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Abstract

As countries move towatds malaria elimination, tracking progress through quantifying changes in

transmission over space and time is key. This information is necessary to effectively target resources to
remaining ‘hotspots’ (high-risk locations) and ‘hotpops’ (high-risk populations) where transmission
remains, decide if and when it is appropriate to scale back interventions, and to evaluate the success of
existing interventions. However, as countries approach zero cases, it becomes difficult to measute
transmission. ‘Traditional metrics, such as the prevalence of parasites in the population, are no longer

approptiate due to small numbers and increasingly focal distributions of cases over space and time.

In order to address this, this thesis developed Bayesian network inference approaches to utilise information
about the time and location of cases showing symptoms of malaria to jointly infer the likelihood that a)
each observed case was linked to another by transmission and b) that a case was infected by an external,
unobserved source. This information was used to calculate individual reproduction numbers for each
reported case, or how many new cases of malaria are expected to have resulted from each case. In
elimination settings, quantifying the distribution of individual reproduction numbers provides useful
information about how quickly a disease may die out, and how the introduction of new cases through
importation may affect ongoing transmission. These estimates were incorporated into additive regression
models as well as geostatistical models to map how malaria transmission vatied over space and time as well
as considering timelines to elimination and the likelihood of resurgence of transmission once zero cases is
achieved. This approach was applied to previously unanalysed individual-level datasets of malaria cases

from China and El Salvador.
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1

Introduction

In this chapter, I first review the epidemiology and burden of malaria. Following this, historical and current
policy for malaria control and elimination is outlined, including shifts in the prioritisation of total
elimination as opposed to control of the disease. The resulting epidemiological considerations which
become relevant when aiming for elimination rather than control are then discussed. Next, I provide an
overview of common metrics used to measure malaria transmission and the impact of control measures.
Following from this, I introduce key mathematical models of malaria transmission dynamics and discuss
how they have been used to estimate metrics of transmission and provide insights into the impact of
interventions. I then discuss the potential for mathematical models to assist elimination efforts and the
epidemiological challenges faced in elimination settings. Continuing the theme of measuring malaria in
elimination contexts, I introduce the approaches developed in recent years in outbreak analysis to measure
transmission using individual level surveillance data, and discuss how they may apply to endemic diseases
in near elimination and elimination settings, with compatisons of such approaches to models developed
within the machine learning and data science community. Finally, the problem and aims of the thesis are

introduced.

1.1 Natural history of malaria

Malaria is a disease caused by Plasmodium parasites, spread to humans through the bites of mosquitoes in
the Anopheles genus. There are 6 known species of malaria parasites which infect humans, of which
Plasmodium faleiparnm and Plasmodinm vivax are of most concern from a public health perspective. However,
there has been growing concern about zoonotic Plasmodinm knowelsi as this species has been associated with
severe outcomes in certain areas of South East Asia (Millar and Cox-Singh, 2015). It is estimated that 70
Anopheles species are known to be capable of transmitting malaria to humans (Warrell and Gilles, 2002), of
which 41 species have been identified as dominant vector species, meaning they are sufficiently competent

vectors of the disease to be relevant to public health (Hay e a/, 2010). These different Angpheles species
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have vatious geographical distributions, vectoral capacities and ecologies which affect malaria epidemiology,

transmission and the efficacy of interventions targeting them.

1.1.1 Malaria lifecycle

Plasmodinm parasites present in the blood of the human host are ingested by the mosquito during blood
meals as male and female gametocytes (Figure 1.1). Sexual reproduction occurs in the mosquito midgut
whereby the male and female gametes fuse, producing a zygote. This zygote then elongates and becomes a
motile ookinete, travelling to the mosquito mid-gut to develop into an oocyst. After a sporogonic period
of approximately 8-10 days, the oocysts burst to release sporozoites which travel to the salivary glands of
the mosquito, where they are passed to the mammalian host through the next blood feed. The sporozoites
rapidly migrate through the blood to the liver where they invade hepatocytes which subsequently group
together to form schizonts. Merozoites develop within the schizonts and, approximately 7-10 days after
initial infection, merozoites ate released into the bloodstream. During the blood-stage infections,
merozoites infect the red blood cells (erythrocytes) where asexual reproduction occurs. This invasion of
red blood cells, which occurs with a periodicity of 24-36 hours, produces most of the negative disease
related outcomes seen in individuals with clinical malaria (Ménard e# a/, 2013). After a period of
approximately 10 days, a subset of the asexual parasites differentiate into the gametocyte (male and female)

stages, which are ingested by a female mosquito and completing the cycle.

The lifecycle of P. vivax differs slightly to the P. faliparum lifecycle in several ways. One of the most
epidemiologically relevant differences is the ability for P. zivax to lie dormant in the liver of infected
individuals as hypnozoites, which can cause relapses in blood stage malaria by re-invading the bloodstream.
This can occur several weeks (short relapse) or months (long relapse) after initial infection and the relative
incidence of both relapse lengths varies between temperate and tropical regions, with short-relapse patterns
generally occurring in tropical areas and long relapse patterns occurring in temperate areas in relation to

seasonality (Battle e a/., 2014; White ez al., 2010).
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Figure 1.1 Plasmodium falciparum lifecycle showing a) Gametocyte production and ingestion during a bloodmeal. b) sexnal reproduction and developmental stages
within the mosquito c) inoculation of sporogvites and liver stage infection within the human host d) asexnal reproduction and blood stage infection. Drawn using BioRender

(www.biorender.com)

Malaria infections can vary in their severity and in their impact on the lives of those infected. Clinical,
symptomatic malaria is initially characterised by fever, aches and chills. If left untreated, the patient can
progress to severe malaria, resulting in severe anaemia, respiratory problems, or cerebral malaria, all of
which can result in death. Under 5s are patticulatly at risk (WHO, 2018a). In areas whete there is still a high
burden of malaria, it is common for naturally acquired immunity to develop following repeated exposure

to malaria and for asymptomatic infections to occut.

The age distributions of malaria infection also vary by species and transmission intensity. In high
transmission settings, many members of the population become exposed and infected at a young age. As a
result, they develop an immune response to malaria, meaning the age profile of individuals with clinical
symptoms and often the prevalence of asymptomatic parasitaemia is higher in these settings. When naturally

acquired immunity is not present in the population (due to reduced exposure) individuals are often older
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when exposed, and the age profile is a wider range of ages. Similarly, lower population level immunity
means individuals exposed to malatia, for example through imported cases, are more likely to become
infected and be at risk of clinical disease.

1.2 Burden and epidemiology of malaria

According to the World Health Organisation (WHO) World Malaria Report 2018 (WHO, 2018a), an
estimated 219 million cases (95% Confidence Interval (CI) = 203 — 262 million) of malaria occurred globally
in 2017. Of these, 3.4% ate attributed to P. vivax, with the rest attributed to P. falkiparum. However, this
proportion reached 74.1% and 37.2% in the WHO Americas and South East Asia regions respectively. In
the same year the disease was responsible for an estimated 435 000 deaths worldwide, with the majority of
mortality (93%) occurring in the WHO Africa region, and in children under 5 years old (61%). An estimated
99% of the mortality was caused by infection with P. fakiparum. In 2017 92% of all malaria cases were
thought to have occurred in the WHO African region, with 5% occurring in the WHO South-East Asia
Region, 2% occurring in the WHO Eastern Mediterranean region, and less than 1% occurring in each of
the remaining WHO areas (WHO, 2018a). However, there is a significant burden of P. vivax outside of sub-
Saharan Africa. P. vivax has a much wider geographic range than P. faliparum, in part due to its ability to lie

dormant, allowing transmission to be sustained following seasons which are unsuitable for vectors (Howes
et al., 20106; Battle ez al., 2019; Weiss ez al., 2019). In contexts outside of sub-Saharan Africa, P. vivax
often appears to persist when control measures reduce the burden of P. fakiparum.

1.3 History of malaria control and elimination policy

In 1955, the WHO launched a global campaign with the aim of eradicating malaria globally, known
as the Global Malaria Eradication Programme (GMEP). This decision was made following
promising results from pilots using dichloro-diphenyl-trichloroethane (DDT) to kill malaria
vectors and results from mathematical models by Ross and MacDonald demonstrating the value
of adult vector control on reducing malaria transmission (MacDonald, 1956; MacDonald, 1957).
The main control measure used during this time was indoor residual spraying with DDT and other
insecticides. Moderate successes were achieved; 37 countries eliminated malaria, some of which

without evidence of resurgence in the decades following the end of the programme (Najera,
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Gonzalez-Silva and Alonso, 2011). However, many areas where transmission had been interrupted
did observe resurgences during the 1960s, as well as transmission occurring in areas where it had
not previously occurred (Chiyaka ef a/., 2013; Smith ez al, 2013). As the GMEP programme did
not achieve its aims for eradication, it was abandoned in 1969. This resulted in a decline in funding
for malaria control and elimination. During this time many countries experienced economic and
political challenges, insecticides became more expensive and attention was shifted away from
malaria. There was also increased exploitation of countries’ natural resources, with mining, logging
and other forms of land-use change increasing (Najera, Gonzalez-Silva and Alonso, 2011). A
systematic review found that the resurgences seen during this time were strongly correlated with
reductions in IRS control in Latin America, civil/cold war in Europe and Asia and generally with

weakening or cessation of control programmes (Cohen e/ al., 2012).

In 2000, African leaders gathered at the Roll Back Malaria Summit in Abuja to sign a declaration
which committed to halving malaria mortality by 2010 (Global Partnership to Roll Back Malaria,
2000). This represented a strong commitment from the global health community and leaders of
malaria endemic countries to investing in malaria control. In the same year, the Bill and Melinda
Gates Foundation was formed, which made a strong financial and political commitment to malaria
elimination and eradication (Roberts and Enserink, 2007). Renewed commitment to malaria
elimination also was reflected in the Millennium Development Goals, with the aim of halting and
beginning to reverse the global incidence of malaria by 2015 (United Nations, 2015). This political
and financial investment has resulted in clear successes in malaria control. Since 2000, great strides
have been made in reducing malaria incidence, prevalence, mortality and progress towards
elimination. There was an estimated 41% reduction in global malaria incidence between 2000 and
2015, with a reduction of 21% between 2010 and 2015 (WHO, 2018a). Between 2000 and 2015
an estimated 1.2 billion cases and 6.2 million deaths have been averted, and the global malaria
incidence rate has fallen by an estimated 37% (WHO, 2018a). However, these gains have been

found to have stalled in recent years. Although the global incidence rate of malaria declined by
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18% from 72 to 59 cases per 1000 at risk between 2010 and 2015, this lower incidence rate

remained constant in 2016 and 2017, with no further reductions achieved (WHO, 2018a).

In 2016, the WHO listed 21 countries who aimed to eliminate malaria by 2020 (WHO, 2016). The
feasibility of eradication remains controversial, and whilst there has been renewed optimism in
achieving elimination at country level in many parts of the world (Feachem, Phillips and Targett,
2009; Mendis e al, 2009; Tatem ez al, 2010), the most recent report from the WHO Strategic
Advisory Group on Malaria Eradication, concluded that eradication will not be possible using
current tools, and significant investment in new tools, strengthened healthcare systems and
improved surveillance and response will be required in order to reach eradication. Nonetheless in
many spheres of malaria governance and policy, eradication remains the ultimate goal (Feachem ez
al., 2019). This history is important in understanding elimination goals in the present day. Between
1987 and 2007, no countries were certified as eliminated (WHO Global Malaria Progamme, 2016).
However, since 2007, eleven countries have been certified by the WHO as having eliminated
malaria: Algeria, Argentina, Armenia, Maldives, Morocco, Kyrgyzstan, Paraguay, Sri Lanka,
Turkmenistan, United Arab Emirates and Uzbekistan. Two additional countries, El Salvador and
China, reported no locally acquired cases in 2018. However, there are many parts of the world,
where new tools and new strategies will be required to reduce transmission and further areas such
as Venezuela (Grillet ez al., 2019) where resurgences in transmission have been observed.

1.4 Principal methods of malaria control

Malaria control and elimination interventions can be broadly divided into anti-malarial measures
and anti-vectorial measures. Current WHO policy (WHO, 2015) for treatment of uncomplicated
P. falciparum (apart from pregnant women in their first trimester, who are recommended 7 days of
quinine and clindamycin) is 3 days of with Artemisinin-based combination therapies (ACT's). For
uncomplicated P. vzvax, chloroquine or ACTs are recommended, unless the area is known to have

chloroquine resistance, in which case ACT's alone are recommended. If GP6D deficiency status
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of patients is known, they may be given primaquine to reduce the chance of P. vivax relapse. For

severe malaria, intravenous artesunate is recommended, followed by standard ACT treatment.

The two principal vector control strategies employed are through the distribution of long lasting
insecticidal nets (LLINs), commonly known as bed nets, and where appropriate Indoor Residual
Spraying (IRS), delivered as part of integrated vector management (IVM) programmes . The
massive scale up of LLINs distribution since 2000 (2% of children slept under a bed net in 2000
compared to 68% in 2015, however this has stalled in recent years (WHO, 2018a)) has been
attributed as a major contributor to observed declines in malaria prevalence and incidence over
the past 15 years (Bhatt ¢f 4/, 2015). Nonetheless, the effectiveness of vector control varies by
mosquito species and context. A particular challenge to vector control where outdoor-biting vector
species are present, as they are not affected by IRS and LLINs, the mainstay of vector control. In
these contexts there has been development of interventions such as spatial repellents and
attractive-toxic sugar baits (Beier ¢7 a/, 2012; Maia ef al., 2018), however the effectiveness of such
interventions has not been conclusively demonstrated and therefore not recommended by WHO
at the current time (WHO, 2019a). Resistance to insecticide is also a concern, with evidence that
between 2010 and 2016, the frequency of pyrethroid resistance increased in frequency by 32% An.

Sunestus 5./ and by 13% in _An. gambiae 5./. (WHO, 2018b; WHO, 2019a).

There has also been a great deal of investment in developing a vaccine for malaria. The furthest
along of these vaccines, RTS,S, has begun pilots in select sites in Ghana, Kenya and Malawi after
stage 3 clinical trials found four doses of the vaccine had an efficacy of 39% against clinical malaria
over the 4 years that patients were followed post vaccination - leading to an estimated 1,774 cases
of malaria averted per 1,000 children vaccinated (RTS,S Clinical Trials Partnership, 2015). Given
these levels of efficacy, the vaccine has potential as a tool to complement rather than replace

existing control strategies such as LLINs and IRS.
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Preventative chemotherapies have also been introduced as control interventions in select contexts
and in high-risk groups. Seasonal Malaria Chemoprevention (SMC) and Intermittent Preventive
Treatment in pregnancy (IPTp) both are techniques in which anti-malarial drugs are delivered over
a defined period of time, either the transmission season in the case of SMC, or for the duration of
pregnancy in IPTp (WHO, 2015; WHO, 2017a). Mass drug administration (MDA) is also
recommended for implementation in select contexts — namely in elimination settings to interrupt
transmission of P. falciparum malaria, in the Greater Mekong subregion to prevent spread of spread
of multi-drug resistance, during malaria epidemics, and in exceptional complex emergencies

(WHO, 2015).

In elimination settings, there is a shift towards surveillance, rapid detection and treatment of cases,
identification and targeting of foci and in some contexts continued vector control (WHO, 2016).
There have been several targeted approaches which have been piloted included treating individuals
within the same household, vector control in surrounding areas and in some contexts targeting
villages with intensive interventions and monitoring. Where importation is an issue, border

surveillance and screening are also key.

1.5 Methods to measure malaria transmission and the impact of control

1.5.1 Metrics of malaria transmission
Malaria transmission varies greatly between populations, demographic groups, over space, over
time and in response to control measures. A wide variety of methods and measures (Table 1.1)

have been developed to quantify, understand and predict these differences in transmission.

The Entomological Inoculation Rate is the measure of the rate of infectious bites received per
person. The EIR, long used as a key measure of malaria transmission is a measure of exposure of
humans to infectious mosquitoes. It is defined as the number of infectious bites a human receives
over a given time period, and is the product of the human biting rate, 7z and the sporozoite

prevalence, Z/M. Whilst traditionally one of the mainstays in measuting transmission, the EIR
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can vary greatly between contexts and seasons, and requires large sample sizes and time-consuming
sampling methods to get accurate measures. The Force of Infection is the rate at which individuals
become infected. This can be determined from transmission models, however, increasingly has
been estimated by fitting catalytic models to antibody data. The proportion of a surveyed
population with malaria parasites in blood at a given time and location, PrPf/PrPv, is a mainstay
of malaria measurements and widely collected through cross sectional surveys. It has been
incorporated into global maps which have been key in risk mapping for malaria and tracking
declines in the burden of malaria transmission (Bhatt ez a/, 2015; Battle e al., 2019; Weiss ez al.,

2019).

Incidence, or the number of cases occurring per 1000 over a given time period is also used. Two
key metrics which are measures of incidence. Annual Parasite Index is an annual measure of
incidence and is the annual sum of cases occurring per 1000 individuals at risk in a given location
over a year. Due to the seasonality and heterogeneity in malaria incidence which can occur, by
looking at year on year trends, some of the heterogeneity is removed compared to looking at more
fine grain measures of incidence, however of course this level of aggregation also removes useful
or interesting patterns and given that seasonality and heterogeneity is a key part of malaria

epidemiology, is not as useful for designing the timing of intervention deployment for example.

The Slide Positivity Rate (SPR) is the proportion of malaria-positive slides of all slides examined.
This value can be biased if the individuals sampled are not representative of the population as a
whole, which is generally the case if being used to diagnose fevers, however if the sampling strategy
remains constant year on year, SPR is a useful metric for measuring changes in transmission over

time.

The basic reproduction number, Ry ,or how many secondary cases expected from an index case
in a well-mixed, fully susceptible population is another key metric, which will be discussed in more

detail in relation to mathematical modelling of malaria. When above one, we expect transmission
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to continue, and when below one we expect to die of its own accord, however this may take long
periods of time if there is importation, or if there are some individuals with reproduction numbers

above one even if the mean is below one.

In many situations we may be interested in measuring transmission in the context of ongoing
interventions or in a population with some existing immunity, and therefore not fully susceptible.
In such cases the effective reproductive number, R is calculated. In some cases R is used to denote
R under control measures, however this is not used in this thesis as R is also used to represent
the case or cohort reproductive number - how many cases on average will a case infected at time

¢ go onto infect.
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Table 1.1: Metrics used to measure malaria transmission

Notation Measutre Definition
Ry Basic reproduction number How many secondary cases expected
from an index case in a well-mixed,
fully susceptible population
R Effective reproduction number Reproductive number when
assumption of fully susceptible
population is not met
R, Case or cohort reproduction number For a given case or cohort infected at
a given time, how many people they
go onto infect
EIR Entomological Inoculation Rate Rate of infectious bites per person
FoI Force of infection The rate at which individuals become
infected
PfPr/PvPr Parasite prevalence The propottion of a surveyed
population with malaria parasites in
blood at a given time and location
API Annual Parasite Index The number of malaria-positive
patients per 1,000 inhabitants
SPR Slide Positivity Rate The proportion of malaria-positive

1.5.2 Mathematical models of malaria transmission

slides of all slides examined

Mathematical models of malaria transmission are tools which provide insight into the dynamics of

malaria transmission and assist in the design and evaluation of malaria control and elimination

programs. They range from simple sets of equations, through to complex individual-based

simulations. Models also have provided key metrics to quantify transmission and progress towards

elimination, such as the basic reproduction number. In this section I will summarise the history

of malaria transmission models and then explore their potential contribution to elimination efforts,

highlighting the epidemiological challenges for malaria in elimination and very low transmission

settings (where prevalence is under 1%, (WHO, 2017b)).
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1.5.3 Looking back: malaria transmission models in the 20th century
The first mathematical model of malaria transmission was published in 1908 by Ronald Ross after
being tasked with recommending methods for the prevention of malaria in Mauritius (Ross, 1908).
This model was based on an a priori desctiption of how the prevalence of malaria was causally
related to the ratio of mosquitoes to humans, 7. Ross used the model to argue that only a
proportion of a mosquito population would need to be killed to prevent transmission, which led
to the formulation of a critical mosquito density, 7’, above which transmission would be sustained.
The parameters involved (summarised in Table 1.2) have now been standardised (Smith ez a/., 2012):
m is the ratio of mosquitoes to humans, « is the proportion of mosquitoes that feed on humans
each day, 4 is the proportion of bites by infectious mosquitoes that infect a human, ¢ is the
probability a mosquito becomes infected after biting an infected human, ris the daily rate each
human recovers from infection, » is the number of days from infection to infectiousness in the
mosquito, and g is the instantaneous death rate, which also can be expressed as —In p , where p is
the probability of an adult mosquito surviving one day, to give the following interpretation of

Ross’ formula:

m >————
a’bce—9v
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Table 1.2: Parameters in Ross MacDonald model

Parameter

Definition

The ratio of mosquitoes to humans

The rate at which a mosquito takes
human blood meals

The probability that a bite by an
infectious mosquito infects a human
The probability a mosquito becomes
infected after biting an infected human

The daily rate each human recovers from
infection

The number of days from infection to
infectiousness in the mosquito

The instantaneous death rate of a
mosquito, also expressed as —In(p)

The probability of an adult mosquito
surviving one day

The original Ross model of malaria transmission was simulated using discrete time steps equal to

one month. This use of a fixed time step represents one of two broad classes of numerical

implementation methods within mathematical models: discrete and continuous time. The latter

class was used in formulating the second dynamic model of malaria in 1911 (Ross, 1911), which

utilised a pair of differential equations (parameterisation standardised as before (Smith ez 4/, 2012))

to desctibe how the number of infected humans, X, and the number of infectious mosquitoes, Z,

change over time as follows:

dX
dt

dz

— = aqac

dt

X

Z
=maM(H—X)—rX

E(M—Z)—gZ

Here H is the total number of humans in the population of focus. Similarly, M is the total number

of mosquitoes, and then m = M /H. These differential equations do not incorporate the delay

from infection to infectiousness in the mosquito.
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The Ross model of malaria transmission was developed further by George MacDonald during the
Global Malaria Eradication Programme (GMEP) between 1955 and 1969 (MacDonald, 1957). The
resulting Ross-MacDonald model was used to provide insight into the efficacy of using the
insecticide DDT as a malaria control strategy, with the explicit aim of eliminating the parasite. This
model illustrated the impact that could be achieved by reducing mosquito longevity and the
subsequent demonstration of the non-linear relationship between increasing mosquito death rates
and decreasing sporozoite positivity rates (MacDonald, 1956). MacDonald’s work also led to the
development of a quantitative theory for malaria control that was explained by the impact of
interventions on the entomological transmission of malaria. This resulted in the first formulation

of the basic reproductive number, Ry, for malaria.

In the 1970s, the World Health Organisation sponsored an investigation within the Garki district
of Nigeria to assess if malaria could be eliminated using a combination of treating cases effectively
with chloroquine and IRS (Molineaux and Gramiccia, 1980). Although the project in Garki
ultimately failed to eliminate malaria within the study region, the parameter fitting of the model
enabled a quantitative relationship between both entomological and parasitological prevalence and
incidence to be formulated. This enabled estimation of key malaria indices concerning the vectorial
capacity below which malaria could not be maintained at an endemic level. Lastly, the model
moved towards a more nuanced understanding of the range of possible endemic levels, and
arguably was the first attempt to use mathematical models to predict how control interventions

could lead to reductions in vectorial capacity and subsequent changes in the severity of endemicity.

1.5.4 Transmission Metrics: Ro and Vectorial Capacity
The basic reproductive number, Ro, or the number of cases expected to arise from a single infected
individual in a well-mixed, fully susceptible population, has become a fundamental concept in the
study of infectious disease dynamics. Borrowed from demography (Dublin and Lotka, 1925) to

quantify population growth, Ry was first used in an infectious disease context by MacDonald to
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quantify malaria transmission (Macdonald, 1952). The classical equation for Ro for malaria is

illustrated visually in Figure 1.2 and written as follows:

ma?bc ma?bc
— e~ 9V =

0T Tgr " (Inpyr?

v

Ry laid the foundation for a quantitative approach to designing and evaluating malaria control and
eradication schemes, especially in estimating the impact of targeting adult mosquito vectors. Ro
allowed epidemiologists to quantify two key concepts: 1) the effect size of an intervention and 2)
an epidemic or endemic threshold. According to theory, an Ro of one is the threshold below which
an epidemic disease will not invade a susceptible population and an endemic disease, such as
malaria will eventually die out. Therefore, establishing a measure of Ry and aiming to reduce it to
below one provides a simple framework for malaria elimination. In recent years there has been
some debate about whether reducing Ro below one is sufficient to eliminate malaria (Breban,
Vardavas and Blower, 2007; Li, Blakeley and Smith, 2011). Simple models suggest a bi-stable
equilibrium — suggesting that even with Ry below one, malaria can persist indefinitely in a
population (Smith e a/, 2013). However when Griffin (2016) explored the relationship between
Ry and Entomological Inoculation Rate (EIR) for biologically realistic models which incorporated
the effects of immunity and were calibrated to a wide range of datasets, the bi-stable equilibrium

did not appear to exist for P. faliparum malaria.
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Figure 1.2 : Visualisation of parameters in R0 equation. The sections of the diagram shaded in different colours correspond to the different
interventions which effect each parameter/ part of life cycle

The ratio of Re:R or the ¢ffect size is a measure of what has already achieved with existing
interventions. When R remains above one, further interventions will be required to achieve
eventual elimination of malaria. Quantifying the effect size was key in supporting decisions to
target the mosquito vector in malaria control strategies. This is because interventions which affect
adult mosquitoes are likely to have a larger effect size than interventions which reduce parasite
density, thereby illustrating the importance of interventions which target the vector. Returning to
the equation for Ry, we can see that Ry has a linear relationship with mosquito density, 7 infectivity
of mosquitoes to humans, &; the infectivity of humans to mosquitoes, ¢ and the infectious period,
1/r. However it increases quadratically with increases to human feeding rates 2. Depending on ,
the extrinsic incubation period of the mosquito, Ry increases more or less cubically with increases
in the mosquito death rate g (Smith ez /., 2012). Therefore, transmission intensity is highly sensitive

to mosquito survival — meaning if adult mosquito survival was reduced through interventions, a
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great impact on malaria transmission could be achieved. In addition, many interventions which
reduce mosquito survival will also reduce mosquito density and, if also a mosquito repellent,
possibly affect human feeding rates. Interventions targeting the parasite however only impact

linear parameters within the equation: 4, cand r.

Mathematical models also lead to the derivation of other important metrics of malaria
transmission. The vectoral capacity, defined as the total number of potentially infectious bites to
mosquitoes arising per fully infectious human per day (Garrett-Jones, 1964), or measure of
mosquito exposure to infectious humans, has been a key measure of transmission potential. It is
described by a four-parameter equation as follows, using the same parameter symbols in previous
equations:

ma?e 8

The entomological inoculation rate long used as a key measure of malaria transmission is the
converse of the vectoral capacity : a measure of exposure of humans to infectious mosquitoes. It
is defined as the number of infectious bites a human receives over a given time period, and is the
product of the human biting rate, #a and the sporozoite prevalence, Z/M. Both measures have
been widely used in quantifying transmission potential, designing effective transmission strategies

and measuring reductions in malaria burden through vector control.

1.5.5 Looking forward: Modelling to support malaria elimination
Burden reduction is a key aim in malaria control, especially in higher transmission settings.
However, the eventual goal for most malaria endemic countries is to achieve and sustain
climination, defined as the absence of locally acquired cases. Country level elimination is a key
stepping stone towards global eradication. However, several key changes in malaria epidemiology

occur as cases approach zero which must be overcome in order to accelerate, achieve and maintain
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elimination. Mathematical models and theory can provide useful insights in elimination planning
and implementation to understand and overcome these challenges. Here I focus on six key features
of malaria epidemiology and monitoring in elimination and near elimination settings: focality of
cases; asymptomatic reservoirs; importation and relapse; “residual” transmission, resurgence and
changes in the demography of those infected; and developing metrics to quantify progress towards,

achievement and maintenance of elimination.

1.5.5.1 Focality of cases

Firstly, malaria prevalence and incidence is heterogeneous at multiple spatial scales (Bousema ez a/.,
2012; Clements et al., 2013; Bejon ef al., 2014), with the disease becoming more focal as cases
approach zero (Carter, Mendis and Roberts, 2000; Bousema e al, 2012; Sturrock et al., 2016).
Because of the tendency for cases to cluster geographically approaching elimination, it has been
suggested that targeting interventions to areas of higher transmission may provide a more efficient
allocation of resources than implementing control measures homogenously (Carter, Mendis and
Roberts, 2000; Bousema ¢7 a/., 2012). Spatial targeting of resources also may accelerate elimination
efforts by allowing a more effective and rapid response to outbreaks. However, there is uncertainty
as to how stable hotspots of transmission are, what their contribution to overall malaria dynamics
is, whether their stability varies at different spatial scales, and whether this stability can be
predicted. There is evidence that at some spatial scales hotspots of febrile malaria may be highly
temporally variable, whereas asymptomatic parasitaemia seemed to be much more stable (Bejon ez
al., 2010, 2014), however other studies have found also found stability in hotspots of febrile
malaria (Ernst ef al., 2006). These issues inform how and at what spatial scale to target elimination

efforts. In order to address this, spatially explicit models of malaria transmission are required.

1.5.5.2 Asymptomatic reservoirs
Measuring progress towards elimination is further complicated by asymptomatic reservoirs.

Reviews (Okell er al, 2012; Bousema et al, 2014) of prevalence surveys find a non-linear
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relationship between prevalence by PCR and by RDT or microscopy, suggesting that even in low
transmission settings the prevalence detected by PCR is often higher than that detected by other
methods. However the amount of sub-patent and/or asymptomatic malaria in low transmission
contexts is highly heterogeneous (Okell e 4/, 2012). It is also unclear what the contribution of
asymptomatic reservoirs are on ongoing transmission. Quantifying the asymptomatic reservoir and
modelling its impact on malaria transmission remains a major challenge in modelling elimination

scenarios.

1.5.5.3 Importation and relapse of cases

As countries reach low numbers of locally acquired cases, the role of imported cases in sustaining
transmission or reintroducing malaria to a country is a concern (Cotter ¢f al., 2013; Churcher e al.,
2014). Increases in international travel, migration and connectivity all can lead to more
importation. In addition, movement between neighbouring malaria endemic countries,
documented or undocumented, as the result of socio-political, environment or economic changes
can be important drivers of local transmission via importation or internal movement (Chuquiyauri
et al., 2012). Examples of such changes in transmission, often related to land-use change such as
mining and logging, have been observed in a variety of countries in SE Asia and the Americas
including Cambodia (Sluydts ¢# a/., 2014; Guyant ez al., 2015; Siv ¢t al., 2016), Thailand (Dondorp
et al., 2009), Indonesia (Surjadjaja, Surya and Baird, 2016) and Peru (Rosas-Aguirre ¢ al., 2016). As
cases get closer to zero, transmission becomes more evidently focal, with small areas of more

intense transmission intensity (Oesterholt ¢ al., 2006; Bejon ez al., 2010, 2014; Sturrock ef al., 20106).

1.5.5.4 “Residual” transmission, resurgence and changing demographics

It has been noted that in some areas, even with high coverage of interventions, transmission of
malaria is sustained. Understanding the causes of residual transmission and targeting resources to
these foci of residual transmission is required. There is a high economic cost of surveillance and

response, and therefore targeting resources in the most efficient and effective way is important.
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Characterising communities at risk, or driving transmission is also key due to specific needs of the
communities or strategies which may be required, for example different strategies may be required
to control malaria in adult migrant workers than in young children (Cotter e# a/., 2013). Outside
of sub-Saharan Africa, the burden of malaria often shifts from P. faliparum to P. vivax in lower
transmission settings (Gething ez a/., 2011; Cotter ¢f al., 2013). Because P. vivax can remain dormant
and lead to relapses in illness, understanding P. vivax epidemiology as cases approach zero becomes
increasingly important. P. vivax also proves more resistant to traditional control measures. The
ability to spend long periods of time in dormancy in the liver allows the parasite to survive in

contexts where P. falciparum would be unable to do so (Battle ¢f a/., 2014) .

Most countries which successfully eliminated malaria have managed to maintain elimination,
despite importation (Smith ez 4/, 2013). However great resurgences have been seen in countries
which reduced levels of malaria but did not achieve elimination. This apparent stability was
explored in a series of reviews and meta-analyses (Cohen e¢7 a/., 2010; Chiyaka e a/., 2013; Smith ez
al., 2013) which concluded that stability in elimination was likely to be due to a combination of
existing contextual factors such as economic development and vectorial capacity and self-
reinforcing benefits of elimination efforts such as improved surveillance and health systems.
However, there is still a great deal of uncertainty in the mechanism behind elimination stability

(Smith e al., 2013).

1.5.5.5 Challenges in defining and measuring elimination

Finally, quantifying the impact of interventions on malaria transmission is important to inform the
design of optimal intervention strategies, and to evaluate the success of elimination programmes.
This has been approached using a wide variety of methods, including mapping (Gething e# 4/,
2014; Bhatt e al, 2015) and mechanistic modelling (Griffin ef afl, 2010; Walker ef al., 2016).
However traditional metrics for malaria burden and transmission are not appropriate for near

elimination settings. Great strides have been made in mapping many aspects of malaria
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epidemiology, however these techniques require large numbers of cases to estimate values of
interest such as prevalence with a reasonable amount of uncertainty or at an appropriately fine
spatial scale. As a result, they cannot be easily applied to elimination settings whete case counts are
low. The majority of current metrics of transmission for malaria also are difficult to apply to very
low-transmission settings (Sturrock ez a4/, 2016). Whilst the EIR is a mainstay in measuring
transmission intensity, it is not suited to elimination contexts. The EIR is generally measured
through human landing catches and captures a single point in time. Small numbers of infective
mosquitoes and focality of transmission in low-transmission settings make accurate EIR values

very difficult to obtain.

Increasingly serosurveys have been used to estimate malaria transmission and exposure to the
parasite (Corran ez al., 2007; Pothin ef al., 2016; Biggs ¢ al., 2017; Greenhouse ¢z al., 2018). Although
established methods have difficulty in identifying between very recent as opposed to less recent
exposure in low transmission settings (Sturrock ez al., 2016, ) or less abrupt changes in transmission
with smaller sample sizes (Sepulveda, Paulino and Drakeley, 2015), there are is increasing promise
for multi-antibody assays which could provide increasingly detailed pictures of malaria exposure
(Helb e# al., 2015; Greenhouse ¢ al., 2018). Nonetheless, selecting the most informative antibody
responses to measure is dependent on context and in many contexts requires further research and
development to identify informative antibody responses. Furthermore, these and current
serological approaches are limited to locations where cross-sectional surveys have been carried
out. Clinical incidence data, when of high quality offers potential for use in such settings, however
fewer established methods exist within malaria research to make the most of routine incidence
data and account for its potential biases, or for how best to combine with additional information,
such as genetic, spatial or serological data. There is a need to develop modelling methods which

make use of surveillance data, which is improving in quality in many low transmission contexts.
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Challenges in defining elimination operationally also exist. Elimination defined is the interruption
of local transmission of malaria within a geographic location, such as a country. The WHO certifies
a country as eliminated when there are zero locally acquired cases for three years or more (Cohen
et al., 2010; Alonso, 2016). However, this criteria is very difficult for countries to fulfil when
bordered by higher burden countries with importation occurring, as importation can lead to some
locally acquired cases, even with effective control and surveillance measures (Churcher ez a/., 2014).
In addition, assessing the effectiveness of intervention in low transmission settings can be
complicated by the effects of imported cases and P. vivax relapses. Relapses and importation can
lead to outbreaks of local transmission although the initial source of infection may originate from
a much earlier time point or distant point in space. This can reduce the apparent effectiveness of

interventions (Churcher ez al., 2014).

One way models have addressed this is to develop methods (Churcher e¢f al., 2014; Reiner ¢# al.,
2015) which quantify R, values and how they vary over space and time, as well as modelling
human movement (Ruktanonchai ¢z a/, 2016). These approaches respectively model underlying
malaria transmission potential (“receptivity”’) and importation risk (“vulnerability”), which
together create an indication of overall malaria transmission risk (“malariogenic potential”).

However, these methods are still in their infancy in application to malaria elimination.

Over the past 15 years, a wide range of methods have been developed (Ypma ez a/; Ferguson,
Donnelly and Anderson, 2001; Wallinga and Teunis, 2004; Cottam ¢# a/., 2008; Chis Ster, Singh
and Ferguson, 2009; Morelli ¢z a/., 2012) in the context of epidemic disease to measure transmission
by estimating individual case and time varying reproduction numbers, using surveillance data
which may contain epidemiological, demographic, spatial and genetic distance. They are informed
by mechanistic models and empirical data describing key aspects of the transmission cycle of the
disease in question, for example the distribution of serial intervals, which is the time between a

case showing symptoms and the case they infect showing symptoms (Fine, 2003) . Such methods
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making use of routine surveillance data have been rarely applied to vector borne diseases such as
malaria, with notable exceptions (Reiner ef a/., 2015; Salje ¢ al., 2016) but will become increasingly
relevant as countries reduce malaria burden and increase the strength of their surveillance systems.

These approaches can inform elimination policy and inform appropriate elimination strategies.

1.6 Key measures of transmission for outbreaks: applicable to malaria
elimination contexts?

In outbreak situations and studies of diseases which take on epidemic dynamics, a wide range of
techniques have been developed to determine key epidemiological parameters from surveillance
data. There are interesting parallels between malaria in elimination settings and outbreak scenarios

which could mean similar approaches will be useful and applicable.

Malaria often takes on epidemic dynamics nearing elimination. Furthermore, the individual line
list data produced by control programmes and ministries of health is often similar in structure to
outbreak contexts. As in emerging outbreaks, there are often smaller numbers of cases but more
detailed information available about each individual case (often in the form of a line list).
Furthermore, in both contexts importation can have important effects on disease dynamics. In
addition, in both contexts the epidemic is partially but not fully observed and there can be changes

in immunity over time and wave-like incidence patterns are seen.

Two key measures of transmission will be explored here: the generation time distribution and
reproduction numbers. One key parameter is the generation time distribution of a disease. The
generation time of an infection is defined as the average time between an individual becoming
infected and passing the infection on to a new individual (Fine, 2003). The distribution of
generation times for an infection in a population can provide useful information about its spread
and have a wide range of applications to epidemiology, control and elimination strategies.
Generation time distributions have been used to infer likely chains of transmission (Wallinga and
Teunis, 2004; Cauchemez ez al., 2016), explore changes in transmissibility over time (Fraser, 2007;
Coti et al., 2013), explore the impact of interventions (Ster, Singh and Ferguson, 2009; Walker e#
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al., 2012) or social/environmental factors (Salje e al., 2016), and understand drivers of remaining

locally-acquired transmission (Perkins e a/., 2015; Reiner ez al., 2015).

Often the time of infection is not known, but rather the date symptoms begin, or date care was
sought. As a result, the serial interval (SI), or the time between a primary and secondary case
presenting with clinical symptoms, is often used in epidemiological analysis in place of generation
time distributions. For directly transmitted diseases, SI distributions can be estimated through
contact tracing or household studies (Cauchemez and Donnelly, 2009). However, the generation
time and serial interval distribution for indirectly transmitted diseases such as malaria can be
difficult to estimate because they involve several events which are pootly observed or
characterized, such as the time between becoming infectious and being bitten by a mosquito. The
first attempts to characterize the generation time of malaria were by Macdonald in 1956, who
suggested that a SI of 36 days was a minimum (MacDonald, 1956). There have been several studies
since which characterize the setial interval and/or generation time of malaria. Chutrcher and
colleagues (2014) suggest that the expected serial interval for malaria is has a mean of 33 days with
treatment and 102 days without. Huber and colleagues (2016) used a combination of empirical
data and mathematical models to estimate distributions of all the key processes contributing to the
serial interval of malaria the liver emergence period (LEP), the human-to-mosquito transmission
period (HMTP), the extrinsic incubation period (EIP), the mosquito-to-human transmission
period (MHTP), and the infection-to-detection period (IDP). This work found that there was a
great deal of variability in untreated or asymptomatic malaria, due to a long tail in distribution of
human to mosquito transmission period. Their work estimated a mean of 48 days with treatment
and 102 without, with the discordance between their estimates and previous estimates being the

result of different assumptions surrounding the delay between symptom onset

and seeking treatment.
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Reproductive numbers and how they vary through time and space are also key measures which
epidemiologists attempt to establish. In a malaria elimination context, the reproductive number is
a key measure for understanding whether malaria is likely to persist and for how long (Churcher ez
al., 2014). As discussed in Section 1.5.1, the assumptions inherent in the basic reproductive
number, Ro are rarely present in real disease transmission, and as a result the effective reproductive
number, R can be used to measure transmission when the population is not fully susceptible, either

as a result of control and/or immunity from prior exposure.

1.7 Estimating key transmission characteristics from epidemiological
surveillance data

1.7.1 Why estimate transmission routes and reproductive numbers?
Infectious diseases can be described statistically as point processes where events (such as the onset
of disease symptoms) are fully or partially observed but the processes generating them are not. In
recent years several statistically rigorous methods have been developed to infer chains of
transmission from epidemiological surveillance data. Understanding the transmission network of
an outbreak as well as key parameters such as R is highly relevant to the dynamics of malaria in
low transmission settings. In these contexts, disease dynamics resemble epidemics or outbreaks,
due to low immunity within the population and importation events where parasites are introduced
into areas where suitable vectors are present. Inferring the most likely routes of transmission
between individuals or groups can provide a range of useful insights, such as covariates associated
with infectors and/or infectees, transmission kernels and modes of transmission (Morelli ez a/,
2012). Transmission chain reconstruction has proved valuable in informing control and
intervention policy, with the first application of this approach following the 2001 Foot and Mouth

epidemic in the UK (Ferguson, Donnelly and Anderson, 2001; Keeling ez 4/, 2003) .

Since this period, transmission chain reconstruction and estimation of reproduction numbers have
been found to be useful in real-time and retrospective studies of outbreaks and epidemics, such as

the 2003 SARs outbreak (Wallinga and Teunis, 2004) and global Influenza pandemics (Ghani ez

40



al., 2009). A key example of the utility of such approaches is during the response to the 2014 Ebola
epidemic. Responding in real-time to line-list data, analyses using approaches to quantify
reproduction numbers using a mixture of contact tracing and inference methods ( Faye ¢# 4/, 2015)

revealed key epidemiological information to inform targeted containment and control strategies.

1.7.2 Use of networks in epidemiological modelling
There has been a large body of work within epidemiology and infectious disease modelling
exploring the structure of populations and modelling this structure through networks of social
contacts or interactions (Welch, Bansal and Hunter, 2011). Individuals in the population are
represented as nodes and their potential contacts for disease transmission are represented as edges.
The focus of this work is generally on directly transmitted disease, especially sexually transmitted
infections (Keeling and Fames, 2005), however a wide variety of diseases have been explored,
including indirectly transmitted diseases (Reiner ez o/, 2015; Salje ¢ al., 2016). Whilst much of this
work has been in exploring the effect of network structure on disease dynamics and the impact of
control measures (Cauchemez ¢f al., 2006; Walker ez al., 2012), there has also been a great deal of
work carried out in developing rigorous statistical methods for inferring contact structure or
transmission trees. Many methods used in epidemiology to infer transmission chains build upon
an approach popularized by Wallinga and Teunis in 2004 (Wallinga and Teunis, 2004), which
allows the inference of most likely transmission routes using incidence time series data and a serial
interval/generation time distribution. Consider an individual I, infected (or shows symptoms) at
time t;. The probability of infection from an individual/member of cohort j which was infected

at time t; is determined by a function w, which can be the generation time or serial interval

distribution, normalised by the likelihood of any other candidates infecting i .

P = W(titj)/zw(titk)
"
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The case reproductive number is the sum of all likely transmissions resulting from a case or cohort
of interest infected/showing symptoms at time j. In other words, it describes how many

individuals on average an individual infected at time j will go on to infect.

RC :ZPU
i

1.7.3 Extensions and developments
The Wallinga and Teunis method provided a useful tool to quickly derive important measures
from epidemiological surveillance data and, with suitable prior information, estimate most likely
transmission routes. Developed to assist in the analysis of the 2003 SARs outbreak in Singapore,
this and similar approaches allowed for rapid real time quantification of key epidemiological

parameters from limited surveillance data (Wallinga and Teunis, 2004).

However, there are several limitations which have been explored through a variety of approaches
and extensions, summarized in Table 1.3. Often there can be uncertainty in both the date of
symptom onset or infection and also in the proportion of unobserved cases. Unreported cases
may shape inference of transmission by linking cases which occurred further away from each other
in time, leading to slower apparent rates of transmission between cohorts or individuals. Previous
work (Ferguson, Donnelly and Anderson, 2001; Walker ¢ a/, 2010, 2012) has considered
uncertainty in dates of symptom onset by treating symptom dates as nuisance parameters within a
Bayesian framework. Data augmentation methods have also been used to explore the impact of
unreported cases(Ferguson, Donnelly and Anderson, 2001; Salje ez a/, 2016). In many contexts,
timing of infection alone is not suitable to accurately reconstruct chains of transmission. There
may be many candidates with similar likelihoods of transmission if many cases occur in a short
space of time or if the SI distribution is wide. As a result a wide variety of extensions have been
introduced which incorporate genetic data (Ypma e al.; Cottam e# al., 2008; Morelli e al., 2012),

spatial data via estimation of a spatial kernel (Morelli ¢ al, 2012; Walker ez al., 2012; Salje ¢f al.,

42



2016) and demographic data such as age and sex (Salje ¢z 4/, 2016). These extensions have provided
key insights into transmission dynamics and the impact of control measures for a wide range of
diseases. However, there are often strong assumptions on the generation time interval and little
formal inclusion of error or variation generated by the wide variety of factors which may affect
likelihood of transmission between transmission pairs. This is particularly true for diseases with

long and variable generation times, such as untreated malaria.

1.7.4 Approaches from other fields of study
Within applied statistics and machine learning research there has been a rich body of work using
information on timing of node “activation” to reconstruct networks. These networks often
represent flows of information between individuals, for example through online social networks.
The generic problem of knowing (or being able to infer) times of contagion infecting nodes, but
not observing the process of transmission, is highly applicable to infectious disease outbreaks. A
class of models known as independent cascade models, introduced by Kempe in 2003 (Kempe,
Kleinberg and Tardos, 2003) were first proposed to solve a problem known as influence
maximization - to identify the most influential “nodes” in a network through which information
is propagated (for example the posting of viral videos by individuals in a social network). The

independent cascade model can be thought of as a generalized Susceptible - Infected (SI) model.

The basic assumptions of the independent cascade model (Kempe, Kleinberg and Tardos, 2003)

are:

1) Infections are binary; an individual is infected or is not. Intensity of infection is not
modelled.

2) Infections along edges occur independently of each other.

3) Infection propagates through network via diffusion. There are no external sources of
infection.

4) Cascades of infection propagate independently of each other.

5) A node is infected only by the action of one parent node. Cascades map onto transmission

trees
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Following these basic assumptions, algorithms to estimate network diffusion rates and structure
have been developed, such as Netlnf and NerRate (Rodriguez, Balduzzi and Schélkopf, 2011;
Gomez Rodriguez et al., 2014) and feature-enhanced methods (Wang, Ermon and Hopcroft, 2012).
Netlnf infers networks through observations of the timing of “cascades” of infection events. The
algorithm assumes equal weights or « values on edges between nodes in an unobserved network.
This assumes that all connected nodes in the network infect their neighbours with the same
probability. Following from Kempe (Kempe, Kleinberg and Tardos, 2003) the submodularity
properties of the independent cascade model were exploited in this algorithm, meaning the
likelihood of a given cascade (or transmission network) can be defined as the sum of all the
pairwise likelihoods of transmission between each node in that cascade. An extension to this
method, NesRate (Rodriguez, Balduzzi and Schélkopf, 2011), removes the assumption of constant
hazards of infection, allowing estimation of varying relationships between infection hazard and
time. This better captures the complex factors beyond time (e.g. age, sex, location, immunity,
rainfall) which may affect probability of transmission occurring between nodes. NerRate
additionally casts the network diffusion as a survival likelihood parameterised by hazard functions.
These together form a function describing how the likelihood of transmission varies over time.
The parametric form of the hazard, survival and likelihood depends upon hypothesised

mechanisms of transmission, and

There have been a variety of real-world applications which diffusion network approaches have
been used for, mainly surrounding analysis of the spread of information and influence along online
social and media networks. For example, this approach was used to reconstruct the spread of
particular memes and hashtags to better understand the way in which information travels between
blogging sites and mainstream media outlets, and comparing how this varies for population-wide
events such as civil uprise in Syria during the Arab Spring, compared to unexpected news events
which may generate large amounts of attention for a shorter period of time, such as the death of

singer Amy Winehouse (Gomez Rodriguez ez al., 2014).
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1.7.5 Comparison of approaches
Whilst there are many commonalities in the approaches introduced here, there are several key
differences in approaches and features of each algorithm, summarised Table 1.3. A key feature of
the information diffusion/independent cascade approaches is that they were designed to be
generic and flexible to different problems and contexts, whereas within infectious disease
epidemiology generally the approaches were designed to be specific to a particular disease and
dataset. The advantage of a specific approach is that it is easier to tailor to the biology and particular
features of interest for a particular disease or dataset, however the broader applicability and
accuracy of approach in different contexts is then harder to determine. It also may be not obvious

how to include new, additional sources of information.

The way that the likelihood is constructed, and therefore how inference is performed also varies
between approaches. Some inference frameworks jointly infer multiple parameters within single
inference framework and likelihood, whereas others have been multi-staged and more heuristic
(Table 1.3). Previous approaches have either allowed all possible connections in a particular
network structure (Wallinga and Teunis, 2004), sampled from the likelihood (Ferguson, Donnelly
and Anderson, 2001) or explored a limited number of pathways (Salje, Cummings and Lessler,
2016). Instead, the information diffusion approaches introduced in this chapter either find the
most likely underlying transmission network given the timing of symptom onset for a set of k
transmission events linking cases using a greedy algorithm, (Rodriguez and Schélkopf, 2012), or
in the case of NefRate the transmission tree and all possible linkages between cases are considered,
but, as will be described further in Chapter 2, the introduction of a survival term penalises unlikely
connections, meaning sparsity is encouraged and the transmission tree log likelihood can be
estimated as the sum of all hazards and survivals for each case, meaning that even for large

numbers of cases the likely connectivity between cases can be feasibly estimated.
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Some approaches were developed within a Bayesian framework whilst others were implemented
within a frequentist framework (Table 1.3). Working within a Bayesian framework is helpful when
there is prior information or a range of possible parameter values, to incorporate both prior
knowledge and uncertainty. However, frequentist approaches are sometimes simpler and easier

to implement quickly in outbreak scenarios.

One major difference in structure is that independent cascade models were designed for
observations of “multiple cascades” of transmission, where the same node or individual in the
network potentially being observed multiple times, e.g. spread of two different hashtags, two
periods of time. This is generally not the case for infectious disease. Although multiple and
repeated malaria infection is common in high transmission settings, in settings where this type of
approach is useful and appropriate it is very unlikely, we will see repeated infections in individual
level datasets over reasonable observation windows. Although Nezlnf in particular, this could
reduce the ability to accurately reconstruct disease transmission networks, compared to previous
applications to problems with multiple cascades available. Therefore, testing on simulated data is

recommended to determine the impact of this.

The methods used here were chosen because of their flexibility, potential for incorporating
multiple data types within a single inference framework, convex likelihoods, encouragement of
sparsity, estimation of full transmission tree, scalability and how well cited and applied such

approaches have been within machine learning communit
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1.8 Problem Statement

Malaria elimination at the national level, where local transmission of malaria is no longer sustained
(Cohen et al., 2010), is increasingly a goal in global malaria policy. However, as countries approach
elimination, changes in malaria epidemiology can pose challenges to reaching zero cases (Cotter e#
al., 2013). Understanding these changes is important in designing optimal elimination strategies.
Challenges also arise in measuring the success of elimination (Cotter e a/, 2013; Churcher ez af.,
2014), both in understanding the stability of elimination (Chiyaka ez a/., 2013; Smith et al., 2013)
and assessing the impact of control measures in low transmission settings, especially in the
presence of importation. This information is important when deciding if, when and how to scale
back interventions and change surveillance methods (Chiyaka, e a/, 2013). This can also inform
policy surrounding certification of elimination, which can have significant impacts on countries.
For regions which have set ambitious targets for elimination, understanding changes in
epidemiology over space and time approaching elimination are highly pressing for designing
effective strategies to reach and maintain zero cases. In hyper and meso-endemic settings current
methods developed to measure changes in transmission have been effective. However, in low-
transmission settings new tools are required. Methods traditionally applied to outbreak data are
one such promising tool. In low transmission and elimination settings, malaria cases are infrequent,
immunity is lower, known cases tend to be treated and surveillance is often stronger. When linked
with covariates of interest and spatial information, reconstructed transmission chains and R,
values can be mapped (Reiner e al, 2015). They provide information about changes in
transmissibility over time (Cori e al, 2013), reveal heterogeneities in transmission between
individuals and/or cohorts (Cauchemez e a4/, 2011), and can be linked to both
environmental/demographic factors and interventions to explore their role (Salje ez al., 2016).

1.9 Aims and approach

My thesis aims to introduce a new approach to quantifying malaria transmission in near elimination

settings by extending, adapting and applying statistically rigorous methods from independent
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cascade family of models to estimate individual level reproduction numbers. I then analyse these
estimates, time series analysis and geostatistical approaches to quantify how they vary over space
and time and uncertainty in these estimates. I aim to use these methods to retrospectively explore
the dynamics of malaria transmission in several elimination settings, and in doing so provide useful
evidence to support decision making around elimination certification and policy.

Chapter 2 describes the methodological approach used in chapters 3-5 and rationale for its
development and use. describing the novel extensions and applications made to independent
cascade models to apply them in the context of this thesis, namely carrying out work within a
Bayesian framework, considering missing cases, and incorporating spatial information. This
chapter also includes the results of testing methods on simulated data. Chapter 3 illustrates an
application of one such extension to a previously unanalysed dataset from El Salvador, and further
timeseries analysis and geospatial analysis is used to explore how malaria transmission has varied
over space and time as the country approaches elimination and explore the impact of imported
cases on malaria transmission. Chapter 4 illustrates a further application of a different extension,
allowing joint Bayesian inference of the connectivity between all cases, scalable to large datasets
and illustrates the application of this method to an individual-level dataset from Yunnan province
China which has previously only been analysed descriptively. As in Chapter 3, geostatistical and
additive regression models are used to further analyse the estimated spatiotemporal changes in
transmission. Chapter 5 illustrates the version of the model adapted to include spatial information,
applied to four line-list datasets from diverse economical, demographical and ecological contexts
in elimination settings. In Chapter 6 I summarise and discuss the results and approach as a whole,

considering key findings, limitations and future directions.
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2

Methodology

2.1 Introduction

As introduced in Chapter 1, this thesis aims to develop and apply methods to measure malaria
transmission and its spatiotemporal variation in very low transmissionand elimination settings,
where high quality individual-level surveillance data are available but case numbers are relatively
low and metrics such as parasite prevalence are no longer informative. Here I introduce and derive
the core algorithms and approaches used in Chapters 3-5 to estimate reproduction numbers. I then
present the results of testing the methods used in Chapter 4 on simulated data to explore its ability
to accurately estimate reproduction number distributions in different contexts with different

amounts of missing data.

All methods used were adapted from a family of algorithms, introduced in Chapter 1, which model
the diffusion of a contagion along latent networks, where the time and or location of some signal
(such as symptom onset, or posting a tweet) are known, but the transmission process itself and
the undetlying network is unobserved. I chose to adapt, extend and apply these algorithms to
malaria case data for several reasons. Firstly, a network diffusion approach addresses the generic
problem of observing timings of transmission or diffusion events across networks, where the
transmission process itself is unobserved, and has been extensively tested on both simulated and
real datasets (Rodriguez, Balduzzi and Schélkopf, 2011; Rodriguez and Schélkopf, 2012; Wang,
Ermon and Hopcroft, 2012; Gomez Rodriguez e# al., 2014). Furthermore, this approach shares
similarities with other network-based approaches which are increasingly used to understand
infectious disease dynamics (Wallinga and Teunis, 2004; Coti ¢f al., 2013), but rarely applied to
malaria and other vector borne diseases (with the exception of Reiner ¢# a/., 2015). In addition, due

to information diffusion algorithms being designed with a general focus, they are more flexible
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and adaptable than many approaches, allowing the incorporation of further data sources and
functional forms within a single estimation framework, as will be further explored and discussed
in Chapter 5 and the Discussion (Chapter 6). They also have provably convex solutions, meaning
there is a single global optimal solution which can be estimated from gradient descent optimisation
of the log-likelihood. They also encourage sparsity, meaning many parameters shrink to zero and
overfitting is penalised, which is advantageous for this type of inference when multiple parameters
are estimated from small to moderate numbers of cases. These algorithms have been widely cited,
used and tested on a variety of real and simulated datasets (Rodriguez, Balduzzi and Schélkopf,
2011; Rodriguez and Schélkopf, 2012; Wang, Ermon and Hopcroft, 2012; Gomez Rodriguez ez
al., 2014) and provide a flexible approach to leverage diverse datatypes within a single inferential

framework.

Due to the aims of this thesis, namely, to quantify spatiotemporal variation in malaria transmission
in near elimination and elimination settings, I do no aim to specifically infer who infected whom.
Instead, this thesis aims to produce temporally and spatially sensitive estimates of transmission as
measured by reproductive numbers, as well as quantify uncertainty in these estimates. However,
these frameworks do estimate transmission likelihoods and therefore transmission pathways can
be constructed. Therefore, there is potential to utilise these methods, especially if supplemented
with contact tracing data and/or genetic data to explore reconstructed networks and their
properties. In order to facilitate understanding of the approach and the process, the technical
derivation of the core algorithms as well as their extensions and the rationale behind their choice
are included here. For ease of reading, a simplified description of the relevant methods are also

included in the methods sections of Chapters 3-5.

Before deriving and describing each approach separately, it is useful to consider what all methods
share. All methods require a line list of individual cases and symptom onset times as a minimum,

however can incorporate additional information, such as imported/local classification based on
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epidemiological investigation or travel history and location of residence or health facility. In this
thesis I do not incorporate information such as genetic distance due to a lack of data available in
the contexts of focus, however in theory, any appropriate distance matrix could be incorporated

within the framework presented here.

All approaches take a prior on hyperparameters defining a serial interval distribution and then
estimate the connectivity between cases, or the likelihood that each case infected the others. In all
methods this inference is on the whole transmission tree, rather than solely considering pairwise
transmission. All methods have been shown to provide convex and sparse solutions, allow for
missing infectors, and use estimates of connectivity to estimate individual reproduction numbers

for each case.

There are several assumptions inherent to all approaches in this thesis. The implications of these
assumptions are discussed in detail in relation to each dataset and context in Chapters 3, 4 and 5.
Briefly, all approaches do not explicitly model reinfection/relapse, although do allow for
unobserved sources of infection, which could be due to either of these processes. They assume
that classification of cases as imported or locally acquired by elimination programmes is correct,
and that therefore cases classified as imported can infect other cases but not be infected by other
cases themselves. All assume that infection and symptom onset is in chronological order — i.e.
cases will always show symptoms after their infectors, and therefore cases can only be infected by

those which showed symptoms earlier than they did.

2.2 Algorithm 1: Submodular inference from multiple trees (Implemented in
Chapter 3)

To infer the most likely pathways of transmission linking observed cases, I extended and adapted
Multitree Rodriguez and Scholkopf, 2012), a method based upon the independent cascade model
introduced in Chapter 1 (Kempe, Kleinberg and Tardos, 2003). This algorithm exploits the

submodular properties of the objective function, which in this case is the negative log-likelihood
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function we aim to optimise. This submodularity, or the ability to calculate the negative log
likelihood by calculating the pairwise likelihoods, means one can use pairwise likelihoods of
transmission events occurring based on time of symptom onset and serial interval distributions
and a greedy algorithm to iteratively build the most likely tree connecting observed cases for a
given serial interval distribution and assumption about likelihood of infection by external source.
This approach was specifically designed for small numbers of data points (Rodriguez and
Schélkopf, 2012). In order to allow the inference of probabilities of transmission rates and estimate
uncertainty in the estimates of the network connectivity, priors for the hyperparameters shaping
the serial interval distribution were defined. By drawing many times from a prior distribution of
hyperparameters governing a serial interval distribution and varying the value of epsilon, the
parameter determining the likelihood of an unobserved source of infection infecting a case, it is
possible to generate estimates of uncertainty in estimates transmission links and the corresponding

reproduction number estimates calculated from them.

There are some important limitations to this approach. Firstly, the choice of cut-off point in
marginal gain in likelihood for invoking additional edges in the network is somewhat heuristic. I
address this in Chapter 3 by carrying out a sensitivity analysis and inspecting where the marginal
gains in likelihood begin to asymptote. Secondly, for each network, the edges are defined as 1 or
0, there is no measure of the importance or likelihood of each edge for a single network. However,
the marginal gain in likelithood that each edge provides can be used as a measure of importance
for each edge of the network. Furthermore, by adapting the model to have a pseudo-Bayesian
approach with priors which are drawn from many times, we can also average the network and

subsequent reproduction number estimates to obtain estimates of uncertainty.

2.2.1 Data and parameter inputs
This method assumes a dataset consisting of a time series of symptom (fever) onset of malaria

cases t € {tq, ..., t,}, time ordered such that t; < ty, ..., < t,,. While the times of symptom onset
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are known, what is not known is who infected whom. The goal of the model is to infer the most
probable network structure, G, connecting these n cases. We infer G solely from the symptom
onset times ¢, a serial interval distribution, and hyperprior probability distributions for the serial

interval distribution parameters.
2.2.2 Serial interval distribution

The serial interval is the time between a given case, J, showing symptoms and the appearance of
symptoms in a case I infected by the earlier case, such that t; < t; (Fine, 2003). The serial interval
distribution specifies a normalised pairwise transmission likelihood, or the likelihood of case /
infecting case 7, given the time between symptom onsets, t; — t;. The model allows flexibility to
define a range of prior distributions for possible serial interval distributions to allow for possible
variation in transmission dynamics. For example, even in contexts where malaria transmission is
extremely low and surveillance is high quality there remains a possibility of a small number of
asymptomatic or undetected and therefore untreated infections contributing to ongoing
transmission, which will take on a longer serial interval. Defining a prior for the shape parameter
of a serial interval distribution accounts for some of this uncertainty. The specific parameter

specifications used for serial intervals in particular contexts are described separately in Chapters 3-

5.

In all the applications explored in this thesis, a shifted Rayleigh distribution is used for the serial
interval distribution, which is a special case of a Weibull distribution. Used widely in modelling
propagation events and the serial intervals of other infectious diseases (Brookmeyer, Gail and Gail,
1994; Virlogeux ez al., 2015), when shifted to include an incubation period it is very similar in

density to modelled malaria serial intervals (Huber ez 4/, 2016).
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2.2.3 Algorithm derivation

Due to no evidence of P. vivax relapse in the transmission contexts explored in this thesis, I assume
that a case can only be infected once by a case which has shown symptoms earlier in time. For a
possible transmission tree J° connecting cases with a set of transmission events or edges linking
cases, E7, the likelihood of observing symptom onset times conditional on a given T is: f (t|T) «
[wwves, f(tulty; @, ¥). Given this likelihood on a single transmission pathway T, the underlying
graph is found by considering all possible transmission pathways supported by a given network G:

fIG) x Yrer fEIT)P(T|G) where T(G) is the set of all the possible transmission pathways

for G. By imposing a flat prior on P(T'|G) and as a consequence of the assumptions of a single

parent node with an eatlier symptom onset date the likelihood simplifies to

f(tlG) « ZTET(Q) H(u,v)eET f(tylty; a,y) ©

My derivation until this point is the same as that introduced by Wallinga and Teunis (Wallinga
and Teunis, 2004) and extended to a wide variety of contexts by others (Morelli ef a/., 2012).
However, methods based on Wallinga and Teunis make the strong simplifying assumption that
the likelihoods of all spanning trees on J" and therefore G are constant. Thus, they fundamentally
do not infer the most probable underlying network structure or jointly consider all infection times
at once. In contrast, by following the approach introduced by Gomez-Rodriguez and Shélkopf

(Rodriguez and Scholkopf, 2012), one can solve the optimisation problem G = llg;llzi)lg f(t|G) fora

set of at most k edges, or transmission events linking cases. The two fundamental challenges with
solving this optimisation problem are (a) the sum Yrer(g)(+) is evaluated over all directed spanning

trees in G, which can be super-exponential in n, and (b) llg;llal)g f(t|G) is a special case of the
<

maximum coverage problem which has been proven to be NP-hard (Khuller, Moss and Naor,
1999) and therefore unsolvable without searching all possible transmission trees with brute force.
Following previous approaches (Gomez-Rodriguez, Leskovec and Krause, 2010; Rodriguez and
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Schélkopf, 2012), challenge (a) can be solved by observing that the resulting matrix f (¢, |t,; @, )
for all (u, v) € &y pairs is an upper triangular connectivity matrix. From Tutte (2003) and Gomez
and Sholkopf (2012) the connectivity matrix can be expressed as a determinant, which for an upper
triangular matrix is the product of the diagonal elements. Therefore, the likelithood in equation (1)

becomes tractable and can be evaluated in quadratic time as:
(1) < [1¢ee thet,tj<tif(ti|tj; a,y) ()

Equation (2) can be evaluated on a log scale

F(t]g) < X et log (thetc:tjstf(tiltj; a, V)) ©)

For challenge (b) it can be proved (Rodriguez and Schélkopf, 2012) that, while finding an optimum

to solve II;?I%%F (t|G) is NP-hard, the structure of F(t|G) is submodular. Submodularity in the

structure of F(t|G) yields a natural property of diminishing returns. That is, the incremental value
that a single edge makes when added to G decreases as the size of the graph increases. Optimising
submodular functions is possible using the greedy algorithm with provable and near-optimal
performance guarantees (Nemhauser, Wolsey and Fisher, 1978). To implement the greedy
algorithm, we start with an empty graph, K, and then add edges sequentially such that the mwarginal
gain from each iteration is maximised. Formally, this means one starts with G = X a and then
each iteration (m) evaluates the edge e, € {i,j} Vj < i that yields the best marginal gain, e, =

Eg\)gx F(Gnm-1Y{e}) — F(Gy—1), and add this edge to the graph G = G U {e,,} . Edges
e m-—1

continue to be added and stop when G = {ey, ..., e} edges is reached. Due to submodularity, the
solution quality on increases with each additional edge, however, the marginal gain quickly
asymptotes, thus ensuring sparse solutions. The number of edges, £, can be determined by setting

a cut-off point for when the marginal gain in likelihood of adding edges falls below a certain value.
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Two modifications were made to the above optimisation algorithm. Firstly, to incorporate edges
known to be importations, I constrain child/infectee, i, edges in e € {i,j}Vj < i to be only non-
imported infections. This ensures that local infections cannot infect imported infections but
imported infections can infect any node. Secondly, to account for variation in the serial interval
distribution, I run the above greedy scheme for prior samples of @, y, as discussed above. This
approach naturally lends itself to Bayesian formulations. As it currently is applied in this thesis,

this formulation uses a proportional likelihood optimised by exploiting submodularity.

2.2.4 Accounting for missing cases

Assuming all cases reaching community health workers or health facilities are recorded, missing
cases may be generated by two processes. Symptomatic cases may be missed by not secking care
ot being found through active case detection. On the other hand, cases may be asymptomatic and
therefore unlikely to seek care or be detected. They may have densities of parasites in their blood
which are too low to be detectable by microscopy if active case detection occurs. These reasons
for missed detection apply to both imported cases and locally acquired cases. We assume the pool
of asymptomatic cases in the country is low and has a small contribution to ongoing transmission.
To explore the amount of cases which may be going undetected within the independent cascade
framework, we consider additional edges 7, that represent unobserved individuals who can infect
any observed individual, I, in a transmission chain. Every observed individual i can get infected by
unobserved individuals, 7, with an arbitrarily small probability e. This so called €-edge is
connected to every node in the network and do not, by design, participate in the diffusion
propagation. The €-edges prevents breaks in the network diffusion cascade where the likelihood
of transmission between observed cases is sufficiently low, the case is linked to an external source.
Additionally, €-edges ensure the likelihood is monotonic, that is, converting an €-edge to a network
edge in G only increases the likelihood. The addition of €-edges was achieved by augmenting the
1
pairwise transmission likelihood as follows: f(tl-|tj; a, y) = e‘la(ti -t — y)e_E“(ti_tf_y)
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The specific value of e should be set to balance between false positives and false negatives when
linking cases by infection events. The higher the value of ¢, the larger the number of nodes that

are assumed to be infected by an external source.

2.2.5 Estimating R,
In solving G = llgli)lg F(t|G) via the greedy algorithm we estimate k edges e, € {i,j}Vj < i by

iteratively maximising the marginal gain in the log transmission likelihood of that edge over all

other edges e, = max F(Gnu_q1VY{e}) —F(Gn_1)- We therefore can calculate a (n —
8 e€G\Gm-1

q) X n matrix, M, for n total infections and q imported infections of k < (n — q) X n marginal
gains edges. The rows of the upper triangular matrix M are therefore the infectees and the
columns the infectors. Because the solution is a positive and monotonically increasing function
and F (t|G) is submodular, these marginal edge gains asymptote, thereby creating sparse solutions

and diminishing gains for each additional edge.

By normalising the rows/infectees of M and creating a normalised matrix R = My;.j/
Yi=ma M V{i=1,..,(n—q)} we get a matrix that represents both which infector edges are
connected to infectees and the normalised marginal gain of that edge. Intuitively then, by taking
the row sums of R we get the (fractional) number of secondary infections and therefore a point
estimate of the time varying reproductive number R (t;) = Z;l:_f Ri.j1- This reflects for an
individual, how many people they are likely to have gone onto infect. When multiple individuals

have been infected at a given time and/or place, we can take the mean individual R, and

uncertainty in this value as an indicator of reproductive numbers for a given time and/or location.

2.3 Algorithm 2: Inference of network transmission rates (implemented in
Chapter 4)

The submodular approach (Algorithm 1) was suited to the dataset and context to which it was

applied in Chapter 3, where there are very few and sparsely distributed cases. However, in some
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contexts it is advantageous to utilise a less heuristic approach within a single, fully Bayesian
optimisation framework. Furthermore, to widen the utility of the approach, a more flexible
framework was required which could be modified to include spatial information or other data
sources such as genetic or demographic information. The @;; term can be decomposed into
constituent variables or multiplied by an additional function, both allowing incorporation of
additional sources of information. There was also a need to devise a method which could be easily
run on a larger dataset without a need for many computational resources in order to increase the
utility of any approach by malaria elimination programmes. As a result, an approach was adopted
which jointly infers separate transmission rates for each edge connecting potential infectors and
infectees. This has been widely tested on simulated and real datasets, and is advantageous in both
having a convex likelihood, meaning global optimal values can be estimated, and in encouraging

sparse solutions by penalising non-zero values of @;; through the survival function.

There are several key extensions and adaptations which I developed, considering applications to
malaria surveillance data in elimination settings . Firstly, epsilon edges, &, were added to allow for
unobserved sources of infection, acting as competing hazards with observed cases. Secondly, the
algorithm was implemented in a Bayesian framework to incorporate uncertainty and prior

knowledge about the serial interval distribution and proportion of unobserved cases.

Additional versions of the algorithm were developed and coded in different coding languages to
increase speed of computation and facilitate the analysis of larger datasets. I will first introduce the

derivation of the general version and then explore the extensions and variations considered.
2.3.1 Data and parameter inputs

Data consist of a set of n infections/nodes I € (I3, ..., I;) with associated times t = {tq, ...t,} €

R* and binary yes/no importation status € = {my,..,m,} € {1,0}
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2.3.2 Serial interval distribution

The serial interval distribution of malaria, defining the probability individual I; infected individual

I; at times t; >t; is defined through a shifted Rayleigh distribution f (ti|tj ; a, ]/) =
1
a(t; —t; — y)e_Ea(t‘_tf ) for shaping parameters @ and ¥ (Routledge et al., 2018).

2.3.3 Algorithm derivation

If we assume that infections are conditionally independent given the parents of infected nodes,

then the likelihood of a given transmission chain can be defined as
fta) = [lee f(Eilty, o ta\t; @) (1)

Where @ is a parameter matrix. Computing the likelihood of a given transmission chain thus
involves computing the conditional likelithood of the infection time of each infection (t;) given all
other infections (£q, ..., t, \;). If we make the assumption that a node gets infected once the first

parent infects it (Kempe, Kleinberg and Tardos, 2003) and define a survival function

t

S(tilt i) =1 - [ _tjf(ti|tj; ;) dt (2)

as the probability that infection I; is zot infected by infection I; by time ¢; then one can simplify

the transmission likelihood as
f(tl a) = Htiet le:tj<ti f(tl |t]' aj,i) Hlk:tk<tirlk¢1j S(tlltk' ak,i) (3)

In this conditional likelihood the first term computes the probability the I; infected [; and the
second term computes the probability that I; was not infected by any ozher previous infections
excluding [;. This likelihood therefore accounts for competing infectors and finds the infector
most likely to have infected I;. To remove the k # j condition makes the product independent of

J and results in the likelihood
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f(tiltyag)
<t
]~ S(ti|tj;aj,i)

fta) = Hq-er HIk:tk<tiS(ti|tk; Ag,i) le:t “

In equation 4, F) / S = H is the hazard function or rate and represents the instantaneous

infection rate between individuals /; and I;.

Similar to the submodular approach used in Chapter 3 (Algorithm 1), to account for unobserved
infectors within this framework I include a time-independent edge that can infect any individual
(Figure 2.1). The survival and hazard functions for this edge are defined as Sy(€;) = e~ and
Hy = €;. As we will see below, as a consequence of the optimisation problem these edges are
encouraged to be sparse and only invoked if no other infectors can continue the transmission

chain.

Figure 2.1: Diagram showing the parameters estimated by Algorithm 2. The likelihood of transmission occurring between each
pair of edges is determined by @j, representing a transmission rate/ hazard and the &; estimated for each case, representing competing
hazards fron: unobserved infectors.
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In addition to unobserved edges, we assume that observed imported infectors can infect other
cases but cannot be infected themselves. The final likelihood incorporating these two

modifications becomes

f(t @, €) = Meer So(e) Mre<e, S(tiltes @) (Holer) + i eyee, H (it @) (5

In order to find the optimal parameters for @, € we minimize the following log likelithood subject

to positive constraints on the parameters:
minimize, — log f (t; @, €) subject to a,e > 0 Vi,j (6)

This optimisation problem is convex and guarantees a consistent maximum likelihood estimate

(Gomez Rodriguez ez al., 2014).

To prevent biologically implausible serial interval distributions, we impose a truncated normal
prior probability distribution on @ ~Normal(0.003,0.1) [0,0.01]. When optimising the likelihood,
I include this prior probability and therefore evaluate the Bayesian Maximum-a-Posteriori

estimate.

2.3.4 Estimating R,

We can establish individual reproduction numbers for each case by creating a matrix where each
column represents a potential infector and the rows represent a potential infectee, describing which
infector edges are connected to infectees and the normalised likelihood of the cases being
connected by a transmission event. Intuitively then, by taking the row sums we get the (fractional)
number of secondary infections and therefore a point estimate of the time varying reproduction
number R (t;) This reflects for an individual, how many people they subsequently infect. When
multiple individuals have been infected at a given time and/or place, we can take the mean
individual R, and uncertainty in this value as an indicator of reproduction numbers for a given

time and/or location.
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In contrast to traditional methods based on Wallinga and Teunis (2004) using the method in this
way encapsulates not only the pairwise likelihood of transmission between two cases, but
conditions this likelihood on the impact of competing edges in the inferred network (the survival
of an edge). The estimates of R, therefore consider the overall transmission tree in optimisation

and allow for missing cases within the tree.

2.3.5 Alternative versions

Throughout the development of this work, several versions of the algorithm were devised and
tested, mainly with the aim of adapting of the methods to suit larger datasets, or contexts with
varying levels of uncertainty/information around key model inputs, where a Bayesian framework

may be useful.

The parameters were estimated both within a frequentist framework by Maximum Likelihood
Estimation (MLE) using a bounded Broyden-Fletcher-Goldfarb—Shanno (BFGS-B) algorithm to
optimise the negative log likelihood and within a Bayesian framework using Hamiltonian Markov-
Chain Monte Carlo methods (Duane ¢f 4/, 1987) in Stan, a C++ based language designed for
efficient Hamiltonian MCMC sampling which was implemented through the rStan package (Stan

Development Team, 2016).

By working within a Bayesian framework, this approach allows the incorporation of prior
knowledge around the serial interval, allowing better quantification of uncertainty, as for many
outbreaks and infectious diseases there is some information about the serial interval from
epidemiological investigation/natural history of the pathogen, but also a certain amount of

variation and uncertainty.

For increased speed and computing efficiency, allowing the analysis of larger datasets, the model
was rewritten and implemented in TensorFlow (Abadi ez 4/, 2015) both as a frequentist and

Bayesian model, where the maximum-a-posteriori estimate was calculated. TensorFlow is an
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opensource library for numerical computation which is coded in the Python programming

language but runs all numerical computation in C++.

2.4 Algorithm 3: Network transmission rate inference incorporating distance
metrics (implemented in Chapter 5)

Following on from Algorithm 2, an approach was required which could incorporate additional
information, such as Euclidian distance and accessibility information within one inference
framework. In order to incorporate features other than time, I extended the method by
introducing a second function, f,, which desctibes the relationship between space (or distance of
any kind) and likelihood of transmission. An appropriate function such as a power law distribution
is decided and the parameters shaping that distribution, are estimated from the data. Together, the

product returns a single function:
f(xotelxg t a1, B) = fu(tiltys @) fr(xil; B)

Determined by times t, spatial locations X, transmission rates @, spatial parameter(s) . The
specific functions used in fi (¢;]¢;; a@; ;) and f2(x;|x;; B)  impact the outcomes of results and

therefore the assumptions inherent in these choices must be made explicit and linked to the
mechanisms of transmission. In this thesis, two functions were used to model the relationship

between space and the likelihood of transmission: Exponential and Gaussian Kernels.
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Table 2.1: Summary of key equations for Algorithm 3. Equations for f1, /2, hazard and survival for time -only, and spatial versions of the
algorithm with Gaussian and Exponential transmission kernels

f1(tilty; aiy) f2(xilxj; B) Hazard Survival
Exponential ;. _ . _ V)e‘%“(ti‘tf‘y) e PET) Ba(t; — t; —y)e P ezttt 1
: 1 - Ly )2 — —
Gaussian a(t—t; — y)e—ia(ti—tj—y) e~ Blxi—x)) Zﬁa’(ti —tj—y)e Bxi—x, e—%a(ti—tj—y) NG

VT 2B

Time only a(ti —t - y)e—%a(ti—tj—y) n/a a(ti —t— y) e—%a(ti—tj—y)

2.4.1 Derivation of hazard, survival and likelihood

The pairwise likelihood of a case showing symptoms at t; and at residence location X; being

infected by a case showing symptoms at time t; and at residence location X;j, becomes

feotilxg tis i B) = a(ti — ¢ - V)e_%a(ti_tj_)/)e_ﬁ(xi_xf) 4

The survival term is then the integral over all a time range and the real line of distances:

oo t;
1
S(xotilx tjs e, B) = ( f f a(t; — t; —y)e 2%t =B gt dx (5)
x]'=0 tj=0

Which simplifies to:
1 0 _ .
S(xp tilx, s 5, B) = e 2 [org €7PETXD dx (6)

-1

S(xi' ti|xj: tj; ai,j' ,B) =e Za(ti_tj_y) % (7)
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Following on from this, as the hazard is equivalent to the likelihood divided by survival, H = ==

it follows that

e2(timtj77 ) g =Plxi=%))

g) = a(ti—tj=v)

H(x;, t]x;, 65 @i, e'“(ti_tj_y)%

)

Which simplifies to

For the Gaussian function, the pairwise likelihood of a case showing symptoms at t; and at
residence location X; being infected by a case showing symptoms at time t; and at residence

location Xj is

flxotilx tai;, B) = a(ti—t; - V)e_%a(ti_t"_y)e_ﬁ("i_"f)z 9

The survival term is again determined by integrating the likelihood over all potential infection times
and all distances:
o ti—tj
. = ‘la(fi‘tj‘y) ~B(xi—x;)* dt d
S(xp ti|xg, tj; 05, B) = ( a(t;—t;—y)e 2 e A" dt dx (10)
x;=0 tj=0
Integrating over time returns:
—la(t-—t-—y) —ﬁ(x-—x-)z
S(xiltilxj; tj;ai,jlﬁ) =e 273t e vt dx (11)
x]-:O

Integrating over all distances gives

a(ti=tj=y) ﬂ
27

1
S(xi' ti|xj: tj; ai,j,ﬂ) =e 2
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Following equation 12, the hazard is equivalent to

1
(ti—tj—v)e 26t =) =B xi=x))?

a
H(Xi,ti|Xj, tj;ai,j,ﬁ) = (13)

e‘%a(ti_tj_y) ﬂ
2J6

Which simplifies to

2/Ba(t; —t; —y)e Fei—xp*
H(xi:tilxj'tj;ai,jlﬁ) = \/_ (L ]\/E ) (14)

2.4.2 Modelling missing cases using € edges

The vast majority of disease surveillance and outbreak response datasets will not be able to capture
all cases due to asymptomatic infection, underteporting and movement of people in/out of the
surveillance area. Therefore, it is important to consider the impact of missing information on
results and identify potential missing sources of infection. In the work described in this chapter,
as in chapter 2, we use Epsilon edges, €; , to identify potential sources of infection. Here, each
hazard is estimated as a further competing edge of transmission from an unobserved source,
Hy(€;) . Depending on assumptions for the likelihood and extent of unobsetved infection soutces,
the epsilon edge value can be set to a high or low value. When high, we assume high amounts of
unobserved infection and unless two cases have a very high likelihood of being linked, we assume
the case was from an unobserved source. When low, we assume little missing data and so cases
are only linked to an outside source if they are very unlikely to be linked to an observed candidate

infector.
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Adding epsilon as a competing hazard and survival returns

ft,xa,€6B) =Tle So(e) i te<e; S(xi ti|x, tj @i, B) (Ho(fi) +
le:tj<tiH(xi'ti|xj'tj; ai,j:ﬁ)) (15)
The objective function is then

minimize, — log f (¢, x; a, €, B) subjectto a, €, > 0 Vi,j (16)

2.5 Evaluation and comparison of methodologies

Simulations were carried out to explore the impact of various assumptions on the ability of the
model to recover correct reproduction number estimates and serial intervals. Two approaches
were used: firstly, simulating epidemics along explicit networks using a network based susceptible-
infected model, and secondly using a stochastic susceptible-infected-recovered (SIR) model with

a given R, distribution to simulate line lists.

2.5.1 Simulation across networks

For the first simulation, data were simulated by generating small-world networks using the zgraph
(Csardi and Nepusz, 2006) package in R version 3.3 (R Core Team, 2016). Small world networks
are hypothesised to reflect many real-life networks, which show both properties of regularity and
randomness (Watts and Strogatz, 1998; Eubank ¢z a/, 2004). The network generated for this
analysis is illustrated in Figure 2.2. Then a susceptible-infected (SI) model was run along the

network, where during each time step infected nodes infect their neighbours with probability .

Under the SI model, at time zero (t = 0), all nodes begin susceptible, bar a given number of seed
nodes. For this simulation, initially one node was seeded with infection. At t = 1 the infected

node can infect each neighbouring node which shares an edge with it (determined by the simulated
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network), with probability B. For this simulation B is constant, provided the infected node is
connected by an edge to a susceptible node. At t = 2 if any new infections occur, the newly
infected nodes then become able to infect their neighbours with probability 3. The chain continues
for a set horizon of time or until all nodes are infected. The incidence time series generated by this

simulation was then input into a frequentist version of the algorithm.

Two factors were measured to explore the accuracy and effectiveness of the algorithm. Firstly, the
mean @;jvalue returned by the model, which is defined as the instantaneous hazard of infection,
which for an exponential parameterisation is not time dependent. The true alpha value was
assumed to be B, the hazard of infecting neighbours. Secondly, the corresponding likelthood
functions calculated from the hazard value, determining likelihood of transmission over time, wete

also compared.
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Figure 2.2 Network used for simulation. Note the edges here represent potential connections and routes along which transmission conld occur.
Node 1, circled in red always seeded transmission.

2.5.2 Stochastic SIR simulation of line lists

To further test assumptions in model, line lists with missing data were simulated using EpiGenK,
an algorithm and R package which simulates transmission events and then samples from this to
represent a final detected line list. This model implements a stochastic Susceptible-Infected-
Recovered model over discrete time steps in the C++ language via the Rgpp package. Recovery is
exponentially distributed, with rate parameter, y. This parameter determines the time to infection
of the next generation and in turn the serial interval distribution. Infectors infect a number of
individuals, drawn from the offspring or reproductive number distribution, which is negative

binomial with dispersion parameter K.
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To reflect an elimination scenario, the distribution of individual reproduction numbers was defined
as a negative binomial distribution with mean 0.5. I considered two values for the overdispersion
parameter, K, as 0.1 (more over dispersed, more variance in R;) and 1 (less over dispersed, less
variance in R;). For both values of K 100 outbreaks of minimum infected size 100 were simulated
over 1000 days, with an exponentially distributed serial interval with a mean of 30 days. Then the
ability of the algorithm to detect the undertlying offspring distribution was measured. Each
outbreak had 100 seed infectors in a fully susceptible population of 50 000, with no further
importation occurring, to ensure the final sample size was large enough to measure R.. As the
simulator draws integers, for better comparison of model estimated results, the distribution of
maximum-a-posteriori estimates for R, estimates were rounded to the nearest integer and
presented alongside the raw estimates. Both the histograms and means of simulated versus

estimated results were compared.

To simulate missing cases, the fully observed dataset was sampled following a proportional
approach where for each case the probability of observation was set at varying values between 1
and 0.3, and then each individual observation was determined by drawing from a binomial

distribution with the given probability.

2.5.3 Simulation Results
Simulated data on a small world network found the inferred mean @; j, or instantaneous hazards

of transmission to be relatively similar to expected values, as shown in Figure 2.3. The
corresponding likelihood of infection also closely resembled the true likelihood (Figure 2.4),
assuming the same parametric form (an exponentially distributed likelihood, determined by mean

aij and tlme)
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True versus estimated instantaneous hazard of transmission, nsim =100
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Figure 2.3 Plot of true transmission rate, 8 plotted against model estimated transmission rate (mean o; j or hazard) for
100 simulations of line Iists with different values of [§
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Estimated and actual likelihood of transmission between pairs
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Figure 2.4 Three randomly drawn estimated and actual transmission rate/hazard values from figure 2.3 showing the
corresponding estimated and actual transmission likelihoods they represent. Colours show likelihoods of transmission over time for
different values of actual & (solid line) and their corresponding estimated values (dotted line).

2.5.3.1 Simulations from a more over dispersed R distribution (K=0.1)

When the probability of observing a case was 1, P(case observed) = 1, simulated line lists,
simulated from a negative binomial R, distribution of mean (i) 0.5, with overdispersion parameter
(K), of 0.1 (R. ~ Negative Binomial( u = 0.5,K = 0.1)) had a true mean R, of 0.56. When
the prior for the &€ edge was defined as having a Truncated Normal prior with mean = 0.001 and
standard deviation = 1, (prior(e)~ Truncated Normal(u = 0.001, = 1)) the algorithm
returned a mean of 0.54 when results were rounded to the nearest integer and 0.6 when decimal

values were not rounded (Figure 2.5). When the probability of observation was 90%, this value
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decreases to 0.52 (rounded) and 0.56 (decimal). The mean estimate continues to decrease with
decreasing observations, but even with an average of 30% of cases observed, the mean R, was

estimated as 0.41 and 0.46 when R, is a rounded integer or decimal estimate respectively (Figure

2.8).

2.5.3.2 Simulations from a less over dispersed R distribution (K=1)

When the probability of observing a case was 1, P(case observed) = 1, line-lists, simulated
from a negative binomial R, distribution of mean (u) 0.5, with overdispersion parameter (K), of
1 (R;~ Negative Binomial( u = 0.5, K = 1)) had a true mean R, of 0.59. When the prior for
the £ edge was defined as having a Truncated Normal prior with mean = 0.00001 and standard
deviaton = 1, (prior(e)~ Truncated Normal(u = 0.00001,K = 1)), the algorithm
returned a mean of 0.54 when results were rounded to the nearest integer and 0.53 when decimal
values were not rounded (Figure 2.9). When the probability of observing a case was 0.9
(P(case observed) = 0.9), this value decreases to 0.49 (rounded) and 0.52 (decimal). When an
accurate and informative prior for € when (P(case observed) = 0.9) is chosen, the model
accurately returns the mean R, of 0.59 (Figure 2.11). With an average of 30% of cases observed,
the mean R, was estimated as 0.41 and 0.44 when R, is a rounded integer or decimal estimate
respectively. Observationally, the distribution of R.s remain similar to the true value (Figure 2.11),
however more quantitative analysis would be required to rigorously assess similarities in the

distributions.
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Figure 2.5: Histograms of simulated Rc and model-estimated Rc when P(observation) is 1 and K is 0.1

A) Histogram of individual reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when deciman
estimates are used
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Figure 2.6 Histograms of simulated Rc and model-estimated Rc when P(observation) is 0.9 and K is 0.1

A) Histogram of individual reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when
decimal estimates are used
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Figure 2.8: Histograms of simulated Rc and model-estimated Rc when P(observation) is 0.3 and K is 0.1

A) Histogram of individual reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when decimal estimates
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Figure 2.9: Histograms of simulated Rc and model-estimated Rc when P(observation) is 1 and K is 1

When P(case observed) = 1.0 and an uninformative prior used for ¢ (Truncated Normal(nean=0.0001,standard deviation=1). A)
Histogram of individual reproduction numbers from simmulated data, B) model estimated results when estimates rounded to the nearest
integer and C) when decimal estimates are used.
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Figure 2.10: Histograms of simulated Rc and model-estimated Rc when P(observation) is 0.9 and K is 1

When informative and accurate prior used for ¢, Truncated Normal(mean=0.1, standard deviation=0.00001 A) Histogram of individual
reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when decimal
estimates are used.
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Figure 2.11: Histograms of simulated Rc and model-estimated Rc when P(observation) is 0.9 and K is 1
When P(case observed) = 0.9 and an uninformative prior used for & (Truncated Normal(nean=0.0001,standard deviation=1). A) Histogram of

individual reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when decimal
estimates are used.
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2.6 Discussion

This chapter introduced the key algorithms utilised in this thesis and tested the approach on several
forms of simulated data. Firstly, the algorithm utilised in Chapter 3 on data from El Salvador was
derived and described. This approach defines a range of the shaping parameters defining serial interval
distributions for symptomatic, treated P. vivax malaria and samples from this to define the most likely
route of transmission between cases, based on the time of infection and the likelihood of any case
having an unobserved source of infection. This approach uses a greedy algorithm which uses pairwise
likelihoods of transmission to build a transmission tree. Then the consensus or average connectivity
between cases, as well as uncertainty around this estimate can be calculated. This approach is
demonstrably suited to smaller observations of cases (Rodriguez and Schélkopt, 2012), but is heuristic,
and harder to incorporate other sources of information within one statistically rigorous framework.
In addition, it was not suited to use with large datasets due to computational running time. Therefore,
this approach was built upon by the second algorithm introduced, which was a fully Bayesian
framework implemented within TensorFlow for efficient inference from larger datasets. Then this
algorithm was extended to incorporate features other than time of symptom onset, primarily Euclidian
distance between cases, but as will be discussed in detail in Chapter 5, offers flexibility to incorporate

other metrics such as accessibility matrices, travel times, or genetic distance.

Simulations were carried out to test Algorithm 2 (the time-only network rate inference approach). It
was found that the model was robust to missing data when up to 30% of data were missing. However,
these simulations have not extensively explored whether this is robust to different parameterisations

for the serial interval or for epsilon edges, representing missing sources of infection.

There are several limitations to the simulations and findings. An important limitation of the simulation

was that all infections occur at the end of the designated “infectiousness period”. Whilst this is a draw
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from a distribution and varies for each case, it still makes the temporal signal of transmission

potentially more identifiable than in a real epidemic.

There is also a limitation to how missing data was simulated in this chapter. Missing cases here are not
biased in any way. Sampling was carried out in a random and proportional way and so at each time
point, of all cases a proportion of those cases will be missing. This potentially could have less of an
impact on inferred results compared to biased missingness (not at random), and in reality it may be
that individuals with persistent malaria infections (e.g. due to asymptomatic infection, lack of access
to healthcare) are less likely to be detected by surveillance systems. This could be explored in further

simulations which sample the fully observed dataset in non-random ways.

It is important to note that the probability distribution of the serial interval used to simulate line lists
is different to the assumptions made in our approaches. Namely, the simulation uses an exponential
distribution whereas the algorithms developed in this thesis use a shifted Rayleigh distribution. Given
the inherent uncertainty and variability in the serial interval of malaria, it is reassuring that this
approach can approximately recover reproduction number distributions despite different assumptions
about the serial interval. Future work to use a Rayleigh distribution would be helpful to compare like
for like and ensure that any divergence between actual and estimated R, values is error in the approach,

rather than the result of slightly different assumptions.

It is also important to note that outbreaks were not simulated over space and therefore Algorithm 3
was not evaluated here. However, in order to address this, Chapter 5 does include a detailed sensitivity

analysis, exploring the interaction between parameters and the impact of priors used.
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3

Estimating spatiotemporally varying malaria
reproduction numbers in El Salvador, a near
elimination setting

3.1 Introduction

As introduced in Chapter 1, great strides have been made since 2000 in reducing the burden and
mortality of malaria. The World Health Organisation (WHO) estimates that 57 out of the 106
countries with endemic malaria transmission in 2000 reduced their incidence of malaria by more than
75% between 2000 and 2015 (Cibulskis ez /., 2016). As a result, malaria elimination at the national
level, defined as the absence of local transmission within a country (Cohen e a/., 2010), is now one of
the targets in the WHO Global Strategy for Malaria 2016-2030 (Griffin ez a/., 2016). In 2016 the WHO
identified 21 countries for which it would be realistic to eliminate malaria within the next five years

(WHO, 2016).

As countries attempt to move towards malaria elimination, tracking progress through quantifying
changes in transmission over space and time is key. This information is necessary to effectively target
resources to remaining ‘hotspots’ and ‘hotpops’ (Sturrock e# @/, 2013) where transmission remains,
decide if and when it is appropriate to scale back interventions, and to evaluate the success of existing
interventions. However, as countries approach zero cases, increasing focality in transmission and the
impact of imported cases pose challenges to both reaching elimination (Cotter ef al, 2013) and
measuring progress towards that goal. Increased spatial and temporal heterogeneity in malaria cases
(Carter, Mendis and Roberts, 2000; Bousema ¢# al., 2012; Sturrock e al., 2016) in low transmission

settings reduces the usefulness of national or regional level trends in incidence or prevalence, which
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can mask small areas of high transmission intensity. Furthermore, end-game surveillance and control
measures are increasingly expensive per case. Therefore, while interventions must be targeted
efficiently to be cost-effective (Carter, Mendis and Roberts, 2000; Bousema ¢# a/., 2012), the identity

of areas driving remaining transmission and their stability over time are poorly understood.

As touched on in Chapter 1, a wide variety of contextually varying factors have been hypothesised to
drive transmission in low transmission settings, including increased risk in concentrated populations
due to factors such as occupation (e.g. agricultural workers) (Cotter ez al, 2013), asymptomatic
individuals acting as reservoirs of infection (Sturrock et al., 2013; Bousema ez al., 2014), changes in
vector behaviour (Moiroux e al., 2012) and resistance to antimalarial (Dondorp et al., 2009) and
insecticidal interventions (Sokhna, Ndiath and Rogier, 2013). Importation of malaria cases from
neighbouring countries poses an additional challenge in many elimination settings. If many cases of
malaria are imported, control measures may appear less effective due to small numbers of locally-
acquired cases arising from imported cases (Blumberg ¢7 al., 2013; Churcher ef al., 2014). If there is
sufficient importation, local cases can continue to occur even when the reproduction number of
malaria under control, R, is below 1. Conversely areas with a high underlying R but little importation
may see sudden outbreaks of cases following a rare importation event due to their receptivity to
malaria infection (Patel ef a/, 2014). Challenges arise in measuring the sustainability of elimination
(Cotter et al., 2013; Churcher ef al., 2014), both in terms of quantifying the impact of control measures
on transmission in the lead up to elimination, and in determining the risk of resurgence once
elimination is achieved (Cohen e7 al, 2012; Chiyaka ¢f al., 2013; Smith ez al., 2013). This information
is also important when deciding if, when, and how to scale back intervention and surveillance methods

(Chiyaka ef al., 2013).
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Meeting these challenges requires measuring changes in transmission, often at fine spatial scales.
However, existing methods used to quantify malaria transmission are poorly suited to elimination
settings (Sturrock ez al, 2016). Parasite prevalence rates (PR) are not accurate below a PR of 1-5%
(Yekutil, 1980; Hay, Smith and Snow, 2008) due to the large sample sizes necessary for precise
estimates at low prevalence. The entomological inoculation rate (EIR), often seen as the “gold
standard” in measures of transmission intensity, is not reliable when transmission is highly focal and
potentially unstable since EIR is very sensitive to heterogeneities in vector populations (Hay ez 4/,
2000; Mbogo et al., 2003). Use of serological data, whilst promising (Corran e al., 2007; Dewasurendra
et al., 2017; Yalew ez al., 2017), is not currently feasible for use in many very low transmission contexts,
as suitable cross-sectional survey data and/or appropriate markers to determine changes in malaria

transmission are not available in all contexts.

A possible alternative, or complementary, measure of malaria transmission is the incidence of malaria
cases, obtained through routine surveillance by Ministries of Health. Surveillance data are widely
collected and sensitive to short term changes in transmission. Whilst utilising these data can pose
challenges, particularly in low-resource settings due to limitations in surveillance infrastructure and
difficulty in establishing completeness of reporting, they can provide a wealth of information when
such challenges are overcome. Individual level incidence data can be used to reconstruct the most
likely pathways of transmission and estimate individual reproduction numbers, providing fine-scale
insights into spatiotemporal transmission characteristics. Whilst individual level surveillance data is
often used in outbreak analysis of epidemic infections (Wallinga and Teunis, 2004; Jombart ez a/.,
2014), robust methods are rarely applied to vector-borne diseases such as malaria, with a few notable

exceptions (Churcher ez al., 2014; Reiner ez al., 2015; Salje ez al., 2010).
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In this chapter I aim to estimate individual reproduction numbers over time and space by adapting
methods from the study of information diffusion processes described fully in Chapter 2 and reviewed
in section 3.2. of this chapter. These methods address the general problem of reconstructing
information transmission using known or inferred times of infection by a ‘contagion’ (Kempe,
Kleinberg and Tardos, 2003; Gomez-Rodriguez, Leskovec and Krause, 2010; Rodriguez and
Scholkopf, 2012; Gomez Rodriguez ¢f al., 2014). They provide an adaptable framework to integrate
multiple data types (Wang, Ermon and Hopcroft, 2012), identify likely unobserved cases/external
infection sources, and have been evaluated using real and simulated transmission processes at multiple

scales and network structures (Gomez Rodriguez 7 al., 2014).

3.1.1 Malaria elimination in Central America
Mesoamerica has made large strides towards malaria elimination over the past twenty years. Cases in
Mesoamerica declined from roughly 123 000 in the year 2000 to roughly 10 000 cases in 2015 (Herrera
et al., 2015) despite population growth, and strengthened surveillance and case detection systems which
likely increased the proportion of cases which were reported. However the need for continued effort
has been highlighted by recent halts in progress, with over 16 000 cases reported in the region in
2017(WHO, 2018a). The potential for elimination in the region led to the formation of a regional
eradication programme, Elimination of Malaria in Mesoamerica and Hispaniola (EMMIE:
Eliminacion de Malaria en Mesoamerica y la Isla Espafola) in 2014, which aims to achieve zero cases
of locally transmitted malaria in Mesoamerica by 2020 (Herrera ez /., 2015). Half of the 8 countries
which form this area (Belize, Costa Rica, El Salvador and Mexico) have been designated by the WHO
as likely to eliminate malaria by 2020 (WHO, 2016). Nonetheless countries including Panama,
Nicaragua, Honduras and Guatemala still are in the control phase, with substantial levels of

transmission still occurring, particularly in north eastern coastal areas of Nicaragua, south eastern
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coastal areas of Honduras and some western and eastern coastal areas of Guatemala (Carter ef al,

2015; WHO, 2018a). No country in Central America has yet been certified malaria-free.

3.1.2 Malaria elimination in El Salvador
In 1980, El Salvador had the highest incidence of malaria amongst all Mesoamerican countries — with
95,835 cases and a 38% share of all cases in Mesoamerica. However, by 1995, the country contributed
just 2%, maintaining low incidence until the present day (Figures 3.1 -3.3). The country is now in the
elimination phase and reported seven malaria cases in 2015 (0.1% of cases in Mesoamerica) (Schneider
et al., 2016). In 2017 the country reported zero locally acquired cases for the first time (WHO, 2018a).
Epidemiologists in El Salvador have kept records at a high spatial and temporal resolution throughout
their malaria control and elimination efforts. In addition there has been a long history of reactive and
active case detection, testing and treating all patients with fever with antimalarials and an extensive
network of community malaria workers has been in place since the 1950s (Schneider e af., 2016),
evidence suggesting that case detection and treatment is strong. A full understanding of elimination
in El Salvador could therefore provide useful insights for other countries as they aim to achieve and

sustain elimination.

Using the epidemiological line-list maintained by the Ministry of Health, I applied methods described
in Chapter 2 (Algorithm 1, submodular inference using a greedy algorithm) to these data to estimate
how transmission varied over space and time in El Salvador between 2010 and 2016. The subsequent
results illustrate the role of importation in driving transmission dynamics in this country and provide

independent estimates of the likelihood that El Salvador can eliminate malaria by 2020.
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3.2 Methods
3.2.1 Data

The data, obtained from the Salvadorian Ministry of Health (MINSAL), consisted of all confirmed
cases of malaria between 2010 and the first two months of 2016 (N= 91 cases, of which 30 imported,
6 P. falciparum, 85 P. vivax). All but two cases had an address listed. For these cases the location was
available at the municipio, or municipality level, and the coordinates of the centroid of the municipality
(which for both were cities) were used as the geo-location. Two cases had addresses listed outside of
El Salvador, both of which were in Guatemala. All cases within El Salvador with full addresses (IN=85)
were georeferenced by latitude and longitude to caserio/ lotificacion level, which is approximately
neighbourhood or hamlet level. Name searches of streets, caserivs, and landmarks were carried out
using Nominatim on Open Street Map'. Google and Bing maps® were also used to cross check and
in the absence of information available on open street map. I also used several locality listing websites’

to obtain and cross check georeferences for caserios.

Municipality (municipio) and district (distrito) were also provided, allowing cross checking for duplicate
neighbourhood names and ensure continuity. In addition, searches were made online for local schools,
churches, news stories and community groups to cross check locations. Many addresses listed
geographic features such as landmarks or road names. Where possible, Google satellite imagery were

examined for these features and/or evidence of dwellings.

Data were captured through El Salvador’s national epidemiological surveillance system (VIGEPES).
These include cases reported by 30 public hospitals, 746 health facilities and thousands of community

health workers stationed throughout the country (approximately 3,246 in 2010)(El Salvador Ministerio

Uhttps://nominatim.openstreetmap.org/

2 https:/ /www.bing.com/maps; https://www.google.co.uk/maps/

3 http:/ /www.mapmonde.org/central-america/el-salvadot/; http:/ /www.maplandia.com/el-salvador/;
https:/ /es.wikipedia.org/wiki/Categoria: Cantones,_caserios_y_comunidades_de_El_ Salvador;

https:/ /geographic.otg/geographic_names/el_salvadot/index html#F;
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de Salud, 2011; Schneider e# /., 2016). During this period, the number of blood slides tested per year
remained similar (Table 3.1). The line-list featured a unique patient identifier, address, age, sex,
symptom onset date, and treatment seeking date, as well as details about treatment and diagnostic
testing. All confirmed cases were treated. For cases recorded in 2010, time of both symptom onset
and treatment were available, providing an opportunity to estimate the delay between symptom onset

and treatment for that year (Figure 3.4).

Detailed case investigation was carried out by MINSAL and cases were identified as imported or
locally acquired based on travel history, as well as primary, secondary, tertiary or orphan cases without
clear sources, based on relationship with and proximity to previous cases. I obtained the latitude and
longitude of the address, accurate to caserio (hamlet) level, using Open Street Map (OpenStreetMap
contributors, 2017). El Salvador carries out reactive case detection following presentation at health
facilities. However, in 2011, of 4,500 slides examined through reactive case detection (representing
4.5% of all slides examined), just one additional case was detected. Both passive and active screening
of migrants at key border crossings and in agricultural areas near borders also takes place. In these
targeted areas, individuals are monitored for fever in the past 30 days, tested, and a single dose of
chloro-primaquine prophylaxis is provided. In 2011, the Ministry of Health reported that 33,000
migrants were reached through active and passive case detection and an additional four cases of
malaria were found (El Salvador Ministerio de Salud, 2011). Most cases were detected through passive

surveillance in health facilities, at borders and by community health workers in rural areas.
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Timeline of malaria in El Salvador

1980s 2000s
95,835 reported cases 1980 753 cases in 2000
Clvil war begins 1980 67 cases in 2005

1980s

Shift in palicy from 19905 .
eradication to Civil war ends, 1992 Shift to prioritise elimination
control 3,364 reported cases 1995 100,000 blood slides examined,/year
Last case of locally transmitted 9 confirmed cases in 2015
P. falciparum in 1994

Figure 3.1 Timeline of malaria in El Salvador

2009 = 22 cases 2014 = 8 cases*
2010 = 26 cases 2015 = 9 cases*
2011 = 15cases  *Data on case location
2012 = 21cases not received

2013 = 7 cases

Figure 3.2 Distribution of cases of malaria in EI Salvador 2009-2015, reproduced from (Schneider ef al., 2016)
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SPR by country

e» Nicaragua
== Honduras
Guatemala

e=» E|Salvador

Slide Positivity Rate

1960 1970 1980 1990 2000 2010
Year

Figure 3.3 Slide Positivity Rate (SPR) by country. Plot showing SPR over time for Central American Countries. Note El Salvador’s rapid decline

in Malaria, which was mirrored at later dates by other countries.

Table 3.1 Slides examined per year (Schneider et al., 2016)

Year Slides examined
2010 115 000
2011 100 883
2012 124 885
2013 103 748
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Figure 3.4: Distribution of time from symptoms to treatment, based on available data from 2010. A ) Raw data as histogram and

B) gamma distribution fitted to data

3.2.2 Serial interval distribution

The serial interval is defined as the time between a given case showing symptoms and the subsequent
cases they infect showing symptoms (Fine, 2003). For a given individual j at time t;, showing

symptoms before individual i at time t;, the serial interval distribution specifies the normalised

likelihood or probability density of case i infecting case j based on the time between symptom onsets,

t; — t;. The serial interval summarises a number of distributions including the distribution of a) the

times between symptom onset and infectiousness onset, b) the time for humans to transmit malaria

parasites to mosquito vectors, ¢) the period of mosquito infectiousness, and d) the human incubation

period.
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I defined a prior range of possible serial interval distributions for malaria. The serial interval
distribution of treated, symptomatic P. falciparum malaria, previously characterised using empirical and
model based evidence(Huber ef 4/, 2016) was adapted to inform the prior distribution for the
relationship between time and likelihood of transmission between cases in El Salvador. Two cases
imported from West Africa were P. faliparum, however the remainder of cases were P. vivax. As a
result, the prior distribution was altered to better reflect the biology of P. vivax and the dominant
vector species in El Salvador, Angpheles albimanus, but was uninformative enough to allow for possible
variation in transmission dynamics, for example due to imported infections with P. faleiparum. In
addition, there is a possibility of a small number of asymptomatic or undetected and therefore
untreated infections contributing to ongoing transmission, which will take on a longer serial interval.
By defining a prior distribution for the serial interval distribution one can account for some of this

uncertainty.

A shifted Rayleigh distribution was used to describe the serial interval of malaria, which can be varied
by changing two parameters: @ and y. The parameter @ governs the overall shape of the distribution,
and Y is the shifting parameter accounting for the incubation period between receiving an infectious
bite and the onset of symptoms (Figure 3.7A). The ¥ shifting parameter was defined as ranging between
10 and 15 days to account for the minimum extrinsic incubation period within the mosquito and the
minimum time between infection and suitable numbers of gametocytes in the blood to lead to
symptom onset (Warrell and Gilles, 2002). The prior for the a parameter determining the shape of
the distribution was given a Uniform distribution and bounded, giving an expected time between
symptom onset of one case and symptom onset of the case it infects of 29 days (95%CI = 16 — 300
days, sd = +/- 7 days), with the lower bound having an expected setial interval of 25 days (95%CI

=16 — 299 days, sd = +/- 4 days) and the upper bound 47 days (95%CI = 16-300 days sd= +/- 18
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days). By comparison the expected values for treated P. faleiparum from existing literature range

between 33 (Churcher e al., 2014) and 49.1 days (95%CI = 33- 69)(Huber ¢# al., 2010).

3.2.3 Determining the transmission likelihood
I assume cases were classified correctly from case investigation as imported or locally acquired based
on recent travel history. Following this assumption, locally acquired cases could have both infected
others and been infected themselves. However imported cases could only infect others, as it is
assumed that their infection was acquired outside of the country. There were no confirmed relapse
cases in the dataset, and all cases were treated with primaquine and chloroquine (radical cure) after
being detected. Treatment is initiated before cases are confirmed by microscopy (Ministerio de Salud
El Salvador (MINSAL), 2015). Active case detection is initiated locally following a confirmed case and
in active foci in which local surveillance is believed to be weak. In these scenarios blood slides are
examined within 24 hours of being taken (Ministerio de Salud El Salvador (MINSAL), 2015). Given
this, my approach assumes that an individual can only be infected once by a case that has shown

symptoms eatlier in time.

The data input consisted of a time seties of symptom (fever) onset t € {ty, ..., t,}, time ordered such
that t; < ty, ..., < t,. While the times of symptom onset are known, the data do not indicate who
infected whom and the underlying transmission chain, 7. As described in Chapter 2, the goal of the
model is to infer the most probable network structure, G, connecting these n infections. One can view
cases as nodes in a network G, and possible transmission events as the edges linking nodes. G is
inferred solely from the symptom onset times t, a serial interval distribution, and prior probability

distributions for the serial interval distribution parameters.

G contains all possible spanning transmission chains over which an infection could spread given the

observed times. G therefore, includes the most likely transmission tree, but also includes, other
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possible trees supported by the data. One therefore can view a transmission tree J as a realisation of
a stochastic diffusion process generated over an underlying network §. Crucially, G, accounts for

competing edges and is sparse (only includes plausible edges).

For a given transmission tree J describing infection events linking cases and assuming the
independent cascade model (Kempe, Kleinberg and Tardos, 2003), the (upper triangular) likelihood
of observing the times of symptom onset is simply the product of all permissible pairwise transmission
likelihoods in the tree(Rodriguez and Schélkopf, 2012). This description until this point is the same
as that introduced by Wallinga and Teunis (Wallinga and Teunis, 2004) and extended to a wide variety
of contexts by others (Ypma e al; Walker e al., 2010; Morelli e/ al., 2012; Jombart ez al., 2014; Reiner
et al., 2015; Salje ¢t al., 2016). However, in contrast to previous methods based on Wallinga and Teunis
this approach maximises the likelihood f (t|G) conditional on an undetlying G, a problem that is NP-
hard (Khuller, Moss and Naor, 1999). Previous approaches have either allowed all possible
connections in G (Wallinga and Teunis, 2004), sampled from the likelihood (Ferguson, Donnelly and
Anderson, 2001) or explored a limited number of pathways (Salje, Cummings and Lessler, 2016). Here,
by following the approach introduced by Gomez-Rodriguez and Scholkopf (Rodriguez and
Scholkopf, 2012), I find the most likely underlying transmission network given the timing of symptom
onset for a set of k transmission events linking cases. The computational hardness of maximising
f (t]|G) meant that an optimal solution could only be found by exploring every possible transmission
tree on G. However, due to the submodularity of the independent cascade model (Kempe, Kleinberg
and Tardos, 2003) a near optimal solution could be found using a greedy algorithm. Briefly, the greedy
algorithm used starts with an empty graph, and then add edges sequentially such that the marginal gain
in the likelihood of the transmission tree for each iteration is maximised. The marginal gain measures

of importance for each edge of the network through the gain that each edge provides to the total
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solution over competing edges, and therefore applies shrinkage to the raw pairwise likelihood with the
likelihood of competing edges. This process stops when have k edges ate reached. Stopping at k
edges ensures that the resulting network is sparse which not only ensures a parsimony but removes
unnecessary edges that could influence R, calculations. An appropriate value of k is defined by adding
edges until the marginal gain in likelihood of adding additional edges is below a given threshold
(0.0005). Sensitivity analysis revealed that these results are robust to changes in this threshold between

0.001 and 1e-10 (Appendix 1).

Overall transmission tree likelihood with increasing edges added

4e+08 S5e+08 6e+08 7e+08
| | | |
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1e+08

0e+00
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T T T T T
0 100 200 300 400

Number of edges added

Figure 3.5: Plot showing the marginal gain in likelihood by adding edges to network using greedy algorithm. Each colonred line
represents different draws of alpha, and shows the marginal gain in likelihood of adding edges to the network. The cut off-point for marginal gain in likelihood
used here is 0.0005.
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3.2.4 Estimating R,
Individual reproduction numbers for each case were established by creating a matrix where each
column represents a potential infector and the rows represent a potential infectee, describing which
infector edges are connected to infectees and the normalised marginal gain of that edge. Intuitively
then, by taking the row sums of R we get the (fractional) number of secondary infections and therefore
a point estimate of the time varying reproduction number R, (tj). This reflects for an individual, how
many people they are likely to have gone onto infect. When multiple individuals have been infected at
a given time and/or place, one can take the mean individual R, and uncertainty in this value as an

indicator of reproduction numbers for a given time and/or location.

In contrast of traditional methods based on Wallinga and Teunis (Wallinga and Teunis, 2004) using
the marginal gain in this way encapsulates not only the pairwise likelihood of transmission between
two cases, but conditions this likelihood on the impact of competing edges in the inferred network.
Given the provable near optimal solution of the greedy algorithm and the use of marginal gains in
calculating R, my estimates of R provide more rigorous estimates of reproduction numbers than just
using standard Wallinga and Teunis (Wallinga and Teunis, 2004) approaches, which do not consider

the overall transmission tree in optimisation and do not account for missing cases.

I assume cases were classified correctly from case investigation as imported or locally acquired based
on recent travel history. Following this assumption, locally acquired cases could have both infected
others and been infected themselves. Imported cases could only infect others, as I assume their
infection was acquired outside of the country. I also assume a case showing symptoms at time 7 has
been infected by a case which began showing symptoms earlier in time, due to the short time between

symptom onset, presentation at health facilities and the beginning of treatment.
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3.2.5 Accounting for missing cases
Assuming all cases reaching community health workers or health facilities are recorded, missing cases
may be generated by two processes. Symptomatic cases may be missed by not seeking care or being
found through active case detection. On the other hand, cases may be asymptomatic and therefore
unlikely to seek care or be detected. They may have densities of parasites in their blood which are too
low to be detectable by microscopy if active case detection occurs. These reasons for missed detection
apply to both imported cases and locally acquired cases. We assume the pool of asymptomatic cases
in the country is low and has a small contribution to ongoing transmission. To explore the amount
of cases which may be going undetected within the independent cascade framework, we consider
additional edges 7, that represent unobserved individuals who can infect any observed individual, i,
in a transmission chain. Every observed individual i can get infected by unobserved individuals, 7,
with an arbitrarily small probability e. This so called €-edge is connected to every node in the network
and do not, by design, participate in the diffusion propagation. The €-edges prevents breaks in the
network diffusion cascade where the likelihood of transmission between observed cases is sufficiently
low, the case is linked to an external source. Additionally, €-edges ensure the likelithood is monotonic,
that is, converting an €-edge to a network edge in G only increases the likelihood. The addition of €-

edges was achieved by augmenting the pairwise transmission likelihood as follows:
f(tilt @) = e a(t; — t; —y)e~ )

The specific value of ¢ was set at 1e-5 to balance between false positives and false negatives when
linking cases by infection events. The higher the value of ¢, the larger the number of nodes that are

assumed to be infected by an external source.

99



3.2.6 Covariate assembly
The environmental covariates (i.e., independent variables) used in the spatial mapping of R, >1 risk
consisted of raster layers that spanned El Salvador 2.5 arc-minute (~5 km x 5 km) spatial resolution.
Covariate choice was based on key variables used within past malaria mapping endeavours (Bhatt ez
al., 2015). Raster datasets were then acquired or produced, and wherever possible dynamic versions
(i.e., temporally varying products) were utilized to support the temporal aspect of the analysis. The
majority of the raster covariates were derived from high temporal resolution satellite images and then
aggregated to create dynamic covariates for every month throughout the study period (2010-2016).

The covariates used are listed below in Table 3.2.

Table 3.2: Covariates used in risk mapping R, >1

Variable Class Variable(s) Source Type
temperature land surface temperature (day, MODIS product  dynamic
night and diurnal flux) monthly
precipitation mean annual precipitation WorldClim synoptic
elevation digital elevation model SRTM static
infrastructural accessibility to urban centres and modelled product static
development night-time lights and VIIRS
moisture metrics aridity and potential modelled products  synoptic
evapotranspiration

3.2.7 Spatial methodology

The underlying spatial statistical model was fitted to binomial data of R, > 1 = 1; R, < 1 = 0, using

the logit link function:

R, ; ~ Binomial(p;, N;)
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log(pi/(1 —p))~GP(k, Q)
p=a+Xp
Q= Ks_place
K5jace = solve (k* — A)%(TX(S)) = W(s)

where Ry ; are the number binary data points for R, > 1 =1; R, <1 = 0, p; is the estimated R5 4,
expressed as a logit transformed probability and modelled as a Gaussian process with g and precision
Q. The GP mean p is a linear function of a global intercept & and space-time indexed covariate values
X;. Q is a sparse precision matrix and Kgpqce = Q ~1is the covariance matrix. Q is the sparse finite
element solution to the stochastic partial differential equation (k? — A)%(rx(s)) = W(s), where A is the
Laplacian, k is the spatial scale/range parameter, T controls the vatiance, « is the spatial smoothness
parameter (fixed at @ = 2), and W (S) is the spatial white noise process. To account for the curvature

of the earth the distance metric s is defined on a spherical manifold in Cartesian R3.
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Figure 3.6: Area Under the ROC Curve (AUC) from cross validation of geostatistical model used 1o create riskmaps of P(Rc>1)
AUC = 0.94, Sensitivity = 0.83, Specificity=0.58. The colours and labels (illustrated in the scale bar on the right side of the x axis) represent the
threshold for classification as 1 (Re>0) or O (Re=0). When the threshold is decreased, more positive values are returned, thus sensitivity (the true positive rate)
increases and specificity (1- false positive rate) decreases.

3.2.8 Estimating timelines towards elimination
To explore trends in R, over time, we fitted a generalised additive (GAM) model to the estimated
R.(t) values and extended this line beyond the period of observation to 2030. We then also fitted
Gamma, Power law and Exponential distributions to the estimated R.(t) values, and found they were
best represented by Gamma distribution according to AIC scores (Akaike, 1974). To explore the
likelihood of elimination by a given time point, we randomly drew 10,000 R, values from Gamma
distributions with increasingly small mean reproduction numbers, keeping the fitted shape parameter
constant. We then found the threshold mean R, below which the probability of an individual

R exceeding one is less than 5%. By extending the current fitted trendline for R.values to 2030, we
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identified the expected timepoint for R, to reach this threshold value, given the observed decline

in R, observed over the study period.

3.2.9 Mapping R,

To map estimates of transmission risk, individual reproduction numbers were divided into those
above and below one. The latitude and longitude of the reproduction numbers were included in a
geospatial hurdle model implemented in rfINLA (Rue, Martino and Chopin, 2009) where demographic
and environmental covariates were used to estimate the likelihood of a case having a reproduction
number above 1 if imported into the area in 2010. This is a measure of malaria “receptivity” or
underlying transmission potential rather than overall malaria risk, as importation likelihood is not
quantified in this analysis. Area under the ROC curve scores from leave one out cross validation were
used to assess model fit (Figure 3.6).

3.3 Results

Between 2010 and the first two months of 2016, a total of 91 cases of malaria were confirmed by
microscopy in El Salvador, of which 30 were classified as imported. There was a total of six cases of
P. falciparum, all of which were imported. The resulting estimated transmission network is shown in
Figure 3.7. Overall, the temporal dimension dominates the identification of infector-infectee pairs
(Figure 3.7B), informed by the prior distribution for the serial interval (Figure 3.7B). We identified two
locally acquired cases which could not be plausibly linked to other cases within the dataset (Figure
3.7C). These were estimated in periods in which a clear gap in the data was apparent, and may therefore

represent unidentified importations, relapse cases or unreported locally acquired sources of infection.

We estimated the mean individual reproduction number over 2010-2016 to be 0.61 (95% CI =

0.56,0.65). This is consistent with the ratio of locally acquired to total cases (61:91 = 0.66), which has

been proposed elsewhere as an approximate estimate of R, (Cohen e al, 2010). When fitting a
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generalized additive model to the data, the overall trend was a decline from a fitted R, of 0.73 at the
start of the observation to 0.47 by the end of the period (Figure 3.8). Individual reproduction numbers
showed seasonal fluctuations through time, with regular peaks observed in December, which coincides
with the end of harvest season for many crops in El Salvador and Guatemala, and August, which

coincides with a period of national holiday and the end of the rainy season.
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Figure 3.9 Maps of risk of R, exceeding one. A) Distribution of R, values by location of residential address. Red points represent an
R wvalue below one, blue points represent an R value above 1. B) Distribution of imported and locally acquired cases by location of residential
address. Yellow points represent locally acquired cases; green points represent imported cases. C) Map of risk of R exceeding 1 if a case were to
occur in an area. Note this estimate does not consider risk of importation but estimates receptivity to transmission if importation were to occur.
D) Standard deviation in risk estimates from C.
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3.3.1 Spatial distribution of cases and R,
Data were highly focal, with 70% of cases originating from two adjacent administrative departments
neighbouring Guatemala, and 32% of cases originating from just two municipalities within these
regions (Jujutla and Acajutla) (Figure 3.9A-B). This pattern was also reflected in the spatial distribution
of R.. While most areas of the country are predicted to have a low risk of R, reaching above one over
the time observed, several regions have a much higher predicted risk of R, >1 (Figure 3.9C). In these
regions, the majority of cases imported into the region could be expected to result in at least one
onward transmission event. However, it is important to note that uncertainty in these predictions is
high in areas where cases have not been seen. The area with the least uncertainty in the estimate,
around the borders of Guatemala, suggest that the majority of cases occurring there did not contribute

to onward transmission.

3.3.2 Impact of imported cases on transmission
The mean marginal gain to the likelihood of including infections from imported cases into the
constructed transmission networks was much higher than including locally acquired cases (0.081
compared to 3.44 e~7), suggesting that imported cases are a major driver of transmission. Visual
inspection of the most likely chains of transmission (Figure 3.7) also are suggestive of this, where the

index case in a cluster of linked cases was almost always an imported case.

3.3.3 Endgame predictions based on R and stochasticity
To investigate potential timelines to elimination (i.e. the absence of local transmission) I characterised
heterogeneity in the reproduction number using a Gamma distribution which, when fitted to the data,
suggests a threshold mean R, of 0.22, below which there would a less than 5% chance of any individual
reproduction number exceeding one. Using the fitted trend in the mean R, one would expect this

level to be reached by 2023, assuming no change in the rate of importation (Figure 3.8C).
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3.4 Discussion

Understanding how transmission varies over time and space is critical to efforts to achieve and
maintain elimination of infectious diseases such as malaria. Reconstructing transmission chains and
estimating individual reproduction numbers has been used widely within epidemiological analysis
(Ghani ez al., 2009; Walker ez al., 2012; Jombart ef al., 2014), but rarely used to study vector-borne or
endemic diseases, albeit with a few notable exceptions (Reiner ¢ a/., 2015; Salje ez al., 2016). Separately,
similar problems have been approached within human social network analysis, through a family of
approaches known as independent cascade models (Kempe, Kleinberg and Tardos, 2003; Gomez-
Rodriguez, Leskovec and Krause, 2010; Rodriguez, Balduzzi and Scholkopf, 2011; Rodriguez and
Scholkopf, 2012). Here I have adapted these methods to routine data from an eliminating Central

American context, Fl Salvador, in order to inform progress towards their malaria elimination goals.

My results suggest that the time-averaged R has been below 1 in El Salvador since 2010, suggesting
that sustained endemic transmission at the country level has already been interrupted. However, 1
estimated individual reproduction numbers exceeding one, resulting in ongoing outbreaks of
transmission. Assuming the downward trend observed in R between 2010 and 2016 continues, one
would expect the probability of such outbreaks to be less than 5% by 2023 if current levels of malaria
importation and control continue. However, because imported cases were found to have higher
reproduction numbers and their inclusion in the transmission tree increased the overall likelihood of
the tree much more than locally acquired cases, it is important to note that the rate of importation is
likely to affect the distribution of R.. With increased importation this timeline to elimination could
lengthen. Conversely, if importation was reduced, the timeline would be shortened. Thus, the levels
of malaria importation from neighbouring countries would likely need to be decreased in order to
achieve elimination by 2020, following current WHO certification policy of three years of zero locally

acquired cases.
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Given the extensive surveillance of migrants already carried out by El Salvador, as well as the free-
movement and trade agreements which exist between El Salvador, Guatemala, Honduras and
Nicaragua, the most efficient way of achieving this is likely to be through reducing the prevalence of
malaria throughout Central America. However, given the seasonal peaks in R, estimated to occur in
August and December, which coincide with national holidays and the end of harvest season, there
could additionally be an opportunity to increase surveillance activities and interventions during these

key periods of high human mobility.

The Elimination of Malaria in Mesoamerica and Hispaniola (EMMIE) initiative aims to eliminate local
malaria transmission from the entire Mesoamerican region by 2020 (Herrera ez al, 2015). My results
support the need for a regional approach to elimination. The clear impact of importation in driving
residual transmission in El Salvador highlights the need for cross-border collaboration. In order to
drive transmission down, areas of the highest “receptivity” to intervention and “vulnerability” to
importation of cases must be identified. Approaches such as this, which map transmission risk, could
be combined with information about human movement to identify foci for increased surveillance,
vector control and other interventions. This approach using El Salvador as a case study could be

adapted and used in other Central American countries or other contexts aiming for elimination.

The analysis identified two cases with no clear source. When raising the threshold likelihood for linking
observed cases as part of the sensitivity analysis and reducing the number of possible edges in the
network, I find 7 missing cases. There is evidence in some low transmission contexts, especially where
rapid declines of malaria have been seen recently, of significant asymptomatic and/or sub microscopic
reservoirs of infection which may transmit to onwards transmission (Okell ez a/, 2012). These could
be sources of the missing infections identified in this study. However, El Salvador is unlikely to have

a large amount of asymptomatic cases due to a long history of low numbers of cases. If the missing
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source of infections was mainly indigenous asymptomatic infections, it would signify that there is an
asymptomatic reservoir contributing to onward transmission and that must be controlled to reach
elimination. This could be achieved through PCR-based screening and treatment or increased vector
control in focal areas. An alternative explanation is that there may be a small number of unreported
symptomatic cases or relapse cases which were not reported or detected, which could be indigenous
or imported. If due to importation this would further support the need for strong regional cooperation
via initiatives such as EMMIE to reduce burden in neighbouring countries, and to maintain vigilance

over extended periods in a very low transmission stage.

There are several limitations to this work. Firstly, whilst this approach uses epsilon edges to identify
potential external sources of infection, this approach is only appropriate for smaller numbers of
missing cases. Given the long history of small numbers of cases and testing and treating ~100,000
febrile patients per year (of which only 6 were positive for malaria in 2015), and the programme of
active case detection, as well as cross-sectional surveys of school age children in historic foci finding
0% prevalence by PCR (Sorto e al., 2015), this is a reasonable assumption. However, in other
contexts, this may be a larger concern and methods such as reversible jump MCMC methods (Green,

1995; Chis Ster, Singh and Ferguson, 2009) for data augmentation and inference may be appropriate.

Secondly, by the nature of a near elimination context, the sample size is very small. The methods used
for estimating R are well suited to small, well observed infection cascades, however this small sample
size does provide a limitation for mapping, meaning the resulting maps have relatively high levels of
uncertainty outside of the areas of El Salvador where cases are seen principally around the pacific
coast, Guatemalan border and in San Salvador. There is scope to incorporate expert knowledge to
refine the map in areas where data are lacking. It is important to reiterate the uncertainty in risk map

estimates for most of the country, where the standard deviation in risk estimates neared one in many
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areas where no cases were observed. If this uncertainty is not clearly communicated to decision-makers
this may lead to misleading conclusions, or reduce trust in the estimates in areas where there is high

uncertainty.

Finally, there is a large amount of uncertainty and simplifying assumptions inherent in the forward
projections illustrated in figure 3.8C. Here a logistic regression was extended, assuming the observed
decline between 2010 and 2016 would continue — i.e. there would be no change to importation,
interventions or environmental and social factors which may shape the decline, or other
epidemiological processes which could come into play as zero cases are reached. This is highly
simplified, and whilst the uncertainty associated with this estimate is illustrated in the figure, and the
figure was designed as a tool to show the feasibility of elimination at or around the 2020 target, but
also illustrating the large amount of uncertainty around this, and the potential for much higher

reproduction numbers, highlighting the need for sustained control and surveillance efforts.

It is important to consider whether methods presented here can be used in low resource settings that
are carlier in the elimination process. In these contexts, the number of cases is likely to be higher and
there may be less complete reporting data and potentially a higher reservoir of asymptomatic infection.
In order to address these challenges several adaptations to the methods presented here may be
required. Firstly there may be a need to incorporate more sources of information, e.g. demographic,
spatial and possibly genetic data (Wang, Ermon and Hopcroft, 2012; Jombart e al, 2014). Secondly,
Bayesian data augmentation techniques (Walker ez 2/, 2010)may be required to explore the implications
of large amounts of missing infection and potential reporting biases. In the case of more asymptomatic
or untreated malaria there may be more uncertainty in the serial interval of malaria, however using my
current approach can propagate this uncertainty through the model. Generalisations to full likelihood

based or Bayesian hierarchical inference (Gomez Rodriguez ez al., 2014) can be beneficial by providing
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flexibility through parametric forms by allowing for the incorporation of additional factors (e.g.

genetic distance) specific to the disease and context.

This work provides a novel framework for making use of routine surveillance data and allows
quantification of malaria transmission and its variation over space and time in contexts where
traditional methods such as parasite prevalence are unsuitable. This is key in designing optimal
strategies to accelerate, achieve and maintain elimination. To apply to other contexts several
adaptations and extensions may be required. Firstly, in this dataset there were no confirmed relapse
cases, however in many contexts we may see P. zvax relapse, in which case the algorithm could be
adapted to allow for a likelihood for “reinfection” or a looped network edge. Secondly, in settings
where transmission links are less cleatly identifiable or different data sources are available, this
approach can be adapted to incorporate additional features such as spatial or genetic distance
weightings into the likelihood function (Wang, Ermon and Hopcroft, 2012), following on from work
based on Wallinga and Teunis approaches (Walker ez a/, 2010; Morelli ¢f al., 2012; Jombart ez al., 2014).
Finally, asymptomatic reservoirs and causes of missing cases as well as their impact on transmission
dynamics could be explored in more detail to consider surveillance system design and evaluation of

its strength.

In conclusion, this work adapts concepts from network theory to build and apply novel methods to
map transmission over space and time in a very low transmission setting, using only routine malaria
surveillance data. Such approaches offer opportunities to better understand transmission dynamics
and their heterogeneities in near elimination settings to better target interventions for elimination. I
estimated timescales for reaching elimination and clarified the effect of importation on the speed and
feasibility of achieving and maintaining zero cases. In the context of El Salvador, these results

highlight the impact of importation on sustained transmission and highlights the need for cross-border
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collaboration. This approach could be useful in a wide range of contexts where good quality routine

surveillance data are collected, such as outbreaks and endemic diseases nearing elimination.
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4

Estimating spatiotemporally varying malaria
reproduction numbers in Yunnan province, China

4.1 Introduction

In 2017 China reported no indigenous malaria cases for the first time since malaria became a notifiable
disease in 1956 (Feng e al, 2018; WHO, 2018a). The country has experienced a major decline in the
burden of malaria, from an annual incidence of 24 million cases (2961 cases per 100,000) in 1970
(Zhou, 1981). This reduction has been attributed to a combination of socioeconomic improvements
and the scale-up of interventions to control malaria (Yin e a/, 2014). In 2010, China set out an
ambitious plan for the national elimination of malaria by 2020 (the National Malaria Elimination
Programme, NMEP). Elements of the plan included improved surveillance, timely response, more
effective and sensitive risk assessment tools and improved diagnostics (Feng ez a/., 2014). A key policy
change implemented in 2010 as part of the NMEP was the introduction of the 1-3-7 system: aiming
for case reporting in one day, which is then investigated within three days, with a focused investigation

and action taken in under seven days (Cao ¢t al., 2014).

Although China is making rapid progress towards this goal, 2,675 imported cases were reported in
2017, highlighting the risk of re-introduction (Feng ez al, 2018). Large numbers of people move
between China and malaria endemic countties, both from sub-Saharan Africa and from South East
Asia (Zhou et al., 2016; Lai et al., 2019), driven by tourism and Chinese overseas investment (Lai ez al.,
2016). Concerns remain about re-emergence of malaria, which has occurred several times in the early
2000s as a result of importation and favourable climatic conditions for competent vectors (Lu ez af,

2014). Therefore, in order to achieve three consecutive years of zero indigenous cases (the requirement
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for WHO certification of elimination), a sustained and targeted investment in surveillance together

with efficient treatment is necessary.

Yunnan province has recorded malaria outbreaks and remains an identified foci of residual
transmission as other areas in the country have reached elimination (Xia ef al., 2014; Feng ¢t al., 2015;
Hu et al., 2016; Lai et al., 2017; Shi et al., 2017). The province shares borders with Myanmar, Vietnam
and Laos and has a strong agricultural focus. Previous studies suggest that seasonal agricultural
workers and farmers are at highest risk of contracting malaria in Yunnan, with rice yield and the
proportion of rural employees being spatial factors positively associated with malaria incidence (Yang
et al., 2017). The border region of Myanmar and Yunnan is generally ecologically suitable for malaria
transmission, has a large mobile population, with few natural geographic borders separating the two
countries, as well as being a site of socio-political conflict and instability (Zhang ez al., 2016). In this
context, it can be unclear whether there is any sustained local transmission or if all the observed cases
are the result of short, stuttering transmission chains following importation into suitable areas. As the
area of highest concern for re-emergence in China and the last to reach zero cases, I therefore sought
to characterise the transmission dynamics of both P. vvax and P. faliparnm in the region as China

approaches elimination certification.
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Figure 4.1: Characteristics of Yunnan province, China. A) Map showing location of Yunnan Province. B) Case counts of confirmed and probable P. vivax
malaria 2011-2016, blne arrow shows Y unnan province, demonstrating both highest numiber of cases but also significant proportion of local cases, unlite most
other provinces, (with exception of Hainan province).

As illustrated in previous chapters, methods from outbreak analysis and network research have
recently been developed and applied to quantify the transmission of malaria and other infectious
diseases in very low transmission and epidemic settings (Reiner ez a/., 2015; Routledge ¢ al., 2018;
Wesolowski ¢ al., 2018). In China, as in other eliminating contexts, traditional metrics of malaria such
as parasite prevalence are not appropriate due to small numbers and extremely sparse and
spatiotemporally heterogeneous distributions of infections. However due to the strength of the
surveillance system in China, detailed information is available about each individual case (including

the time of symptom onset and location of residence), and case reporting is believed to be very high.
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By adapting and applying a continuous diffusion network approach (Gomez Rodriguez e al., 2014)
within a Bayesian framework introduced in Chapter 2 I quantify case reproduction numbers, R., and
uncertainty in these estimates for all P. vwax and P. falciparum cases of malaria recorded in Yunnan
province between 2011 and 2016. I incorporate these estimates into Bayesian geostatistical models
and time series approaches to estimate how R, varied over space and time which I use to estimate
timelines to elimination and likelthood of resurgence.
4.2 Methods

4.2.1 Data
Anonymised case data for all confirmed (N=4078) and probable (N=285) malaria cases reported
between 2011 and 2016 in Yunnan Province (N =4390) were obtained from the Chinese Centre for
Disease Control (CCDC). For each case, data included date of symptom onset, GPS coordinates of
symptom onset address, health facility address, travel history, and in some cases, the GPS coordinates

of presumed location of infection.

Of these cases, the majority were P. vivax (N = 3469, of which 2858 were classified as imported). Of
all recorded P. falciparum cases (N=791), 91% (N=720) were imported. Small numbers of P. malariae
(N=8) and P. ovale (N=1) were excluded from the analysis. Cases defined as “untyped” (N=067) were
also excluded. A small number (N=27) of cases classified as mixed infection were included in the
separate analyses of each species. A full breakdown of the cases and species composition across

Yunnan province between 2011 and 2016 is included in Tables 4.1 and 4.2.
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Table 4.1: Cases by diagnosis type (probable and confirmed) and species across Yunnan Province

Mixed infection P. falciparum P. malariac P. ovale P.vivax Untyped

Confirmed 27 770 8 1 3269 3

Probable 0 21 0 0 200 64

Table 4.2 Cases by imported/local status and species across Yunnan province

Mixed infection P. falciparum P. malariac P. ovale P.vivax Untyped

Local 4 71 0 0 611 51

Imported 23 720 8 1 2658 16

4.2.2 Surveillance system in China
The PRC has a sophisticated malaria surveillance system, described in detail elsewhere (Yang ef al.,
2012; Cao et al., 2014; Feng et al., 2014; Zhou et al., 2015; Hu et al., 2016) and summarised here.
Surveillance is carried out in both a passive and reactive manner, organised and administered at the
national, provincial and county level. The centralised China Information System for Disease Control

and Prevention (CISDCP) receives daily updates on case reports from health facilities

Passive detection occurs according to a protocol at the local level, such that cases are tested by
microscopy or Rapid Diagnostic Test (RDT) and reported to the central information system within
24 hours. Case investigation is then pursued, where cases are confirmed via double readings of
microscopy slides and in some cases polymerase chain reaction (PCR) confirmation at provincial
laboratories. At this point it is also determined whether the case is locally acquired or imported by
taking patient travel history — if a patient has travelled to a malaria endemic country within a month
of symptom onset the case is then classified as imported (Cao et al., 2014). Case investigation should

be completed within three days.
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Foci investigation occurs once a case is detected to determine whether the foci is inactive, active or a
pseudo-focus based upon the absence or presence of suitable vectors (inactive), and presence or
absence of malaria in the resident area of the case if imported (pseudo-focus). Reactive Case Detection
(RACD) of case contacts and populations with demographic similarities (for example individuals
working in the same industry and vicinity as the case) is carried out. In active foci more intensive
RACD screening of a larger pool of neighbours and contacts is carried out using Rapid Diagnostic
Tests (RDTSs) for immediate detection, followed by PCR testing of blood spots to detect low-density
infections. IRS (Indoor Residual Spraying) is also carried out(Cao ¢ al., 2014; Feng ¢t al., 2014; Zhou

et al., 2015).

The Ministry of Health (MoH) in China has also been measuring the timeliness of the recommended
protocol and follow-on ability to meet these targets. It was found that the one-day target for case
reporting was almost always met because this is required by law. In the years following the introduction
of the 1-3-7 policy, the proportion of cases investigated within three days increased from roughly 55%
in 2011 to almost 100% by 2013. However the programme took longer to achieve the seven day focal
point investigation goals, with just over 50% of foci investigated and treated within seven days by the
end of 2013 (Cao et al, 2014). Nevertheless, by 2015, adherence to the 1-3-7 strategy improved and
this figure increased to an estimated 96% (Zhou et a/,, 2015). Whilst some cases could still be missed,

the thoroughness of the approach means numbers of missing cases are likely to be small.

4.2.3. Defining the serial interval distribution

The serial interval is defined as the time between a given case showing symptoms and the subsequent
cases they infect showing symptoms (Fine, 2003). For a given individual j at time t;, showing
symptoms before individual i at time t;, the serial interval distribution specifies the normalised

likelihood or probability density of case [ infecting case j based on the time between symptom onsets,
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ti — t;. The serial interval summarises several distributions including the distribution of a) the times
between symptom onset and infectiousness onset, b) the time for humans to transmit malaria parasites

to mosquito vectors, ¢) the period of mosquito infectiousness, and d) the human incubation period.

Taking a similar approach to my work (Routledge ¢z 4/, 2018) described in Chapters 2 and 3, I defined
a prior distribution of possible serial interval distributions for malaria. The serial interval distribution
of treated, symptomatic P. falciparum malaria, previously characterised using empirical and model based
evidence (Thomas S. Churcher ez al, 2014; Huber ¢f al., 2016a) was adapted to inform the prior
distribution for the relationship between time and likelithood of transmission between cases in China.
I analysed P. vivax cases and P. falciparum cases separately. The prior distribution was defined to be
flexible enough to reflect both the biology of P. vivax and P. falciparum as well as the dominant vector
species in Yunnan (recent surveys in Yunnan province have found Angpheles sinensis to be the dominant
vector species in mid-elevation areas and rice paddies and Anopheles mininus s.1. the dominant species
in low elevation areas (Shi ef @/, 2017; Zhang et al., 2018) ) and to allow for possible variation in
transmission dynamics, for example due to untyped infections or delays in seeking treatment. In
addition, there is a possibility of a small number of asymptomatic or undetected and therefore
untreated infections contributing to ongoing transmission, which will typically have a longer serial
interval. I use a shifted Rayleigh distribution to describe the serial interval of both species, which can
be varied by changing two parameters: @ and y. The parameter a governs the overall shape of the
distribution, and y is the shifting parameter accounting for the incubation period between receiving
an infectious bite and the onset of symptoms. The y shifting parameter was fixed at 15 days to account
for the extrinsic incubation period within the mosquito and the minimum time between infection and
suitable numbers of gametocytes in the blood to lead to symptom onset (Warrell and Gilles, 2002).

The prior for the a parameter determining the shape of the distribution was given a Normal
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distribution with mean 0.003 and standard deviation 0.1 (illustrated in Figure 4.2), giving an expected
time between symptom onset of one case and symptom onset of the case it infects of 36 days, with
the parameter value in the 2.5 percentile of prior having an expected serial interval of 21 days and the
equivalent parameter from the 97.5 percentile having an expected serial interval of 60 days. By
comparison the expected values for treated P. faliparum from existing literature range between 33 and
49.1 days (95%CI = 33- 69) (Churcher ez al., 2014; Huber ¢t al., 2016). Depending on how much
uncertainty there is in the serial interval of malaria, the prior for o, the shaping parameter for the SI
of malaria, may be varied. I explored the effects of different priors on the likelihood and posterior
estimates. I used the same mean value for o (0.003) but set the o prior to standard deviation between

1 and 0.01. The results of considering different priors for a, the parameter shaping SI distribution on

estimated R, values over time is shown in Figure 4.4.

4.2.3 Defining the transmission likelihood
I assume cases were classified correctly from case investigation as imported or locally acquired based
on recent travel history. Following this assumption, locally acquired cases could have both infected
others and been infected themselves. However imported cases could only infect others, as I assume
their infection was acquired outside of the country. Given the evidence (Cao ¢t al., 2014; Zhou ef al.,
2015; Hu et al, 2016) of strong adherence to the 1-3-7 policy for reporting and response to case
detection, and no evidence of relapse within the dataset (as each patient is given a unique identifier),
I assume that an individual can only be infected once by a case that has shown symptoms eatrlier in

time.

4.2.4 Transmission model specifics
To estimate the underlying pathways of transmission and likelihood of cases being linked by infection,

I adapt and extend the NetRate algorithm (Gomez Rodriguez ¢f al., 2014) as described in Chapter 2.
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The adapted model introduces the ability to model serial interval functions, account for imported
versus local infections and provides provision for missing or unobserved sources of infection, called
epsilon edges (Rodriguez and Schélkopf, 2012; Routledge e /., 2018)). I also extended the NeRate
algorithm from a frequentist to a Bayesian framework to incorporate prior knowledge about the serial
interval of malaria. This analysis was carried out via TensorFlow, via the Tensorllow and reticulate

packages in R (version 3.6.0).

The data analysed consider of a set of n infections/nodes I € (Iy, ..., I;) with associated times t =
{t1, ...ty} € R* and binary yes/no importation status 7 = {my,..,m,} € {1,0} .The serial interval
distribution of malaria, defining the probability individual I; infected individual I; at times t; > ¢t; is
defined through a shifted Rayleigh distribution f(tl-lt]-; a, }/) = a(ti -t — }/)e_a(ti_tf_y) for
shaping parameters a and y (Routledge et al., 2018). For this analysis I fix y = 15 days, fixed at 15
days to account for the extrinsic incubation period within the mosquito and the minimum time

between infection and suitable numbers of gametocytes in the blood to lead to symptom onset

(Kitchen and Boyd, 1937; Warrell and Gilles, 2002).

If one assumes that infections are conditionally independent given the parents of infected nodes, then

the likelihood of a given transmission chain can be defined as
[t a) = [lee [l o o\t @) (1)

Where aisa parameter matrix. Computing the likelthood of a given transmission chain thus
involves computing the conditional likelithood of the infection time of each infection (t;) given all
other infections, leaving out t; (tq, ..., ty\t;). If I make the assumption that a node gets infected once

the first parent infects it (Kempe, Kleinberg and Tardos, 2003) and define a survival function

S(ti|tj; aj,i) =1- foti_tjf(ti|tj; aj,i) dt (2)
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as the probability that infection [; is zoz infected by infection I; by time t; then I can simplify the

transmission likelihood as
f(t, a) = Htiet le:tj<tif(tl'|t]'; aj,i) Hlk:tk<ti,1kilj S(tlltk' ak,i) (3)

In this conditional likelihood the first term computes the probability the I; infected [; and the second

term computes the probability that I; was not infected by any o#her previous infections excluding I;.
This likelihood therefore accounts for competing infectors and finds the infector most likely to have

infected ;. To remove the k # j condition makes the product independent of j and results in the

likelihood

ftiltagy) (
<tiertar.o
LS(tiltjejq)

f(t) a) = Htiet Hlk:tk<ti S(tl Itk) ak,i) le:tj

In equation 4, f( )/ SO = H is the hazard function or rate and represents the instantaneous

infection rate between individuals I; and [;.

Assuming all cases reaching health workers or health facilities are recorded, missing cases may be
generated by two processes. Symptomatic cases may be missed by not seeking care or not being found
through active case detection, or cases may be asymptomatic and therefore unlikely to seek care or be
detected. The latter may have densities of parasites in their blood which are too low to be detectable
by microscopy if active case detection occurs. These processes apply to both imported cases or locally
acquired cases. I assume the pool of asymptomatic cases in the country is low and has a small
contribution to ongoing transmission. To account for unobserved infectors within this framework I
include a time-independent edge that can infect any individual. The survival and hazard functions for
this edge are defined as Sy(€;) = e™% and Hy = €;. The introduction if this edge also makes the

likelihood stable and never singular because the probability will not collapse to zero. As we will see
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below, because of this optimisation problem these edges are encouraged to be sparse and only invoked

if no other infectors can continue the transmission chain.

In addition to unobserved edges, I assume that observed imported infectors can infect other cases but

cannot be infected themselves. The final likelihood incorporating these two modifications becomes

(&, €) = uee So(e) Mietpee S(tiltes @) (Holed + T peyee, Ht: |t i) ) (5)

In order to find the optimal parameters for &, € I minimize the following log likelihood subject to

positive constraints on the parameters:
minimizey e — log f (t; a, €) subject to a, € > 0 for all values of i, (6)

This optimisation problem is convex and guarantees a consistent maximum likelthood estimate
(Gomez Rodriguez et al., 2014). To prevent biologically implausible serial interval distributions, I
impose a truncated normal prior probability distribution on @ ~Normal(0.003,0.1) [0,0.01]. When
optimising the likelihood, I include this prior probability and therefore evaluate the Bayesian

Maximum-a-Postetriori estimate.
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Figure 4.2: Plot illustrating the serial interval distributions used in the analysis. Red lines show 300 draws from the prior distribution
used in the analysis for the Serial Interval distribution. The black line represents the expected function and the maroon lines represent the 2.5
and 97.5 quantile values of the prior distribution for the shaping parameter, a.

4.2.5 Estimating R,
Individual reproduction numbers were estimated for each case by creating a matrix where each column
represents a potential infector and the rows represent a potential infectee, describing which infector
edges are connected to infectees and the normalised likelihood of the cases being connected by a
transmission event. Intuitively then, taking the row sums gives the (fractional) number of secondary
infections and therefore a point estimate of the time varying reproduction number R, (t;) This reflects
for an individual, how many people they subsequently infect. When multiple individuals have been
infected at a given time and/or place, one can take the mean individual R, and uncertainty in this

value as an indicator of reproduction numbers for a given time and/or location.
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In contrast to traditional methods based on Wallinga and Teunis (Wallinga and Teunis, 2004) the
algorithm presented here encapsulates not only the pairwise likelihood of transmission between two
cases, but conditions this likelihood on the impact of competing edges in the inferred network (the
survival of an edge). The resulting estimates of R, therefore consider the overall transmission tree in

optimisation and allow for missing cases within the tree.

4.2.6 Estimating timelines towards elimination and risks of resurgence
It is important for national malaria control programmes to have information about likely timelines to
elimination, chances of resurgence and uncertainty in these estimates. Using the distribution of R,
values and their seasonal and general trends, I analysed time series using the Prophet tool and R package
(Taylor and Letham, 2017) to explore general and seasonal trends as well as the impact of holidays on

results.

This approach applies an additive regression model
y(t) =g) +s(t) +h(t) +e (6

which is composed of trend, seasonal and holiday functions , where y(t) is the observations at time
t, g(t) is the general trend, modelled by a logistic growth model, s(t) is the seasonal effect, modelled
by Fourier coefficients, h(t) is the effect of specific holiday dates and €; is the etror term. I explored
the overall trend as well as seasonal trends, in addition tothe predicted R, between 2011 and the
beginning of 2020. I also explored the impact of the national holiday periods, some of which involve
large scale movement, such as the Chunyun period around the spring festival. 1 cross-validated

predictions and calculated root mean squared error (RMSE) and mean absolute error (MAE).
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4.2.7. Mapping R,
Transmission risk map estimates were constructed by separating individual reproduction numbers into
those above and below R, = 1 The latitude and longitude of the reproduction numbers were included
in a binomial Gaussian random field model implemented in rINLA (Rue, Martino and Chopin, 2009),
in which demographic and environmental covariates were used (Table 4.3) to estimate the likelihood
of a case having R, > 0 in the area each year from 2011 to 2016. This is a measure of malaria
“receptivity” or underlying transmission potential rather than overall malaria risk, as importation
likelihood is not quantified in this analysis. Area under the curve (AUC) scores from leave-one-out

cross validation were used to assess model fit (Figure 4.3)

The underlying spatial statistical model was fitted to binomial data, where when R was above zero, it
was assigned a value of one, and when Rc was equal to zero it was assigned a value of 0 (R, > 0 =

1; R, = 0) using the logit link function:
RI,; ~ Binomial(p;, N;)

log(p;/(1 —p))~GP(u, Q)

pu=a+Xp
Q= Ks_place
K5pace = solve (k* — A)%(Tx(s)) = W(s)

where R:O,i are the number of binary data points where R, > 0 = 1, N; is the number of trials, p;
is the estimated Rsq, expressed as a logit transformed probability and modelled as a Gaussian process

with ¢ and precision Q. The GP mean u is a linear function of a global intercept @ and a vector of
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True positive rate

P coefficients from space-time indexed covariate values X;. Q is a sparse precision matrix constructed
as the sparse finite element solution to the stochastic partial differential equation (k* — A)%(rx(s)) =
W (s), where A is the Laplacian, k is the spatial scale/range parameter, T controls the variance, & is the
spatial smoothness parameter (fixed at @ = 2), and W (s) is the spatial white noise process. To
account for the curvature of the earth the distance metric s is defined on a spherical manifold in

Cartesian R3.
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Figure 4.3: Area Under the ROC Curve (AUC) from cross validation of geostatistical model used to create riskmaps ot
P(Rc>0) for A) P. vivax and B) P. falciparum. The colours and labels (illustrated in the scale bar on the right side of the x axis) represent the
threshold for classification as 1 (Re>0) or 0 (Re=0). When the threshold is decreased, more positive values are returned, thus sensitivity (the true positive
rate) increases and specificity (1- false positive rate) decreases.
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Table 4.3: Table summarising covariates used in geostatistical model

Variable Class Variable(s) Source Type
temperature land surface temperature (day, MODIS product  dynamic
night and diurnal flux) monthly
precipitation mean annual precipitation WorldClim synoptic
elevation digital elevation model SRTM static
infrastructural accessibility to urban centres and modelled product static
development night-time lights and VIIRS
moisture metrics aridity and potential modelled products synoptic
evapotranspiration

Table 4.4: Posterior covariate parameter estimates for P. vivax R, risk map

Covariate Mean SD 0.025 Quantile 0.5 Quantile 0.975 Quantile =~ Mode
Elevation -0.00065 0.000369 -0.00137 -0.00065 7.82E-05 -0.00065
Day temperature (monthly) | 0.040258 19.13436 -37.5269 0.03972 37.57611 0.040258
Night temperature -0.11265 19.13447 -37.6801 -0.11319 37.42342 -0.11265
(monthly)

Difference between day and | -0.07346 19.13443 -37.6408 -0.074 37.46253 -0.07346
night-time temperature

(monthly)

Precipitation -0.00041 0.000248 -0.00089 -0.00041 7.96E-05 -0.00041
Utrban -0.06908 0.301495 -0.66102 -0.06909 0.522361 -0.06908
Intercept 4.065973 1.985619 0.167532 4.065917 7.961159 4.065973
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Table 4.5: Posterior covariate parameter estimates for P. falciparum R risk map

Covariate Mean SD 0.025 0.5 Quantile 0.975 Mode
Quantile Quantile

Elevation 0.000112 0.000502 -0.00087 0.000112 0.001097 0.000112

Day temperature

(monthly) -0.01005 19.12776 -37.5643 -0.01059 37.51285 -0.01005

Night temperature

(monthly) -0.03118 19.12771 -37.5853 -0.03172 37.49163 -0.03118

Difference between

day and night-time

temperature

(monthly) -0.00245 19.12769 -37.5566 -0.00299 37.52031 -0.00245

Precipitation 0.00015 0.00029 -0.00042 0.00015 0.000718 0.00015

Urban 0.361755 0.452532 -0.52672 0.361743 1.249487 0.361755

Intercept -1.86989 3.045358 -7.84895 -1.86998 4.104185 -1.86989
4.3 Results

4.3.1 R_estimates over time

Between 2011 and 2016, 3496 cases of probable and confirmed P. vivax infection including mixed

infections were observed in Yunnan province (2881 imported, 615 locally acquired). Including mixed

infections, 818 P. faliparum infections were observed, of which 75 were locally acquired. The mean

R, value estimated for P. vivax during this period was 0.171 (95% CI = 0.165, 0.178) and 0.089 (95%

CI = 0.076, 0.103) for P. faleiparum case. A decline in R, over time was estimated for both P. vivax

(Figure 4.6) and P. falciparum (Figure 4.6), with the most rapid declines occurring between 2012 and

2014 (Figure 4.5, Figure 4.6). No R, values above one were observed after 2014 for either species.

These findings are consistent with varying levels of uncertainty about the serial interval distribution

(Figure 4.4).
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. The lower panel shows case connts by

Month (by year)

Figure 4.5: Rc and case counts by month and year. The upper panel shows R estimates by month of symptom onset date, stratified by year

month, stratified by year.
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patterns of incidence are different to reproduction numbers — likely importation driving increase in records rather than R

4.3.2 Unobserved sources of infection
For P. vivax, 19 out of 615 locally acquired cases were estimated to have a moderate chance of having
an unobsetrved source of infection (estimated 0.8 = € > 0.5 ) and 2 cases were estimated to have a
high chance of an unobserved source of infection (estimated € = 0.8 ) . Together, this represents 3%
of locally acquired cases with a moderate to high chance of external infection sources. For P. falciparum,

2 out of 75 local cases were estimated to have a high chance of having an unobserved source of
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infection (estimated € = 0.8) and no other cases were estimated to have a moderate change of having

an unobserved source of infection (Figure 4.8)

4.3.3 Spatial patterns of R,
As transmission declined between 2011 and 2016, I observed a reduction in the incidence of locally-
acquired cases which is reflected in a reduction in the estimates of the reproduction number of each
locally-acquired case for both species (Figure 4.9). I estimate a decline in the probability of a
reproduction number for a P. vivax case being above zero over this period (Figure 4.10), with the
central parts of the province being the first to reach lower risks of non-zero R.. The border area
neighbouring Myanmar, where most cases were observed, had the lowest amount of uncertainty in
the estimates. P. faliparum shows a decline in risk of R > 0 across the province, with the more isolated
areas in the north of the province showing both the highest predicted risk (Figure 4.10) but also the
most uncertainty, due to a lack of cases observed there (Figure 4.11). By 2016 all areas have reached a
low risk, although there is more uncertainty in these estimates compared to P. vivax, almost certainly

due to the smaller sample size.
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Histogram of epsilon edge estimates for F. vivax

S00
|

00
I

Freguaricy
200 300 400
1

]
.EI —|
D - 1
| | I I I
LRI 0z 0.4 06 0.8 1.0
Epsilon edge
B Histogram of epsilon edge estimates for P. falciparum
L=
= -
oy
§ ¥
po |
R
=
[T
=3
o
D —
| | | I |
0 0.2 04 06 048 10
Epsilon edigs

Figure 4.8: Histogram of epsilon edges estimated by model.
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Figure 4.10: Map of risk of Rc > 0 and uncertainty in this estimate from application of a Gaussian Process geostatistical
model with a logit link function to times and locations of observed cases for A) P. vivax and B) P. falciparum malaria across Y unnan
province in each year 2011-2016. This represents the risk of a case having an Re>0 if observed, stratified by year.
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A

Figure 4.11: Standard deviations in estimate of risk mapped in Figure 4.10 from binomial INLA model. For A) P. vivax and
B) P. falciparum
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4.3.4 Short - term predictions and temporal patterns in timeseries of Plasmodium
vivax cases

Using the Prophet additive regression model to make short-term predictions, a posterior mean R, of
0.005 (95% CI = 0 - 0.34) was estimated for Plasmodium vivax cases up to 2020 (Figure 4.12A). A
declining trend was observed, with the fitted trend for R, which estimates the general trend, separate
to the influence of seasonal and holiday effects, declining from 0.31 (95% CI = 0.31, 0.34) at the start
of 2011 to 0.004 (95% CI =0.002-0.006 ) by the end of 2019 (Figure 4.12B). I estimate a small effect
of holiday periods to differences in R, observed, with Chinese New Year and National Day associated
with small increase risk in R, of 16% ( 95% CI = -112%, 152%) and 39% (95% CI = -43%, 118%)
(Figure 4.12B) which in this very low transmission context could increase the probability of small
outbreaks of local transmission in areas in which high rates of importation occur, although very wide
credible intervals were associated with these estimates. I did not identify a clear seasonal trend,
however two peaks were identified, with up to 20% (95% CI = 14%, 26%) increases and 28%
decreases (95% CI -35%, -22%) in risk of R, associated with April/October and the beginning of

January respectively (Figure 4.12B).
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Figure 4.13 Results from cross validation of additive regression forecasting model showing A) Mean Absolute Error (MAE) and B)
Root Mean Squared Error (RMSE) using a horizon window of 365 days, training dataset of first 730 days.
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4.4 Discussion

Quantifying reproduction numbers and their spatio-temporal variation can provide useful information
to inform strategies to achieve and maintain elimination in contexts where traditional measures of
transmission intensity are not appropriate. 1 used individual level surveillance data to infer
reproduction numbers by estimating the likelihood of cases being linked by transmission and applied
this to a dataset of all confirmed and probable cases of P. vivax and P. faleiparum occurring in Yunnan
province between 2011 and 2016, which is a focus of concern for re-emergence. My results suggest
that transmission in this province decreased rapidly between 2011 and 2016 as shown by a declining
risk of R, exceeding zero across the province. This decline is relatively robust to assumptions about
the serial interval distribution. Extrapolating this trend using time-series methods, I expect this trend

to continue, predicting a mean R, of 0.005 up to 2020.

Given the consistently very low R, values estimated by 2014 onwards, and the future projections
based on observed reproduction numbers over time, the results suggest that re-emergence or
outbreaks of sustained transmissions are unlikely, provided interventions are continued. However, as
all data analysed was collected whilst the NMEP was in place, I cannot draw conclusions about the
impact of scaling back interventions or consider other counterfactuals. There is also some uncertainty
in the estimates of current and future R, although the 95% credible intervals of these estimates remain
below 1. It is important to note that even with low R, values it is still possible for locally acquired
cases to occur following importation, however the probability of sustained chains of transmission
decreases as R, decreases. There also is more uncertainty in the estimates of risk in areas that have
not observed many cases. It is difficult to determine whether an absence of cases is due to a lack of

detection, a lack of importation events occurring or a low underlying receptivity to transmission.
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However, it is worth noting that the greatest uncertainty in spatiotemporal risk estimates of R, > 0
tends to be in areas of high elevation (elevation > 3000m), where there is unlikely to be transmission.
Given the large numbers of imported cases, it is important to highlight these uncertainties and ensure
control measures are maintained. Nonetheless, my findings are promising for China to meet their 2020
elimination goal. The results presented here highlight the success the country has had in malaria
control and highlights the difficulty of elimination certification in contexts where both distant and

local cross border importation is common.

The work presented in this chapter attempts to quantify receptivity, or the potential for local
transmission to occur following the introduction of a case. It is important to note that while competent
vectors are present in a place we would not expect a receptivity of zero (although if case detection and
management is fast and effective we could expect a receptivity which is near zero). There are many
areas where there have been no importation events and therefore there has been no opportunity to
observe resulting local cases, therefore in some areas the geostatistical model predicts a risk of zero or
near zero, but the uncertainty associated with this prediction is high. Conversely areas where there has

been more importation allow more certainty in risk estimation.

Whilst there is a clear peak in incidence of cases occurring in May (Figure 4.7) , the seasonality of R,
estimates were less clear, although there seemed to be two peaks in seasonal increases in R, one
occutring in March/April, and one in October. This pattern could be an artefact of human movement,
with both periods associated with seasonal movement and holiday periods — the Chunyun period occurs
in China for Chinese New Year and the holiday week of the National Day in October and is associated
with intranational travel to visit family. During this time, there is often movement from cities to rural
areas, and so in these contexts there may be more opportunities for infection to occur as more people

are exposed to bites from suitable vectors. This is supplemented by the finding that these specific
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holidays are associated with small to moderate increases in R., however it is worth noting the very
wide credible intervals and the great deal of uncertainty associated with these estimates, and therefore

caution is required when interpreting this finding.

There are several limitations to this study. Firstly, there is a limitation in the classification of local and
imported cases used in this study. For instance, the definition of importation used in case classification
is defined by travel to any malaria-endemic areas outside China in the month prior to illness onset.
This definition might include people who travelled abroad within the week prior to illness onset, but
biologically their infection could not have been obtained during that time given the incubation period.
However, in the absence of alternative information, travel history may provide a better indication of
the likely importation status of a case than attempting to infer importation without this information,
however there could be scope in future work to allow for incorrect travel history. As certification of
elimination is now tolerant of introduced (first generation imported-to-local transmission) but not
indigenous (second generation local-to-local transmission) cases, being able to differentiate between
the two, and understanding how much transmission is indigenous versus imported or introduced is

an important area of focus for future work.

It is important to consider unobserved cases and their potential contribution to transmission
dynamics. I do account for unobserved cases via epsilon edges; however, this method is still more
suited to scenarios where most cases are observed. In contexts with a high level of asymptomatic
infection contributing to transmission or with poor case detection and/or reporting, these approaches

would not be suitable.

For the P. vivax data, it is important to note that the approach used in this chapter does not explicitly
model relapse or recrudescence, but does allow for relapse as an unobserved source of infection. In

addition to finding no duplicated patient identifiers (suggestive of repeated infection or relapse) within
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in the individual- level electronic database, there are several other features of malaria control in China
that also provide evidence that it is unlikely that a large proportion of the observed cases are due to
relapse. According to China's National Malaria Elimination Technology Program (2011), the
epidemiological history of each case has been investigated to check the source of the infection and
the history of previous infection and relapse malaria. In addition, all malaria cases received free

antimalarial treatment, and each case of P. vvax malatria was treated with radical cure.

Nonetheless, there is a chance of some relapse malaria which was missed during case investigation,
treatment and surveillance. In our approach we jointly estimate unobserved sources of infection but
are agnostic as to the specific cause of the unobserved source. As a result, relapses are considered as
one of the potential unobserved sources of infection. Although large amounts of relapse are unlikely
for the reasons outlined above, it is true that if there were very large amounts of relapse, the estimated
reproduction numbers could be over estimated. However, given that we find such low reproduction
numbers, even if this unlikely situation were the case, this does not impact our key findings and in fact

would be stronger evidence of China achieving strong reductions in malaria transmission.

A second limitation is the type of data available for inference. Although not available for this study,
there are several data sources that increasingly are being collected and could enhance similar analyses
in the future in eliminating and pre-eliminating contexts. Firstly, methods to make use of contact
tracing data have been developed for emerging outbreaks (Nagraj ef a/, 2018) but have not to my
knowledge been applied to endemic disease in the elimination. Although contact tracing for indirectly
transmitted diseases is more difficult, identifying if the likely source of infection is a breeding site near
the home or a place of work is carried out through active case detection schemes, but often the
resulting data are not made available alongside line list data. This information could be used to weight

certain connections. Genetic data are also increasingly available, and provide useful information about
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movement of parasites (Chang e# al, 2019; Tessema ez al., 2019), the likelihood of two cases being
linked by transmission, and can provide useful information to help distinguish imported from local
cases and chains of transmission resulting from importation from on-going local transmission
(Wesolowski ez al, 2018). Such data were not available in this context; however, a similar
methodological framework or approach could incorporate information such as genetic distance.
Historical data on incidence at fine scale (e.g. village level) could also be used to inform likelihood of

asymptomatic infection.

The effect of holiday periods had a large amount of uncertainty associated with the estimated effects
they had on transmission, and therefore their impact should be interpreted with caution. However,
the behavioural changes associated with Chinese New Year could lead to behavioural changes which
may impact reporting and treatment seeking rates and therefore bias reporting during these times —
due to individuals not being in work, travelling to other parts of the country. Changes in importation

during this time due to travel to see family may also bias estimates.

I introduced a new framework for analysing individual level surveillance data and found that in
Yunnan province, R, has seen a notable downward trend since 2011 and is expected to remain low
with maintained interventions into 2020. This decline coincides with 1-3-7 strategy in improved
adherence to guidelines. I predict a mean R, of 0.005 for 2019, however even with such low R, values
estimated, there may still be a need to continue to invest in detecting and rapidly responding to
imported cases in order to achieve three consecutive years of zero cases and prevent resurgence.
Nevertheless, China’s elimination strategy and investment in surveillance provides a useful roadmap
for other countries planning for malaria elimination by illustrating how coordinated and timely
surveillance and response can be implemented, as well as sustained investment in surveillance, and

region-focused international collaboration.
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5

Incorporation of distance features into the inference
framework

5.1 Background and motivation

As discussed in earlier chapters, individual-level disease surveillance data, collected routinely and as
part of outbreak response, capture a wealth of information which could improve measurements of
transmission and its spatiotemporal variation, in turn informing the design of epidemiological
interventions. In many cases, this includes additional forms of information to the primary data inputs
used in previous chapters, namely the time of symptom onset and classification of cases as imported
or locally acquired. For example, there may be geo-located health facility or residence data,
demographic data about the patients such as sex, age and occupation. In some cases, molecular data
such as parasite or viral genetic sequences or markers are also available. Robust methods to utilise
these different forms of information are required in order best support decision making. However,
challenges exist in making use of these diverse data sources and leveraging the information they
contain within a single inference framework. Geographic information, in the form of GPS coordinates
or address of residence or health facility, is often collected but could be more effectively utilised,
especially in combination with other information such as symptom onset time and genetic distance.
Furthermore, the relative importance of location in determining observed patterns of infection and
transmission risk compared to other factors remains poorly understood for many diseases. It is unclear
whether simple models of distance can explain the variation observed and inform the design of
effective interventions or whether more complex information and data are required, for example
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models incorporating realistic models of human movement. In this chapter I extend the algorithm
introduced in Chapter 4 to incorporate spatial or similar distance-based information to estimate
reproduction numbers and their spatiotemporal variation. This approach is then applied to four
malaria line list datasets from national malaria elimination programmes: all confirmed cases recorded
between 2010 and early 2016 in El Salvador (used in Chapter 3), all suspected and confirmed cases
of Plasmodium vivax and Plasmodium falciparum malaria recorded between 2011 and 2016 in China (the
subset of this from Yunnan province was analysed in Chapter 4), and all confirmed cases between
2010 and 2016 in the Kingdom of Eswatini, formally Swaziland (previously analysed in (Reiner e 4/,
2015) to explore various assumptions about the relationship between locations of cases and likelithood
of transmission occurring between them, as well as the impact of unobserved cases. The approach
introduced in this chapter is flexible and provides the potential to incorporate other sources of
information which can be converted into distance or adjacency matrices such as travel times or
molecular markers.
5.1.1. The importance of location in malaria transmission

The importance of spatial location has long been identified as important in infectious disease
transmission, as illustrated by the often-cited example of John Snow’s 19" century map of cholera
cases in London which identified the Broad Street water pump as the likely source of infection (Snow,
1855; Cameron and Jones, 1983). Diseases often are distributed non-randomly in space, and this
distribution is often determined by co-variates which also vary over space such as temperature, land
use, vector or human population distributions. Analyses of this variation and associated co-variates
can identify disease risk factors, and importantly make predictions about risk of disease occurrence in
unobserved localities. Over the past 15 years, there has been increased interest in using geostatistical
methods to map malaria due to the development of statistical techniques, suitable computational

power, and necessary data to carry out rigorous statistical analysis. Great strides have been made in
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mapping many aspects of malaria epidemiology including burden and distribution of different
Plasmodium species (Dalrymple, Mappin and Gething, 2015), vector distributions (Hay ez a/, 2010),
clinical incidence (Bhatt e a/, 2015) and climate/habitat suitability (Gething ¢# a/., 2011). Whilst these
methods have been powerful in demonstrating changes in malaria transmission over time and the
impact of control measures (Bhatt ez a/., 2015) they require large numbers of cases to estimate values
of interest such as prevalence with a reasonable amount of uncertainty. As a result, they cannot be
easily applied to elimination settings where case counts are low. Furthermore, in elimination settings
malaria transmission is thought to take on more epidemic dynamics (Cotter ¢z al., 2013) ;meaning the
importance of time and other highly dynamic factors such as human movement patterns becomes
more relevant, therefore space becomes more related to time and how mobile and connected infected

individuals are and how far they travel.

Malaria transmission requires a human infected with blood stage parasites to be bitten by a female
mosquito, for that mosquito to ingest gametocytes and then for that mosquito to bite a susceptible
human and inject sporozoites during the blood meal. Therefore, several spatially relevant processes
must be considered, which occur on different scales (Figure 5.1). In the absence of human movement,
the flight range of the mosquito vector limits transmission distance. Historical mark-release-recapture
studies of Anopheles albimanus in El Salvador found the mean dispersal distance of vectors based on
mark-release-recapture to be 548m in the dry season (Lowe, 1974) and 942m in the wet season (Lowe
¢t al., 1975), with a maximum dispersal distance of 3km (Lowe, 1974), whilst a more recent study in
Belize found recapture of _Awnopheles albimanns at Om from the release point only. Angpheles sinensis,
now thought to be the dominant vector species in South-western China (Huang ez /., 2015; Zhang et
al., 2017), was found to have a range of up to 12km, with 90% of captures occurring within 6km in a
study in Korea. Studies within a Chinese city found that 90% of mosquitoes were recaptured within
100m, with a maximum range of 400m (Liu ef a/, 2012). Blood fed Anopheles gambiae has been
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found to have a maximum flight distance of 10km, however as this was carried out within a flight
chamber it is not clear what wild dispersal distance may be. Based on the information available, it is

reasonable to assume that in most contexts the maximum range is 10km and most dispersal likely to

be within 1km.

Nonetheless, due to the period of time in which malaria parasites can reside within a human body,
human commuting and migratory patterns can allow for the movement of parasites across longer
distances (Lynch and Roper, 2011; Wesolowski ez al., 2012; Wangdi ef al., 2015), and for transmission
to occur far from the point of infection if suitable vectors are present. Daily or weekly commutes over
shorter ranges introduce the potential for frequent opportunities for parasites to travel between a
residence location and a place of work. Seasonal or one-off migration events, driven by economic,
environmental, cultural or socio-political forces such as pilgrimages, fleeing violence or instability, or
seeking seasonal employment opportunities, e.g. as a logger or agricultural worker also can lead to
infections occurring over long distances (Cruz Marques, 1987; Wangdi ¢ /., 2015; Surjadjaja, Surya

and Baird, 2016).

5.1.2. Modelling the relationship between Euclidian distance and transmission
likelihood

A variety of models and functions have been used to describe the spatial component of infectious
disease transmission. The most basic approach discussed in this thesis is to define binary near/far
threshold, where all cases within a certain area or distance from each other are considered equally
likely to occur (weighted 1) and cases outside this threshold are deemed unlikely (weighted as 0). This
may be appropriate when there is an epidemiological reason for distance to be important at a certain
threshold. An example of this may be a highly immobile, isolated population where only the pathogen

moves, whereby the movement range of pathogen or vector determines the relevant threshold. In a
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quarantine scenario a binary threshold may also be a valid model by differentiating between cases
which occur within a quarantine area versus outside of it. Such approaches are simple however are
likely to make oversimplifying assumptions in contexts where there is human movement, which often
can occur to and from population centres, resources such as bodies of water or places of work such

as agricultural land or mining sites.

Another approach, adopted in this chapter, is to utilise a spatial kernel, also known in ecological studies
as a dispersal kernel which is a probability distribution which describes the likelihood of either an
infection event or dispersal of an organism or contagion as a function of distance (Lindstréom ef a/,
2010). In many contexts empirically estimating the kernel is not possible and so a well-studied
probability distribution is used to model the relationship between distance and the likelihood of
dispersal/transmission occurring across that distance. The Gaussian kernel has been the traditional
kernel of choice to model population spread and has been used to model a wide variety of diffusion
processes, including the spread of vector borne livestock diseases (Szmaragd ez al., 2009, Gerbier ez al.,
2008), and is the resulting assumption of a random-walk movement pattern (Turchin, 1998).
However, there is evidence that in many contexts, more leptokurtic, or “fat-tailed” distributions are
found in outbreak data (Ferguson e 4/, 2001) and also human mobility patterns (Brockmann ez a/,
2006), which are indicative of higher frequencies of both short-distance and long-distance

movements. One such example of a leptokurtic distribution is the exponential distribution.

There are also several potential extensions to the spatial aspect of the model not explored in this
chapter due to a lack of required population data to parameterise them, however which could be
incorporated into the analytical framework in the same way the current exponential and Gaussian
kernels are used. One such approach is to use a gravity model. Gravity models assume human

movement follows gravitational “pulls” to population centres, whereby distance to local centres of

153



dense populations are considered as well as Euclidian distance between two points or cases. The most

a,B

J

basic gravity model is T;j = —f(Lr”),
ij

which describes the number or probability rate of individuals

T; moving between locations 7 and / per unit time. The Gravity model assumes this is proportional to
a power (determined by a and ) of population sizes of both locations 7 (m{") and ; (nf )and decreases

with the distance between the populations, 7;, following a function f{r;) which can be adapted according
to the context and fit to empirical data. However, the gravity model is dependent on these parameters
which can be difficult to estimate. In recent years, radiation models have been proposed as an
alternative to gravity models to model population flows (Simini ez a/., 2012). Another model adapted

from physics to model human movement, the radiation model, instead models population flow as

minj

TU:T

i , where s; the total population in the circle of radius 7; centred at 7
(mi+sij)(mi+ nj+5ij)
(excluding the source and destination population), T; is the total number of individuals moving from

location Tand n; is m; are the respective populations in location j and i respectively.

Recent work (Marshall ez al., 2018) fitted travel data collected from Mali, Burkina Faso, Zambia and
Tanzania specifically to elucidate travel patterns relevant to malaria transmission (Marshall ez a/., 2016)
to both Gravity and Radiation models. They found that the radiation model was a better fit for travel
to nearby populations, whilst the gravity model was a better fit to the overall data and for travel to
large population centres. However other work has suggested that, based on mobile phone data, human
movement can be described by a Truncated Power Law (Brockmann, Hufnagel and Geisel, 2000;

Gonzalez, Hidalgo and Barabasi, 2008; Meyer and Held, 2014).

5.1.3. Alternative distance measures

Due to the different spatial scales at which malaria transmission and the processes driving it operate,

Euclidian distance may not be the most appropriate metric of distance between cases due to human
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travel patterns and travel times not always being proportional to Euclidian distance, and other
measures of distance could be incorporated into the framework introduced in this chapter. Indeed
similar approaches to the one presented in this chapter (Wang, Ermon and Hopcroft, 2012) using
Rayleigh hazard and survival functions have been developed to incorporate features of tweets posted
on twitter such as the language of tweet and the similarity in the wording of a text, in combination
with temporal information. In the same way, features such as occupation, sex or other factors which
may affect travel patterns to higher risk areas may be incorporated into the framework. This would be
particularly important in contexts whetre P. &nowlesi is a concern, and proximity to forest/occupation
which takes one into a forest could indicate zoonotic transmission, whereas complete absence of time

spent near or in a forest would indicate human to human transmission.

One approach is to replace Euclidian distance with a measure of travel time or accessibility between
places. Accessibility indices consider movement by looking at transport networks such as roads and
calculate a “friction surface” which estimates the difficulty and time required to go from point A to
point B (Weiss ¢ al, 2018). If available, travel or mobility data could also be used either to
parameterise a spatial kernel or radiation/gravity model or used on an individual basis to weight likely

transmission events.

Increasingly genetic and molecular data are being collected as part of disease surveillance and outbreak
response. Increasing interest in using for endemic diseases nearing elimination such as malaria
(Wesolowski e al., 2018). There is evidence that genetic data can provide signals of movement of
parasites between populations (Chang ez /., 2019; Tessema ef al., 2019a). There could be scope to use
measures of genetic distance, particularly in contexts where the population genetics of malaria is not
complicated by cases being infected with multiple clones, and therefore identity by descent (Taylor,

2015) could be used as a metric of distance.
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5.1.4. Aims and approach

In this chapter, I introduce a flexible framework which could extend the approaches introduced in
chapter 4 to incorporate a range of approaches to modelling distance and transmission likelihood, as
well as non-Euclidian distance metrics, whilst continuing to allow for unobserved sources of infection
and incorporate estimates of uncertainty through prior distribution definitions. Then as proof of
concept, I apply versions of this framework using Gaussian and Exponential kernels to four datasets
from malaria elimination and near elimination contexts, as well as carrying out a detailed sensitivity
analysis to explore the impact of varying assumptions about both the relationship between Euclidian
distance and transmission as well as the likelihood of a case having been infected by an unobserved

source of infection.

5.2 Methods
5.2.1 Data

5.2.1.1 The Kingdom of Eswatini

This dataset, analysed in by Reiner and colleagues (Reiner ¢# /., 2015) captures malaria cases recorded
by the national malaria elimination programme between January 2010 and June 2014. For each case
detected during this time (N= 1373), case investigation was carried out. For each case the following
were collected: GPS coordinates of household location, demographic information (age, occupation
and sex), use of malaria prevention interventions such as long-lasting insecticide treated bednets
(LLINs), and date of symptom onset, diagnosis and treatment, as well as travel history. Based on travel
history cases were defined as locally acquired, imported. For a small number of cases (N=58) the
local/imported status was determined “unknown”. For the purposes of this analysis, these cases were
treated the same as local cases, i.e. they were assumed to have potentially been infected by other cases

in the dataset and/or been infectors themselves.
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5.2.1.2 China

This dataset consists of individual-level case data for all confirmed and probable cases reported in
China between 2011 and 2016 (Table 5.1 and Table 5.2). The data consist of an individual identifier,
date of symptom onset, date of diagnosis and date of treatment, as well as the geolocated address of
residence and health facility. If the suspected location of infection was in China and not in the same
district, then the presumed location of infection was also included in the dataset. Demographic
information such as age and sex were also collected. A subset of this dataset, focussing on Yunnan
province, is analysed in Chapter 4. For the analysis the data were separated into P. faliparum and P.
vivax. P. malariae (N=252) and P. ovale IN=822) were reported but excluded from the analysis due to

the lower public health concern of these species. Untyped cases (N= 398)

Table 5.1: Cases by diagnosis type (probable and confirmed) and species across China

Mixed infection  P. falciparum P. malariae P. ovale P.vivax Untyped
Confirmed 260 11830 252 822 6631 87
Probable 0 176 0 0 693 311

Table 5.2: Cases by imported/local status and species across China

Mixed infection P. falciparum P. malariac P. ovale P.vivax Untyped
Local 5 92 4 1 1711 95
Imported 255 11914 248 821 5613 303

5.2.1.3 ElSalvador

This dataset is analysed and described in Chapter 3. Briefly, the data consist of all confirmed cases of
malaria between 2010 and the first two months of 2016 (N= 91 cases, of which 30 imported, 6 P.
Sfaleiparum, 85 P. vivax). For each case, the date of symptom onset was recorded. Residential address
was available for all but two cases. For these cases the location was available at the municipio, or

municipality level, and the coordinates of the centroid of the municipality (which for both were cities)
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were used as the geo-location. Two cases had addresses listed outside of El Salvador, both of which
were located in Guatemala. All cases within El Salvador with full addresses (N=85) were
georeferenced by latitude and longitude to caserio/ lotificacion level, which is approximately

neighbourhood or hamlet level.
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Figure 5.1: Temporal patterns of incidence and reproduction number estimates for P. falciparum in China

Plot showing the relationship between estimated R (red points) and incidence (shaded histogram) over time for both imported (lower row, biue,
imported =1) and local cases (upper row, red, Imported =0) for P. falciparum in China
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Figure 5.2: Temporal patterns of incidence and reproduction number estimates for P. vivax in China

Phot showing the relationship between estimated R, (red points) and incidence (shaded histogram) over time for both imported (lower row, blue, imported =1)
and local cases (upper row, red, Imported =0) for P. vivax in China
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El Salvador
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Figure 5.3: Temporal patterns of incidence and reproduction number estimates for El Salvador

Plot showing the relationship between estimated R ¢ (red points) and incidence (shaded histogram) over time for both imported (lower row, biue,
imported =1) and local cases (upper row, red, Imported =0) for P. vivax in El Salvador
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Swaziland
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Figure 5.4: Temporal patterns of incidence and reproduction number estimates for Swaziland

Plot showing the relationship between estimated R (red points) and incidence (shaded histogram) over time for imported (middle row, biue,
Imported =1) and local cases (npper row, red, Imported =0) and “unknown” importation status for P. falciparum in Swaziland
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5.2.2 Transmission model specifics

In order to incorporate features other than time, I extended the algorithm applied to Yunnan Province
in Chapter 4 by introducing a second function, f,, which describes the relationship between space (or
distance of any kind) and likelihood of transmission. An appropriate function such as a Gaussian
kernel is defined and the parameter(s) shaping that distribution, B, are either fixed, or given a prior

distribution and estimated from the data. Multiplied, together, this returns a single function:
flxotilxg ts @i, B) = filtiltys @) x fo(xilxg; B) (1)
Determined by times t, spatial locations X, transmission rates &, spatial parametet(s) f5.

As before, the hazard is defined as the pairwise likelihood divided by the survival term:

_ f(xo tifx, ts aq j, B)
s(xi tilxg, t; @i g, B)

(2)
To derive the survival function, one integrates across all distances and times as follows:

SCeo tilx @i ) = Uy Sy filtilts ai0) folxilxs B) de dx (3)

The specific functions used in f;(¢;]t;; a; ;) and  f(x;|x;; )  will have large impacts on the
outcomes of results and therefore the assumptions inherent in these choices must be made explicit

and linked to the mechanisms of transmission.

To illustrate this approach by applying to several malaria line-lists, I will use a shifted Rayleigh
distribution to model serial interval distributions, f; (¢;|tj; @; ), as used in Chapters 3 and 4. For the
second part of the likelihood which model the relationship between space and the likelthood of

transmission f5 (x;|Xj; B), Gaussian and Exponential diffusion kernels were used (Table 5.3).
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Table 5.3: Equations for f1, 2, hazard and survival for time -only, Gaussian and Exponential spatial kernels

f1(&ilt;; aq) f2(xilxj; B) Hazard Survival
Exponential a(t;—t; — y)e—%a(ti—tj—y) e BGi—x)) Ba(t; — t; — y)e B&ix)) e‘%“(ti_tj_y) 1
Gaussian a(ti —t— ,y)e—%a(ti—tj—y) e Pxi—x))? zﬁa(ti —t; - y)e—ﬁ(xi—x e—%a(ti—tj—y) ﬂ
Vi 28
Time only alt;—t; - y)e—%a(ti—tj—y) n/a a(t;—t—v) o-3e(ti=tj=7)

Using a shifted Rayleigh distribution as before in Chapter 4 and an exponential kernel the pairwise
likelihood of a case showing symptoms at t; and at residence location X; being infected by a case

showing symptoms at time t; and at residence location X;j, becomes
f(x;, ti|x]-, t; ai,j,ﬁ) = a(t; - t; — y)e_%a(ti_tf_y)e_ﬁ(xi_xf) (4)
As shown in Chapter 2, the survival term simplifies to:
S(xi, tilx;, t3 5, B) = e 2ty ) % ®)
And the hazard simplifies to

H(xi, tilx]-, t]'; ai‘j,ﬁ) = ﬂa(ti — t] — y)e_ﬁ(xi_xj) (6)
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For the Gaussian function, the pairwise likelihood of a case showing symptoms at t; and at residence

location x; being infected by a case showing symptoms at time t; and at residence location X; is

il 5 @0 B) = alty =t = y)e 2B (7)

The survival term is again determined by integrating the likelihood over all potential infection times

and all distances

o LiTtj

1 2
S(xi tilx 6 @i, B) = ( f f a(t;—t; —y)e 295~ BEx)" g dx (8)
0 0
Integrating over time returns
1 2
S(xu tilx, 520, B) = 9_5a(ti_tj_y)f e Bli=x)" gy (9)

0

Integrating over all distances gives

Lotti—t.—
S(xi,tilxj,tj;ai'j,ﬁ) =e 2 — (10)

Following equation 10, the hazard is equivalent to

(ti—t — )/)e_%"‘(ti_tf‘y)e‘ﬁ(’“i"cf)2

H(x, ti]x, 65 a1, B) = (11)
x., . x., ; a -’ =
DLy iy Wi j e_%a(ti—t,-—y)ﬂ
27
Which simplifies to
2 ﬁa t: —t; — 'y e_ﬁ(xi_xj)z
H(xl-, tilxj,t]-;ai‘j,ﬁ) = \/_ ( ! J ) (12)

Vr
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5.2.3 Modelling missing cases using € edges
The vast majority of disease surveillance and outbreak response datasets will not be able to capture all
cases due to asymptomatic infection, underreporting and movement of people in/out of the
surveillance area. Therefore, it is important to consider the impact of missing information on results
and identify potential missing sources of infection. In the work described in this chapter, as in chapter
2, we use Epsilon edges, €; , to identify potential sources of infection. Here, each hazard is estimated
as a further competing edge of transmission from an unobserved source, Hy(€;) . Depending on
assumptions for the likelihood and extent of unobserved infection sources, the epsilon edge value can
be set to a high or low value. When high, we assume high amounts of unobserved infection and unless
two cases have a very high likelithood of being linked, we assume the case was from an unobserved
source. When low, we assume little missing data and so cases are only linked to an outside source if

they are very unlikely to be linked to an observed candidate infector.

Adding epsilon as a competing hazard and survival returns

f(tx @ €B) = Meee Sole) Mree, S(oo tilxy, 3 i B) (HoCer) +
le:tj<tiH(xi'ti|xjrtj; ai,j'ﬂ)) (13)
The objective function is then
minimizey . —log f(t, x; a, €, B) subject to a, €, > 0 Vi, j (14)

Because this was carried out within a Bayesian framework the log posterior was maximised to obtain
the maximume-a-posteriori estimates.

5.2.4 Implementation of algorithm
The algorithm was written in TensorFlow, implemented in R via the #Tensorflow package. As in Chapter

4, a prior probability was defined for the parameter shaping the serial interval of malaria, informed by
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previous characterisations of the serial interval of malaria (Huber ¢# /., 2016) . Because clear data about
how likely the cases in each context explored here were to have moved long distances or the likelithood
a case has been infected by an unobserved source of infection were not available, several different
parameterisations of the model were used to represent different scenarios (Table 5.4) , and a detailed
sensitivity analysis was carried out (Section 5.2.6 and Table 5.5). The versions of the model which are
described in Figures represent different patterns of human/parasite movement, ranging from a
context where there may be small amounts of movement (almost all under 10km) to moderate
amounts of movement/travel( almost all under 50km) to a less restrictive parameterisation, where

near cases were more likely but far away cases were not completely excluded.

These datasets to different versions of the algorithm, as well as temporal-only algorithm described in
Chapter 2 and applied in Chapter 4, to explore the impact of different assumptions about the impact
of space on estimated R, values and their variation over time and space. We also evaluate the
performance of each approach by comparing differences in the second order AIC (AAICc), and the
corresponding Akaike Weights.
5.2.5 Comparison of including spatial information for each dataset

Twelve scenarios (Table 5.4) were considered when defining parameters for each dataset. These
scenarios consider three different levels of likelihood of transmission in relationship to Euclidian
distance (due to the limited range of mosquito travel, this is considered in the context of human
mobility), which was defined for both exponential and Gaussian kernels. These are illustrated in Figure
5.5 - Figure 5.7. Then the values for epsilon were set at 0.001 and 0.1, representing different levels of
missing cases likely. This can be interpreted as the chance of a case having an unobserved source of
infection. For example, 0.1 would represent P(unobserved source of infection) = 0.1. The results of
simulations carried out in Chapter 2 demonstrated that setting correct, informative priors for epsilon

returned accurate mean R, values, whereas uninformative priors for epsilon returned slightly
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underestimated values of R, when not all cases were observed. Varying standard deviations of the
prior were also considered: 1 and 0.001, representing high and low confidence in missingness
(informative and uninformative priors). Using the parameter definitions for each scenario for both

Exponential and Gaussian Kernels

The timeseries of R and its spatial patterns were illustrated for each dataset and parameter combination
and compared to the results of the time-only version of the algorithm (Algorithm 2, implemented in
Chapter 4). The results were also mapped to compare how spatial patterns in R, were affected by

assumptions about space and unobserved infections.

In order to compare models quantifiably, the second order Akaike Information Criterion (AICc) was

n

calculated using the equation AIC, = —2logf(x) + 2K(n—k—1

), where f(x) is the model

likelihood, K is the number of parameters estimated and n is the sample size of the data used to fit
the parameters. The AIC(Akaike, 1974) is used in model comparison, by creating a comparison of
negative log likelihood that penalises increases in model parameters, to prevent overfitting. AICc is
recommended for use with smaller datasets with larger numbers of parameters, and as the sample size
nincreases AICc converges to AIC(Hurvich and Tsai, 1989). The differences in AICc for each model,
known as AAICc, were calculated to compare models. Typically, a AAICc of greater than 10 is

considered strong evidence that that model performs worse than the model it is being compared to.

In addition, Akaike Weights were calculated, which are a measure of the relative likelihood of a model
compared to the others considered. Akaike weights are determined by taking the normalised relative
likelihood of a model which is exp( —0.5 * AAICc score ), and then dividing by the sum of these

values across all models to obtain a normalised result.
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Table 5.4: Table illustrating the different scenarios and corresponding parameter values tested in scenario

analysis
Scenario Description Scenario Beta (fixed) Epsilon
(prior)
Human movement unlikely, most movement under 1 Gaussian = 0.005 Mean = 0.1
10km
Missing cases more likely (but very uncertain) Exponential =0.1 SD =1
Human movement unlikely, most movement under 2 Gaussian = 0.005 Mean = 0.1
10km
Missing cases more likely (confident) Exponential =0.1 SD = 0.001
Human movement unlikely, most movement under 3 Gaussian = 0.005 Mean = 0.001
10km
Missing cases less likely (but very uncertain) Exponential =0.1 SD =1
Human movement unlikely, most movement under 4 Gaussian = 0.005 Mean =0.001
10km
Missing cases less likely (confident) Exponential =0.1 SD =0.001
Moderate human movement, most movement under 5 Gaussian = 0.001 Mean = 0.1
50km
Missing cases more likely (but very uncertain) Exponential =0.02 SD =1
Moderate human movement, most movement under 6 Gaussian = 0.001 Mean = 0.1
50km
Missing cases more likely (confident) Exponential =0.02 SD = 0.001
Moderate human movement, most movement under 7 Gaussian = 0.001 Mean = 0.001
50km
Missing cases less likely (but very uncertain) Exponential =0.02 SD =1
Moderate human movement, most movement under 8§ Gaussian = 0.001 Mean =0.001
50km
Missing cases less likely (confident) Exponential =0.02 SD =0.001
Longer range human movement likely 9 Gaussian = 0.0001 Mean = 0.1
Missing cases more likely (but very uncertain)
Exponential =0.01 SD =1
Longer range human movement likely 10 Gaussian = 0.0001 Mean = 0.1
Missing cases more likely (confident)
Exponential =0.01 SD = 0.001
Longer range human movement likely 11 Gaussian = 0.0001 Mean = 0.001
Missing cases less likely (but very uncertain)
Exponential =0.01 SD =1
Longer range human movement likely 12 Gaussian = 0.0001 Mean =0.001
Missing cases less likely (certain)
Exponential =0.01 SD =0.001
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5.2.6 Sensitivity analysis and comparison of prior choice on estimated results

In the scenario analysis above the distance shaping parameter is fixed. However due to the
uncertainties in the relationship between distance and likelihood of transmission, in many contexts it
may be useful to estimate 5. To explore the relationship between the estimated epsilon edges, €, and
estimated shaping parameter, 5, for the distance function. a detailed sensitivity analysis was carried
out to explore the impact of a) prior choice for € d) prior choice for f on both the maxmum-a-

postetiori estimates for f and the estimated mean R,.

To consider the effect of varying parameter values and explore their interactions, a range of distance
and epsilon edge priors were considered. A truncated normal prior was used for both parameters, and
the mean and standard deviation were varied. For € the mean was varied between 1e-10 and 0.5, and
the standard deviation was varied between 0.0001 and 0.1. For 8, the mean for a Gaussian Kernel was
varied between 0.00001 and 0.01 and for an exponential kernel the means considered ranged between
0.0001 and 0.1. For both the standard deviations varied between 0.0001 and 0.1 (Table 5.5). Every
possible combination of the parameters were run for each dataset and both Gaussian and exponential

spatial kernels, giving a total of 2400 parameter combinations tested per kernel, per dataset.

Table 5.5 Different parameters considered in sensitivity analysis

€ mean € SD f mean S mean B SD
(Gaussian)  (Exponential)
1le-10 0.0001 0.00001 0.0001 0.0001
le-5 0.001 0.0001 0.001 0.001
le-3 0.01 0.001 0.01 0.01
le-2 0.05 0.01 0.1 0.05
le-1 0.1 0.1
0.5

170



Temporal Exponential Gaussian
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Figure 5.5 : Illustration of likelihoods, hazards and survivals for less restrictive kernels (longer range human movement
likely). Plots showing how the painwise likeliboods, survivals and hazards vary with time and distance under different model structures. The first row of plots
shows the pairwise likelihoods, the second row shows the pairwise survival and the third row shows the pairwise hazard values for different combinations of
distance (in kilometres) and time between symptom onset (days). The first colunn shows the results for a time-only version of the algorithm. The second column
shows results for an exponential kernel and the third column shows results for a Ganssian kernel. In this example less restrictive values for beta, the shaping
parameter for the distance kernels have been chosen, representing a context where there is more long-range movement of parasites.
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Temporal Exponential Gaussian
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Figure 5.6: Illustration of likelihoods, hazards and survivals for moderately restrictive kernels (moderate human movement,
most movement under 50km). Plots showing how the pairwise likeliboods, survivals and hazards vary with time and distance under different model
structures. The first row of plots shows the pairwise likeliboods, the second row shows the pairwise survival and the third row shows the pairwise hazard values
Jfor different combinations of distance (in kilometres) and time between symptom onset (days). The first column shows the results for a time-only version of the
algorithm. The second colummn shows results for an exponential kernel and the third column shows results for a Ganssian kernel. In this example values for
beta, the shaping parameter for the distance kernels have been chosen to represent a context where there is more some movement of parasites, but where little
movement is expected beyond 50-75km. The likelibood for the Gaussian Kernel is more concentrated, which could represent shorter range movement e.g.
commutes, whereas the Exponential has a longer tail so conld represent a mixture of short and longer range parasite movement.
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Temporal Exponential Gaussian
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Figure 5.7: Illustration of Iikelihoods, hazards and survivals for highly restrictive kernels (Human movement unlikely, most
movement under 10km). Plots showing how the pairwise likelihoods, survivals and hazards vary with time and distance under different model structures.
The first row of plots shows the pairwise likelihoods, the second row shows the pairwise survival and the third row shows the pairwise hazard values for different
combinations of distance (in kilometres) and time between symptom onset (days). The first colummn shows the results for a timre-only version of the algorithm. The
second column shows results for an exponential kernel and the third column shows results for a Gaussian kernel. In this example more restrictive values for
beta, the shaping parameter for the distance fernels have been chosen, representing a context where there is very little movement of parasites, with very little
movement beyond 10-20kwm expected.
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5.3 Results

The work presented in this chapter aimed to develop a framework to integrate distance information
into the inference framework developed in Chapter 4 and then test the impact of varying assumptions
about the relationship between location of cases and the likelihood of transmission as well as the
impact of unobserved infection as modelled by epsilon edges, considering twelve scenarios, and
applying them to four line-list datasets using two different spatial kernels.
5.3.1 Results of model comparison by AAICc across different scenarios

When AAICc scores were used to compare model results, all models which included distance had
lower (and therefore better) AAICc scores than models which only included only time (Table 5.6). In
addition, exponential kernels consistently outperformed equivalent scenarios using Gaussian kernels
(Table 5.6). Two scenarios consistently returned the best AAICc results, namely Scenario 9 (El
Salvador and Swaziland) and Scenario 11 (China, P. vivax and P. falciparum). Both scenarios assume
longer range human movement likely and impose a smaller penalty on cases occurring larger distances.
These scenarios also allow variation in epsilon edge values and use a very weakly informative prior on
Epsilon edges, but with a different mean (0.1 for Scenario 9, 0.001 for Scenario 11). These results

also return smaller mean R, results than time-only versions of the model (Figure 5.8 — 5.12)

Table 5.6: Summary of AAICc results

Dataset Best Model(s), by AAICc Akaike Weight

Swaziland (Eswatini) Scenario 9, Exponential 1

El Salvador Scenario 9, Exponential 0.621540909785805
Scenario 11, Exponential 0.37845909

China P. vivax Scenario 11, Exponential 1

China P. falciparum Scenario 11, Exponential 1
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5.3.2 R_ estimates under different scenarios

Across all datasets, large differences in R, estimates were found depending on both & and

P parameters. When f8 is higher, the assumption is that there is little movement of parasites within
the country and therefore cases with residential addresses which are far away are unlikely to have

infected each other. When this is the case and we assume there are unobserved sources of infection
(either through a strongly informative prior on & with mean 0.1, or an uninformative prior with a
lower mean), then R, values are very low. However if we assume there are little or no unobserved
sources of infection, but continue to make restrictive assumptions about space, then most R, very low
but in the localities where there are cases we estimate much higher R, values as there are no other

possible infectors within a reasonable time and/or spatial area. This is illustrated in Figures 5.9 - 5.12.

When looking at the spatial patterns of R, estimates under different scenarios several trends are seen
across all datasets. Scenario 4 is particularly interesting to note because this scenario considers the

most restrictive assumptions, both about space and unobserved sources of infection. Across datasets,
Scenario 4 results in increased focality and higher R.s within these foci, but in comparison lower R_s
in other areas. All of the best scenarios as measured by AAICc resulted in small R, estimates, but

where comparably larger R, estimates were estimated, they were in localities identified as foci.
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Table 5.7 : Full results of AAICc and Akaike Weights for each scenario, dataset and spatial kernel considered

Dataset Scenario  Kernel AAICc Akaike Weight

2 Swaziland 1 Exp 3692506 0

4 Swaziland 3 Exp 3692532 0

6 Swaziland 5 Exp 1111429 0

8 Swaziland 7 Exp 1111432 0

10 Swaziland 9 Exp 0 1

12 Swaziland 11 Exp 59.5 1.20E-13

14 Swaziland Time Gauss 7386293 0

16 Swaziland 2 Gauss 3332136 0

18 Swaziland 4 Gauss 3340768 0

20 Swaziland 6 Gauss 2039970 0

22 Swaziland 8 Gauss 2050183 0

24 Swaziland 10 Gauss 195254.5 0

26 Swaziland 12 Gauss 203761 0

28 El Salvador 1 Exp 25281.75 0

30 El Salvador 3 Exp 25283.46 0

32 El Salvador 5 Exp 7610.738 0

34 El Salvador 7 Exp 7613.293 0

36 El Salvador 9 Exp 0 0.621541

38 El Salvador 11 Exp 0.992188 0.378459

40 El Salvador Time Gauss 50740.41 0
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42 El Salvador 2 Gauss 22963.65 0

44 El Salvador 4 Gauss 23435.99 0

46 El Salvador 6 Gauss 13967.11 0

48 El Salvador 8 Gauss 14610.11 0

50 El Salvador 10 Gauss 1486.707 9.88131291682493¢-324

52 El Salvador 12 Gauss 1976.551 0

54 China P. vivax 1 Exp 59896712 0

56 China P. vivax 3 Exp 59892352 0

58 China P. vivax 5 Exp 18036424 0

60 China P. vivax 7 Exp 18032128 0

62 China P. vivax 9 Exp 4448 0

64 China P. vivax 11 Exp 0 1

66 China P. vivax Time Gauss 1.2E+08 0

68 China P. vivax 2 Gauss 54025048 0

70 China P. vivax 4 Gauss 54259728 0

72 China P. vivax 6 Gauss 33089320 0

74 China P. vivax 8 Gauss 33199024 0

76 China P. vivax 10 Gauss 3151928 0

78 China P. vivax 12 Gauss 3261120 0

80 China P. falciparum 1 Exp 5479523 0

82 China P. falciparum 3 Exp 5479525 0
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84 China P. falciparum 5 Exp 1651271 0

86 China P. falciparum 7 Exp 1651267 0

88 China P. falciparum 9 Exp 315 3.97E-69

90 China P. falciparum 11 Exp 0 1

92 China P. falciparum Time Gauss 10959165 0

94 China P. falciparum 2 Gauss 4941848 0

96 China P. falciparum 4 Gauss 4947978 0

98 China P. falciparum 6 Gauss 3027333 0

100 China P. falciparum 8 Gauss 3030842 0

102 China P. falciparum 10 Gauss 288308 0

104 China P. falciparum 12 Gauss 291521 0
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5.3.3 Results of Sensitivity Analysis

5.3.4 ElSalvador
For the line-list dataset from El Salvador, within the range of values explored in the sensitivity analysis
(Table 5.5), regardless of how informative the prior was for either B, the distance shaping function,
or for ¢, the epsilon edge, B was always estimated as whatever the mean of the prior was set as between
the prior mean values of 1e-4 and le-2 (Figure 5.16). However, when the mean value was set at 0.1,
the estimated parameter converged at a slightly lower value of 0.075, with the exception of when the
prior for e was very low (all priors with mean e of le-10 and also the more informative priors with
mean le-5, when standard deviation was le-4). R; is strongly shaped by the value of e, with higher

values of ¢ returning lower values of R, however R, also declined with increasing values of §.

5.3.5 Eswatini
Very similar patterns to El Salvador were observed in the sensitivity analysis of the Eswatini dataset.
Again, regardless of how informative the prior was for either € or 3, § was always estimated as whatever
the mean of the prior was set as between the prior mean values of le-4 and le-2 (Figure 5.17).
However, when the mean value was set at 0.1, the estimated parameter converged at a slightly lower
value of 0.075, with the exception of when the prior for ¢ was very low (all priors with mean ¢ of le-
10 and also the more informative priors with mean 1le-5, when standard deviation was 1e-4). Unlike
El Salvador, for Eswatini, at higher values of ¢ (0.5 and 0.1) there are stark declines in R, with

increasing {3.

5.3.6 China
For both P. vivax and P. falciparum datasets from China, within the parameter range explored in the

sensitivity analysis, regardless of how informative the prior was for either {3, the distance shaping
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function, or e, the epsilon edge, § was always estimated as whatever the mean of the prior was set as
(Figure 5.18 and Figure 5.19), suggesting a lack of identifiability or information within the data. When
estimating R., and interesting interacting effect of e (missing or unobserved infections) and B
(distance) was seen. When (3 is low, although lower values of & produce slightly higher mean R values,
the difference in R estimates with varying prior values for ¢ is much smaller than when § is a higher
value. In other words, when the prior for e is low, le-10, R, estimates do not vary as 3 changes,

however when the prior for e is much higher, then increasing 3 from le-4 to 0.1 reduces R, estimates

(from 0.21 to 0.01 for P. vivax).
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Figure 5.16 El Salvador sensitivity analysis.

Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping parameter, . The different colours and shapes represent different means ana
standard deviations respectively of the normally-distributed prior of epsilon, E,which represents shapes represent different hazards of infection by an external, unobserved source.
For A-D, the x-axis represents the prior mean used for f. A) the y-axis shows the maxinum a posteriori parameter estimate for the parameter . B) shows the same resulls,
stratified by the prior mean of & for clarity. C) Shows the impact of priors for [ and E on the mean Re estimate, and again D) shows the same result, stratified by the prior

mean of E.
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Figure 5.17: Eswatini sensitivity analysis.

Sensitivity analysis showing the impact of varying the prior means for Eswatini. Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping
parameter, . The different colours and shapes represent different means and standard deviations respectively of the normally-distributed prior of epsilon, & which represents
shapes represent different hazards of infection by an external, unobserved source. For A-D, the x-axis represents the prior mean used for . A) the y-axis shows the maximum
a posteriori parameter estimate for the parameter . B) shows the same results, stratified by the prior mean of & for clarity. C) Shows the impact of priors for f and E on the
mean Re estimate, and again D) shows the same result, stratified by the prior mean of E.
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Figure 5.18: P. falciparum China Sensitivity Analysis

Sensitivity analysis showing the impact of varying the prior means for P. falciparum in China. Sensitivity analysis showing the impact of varying the prior means for
Eswatini. Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping parameter, . The different colonrs and shapes represen:
different means and standard deviations respectively of the normally-distributed prior of epsilon, Ewhich represents shapes represent different hazards of infection by
an external, unobserved source. For A-D, the x-axis represents the prior mean used for f. A) the y-axis shows the maxinmum a posteriori parameter estimate for
the parameter . B) shows the same results, stratified by the prior mean of & for clarity. C) Shows the impact of priors for § and E on the mean Re estimate, ana
again D) shows the same result, stratified by the prior mean of E.
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Figure 5.19: P. vivax China Sensitivity Analysis

Sensitivity analysis showing the impact of varying the prior means for P. vivax in China. Sensitivity analysis showing the impact of varying the prior means for Eswatini.
Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping parameter, f. The different colonrs and shapes represent different
means and standard deviations respectively of the normally-distributed prior of epsilon, E,which represents shapes represent different hazards of infection by an external,
unobserved sonrce. For A-D, the x-axis represents the prior mean used for f. A) the y-axcis shows the maxinum a posteriori parameter estimate for the parameter
B. B) shows the same results, stratified by the prior mean of E for clarity. C) Shows the impact of priors for  and € on the mean Re estimate, and again D) shows
the same result, stratified by the prior mean of E.



5.4 Discussion

This chapter introduced a method which allows the flexible integration of distance metrics, either in
the form of geographic distances, or other forms such as accessibility, with temporal information into
a single inference framework. Twelve scenarios and corresponding parameter values were defined
which represented varying likelihood of transmission over different geographic distances and
likelihood of missing infections (as well as high and low confidence in this estimate). These scenarios
were applied to four individual level datasets from malaria eliminating contexts and using two different
spatial kernels. The estimated R, values, their spatial and temporal distribution and the AAICc/Akaike
weights for each model were compared alongside a time only model. These results suggest that
including spatial information improved models as measured by AIC, compared to time only results.
The priot/fixed values for both the distance function and epsilon value have very strong impacts on

the estimated R, although relative temporal trends tend to stay consistent.

For all datasets considered, all model versions which used geographic information had lower AAICc
values than the time only model. Based on the Akaike Weights and AAICc values for each model,
large differences in AAICc were seen between different scenarios. Scenarios 9 and 11 produced the
lowest AAICc values. These were parameterisations which penalised long range transmission the least
where and the prior on epsilon edges was only weakly informative. These parameterisations also return

much lower reproduction numbers than using time alone.

Exponential Kernels consistently outperformed Gaussian kernels as measured by AAICc. Although
classic models of dispersion are as a diffusion process with Gaussian displacement, more leptokurtic
or “fatter-tailed” probability distributions, where more of the probability density is concentrated in
the tails of the function, are often found to better represent empirical dispersal patterns than traditional
Gaussian kernels (Bateman, 1950). This “fatter-tail” in the exponential can be seen in Figure 5.5 -

Figure 5.7.
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However, there are many limitations to using AAICc in model comparison, particularly when
estimation of some of the parameters are being carried out within a Bayesian context. We do not fix
@;;j nor do we fix epsilon, but we do define priors and maximise the postetior rather than the log
likelihood. Therefore, we are comparing negative log likelihoods from a maximised posterior, meaning
we are not considering the information included in the prior. In addition, many @;; values shrink to
zero, however are still counted as parameters in the AIC estimation. Therefore, there is no recognition
of which versions of the model produce fewer non-zero parameters. Whilst this difference in AIC is
interesting to note, I would argue the broader trends in how R, varies over time and space with
different assumptions about both the spatial kernel and the number of unobserved sources of

infection are more important to consider.

An interesting pattern which was noted across scenarios and across datasets was how including spatial
information in the likelihood tended to increase the seasonality of temporal patterns in reproduction
numbers and reduced noise in the temporal distribution of reproduction numbers. This could be
suggestive of importation events leading to localised infections. Scenario 4 is also an interesting set of
assumptions to consider as it assumes cases generally only infect cases near them and that unobserved
cases of infection are unlikely. Under this assumption foci of infection are very clear and clear

“sources” of infection.

The results of the sensitivity analysis reveal interesting differences between the different datasets and
contexts contained in this dataset. For both El Salvador and Eswatini, which are both small countries
(El Salvador has an area of 21,041 km? and Eswatini 17,364 km?), at higher mean priors for 3, the
model converged on an estimate for § which was informed by the data. This was not the case for the
dataset from China, which represents a much larger area geographically and where dynamics are likely

to be strongly driven by importation. Given that for the kernels utilised in this chapter, increasing
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values of 3 lead to more restrictive assumptions about the scale of transmission, perhaps this

difference is due to the different spatial scales at which the analysis was being carried out.

5.4.1 Limitations
There are several limitations to this approach and analysis. Firstly, there is a potential lack of
identifiability between e, the epsilon edge, and 3, the shaping parameter of the spatial kernel. To give
an intuitive example, say two cases occurred 50km from each other in space within a reasonable
timeframe of symptom onset times for transmission to have occurred. Without strong prior
information about what the spatial kernel may be, and/or how likely cases are to have an external
source of infection, it is not clear whether these cases are linked by transmission (and there is some
human travel/parasite movement, modelled by a less restrictive spatial kernel) or whether there are
unobserved source(s) of infection leading to both cases. This is also exemplified in the results of the
sensitivity analysis, where the mean of the prior for beta strongly shapes the final estimate of beta, and

the epsilon value also shapes beta.

In the absence of reliable information about either of these values, strong assumptions must be made
about either/both the likelihood of cases being infected by unobserved sources of infection and the
relationship between distance and. Similar approaches (Wang, Ermon and Hopcroft, 2012)
recommend fixing the kernel shaping parameter, and indeed approaches from others have also noted
problems with unconstrained distance kernels in space-time diffusion modelling (Swapnil Mishra,

personal correspondence). One potential way to address this is divide epsilon edge by the distance

&€ . . . . . .
parameter —, thereby linking the two parameters and thereby penalising increases in 5.

Indeed, for similar approaches analysing the diffusion of twitter hashtags, it was recommended to fix
the parameter beta, and the authors acknowledged potential challenges in estimating this parameter.

Whilst the temporal aspect is not fixed, I view the utility in this method in excluding or penalising
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improbable transmission links between far away cases, rather than as a way of trying to determine
what the spatial relationship between cases is for malaria transmission, or determining the relative

contribution of space to malaria transmission.

An additional approach which could alleviate this problem is to collect internal travel history as part
of surveillance in future data collection efforts. This may help tease apart the relationship between
space and transmission. There also may be regions where there is more information to parameterise
both the spatial scales of transmission and the likelihood of cases being unobserved (for example
through looking at reporting rates, rates of relapse in the case of P. wivax, and prevalence of

asymptomatic infection).

Secondly, as with all methods introduced in this thesis, the approach presented in this chapter was
designed for application to near elimination and elimination settings, where surveillance and case
management is very strong, numbers of cases are small, and therefore there is less overlap in potential
infector/infectees, and changes in transmission are more apparent. If applying these approaches to
contexts which are less far along the journey to elimination, the issue of identifiability may be even
mote of an issue as one cannot reasonably assume/fix epsilon edges to be a very small number.
Asymptomatic infection will likely be more important to consider, more sophisticated methods to deal
with missing cases will be required. There also will likely be a weaker signal in space and time, which
may require the integration of additional information such as genetic distance. There also will be a
transmission level above which these methods will no longer be useful, although we do not know

what this exact level is.

Finally, due to there being no “ground truth” and Bayesian nature of model it is hard to rigorously
compare model performance. AAICc and Akaike Weights are standard, however as mentioned

previously, there are import limitations in using these metrics for model comparison. A useful future
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step would be to extend the simulations introduced in chapter 2 to space to investigate the impact of
varying parameter values and the interaction between the shaping parameter of the spatial kernel and

epsilon. Spatially explicit simulations may also reveal how tolerant the method is to missingness.

5.4.2 Future work
Currently, missing cases are dealt with in a relatively simple way, under the assumption that in the
elimination settings used here, surveillance and control have been strong for an extended period of
time as to ensure small case numbers and low prevalence of asymptomatic parasitaemia, and that the
contribution of missing cases is small enough to be represented as a competing hazard. The latter
assumption is supported by simulation results from Chapter 2 suggested that when missingness is
unbiased, R, estimates are not strongly affected but produce a slight underestimation in R.. However,
if missingness was biased, it is not clear how strongly this would affect results. Further simulations
which model different forms of missing data/sampling schemes would be useful to reveal the potential
impact of non-random missing data. These simulations could also model different sources of
unobserved infection — for example missing cases caused by relapse of dormant P. zivax, unreported

cases or asymptomatic infection.

Many of the potential ways to model and represent space discussed in the introduction section of this
chapter (Section 5.1) have not been tested here due to the issues of identifiability seen even in simple
models of space. Gravity, radiation, accessibility matrices all potential models of how space may affect
the likelihood of transmission. As mosquitoes have a limited range and lifespan, developing better
data and models of human movement, and how it varies in different cultural contexts and between
different demographic groups, will provide useful information to appropriately parameterise and

design the spatial component of the model.
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Although the prior for the shaping parameter of the serial interval was selected under the assumption
that the majority of cases are treated in a timely manner, In this analysis I have not explicitly utilised
information about the time and location of treatment, although this is available in some contexts.
This may be useful information to constrain the potential time window of infection occurring, as
detailed information about infectivity and gametocyte carriage following treatment with anti-malarials
is available (Bousema and Drakeley, 2011), although sub-optimal dosage, compliance and resistance
have been associated with differing outcomes and therefore having additional information about

treatment and prevalence of resistance would also be useful.

Another avenue for future work would be to adapt the approach to incorporate further sources of
information, such as genetic markers of similarity between parasites. For the approach developed in
this chapter to be useful in contexts which are not at or within a few years of elimination, incorporation
of additional information into the inference framework will be required. This could be carried out
either directly by incorporating an additional term or function in the likelihood or indirectly through
informing the value of parameters and allowing them to vary between individuals. Previous work
within the machine learning and network analysis community has successfully integrated diverse
sources of information about texts such as language and similarity of context into very similar
algorithms to the one presented here (Wang, Ermon and Hopcroft, 2012) .

5.5 Conclusion

Increasingly, line-list data contain spatial and other forms of information. Finding useful approaches
to leverage the information contained within these diverse datasets will increasingly be useful in
malaria surveillance and epidemiology (Pindolia ez a/., 2012; Sturrock ez al., 2016; Wesolowski, Aimee
R. Taylor, ez al., 2018) and developing a framework which flexibly takes on different forms of data
within an integrated inference framework is a key aspect of this. There may be more useful information
contained in genetic, and or travel, mobility data. However, as we have seen there can be issues of
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identifiability, which becomes increasingly relevant when there is not enough data available about key
parameters in the model. Finding ways for leveraging multiple datasets, understanding their

relationships, how they can enhance info contained in others, or used to build consensus is important.

In this chapter, I developed and tested an extension to the algorithm presented in Chapter 4, which
flexibly allows the incorporation of distance or adjacency matrices describing the distance or
connectivity between cases. This was applied to individual malaria case data from four eliminating
and very low transmission contexts and a detailed sensitivity analysis was carried out. The results of
these analyses suggest that including space improves model performance as measured by AAICc, and
that, for the contexts considered here, the best performing models produce lower reproduction
estimates than using temporal information only, likely in part due to estimating more unobserved
sources of infection. However, this conclusion would be strengthened by more in-depth simulation
studies. The approach presented here could be adapted to many different datasets and contexts,
however issues of identifiability must be considered. The utility of this approach would be

strengthened with further development of the methods of modelling unobserved sources of infection.
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6

Discussion

6.1 Summary of aims and approach of thesis

In this thesis my aim was to introduce a new approach to measure malaria transmission in near
elimination settings by extending, adapting and applying approaches used in network analysis of
information spread through online social networks (Gomez-Rodriguez, Balduzzi and Schélkopf, 2011;
Gomez-Rodriguez and Scholkopf, 2012) . With this approach, I utilised information about the time
and location of cases showing symptoms of malaria to jointly infer the likelihood that a) each observed
case was linked to another by transmission and b) that a case was infected by an external, unobserved
source. This was carried out in a Bayesian (or in the case of Algorithm 1 used in Chapter 3, quasi-
Bayesian) statistical framework to incorporate prior information about the relationship between time
and the likelihood of infection occurring (Huber e a/., 2016). This information was then used to
calculate individual reproduction numbers for each case, or how many new cases are expected to result
from each case. When this number is above one, we expect transmission to continue, and below one
we expect an outbreak to die out. In elimination settings, quantifying the distribution of individual
reproduction numbers provides useful information about how quickly a disease may die out, and how
the introduction of new cases through importation may affect ongoing transmission. These estimates
were incorporated into timeseries analysis and forecasting models as well as geostatistical models to
map how malaria transmission varied over space and time as well as considering timelines to
elimination and the likelithood of resurgence of transmission once zero cases is achieved, as well as
uncertainty in these estimates. I applied these approaches to previously unanalysed individual-level
datasets of all recorded malaria cases from several eliminating contexts, including China and El

Salvador.
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6.2 Summary of key findings and their significance

In Chapter 3, I used the timing of symptom onset and prior distributions of the serial interval for
treated, symptomatic malaria to estimate individual level reproduction numbers (R;) for all reported
and confirmed cases of malaria in El Salvador (2010 - early 2016). I then incorporated these results
and the coordinates of geolocated cases into a binomial geostatistical model and explored estimates
of risk of R exceeding one over space as well as time. I also fit the distribution of R, values to several
distributions to determine the expected mean R, required to be 95% confident of observing no R. s
above zero and then fitted a Generalised Additive Model to explore the chance of the mean R,
reaching this value by 2020, based on the current declining trend. The results of this analysis suggested
that whilst the average number of secondary malaria cases was below one (0.61, 95% CI 0.55-0.65),
individual reproduction numbers often exceeded one during the observation period. There was an
estimated decline in R, between 2010 and 2016. However , based on the distribution of estimated R,
values during this period, characterised heterogeneity in the reproduction number using a Gamma
distribution which, when fitted to the data, suggests a threshold mean R, of 0.22, below which there
would a less than 5% chance of any individual reproduction number exceeding one. Using the fitted
trend in the mean R, one would expect this level to be reached by 2023, assuming no change in the

rate of importation.

In Chapter 4 I utilise an alternative framework which allows the analysis of much larger datasets within
a Bayesian framework and extended and applied the approach to an individual-level dataset from
China CDC. Using a geo-located individual-level dataset of cases recorded in Yunnan province
between 2011 and 2016, I introduce a novel Bayesian framework to model a latent diffusion process

and estimate the joint likelihood of transmission between cases and the number of cases with
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unobserved sources of infection. As in Chapter 3, this was used to estimate the case reproduction
number, R, and used within spatio-temporal geostatistical models to map how transmission varied
over time and space, estimate the timeline to elimination and the risk of resurgence. Using this
approach, the estimated mean R, between 2011 and 2016 was 0.171 (95% CI = 0.165, 0.178) for P.
vivax cases and 0.089 (95% CI = 0.076, 0.103) for P. falciparum cases. From 2014 onwards, no cases
were estimated to have an R, value above one. An unobserved source of infection was estimated to
be moderately likely (p>0.5) for 19/ 611 cases and high (p>0.8) for 2 cases, suggesting very high levels
of case ascertainment. These estimates suggest that, if current intervention efforts are maintained,
Yunnan is unlikely to experience sustained local transmission up to 2020. However, even with a
mean R, of 0.005 projected up to 2020, locally-acquired cases are possible due to high levels of
importation. Testing the algorithm used in this chapter with simulated line-list datasets with varying
levels of random missingness suggested the model can accurately return the mean R, (+/- 0.05 when
the probability of a case being observed is one, and +/- 0.15 when the probability of a case being
observed is 0.3 ), and that setting a correct prior on the epsilon edge can return improved estimates

of R..

In Chapter 5 I introduced a framework to incorporate additional distance metrics into the inference
framework used in Chapter 4 and tested this algorithm on four line-list datasets, considering twelve
scenarios and two spatial kernels describing the relationship between Fuclidian distance between

residences and likelihood of transmission occurring, as well as a detailed sensitivity analysis.

The contexts and datasets to which these methods were applied are very different ecologically,
economically, demographically and culturally, yet both malaria control and elimination programmes
provide useful success stories and pathways for other countries to learn from. My results are promising

for both countries that are close to elimination certification — and indeed both El Salvador and China
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have reported zero locally acquired cases in 2018 ( WHO, 2019b). However, the role of importation
is important and it is interesting to note that in both contexts the highest estimate of R, coincided
with the highest periods of human movement. In the case of Yunnan province, recent studies of the
dynamics of childhood diseases in South Western China found similar patterns, with highest
transmission occurring during the time of the Spring Festival and in October, following the National
Day holiday period (Saki Takahashi, personal correspondence). These are the only two periods with
national week-long holidays in China. During the 40 day Chunyun period in China around the Spring
Festival, there are over 3.6 billion passenger journeys estimated to occur (Wang ez al., 2014), and this
period is described as the largest annual human migration in the world". In Octobert, the national day
is also a holiday period associated with travel to visit family, and there are not obvious environmental
reasons why this bimodal peak would be seen, although the rainy season and time of highest

environmental suitability is May-October (Bi ¢z al., 2013)

The approaches develop in this thesis and the results of their application are relevant to elimination

planning and certification in several ways.

Reproduction numbers directly relate to elimination in both a simple binary way, in terms of being
above or below one, which is important for clear information for stratification and decision making,
however by estimating individual reproduction numbers we also can identify the amount of individual
variation, or variation over time and space, as well as looking at how close to zero estimates are, as an
estimate of how quickly a disease will die out. Reproduction numbers have been useful metrics in a
wide variety of outbreak scenarios to reveal characteristics of transmission, such as the amount of
within community and within hospital transmission of Ebola (Faye e al, 2015), changes in

transmission intensity over time (Cori e al., 2013) and assessing (Boélle e# a/, 2011), and in near-

* https://edition.cnn.com/travel/article/lunar-new-year-travel-rush-2019/index.html
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elimination and elimination settings also reveal changes in transmission over space and time for

malaria.

Itis important to consider what these analyses reveal that is different from merely looking at incidence
timeseries. In both El Salvador and China, the periods of year which had highest R, estimates did not
coincide with times of highest incidence, but instead periods of increased human movement. This
could be explained by an increase in imported cases (classified correctly or incorrectly), leading to
short stuttering chains of ongoing transmission. In addition, being able to map risks of R, exceeding
zero or one provide a clear stratification of risk, and can highlight areas where there may not be cases

observed but where there may still be risk of resurgence of cases if importation were to occur.

The results of this thesis demonstrate how a network-based approach can provide additional insights
into transmission in near elimination settings, identifying when R, falls below 1, as well as estimating
trajectories towards elimination. By incorporating these estimates into geostatistical models, this work
also quantified where there was high and low uncertainty about there being minimal risk of ongoing

transmission or resurgence, and how this has varied over time.

In addition, whilst there is a great deal of uncertainty associated with the forward projections for
timelines to elimination, providing countries with these trajectories to elimination, and associated
uncertainties, such as those produced during this thesis, can provide evidence to sustain current

interventions and also highlight risks of resurgence.

Together, these provide helpful insights for elimination programmes, and the methods introduced in
this thesis have attracted the attention of several national malaria elimination programmes who were

interested in applying the approach to their data.
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There are several important policy implications and considerations when implementing the findings
described in this thesis. The current WHO definitions of elimination, namely of three consecutive
years of zero locally acquired cases, is very difficult to achieve in countries where there are large
amounts of importation. Although technically cases which are the result of infection by an imported
case (introduced cases) are not classified as locally acquired by WHO definitions, in practice it is very
difficult to classify cases as introduced. Approaches such as those introduced in this thesis could be
used to identify the likelihood of cases being introduced cases rather than truly locally acquired cases,
however this would require the imported case to have been observed. Furthermore, a country
observing many importation events actually provides much stronger evidence that a country has
achieved elimination and a low underlying receptivity to malaria if there are no or few resulting local
cases than a country which has not experienced importation. Therefore, I would argue that the WHO
should also factor importation into decision making when assessing the strength of evidence of
elimination being achieved. The impact of importation also should be considered in relation to
regional elimination. Certainly regional, international collaboration within both the Greater Mekong
Subregion and the EMMIE initiative in Mesoamerica and Hispanola are thought to be key to ensuring
the maintenance of very low cases of malaria in both El Salvador and China. The level of importation

seen, particularly in China is high enough to render cross border collaboration essential.

There are both opportunities and limitations which must be considered when applying the approaches
taken in this thesis to other contexts. As we have seen, when both spatial relationships and the
prevalence of unobserved sources of infections are unknown, inferred reproduction numbers and
their spatial distribution can vary depending on prior assumptions about their values. This approach
would be suited to similar contexts with small numbers of cases and surveillance systems, such as the
Cabo Verde islands, where there has been interest in using these approaches to analyse line lists of
malaria outbreaks on the island (Dr Kimberley Linblade, personal communications)
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Due to the uncertainty and assumptions made in this work, I do not advocate using these results to
determine when and where to scale back interventions or surveillance. This is particularly notable with
the forward forecasting and the risk maps produced in chapters 3 and 4. It is important to
communicate this uncertainty clearly if this work were to be used in decision-making. For example,
the standard deviation and lack of observations made in the maps of El Salvador mean there are large
areas of the map where there is so much uncertainty that the mean values cannot be used for decision
making, and the focus should be on the area bordering Guatemala, where there have been more
observations and more certainty in estimates. However, one major policy implication of this research
surrounds when and where to introduce enhanced surveillance. This work has identified times of year
and localities where there is likely to be some risk of transmission with little uncertainty in these
estimates. Where there is greater uncertainty in estimates due to a lack of data, active case detection
or cross sectional surveys may be helpful to reduce this uncertainty.

6.3 Limitations

There are several limitations to the approaches taken here and to the datasets which these approaches
were applied to. The frameworks developed in this thesis are designed to be general, flexible and
adaptable to a variety of data types and elimination contexts. As a result, in order to adapt them to
specific problems and datasets many assumptions are made about malaria in these contexts. In some
cases, the ability to make recommendations based on the results presented here are limited by
uncertainties in key parameter values. This is particularly true because this work has focussed on
retrospective studies of historical surveillance data, and therefore it is not possible to collect additional
data about the cases, for example through taking travel surveys of cases or collecting molecular data.
However, given this is often the most widely available data collected by Ministries of Health or
National Malaria Control Programmes, it is important to make the most of these data, show the impact

of varying assumptions and illustrate what one might expect under different scenarios.
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In all versions of the algorithm presented in this thesis, the minimum incubation period has been quite
conservative, set at 15 days, to avoid erroneously excluding cases. In reality, the combined intrinsic
and extrinsic incubation period is likely to be longer than 15 days (Boyd and Kitchen, 1937; Kitchen
and Boyd, 1937; Nishiura ez al, 2007). Also, the assumption of the majority of cases being
symptomatic, treated cases and therefore having a relatively less variable serial interval strongly impacts
assumptions and the ability to infer connectivity between cases, as untreated malaria has a much wider

range of potential serial interval lengths (Huber ez 4/, 2016) .

There also is uncertainty in the reporting rate. Both El Salvador and China have invested in strong
surveillance in rural areas, and carry out both active and passive surveillance, and so I make the
assumption in this thesis that the reporting rate is high. In addition, the results of the simulations
carried out in Chapter 2 of the thesis suggest that the model is relatively robust to missing cases in
terms of the R, estimates, and that epsilon edges, if given an accurate informative prior, can account
for this missingness. However, it is important to note that the simulations carried out in this thesis
assumes missingness is proportional and unbiased. I also make the related assumption that overall
case detection is high/unbiased in missingness. In reality, there are key groups who may be less likely
to be detected yet more likely to contribute to onward infection in some contexts e.g. itinerant workers

who spend some time in forests.

There is also uncertainty in asymptomatic infection prevalence, sub-microscopic infection prevalence
and contribution of both to ongoing transmission. Meta-analyses and reviews (Okell ez 2/, 2012; Teun
Bousema ez al., 2014; Tadesse ¢ al., 2018) can provide an indication of likely levels given the incidence
and prevalence, but given the evidence in these works that asymptomatic and/or sub-microscopic
infection prevalence and its contribution to ongoing transmission is highly varied, it is difficult to

estimate whether asymptomatic reservoirs are contributing to ongoing transmission. In the contexts
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explored in this thesis, i.e. elimination settings, the numbers of cases are very small and sparse
temporally, and incidence/prevalence has been maintained at a very low level over long periods of
time. As a result, we assume that asymptomatic infections are unlikely to have a strong contribution
to ongoing transmission, and any rare asymptomatic sources can be captured by £-edges. However, in
low transmission settings which have recently seen rapid declines in malaria incidence, or where there

is a much higher incidence of cases, quantifying the asymptomatic reservoir will be important.

There is also uncertainty in the accuracy of imported/local classification. Whilst this classification has
been carried out on the basis of epidemiological investigation and taking travel history, there may be
inaccuracies in travel history, or in the case of P. zwax, an underlying infection which was acquired
months prior. Others have found that when attempting to reconstruct transmission networks based
on simulated surveillance data, assuming the travel history is correct produces better results than
ignoring it or allowing it to be incorrect if no other information is available (Alex Perkins, personal

correspondence).

There are aspects of Plasmodium vivax life history and epidemiology which I have made simplifying
assumptions about in the analyses described in this thesis. The models do not explicitly model
reinfection and relapse. This is likely to be a reasonable assumption in the contexts considered for this
thesis, due to the lack of evidence for relapse in the electronic record, and through the policy of
treating P. vivax cases with radical cure. As discussed in more depth in Chapter 4, relapse cases
incorrectly identified as new cases would bias the results to estimate higher reproduction numbers
than the true values, and therefore if this was the case would actually provide stronger evidence of low
transmission levels achieved in both El Salvador and China. However, there are other aspects of P.
vivax epidemiology which could have shaped model results and should be discussed. For example,

with P. vivax there can be infectiousness before symptoms in first and subsequent relapse or balanced
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by declining parasitaemia with relapse (and the presence of individual infection registers for known

vivax patients).

Finally, this analysis does not differentiate between data collected actively and passively, although
reactive and targeted active case detection is used in surveillance in all the contexts presented in this
thesis. Due to the non-random nature of reactive and targeted active case detection, data may be
biased towards observing cases occurring in areas already identified as foci or higher risk, or close in
time and space to other cases. Whilst this makes sense operationally, it means the datasets analysed

may not be an unbiased sample of cases.

6.4 Future Directions

As discussed in Chapter 5, there is potential to incorporate more sophisticated models of human
movement, such as gravity or radiation models, as well as accessibility matrices or friction surfaces.
These methods are limited by the quality of the data available to parameterise population estimates
using tools such as WorldPop (Tatem, 2017) , friction surfaces or population movement models, but
provide approximate estimates which may help weight or exclude probable or unlikely locations of
transmission pairs. In addition, simulations to test the assumptions and accuracy of the algorithms
could be expanded to include space, to use a Rayleigh probability distribution for direct comparison.
This would provide important and useful information to help tease apart some of the identifiability
issues identified in Chapter 5, as well as demonstrate the impact of different patterns of
movement/parasite dispersal on observed incidence. Combined with simulations of different forms
of missing case data, these simulations would provide a clearer understanding of the applicability of

the approaches introduced here to different epidemiological contexts.
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In the contexts explored here, genetic and serological data were not available, however there is
increasing evidence of their utility. Parasite genetic data have been found to provide useful information
about latent processes such as past and current malaria transmission intensity (Nkhoma ez a/, 2013;
Wesolowski, ef al., 2018; Dalmat ef al, 2019) and the movement of parasites between populations
(Chang et al., 2019; Dalmat ez al., 2019; Tessema ez al., 2019). In near-elimination settings, genetic
information may be most useful in identifying imported cases, however this is dependent upon the

location of importation and the availability of reference genomes from importation population.

With current sequencing technologies it is now feasible to collect genetic data as part of routine
surveillance systems. However, methods to relate the signal in genetic data to epidemiologically
relevant metrics are lacking. Key questions remain as to what types of genetic data are the most useful
to collect, which sampling frameworks are optimal to use and how to meaningfully integrate genetic

data with other data streams, such as traditional surveillance, to infer parameters of interest.

As more countries reach the elimination stage for malaria and improve their surveillance, detection
and response to malaria infection there is increasing applicability and utility of using methods such as
this. In Chapter 5 we see the impact of uncertainty in both unobserved sources of infection and the
distance kernel on performance of the methods. Based on these results, the sorts of contexts where
this approach is suitable would be in contexts where there is good information about the travel
patterns of people and/or where the amount of missingness can be quantified, however this could be
better understood through more sophisticated simulations and investigations into the added benefit

of incorporating additional sources of information.

In addition, in order for the approaches developed in this thesis to be utilised by control programmes,

they would need to be packaged into an operationally useful tool. This would require collaboration
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and consultation with both control programmes and initiatives but would greatly improve the utility

of approach.

However, there is a limit to what can be inferred from existing data. Further studies to better
characterise asymptomatic reservoirs and their contributions to ongoing infection (Tadesse ez al,
2018), reporting rates, and patterns and incidence of relapse in P. vivax endemic areas (White ez al.,
20106) are required and will help parameterise these models. The different causes and prevalence of
unobserved infections can indicate how well a current surveillance system is capturing the true
dynamics of infection, as well as which interventions may be required to achieve progress towards
elimination. From an intervention standpoint, different interventions may be suited to different
sources of unobserved infection. For example, if asymptomatic reservoirs are known to be a major
driver of residual malaria transmission, then they can be targeted through active case detection
programmes, or through mass drug administration. However, if the contribution of asymptomatic
reservoirs is negligible, then interventions focused on detecting and treating symptomatic individuals
(as well as vector control) can be prioritised. In addition, diverse approaches and data collection at
different scales are required to understand travel patterns relevant to malaria transmission, from
mechanistic modelling and large-scale data analysis e.g. of mobile phone data, to focused, on the

ground studies.

More broadly, the case studies of China and El Salvador, countries reaching elimination, highlight the
importance of regional and cross-border collaboration and initiatives. The importance of importation
and cross-border movement in both contexts also highlights the utility of investing in reducing burden
in neighbouring countries, thereby reducing the amount of importation into eliminating countries.
Indeed, as China looks highly likely to reach three consecutive years of zero cases by 2020, there has

been encouragement from the international community for China to make financial aid commitments
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to malaria control efforts elsewhere. Although this has been framed as being in celebration of China’s
achievements, investment in malaria control in high transmission countries could also be beneficial in

reducing the likelihood of resurgence via importation.

6.5 Conclusions

Although malaria is still responsible for a great deal of death and illness in many parts of the world,
many national control programmes have made great strides in controlling malaria and now are able to
aim for elimination. However, in order to monitor progress towards elimination and plan
interventions, it is crucial to measure malaria transmission and how it varies over space and time. In
this thesis, I introduced an approach to flexibly incorporate line-list data to quantify reproduction
numbers and how they varied over space and time, applying two individual level datasets from
elimination countries. The results highlight the successes achieved by both China and El Salvador —
the only two E-2020 countries to have zero locally acquired cases in 2018 which have not yet been
certified as eliminated. This work shows the importance of considering not only environmental factors
for seasonal patterns in malaria transmission, but the potential for human culture and movement
patterns to also play a role in transmission dynamics in elimination settings. These tools could be of
use to other national malaria control programmes to assess trajectories towards elimination based on

recent historical line-list data.
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Appendix
Appendix 1: Sensitivity Analysis for Chapter 3
I explored the sensitivity of my approach by varying the threshold likelihood for linking cases, €, and

the threshold gain in marginal likelihood used to define the number of edges to create, K. We consider

several scenarios, illustrated in Figure Al:

Scenario 1: epsilon = 0.01 and tolerance for edges = 0.003

Scenario 2: epsilon = 0.003 and tolerance for edges = 0.003
Scenario 3: epsilon = 0.007 and tolerance for edges = 0.003
Scenario 4: epsilon = 0.007 and tolerance for edges = 0.005

Scenario 5: epsilon= 1e-10, tolerance for edges = 1e-10
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Figure A1 : Each row, numbered 1-5, shows model results for the correspondingly numbered scenarios : Scenario 1:
epstlon = 0.01 and tolerance for edges = 0.003, Scenario 2: epsilon = 0.003 and tolerance for edges = 0.003, Scenario
3: epsilon = 0.007 and tolerance for edges = 0.003, Scenario 4: epsilon = 0.007 and tolerance for edges = 0.005,
Scenario 5: epsilon= 1e-10, tolerance for edges = 1e-10. Each column shows a different model ontput A) The marginal
gain in tree likelihood from adding edges, B, the estimated Re by month. C) R over time D) A matrix, E) Maps
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Appendix 2: Associated publication, Chapter 1

Predictive Malaria
Epidemiology, Models of

Malaria Transmission and
Elimination

Tsobel Routledge’, Oliver T Watson',

Tamic T Griffin® and Azra C Ghean'

'MR.C Centre for Global Infections Disease
Analyszis, Department of Infectious Disease
Epidemiology

Imperial College London, London, UK

*Schonl of Mathematical Sciemors, Quoen Mary
University of London, London, 1K

Mathematical model of malana ransmission ane
tonols which sssist in the design and evalustion of
malaria control and eliminstion programs and
provide msight mto the dynamics of malania trans-
miizsion. They range from simple set: of equations
through i complex individual -based sinmlations.
Madels alzo have provided koy metrics to quan-
1ify transmission and progress owand elimination,
such a5 the hasic reproduction number In this
chapter, we review past developments and appli-
catipns of models tosuppornt and quantify progress
wwand malaria elimination and consider fitune
challenges which models mmst address whon
infiormuing moderm elimination efforts.

Looking Back: Malaria Transmission
Modéls in the Twentieth Century

The first mathematical mode] of malaria ransmis-
son was publishod in 1908 by Ronald Ross after
becing tasked with recommonding methods for the
prevention of malaria in Maurnitius {Ross 1908).
This model was based on an aprion description of
how the prevalence of malari was causally
related i the mtio of mesquitees I humans, m.
Ross used the model to argue that only a propor-
tion of & mosguito population would neod o be
killed tos perevent transmission, which led © the
formulation of a crifical mosquite donsity, m',
above which transmission would be susmined.
The pammeters mvolved (summanzed in
Table 1) have beon stndardized (Smith et al,
2012 m B the mtio of mosquitess to humans,
a is the proporion of mosquitees that feed on
humans each day, b is the proportion of bites by
infections mesquitees that infact a human, ¢ is the
probability & mosquite becomes infected after
hiting an infocied human, r is te daily rate each
humman recovers from nfection, v i the number of
days from nfection o infectiousness in the mos-
quito, snd g i the metantaneons death mte, which
alzo can be expressed s — In p, where p is the
probability of an adult mesquite surviving | day,
i give the following interpretation of Ross'
formula:

) Springer Sciencet Boginess Media, LLC, part of Springer Nature 2018

P G Kremsner, 5. Krishna {sds ), Escpelopedia of Malaris,
hetp s i org 10, 1007 78] 461487579 79-1
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Appendix 3: Associated publication, Chapter 3

Tt

ARTICLE
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Estimating spatiotemporally varying malaria
reproduction numbers in a near elimination setting

lsobel Routledgei™ . José Eduardo Romero Chevéz®, Zulma M. Cucunubd”, Manuel Gomez Rodrigues®,
Caterina Guinovart®. Kyle B. Gustafeon®, Kammede Schneider®, Patrick G.T. Walker", Azra C. Ghani® &
Samir Bhatt!

In 3016 the World Health Organiz ation identified 21 comntries that could el iminate malaria by
2020, Monitoring progress towards this goal requires tracking ongoing transmission. Here
we develop methods that estimate individia reprodection mumbers and thelr variation
through time and space. Individieal reprodection numbers, R, describe the state of trans-
mission at a point in time and differ from mean reprodoec tion members, which are aver ages of
the mumber of people infected by a typical case We assess elimination progress in El
Sahador using data for confirmed cases of malaris Fom 2090 to 2076 Owr resuls
demonstrabe that whilst the average number of secondary malaria cases was below one
(0051, 955 CI (155- 00 45), Individual reprodusc tion numbers often exceeded one We astimate
& decline in B_ between Z000 and 2076 However we also show that If importation is
maintained at the same rate, the country may not achieve malarla elimination by 2020

1RART e for Giohal brdeciions Dreneaee Aredps, Dqpartment of indecsous Disesss Enademiniogy, impenal College London, London W2 106G, UL

3 piristey of Hasith (MINSALY, Calfle Aece Nal27, San Sabador, B Sahader. diiax Plands instinn e dor 5 obware Sysiems, B 5, Campos, 86123 Saorbricoes,
Gmrr.*‘M.lEE‘P.ﬁ. PATH, Seatle, ‘Waashington 98121, USA I stiene for Disease Siodefing, Balewe, WA SAO05. USA Comespondence and moquests
for materiak shoefd be addrecosd o LR (et irodedgelt gimpesalacei)
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Tracking progress towards malaria elimination in China: estimates of reproduction
numbers and their spatiotemporal variation

Isabel Routledge, Shengjie Lai, Katherine E Battle, Azra C Ghani, Manuel Gomez-Rodriguez, Kyle B Gustafson,
Swapnil Mishra, Joshua L Proctor, Andrew | Tatem, Zhongjie Li, Samir Bhatt

doi: https://doi.org/1 0.1 101/628842

This article is a preprint and has not been certified by peer review [what does this mean?].

Abstract Full Text Info/History Metrics [ Preview PDF

Abstract

China reported zero locally-acquired malaria cases in 2017 and 2018. Understanding
the spatio-temporal pattern underlying this decline, especially the relationship
between locally-acquired and imported cases, can inform efforts to maintain
elimination and prevent re-emergence. This is particularly pertinent in Yunnan
province, where the patential for local transmission is highest. Using a geo-located
individual-level dataset of cases recorded in Yunnan province between 2011 and
2016, we jointly estimate the case reproduction number, R.. and the number of
unobserved sources of infection. We use these estimates within spatio-temporal
geostatistical models to map how transmission varied over time and space, estimate
the timeline to elimination and the risk of resurgence. Our estimates suggest that,
maintaining current intervention efforts, Yunnan is unlikely to experience sustained
local transmission up to 2020. However, even with a mean R_of 0.005 projected for
the year 2019, locally-acquired cases are possible due to high levels of importation.
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Changing epidemiology and challenges =2
of malaria in China towards elimination

Shengjie Lai"3C, Junling Sun?, Nick W. Ruktanondhai'#, Sheng Zhou?, Jianxing Yu®*, [sobel Routledge®,
Liping Wang®, Yaming Zhang?, Andrew | Tatemn'# and Zhonagjie L™

Abstract

Background: Historically, malaria had been 2 widespread disease in China. A national plan was laendhed in China in
7010, siming to eliminate malaria by 2020 In 2017, no indigenous cases of malaria were detected in China for the first
time. To provide evidence for precise surveillance and respanse to achieve elimination goal, a comprehensive shudy is
needed to determine the changing epidemiclogy of malaria &nd the challenges towards elimination.

Methods: Using malariz surweillance data from 2011 10 2014 an integrated series of anatyses was conducted o
elucidate the changing epideminlogical features of autochthonows and imported malaria, and the spatictemporal
patterns of malaria importation from endemic countries.

Results: From 2011 to 2016, a total of 21,062 malana cases with 138 deaths were reported, including 1% were
imparted and 9% were autochthonous. The geographic distribution of local trarsmission have shronk dramatically,
but there were still mone than 10 counties reporting autochthonous cases in 20013-2016, particularly in counties
bordering with countries in South-Ezst Asia, The importation from 68 origins countries had an increasing annual trend
from Africa but decreasing importation from Southeast Asia. Four distinct communities have been identified in the
impartation networks with the destinations in China varied by origin and species.

Condusions: China is on the verge of malaria elimination, but the residual transmission in border regions and the
threats of importation from Adrica and Southeast Asia are the key challenges 1o achieve and maintain malariz elimina-
tion. Efforts from Chira are also needed to help malaria control in origin countries and reduce the risk of introduced

transmiss icon.

Keywords: Malaria, Epidemiclogy, Elimination, Importation, China, Africa, Southeast Asia

Background

Plasmodiwm malaria, transmitted via the bites of female
Anopheles mosquitoes, is one of the most prevalent par-
asitic diseases afecting mankind. Althouph the global
malaria burden has Ellen from an estimated 239 mil-
lizn cases occurred worldwids in 2000 to 219 million
cases in 2017, no significant progress in reducing global
malaria cases was made for the first time in the last dec-
ade, especially between 2015 and 2017 [1-4] However,
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the progress of eliminating malaria in China seems to be
encouraging.

Malaris was once widespread in China, with more than
90% population in China were sstimated at risk of nfec-
tiom in the 1940, and it was still highly endemic in China
botween 19505 and 1970s, with the highest record of 24
milion cases reported in 1970 [5, 6. Due to the widaly
use of anti-malarial medications, along with the anprec-
edented sociceconomic chanpes and uwrbanization i
China, the incidence of malaria decreased praduslly from
1980 to 2000, with only 20 cases per one million resi-
dents in 2000 |5, &]. Although the resurpence of makaria
oecurred in central China between 2001 and 2006 [7,
], the sfiorts of intensified control since 2007 resulted
in a dip in the number of cases, reducing to less than &
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publiotomain'een’] 00 appies 1o the data mado avaliablo In this artide, unkes Jthanwise sahed.
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