs 
 

Based on the collagen coverage data, a similar number of slices were stimulated on either side of 15% 

coverage (<15%: n=11 slices; >15%: n=13 slices) providing EGM datasets of a similar size. Therefore, 

it was attempted to automatically differentiate EGMs from tissue with less than 15% collagen coverage 

(153 EGMs) from those with more than 15% collagen coverage (187 EGMs). The training dataset 

consisted of 340 EGMs in total, which was 57% of the total amount of EGMs obtained from tissue 

slices. The rest 43% (147 EGMs) were used for the test dataset. The selection of data for the training 

and test datasets was randomly performed from the pool of EGMs.  

 

The training dataset was used for feature selection, in which case the SFS method was applied. Five 

different classification methods were used during feature selection (Bagging Decision Trees, SVM, 

Decision Trees, kNN and LDA) with each one giving a different feature subset (Appendix B-III). 

Features extracted from all types of morphology analysis were chosen.  

 

 

 



 

 239 

8.2.3 Optimising the classification training process 
 

An assessment of 20 supervised machine learning algorithms, available on MATLAB, was made and 

these were compared using the average classification accuracy (Table 8.2). Even though the followed 

process was the same as previously presented in Chapter 7, data obtained from a different experimental 

model were used for this piece of work and different feature subsets, consisting of less features, were 

selected during SFS. Thus, it was necessary to repeat the modelling optimization procedures. The 

default classification conditions with 10-fold cross-validation were used during this initial assessment. 

It was observed that the highest classification accuracy was achieved using the Bagging Ensemble 

method (88.6%) and the lowest accuracy was achieved by the coarse kNN method (64.1%).    

 

Based on its performance, the Bagging Ensemble method was chosen for further optimization and 

classification training. It was observed that only three of the features, chosen by applying the 

TreeBagger algorithm for SFS, were significantly different between classes: RR interval, logarithmic 

energy entropy and R-peak width (Figure 8.2).    

 

 

Table 8.1. Classification performance presenting the accuracy after applying 20 classification training 
methods which are available on MATLAB. A 10-fold cross-validation was applied in each case. The average 
classification accuracy is presented here which is used as an index of the performance on the overall training 
dataset. The highest accuracy was achieved by the Bagging ensemble method. 
 

Prediction method Accuracy (%) Prediction method Accuracy (%) 

Decision Tree (complex) 83.7 kNN (fine) 84.9 
Decision Tree (medium) 83.7 kNN (medium) 80.1 
Decision Tree (simple) 76.5 kNN (coarse) 64.1 
Linear Discriminant Analysis 67.7 kNN (cosine) 78.5 
Quadratic Discriminant 
Analysis 72.5 kNN (cubic) 76.1 

SVM (Linear) 74.1 kNN (weighted) 84.9 
SVM (Quadratic) 85.7 Ensemble (boosted) 86.1 
SVM (Cubic) 86.1 Ensemble (bagging) 88.6 
SVM (Fine Gaussian) 79.3 Ensemble (subspace discriminant) 70.9 
Ensemble (subspace kNN) 84.9 Ensemble (RUSBoosted Trees) 82.9 
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Figure 8.2: EGM properties modified due to differences in the size of collagen coverage, as measured on 
data obtained from human left ventricle slices (n=24). The data presented on the bar graph belong to the 
training dataset and are categorized as obtained from slices with collagen coverage below or over 15% of 
the total sample area (n=187 and n=153 EGMs respectively). Feature measurements are normalized. Mean 
± S.D. ***p<0.001; ****p<0.0001.    

 

In order to optimize the algorithm, the out-of-bag error was estimated for trees with leaf sizes of 1, 5, 

10, 15 and 20 and a tree ensemble ranging between 0-500 trees (Figure 8.3A). It was observed that the 

leaf size of 1 is the best for achieving the least out-of-bag classification error and that remained 

relatively stable above 160 trees. The out-of-bag classification error was significantly different between 

leaf sizes (leaf size 1: 0.09 ± 0.02, leaf size 5: 0.1 ± 0.03, leaf size 10: 0.13 ± 0.03, leaf size 15: 0.14 ± 

0.03, leaf size 20: 0.14 ± 0.02; p<0.0001) (Figure 8.3B).  

 

  
Figure 8.3: Optimisation of the Ensemble Bagging method. (A) Out-of-bag classification error measured 
for five leaf sizes (1, 5, 10, 15, 20) as a function of number of grown decision trees. A variety of ensemble 
sizes with up to 500 decision trees were investigated using the same training dataset.  (B) Kruskal-Wallis 
analysis comparing the classification error values for each leaf size. 
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8.2.4 Predicting fibrosis levels using ex vivo data 
 

Classification training was carried out using the training dataset and the optimized classification 

conditions. The Bagging ensemble method was applied on the dataset which was characterised by 6 

EGM features (Table 8.2). The classes were determined by 15% collagen coverage (<15% / >15%).  

The classification training results showed that a classification accuracy of 90% was achieved with 9.9% 

error rate and 90.9% precision. Correct classifications were carried out for 95% of <15% data and 84% 

of >15% data (Figure 8.4A).  The high classification performance was also confirmed by ROC curves 

created for each class (Figure 8.4). AUC for <15% was 0.89 and for >15% was 0.9 meaning the high 

predictability for both classes.  
 

Table 8.2. Feature subset extracted by forward SFS using the Ensemble Bagging method during feature 
selection process listed in order of significance. 
 

EGM features selected during Forward Feature Selection 

1. Mutual information 

2. RR interval 

3. Logarithmic energy entropy 

4. Maximum modulus 

5. Average EGM amplitude 

6. R-peak width 

 

 
Figure 8.4: Classification training performance using instances classified as obtained from tissue slices with 
collagen coverage below or above 15% of the total slice area. (A) Confusion matrix presenting the 
classification performance. The panel was determined by the known and the predicted class data during 
classification training. Green cells correspond to correct predictions. (B) ROC curves corresponding to each 
class, <15% (left) and >15% (right) collagen coverage. 
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The deterioration of classification training was also assessed by modifying the number of EGM features. 

Table 8.2 presents the order that features were selected during SFS. In order to investigate this 

deterioration and find the extent of classification accuracy modification due to each feature, multiple 

iterations of classification training were carried out by removing each time one of the features starting 

from the most significant one and followed by the less important ones. In the end, it was observed that 

there was a linear increase trend for classification accuracy. Mutual information, when used in isolation, 

was responsible for an accuracy of 51.8%. This accuracy increased to 90% with the step-wise addition 

of individual features (Figure 8.5).  

  

 

Figure 8.5: Classification performance achieved using ex vivo data classified as obtained from tissue slices 
with <15% or >15% collagen coverage. Starting from the least important feature which was selected last, 
more features were included on training keeping the order of importance at the same time. This resulted to 
an increase of classification training accuracy. 

 

 

The prediction model that was extracted in the end was assessed by measuring a variety of classification 

performance indices (Table 8.3). Due to the binary classification that was carried out, the performance 

quantifications were similar for both classes. This is explained by the way that sensitivity and specificity 

are measured, according to the equations presented in Table 2.3. The sensitivity for the <15% data was 

96.4% and the specificity was 82.5%, while the sensitivity for the >15% data was 82.5% and the 

specificity was 96.4%. The overall average classification accuracy was 90% with an error rate of 9.9%. 

 

The assessment of classification training was followed by the validation of the predictive model. For 

this purpose, a test dataset of 146 EGMs was used. The performance assessment showed an average 

classification accuracy of 86.2% with an error rate of 13% (Table 8.4). The positive predictive and 

negative predictive values were 92.8% and 79.4% respectively for the <15% data and 79.4%. The same 

indices were 79.4% and 92.8% for the >15% data. 
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Table 8.3: Assessment of the 13-fold cross-validation classification training performance. Sensitivity (Se), 
specificity (Sp), Positive Predictive Value (PPV) and Negative Predictive Value (NPV) were calculated 
separately for each class and average indices (precision, error rate, classification accuracy) were measured 
for the overall performance. 
 

(%) <15% >15% 
Se 96.4 82.5 
Sp 82.5 96.4 
PPV 86.8 95 
NPV 95 86.8 
Precision 90.9 
Error rate 9.9 
Classification accuracy 90 

 

 

 

Table 8.4: Evaluation performance of the model developed for predicting the collagen coverage on tissue 
slices. The assessment was carried out either separately for each class or for the overall performance 
depending on the statistical index. 
 

(%) <15% >15% 
Sensitivity  85.6 89.3 
Specificity  89.3 85.6 
PPV  92.8 79.4 
NPV 79.4 92.8 
Precision 86.1 
Error rate  13 
Average accuracy  86.2 

 

 

 

8.2.5 Including conventional scar markers at prediction model 
 

It was investigated whether the scar markers of voltage and fractionation play a role for the prediction 

of collagen coverage using ex vivo data. For this reason, the same training dataset was used, but the data 

were characterized by features in three different ways: a) using the SFS features, b) the EGM amplitude 

and fractionation only or c) a combination of the SFS features alongside fractionation, as the average 

EGM amplitude had been already chosen during feature selection.  

 

The results of this three-way classification training are presented in Figure 8.6 and Table 8.5. Τhe 

classification training performance was worse when the traditional scar markers only were used, 

because the average accuracy was 55.3% and the error rate was 42.5%. The low performance was also 

depicted on confusion matrix which shows that 40% of the <15% EGMs and 52% of the >15% EGMs 
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were misclassified. However, the classification training performance was similar with or without 

fractionation (average accuracy: 86.2% and 85.4% respectively; error rate: 13% and 13.3% 

respectively).  

 

 
 

Figure 8.6: Confusion matrices extracted from classification training with the same training dataset but 
using different features each time. The EGM parametres used for training were the SFS features including 
EGM amplitude (left), voltage and fractionation (middle) or the fractionation in addition to the SFS features 
(right). The best performance was achieved using the SFS features and the worst using the voltage and 
fractionation only.  

 

 

 

Table 8.5: Assessment of classification training and evaluation of subsequent prediction models using the 
training dataset and different feature subsets on each case. The features used were the SFS features, voltage and 
fractionation in isolation or the SFS features alongside fractionation. 
 

Classification training 

(%) SFS features Voltage + Fractionation SFS features + Fractionation 

Classification accuracy 90 54.6 87.6 
Precision 90.9 54.1 87.7 
Error rate 9.9 45.4 12.4 

 

Evaluation of prediction models 
Average accuracy 86.2 55.3 85.4 
Precision 86.1 55.1 84.8 
Error rate 13 42.5 13.3 
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8.2.6 Predicting different degrees of collagen coverage 
 

Apart from the classification of ex vivo EGMs based on 15% collagen coverage, an investigation of the 

ability to efficiently predict the collagen coverage using different cut-offs was attempted. For this 

purpose, the same EGM data were used for the creation of new training and test datasets, but in this 

case within the range of 16-23% collagen coverage. The datasets consisting of EGMs derived from 

tissue slices with 16% or 17% collagen coverage were the same, so they were grouped. The same 

occurred for slices with 18% and 19% coverage. Therefore, 6 new training datasets and their 

corresponding test datasets were created, as presented in Table 8.6.  

 

Feature selection was carried out for each training dataset separately. The selection process indicated 

4-7 features, depending on the dataset, and features extracted from all types of EGM analysis were 

chosen in general (Appendix B-IV). The algorithms that were preferred during feature selection were 

the Ensemble Decision Trees and SVM, because these are the ones also applied during classification 

training. 

 
 
 
Table 8.6: This table presents the number of tissue slices used per class (above or below each % collagen 
coverage), the number of EGMs which were recorded and analysed in each case and the size of training 
and test datasets. 
 

 No of slices with 
<X% (# EGMs) 

No of slices with 
>X% (# EGMs) 

# of EGMs 

Training dataset Test dataset 

15% 13 (170) 13 (170) 340 160 

16/17% 14 (169) 12 (167) 336 164 

18/19% 15(157) 11 (157) 314 186 

20% 16 (154) 10 (154) 308 192 

21% 19 (124) 7 (124) 248 252 

22% 21 (95) 5(95) 190 310 

23% 23 (71) 3 (71) 142 358 

 

 

Based on the classification performance results for each percentage of collagen coverage, as also 

presented in Figure 8.7 and Table 8.7, it can be suggested that the classification based on 21% gave the 

best results. In this case the average accuracy was 84.5% with an error rate 14.5%. However, the 

performance of these datasets was worse than the one previously presented which was based on 15% 

of collagen coverage.  The classification accuracy for the 16-23% collagen coverage datasets ranged 

between 75.6%-84.5%, while it was 90% for the 15% collagen coverage. The precision of the 

classification training also ranged between 75.7%-84.6%, but it was 90.9% for the classification training 

based on 15% coverage.  
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The relatively low predictability of collagen coverage using this classification was confirmed by the 

evaluation of each prediction model. The average accuracy ranged between 66.1% - 81.8% and the error 

rate ranged between 14.3% - 41.3% (Table 8.7). The performance of the model based on 15% collagen 

coverage was still better than the rest, but more data were included in the training dataset, also meaning 

more data points per class. For this reason, the rest of training datasets could be considered as weaker, 

as there are not as enough data to per class. 
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Figure 8.7: Panel of confusion matrices presenting the classification training performance for each dataset. EGMs were classified based on a certain percentage of the slice 
area covered by collagen and that ranged between 15-23%. Each confusion matrix was determined by the known and predicted groups. Green cells correspond to correct 
predictions. 
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Table 8.7: (Top) Assessment of classification training using datasets based on a range of collagen coverage percentages, in order to investigate the impact of different 
classification systems on the same dataset. Statistical indices were either calculated separately for each class or as an average for the overall performance. The classification 
method used in each case was the optimum for each dataset. (Bottom) The prediction model extracted in each case was evaluated using unknown data.  
 
 

(%) <16% >16%  <18
% >18%  <20

% >20%  <21
% >21%  <22% >22%  <23% >23% 

Se 79.8 80.7  83.2 80.4  82.7 78.8  81.1 87.8  71.1 80  92.8 71.4 
Sp  80.7 79.8  80.4 83.2  78.8 82.7  87.8 81.1  80 71.1  71.4 92.8 
PPV  80.5 80  80.9 82.6  79.6 82  86.9 82.3  78 73.5  76.5 90.9 
NPV  80 80.5  82.6 80.9  82 79.6  82.3 86.9  73.5 78  90.9 76.5 
Precision 80.3  81.8  80.8  84.6  75.7  83.6 
Error rate  19.7  18.2  19.2  15.5  24.4  17.9 
Classification 
accuracy 80.3  81.8  80.7  84.5  75.6  82.1 

 
 

 
(%) <16% >16%  <18% >18%  <20% >20%  <21% >21%  <22% >22%  <23% >23% 

Se 77.5 83.3  83.3 77.8  85.3 88.5  71.9 77.8  58.4 63.6  82.6 28.6 
Sp  83.3 77.5  77.8 83.3  88.5 85.3  77.8 71.9  63.6 58.4  28.6 82.6 
PPV  95.2 46.3  95.6 44.7  97.9 48.9  97.6 17.7  97.7 5.4  98.2 3.3 
NPV  46.3 95.2  44.7 95.6  48.9 97.9  17.7 97.6  5.4 97.7  3.3 98.2 
Precision 70.8  70.1  73.4  57.7  51.6  50.8 
Error rate  21.4  17.5  14.3  27.7  41.3  18.5 
Average accuracy 80.3  81.8  80.8  77.7  69.4  66.1 
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8.2.7 Feature selection using in vivo EGMs 
 

In order to predict the presence or not of scar regions, unipolar EGMs obtained from the endocardial 

LA surface of 8 patients with clinical history of persistent AF were used. The analysed data were 300ms 

recordings obtained from the LA posterior wall. In total, 452 EGMs could be analysed for their 

morphology (55 EGMs per patient on average), rejecting the signals which were characterized by high 

levels of noise. EGMs were labelled as derived from scarred/non-scarred areas, based on the 

categorization system presented in section 2.4. Based on LGE-MRI data obtained from the LA of these 

patients, followed by a correlation between EGMs and the LGE-MRI data, scar and non-scar regions 

were determined. The non-scar regions were defined by <0 S.D. above blood pool mean and the scar 

regions were defined by >2 S.D. above blood pool mean. The features selected by SFS using the training 

dataset (379 EGMs) were different depending on the classification algorithm used each time and they 

ranged between 2-5 features (Appendix B-V). Dominant frequency and frequency at signal of 

maximum energy were selected both when using the Decision Trees and kNN methods. The frequency 

of minimum or maximum energy was always picked up by SFS. 

 
 

 

8.2.8 Classification training using in vivo EGMs 
 

The 20 supervised machine learning algorithms provided through MATLAB were investigated, in order 

to detect the most suitable one for the training dataset. The classification training by applying the 

Bagging method gave 99.7% classification accuracy (Table 8.8). This means that all EGMs belonging 

to a class were correctly classified. Since such a high accuracy was achieved, it was not necessary to 

perform an optimization. The Ensemble Bagging method was used for the extraction of a prediction 

model.  
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Table 8.8. Classification performance presenting the accuracy after applying 20 classification training 
methods which are available on MATLAB. A 10-fold cross-validation was applied in each case. The average 
classification accuracy is presented here which is used as an index of the performance on the overall training 
dataset. The highest accuracy was achieved by the Bagging ensemble method. 
 

Prediction method Accuracy (%) Prediction method Accuracy (%) 

Decision Tree (complex) 97.4 kNN (fine) 97.6 
Decision Tree (medium) 97.4 kNN (medium) 92.9 
Decision Tree (simple) 97.4 kNN (coarse) 90.8 
Linear Discriminant Analysis 93.1 kNN (cosine) 91.3 
Quadratic Discriminant 
Analysis 90 kNN (cubic) 92.3 

SVM (Linear) 93.4 kNN (weighted) 95.8 
SVM (Quadratic) 95.5 Ensemble (boosted) 73.4 
SVM (Cubic) 97.9 Ensemble (bagging) 99.7 
SVM (Fine Gaussian) 95.5 Ensemble (subspace discriminant) 92.3 
Ensemble (subspace kNN) 98.2 Ensemble (RUSBoosted Trees) 97.9 

 
 
 
A 10-fold cross-validation classification training was performed which is comparable to the cross-

validation fold used for the in vitro and ex vivo data classification. Frequency of maximum energy and 

S-peak width were the features describing the training dataset. As also shown in Figure 8.8A-C, there 

were no misclassified EGMs, obtained from non-scar areas, during training and all classification 

performance indices were >99% with insignificant error rate (Table 8.9). 

 

In addition, the use of voltage and fractionation as predictors was investigated. Applying the same 

training conditions, the data were characterized by features in three different ways: (a) the SFS features 

and voltage, (b) a combination of the SFS features with voltage and fractionation, and (c) the voltage 

and fractionation only. The evaluation of the classification performance showed that the training was 

efficient in overall, but still less efficient than using only the SFS features. The accuracy was 99.6% 

when the SFS features were used alongside voltage, 99.2% when voltage and fractionation were 

combined with the SFS features and 98.2% when using the voltage and fractionation only (Figure 8.10).  
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Figure 8.8: (A) Assessment of classification training using the Ensemble Bagging method by presenting 
the results on a confusion matrix. This matrix is determined by the known and predicted groups as developed 
during classification training. It is presented here that all EGMs recorded from non-scar regions were 
correctly predicted, as there are only green cells on the top row of the confusion matrix. (B-C) ROC curves 
obtained after classification training. Each curve corresponds to a class, the presence (B) or the absence of a 
scar (C).  

 
 
Table 8.9: Assessment of the 10-fold cross-validation classification training. Calculation of indices for the 
overall and per class performance. 
 

(%) <=0 S.D. >=2 S.D. 

Se 100 99 
Sp 99 100 
PPV 99.6 100 
NPV 100 99.6 
Precision 99.8 
Error rate 0.3 
Classification accuracy 99.7 

 
 
 



 

 252 

 

Figure 8.9: Confusion matrices presenting the classification performance when the predictors were the 
SFS features in addition to voltage (A), the SFS features alongside voltage and fractionation (B) or the 
voltage and fractionation in isolation (C).  

 

 

Table 8.10: Assessment of the classification training using different EGM features as predictors. 
Classification indices computed for the overall and per class performance. 
 

 SFS + voltage SFS + voltage + 
fractionation 

Voltage + 
fractionation 

(%) <=0 S.D. >=2 S.D. <=0 S.D. >=2 S.D. <=0 S.D. >=2 S.D. 
Se 100 99 99.3 99 98.6 97 
Sp 99 100 99 99.3 97 98.6 
PPV 99.6 100 99.6 98 98.9 96.1 
NPV 100 99.6 98 99.6 96.1 98.9 
Precision 99.8 98.8 97.5 
Error rate 0.3 0.8 1.8 
Classification accuracy 99.6 99.2 98.2 
 
 
 

8.2.9 Validation of predictions based on in vivo EGM data 
 

The prediction model, that was produced based on clinical data, was evaluated using a test dataset of 

102 EGMs. These data were obtained under the same clinical conditions as the ones that were used for 

the training dataset. The test dataset contained different EGMs to those belonging to the training dataset. 

It was observed through the performance assessment that an average accuracy of 85.1% was achieved 

with 64.2% precision and 13.4% error rate (Table 8.11). Due to the binary classification, the rest of 

performance indices were similar between the two classes. Thus, the non-scarred areas could be 

predicted with 87.9% sensitivity and 82.5% specificity, while the scarred regions could be predicted 
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with 82.5% sensitivity and 87.9% specificity. These results are significantly lower than the 

classification training performance. 

 
 
Table 8.11: Evaluation performance of the model developed for predicting the presence of scar on the 
substrate where the EGMs were collected from.  
 

(%) <=0 S.D. >=2 S.D. 
Se 87.9 82.5 
Sp 82.5 87.9 
PPV 78 83.3 
NPV 83.3 78 
Precision 64.2 
Error rate 13.4 
Average accuracy 85.1 

 
 
 
 

8.3 Discussion 

 

In this chapter, a new method of establishing fibrosis measurement in ex vivo and in vivo models is 

proposed. This method is explicitly useful for classifying EGMs obtained ex vivo and in vivo from 

substrates with cardiac disease-related structural conditions. A variety of supervised learning methods 

were investigated and the most appropriate one, based on its performance, was further optimized and 

used for the extraction of a prediction model.  Feature subsets were used in each case. Voltage, but not 

fractionation, was included in the feature subset for the classification of EGMs obtained from tissue 

slices. Despite the fact that these two features have been used in the clinic as markers for ablating 

locations supposedly responsible for maintaining AF, the work presented here showed that they are 

weak predictors. The clinical data used in this chapter also showed that a combination of features 

extracted from different types of analysis achieved better performance.  

 

8.3.1 Ex vivo structural determinants as a limitation to EGM signal 
recording  
 

The cardiac tissue has high cellular density which makes it difficult to image. The penetration of current 

imaging methods is relatively weak when compared to the tissue thickness and it is about 20-30μm and 

50-80μm for confocal and two-photon microscopy respectively (412). Based on the excessive 
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disposition of collagen type I, which is a characteristic of cardiac diseases with interstitial fibrosis 

(413,414), SHG microscopy was used in this thesis for the visualization of fibrosis in cardiac tissue 

slices. This technique has been used for the visualization of structural alterations on cardiac tissue 

(329,412). Despite the fact that the collagen disposition on cardiac tissue has been visualized not only 

on 2D using classical histological techniques (355,415), but also on 3D using SHG microscopy (329), 

there are no suggested systems for the categorization of the myocardial tissue based on the amount of 

collagen.  

 

In this chapter, the system that was suggested is based on the size of the area covered by collagen type 

I, which is measured during the post-processing of the microscopy images, and as described in detail in 

Chapter 2. It was found that no EGM recordings could be obtained from adult human left ventricle 

tissue slices with more than 25% collagen coverage. This may be explained by the presence of a 

threshold above which the distance between myocytes is too long to sustain the normal action potential 

propagation, due to the increased amount of intermingled fibroblasts (4). In addition, fibrosis could be 

so extended that not even the “zig-zag” propagation (4) could take place. 

 

 

8.3.2 Are voltage and fractionation useful predictors of the structural 
fibrotic substrate? 
 

Voltage, but not fractionation, was included in the feature subset that was selected to describe the 

training dataset during classification training. A classification accuracy of 90% was achieved when 

using the Bagging method and excluding fractionation from the feature subset, in order to classify data 

derived from tissue slices with less or more than 15% collagen coverage. In addition, it was observed 

that better classification accuracy is achieved when fractionation is excluded from the feature subset, 

as the accuracy drops in that case to 87.6%. Voltage and fractionation cannot be the sole features used 

to discriminate the two classes of the training dataset, as the classification training is not efficient and 

the accuracy is as low as 54.6%. Furthermore, both voltage and fractionation were not selected as 

informative features of the in vivo EGMs during classification training and they were excluded from 

the final feature subset. The classification accuracy was not dramatically reduced in that case, as it 

happened with the ex vivo data. However, it was 98.2% when voltage and fractionation were the only 

used features, compared to 99.7% when the feature subset indicated by the SFS process was used for 

classification training. 
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These findings suggest that low voltage and high fractionation cannot be necessarily associated with 

fibrosis, despite the common notion for the opposite (416). Low amplitude EGMs are commonly used 

as markers of areas of fibrosis, which produce a reduced electric field and consequently a lower 

potential difference between the measuring electrode and the reference point. Voltage was similar 

between scar and non-scar areas, as recorded in vivo, and the absence of significant difference between 

classes could explain why this feature was not selected to the final feature subset. It has been suggested 

that the decrease in the unipolar voltage in diseased myocardium may be a manifestation of less 

depolarized myocytes and more interstitial fibrosis (417), which contradicts our findings.  

 

In contrast to voltage, fractionation was significantly higher in scar regions, as presented in Chapter 6. 

Despite this fact, fractionation was not chosen for classification, but it has been reported that different 

levels of fractionation can be used for distinguishing different incidents of chronic AF and for 

identifying critical sites that could be targeted for AF ablation. A number of studies implemented 

supervised learning methods for this purpose. Faes et al. (418) created a 3-level classification of 

fractionation using a similarity index. Schilling et al. (213) used decision trees to classify fractionated 

intracardiac bipolar EGMs and obtained a mean correct rate of 80.65%, which is lower than what was 

presented in this chapter using unipolar data collected from the tissue surface. Possible explanations for 

the better performance that was presented here can be the signal morphology with unipolar EGMs 

having more prominent features compared to the bipolar ones, as well as the combination of features 

used to characterize the signal. Moreover, Duque et al. (391) used a k-Nearest Neighbours method to 

classify 4 levels of fractionated EGMs, correlated with the electrophysiological activity during AF, such 

as the presence of rotor in persistent AF. However, these studies were mainly focused on fractionation, 

measured through different types of analysis, while the work presented in this chapter suggests the use 

of features computed by different types of analysis, such as time-frequency and frequency-domain. This 

combination seemed to be more informative compared to the mainstream time-domain characteristics. 

 

 

8.3.3 Important features for identifying fibrotic tissue 
 

Current commercial mapping systems used in the clinic, such as the EnSite NavX system, are solely 

programmed for the extraction of time-domain contact EGM features (419). Thus, the identification of 

EGM morphology changes is limited to simple characteristics, such as the presence or not of 

fractionation (420). This type of information would be more helpful in understanding the nature of the 

underlying disease (58,80). For this reason, there is a strong interest in using the EGM recordings in the 

diagnosis and treatment of pathophysiological abnormalities of the cardiac tissue (154,157). However, 

apart from a relatively small number of studies focused either on the classification of clinical EGM data 
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according to different states of AF (157) or on the prediction of the effects of pharmacological agents 

on hiPSCs (389), our knowledge about the information that we could obtain from EGM morphology 

and how this is correlated to all types of cardiac arrhythmia is still in a preliminary level.  

 

This chapter, as well as chapter 6 which supports it by presenting specific feature changes due to the 

differences in slice structure, shows that features used for classification of ex vivo EGMs based on 15% 

collagen coverage included R-peak width, EGM amplitude, logarithmic energy entropy, RR interval, 

maximum modulus and mutual information. The importance of R-peak width can be justified by the 

fact that R-peak is part of the QRS complex which can be prolonged in a scar area due to the conduction 

slowing that occurs in that area and the extended time that it takes for the action potential to pass across 

an electrode (4). The next feature was EGM amplitude which was found to be lower in tissue slices 

with >15% collagen coverage. It has been suggested that voltage is lower in highly fibrotic areas, both 

in the atria through CFAE (6) and the ventricles, especially in cases of ventricular tachycardia and 

dilated cardiomyopathy (421). Logarithmic energy entropy is another way to evaluate the distribution 

of a dataset and compute the information uncertainty of the signal. Entropy measures have been 

extensively used for the automatic analysis of the electroencephalogram, because decreased complexity 

has been shown to correlate with anaesthesia effect (422). In addition, Shannon entropy has been used 

to differentiate CFAE from non-CFAE signals (127), as defined by Nademanee et al. (37) and it is a 

feature increasingly being used for the identification of CFAE areas in the atria (125). Logarithmic 

energy entropy has been used as a possible feature to distinguish different types of AF using in vivo 

data (153), but the findings presented in this thesis suggest that it could be also used as a marker of 

highly fibrotic areas in tissue slices. 

 

RR interval is a feature that has been adopted for the detection of AF in ECG signals (423), because RR 

intervals during AF have a larger standard deviation and a shorter correlation length than those during 

sinus rhythm (424). However, in the work presented in this chapter RR intervals were quantified using 

sinus rhythm EGM signals from ventricular tissue slices. As presented in Chapter 6, there is variability 

in RR interval between data groups, which could be justified by the differences in collagen coverage, 

and subsequently the degree of fibrosis, between slices. Maximum modulus is a time-frequency 

characteristic and its biological meaning is not clarified, as there is poor experience in correlating this 

with any determinants of EGM morphology. Its use has been mostly limited to the identification of 

maxima and minima across the different scales of a wavelet transform. The maximum modulus lines, 

which are normally measured, enable the identification of the onset of signal activation through the 

relationship between the wavelet transform and the derivative of the signal (16). Mutual information, 

an information theory-based feature (425) that has been used for the identification of EEG signal 

abnormalities (426), has been poorly studied on ECG and EGM signals. Even though mutual 
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information scoring did not show any changes among datasets with different collagen coverage in 

Chapter 6, this feature was selected by SFS as informative enough for classification. This fact is 

enhanced by the dramatic decrease of classification accuracy when mutual information is excluded from 

the training process, as shown in this chapter. As is the case with all information theory features used 

for EGM morphology analysis, more investigations need to be conducted in order to clarify how these 

measures correlate to the functional and structural determinants of the signal.  

 

The predictors of the in vivo EGM morphology were two features derived from the time-domain and 

time-frequency EGM morphology analysis. In the same way as with tissue slices, a combination of 

EGM features is a promising way to achieve better classification performance. One of the features was 

the S-peak width. This feature is significant for the classification for the same reason previously 

explained  for R-peak width regarding its prolongation due to conduction slowing in fibrotic-rich 

regions (4). The frequency of the maximum signal energy was the second selected feature. As shown 

in Chapter 6 of this thesis, this feature is correlated to the amount of fibrosis on the substrate. It was 

found to be reduced in highly fibrotic substrate both in tissue slices and in patients, even though those 

data were collected from different areas of the heart, the LV and LA respectively. It is a poorly 

investigated feature and thus, no further conclusions can be made.  

 

However, it is questioning why only two features were selected for the classification of in vivo EGMs 

given the complexity of these data and the presence of noise associated with the recording environment. 

In addition, the classification training accuracy was unexpectedly high even when voltage and 

fractionation were only used to describe the data. The machine learning results using the tissue slices 

showed that these two features are not sufficient for predicting structural abnormalities, as discussed 

earlier in this section. This contradiction could be explained by the small training dataset, and more 

specifically by the limited number of EGMs belonging to each class. Even though there was an attempt 

for equal number of EGMs in each class, the small dataset was sensitive to overfitting. As already 

discussed in chapter 7, overfitting may lead to high classification accuracy, but the prediction model is 

unable to generalise to future unknown data. Therefore, the validation of the resulting prediction model 

showed significantly lower performance due to this fact. It can be then suggested that further 

optimisation of the model for predicting the scarred and non-scarred regions using clinical EGMs is 

needed by using a larger training dataset. 
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8.4 Limitations 

The types of fibrosis, such as interstitial, patchy or scar, have been defined using traditional histological 

techniques, but they have not been verified using the SHG microscopy. Therefore, it was difficult 

carrying out this type of analysis in this thesis. Moreover, the anisotropy is another structural 

determinant of EGM morphology, which was difficult to be precisely controlled in the experiments.  

 

It is still not entirely clear whether LGE-MRI, which was used in this case for the quantification of S.D. 

above blood pool mean, truly reflects myocardial fibrosis. There has been a study correlating collagen 

content with structural remodelling on LGE-CMRI using 14 biopsy samples from 10 patients with a 

history of AF (131), but the majority of studies have been conducted in animal models (427). It has 

been suggested that LA areas with >3 S.D. above blood pool mean are scar areas (174), but the 

availability of data from these areas was limited and a training dataset for use in classification training 

was not able to be created. Thus, it was proposed that scar areas are those with >2 S.D. above blood 

pool mean for this thesis. Therefore, these issues have to be addressed through further investigations.  

 

 

8.5 Conclusions 

 

Feature subsets extracted from EGMs, which were obtained from left ventricle slices, can be used for 

accurate predictions of the amount of fibrosis on the myocardial tissue. Voltage, but not fractionation, 

was included in the feature subset for the classification that showed the best performance using the ex 

vivo EGMs. The extracted prediction model based on biologically meaningful EGM features showed 

high predictability. The analysis of in vivo data though showed that neither voltage nor fractionation 

was informative for efficient classification of the data based on the presence of scar regions. Even 

though these two features are linked to CFAE morphology and are used as markers for ablating locations 

responsible for maintaining AF, they do not seem to be informative enough. A different combination 

of features is suggested to be necessary for accurate predictions of structural abnormalities, but these 

results need to be reconsidered given the limited number of in vivo data used for the training dataset.  
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Chapter 9 
 
Predicting heart failure phenotypes from ex vivo 
electrograms using supervised machine learning 
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9.1 Introduction 

 

Apart from investigating the ability of performing supervised machine learning for predicting 

functional and structural abnormalities related to cardiac arrhythmias and diseases, as presented 

so far, I sought to study whether it is possible to predict heart failure phenotypes using EGM 

morphology. This Chapter therefore presents a systematic characterisation of all feature 

changes that occur in each case, followed by the predictive modelling process for developing 

a model that can efficiently predict these phenotypes. 

 

9.1.1 Heart failure 
 

Heart failure is generally considered as the cardiac syndrome in which the heart cannot adequately 

provide blood and oxygen to the organs, due to reduced pumping action (428). Heart failure is a 

common syndrome affecting about 2% of the adult population worldwide. Studies have shown that its 

prevalence is age-dependent, as less than 2% of people younger than 60 years and more than 10% of 

those older than 75 years are affected by chronic heart failure (429). Heart failure is the final pathway 

of multiple pathologies, including myocardial infarction, hypertrophic cardiomyopathy, dilated 

cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy (428). Heart failure patients 

usually have a history of hypertension, cardiomyopathies, coronary artery disease, valve disease or a 

combination of these (430). Common symptoms of heart failure are breathlessness, ankle swelling and 

fatigue, and its signs are peripheral oedema, pulmonary crackles and raised jugular venous pressure. 

These are caused by structural and functional cardiac abnormalities leading to elevated intra-cardiac 

pressures or reduced cardiac output at rest or during stress (429). Heart failure cases are most commonly 

classified as acute and chronic heart failure or as heart failure with reduced left ventricular ejection 

fraction and heart failure with preserved left ventricular ejection fraction (429). 

 

The pathophysiology of heart failure with reduced ejection fraction involves a progressive condition 

starting from risk factors (i.e. hypercholesterolaemia, hypertension, diabetes, obesity, familial history 

of heart failure) leading to cardiac injury and the development of myocardial dysfunction. In the end, 

worsening symptoms are observed in patients until end-stage heart failure is diagnosed. Cardiac injury 

consists of the loss of myocytes and eccentric hypertrophy of remaining myocytes, leading to fibrosis, 

progressive left ventricular dilatation and a change in the shape of left ventricle from elliptical to 

spherical (429,431). These changes are called left ventricular remodelling. The result is increased 

myocardial oxygen consumption and reduced efficiency of myocardial contraction (431).    
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However, the pathophysiology of heart failure with preserved ejection fraction is not completely clear 

and incompletely studied. It is hypothesised that symptoms, such as chronic obstructive pulmonary 

disease (COPD), obesity, hypertension and diabetes cause a pro-inflammatory state followed by the 

production of reactive oxygen species by coronary microvascular endothelial cells and reduced nitric 

oxide (429,432). This condition leads to myocyte hypertrophy, increased collagen deposition and titin 

hypophosphorylation (429,433). 

 

9.1.2 Ischaemic Heart Disease 
 

One of the well-studied fundamental causes of heart failure, which is also taken into account during 

diagnosis, is ischaemic heart disease (IHD). IHD, also called coronary heart disease, is responsible for 

about 70% of heart failure patients (434). Clinical presentation of IHD is significantly different between 

women and men. Sex differences are extended to the symptoms recognised by patients and physicians, 

the outcome and the response to treatment (435). Unfortunately, the determinants of such differences 

are unclear and there is insufficient knowledge about the biological mechanisms (435). 

 

In general, there are a number of mechanisms through which IHD leads to heart failure. Ischaemic 

episodes can be responsible for episodes of pulmonary oedema in patients who have well preserved left 

ventricular systolic function. Ischaemia-induced abnormalities of diastolic dysfunction may persist 

even when ischaemia-induced systolic dysfunction had resolved (434). Patients with heart failure can 

be more prone to IHD without symptoms, also known as silent ischaemia. These cases are associated 

with defective autonomic function, and especially myocardial denervation reducing sensory inputs 

caused by previous myocardial infarction episodes (434). Myocardial ischaemia and infarction are also 

responsible for arrhythmias. AF, affecting about 20% of heart failure patients, and ventricular 

arrhythmias are observed in the majority of arrhythmia cases (434).    

 

Myocardial infarction is another important factor taking part in the progression of ventricular 

dysfunction. Myocardial infarction is usually followed by ventricular remodelling, which occurs very 

rapidly in the immediate post-infarction period and then more slowly thereafter (436). During that 

process an expanding myocardial scar is formed, in addition to this the non-infarcted myocardium 

adapts in terms of size and shape to the infarcted tissue. Myocardial infarction can also have chronic 

haemodynamic effects including the induction of mitral regurgitation (434).  
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9.1.3 Dilated cardiomyopathy 
 

Dilated cardiomyopathy (DCM) is another heart failure phenotype studied in this Chapter. It is 

suggested that DCM is an infrequent cause of heart failure (434,437), even though there is high 

variability in DCM-induced heart failure incidents among clinical trials (434). Patients aged less than 

50 years are a minority of those with heart failure, but this group is more prone to DCM (434). Non-

ischaemic DCM is associated with significant morbidity and mortality. The implantation of an 

implantable cardioverter-defibrillator (ICD) has been found to reduce the risk for cardiac death in non-

ischaemic DCM patients, even though it is an expensive solution. Although fibrosis is implicated after 

infarction, the significance of fibrosis in DCM is unclear (438). Midwall fibrosis is correlated to 

approximately 30% of DCM patients and it has been suggested that it can be used for accurate prognosis 

in patients with DCM (438). Both interstitial and replacement patterns of fibrosis are seen in DCM and 

microvascular ischemia has been suggested as a leading factor (438). A number of defective genes 

implicated in familial DCM have also been found to code for cytoskeletal proteins setting up a chronic 

injury-repair scenario which leads to fibrosis (439). There is poor knowledge though regarding the 

outcome of identifying myocardial fibrosis in vivo in DCM patients (438). 

 

 

9.1.4 Hypertrophic cardiomyopathy 
 

Hypertrophic cardiomyopathy (HCM) is a common inherited cardiovascular disease and recognised as 

an important cause for heart failure, cardiac sudden death and AF (440). It is recognised as a genetic 

heart disease with a suggested prevalence of at least 1 in 500 in the general population. Even though, 

HCM occurs so often, it is much less frequently recognised in clinical practice and as a result many 

individuals remain undiagnosed (440).  

 

Genetic studies show that dominant mutations in 11 or more genes are responsible for HCM. These 

genes encode thick and thin contractile myofilament protein components of the sarcomere or the 

adjacent Z-disc (440). However, 70% of genotyped HCM patients had mutations in two genes only, β-

myosin heavy chain (MYH7) and myosin-binding protein C (MYBPC3) (440). There is phenotypic 

heterogeneity between and within families, due to the fact that sarcomeres cannot be the sole 

determinant of the HCM phenotype (441).  

 

The HCM phenotype includes ventricular remodelling with increasing left ventricular wall thickness 

during various phases of life (440). The conventional clinical diagnosis of HCM is carried out by 



 

 263 

imaging with two-dimensional echocardiography, MRI or both. Imaging data show an increase in left 

ventricular wall thickness (440). Other common findings are mitral valve systolic anterior motion or 

hyperdynamic left ventricle, but these are not obligatory for diagnosis (442). Absolute left ventricular 

wall thickness ranges from mild (13-15mm) to massive (>50mm) (440). Another observation proving 

the heterogeneity of this disease is the asymmetrical pattern of left ventricular hypertrophy that may be 

observed. Although about 50% of patients have a diffuse wall thickening, an important minority (10-

20%) have segmental hypertrophy limited to small portions of the chamber (443). ECGs are abnormal 

at 75-90% of HCM patients and there is a strong correlation with T-wave inversion on ECG, due to the 

sarcomere mutations (444).   

 

 

9.1.5 Lymphocytic myocarditis 
 

Myocarditis commonly results from viral infections, i.e. coxsakievirus B, parvovirus B19, even though 

there are reported cases as a result of other pathogens, toxic or hypersensitivity drug reactions or 

sarcoidosis. Lymphocytic myocarditis is distinguished into fulminant and acute myocarditis. Fulminant 

lymphocytic myocarditis has a distinct onset with a viral prodrome within 2 weeks before the onset of 

symptoms and it has a good prognosis. On the contrary, acute lymphocytic myocarditis more does not 

have a distinct onset and hemodynamic compromise, and it often results in the need for cardiac 

transplantation or in death. Acute myocarditis is frequently diagnosed as non-ischemic dilated 

cardiomyopathy and its symptoms vary among patients (445). Cases of lymphocytic myocarditis 

leading to clinical evidence of heart failure are very rare and due to this reason there are no published 

clinical trials of therapy for heart failure in patients with myocarditis (446). It also remains unclear why 

patients lymphocytic myocarditis are more prevalent in fatal or nonfatal sudden arrhythmia (446).  

 

 

9.1.6 Electrophysiological changes in heart failure 
 

There is a variety of electrophysiological changes during heart failure, which depend on the underlying 

disease and they include ion channel remodelling, extracellular matrix remodelling, scar presence, the 

activation of the sympathetic nervous system, Ca2+ handling alterations, dilatation and stretch. There is 

not a standard set of electrophysiological changes. This fact, in combination with the existence of 

multiple arrhythmogenesis mechanisms, explain the complications on the efficiency of heart failure 

treatments and why it is difficult to find the most appropriate therapeutic approach (447,448). 
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The majority of heart failure animal models and heart failure patients have action potential prolongation, 

due to changes in repolarisation. In fact, T-wave alterations and QT prolongation are clinically detected 

(428). The reason for this may be myocardial strain, even though there is no direct clinical evidence for 

this. T-wave alternans, which is linked to sudden cardiac death, is another result of changes in 

repolarisation (449). It has been suggested that ventricular action potential prolongation, due to 

amplitude increase or enhancement of the Ca2+-transient, compensates for the loss in contraction. The 

reduction of Ito and IKs currents, either in isolation or in combination with the late inward Na+ current 

which is absent from the healthy myocardium, lead to AP prolongation (428). QT prolongation, which 

is associated with dispersed repolarisation, has been found in heart failure patients. It is responsible for 

EAD and the myocardium excised from heart failure patients has demonstrated EADs, but with non-

sustained arrhythmia (450). Moreover, QT prolongation, when combined with a certain degree of 

conduction slowing, is responsible for the initiation of re-entries, as known from studies with heart 

failure patients (451,452). 

 

The decreased expression of Cx43 is a feature of heart failure, but large reductions of Cx43 are needed 

in order to have conduction changes (453). These low levels are probably not reached in heart failure, 

but when they occur in combination to Na+ current reduction, they could lead to conduction slowing 

(454). QT prolongation was observed in vivo in a rabbit model of moderate to severe heart failure, but 

this was not observed in cardiac myocytes isolated from the same model. It was also shown that Cx43 

expression levels were reduced in transmural tissue samples, but the conduction velocity was not 

affected, suggesting the effect of the modified intercellular coupling on transmural conduction velocity 

to be compensated by increased cell dimensions facilitating the conduction (455). 

 

As it has become obvious, a variety of heart failure phenotypes are associated with increased fibrosis, 

and therefore with increased amount of extracellular matrix. The increased extracellular matrix 

separating the myocardial fibres appears to obstruct propagation, and especially transversely to the fibre 

direction, by disrupting the intercellular coupling. This leads not only to anisotropy, but also 

arrhythmogenesis (428,456) and contributes to source-sink mismatch conditions and conduction block 

(457). The extracellular matrix is excess in fibrotic regions and fibrosis has been associated with EGM 

fractionation. It has been also suggested that the fibrotic muscle is responsible for a “zig-zag” action 

potential propagation along the electrically isolated myocardial fibres leading to activation delay, but 

without reduction in conduction velocity to be observed (35). Thus, it has been proposed the activation 

delay to be caused by the increased length of the activation path and not by functional abnormalities. 

Considering all heart failure conditions described so far, it becomes clear that it is crucial to develop 

more efficient prognostic and diagnostic tools, in order to improve heart failure management and treat 



 

 265 

each heart failure patient at the early stages of the disease. The majority of heart failure phenotypes are 

linked to structural remodelling of the ventricles, which is one of the main factors for abnormal EGM 

morphology and linked to specific EGM modifications.  

 

The EGM morphology derived from various heart failure phenotypes was investigated in this Chapter 

and it was hypothesised that each heart failure condition can be accurately predicted using unipolar 

extracellular EGM morphology. The hypothesis to be investigated was that tissue slices derived from 

end-stage heart failure phenotypes induce propagation discontinuities, leading to consequent EGM 

modifications, i.e. increased EGM fractionation and EGM duration, comparing to tissue slices derived 

from rejected donor heart transplants. The hypothesis that each heart failure phenotype is responsible 

for a distinct EGM morphology was also studied.  

 

The experimental data used in this Chapter are the same as the ex vivo ones presented in Chapters 5 and 

6, where they were used in order to answer different questions. The patient characteristics from whom 

the samples were derived are presented in Tables 2.1 and 2.2. EGM morphology analysis was carried 

out using the methods presented in Chapter 3. Chapter 2 includes the feature selection analysis and 

classification training algorithms which were applied on training and test datasets for the extraction of 

a predictive model. 

 

 

9.2 Results 

 

9.2.1 Quantification of collagen coverage  
 
Quantitative comparisons were made between the heart failure phenotypes investigated in this thesis 

with the amount of scar measured as a percentage of the total slice area covered by collagen (Figure 

9.1). The mean ± SEM collagen coverage was 9.8 ± 5.4% (n = 2) for control biopsies, 13.96 ± 2.7% (n 

= 8) for IHD, 17.85 ± 1.7% (n = 11) for DCM, 19.86 ± 2% (n = 2) for HCM and 9.9 ± 3.5% (n = 2) for 

lymphocyte myocarditis (LM). One-way ANOVA showed that there were no significant differences 

among groups, possibly due to the low amount of slices for some categories (p = 0.29). By qualitative 

assessment, it can be observed that the highest collagen coverage was found in HCM samples, IHD and 

DCM had moderate amount of collagen coverage and LM slices had the lowest collagen coverage 

among HF phenotypes, which was similar to the control. 
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Figure 9.1: Collagen coverage of tissue slices derived from different heart failure phenotypes. 
Quantification of collagen coverage in each phenotype as a percentage of total size of slice. Donor (n=2), 
IHD (n=8), DCM (n=11), HCM (n=2), LM (n=2). Mean ± SEM. 

 

 

9.2.2 Measurement of conduction velocity  
 

Conduction velocity was measured on the same direction as stimulation and it was found to be 

significantly different between groups (donor: 8.3 ± 2.3cm/s, IHD: 11.57 ± 1.3cm/s, DCM: 12.34 ± 

1cm/s, HCM: 21.09 ± 3.6cm/s, LM: 7.3 ± 2.7cm/s; p = 0.006) (Fig. 9.2A). The post-hoc analysis 

revealed that all phenotypes are significantly different from HCM, but there is no difference in 

conduction velocity among the rest (donor, IHD, DCM, LM). There was no correlation between 

conduction velocity and collagen coverage (r2 = 0.04, slope = 0.13 ± 0.15, p = 0.4) (Figure 9.2C).  

 

The fibre orientation (longitudinal/transverse) on the side which was paced each time was unclear. 

However, high conduction velocity is known to normally take place alongside the longitudinal fibre 

orientation and the action potential propagation is slower on the transverse side of fibres (330). 

Therefore, the anisotropic ratio of the highest conduction velocity measured from one side of a slice by 

the lower conduction velocity measured from an orthogonal side was computed. (Fig. 9.2B). The results 

showed that the CVfast/CVslow ratio tended to be lower for the heart failure phenotypes rather than the 

donor data (Donor: 2.01±0.05; IHD: 1.64±0.3; DCM: 1.46±0.4; HCM: 1.62±0.3; LM: 1.46±0.3; 

p=0.32), but these data were not statistically significant and there were no difference between heart 

failure phenotypes.  
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Figure 9.2: Average conduction velocity and conduction velocity anisotropy across tissue slices. (A) 
Conduction velocity measured as the average of the stimulation from two orthogonal directions in each slice 
– donor (n=2), IHD (n=8), DCM (n=11), HCM (n=2), LM (n=2). One-way ANOVA with Tukey’s post-hoc 
analysis. Mean ± SEM, *p<0.05; **p<0.01. (B) One-way ANOVA did not show signifantly different 
CVfast/CVslow across heart failure phenotypes, but this was lower than donor samples.(C) Regression analysis 
investigating the relationship between the average conduction velocity, as measured using the velocities 
from two perpendicular sides of the slice, and the collagen coverage. There was no correlation between these 
variables. 

 

 

 

9.2.3 Heart failure phenotypes and EGM morphology 
 
A total of 1440 unipolar extracellular EGMs were acquired across all tissue slices, which were derived 

either from a healthy heart (n = 2 slices) or from a failing heart (n = 22 slices). The data were obtained 

using the MEA system (section 2.3)  from slices correlating to a healthy heart and four HF phenotypes: 

IHD, DCM, HCM, LM (Table 9.1). Automated feature extraction was then carried out on these 

recordings.  
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Table 9.1: Number of tissue slices used for EGM recordings and the total number of EGMs on which 
feature extraction was carried out.  
 

 

 

 

 

 

 

 

It was found that 23 out of 34 features, described in Chapter 3, changed. Compared to control EGMs, 

which were obtained from donor heart slices, 21 out of these 23 morphological descriptors were 

increased to at least one of the HF phenotypes (Figure 9.3 – 9.4). The frequencies of maximum and 

minimum energy extracted during the time-frequency analysis were the only reduced characteristics 

compared, to donor heart EGMs (frequency of max energy: donor, 29x104±35x103; IHD, 

15x104±7.2x103; DCM, 10.3x104±65x103; HCM, 13.5x104±5.6x103; LM, 66x104±3.8x103; p<0.0001 / 

frequency of min energy: donor, 1.9e+008±2e+007; IHD, 1e+008±3.6e+006; DCM, 

1.05e+008±3.9e+006; HCM, 7.6e+007±1.5e+006; LM, 8.7e+007±2.6e+006; p<0.0001) (Figure 9.4C-

D).    

 

Despite the increased average collagen coverage in heart failure phenotypes, the average EGM 

amplitude was lower in the donor slices (donor: 1029±109μV, IHD: 1797±131μV, DCM: 2234±175μV, 

HCM: 2341±304μV, LM: 2229±229μV; p = 0.003) (Figure 9.3B). However, there was no correlation 

between collagen coverage and voltage (r2 = 0.13, p = 0.46). EGM duration was prolonged in heart 

failure samples (control: 32.5±1ms, IHD: 35.9±0.7ms, DCM: 38.33±9.7ms, HCM: 36±1.2ms, LM: 

34.6±1.8ms; p<0.0001) (Figure 9.3H) and fractionation index was increased (control: 2.65±0.5, IHD: 

4.9±0.3, DCM: 3.9±0.2, HCM: 3.8±0.3, LM: 8.1±0.4; p<0.0001) (Figure 9.3 J).  

 
 
It was observed that HF-derived signals were similarly modified in general, but there were a few 

exceptions which made the morphology obtained from each phenotype distinguishable.  HCM-derived 

EGMs showed a significant increase of the mean frequency of PSD estimates (HCM: 108.1±6.8; donor: 

phenotypes 
Number of tissue 

slices 
Number of analysed 

EGMs 

Donor heart 2 37 

IHD 8 155 

DCM 11 189 

HCM 2 61 

Lymphocyte myocarditis 2 45 
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23.72±2; IHD: 39.78±1.7; DCM: 27.38±1; LM: 27.16±1.5; p<0.0001)) (Figure 9.4G) and median 

frequency of PSD estimates (HCM: 47.9± 4; donor: 3.6±  0.34; IHD: 10.54± 0.8; DCM: 8.9± 0.5; LM: 

10.5± 0.9; p<0.0001) (Figure 9.4H). These changes were opposed to the rest of HF phenotypes which 

remained at the same levels with the donor heart samples. In addition, HCM and IHD signals showed 

increased S-peak-to-EGM offset gradient (HCM: 231.7±33; IHD: 308.5±38; donor: 97.3±19; DCM: 

157.7±12; LM: 131.4±17; p=0.003) (Figure 9.3E). Some features detected in HCM-derived data though 

seemed to have remained unmodified compared to the control data, and while these features were 

modified in the rest of phenotypes. These features included Shannon entropy (HCM: 

2.8e+023±6.3e+022; donor heart: 1.9e+023±3.4e+022; p=0.63) (Figure 9.3K), maximum modulus 

(HCM: 8.04e+009±1.1e+009; donor heart: 5.33e+009±4.8e+008; p=0.59) (Figure 9.4A), variance of 

energy (HCM: 5.7e+025±1.5e+025; donor heart: 2.4e+025±3.9e+024; p=0.08) (Figure 9.4B) and S.D. 

PSD estimates (HCM: 7.44e+013±1.7e+013; donor heart: 1.3e+014±2.2e+013; p=0.08) (Figure 9.4I). 

The same features were significantly increased for the rest of phenotypes.  

 

Other specific subtype changes included the unmodified peak ratio in DCM recordings (DCM: 3±0.6; 

donor: 3.3±0.6; p=0.06) (Figure 9.3I), the much greater increase of fractionation index (LM: 8.1± 0.6; 

donor: 2.6± 0.5; IHD: 4.9± 0.3; DCM: 3.9± 0.2; HCM: 3.8± 0.4; p<0.0001) (Figure 9.3J) and the scale 

of maximum energy (LM: 0.33±0.01; donor: 0.13±0.02; IHD: 0.18±0.01; DCM: 0.25±0.01; HCM: 

0.16±0.004; p<0.0001) (Figure 9.4E) for LM data, and the significant decrease of the frequency of 

maximum energy for the LM recordings (LM: 66,009±3,819; donor: 294,608±35,042; IHD: 

149,823±7,283; DCM: 103,213±5,791; HCM: 134,887±5,609; p<0.0001) (Figure 9.4C). 

 

Linear regression analysis showed no correlation between conduction velocity and EGM duration (r2 = 

0.002, slope = -0.04 ± 0.2, p = 0.84). 
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Figure 9.3: Time-domain features analysed using ex vivo data, which were affected by HF phenotypes. Compared to the EGM morphology 

recorded from healthy slices, all features were enhanced in at least one of the HF conditions. All bar charts represent mean ± SEM. *p £ 0.5, **p 

£ 0.01, ***p £ 0.001, ****p £ 0.0001. 
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Figure 9.4: Morphological descriptors modified due to HF phenotypes. These features were derived from time-frequency and frequency-domain 
analysis and the quantification of information-theory based features. Apart from the frequency of maximum/minimum energy, the rest of features 

were significantly increased in all HF phenotypes. All bar charts represent mean ± SEM. *p £ 0.5, **p £ 0.01, ***p £ 0.001, ****p £ 0.0001. 
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Figure 9.5: Linear regression analysis for the relationship between the conduction velocity, measured as 
the average conduction velocity from two perpendicular sides of a tissue slice, and EGM duration. There 
was not any correlation observed between the variables.  

 

9.2.3 Feature selection  
 

Even though, EGMs obtained from healthy and LM slices were assessed for changes in morphology 

alongside the rest of HF phenotypes, the data collected from these two conditions were not enough to 

be part of the classification process. Thus, the feature-based supervised machine learning process was 

applied using data obtained from IHD, DCM and HCM samples. After the rejection of noisy recordings, 

a dataset of 405 EGMs was created consisting of data for the three HF phenotypes. EGMs were 

randomly selected from this database to generate the dataset used for training the classifier (153 EGMs 

in total) and for validating the computed model (252 EGMs in total). The SFS method was applied for 

automated feature selection using the Tree Bagger  algorithm and 10-fold cross-validation. The feature 

selection indicated 4 features as the essential ones to be used for classification training. These features 

were the following: maximum modulus, mutual information, frequency of maximum/minimum energy.  

 

All these features were found to be significantly different among classes. In specific, maximum 

modulus was higher for the heart failure phenotypes compared to the donor sample and it was even 

higher for DCM and LM (Figure 9.4A). Mutual information  was different among groups and it was 

found to be significantly lower for DCM (Figure 9.4K). Also, the frequency of maximum energy was 

lower for the heart failure phenotypes compared to the donor heart-derived data with a variability among 

heart failure phenotypes (Figure 9.4C). A similar pattern of results was also found for the frequency of 

minimum energy (Figure 9.4D). 
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9.2.4 Training an accurate heart failure phenotype classification 
algorithm  
 

The Bagging ensemble method appeared to have the best performance from classification training. It 

gave a classification accuracy of 89.8%, which was the highest among 20 methods that were tested 

using the classification application of MATLAB (2017b) (Table 9.2). In order to optimise the 

classification algorithm, the out-of-bag classification error was investigated using 500 decision trees 

(Figure 9.6A). Fifty decision trees were sufficient to achieve stable out-of-bag classification error. In 

addition, leaf size equal to 1 was responsible for the lowest out-of-bag error. After the application of 

the optimised classification conditions for the bagging ensemble method, the classification accuracy 

increased to 89.8%. The area under the curve (AUC) of ROC curves was 0.94 for IHD, 0.92 for DCM 

and 0.98 for HCM, indicating high prediction accuracy for each heart failure subtype (Figure 9.6C-E). 

 

 

Table 9.2. Classification accuracy of prediction methods using the same training dataset. The classification 
training was carried out with 10-fold cross-validation. 
 

Prediction method Accuracy (%) Prediction method Accuracy (%) 

Decision Tree (fine) 78.9 KNN (fine) 83.7 
Decision Tree (medium) 78.9 KNN (medium) 78 
Decision Tree (coarse) 82.1 KNN (coarse) 69.1 

Linear Discriminant 
Analysis 75.6 KNN (cosine) 81.3 

Quadratic Discriminant 
Analysis 75.6 KNN (cubic) 74.8 

SVM (Linear) 81.3 KNN (weighted) 80.5 
SVM (Quadratic) 81.3 Ensemble (boosted) 32.5 

SVM (Cubic) 82.9 Ensemble (bagging) 89.8 

SVM (Fine Gaussian) 55.3 Ensemble (subspace 
discriminant) 79.7 

Ensemble (subspace 
KNN) 87 Ensemble (RUSBoosted 

Trees) 32.5 
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Table 9.3.  Systematic analysis of classification performance with Bagging Decision Trees. Statistical 
indices were estimated either for the overall performance (average classification accuracy, average error 
rate, average precision) or seprarately for each one of the HF phenotype classes (specificity, sensitivity, PPV, 
NPV).   
 

 IHD DCM HCM 

Sensitivity (%) 82.9 78 95.1 

Specificity (%) 91 92.4 92.9 

Positive Predictive Value 
(PPV) (%) 82.9 84.2 88.6 

Negative Predictive Value 
(NPV) (%) 91 89 97 

Precision (%) 85.3 

Error rate (%) 10.2 

Classification accuracy (%) 89.8 

 

 

 

Figure 9.6: Classification training results. (A) Relative classification errors as a function of number of 
grown decision trees. (B) Confusion matrix presenting the classification accuracy of training dataset and 
comparing the predictability of classes. Diagonal cells (green) show the percentage of correctly classified 
EGMs. (C-E) ROC curves presenting the true positive rate versus false positive rate for each one of the 
classes when using the optimised bagging ensemble method. Based on ROC curves, the AUC value was also 
calculated for each one of them.  
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9.2.5 Trained algorithm reliably classifies EGMs according to heart 
failure phenotype   
 

The prediction model based on the previously trained algorithm was used with a randomly selected 

validation dataset (n = 252 EGMs). The dataset was comprised of 53.8% IHD data, 41.04% DCM data 

and 5.16% HCM data. The model achieved a sensitivity between 78.1 – 88.2%, as that was measured 

separately for each class, a specificity of 89 – 93.6%, PPV of 86.9 – 94.3% and NPV of 74.5 – 89.2% 

(Table 9.4). These results are similar to the classification training performance. 

 

Table 9.4. Evaluation performance of prediction model using a test dataset. Statistical indices (specificity, 
sensitivity, PPV, NPV) calculated for each class and average indices measured for the overall performance 
(precision, error rate).  

(%) IHD DCM HCM 

Sensitivity 78.1 83.9 88.2 

Specificity 91.3 89 93.6 

PPV 92.7 86.9 94.3 

NPV 74.5 86.4 89.2 

Precision 89.8 

Error rate 14.9 

Accuracy  84.1 

 

 

 

9.3 Discussion 

 

This chapter aimed to investigate how the EGM morphology obtained from a variety of end-stage heart 

failure samples is different compared to slices derived from donor transplants, resulting to a distinct 

EGM morphology. It was also investigated whether each heart failure condition is responsible for 

phenotype-specific EGM modifications. Even though conduction velocity was not significantly 

different between groups, there were significant differences in EGM morphology among groups for a 

number of features. The differences in EGM morphology helped the development of a prediction model 

which can successfully predict heart failure phenotypes from unipolar EGM morphology using 

supervised machine learning algorithms. 
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9.3.1 The effects of heart failure in EGM morphology 
 

Our knowledge about the unipolar extracellular EGM morphology obtained from heart failure cases is 

very limited, as this is generally investigated in clinical practice when simultaneous arrhythmic 

conditions occur (440,458). In addition, ECGs are the main source of studying the electrophysiological 

activity in heart failure (444,458). The analyses of wavefront propagation and EGM morphology that 

were carried out in this chapter showed that each heart failure phenotype is linked to a distinct EGM 

morphology. In many cases, a number of time-domain, time-frequency and frequency-domain 

characteristics that form an EGM morphology are different among phenotypes. Since the majority of 

these 25 features are significantly different from features analysed in EGMs obtained from donor heart 

slices, then it could be suggested that the EGM features obtained from heart failure samples are 

modified and the subsequent overall EGM morphology is abnormal. An interesting finding was the fact 

that EGMs obtained from different heart failure subtypes may lead to similar changes, even though to 

a different extent, while other features were not modified or they changed to the opposite direction. 

This suggests that it is possible to distinguish heart failure subtypes between them, as well as from data 

obtained from rejected heart transplants.  

 

One reason for the variable EGM morphology that was observed in this study may be ventricular 

remodelling, which often leads to heart failure. Ventricular remodelling is complex, entailing changes 

at many levels. At the cellular level, that involves modifications in the morphology, function and 

distribution of the cardiac myocyte. Changes in the type, structure and amount of collagen also occur 

(436). Other organ-level changes during ventricular remodelling may involve increased ventricular 

volume, hypertrophy, abnormal contractility and relaxation and enhanced ventricular compliance 

reflecting changes in collagen structure (436). However, the present ex vivo model excludes any 

parameters relevant to 3D architecture and thus, we are only able to make correlations between the 

amount of fibrosis in each heart failure phenotype and EGM morphology. The data analysis showed no 

correlation between collagen coverage on slices and conduction velocity or between conduction 

velocity and EGM duration or amplitude. This enhances our findings from Chapter 4 that such 

relationships are not clear in more complex experimental models.  

 

Furthermore, this study showed that a number of time-frequency and frequency-domain features are 

significantly modified in heart failure. These changes are observed not only comparing to the donor 

heart samples, but they are different even among heart failure phenotypes. It is hard to translate these 

changes though in a biological setting. These features have been mostly used as ECG descriptors for 

heartbeat classification (459,460), an additional way for understanding AF (461) or as alternative 

features for increasing the efficiency of ablating procedures using intact EGMs (391). However, 



 

 277 

considering the complexity of mechanisms that occur during heart failure or arrhythmic conditions, an 

investigation on a relatively simplistic model, such as the one presented here, can help towards the 

understanding of cellular-level mechanisms and the identification of specific EGM features could lead 

to hypothesis generation.  

 

 

9.3.2 Classification of heart failure 
 

This chapter presented the development of a model for efficiently predicting heart failure phenotypes 

using the EGM morphology. The Bagging ensemble algorithm was trained to discriminate IHD, HCM 

and DCM using 34 EGM features. The classification accuracy of the final model was 89.8%, and 

alongside the high classification performance, as described by the rest of indices, it allowed progress 

towards its evaluation using unlabelled EGMs. It was then confirmed that the prediction model was 

accurate, as it could correctly predict the heart failure phenotype with sensitivity 78.1 - 88.2% and 

specificity 89 - 93.6%. However, the small number of observations per class may be responsible for 

overfitting, and subsequently the relatively high classification accuracy, even though this is not clear 

due to the validation performance results.  

 

There are multiple publications which present machine learning models for the classification of heart 

failure (462). The model presented by Austin et al. (463) utilised demographic characteristics, 

presenting signs and symptoms, laboratory data and previous medical history of patients to develop 

machine learning models based on multiple supervised machine learning algorithms, such as 

classification trees, random forests and boosted classification trees. These models aimed to predict and 

classify heart failure subtypes. As part of that study, it was shown that modern tree-based methods 

improved performance over conventional classification trees (463). Comparing the performance of all 

methods which are available within MATLAB, the same conclusion was addressed during this work. 

Shah et al. (464) used unsupervised machine learning algorithms for classifying heart failure 

phenotypes. They applied clustering algorithms on clinical, laboratory and ECG data for describing the 

patients. 

 

However, there are not any published prediction models based on EGM morphology for classifying 

heart failure and the availability of an appropriate database may be a reason for this. This Chapter 

presents the first known attempt for application of supervised machine learning techniques on EGM 

morphology for the prediction of heart failure subtypes. Data were obtained from tissue slices, instead 

of heart failure patients, excluding some important parameters that affect EGM morphology. But the 
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demonstration of this application resulting to a precise prediction model shows that a similar approach 

using clinical data can be promising for the improvement of heart failure diagnosis and management. 

 

 

9.4 Limitations 

 

However, it is necessary to remember that the ex vivo model used in this study does not incorporate the 

entirety of the real clinical conditions under which a heart failure phenotype occurs, and therefore its 

limitations must be kept in mind. HCM is characterised by increased wall thickness (440), while 

extended scar areas and different types of fibrosis are quite common in DCM and IHD (434,438). These 

factors, and especially the 3D architecture, which can be crucial for EGM morphology, cannot be 

implemented easily in a lab setting and they were, of course, absent from our ex vivo model. In addition, 

infarcted hearts may have regional differences by distance from the infarct area (465). Therefore, it can 

be assumed that the samples used in this chapter do not take this into account, due to their small size. 

 

Ventricular remodelling is complex and it may manifest itself in different ways in each heart failure 

phenotype. This fact combined with patients’ clinical history, i.e. diabetes, hypertension prior to heart 

failure, which may be responsible for the way that ventricular remodelling is expressed out (434,436), 

increase the number of conditions that need to be correlated to a particular EGM morphology. 

Therefore, it is necessary to study a larger group of samples for each one of the heart failure phenotypes 

presented in this chapter. Moreover, functional abnormalities, such as dysfunctional ion channel 

activity, gap junction uncoupling, that might be present in our samples and affect EGM morphology 

were not studied in correlation to heart failure phenotypes.  

 

 

9.5 Conclusion 

 

Accurate classification of disease states, such as in heart failure, permits more accurate assessment of 

patient prognosis. Using a combination of EGM morphology features, derived from time-domain and 

time-frequency analysis, and applying supervised machine learning algorithms, a model for accurately 

predicting heart failure phenotypes was developed. Furthermore, the data analysis showed that these 

phenotypes have a distinct morphology from EGMs obtained from a donor heart. 
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Chapter 10 
 

Conclusions 
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10.1 Summary of key findings 

Understanding the way in which the cardiac electro-architecture affects the cellular and tissue 

electrophysiology, and subsequently the EGM morphology, is essential for improvements in 

diagnosis and personalised treatment of cardiac arrhythmias. One of the main contributions of 

the work presented in this thesis is the collection of a large number of unipolar EGMs under a 

variety of circumstances, in order to create unipolar EGM datasets, which not only are currently 

unavailable, but also were precious for the novel study of EGM morphology and the application 

of supervised machine learning. Another important contribution of this thesis is the ability to 

predict transmembrane currents, intracellular coupling, structural determinants of the action 

potential propagation and heart failure disease from the EGM. In order to come to this 

conclusion, contact EGMs were recorded and analysed from multicellular preparations, 

including cell monolayers, tissue slices and clinical data, under different modulations and 

control conditions. Supervised machine learning methods were then used to identify the 

relationship between the EGM morphology, previously recorded, and its functional and 

structural determinants. 

 

The experimental process presented in Figure 2.1 was followed in this thesis.  A range of 24 

functional and structural modifications were applied on the in vitro model and their effects on 

cellular and tissue electrophysiology were validated and measured using a number of 

laboratory and clinical techniques. Collagen disposition and the presence of scar regions 

respectively were the only parameters researched in ex vivo and in vivo models. Optical 

mapping was used for obtaining action potential data from cell cultures and tissue slices. 

Structural characteristics were measured by immunofluorescence in cell cultures and two-

photon microscopy (SHG technique) in tissue slices. Moreover, extracellular unipolar EGMs 

were recorded from both cell culture and tissue models using a MEA system, while paced 

unipolar recordings were collected from patients with a history of persistent AF using an 

electroanatomic mapping system. Algorithms were developed for the analysis of EGM 

morphology and its decomposition into a lower-dimensional feature-space representation was 

carried out to make it more amenable to machine learning techniques. The EGMs obtained 

from each experimental model were split into two datasets and feature selection algorithms 

were used to select the most informative subset of features. Twenty supervised machine 

learning algorithms were investigated, and the most effective method used to train a model 
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which discriminates the EGMs recorded from the different modulations in the experimental 

models. A number of predictive models were created which could be used for accurately 

predicting a range of structural and functional modulations on unlabelled data. 

 

The added benefit of this work is: 

§ The production of a dataset consisting of unipolar EGMs, which are representative of a 

variety of experimental conditions related to heart diseases. Opposed to practical difficulties in 

obtaining clinical EGMs and given the lack of systematically characterised unipolar EGM 

datasets which can be used for the development of new algorithms and the in-depth 

investigation of EGM morphology, the data presented in this thesis can be considered valuable 

for future investigations. In addition, these data were obtained from different models with 

increasing complexity – cell cultures, tissue slices, patients – using controlled in vitro or ex 

vivo experimental conditions, in order to investigate how the increasing number of variables 

can affect the EGM morphology. 

§ The presentation of a novel method to analyse and quantify the structural heterogeneity 

of ex vivo tissue slices using SHG microscopy results. It is important being able to analyse ex 

vivo models because of their complexity, which is closer to the whole organ level, and the 

opportunity to delve in structural abnormalities related to heart diseases. 

§ Each functional and structural change to the electrophysiology at the cellular, tissue 

and whole organ level affects EGM morphology in a distinguishable manner. Apart from a 

number of overlapping EGM morphology characteristics that were identified across 

modulations on the same experimental model there were no changes that resulted in the same 

overall EGM morphology. 

§ Supervised machine learning can be used to accurately predict functional and structural 

determinants from unipolar EGM morphology. 

§ The breadth of features generated through time-domain, time-frequency and frequency-

based analyses is important for generating accurate prediction models.  

§ Electrical recordings obtained at the single-cell level showed that gap junction 

uncoupling results to APD dispersion in cells located across an electrode with concurrent EGM 

fractionation. 
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The work presented in this thesis is also novel because of the following clinically relevant 

findings: 

§ Heart failure phenotypes, namely ischemic heart disease, dilated cardiomyopathy and 

hypertorphic cardiomyopathy, are responsible for distinct EGM morphologies which 

can be used inversely for predicting these phenotypes. 

 

§ Although scar regions can be predicted, voltage alone cannot be used as an in vivo 

marker of scar regions. The use of voltage and fractionation is inadequate for efficiently 

making assumptions about the fibrotic content of the substrate. 

 
 

10.1.1 Electrogram morphology effects due to functional and structural 
changes 
 
There is limited literature on the application of machine learning with unipolar EGMs and for 

this reason a number of signal analysis techniques were adapted from either the ECG 

morphology analysis (171,423) or other biomedical and engineering fields, such the analysis 

of EEG (426). However, the work presented in this thesis advanced the field by combining not 

only features that had been previously published or were clinically relevant, such as voltage 

and fractionation, but also a variety of other signal processing approaches, which were found 

critically important for successful discrimination of EGM morphology. Feature extraction was 

carried out by applying time-domain, time-frequency and frequency-domain analysis, and 

extracting features based on information theory. In total, 34 features could be computed and 

were used to represent EGMs obtained from different experimental models. The combination 

of features that was used in this thesis achieved accurate predictions during classification 

training and the successful validation of prediction models with test data. This agreed with 

previous studies that reported that the combination of different types of signal analysis leads to 

improved classification performance (213).   

 

Pharmacological modulations were applied to cell culture, either individually or in 

combinations, in order to better understand how EGM morphology is affected by specific 

changes in ion channel and gap junction function, as well as the presence of fibrosis and scar. 

These experiments provided controlled information about the effects of reduced ion channel 
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and gap junction function on EGM morphology. Concurrent optical mapping, which was 

carried out for the majority of experimental conditions in cell culture, confirmed the effects of 

each pharmacological agent on EGM morphology by correlating AP characteristics with 

morphological EGM features. The reason for this is that AP morphology has been more 

thoroughly investigated following the blockade of ion currents, in comparison to EGMs, 

thereby providing validation of the specificity of action.  

 

Na+ channel blockade was achieved by using lidocaine, the transient outward K+ current was 

blocked by 4-aminopyridine, nifedipine was used to target L-type Ca2+ channels, E-4031 and 

HMR-1556 were used to modify the rapidly and the slowly activating delayed rectifier K+ 

currents respectively, and pinacidil was used to open the KATP channels. A combination of 

lidocaine and nifedipine was also used for a double ion current blockade effect and 

carbenoxolone was applied on multicellular preparations for gap junction uncoupling. Even 

though there were a few similarities in the effects of some modulations on EGM morphology, 

the group of features which were significantly modified, and the degree of changes, were 

unique for each modulation. It was observed that the enhancement of the K+ current had 

opposing effects on some features compared to various types of K+ blockade, while there were 

cases that drugs with opposing effects altered features in the same way. The latter potentially 

indicated low specificity, especially for pinacidil, which had been found to reduce Ito in 

relatively low concentrations in canine ventricular myocytes (251). Moreover, the blockade of 

different types of K+ currents affected similar EGM features, but the degree of these effects 

were variable suggesting that feature extraction could be used for refined discrimination of ion 

currents.  

 

Gap junction uncoupling affected all features computed from EGMs obtained from cell 

cultures. This led to conduction slowing and increased fractionation, which agree with the 

findings from humans (318,320) and isolated rabbit ventricular myocytes (314). However, 

increased amount of cultured fibroblasts in cell culture seemed to prohibit the increase of 

fractionation. The MEA and optical mapping concurrent experiments showed that AP 

morphology was also modified, but the absence of previous experience using NRVM and the 

contradictory findings with some animal models proposes the species- and age-specific effects 

of carbenoxolone. A number of features were also modified in tissue slices derived from a 

human DCM heart sample. FPD results agreed with the APD90 change, but inverse and counter-
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intuitive results were found for some of the rest features. These results could be explained by 

the presence of patchy and interstitial fibrosis on slices and the anti-arrhythmic effects of 

carbenoxolone in an area where the “source/sink mismatch” phenomenon is possible to occur. 

EGM features could be modified in that way, due to the protective response offered by gap 

junction uncoupling. 

 

In addition to functional modulation, the effects of structural determinants on EGM 

morphology were investigated in this thesis. Even though different experimental models were 

used, it was observed in all cases, that the non-excitable regions of multicellular preparations 

which are responsible for discontinuous conduction – fibroblast rich, collagen-covered and scar 

regions – affect a variety of features and lead to conduction slowing. Feature modifications can 

be dependent on the amount of cellular scar in cell culture or the size of collagen covered area 

in tissue slices. There were a few exceptions to this though. For example, fractionation was 

significantly increased in +40%FB cell cultures, but remained stable and similar to the control 

in the other types of cell culture, which is in agreement with computational simulations that 

showed increase of fractionation in models with significantly high amount of fibrosis (466). 

The amount of fibroblasts in NC and +20%FB cell cultures seemed to be insufficient to create 

non-excitable regions that could lead to discontinuous conduction and the presence of a 

threshold effect of the fibroblast burden was proposed, in order to explain the differences 

between cell groups. A counter-intuitive in vitro finding was that increased amounts of the 

cellular component of scar increased the amplitude of the signal. Similar results were found in 

the tissue slice model. This is inverse to our knowledge from in vivo studies showing an inverse 

relationship between endocardial voltage of pacing or AF data and fibrosis (6,365). In order to 

investigate whether the increased signal voltage was not a result of enhanced NRVM/cultured 

fibroblast coupling, NRVMs were co-cultured with HeLa cells. Cx43 is not expressed in HeLa 

cells (366) and similar area of the cell culture was covered by this cell type as with fibroblasts. 

It was observed that the EGM amplitude was significantly decreased under these conditions 

suggesting that the absence of gap junctions in vitro does reduce the EGM amplitude and 

increases fractionation, which was similar to the +40%FB cell group.   

 

A two-photon microscopy technique was used (372) in order to capture the area covered by 

collagen and subsequently measure the area covered by extracellular matrix in slices derived 

from heart failure human hearts and one rejected heart transplant. Features extracted from 
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different types of analysis were influenced by the amount of collagen, and FPD was among 

them. Dual modality experiments showed that the APD recorded from heart failure slices, and 

the concurrently recorded FPD, were similar to data previously recorded in ventricular slices 

(20) or wedges (349) and papillary muscles (375) in similar conditions. The FPD recorded in 

control samples was more abbreviated compared to heart failure samples which also agreed 

with clinical studies (349,376).  

 

The analysis of pacing EGMs obtained from the LA of patients with a history of persistent AF 

was also carried out in this thesis. EGMs obtained from scar and non-scar regions, as defined 

according to a method of quantifying the S.D. above the mean blood pool intensity of LGE-

MRI data (174), were compared. Even though it is known from clinical studies that low voltage 

is associated with scar areas (99,100) and the posterior LA is also related to low-voltage areas 

in patients with AF (101), it was found that EGM amplitude was not significantly reduced in 

scar regions. However, fractionation was increased and that was in agreement with previous 

studies about increased fractionation in LA regions coinciding with areas of slow conduction 

or pivot points where the activation wavefront turns around at the end of a conduction block 

(104). Apart from these, a number of other time-frequency features were also modified due to 

the presence of scar in posterior LA. 

 

 

10.1.2 Supervised machine learning for predicting functional and 
structural modifications 
 

Unipolar extracellular EGMs have been previously used to predict different AF phenotypes 

based on the presence of scar, but they ignored that electrical and structural remodelling may 

also take place (154,391). Therefore, one of the novelties of the work presented in this thesis 

was the study of a variety of isolated abnormalities that are associated with cardiac arrhythmias 

and heart failure diseases and the use of the decomposed EGM for training classification 

algorithms to predict those abnormalities. In general, the combination of features extracted 

from different types of analysis increased the efficiency of classification compared to the use 

of features extracted from only one type of analysis. Clinical studies conducted for simulation 

modelling (125) or human (396) and animal (397) models have come to the same conclusion 

about the use of unipolar EGM features in classification training.  
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The complexity of the classification problem was reduced by selecting a feature subset using 

an automated feature selection algorithm. It was difficult to make conclusions about the 

biological meaning of the subsets derived from in vitro data, due to the large number of classes 

included in each dataset and the inclusion of multiple features which were found to be affected 

by a number of abnormalities. However, the feature subset, which was obtained from in vitro 

data and was used in the end to predict functional modulations in isolation, did not overlap 

with the subset for predicting structural modifications or the combination of cell culture 

abnormalities. The Bagging algorithm, which is a supervised decision trees-based technique, 

was found to be the most effective learning method. However, the predictability of scarred 

regions in posterior LA should be conceived with scepticism, due to the low index values 

during the model validation step. A reason for this could be the small number of EGMs in the 

training dataset, which is responsible for overfitting and subsequently weak prediction models. 

The same problem may occur with the ex vivo data for predicting the different percentages of 

collagen coverage, but the validation results were closer to the training performance in that 

case. Using multiple folds of cross validation, as well as separate datasets for training and 

validation, is an approach followed in this thesis in order to eliminate the effects of overfitting. 

 

 
10.2 Clinical relevance of findings 

 

EGMs are routinely used in the clinic to examine the electrophysiological activity of the heart 

and diagnose any abnormalities. A number of ventricular or atrial arrhythmias are detected by 

observing the EGM morphology, as already discussed. However, EGM morphology is not 

adequately characterised not providing enough information about the content of the signal to 

aid diagnosis (2,3). Some simple morphological features, such as the QT interval, are used for 

the identification of a few types of arrhythmia. Voltage and fractionation are two other features 

that are clinically used. As part of this thesis, it has been presented that voltage and 

fractionation cannot be sufficient for discriminating ex vivo obtained EGMs according to the 

amount of collagen coverage, because the classification accuracy was only 54.6%. However, 

this increased to 87.6%, when the selected feature subset was added, and increased even more 

to 90% when fractionation was removed from the final feature subset. Despite the use of these 

two features as markers of scar, based on clinical findings (416), the findings of this thesis 

suggest that low voltage and high fractionation are not necessarily associated with high amount 
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of extracellular matrix of scar regions. Therefore, there needs to be a reconsideration of the 

features that could best describe the EGM signal obtained from scar regions. 

 

 

10.3 Future directions 

A number of mathematical models have been developed for the automated detection and 

segmentation of the T-wave based on trapezium’s area approach (238) and pattern recognition 

techniques (239). Another recent study suggests an algorithm for the detection of T-wave based 

on a mathematical model given by a skewed Gaussian function (240). The advantage of these 

techniques is that they allow not only the detection of the T-wave peak, but also the location 

of T-wave end, giving the opportunity for the extraction of features, such as T-wave width, the 

slope of the descending part of T-wave, and scoring a T-wave according to the morphology of 

the peak, i.e. asymmetry, notch, flatness (241). These approaches could therefore be 

implemented in the future for the automated analysis of T-waves with accuracy and enriching 

that way the characterisation of an EGM. 

 

An electrode picks up changes in electrical potential generated by the wavefront when it is still 

at a distance. That means that the electrode records the activity not only underneath the 

electrode, but also in the surrounding myocardium. This is the “field of view” of an electrode 

(4). The experimental models presented in this thesis – cell cultures and tissue slices – were 

two-dimensional. Therefore, a more realistic experimental model that can provide clinically-

relevant data from intact myocardium is necessary to be used for studying how a variety of 

functional and structural modifications can affect EGM morphology. For this purpose, the 

isolated, retrograde-perfused Langendorff heart could be used. This experimental system is 

already used to extend our knowledge of ischemia-reperfusion injury, the cardiac effects of 

drugs and cell-based therapies for damaged myocardium. They are primarily used for small 

mammals, such as guinea pig, rat or rabbit (467).  

 

However, more clinically-relevant data can be used from larger animal models, such as pigs, 

and humans. These are less frequently used models due to higher cost, greater biological 

variability, larger requirements in terms of perfusion solutions and associated equipment. 
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Moreover, data collection is more challenging when using large mammalian hearts. Due to all 

these complexities, clinically-relevant isolated porcine and human heart models are rarely used, 

but they are the next step towards cardiovascular translational research (467). However, 

protocols and adjustments to the Langendorff isolated heart perfusion apparatus (Figure 10.1A) 

and working heart model have been published, in order to facilitate electrophysiological 

experiments on large mammalian hearts (Figure 10.1B). The unipolar extracellular EGM data 

obtained from such models by applying clinical catheters on them could be compared with the 

in vitro and ex vivo data presented in this thesis. Furthermore, the algorithms for EGM 

morphology analysis and the supervised machine learning process presented in this thesis could 

be validated and be extended, in order to account for the additional complexity of the model. 

The validation results could indicate how the findings from this thesis are different in a complex 

experimental setting, how the local activation on the heart can be disturbed by remote 

activation disturbances in another part and how the cardiac tissue, which is anatomically and 

electrically anisotropic, influences the EGM morphology.  

 

A B  

 

Figure 10.1: (A) Schematic representation of a Langendorff perfusion system. Adapted from Schuster et 
al. (468) and with permission of the rights holder, BioMed Central Ltd., under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/2.0). (B) The posterior side of an 
isolated guinea pig heart mounted on a Langendorff apparatus with attached electrodes and probes on it for 
obtaining ECG, monophasic AP, left ventricle pressure and coronary perfusion pressure recordings 
continuously throughout perfusion. Image reproduced from Guo et al. (469) and with permission of the 
rights holder, Elsevier. 

 

Apart from the sinus rhythm data obtained from the experimental models presented in this 

thesis and isolated, perfused Langendorff hearts, intracardiac unipolar EGMs obtained from 
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patients with functional abnormalities should be used for validating the algorithms presented 

in this thesis for EGM morphology analysis and the development of predictive models. 

Specifically, sinus rhythm data from patients with channelopathies, such as Brugada syndrome 

(BrS) and progressive cardiac conduction disease (PCCD), could be used. The formation of 

abnormal action potential, due to the variety of mechanisms contributing to arrhythmogenesis, 

is well characterised in such diseases (470). However, a few obvious morphological EGM 

changes that are characteristic for these diseases, such as the ST elevation and negative T-

waves in BrS or the prolonged QT interval in Long QT syndrome, are only well known and 

used for diagnosis. PCCD is associated with more complex phenotypes and EGM morphology 

which overlap with BrS and Long QT syndrome (470). Therefore, the analysis of these data 

using the feature extraction algorithms presented in this thesis could indicate whether there are 

features uniquely modified on each cardiac disease distinguishing them from the rest. 

 
 
10.4 Concluding remarks 

In conclusion, the work presented in this thesis made systematic associations of a variety of 

factors related to types of cardiac arrhythmia and heart failure subtypes with specific changes 

of the unipolar extracellular EGM morphology. The electrical signal was recorded from 

NRVM cell cultures, tissue slices obtained from human failing hearts or rejected human heart 

transplants, and patients with persistent AF history. Optical mapping recordings were obtained 

concurrently to EGM recordings in cell monolayers and tissue slices, in order to confirm EGM 

modifications from AP correlates. This study, alongside a feature extraction methodology that 

was developed, enabled the characterisation of EGM changes in detail and the association of 

each functional and structural variable with specific feature changes. In addition, the 

development of prediction models was investigated. This enabled the accurate prediction of 

functional and structural variables or heart failure phenotypes, following a thorough analysis 

of optimising the classification process of the machine learning algorithms. Through the 

increasing complexity of the experimental models, it was revealed that supervised machine 

learning can be applied on EGMs obtained using different recording systems and under a 

variety of conditions. However, certain requirements must be met, i.e. biological and machine 

learning settings, in order to achieve high predictability. This can ensure the translational 

application of the process which was presented in this thesis for the improvement of the clinical 

diagnosis and treatment of cardiac diseases. 
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I. The effects of Na+ channel blockade on EGM morphology 
 

Following the administration of 50μM lidocaine in 4 MEA plates of MO monolayers, it was found from 

the automated analysis of data obtained before and after the Na+ channel blockade (Control: n=134 

EGMs; Lidocaine: n=120 EGMs) that 16 out of 34 EGM features significantly changed (Figure A.1A). 

Even though the dual modality performance showed that EGM duration increased following the Na+ 

channel blockade, this feature did not significantly change when a larger number of EGMs were 

analysed (control: 4.05±0.3ms, lidocaine: 4.15±0.87ms, p=0.17). The average EGM amplitude was 

reduced (control: 502.9±19.2μV; lidocaine: 427±16.5μV; p=0.002). In total, 9 time-domain, 3 

frequency-domain and 4 time-frequency features were significantly modified due to the lidocaine 

activity. The general EGM morphology profile (Figure A.1B) showed that a large number of features 

seemed to be modified, but in fact apart from the 16 features previously mentioned, the rest did not 

significantly change. 

 

The automated analysis of EGM morphology for data obtained during MEA experiments carried out 

using NC monolayers showed that 11 features were significantly modified following the addition of 

1μM lidocaine (Figure A.2A). Fractionation index (control: 1±0.04; lidocaine: 1.9±0.26; p<0.0001) and 

RR interval (control: 1027±7.8ms; lidocaine: 1011±5.7ms; p<0.0001) were the only time-domain 

features that were affected by Na+ channel blockade. The rest were time-frequency and information 

theory-based features. Moreover, all features increased following the Na+ channel blockade and none 

of them decreased (Figure A.2B). Regarding the co-cultures with +20% cultured fibroblasts, 13 features 

significantly changed after the addition of 1μM lidocaine (Figure A.3A). Shannon entropy increased by 

460% compared to the control data (p<0.0001) and the median of PSD estimates decreased the most by 

91.7% (control: 44.65±11.1; lidocaine: 3.7±1.4; p<0.0001). No significant modifications occurred on 

time-domain features. Twenty-one features were significantly modified following the administration of 

10μM lidocaine in co-cultures of NRVM with +40% cultured fibroblasts (Figure A.4A). However, there 

were no dramatic changes in EGM morphology in overall, since 21 features changed by <10% 

compared to the control EGM morphology (Figure A.4B). Despite this fact, some of these changes 

were00 significant, such as in EGM duration (control: 3.5±0.13ms; lidocaine: 3.27±0.14ms; change: -

6.73%; p=0.45) and logarithmic energy entropy (control: 7.7*106±43,180; lidocaine: 7.96*106±37,821; 

change: +3.28%; p<0.0001).
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Figure A.1: EGM morphology modifications due to Na+ channel blockade when 50μM lidocaine were 
administered on NRVM cultures. (A) Features significantly changed due to lidocaine activity. Mann-
Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 
(B) General profile of the EGM morphology following Na+ channel blockade as compared to the average 
baseline data. (Control: n = 134 EGMs; Lidocaine: n=120 EGMs).
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Figure A.2: EGM morphology modifications in NC cell cultures, due to the Na+ channel blockade using 
1μM lidocaine. (A) Features significantly changed due to lidocaine activity. Mann-Whitney test analysis. 
All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (B) Quantification of 
EGM feature change compared to the average control EGM morphology. (Control: n = 71 EGMs; Lidocaine: 
n = 83 EGMs).
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Figure A.3: The effects of Na+ channel blockade using 1μM lidocaine on EGM morphology recorded in 
co-cultures of NRVMs and 20% cultured fibroblasts. (A) Features significantly changed due to lidocaine 
activity. Mann-Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001. (B) Positive and negative change of EGM features compared to the average control EGM 
morphology. (Control: n=64 EGMs; Lidocaine: n=53 EGMs). 
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Figure A.4: EGM morphology modifications due to Na+ channel blockade when 10μM lidocaine were 
administered on co-cultures of NRVM with 40% cultured fibroblasts. (A) Features significantly changed 
due to lidocaine activity. Mann-Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; 
**p<0.01; ***p<0.001; ****p<0.0001. (B) General profile of the EGM morphology following Na+ channel 
blockade as compared to the average baseline data. (Control: n = 82 EGMs; Lidocaine: n=68 EGMs). 
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II. EGM morphology manifestations of transient outward K+ current 
blockade 
 

Data obtained from 3 MEAs with MO cell monolayers before and after the Ito blockade using 750μM 

4-AP were analysed using the MATLAB script for automated feature extraction (Control: n=117 

EGMs; 4-AP: n=72 EGMs). It was found that 25 features significantly changed due to the Ito blockade 

(Figure A.5A). These were features belonging to all categories described in Chapter 3, i.e. time-domain, 

time-frequency, frequency-domain, non-linear dynamics/information theory-based feature. Twenty 

features increased, 14 features decreased and one, the R-peak width/EGM duration ratio) remained 

stable (Figure A.5B).  

    

EGM data collected from 3 MEA dishes of NC cell monolayers were analysed (control: n=105 EGMs; 

4-AP: n=117 EGMs). The addition of 750μM 4-AP was followed by modifications on 20 EGM features 

(Figure A.6A). These included 10 time-domain features, 7 time-frequency, 2 non-linear dynamics and 

1 frequency-domain features. The RR interval was significantly reduced under these conditions 

(control: 998.8±5.7ms; 4-AP: 834.9±29ms; p<0.0001). The EGM alternans was also enhanced, as the 

S.D. of EGM amplitude was enhanced (control: 117±20; 4-AP: 204.9±19; p<0.0001).  

 

The data related to EGM morphology change after the addition of 300μM 4-AP on a +20% FB cell 

culture should be criticised with some precaution, as they were collected from only one cell culture 

(control: 29 EGMs; 4-AP: 25 EGMs; n=1). In that case 21 features changed (Figure A.7A). It can be 

observed that, although the EGM morphology changed, there were no dramatic modifications like the 

ones that took place in myocyte only and NC cell monolayers following the Ito blockade. All changes 

varied between +61% - -88% (Figure A.7B). As opposed to the previous case, the RR interval was 

increased by 7.6% (control: 999.9±0.16ms; 4-AP: 1276±73.4ms; p<0.0001). Fractionation index was 

also significantly increased (control: 1.2 ± 0.15; 4-AP: 3.3 ± 0.4; p<0.0001).  
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Figure A.5: EGM morphology modifications due to the Ito blockade when 750μM 4-AP were administered 
on NRVM cultures. (A) Features significantly changed due to 4-AP activity. Mann-Whitney test analysis. 
All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (B) General profile 
of the EGM morphology following Ito blockade as compared to the average baseline data. (Control: n = 117 
EGMs; 4-AP: n=72 EGMs). 
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Figure A.6: EGM morphology modifications due to the Ito blockade when 750μM 4-AP were administered 
on NC cell monolayers. (A) Features significantly changed due to 4-AP activity. Mann-Whitney test 
analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (B) General 
profile of the EGM morphology following Ito blockade as compared to the average baseline data. (Control: 
n = 105 EGMs; 4-AP: n=117 EGMs). 
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Figure A.7: EGM morphology modifications due to the Ito blockade when 300μM 4-AP were administered 
on co-cultures of NRVM and 20% cultured fibroblasts. (A) Features significantly changed due to 4-AP 
activity. Mann-Whitney test analysis. (B) Positive and negative changes of EGM morphology following Ito 
blockade using 300μM 4-AP as compared to the average EGM morphology. All bar charts represent 
mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.  (Control: n = 29 EGMs; 4-AP: n=25 EGMs). 
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III. The effects of L-type Ca2+ current blockade on EGM morphology 
 

EGMs collected from three MEA dishes of MO monolayers during dual modality performance 

experiments were analysed before and after the administration of IC50 of nifedipine (control: 86 EGMs; 

nifedipine: 77 EGMs). After the automated EGM morphology analysis for feature extraction, it was 

found that 15 features were significantly modified (Figure A.8A). These included 5 time-domain, 3 

information theory, 2 non-linear dynamics and 5 time-frequency features. 

 

The analysis of EGMs obtained from three MEAs of NC cell cultures showed that only 9 features were 

significantly modified due to the blockade of L-type Ca2+ channels using 100nM nifedipine on NC 

cultures (Figure A.9A). Shannon entropy had the largest increase among all features, as it increased by 

300% following ICaL blockade (control: 6.56e+021 ± 3.9e+021; nifedipine: 2.63e+022 ± 1.8e+022; p = 

0.014). There were no dramatic changes of time-domain features in overall. Variance of energy 

decreased the most (-75.4%), but that was not a significant change due to the large variability of data 

values. The administration of 300nM nifedipine on four NRVM/+20% fibroblast co-cultures led to the 

modification of 18 features (Figure A.10A). Moreover, data obtained from two NRVM/+40% fibroblast 

co-cultures before and after the ICaL blockade using 300nM nifedipine were analysed. Nine features 

significantly changed (Figure A.11A). The comparison to the average control EGM morphology 

showed a limited range of mean feature change (+7% - -10%) for 20 out of 35 features (Figure A.11B). 
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Figure A.8: EGM morphology modifications due to the ICaL blockade when 772.2nM nifedipine were 
administered on MO cell monolayers. (A) Features significantly changed due to nifedipine activity. Mann-
Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 
(B) General profile of the EGM morphology following ICaL blockade as compared to the average control 
EGM morphology. (Control: n = 86 EGMs; Nifedipine: n=77 EGMs)
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Figure A.9: EGM morphology modifications due to the ICaL blockade when 100nM nifedipine were 
administered on NC monolayers. (A) Significant feature changes were observed due to nifedipine activity. 
Mann-Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001. (B) Quantification of EGM morphology changes following ICaL blockade as compared to the 
average control EGM morphology. (Control: n = 55 EGMs; Nifedipine: n=65 EGMs). 
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Figure A.10: EGM morphology modifications due to the ICaL blockade when 300nM nifedipine were 
administered on co-cultures of NRVM and 20% cultured fibroblasts. (A) Features significantly changed due 
to nifedipine activity. Mann-Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; 
***p<0.001; ****p<0.0001. (B) Quantification of EGM morphology changes following ICaL blockade as 
compared to the average control EGM morphology. (Control: n = 84 EGMs; Nifedipine: n=75 EGMs). 
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Figure A.11:  Modifications on EGM morphology due to the ICaL blockade when 300nM nifedipine were 
administered on co-cultures of NRVM and 40% cultured fibroblasts. (A) Features significantly changed due 
to nifedipine activity. Mann-Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; 
***p<0.001; ****p<0.0001. (B) Quantification of EGM morphology changes following ICaL blockade as 
compared to the average control EGM morphology. (Control: n = 39 EGMs; Nifedipine: n=38 EGMs). 
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 IV. IKr-related EGM morphology modifications 
 

The analysis of EGM data obtained from three NRVM monolayers (Control: n=83 EGMs; E-4031: 

n=73 EGMs) before and after the blockade of IKr current using 300nM E-4031 showed significant 

changes in 23 features (Figure A.12A). These included 11 time-domain, 2 non-linear, 2 information 

theory, 3 frequency-domain and 5 time-frequency features. No particular preference was shown for any 

of the feature categories. Even though some of the features changed dramatically when compared to the 

average control EGM morphology, i.e. S.D. EGM amplitude, maximum PSD estimate, EGM onset-to-

R peak gradient, these modifications were not significant, because the data values were too variable 

(Figure A.12B).  

 

The automated EGM morphology analysis using data obtained from NC monolayers showed that 16 

features were modified due to the IKr blockade using 300nM E-4031 (Figure A.13A). As part of these 

changes, the EGM amplitude was reduced (control: 2279±204.3μV; E-4031: 1270±153μV; p<0.0001), 

the RS interval was significantly prolonged (control: 0.79±0.19ms; E-4031: 0.99±0.2ms; p = 0.0002) 

and the RR interval was decreased (control: 1000±0.02ms; E-4031: 979±15ms; p<0.0001). Fibrillation 

was also observed in some of the studied cases, as there were non-uniform complexes of increased 

frequency EGMs amongst uniform EGM complexes. In overall, the majority of features was reduced 

after the IKr blockade, even though some of these changes were not significant (Figure A.13B). 

 

Twelve features changed in EGMs recorded from NRVM/+20% fibroblast co-cultures after the IKr 

blockade using 100nM E-4031 (Figure A.14A). The average EGM amplitude was increased in this case 

(control: 885.3±68μV; E-4031: 1034±70μV; p = 0.03), as opposed to the NC cultures, and the RR 

interval, the RS interval and fractionation did not change. There were 19 features which changed by 

±5% compared to the control data (Figure A.14B).   

 

The IKr blockade using 1μM E-4031 on NRVM/+40% fibroblast co-cultures caused significant 

modifications on 17 features (Figure A.15A). Among these changes, the average EGM amplitude was 

found to be reduced after the IKr blocade (control: 257±28μV; E-4031: 208±39μV; p = 0.03), the S.D. 

of EGM amplitude was remarkably increased (control: 17.6±3; E-4031: 65.3±9.6; p<0.0001) and the 

RR interval was prolonged (control: 999.9±0.08ms; E-4031: 1341±62ms; p = 0.003). 
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Figure A.12: EGM morphology changes due to the IKr blockade when 300nM E-4031 were administered 
on NRVM monolayers. (A) Significant EGM feature changes were observed due to the E-4031 activity. 
Mann-Whitney test analysis. (B) Quantification of EGM morphology changes following IKr blockade on 
NRVM cultures as compared to the baseline EGM morphology. All bar charts represent mean±SEM; 
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (Control: n = 83 EGMs; E-4031: n=73 EGMs). 
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Figure A.13:  EGM morphology modifications due to the IKr blockade when 300nM E-4031 were 
administered on NC cell monolayers. (A) Features significantly changed due to E-4031 activity. Mann-
Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 
(B) Quantification of EGM morphology changes following IKr blockade as compared to the average control 
EGM morphology. (Control: n = 47 EGMs; E-4031: n=73 EGMs). 
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Figure A.14: EGM morphology modifications due to the IKr blockade when 100nM E-4031 were 
administered on NRVM/20% fibroblast co-cultures. (A) Features significantly changed due to E-4031 
activity. Mann-Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001. (B) Quantification of EGM morphology changes following IKr blockade as compared to the 
average control EGM morphology. (Control: n = 47 EGMs; E-4031: n=73 EGMs). 
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Figure A.15: Modifications on EGM morphology due to the IKr blockade when 1μM Ε-4031 were 
administered on co-cultures of NRVM and 40% cultured fibroblasts. (A) Features significantly changed due 
to E-4031 activity. Mann-Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; 
***p<0.001; ****p<0.0001. (B) Quantification of EGM morphology changes following IKr blockade as 
compared to the average control EGM morphology. (Control: n = 36 EGMs; E-4031: n=32 EGMs). 
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V. The effects of IKs blockade on EGM morphology 
 

The analysis of EGMs collected from myocyte only monolayers (Control: n=27 EGMs; HMR-1556: 

n=23 EGMs) before and after the administration of 1μM HMR-1556 showed that 20 features 

significantly changed after the IKs blockade (Figure A.16A). There was a number of features (n = 17) 

with a limited level of change at ±10%, but many of them changed more significantly after the IKs 

blockade, i.e. EGM duration, RR interval, scale of maximum energy, compared to others, i.e. R-

width:S-width ratio, average EGM amplitude.  

  

Figure A.16: EGM morphology modifications due to the IKs blockade when 1μM HMR-1556 was 
administered on myocyte only monolayers. (A) Features significantly changed due to HMR-1556 activity. 
Mann-Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001. (B) Quantification of EGM morphology changes following IKs blockade as compared to the 
average control EGM morphology. (Control: n = 27 EGMs; HMR-1556: n=23 EGMs). 
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The EGM analysis showed that 24 features were affected by IKs blockade in NC cultures with the 

majority of them being decreased (Figure A.17A). These data were obtained using 1μM HMR-1556. 

The situation was similar with EGMs obtained from NRVM/+20% fibroblast co-cultures where 18 

features were influenced by the administration of 300nM HMR-1556 (Figure A.18A). 

 

 

Figure A.17:  Modifications on EGM morphology due to the IKs blockade when 1μM HMR-1556 was 
administered on NC cultures. (A) Features significantly changed due to HMR-1556 activity. Mann-Whitney 
test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (B) 
Quantification of EGM morphology changes following IKs blockade as compared to the average control 
EGM morphology. (Control: n = 54 EGMs; HMR-1556: n=74 EGMs). 
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Figure A.18: EGM morphology modifications due to the IKs blockade when 300nM HMR-1556 was 
administered on NRVM/20% fibroblast co-cultures. (A) Features significantly changed due to HMR-1556 
activity. Mann-Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001. (B) Quantification of EGM morphology changes following IKs blockade as compared to the 
average control EGM morphology. (Control: n = 27 EGMs; HMR-1556: n=23 EGMs). 

 



 

 

VI. EGM morphology modifications following KATP channel opening 
 

The KATP channel opening using 3μM pinacidil resulted in significant modifications to 15 EGM features 

(Figure A.19A). All feature values were reduced following the enhancement of K+ current, as opposed 

to the various types of K+ current blockade where the some of the features increased. These features 

included the average EGM amplitude (control: 859.6±76μV; pinacidil: 657±65μV; p=0.009), dominant 

frequency (control: 1Hz; pinacidil: 0.7±0.06Hz; p<0.0001) and Shannon entropy (control: 1.46e+023 ± 

2.9e+022; pinacidil: 8.56e+022 ± 2.3e+022; p<0.0001).   

 

Figure A.19: EGM morphology modifications due to the KATP channel opening when 3μM pinacidil were 
administered on myocyte only monolayers. (A) Features significantly changed due to pinacidil activity. 
Mann-Whitney test analysis. All bar charts represent mean±SEM; *p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001. (B) Quantification of EGM morphology changes following the enhancement of K+ current 
as compared to the average control EGM morphology. (Control: n = 46 EGMs; Pinacidil: n=73 EGMs). 



 

 336 

VII. EGM morphology manifestations of double ion channel blockade 
 

 

The simultaneous Na+ and L-type Ca2+ channel blockade using 40.5μM lidocaine and 1.16μM 

nifedipine respectively affected 14 features (Figure A.20A). This group of changes excluded EGM 

duration and EGM amplitude which were influenced by Na+ channel blockade in isolation, but it 

included two non-linear dynamics features, i.e. Shannon entropy and log energy entropy, 5 time-

frequency, the RR interval and 6 frequency-domain features based on power spectral density. The 

majority of features (n = 25) had very limited or no changes, as they were modified ±10% compared to 

control EGM morphology (Figure A.20B).  

 
The concurrent Na+ and L-type Ca2+ channel blockade on NC monolayers using 740nM and 130nM 

nifedipine significantly affected 18 EGM features. These data were derived from three MEA dishes. 

Half of these features (n = 8) decreased and the rest increased. They included EGM amplitude and EGM 

duration, which were both reduced (average EGM amplitude - control: 2293±71μV; Ion channel 

blockade: 1650±75μV; p<0.0001 / EGM duration – control: 5.6±0.15ms; Ion channel blockade: 

5.1±0.17ms; p=0.0005) (Figure A.21). 
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Figure A.20: Modifications on EGM morphology due to the double ion channel blockade when 40.5μM 
lidocaine and 1.16μM nifedipine were administered on myocyte only cultures. (A) Features significantly 
changed due to the simulatenous INa and ICaL blockade. Mann-Whitney test analysis. All bar charts represent 
mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (B) Quantification of EGM morphology 
changes following ion channel blockade as compared to the average control EGM morphology. (Control: n 
= 36 EGMs; ion channel blockade = 30 EGMs). 
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Figure A.21: Modifications on EGM morphology due to the double ion channel blockade when 740nM 
lidocaine and 130nM nifedipine were administered on NC cell cultures. (A) Features significantly changed 
due to the simulatenous INa and ICaL blockade. Mann-Whitney test analysis. All bar charts represent 
mean±SEM; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (B) Quantification of EGM morphology 
changes following ion channel blockade as compared to the average control EGM morphology. (Control: n 
= 98 EGMs; ion channel blockade = 108 EGMs). 
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Appendix B 
 

Feature subsets selected for classification 
training 
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I. Feature subsets extracted by SFS and using the data obtained from the total of in vitro 
experimental conditions. SFS was optimised for each machine learning method by applying 
the corresponding method on feature selection process: LDA, kNN, SVM and Bagging 
Decision Trees (TreeBagger). 

 
 

LDA k-Nearest 
Neighbours SVM Bagging Decision Trees 

Average EGM amplitude Frequency of signal with 
maximum energy RS amplitude Frequency of signal with maximum 

energy 

EGM duration Frequency of signal with 
minimum energy Dominant frequency Logarithmic energy entropy 

EGM amplitude Maximum PSD estimate Fractionation index QS interval 

Frequency of signal with 
maximum energy Mutual information EGM onset-to-Rpeak 

gradient Mutual information 

Frequency of signal with 
minimum energy Logarithmic energy entropy QT interval Maximum modulus 

Inter-peak signal gradient R width R-/S-peak width ratio Variance of energy 

Logarithmic energy 
entropy RR interval Scale of maximum energy Frequency of signal with minimum 

energy 

R/S amplitude ratio S.D. PSD estimates Logarithmic energy entropy Median frequency of PSD estimates 

Kurtosis of PSD estimates Variance of energy Maximum modulus Kurtosis of PSD estimates 

Maximum PSD estimate Scale of maximum energy Scale of maximum energy RR interval 

R width Scale of minimum energy Scale of minimum energy Scale of minimum energy 

Mean of PSD estimates Shannon entropy  S.D. EGM amplitude 

Scale of minimum energy   Maximum PSD estimate 

Shannon entropy    

Median of PSD estimates    

Variance of energy    

Mutual information    

RR interval    

RS interval    

S.D. Autocorrelation    

Skewness of PSD estimates    

S.D. PSD estimates    

 
 
 
 
 
 
 
 
 
 
 



 

 341 

II. Feature subsets extracted by SFS for each training dataset corresponding to functional or 
structural modulations in isolation and the overall cell culture modifications investigated on this 
thesis. As a comparison, the feature subset used for defining the data obtained from the total of 
in vitro abnormalities is also presented. The TreeBagger method was implemented in SFS for 
all cases. 

 

Functional modulations Structural modulations Total group of modulations 
Kurtosis of PSD estimates Dominant frequency Frequency of signal with 

maximum energy 

Maximum modulus EGM duration Logarithmic energy entropy 

Median frequency of PSD 
estimates 

EGM amplitude QS interval 

R width/EGM duration ratio Fractionation index Mutual information 

Scale of minimum energy Frequency of minimum energy Maximum modulus 

S.D. autocorrelation RS gradient Variance of energy 

S-peak to EGM offset gradient Mean frequency of PSD estimates Frequency of signal with 
minimum energy 

 EGM onset to R-peak gradient Median frequency of PSD 
estimates 

 R width Kurtosis of PSD estimates 

 Variance of energy RR interval 

  Scale of minimum energy 

  S.D. EGM amplitude 

  Maximum PSD estimate 

 
 

III. Lists of feature subsets extracted by SFS and adjusted on each classification method using the 
15% collagen coverage ex vivo data. The appropriate method was implemented for feature 
selection. 

 

Bagging Decision 
Trees SVM Decision Trees kNN LDA 

Mutual information Frequency of 
minimum energy EGM duration Mutual information S.V.D 

RR interval Mean frequency of 
PSD estimates 

Frequency of 
maximum energy RR interval S.D. 

Autocorrelation 
Logarithmic energy 
entropy 

Median frequency 
of PSD estimates 

Frequency of 
minimum energy 

Scale at maximum 
signal energy  

Maximum modulus EGM onset to 
Rpeak gradient Maximum modulus   

EGM amplitude Shannon entropy Mutual information   

R-peak width S.D. PSD estimates QS interval   

 Speak to EGM 
offset gradient    

 S.D. EGM 
amplitude    
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IV. Lists of feature subsets extracted by SFS for EGM data labelled as derived from tissue 
slices with collagen coverage below or above any of the percentages from the range 16-
23%. The training dataset used for feature selection was the same for 16% and 17%, and it 
was the same for the 18% and 19% coverage. The features presented here are the ones 
selected following the application of a method that gives the optimum classification results, 
indicated in brackets. 

 

16/17% 18/19% 20% 21% 22% 23% 

[Ensemble Decision 
Trees] 

[Ensemble Decision 
Trees] 

[Ensemble 
Decision Trees] [SVM] [SVM] [SVM] 

EGM duration Frequency of 
minimum energy  

Dominant 
frequency 

EGM 
amplitude 

Dominant 
frequency 

RS gradient 

Kurtosis of PSD 
estimates 

Logarithmic 
energy entropy 

Logarithmic 
energy entropy 

Frequency of 
minimum 
energy 

Fractionation 
index 

Maximum 
modulus 

Fractionation 
index S-width QS interval Kurtosis of 

PSD estimates 

Mean 
frequency of 
PSD estimates 

Mutual 
information 

Frequency of 
minimum energy 

Scale at 
maximum signal 
energy 

RR interval 
Logarithmic 
energy 
entropy 

Percent of 
energy 

Variance of 
energy 

R-width/EGM 
duration ratio 

Scale at minimum 
signal energy 

Scale at 
maximum signal 
energy 

Maximum 
modulus S-width  

Scale at minimum 
signal energy 

S.D. 
Autocorrelation 

S.D. 
Autocorrelation RR interval   

Speak to EGM 
offset gradient  S.D. EGM 

amplitude 

Scale at 
minimum 
signal energy 

  

 
 
 

V. Feature subsets obtained by SFS using the training dataset of clinical EGMs. SFS was 
optimized for each classification method by applying the corresponding supervised 
machine learning method. The data were labelled as derived from scar or non-scar regions. 

 

Bagging Decision 
Trees SVM Decision Trees kNN LDA 

Frequency of 
maximum energy 

Frequency of 
minimum energy 

Dominant 
frequency  

Dominant 
frequency 

Dominant 
frequency 

S-peak width R/S-peak ratio Frequency of 
maximum energy 

Frequency of 
maximum energy EGM duration 

 R-peak width/EGM 
duration    Frequency of 

minimum energy 

 S-peak width   Variance of 
energy 

 Variance of energy    
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Appendix C 
 
Permissions 
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