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Abstract 
As countries move towards malaria elimination, tracking progress through quantifying changes in 

transmission over space and time is key. This information is necessary to effectively target resources to 

remaining ‘hotspots’ (high-risk locations) and ‘hotpops’ (high-risk populations) where transmission 

remains, decide if and when it is appropriate to scale back interventions, and to evaluate the success of 

existing interventions. However, as countries approach zero cases, it becomes difficult to measure 

transmission.  Traditional metrics, such as the prevalence of parasites in the population, are no longer 

appropriate due to small numbers and increasingly focal distributions of cases over space and time. 

In order to address this, this thesis developed Bayesian network inference approaches to utilise information 

about the time and location of cases showing symptoms of malaria to jointly infer the likelihood that a) 

each observed case was linked to another by transmission and b) that a case was infected by an external, 

unobserved source. This information was used to calculate individual reproduction numbers for each 

reported case, or how many new cases of malaria are expected to have resulted from each case. In 

elimination settings, quantifying the distribution of individual reproduction numbers provides useful 

information about how quickly a disease may die out, and how the introduction of new cases through 

importation may affect ongoing transmission. These estimates were incorporated into additive regression 

models as well as geostatistical models to map how malaria transmission varied over space and time as well 

as considering timelines to elimination and the likelihood of resurgence of transmission once zero cases is 

achieved. This approach was applied to previously unanalysed individual-level datasets of malaria cases 

from China and El Salvador.  
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1  
Introduction 

 

In this chapter, I first review the epidemiology and burden of malaria. Following this, historical and current 

policy for malaria control and elimination is outlined, including shifts in the prioritisation of total 

elimination as opposed to control of the disease. The resulting epidemiological considerations which 

become relevant when aiming for elimination rather than control are then discussed. Next, I provide an 

overview of common metrics used to measure malaria transmission and the impact of control measures. 

Following from this, I introduce key mathematical models of malaria transmission dynamics and discuss 

how they have been used to estimate metrics of transmission and provide insights into the impact of 

interventions. I then discuss the potential for mathematical models to assist elimination efforts and the 

epidemiological challenges faced in elimination settings. Continuing the theme of measuring malaria in 

elimination contexts, I introduce the approaches developed in recent years in outbreak analysis to measure 

transmission using individual level surveillance data, and discuss how they may apply to endemic diseases 

in near elimination and elimination settings, with comparisons of such approaches to  models developed 

within the machine learning and data science community. Finally, the problem and aims of the thesis are 

introduced.  

1.1 Natural history of malaria 

Malaria is a disease caused by Plasmodium parasites, spread to humans through the bites of mosquitoes in 

the Anopheles genus.  There are 6 known species of malaria parasites which infect humans, of which 

Plasmodium falciparum and Plasmodium vivax are of most concern from a public health perspective.  However, 

there has been growing concern about zoonotic Plasmodium knowelsi as this species has been associated with 

severe outcomes in certain areas of South East Asia (Millar and Cox-Singh, 2015).  It is estimated that 70 

Anopheles species are known to be capable of transmitting malaria to humans (Warrell and Gilles, 2002), of 

which 41 species have been identified as dominant vector species, meaning  they are sufficiently competent 

vectors of the disease to be relevant to public health (Hay et al., 2010). These different Anopheles species 
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have various geographical distributions, vectoral capacities and ecologies which affect malaria epidemiology, 

transmission and the efficacy of interventions targeting them. 

1.1.1 Malaria lifecycle 

Plasmodium parasites present in the blood of the human host are ingested by the mosquito during blood 

meals as male and female gametocytes (Figure 1.1). Sexual reproduction occurs in the mosquito midgut 

whereby the male and female gametes fuse, producing a zygote. This zygote then elongates and becomes a 

motile ookinete, travelling to the mosquito mid-gut to develop into an oocyst. After a sporogonic period 

of approximately 8-10 days, the oocysts burst to release sporozoites which travel to the salivary glands of 

the mosquito, where they are passed to the mammalian host through the next blood feed. The sporozoites 

rapidly migrate through the blood to the liver where they invade hepatocytes which subsequently group 

together to form schizonts. Merozoites develop within the schizonts and, approximately 7-10 days after 

initial infection, merozoites are released into the bloodstream. During the blood-stage infections, 

merozoites infect the red blood cells (erythrocytes) where asexual reproduction occurs. This invasion of 

red blood cells, which occurs with a periodicity of 24-36 hours, produces most of the negative disease 

related outcomes seen in individuals with clinical malaria (Ménard et al., 2013). After a period of 

approximately 10 days, a subset of the asexual parasites differentiate into the gametocyte (male and female) 

stages, which are ingested by a female mosquito and completing the cycle.   

The lifecycle of P. vivax differs slightly to the P. falciparum lifecycle in several ways. One of the most 

epidemiologically relevant differences is the ability for P. vivax to lie dormant in the liver of infected 

individuals as hypnozoites, which can cause relapses in blood stage malaria by re-invading the bloodstream. 

This can occur several weeks (short relapse) or  months (long relapse) after initial infection and the relative 

incidence of both relapse lengths varies between temperate and tropical regions, with short-relapse patterns 

generally occurring in tropical areas and long relapse patterns occurring in temperate areas in relation to 

seasonality (Battle et al., 2014; White et al., 2016). 
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Figure 1.1 Plasmodium falciparum lifecycle showing a) Gametocyte production and ingestion during a bloodmeal. b) sexual reproduction and developmental stages 

within the mosquito c) inoculation of sporozoites and liver stage infection within the human host d) asexual reproduction and blood stage infection. Drawn using BioRender 

(www.biorender.com) 

  

Malaria infections can vary in their severity and in their impact on the lives of those infected. Clinical, 

symptomatic malaria is initially characterised by fever, aches and chills. If left untreated, the patient can 

progress to severe malaria, resulting in severe anaemia, respiratory problems, or cerebral malaria, all of 

which can result in death. Under 5s are particularly at risk (WHO, 2018a).  In areas where there is still a high 

burden of malaria, it is common for naturally acquired immunity to develop following repeated exposure 

to malaria and for asymptomatic infections to occur.  

The age distributions of malaria infection also vary by species and transmission intensity. In high 

transmission settings, many members of the population become exposed and infected at a young age. As a 

result, they develop an immune response to malaria, meaning the age profile of individuals with clinical 

symptoms and often the prevalence of asymptomatic parasitaemia is higher in these settings. When naturally 

acquired immunity is not present in the population (due to reduced exposure) individuals are often older 
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when exposed, and the age profile is a wider range of ages. Similarly, lower population level immunity 

means individuals exposed to malaria, for example through imported cases, are more likely to become 

infected and be at risk of clinical disease.  

1.2 Burden and epidemiology of malaria 

According to the World Health Organisation (WHO) World Malaria Report 2018 (WHO, 2018a), an 

estimated 219 million cases (95% Confidence Interval (CI) = 203 – 262 million) of malaria occurred globally 

in 2017. Of these, 3.4% are attributed to P. vivax, with the rest attributed to P. falciparum. However, this 

proportion reached 74.1% and 37.2% in the WHO Americas and South East Asia regions respectively. In 

the same year the disease was responsible for an estimated 435 000 deaths worldwide, with the majority of 

mortality (93%) occurring in the WHO Africa region, and in children under 5 years old (61%). An estimated 

99% of the mortality was caused by infection with P. falciparum. In 2017 92% of all malaria cases were 

thought to have occurred in the WHO African region, with 5% occurring in the WHO South-East Asia 

Region, 2% occurring in the WHO Eastern Mediterranean region, and less than 1% occurring in each of 

the remaining WHO areas (WHO, 2018a). However, there is a significant burden of P. vivax outside of sub-

Saharan Africa. P. vivax has a much wider geographic range than P. falciparum, in part due to its ability to lie 

dormant, allowing transmission to be sustained following seasons which are unsuitable for vectors (Howes 

et al., 2016; Battle et al., 2019; Weiss et al., 2019).  In contexts outside of sub-Saharan Africa, P. vivax 

often appears to persist when control measures reduce the burden of P. falciparum. 

1.3  History of malaria control and elimination policy 

In 1955, the WHO launched a global campaign with the aim of eradicating malaria globally, known 

as the Global Malaria Eradication Programme (GMEP). This decision was made following 

promising results from pilots using dichloro-diphenyl-trichloroethane (DDT) to kill malaria 

vectors and results from mathematical models by Ross and MacDonald demonstrating the value 

of adult vector control on reducing malaria transmission (MacDonald, 1956; MacDonald, 1957). 

The main control measure used during this time was indoor residual spraying with DDT and other 

insecticides. Moderate successes were achieved; 37 countries eliminated malaria, some of which 

without evidence of resurgence in the decades following the end of the programme (Nájera, 
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González-Silva and Alonso, 2011). However, many areas where transmission had been interrupted 

did observe resurgences during the 1960s, as well as transmission occurring in areas where it had 

not previously occurred (Chiyaka et al., 2013; Smith et al., 2013). As the GMEP programme did 

not achieve its aims for eradication, it was abandoned in 1969. This resulted in a decline in funding 

for malaria control and elimination. During this time many countries experienced economic and 

political challenges, insecticides became more expensive and attention was shifted away from 

malaria. There was also increased exploitation of countries’ natural resources, with mining, logging 

and other forms of land-use change increasing (Nájera, González-Silva and Alonso, 2011). A 

systematic review found that the resurgences seen during this time were strongly correlated with 

reductions in IRS control in Latin America, civil/cold war in Europe and Asia and generally with 

weakening or cessation of control programmes (Cohen et al., 2012). 

 In 2000, African leaders gathered at the Roll Back Malaria Summit in Abuja to sign a declaration 

which committed to halving malaria mortality by 2010 (Global Partnership to Roll Back Malaria, 

2000). This represented a strong commitment from the global health community and leaders of 

malaria endemic countries to investing in malaria control. In the same year,  the Bill and Melinda 

Gates Foundation was formed, which made a strong financial and political commitment to malaria 

elimination and eradication (Roberts and Enserink, 2007). Renewed commitment to malaria 

elimination also was reflected in the Millennium Development Goals, with the aim of halting and 

beginning to reverse the global incidence of malaria by 2015 (United Nations, 2015). This political 

and financial investment has resulted in clear successes in malaria control. Since 2000, great strides 

have been made in reducing malaria incidence, prevalence, mortality and progress towards 

elimination. There was an estimated 41% reduction in global malaria incidence between 2000 and 

2015, with a reduction of 21% between 2010 and 2015 (WHO, 2018a). Between 2000 and 2015 

an estimated 1.2 billion cases and 6.2 million deaths have been averted, and the global malaria 

incidence rate has fallen by an estimated 37% (WHO, 2018a).  However, these gains have been 

found to have stalled in recent years. Although the global incidence rate of malaria declined by 
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18% from 72 to 59 cases per 1000 at risk between  2010 and 2015, this lower incidence rate 

remained constant in 2016 and 2017, with no further reductions achieved (WHO, 2018a). 

 In 2016, the WHO listed 21 countries who aimed to eliminate malaria by 2020 (WHO, 2016). The 

feasibility of eradication remains controversial,  and whilst there has been renewed optimism in 

achieving elimination at country level in many parts of the world (Feachem, Phillips and Targett, 

2009; Mendis et al., 2009; Tatem et al., 2010), the most recent report from the WHO Strategic 

Advisory Group on Malaria Eradication, concluded that eradication will not be possible using 

current tools, and significant investment in new tools, strengthened healthcare systems and 

improved surveillance and response will be required in order to reach eradication. Nonetheless in 

many spheres of malaria governance and policy, eradication remains the ultimate goal (Feachem et 

al., 2019). This history is important in understanding elimination goals in the present day. Between 

1987 and 2007, no countries were certified as eliminated (WHO Global Malaria Progamme, 2016). 

However, since 2007, eleven countries have been certified by the WHO as having eliminated 

malaria: Algeria, Argentina, Armenia, Maldives, Morocco, Kyrgyzstan, Paraguay, Sri Lanka, 

Turkmenistan, United Arab Emirates and Uzbekistan.  Two additional countries, El Salvador and 

China, reported no locally acquired cases in 2018. However, there are  many parts of the world, 

where new tools and new strategies will be required  to reduce transmission and further areas such 

as Venezuela (Grillet et al., 2019) where resurgences in transmission have been observed.  

1.4 Principal methods of malaria control 

Malaria control and elimination interventions can be broadly divided into anti-malarial measures 

and anti-vectorial measures. Current WHO policy (WHO, 2015) for treatment of uncomplicated 

P. falciparum (apart from pregnant women in their first trimester, who are recommended 7 days of 

quinine and clindamycin) is 3 days of with Artemisinin-based combination therapies (ACTs). For 

uncomplicated P. vivax, chloroquine or ACTs are recommended, unless the area is known to have 

chloroquine resistance, in which case ACTs alone are recommended. If GP6D deficiency status 
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of patients is known, they may be given primaquine to reduce the chance of P. vivax relapse. For 

severe malaria, intravenous artesunate is recommended, followed by standard ACT treatment.  

The two principal vector control strategies employed are through the distribution of long lasting 

insecticidal nets (LLINs), commonly known as bed nets, and where appropriate Indoor Residual 

Spraying (IRS), delivered as part of integrated vector management (IVM) programmes . The 

massive scale up of LLINs distribution since 2000 (2% of children slept under a bed net in 2000 

compared to 68% in 2015, however this has stalled in recent years (WHO, 2018a)) has been 

attributed as a major contributor to observed declines in malaria prevalence and incidence over 

the past 15 years (Bhatt et al., 2015). Nonetheless, the effectiveness of vector control varies by 

mosquito species and context. A particular challenge to vector control where outdoor-biting vector 

species are present, as they are not affected by IRS and LLINs, the mainstay of vector control. In 

these contexts there has been development of interventions such as spatial repellents and 

attractive-toxic sugar baits (Beier et al., 2012; Maia et al., 2018), however the effectiveness of such 

interventions has not been conclusively demonstrated and therefore not recommended by WHO 

at the current time (WHO, 2019a). Resistance to insecticide is also a concern, with evidence that 

between 2010 and 2016, the frequency of pyrethroid resistance increased in frequency by 32% An. 

funestus s.l and by 13% in An. gambiae s.l. (WHO, 2018b; WHO, 2019a). 

There has also been a great deal of investment in developing a vaccine for malaria. The furthest 

along of these vaccines, RTS,S, has begun pilots in select sites in Ghana, Kenya and Malawi after 

stage 3 clinical trials found four doses of the vaccine had an efficacy of 39% against clinical malaria 

over the 4 years that patients were followed post vaccination - leading to an estimated 1,774 cases 

of malaria averted per 1,000 children vaccinated (RTS,S Clinical Trials Partnership, 2015). Given 

these levels of efficacy, the vaccine has potential as a tool to complement rather than replace 

existing control strategies such as LLINs and IRS.  
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Preventative chemotherapies have also been introduced as control interventions in select contexts 

and in high-risk groups. Seasonal Malaria Chemoprevention (SMC) and Intermittent Preventive 

Treatment in pregnancy (IPTp) both are techniques in which anti-malarial drugs are delivered over 

a defined period of time, either the transmission season in the case of SMC, or for the duration of 

pregnancy in IPTp (WHO, 2015; WHO, 2017a). Mass drug administration (MDA) is also 

recommended for implementation in select contexts – namely in elimination settings to interrupt 

transmission of P. falciparum malaria, in the Greater Mekong subregion to prevent spread of spread 

of multi-drug resistance, during malaria epidemics, and in exceptional complex emergencies 

(WHO, 2015).  

In elimination settings, there is a shift towards surveillance, rapid detection and treatment of cases, 

identification and targeting of foci and in some contexts continued vector control (WHO, 2016).  

There have been several targeted approaches which have been piloted included treating individuals 

within the same household, vector control in surrounding areas and in some contexts targeting 

villages with intensive interventions and monitoring. Where importation is an issue, border 

surveillance and screening are also key.  

1.5 Methods to measure malaria transmission and the impact of control 

1.5.1 Metrics of malaria transmission 

Malaria transmission varies greatly between populations, demographic groups, over space, over 

time and in response to control measures. A wide variety of methods and measures (Table 1.1) 

have been developed to quantify, understand and predict these differences in transmission.  

The Entomological Inoculation Rate is the measure of the rate of infectious bites received per 

person. The EIR, long used as a key measure of malaria transmission is a measure of exposure of 

humans to infectious mosquitoes. It is defined as the number of infectious bites a human receives 

over a given time period, and is the product of the human biting rate, ma and the sporozoite 

prevalence, Z/M.  Whilst traditionally one of the mainstays in measuring transmission, the EIR 
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can vary greatly between contexts and seasons, and requires large sample sizes and time-consuming 

sampling methods to get accurate measures. The Force of Infection is the rate at which individuals 

become infected. This can be determined from transmission models, however, increasingly has 

been estimated by fitting catalytic models to antibody data. The proportion of a surveyed 

population with malaria parasites in blood at a given time and location, PrPf/PrPv,  is a mainstay 

of malaria measurements and widely collected through cross sectional surveys. It has been 

incorporated into global maps which have been key in risk mapping for malaria and tracking 

declines in the burden of malaria transmission (Bhatt et al., 2015; Battle et al., 2019; Weiss et al., 

2019). 

Incidence, or the number of cases occurring per 1000 over a given time period is also used. Two 

key metrics which are measures of incidence.  Annual Parasite Index is an annual measure of 

incidence and is the annual sum of cases occurring per 1000 individuals at risk in a given location 

over a year.  Due to the seasonality and heterogeneity in malaria incidence which can occur, by 

looking at year on year trends, some of the heterogeneity is removed compared to looking at more 

fine grain measures of incidence, however of course this level of aggregation also removes useful 

or interesting patterns and given that seasonality and heterogeneity is a key part of malaria 

epidemiology, is not as useful for designing the timing of intervention deployment for example.  

The Slide Positivity Rate (SPR) is the proportion of malaria-positive slides of all slides examined. 

This value can be biased if the individuals sampled are not representative of the population as a 

whole, which is generally the case if being used to diagnose fevers, however if the sampling strategy 

remains constant year on year, SPR is a useful metric for measuring changes in transmission over 

time.  

The basic reproduction number, 
� ,or how many secondary cases expected from an index case 

in a well-mixed, fully susceptible population is another key metric, which will be discussed in more 

detail in relation to mathematical modelling of malaria.  When above one, we expect transmission 
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to continue, and when below one we expect to die of its own accord, however this may take long 

periods of time if there is importation, or if there are some individuals with reproduction numbers 

above one even if the mean is below one.  

In many situations we may be interested in measuring transmission in the context of ongoing 

interventions or in a population with some existing immunity, and therefore not fully susceptible. 

In such cases the effective reproductive number, R, is calculated. In some cases 
� is used to denote 

R under control measures, however this is not used in this thesis as 
�  is also used to represent 

the case or cohort reproductive number - how many cases on average will a case infected at time 

t go onto infect. 
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Table 1.1: Metrics used to measure malaria transmission 

Notation Measure Definition 

�
 Basic reproduction number How many secondary cases expected 
from an index case in a well-mixed, 
fully susceptible population 
 

� Effective reproduction number Reproductive number when 
assumption of fully susceptible 
population is not met 
 

�� Case or cohort reproduction number For a given case or cohort infected at 
a given time,  how many people they 
go onto infect 
 

��� Entomological Inoculation Rate Rate of infectious bites per person 

�
� Force of infection The rate at which individuals become 
infected 
 

����/���� Parasite prevalence  The proportion of a surveyed 
population with malaria parasites in 
blood at a given time and location 
 

��� Annual Parasite Index The number of malaria-positive 
patients per 1,000 inhabitants 

��� Slide Positivity Rate The proportion of malaria-positive 
slides of all slides examined  

 

1.5.2  Mathematical models of malaria transmission  

Mathematical models of malaria transmission are tools which provide insight into the dynamics of 

malaria transmission and assist in the design and evaluation of malaria control and elimination 

programs. They range from simple sets of equations, through to complex individual-based 

simulations. Models also have provided key metrics to quantify transmission and progress towards 

elimination, such as the basic reproduction number.  In this section I will summarise the history 

of malaria transmission models and then explore their potential contribution to elimination efforts, 

highlighting the epidemiological challenges for malaria in elimination and very low transmission 

settings (where prevalence is under 1%, (WHO, 2017b)).  
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1.5.3 Looking back: malaria transmission models in the 20th century 

The first mathematical model of malaria transmission was published in 1908 by Ronald Ross after 

being tasked with recommending methods for the prevention of malaria in Mauritius (Ross, 1908). 

This model was based on an a priori description of how the prevalence of malaria was causally 

related to the ratio of mosquitoes to humans, m. Ross used the model to argue that only a 

proportion of a mosquito population would need to be killed to prevent transmission, which led 

to the formulation of a critical mosquito density, m’, above which transmission would be sustained. 

The parameters involved (summarised in Table 1.2) have now been standardised (Smith et al., 2012): 

m is the ratio of mosquitoes to humans, a is the proportion of mosquitoes that feed on humans 

each day, b is the proportion of bites by infectious mosquitoes that infect a human, c is the 

probability a mosquito becomes infected after biting an infected human, r is the daily rate each 

human recovers from infection, v is the number of days from infection to infectiousness in the 

mosquito, and g is the instantaneous death rate, which also can be expressed as −ln � , where p is 

the probability of an adult mosquito surviving one day, to give the following interpretation of 

Ross’ formula:  

�� > !"
#$%&'()* 
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Table 1.2: Parameters in Ross MacDonald model 

Parameter Definition 

+ The ratio of mosquitoes to humans 

, The rate at which a mosquito takes 
human blood meals 

- The probability that a bite by an 
infectious mosquito  infects a human 

� 
 

The probability a mosquito becomes 
infected after biting an infected human 

� The daily rate each human recovers from 
infection 

� The number of days from infection to 
infectiousness in the mosquito 

. The instantaneous death rate of a 

mosquito, also expressed as −ln(�) 

0 The probability of an adult mosquito 
surviving one day 

 

The original Ross model of malaria transmission was simulated using discrete time steps equal to 

one month. This use of a fixed time step represents one of two broad classes of numerical 

implementation methods within mathematical models: discrete and continuous time. The latter 

class was used in formulating the second dynamic model of malaria in 1911 (Ross, 1911), which 

utilised a pair of differential equations (parameterisation standardised as before (Smith et al., 2012)) 

to describe how the number of infected humans, 1, and the number of infectious mosquitoes, 2, 

change over time as follows: 

31
34 = �# 2

6 78 − 1) − "1 

32
34 = #& 1

8 76 − 2) − !2 

Here 8 is the total number of humans in the population of focus. Similarly, 6 is the total number 

of mosquitoes, and then � = 6/8. These differential equations do not incorporate the delay 

from infection to infectiousness in the mosquito. 



29 
 

The Ross model of malaria transmission was developed further by George MacDonald during the 

Global Malaria Eradication Programme (GMEP) between 1955 and 1969 (MacDonald, 1957). The 

resulting Ross-MacDonald model was used to provide insight into the efficacy of using the 

insecticide DDT as a malaria control strategy, with the explicit aim of eliminating the parasite. This 

model illustrated the impact that could be achieved by reducing mosquito longevity and the 

subsequent demonstration of the non-linear relationship between increasing mosquito death rates 

and decreasing sporozoite positivity rates (MacDonald, 1956). MacDonald’s work also led to the 

development of a quantitative theory for malaria control that was explained by the impact of 

interventions on the entomological transmission of malaria. This resulted in the first formulation 

of the basic reproductive number, R0, for malaria.  

In the 1970s, the World Health Organisation sponsored an investigation within the Garki district 

of Nigeria to assess if malaria could be eliminated using a combination of treating cases effectively 

with chloroquine and IRS (Molineaux and Gramiccia, 1980). Although the project in Garki 

ultimately failed to eliminate malaria within the study region, the parameter fitting of the model 

enabled a quantitative relationship between both entomological and parasitological prevalence and 

incidence to be formulated. This enabled estimation of key malaria indices concerning the vectorial 

capacity below which malaria could not be maintained at an endemic level. Lastly, the model 

moved towards a more nuanced understanding of the range of possible endemic levels, and 

arguably was the first attempt to use mathematical models to predict how control interventions 

could lead to reductions in vectorial capacity and subsequent changes in the severity of endemicity. 

1.5.4 Transmission Metrics: R0 and Vectorial Capacity 

The basic reproductive number, R0, or the number of cases expected to arise from a single infected 

individual in a well-mixed, fully susceptible population, has become a fundamental concept in the 

study of infectious disease dynamics. Borrowed from demography (Dublin and Lotka, 1925) to 

quantify population growth, R0 was first used in an infectious disease context by MacDonald to 
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quantify malaria transmission (Macdonald, 1952). The classical equation for R0 for malaria is 

illustrated visually in Figure 1.2 and written as follows: 


� = �#$%&
!" '()* = �#$%&

7−ln �)" �* 

R0 laid the foundation for a quantitative approach to designing and evaluating malaria control and 

eradication schemes, especially in estimating the impact of targeting adult mosquito vectors. R0 

allowed epidemiologists to quantify two key concepts: 1) the effect size of an intervention and 2) 

an epidemic or endemic threshold. According to theory, an R0 of one is the threshold below which 

an epidemic disease will not invade a susceptible population and an endemic disease, such as 

malaria will eventually die out. Therefore, establishing a measure of R0 and aiming to reduce it to 

below one provides a simple framework for malaria elimination. In recent years there has been 

some debate about whether reducing R0 below one is sufficient to eliminate malaria (Breban, 

Vardavas and Blower, 2007; Li, Blakeley and Smith, 2011). Simple models suggest a bi-stable 

equilibrium – suggesting that even with R0 below one, malaria can persist indefinitely in a 

population (Smith et al., 2013). However when Griffin (2016)  explored the relationship between 

R0 and Entomological Inoculation Rate (EIR) for biologically realistic models which incorporated 

the effects of immunity and were calibrated to a wide range of datasets, the bi-stable equilibrium 

did not appear to exist for P. falciparum malaria. 
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Figure 1.2 : Visualisation of parameters in R0 equation. The sections of the diagram shaded in different colours correspond to  the different 
interventions which effect each parameter/part of life cycle 

The ratio of R0:R or the effect size is a measure of what has already achieved with existing 

interventions. When R remains above one, further interventions will be required to achieve 

eventual elimination of malaria. Quantifying the effect size was key in supporting decisions to 

target the mosquito vector in malaria control strategies. This is because interventions which affect 

adult mosquitoes are likely to have a larger effect size than interventions which reduce parasite 

density, thereby illustrating the importance of interventions which target the vector. Returning to 

the equation for R0, we can see that R0 has a linear relationship with mosquito density, m; infectivity 

of mosquitoes to humans, b; the infectivity of humans to mosquitoes, c; and the infectious period, 

1/r. However it increases quadratically with increases to human feeding rates a. Depending on v, 

the extrinsic incubation period of the mosquito, R0  increases more or less cubically with increases 

in the mosquito death rate g  (Smith et al., 2012). Therefore, transmission intensity is highly sensitive 

to mosquito survival – meaning if adult mosquito survival was reduced through interventions, a 
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great impact on malaria transmission could be achieved. In addition, many interventions which 

reduce mosquito survival will also reduce mosquito density and, if also a mosquito repellent, 

possibly affect human feeding rates. Interventions targeting the parasite however only impact 

linear parameters within the equation: b, c and r.  

Mathematical models also lead to the derivation of other important metrics of malaria 

transmission. The vectoral capacity, defined as the total number of potentially infectious bites to 

mosquitoes arising per fully infectious human per day (Garrett-Jones, 1964), or measure of 

mosquito exposure to infectious humans, has been a key measure of transmission potential. It is 

described by a four-parameter equation as follows, using the same parameter symbols in previous 

equations: 

V = ma$e(=>
g  

 

The entomological inoculation rate long used as a key measure of malaria transmission is the 

converse of the vectoral capacity : a measure of exposure of humans to infectious mosquitoes. It 

is defined as the number of infectious bites a human receives over a given time period, and is the 

product of the human biting rate, ma and the sporozoite prevalence, Z/M. Both measures have 

been widely used in quantifying transmission potential, designing effective transmission strategies 

and measuring reductions in malaria burden through vector control.  

1.5.5 Looking forward: Modelling to support malaria elimination  

 Burden reduction is a key aim in malaria control, especially in higher transmission settings. 

However, the eventual goal for most malaria endemic countries is to achieve and sustain 

elimination, defined as the absence of locally acquired cases. Country level elimination is a key 

stepping stone towards global eradication. However, several key changes in malaria epidemiology 

occur as cases approach zero which must be overcome in order to accelerate, achieve and maintain 
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elimination. Mathematical models and theory can provide useful insights in elimination planning 

and implementation to understand and overcome these challenges. Here I focus on six key features 

of malaria epidemiology and monitoring in elimination and near elimination settings: focality of 

cases; asymptomatic reservoirs; importation and relapse; “residual” transmission, resurgence and 

changes in the demography of those infected; and developing metrics to quantify progress towards, 

achievement and maintenance of elimination. 

1.5.5.1 Focality of cases 

Firstly, malaria prevalence and incidence is heterogeneous at multiple spatial scales (Bousema et al., 

2012; Clements et al., 2013; Bejon et al., 2014), with the disease becoming more focal as cases 

approach zero (Carter, Mendis and Roberts, 2000; Bousema et al., 2012; Sturrock et al., 2016). 

Because of the tendency for cases to cluster geographically approaching elimination, it has been 

suggested that targeting interventions to areas of higher transmission may provide a more efficient 

allocation of resources than implementing control measures homogenously (Carter, Mendis and 

Roberts, 2000; Bousema et al., 2012). Spatial targeting of resources also may accelerate elimination 

efforts by allowing a more effective and rapid response to outbreaks. However, there is uncertainty 

as to how stable hotspots of transmission are, what their contribution to overall malaria dynamics 

is, whether their stability varies at different spatial scales, and whether this stability can be 

predicted. There is evidence that at some spatial scales hotspots of febrile malaria may be highly 

temporally variable, whereas asymptomatic parasitaemia seemed to be much more stable (Bejon et 

al., 2010, 2014),   however other studies have found also found stability in hotspots of febrile 

malaria (Ernst et al., 2006). These issues inform how and at what spatial scale to target elimination 

efforts. In order to address this, spatially explicit models of malaria transmission are required. 

1.5.5.2 Asymptomatic reservoirs 

Measuring progress towards elimination is further complicated by asymptomatic reservoirs. 

Reviews (Okell et al., 2012; Bousema et al., 2014) of prevalence surveys find a non-linear 
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relationship between prevalence by PCR and by RDT or microscopy, suggesting that even in low 

transmission settings the prevalence detected by PCR is often higher than that detected by other 

methods. However the amount of sub-patent and/or asymptomatic malaria in low transmission 

contexts is highly heterogeneous (Okell et al., 2012). It is also unclear what the contribution of 

asymptomatic reservoirs are on ongoing transmission. Quantifying the asymptomatic reservoir and 

modelling its impact on malaria transmission remains a major challenge in modelling elimination 

scenarios.  

1.5.5.3 Importation and relapse of cases 

As countries reach low numbers of locally acquired cases, the role of imported cases in sustaining 

transmission or reintroducing malaria to a country is a concern (Cotter et al., 2013; Churcher et al., 

2014). Increases in international travel, migration and connectivity all can lead to more 

importation. In addition, movement between neighbouring malaria endemic countries, 

documented or undocumented, as the result of socio-political, environment or economic changes 

can be important drivers of local transmission via importation or internal movement (Chuquiyauri 

et al., 2012). Examples of such changes in transmission, often related to land-use change such as 

mining and logging, have been observed in a variety of countries in SE Asia and the Americas 

including Cambodia (Sluydts et al., 2014; Guyant et al., 2015; Siv et al., 2016), Thailand (Dondorp 

et al., 2009), Indonesia (Surjadjaja, Surya and Baird, 2016) and Peru (Rosas-Aguirre et al., 2016). As 

cases get closer to zero, transmission becomes more evidently focal, with small areas of more 

intense transmission intensity (Oesterholt et al., 2006; Bejon et al., 2010, 2014; Sturrock et al., 2016).  

1.5.5.4 “Residual” transmission, resurgence and changing demographics 

It has been noted that in some areas, even with high coverage of interventions, transmission of 

malaria is sustained. Understanding the causes of residual transmission and targeting resources to 

these foci of residual transmission is required. There is a high economic cost of surveillance and 

response, and therefore targeting resources in the most efficient and effective way is important. 
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Characterising communities at risk, or driving transmission is also key due to specific needs of the 

communities or strategies which may be required, for example different strategies may be required 

to control malaria in adult migrant workers than in young children (Cotter et al., 2013).  Outside 

of sub-Saharan Africa, the burden of malaria often shifts from P. falciparum to P. vivax in lower 

transmission settings (Gething et al., 2011; Cotter et al., 2013). Because P. vivax can remain dormant 

and lead to relapses in illness, understanding P. vivax epidemiology as cases approach zero becomes 

increasingly important. P. vivax also proves more resistant to traditional control measures. The 

ability to spend long periods of time in dormancy in the liver allows the parasite to survive in 

contexts where P. falciparum would be unable to do so (Battle et al., 2014) . 

Most countries which successfully eliminated malaria have managed to maintain elimination, 

despite importation (Smith et al., 2013). However great resurgences have been seen in countries 

which reduced levels of malaria but did not achieve elimination. This apparent stability was 

explored in a series of reviews and meta-analyses (Cohen et al., 2010; Chiyaka et al., 2013; Smith et 

al., 2013) which concluded that stability in elimination was likely to be due to a combination of 

existing contextual factors such as economic development and vectorial capacity and self-

reinforcing benefits of elimination efforts such as improved surveillance and health systems. 

However, there is still a great deal of uncertainty in the mechanism behind elimination stability 

(Smith et al., 2013).  

1.5.5.5 Challenges in defining and measuring elimination 

Finally, quantifying the impact of interventions on malaria transmission is important to inform the 

design of optimal intervention strategies, and to evaluate the success of elimination programmes. 

This has been approached using a wide variety of methods, including mapping (Gething et al., 

2014; Bhatt et al., 2015) and mechanistic modelling (Griffin et al., 2010; Walker et al., 2016). 

However traditional metrics for malaria burden and transmission are not appropriate for near 

elimination settings. Great strides have been made in mapping many aspects of malaria 
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epidemiology, however these techniques require large numbers of cases to estimate values of 

interest such as prevalence with a reasonable amount of uncertainty or at an appropriately fine 

spatial scale. As a result, they cannot be easily applied to elimination settings where case counts are 

low.  The majority of current metrics of transmission for malaria also are difficult to apply to very 

low-transmission settings (Sturrock et al., 2016). Whilst the EIR is a mainstay in measuring 

transmission intensity, it is not suited to elimination contexts. The EIR is generally measured 

through human landing catches and captures a single point in time. Small numbers of infective 

mosquitoes and focality of transmission in low-transmission settings make accurate EIR values 

very difficult to obtain.  

Increasingly serosurveys have been used to estimate malaria transmission and exposure to the 

parasite (Corran et al., 2007; Pothin et al., 2016; Biggs et al., 2017; Greenhouse et al., 2018). Although 

established methods have difficulty in identifying between very recent as opposed to less recent 

exposure in low transmission settings (Sturrock et al., 2016, ) or less abrupt changes in transmission 

with smaller sample sizes (Sepúlveda, Paulino and Drakeley, 2015), there are is increasing promise 

for multi-antibody assays  which could provide increasingly detailed pictures of malaria exposure 

(Helb et al., 2015; Greenhouse et al., 2018). Nonetheless, selecting the most informative antibody 

responses to measure is dependent on context and in many contexts requires further research and 

development to identify informative antibody responses. Furthermore, these and current 

serological approaches are limited to locations where cross-sectional surveys have been carried 

out. Clinical incidence data, when of high quality offers potential for use in such settings, however 

fewer established methods exist within malaria research to make the most of routine incidence 

data and account for its potential biases, or for how best to combine with additional information, 

such as genetic, spatial or serological data. There is a need to develop modelling methods which 

make use of surveillance data, which is improving in quality in many low transmission contexts. 



37 
 

Challenges in defining elimination operationally also exist. Elimination defined is the interruption 

of local transmission of malaria within a geographic location, such as a country. The WHO certifies 

a country as eliminated when there are zero locally acquired cases for three years or more (Cohen 

et al., 2010; Alonso, 2016). However, this criteria is very difficult for countries to fulfil when 

bordered by higher burden countries with importation occurring, as importation can lead to some 

locally acquired cases, even with effective control and surveillance measures (Churcher et al., 2014). 

In addition, assessing the effectiveness of intervention in low transmission settings can be 

complicated by the effects of imported cases and P. vivax relapses. Relapses and importation can 

lead to outbreaks of local transmission although the initial source of infection may originate from 

a much earlier time point or distant point in space. This can reduce the apparent effectiveness of 

interventions (Churcher et al., 2014). 

One way models have addressed this is to develop methods (Churcher et al., 2014; Reiner et al., 

2015) which quantify 
�  values and how they vary over space and time, as well as modelling 

human movement (Ruktanonchai et al., 2016). These approaches respectively model underlying 

malaria transmission potential (“receptivity”) and importation risk (“vulnerability”), which 

together create an indication of overall malaria transmission risk (“malariogenic potential”). 

However, these methods are still in their infancy in application to malaria elimination. 

Over the past 15 years, a wide range of methods have been developed (Ypma et al.; Ferguson, 

Donnelly and Anderson, 2001; Wallinga and Teunis, 2004; Cottam et al., 2008; Chis Ster, Singh 

and Ferguson, 2009; Morelli et al., 2012) in the context of epidemic disease to measure transmission 

by estimating individual case and time varying reproduction numbers, using surveillance data 

which may contain epidemiological, demographic, spatial and genetic distance. They are informed 

by mechanistic models and empirical data describing key aspects of the transmission cycle of the 

disease in question, for example the distribution of serial intervals, which is the time between a 

case showing symptoms and the case they infect showing symptoms (Fine, 2003) . Such methods 
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making use of routine surveillance data have been rarely applied to vector borne diseases such as 

malaria, with notable exceptions (Reiner et al., 2015; Salje et al., 2016) but will become increasingly 

relevant as countries reduce malaria burden and increase the strength of their surveillance systems. 

These approaches can inform elimination policy and inform appropriate elimination strategies.  

1.6  Key measures of transmission for outbreaks: applicable to malaria 

elimination contexts? 

In outbreak situations and studies of diseases which take on epidemic dynamics, a wide range of 

techniques have been developed to determine key epidemiological parameters from surveillance 

data. There are interesting parallels between malaria in elimination settings and outbreak scenarios 

which could mean similar approaches will be useful and applicable.  

 Malaria often takes on epidemic dynamics nearing elimination. Furthermore, the individual line 

list data produced by control programmes and ministries of health is often similar in structure to 

outbreak contexts. As in emerging outbreaks, there are often smaller numbers of cases but more 

detailed information available about each individual case (often in the form of a line list). 

Furthermore, in both contexts importation can have important effects on disease dynamics. In 

addition, in both contexts the epidemic is partially but not fully observed and there can be changes 

in immunity over time and wave-like incidence patterns are seen.  

Two key measures of transmission will be explored here: the generation time distribution and 

reproduction numbers. One key parameter is the generation time distribution of a disease. The 

generation time of an infection is defined as the average time between an individual becoming 

infected and passing the infection on to a new individual (Fine, 2003). The distribution of 

generation times for an infection in a population can provide useful information about its spread 

and have a wide range of applications to epidemiology, control and elimination strategies. 

Generation time distributions have been used to infer likely chains of transmission (Wallinga and 

Teunis, 2004; Cauchemez et al., 2016), explore changes in transmissibility over time (Fraser, 2007; 

Cori et al., 2013), explore the impact of interventions (Ster, Singh and Ferguson, 2009; Walker et 
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al., 2012) or social/environmental factors (Salje et al., 2016), and understand drivers of remaining 

locally-acquired transmission (Perkins et al., 2015; Reiner et al., 2015). 

Often the time of infection is not known, but rather the date symptoms begin, or date care was 

sought. As a result, the serial interval (SI), or the time between a primary and secondary case 

presenting with clinical symptoms, is often used in epidemiological analysis in place of generation 

time distributions. For directly transmitted diseases, SI distributions can be estimated through 

contact tracing or household studies (Cauchemez and Donnelly, 2009). However, the generation 

time and serial interval distribution for indirectly transmitted diseases such as malaria can be 

difficult to estimate because they involve several events which are poorly observed or 

characterized, such as the time between becoming infectious and being bitten by a mosquito. The 

first attempts to characterize the generation time of malaria were by Macdonald in 1956, who 

suggested that a SI of 36 days was a minimum (MacDonald, 1956). There have been several studies 

since which characterize the serial interval and/or generation time of malaria. Churcher and 

colleagues ( 2014) suggest that the expected serial interval for malaria is has a mean of 33 days with 

treatment and 102 days without. Huber and colleagues (2016) used a combination of empirical 

data and mathematical models to estimate distributions of all the key processes contributing to the 

serial interval of malaria the liver emergence period (LEP), the human-to-mosquito transmission 

period (HMTP), the extrinsic incubation period (EIP), the mosquito-to-human transmission 

period (MHTP), and the infection-to-detection period (IDP). This work found that there was a 

great deal of variability in untreated or asymptomatic malaria, due to a long tail in distribution of 

human to mosquito transmission period. Their work estimated a mean of 48 days with treatment 

and 102 without, with the discordance between their estimates and previous estimates being the 

result of different assumptions surrounding the delay between symptom onset 

 and seeking treatment.  
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Reproductive numbers and how they vary through time and space are also key measures which 

epidemiologists attempt to establish. In a malaria elimination context, the reproductive number is 

a key measure for understanding whether malaria is likely to persist and for how long (Churcher et 

al., 2014). As discussed in Section 1.5.1, the assumptions inherent in the basic reproductive 

number, R0 are rarely present in real disease transmission, and as a result the effective reproductive 

number, R can be used to measure transmission when the population is not fully susceptible, either 

as a result of control and/or immunity from prior exposure.  

1.7 Estimating key transmission characteristics from epidemiological 

surveillance data 

1.7.1 Why estimate transmission routes and reproductive numbers? 

 Infectious diseases can be described statistically as point processes where events (such as the onset 

of disease symptoms) are fully or partially observed but the processes generating them are not. In 

recent years several statistically rigorous methods have been developed to infer chains of 

transmission from epidemiological surveillance data. Understanding the transmission network of 

an outbreak as well as key parameters such as R is highly relevant to the dynamics of malaria in 

low transmission settings. In these contexts, disease dynamics resemble epidemics or outbreaks, 

due to low immunity within the population and importation events where parasites are introduced 

into areas where suitable vectors are present. Inferring the most likely routes of transmission 

between individuals or groups can provide a range of useful insights, such as covariates associated 

with infectors and/or infectees, transmission kernels and modes of transmission (Morelli et al., 

2012). Transmission chain reconstruction has proved valuable in informing control and 

intervention policy, with the first application of this approach following the 2001 Foot and Mouth 

epidemic in the UK (Ferguson, Donnelly and Anderson, 2001; Keeling et al., 2003) . 

Since this period, transmission chain reconstruction and estimation of reproduction numbers have 

been found to be useful in real-time and retrospective studies of outbreaks and epidemics, such as 

the 2003 SARs outbreak (Wallinga and Teunis, 2004) and global Influenza pandemics (Ghani et 



41 
 

al., 2009). A key example of the utility of such approaches is during the response to the 2014 Ebola 

epidemic. Responding in real-time to line-list data, analyses using approaches to quantify 

reproduction numbers using a mixture of contact tracing and inference methods ( Faye et al., 2015) 

revealed key epidemiological information to inform targeted containment and control strategies.  

1.7.2 Use of networks in epidemiological modelling  

There has been a large body of work within epidemiology and infectious disease modelling 

exploring the structure of populations and modelling this structure through networks of social 

contacts or interactions (Welch, Bansal and Hunter, 2011). Individuals in the population are 

represented as nodes and their potential contacts for disease transmission are represented as edges. 

The focus of this work is generally on directly transmitted disease, especially sexually transmitted 

infections (Keeling and Eames, 2005), however a wide variety of diseases have been explored, 

including indirectly transmitted diseases (Reiner et al., 2015; Salje et al., 2016). Whilst much of this 

work has been in exploring the effect of network structure on disease dynamics and the impact of 

control measures (Cauchemez et al., 2006; Walker et al., 2012), there has also been a great deal of 

work carried out in developing rigorous statistical methods for inferring contact structure or 

transmission trees.  Many methods used in epidemiology to infer transmission chains build upon 

an approach popularized by Wallinga and Teunis in 2004 (Wallinga and Teunis, 2004), which 

allows the inference of most likely transmission routes using incidence time series data and a serial 

interval/generation time distribution. Consider an individual @, infected (or shows symptoms) at 

time 4A. The probability of infection from an individual/member of cohort B which was infected 

at time 4C  is determined by a function D, which can be the generation time or serial interval 

distribution, normalised by the likelihood of any other candidates infecting @ .  

EAC   =  D74A4C)/ F D74A4G)
AG
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The case reproductive number is the sum of all likely transmissions resulting from a case or cohort 

of interest infected/showing symptoms at time B. In other words, it describes how many 

individuals on average an individual infected at time B will go on to infect. 


� = F EAC
A

 

1.7.3 Extensions and developments  

The Wallinga and Teunis method provided a useful tool to quickly derive important measures 

from epidemiological surveillance data and, with suitable prior information, estimate most likely 

transmission routes. Developed to assist in the analysis of the 2003 SARs outbreak in Singapore,  

this and similar approaches allowed for rapid real time quantification of key epidemiological 

parameters from limited surveillance data (Wallinga and Teunis, 2004). 

However, there are several limitations which have been explored through a variety of approaches 

and extensions, summarized in Table 1.3. Often there can be uncertainty in both the date of 

symptom onset or infection and also in the proportion of unobserved cases. Unreported cases 

may shape inference of transmission by linking cases which occurred further away from each other 

in time, leading to slower apparent rates of transmission between cohorts or individuals. Previous 

work (Ferguson, Donnelly and Anderson, 2001; Walker et al., 2010, 2012) has considered 

uncertainty in dates of symptom onset by treating symptom dates as nuisance parameters within a 

Bayesian framework. Data augmentation methods have also been used to explore the impact of 

unreported cases(Ferguson, Donnelly and Anderson, 2001; Salje et al., 2016). In many contexts, 

timing of infection alone is not suitable to accurately reconstruct chains of transmission. There 

may be many candidates with similar likelihoods of transmission if many cases occur in a short 

space of time or if the SI distribution is wide. As a result a wide variety of extensions have been 

introduced which incorporate genetic data (Ypma et al.; Cottam et al., 2008; Morelli et al., 2012), 

spatial data via estimation of a spatial kernel (Morelli et al., 2012; Walker et al., 2012; Salje et al., 
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2016) and demographic data such as age and sex (Salje et al., 2016). These extensions have provided 

key insights into transmission dynamics and the impact of control measures for a wide range of 

diseases. However, there are often strong assumptions on the generation time interval and little 

formal inclusion of error or variation generated by the wide variety of factors which may affect 

likelihood of transmission between transmission pairs. This is particularly true for diseases with 

long and variable generation times, such as untreated malaria. 

1.7.4 Approaches from other fields of study 

Within applied statistics and machine learning research there has been a rich body of work using 

information on timing of node “activation” to reconstruct networks. These networks often 

represent flows of information between individuals, for example through online social networks. 

The generic problem of knowing (or being able to infer) times of contagion infecting nodes, but 

not observing the process of transmission, is highly applicable to infectious disease outbreaks. A 

class of models known as independent cascade models, introduced by Kempe in 2003 (Kempe, 

Kleinberg and Tardos, 2003) were first proposed to solve a problem known as influence 

maximization - to identify the most influential “nodes” in a network through which information 

is propagated (for example the posting of viral videos by individuals in a social network). The 

independent cascade model can be thought of as a generalized Susceptible - Infected (SI) model.  

The basic assumptions of the independent cascade model (Kempe, Kleinberg and Tardos, 2003) 

are:  

1) Infections are binary; an individual is infected or is not. Intensity of infection is not 

modelled.  

2) Infections along edges occur independently of each other.  

3) Infection propagates through network via diffusion. There are no external sources of 

infection. 

4) Cascades of infection propagate independently of each other. 

5) A node is infected only by the action of one parent node. Cascades map onto transmission 

trees  
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Following these basic assumptions, algorithms to estimate network diffusion rates and structure 

have been developed, such as NetInf and NetRate (Rodriguez, Balduzzi and Schölkopf, 2011; 

Gomez Rodriguez et al., 2014) and feature-enhanced methods (Wang, Ermon and Hopcroft, 2012). 

NetInf  infers networks through observations of the timing of “cascades” of infection events. The 

algorithm assumes equal weights or α values on edges between nodes in an unobserved network. 

This assumes that all connected nodes in the network infect their neighbours with the same 

probability. Following from Kempe (Kempe, Kleinberg and Tardos, 2003) the submodularity 

properties of the independent cascade model were exploited in this algorithm, meaning the 

likelihood of a given cascade (or transmission network) can be defined as the sum of all the 

pairwise likelihoods of transmission between each node in that cascade. An extension to this 

method, NetRate (Rodriguez, Balduzzi and Schölkopf, 2011), removes the assumption of constant 

hazards of infection, allowing estimation of varying relationships between infection hazard and 

time. This better captures the complex factors beyond time (e.g. age, sex, location, immunity, 

rainfall) which may affect probability of transmission occurring between nodes. NetRate 

additionally casts the network diffusion as a survival likelihood parameterised by hazard functions. 

These together form a function describing how the likelihood of transmission varies over time. 

The parametric form of the hazard, survival and likelihood depends upon hypothesised 

mechanisms of transmission, and  

There have been a variety of real-world applications which diffusion network approaches have 

been used for, mainly surrounding analysis of the spread of information and influence along online 

social and media networks. For example, this approach was used to reconstruct the spread of 

particular memes and hashtags to better understand the way in which information travels between 

blogging sites and mainstream media outlets, and comparing how this varies for population-wide 

events such as civil uprise in Syria during the Arab Spring, compared to unexpected news events 

which may generate large amounts of attention for a shorter period of time, such as the death of 

singer Amy Winehouse (Gomez Rodriguez et al., 2014). 
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1.7.5 Comparison of approaches 

Whilst there are many commonalities in the approaches introduced here, there are several key 

differences in approaches and features of each algorithm, summarised Table 1.3. A key feature of 

the information diffusion/independent cascade approaches is that they were designed to be 

generic and flexible to different problems and contexts, whereas within infectious disease 

epidemiology generally the approaches were designed to be specific to a particular disease and 

dataset. The advantage of a specific approach is that it is easier to tailor to the biology and particular 

features of interest for a particular disease or dataset, however the broader applicability and 

accuracy of approach in different contexts is then harder to determine. It also may be not obvious 

how to include new, additional sources of information. 

The way that the likelihood is constructed, and therefore how inference is performed also varies 

between approaches.  Some inference frameworks jointly infer multiple parameters within single 

inference framework and likelihood, whereas others have been multi-staged and more heuristic 

(Table 1.3). Previous approaches have either allowed all possible connections in a particular 

network structure  (Wallinga and Teunis, 2004), sampled from the likelihood (Ferguson, Donnelly 

and Anderson, 2001) or explored a limited number of pathways (Salje, Cummings and Lessler, 

2016).  Instead,  the information diffusion approaches introduced in this chapter either find the 

most likely underlying transmission network given the timing of symptom onset for a set of H 

transmission events linking cases using a greedy algorithm,  (Rodriguez and Schölkopf, 2012), or 

in the case of NetRate  the transmission tree and all possible linkages between cases are considered, 

but, as will be described further in Chapter 2, the introduction of a survival term penalises unlikely 

connections, meaning sparsity is encouraged and the transmission tree log likelihood can be 

estimated as the sum of all hazards and survivals for each case, meaning that even for large 

numbers of cases the likely connectivity between cases can be feasibly estimated.  
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Some approaches were developed within a Bayesian framework whilst others were implemented 

within a frequentist framework (Table 1.3). Working within a Bayesian framework is helpful when 

there is prior information or a range of possible parameter values, to incorporate both prior 

knowledge and uncertainty.  However, frequentist approaches are sometimes simpler and easier 

to implement quickly in outbreak scenarios. 

One major difference in structure is that independent cascade models were designed for 

observations of “multiple cascades” of transmission, where the same node or individual in the 

network potentially being observed multiple times, e.g. spread of two different hashtags, two 

periods of time. This is generally not the case for infectious disease. Although multiple and 

repeated malaria infection is common in high transmission settings, in settings where this type of 

approach is useful and appropriate it is very unlikely, we will see repeated infections in individual 

level datasets over reasonable observation windows. Although NetInf in particular, this could 

reduce the ability to accurately reconstruct disease transmission networks, compared to previous 

applications to problems with multiple cascades available. Therefore, testing on simulated data is 

recommended to determine the impact of this.  

The methods used here were chosen because of their flexibility, potential for incorporating 

multiple data types within a single inference framework,  convex likelihoods, encouragement of 

sparsity, estimation of full transmission tree, scalability and how well cited and applied such 

approaches have been within machine learning communit
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1.8 Problem Statement 

Malaria elimination at the national level, where local transmission of malaria is no longer sustained 

(Cohen et al., 2010), is increasingly a goal in global malaria policy. However, as countries approach 

elimination, changes in malaria epidemiology can pose challenges to reaching zero cases (Cotter et 

al., 2013). Understanding these changes is important in designing optimal elimination strategies. 

Challenges also arise in measuring the success of elimination (Cotter et al., 2013; Churcher et al., 

2014), both in understanding the stability of elimination (Chiyaka  et al., 2013; Smith et al., 2013) 

and assessing the impact of control measures in low transmission settings, especially in the 

presence of importation. This information is important when deciding if, when and how to scale 

back interventions and change surveillance methods (Chiyaka, et al., 2013). This can also inform 

policy surrounding certification of elimination, which can have significant impacts on countries. 

For regions which have set ambitious targets for elimination, understanding changes in 

epidemiology over space and time approaching elimination are highly pressing for designing 

effective strategies to reach and maintain zero cases. In hyper and meso-endemic settings current 

methods developed to measure changes in transmission have been effective. However, in low-

transmission settings new tools are required. Methods traditionally applied to outbreak data are 

one such promising tool. In low transmission and elimination settings, malaria cases are infrequent, 

immunity is lower, known cases tend to be treated and surveillance is often stronger. When linked 

with covariates of interest and spatial information, reconstructed transmission chains and 
�  

values can be mapped (Reiner et al., 2015). They provide information about changes in 

transmissibility over time (Cori et al., 2013), reveal heterogeneities in transmission between 

individuals and/or cohorts (Cauchemez et al., 2011), and can be linked to both 

environmental/demographic factors and interventions to explore their role (Salje et al., 2016). 

1.9 Aims and approach 

My thesis aims to introduce a new approach to quantifying malaria transmission in near elimination 

settings by extending, adapting and applying statistically rigorous methods from independent 
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cascade family of models to estimate individual level reproduction numbers. I then analyse these 

estimates, time series analysis and geostatistical approaches to quantify how they vary over space 

and time and uncertainty in these estimates. I aim to use these methods to retrospectively explore 

the dynamics of malaria transmission in several elimination settings, and in doing so provide useful 

evidence to support decision making around elimination certification and policy. 

Chapter 2 describes the methodological approach used in chapters 3-5 and rationale for its 

development and use.   describing the novel extensions and applications made to independent 

cascade models to apply them in the context of this thesis, namely carrying out work within a 

Bayesian framework, considering missing cases, and incorporating spatial information. This 

chapter also includes the results of testing methods on simulated data. Chapter 3 illustrates an 

application of one such extension to a previously unanalysed dataset from El Salvador, and further 

timeseries analysis and geospatial analysis is used to explore how malaria transmission has varied 

over space and time as the country approaches elimination and explore the impact of imported 

cases on malaria transmission. Chapter 4 illustrates a further application of a different extension, 

allowing joint Bayesian inference of the connectivity between all cases, scalable to large datasets 

and illustrates the application of this method to an individual-level dataset from Yunnan province 

China which has previously only been analysed descriptively. As in Chapter 3, geostatistical and 

additive regression models are used to further analyse the estimated spatiotemporal changes in 

transmission. Chapter 5 illustrates the version of the model adapted to include spatial information, 

applied to four line-list datasets from diverse economical, demographical and ecological contexts 

in elimination settings. In Chapter 6 I summarise and discuss the results and approach as a whole, 

considering key findings, limitations and future directions.  
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2  
Methodology 

2.1 Introduction 

As introduced in Chapter 1, this thesis aims to develop and apply methods to measure malaria 

transmission and its spatiotemporal variation in very low transmissionand elimination settings, 

where high quality individual-level surveillance data are available but case numbers are relatively 

low and metrics such as parasite prevalence are no longer informative. Here I introduce and derive 

the core algorithms and approaches used in Chapters 3-5 to estimate reproduction numbers. I then 

present the results of testing the methods used in Chapter 4 on simulated data to explore its ability 

to accurately estimate reproduction number distributions in different contexts with different 

amounts of missing data.  

All methods used were adapted from a family of algorithms, introduced in Chapter 1, which model 

the diffusion of a contagion along latent networks, where the time and or location of some signal 

(such as symptom onset, or posting a tweet) are known, but the transmission process itself and 

the underlying network is unobserved.  I chose to adapt, extend and apply these algorithms to 

malaria case data for several reasons. Firstly, a network diffusion approach addresses the generic 

problem of observing timings of transmission or diffusion events across networks, where the 

transmission process itself is unobserved, and has been extensively tested on both simulated and 

real datasets (Rodriguez, Balduzzi and Schölkopf, 2011; Rodriguez and Schölkopf, 2012; Wang, 

Ermon and Hopcroft, 2012; Gomez Rodriguez et al., 2014). Furthermore, this approach shares 

similarities with other network-based approaches which are increasingly used to understand 

infectious disease dynamics (Wallinga and Teunis, 2004; Cori et al., 2013), but rarely applied to 

malaria and other vector borne diseases (with the exception of Reiner et al., 2015). In addition, due 

to information diffusion algorithms being designed with a general focus, they are more flexible 
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and adaptable than many approaches, allowing the incorporation of further data sources and 

functional forms within a single estimation framework, as will be further explored and discussed 

in Chapter 5 and the Discussion (Chapter 6). They also have provably convex solutions, meaning 

there is a single global optimal solution which can be estimated from gradient descent optimisation 

of the log-likelihood. They also encourage sparsity, meaning many parameters shrink to zero and 

overfitting is penalised, which is advantageous for this type of inference when multiple parameters 

are estimated from small to moderate numbers of cases.  These algorithms have been widely cited, 

used and tested on a variety of real and simulated datasets (Rodriguez, Balduzzi and Schölkopf, 

2011; Rodriguez and Schölkopf, 2012; Wang, Ermon and Hopcroft, 2012; Gomez Rodriguez et 

al., 2014) and provide a flexible approach to leverage diverse datatypes within a single inferential 

framework. 

Due to the aims of this thesis, namely, to quantify spatiotemporal variation in malaria transmission 

in near elimination and elimination settings, I do no aim to specifically infer who infected whom. 

Instead, this thesis aims to produce temporally and spatially sensitive estimates of transmission as 

measured by reproductive numbers, as well as quantify uncertainty in these estimates. However, 

these frameworks do estimate transmission likelihoods and therefore transmission pathways can 

be constructed. Therefore, there is potential to utilise these methods, especially if supplemented 

with contact tracing data and/or genetic data to explore reconstructed networks and their 

properties. In order to facilitate understanding of the approach and the process, the technical 

derivation of the core algorithms as well as their extensions and the rationale behind their choice 

are included here. For ease of reading, a simplified description of the relevant methods are also 

included in the methods sections of Chapters 3-5. 

Before deriving and describing each approach separately, it is useful to consider what all methods 

share. All methods require a line list of individual cases and symptom onset times as a minimum, 

however can incorporate additional information, such as imported/local classification based on 
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epidemiological investigation or travel history and location of residence or health facility. In this 

thesis I do not incorporate information such as genetic distance due to a lack of data available in 

the contexts of focus, however in theory, any appropriate distance matrix could be incorporated 

within the framework presented here.  

All approaches take a prior on hyperparameters defining a serial interval distribution and then 

estimate the connectivity between cases, or the likelihood that each case infected the others. In all 

methods this inference is on the whole transmission tree, rather than solely considering pairwise 

transmission. All methods have been shown to provide convex and sparse solutions, allow for 

missing infectors, and use estimates of connectivity to estimate individual reproduction numbers 

for each case. 

There are several assumptions inherent to all approaches in this thesis. The implications of these 

assumptions are discussed in detail in relation to each dataset and context in Chapters 3, 4 and 5.  

Briefly, all approaches do not explicitly model reinfection/relapse, although do allow for 

unobserved sources of infection, which could be due to either of these processes. They assume 

that classification of cases as imported or locally acquired by elimination programmes is correct, 

and that therefore cases classified as imported can infect other cases but not be infected by other 

cases themselves. All assume that infection and symptom onset is in chronological order – i.e. 

cases will always show symptoms after their infectors, and therefore cases can only be infected by 

those which showed symptoms earlier than they did.  

2.2 Algorithm 1: Submodular inference from multiple trees (Implemented in 

Chapter 3) 

To infer the most likely pathways of transmission linking observed cases, I extended and adapted 

Multitree (Rodriguez and Schölkopf, 2012), a method based upon the independent cascade model 

introduced in Chapter 1 (Kempe, Kleinberg and Tardos, 2003). This algorithm exploits the 

submodular properties of the objective function, which in this case is the negative log-likelihood 
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function we aim to optimise. This submodularity, or the ability to calculate the negative log 

likelihood by calculating the pairwise likelihoods, means one can use pairwise likelihoods of 

transmission events occurring based on time of symptom onset and serial interval distributions 

and a greedy algorithm to iteratively build the most likely tree connecting observed cases for a 

given serial interval distribution and assumption about likelihood of infection by external source. 

This approach was specifically designed for small numbers of data points (Rodriguez and 

Schölkopf, 2012). In order to allow the inference of probabilities of transmission rates and estimate 

uncertainty in the estimates of the network connectivity, priors for the hyperparameters shaping 

the serial interval distribution were defined. By drawing many times from a prior distribution of 

hyperparameters governing a serial interval distribution and varying the value of epsilon, the 

parameter determining the likelihood of an unobserved source of infection infecting a case,  it is 

possible to generate estimates of uncertainty in estimates transmission links and the corresponding 

reproduction number estimates calculated from them. 

There are some important limitations to this approach. Firstly, the choice of cut-off point in 

marginal gain in likelihood for invoking additional edges in the network is somewhat heuristic. I 

address this in Chapter 3 by carrying out a sensitivity analysis and inspecting where the marginal 

gains in likelihood  begin to asymptote. Secondly, for each network, the edges are defined as 1 or 

0, there is no measure of the importance or likelihood of each edge for a single network. However, 

the marginal gain in likelihood that each edge provides can be used as a measure of importance 

for each edge of the network.  Furthermore, by adapting the model to have a pseudo-Bayesian 

approach with priors which are drawn from many times, we can also average the network and 

subsequent reproduction number estimates to obtain estimates of uncertainty.  

2.2.1 Data and parameter inputs 

This method assumes a dataset consisting of a time series of symptom (fever) onset of malaria 

cases 4 ∈ J4K, … , 4NO, time ordered such that 4K < 4$, … , < 4N. While the times of symptom onset 
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are known, what is not known is who infected whom. The goal of the model is to infer the most 

probable network structure, Q, connecting these R cases. We infer Q solely from the symptom 

onset times 4, a serial interval distribution, and hyperprior probability distributions for the serial 

interval distribution parameters. 

2.2.2 Serial interval distribution 

 The serial interval is the time between a given case, B, showing symptoms and the appearance of 

symptoms in a case @ infected by the earlier case, such that  4C < 4A (Fine, 2003). The serial interval 

distribution specifies a normalised pairwise transmission likelihood, or the likelihood of case j  

infecting case i, given the time between symptom onsets, 4A − 4C .   The model allows flexibility to 

define a range of prior distributions for possible serial interval distributions to allow for possible 

variation in transmission dynamics. For example, even in contexts where malaria transmission is 

extremely low and surveillance is high quality there remains a possibility of a small number of 

asymptomatic or undetected and therefore untreated infections contributing to ongoing 

transmission, which will take on a longer serial interval.  Defining a prior for the shape parameter 

of a serial interval distribution accounts for some of this uncertainty. The specific parameter 

specifications used for serial intervals in particular contexts are described separately in Chapters 3-

5.  

In all the applications explored in this thesis, a shifted Rayleigh distribution is used for the serial 

interval distribution, which is a special case of a Weibull distribution. Used widely in modelling 

propagation events and the serial intervals of other infectious diseases (Brookmeyer, Gail and Gail, 

1994; Virlogeux et al., 2015), when shifted to include an incubation period it is very similar in 

density to modelled malaria serial intervals (Huber et al., 2016).  
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2.2.3 Algorithm derivation 

Due to no evidence of P. vivax relapse in the transmission contexts explored in this thesis, I assume 

that a case can only be infected once by a case which has shown symptoms earlier in time. For a 

possible transmission tree S connecting cases with a set of transmission events or edges linking 

cases, ℰS , the likelihood of observing symptom onset times conditional on a given S is: U74|S) ∝
∏ U74Y|4*; [, \)7Y,*)∈ℰS .  Given this likelihood on a single transmission pathway S, the underlying 

graph is found by considering all possible transmission pathways supported by a given network Q: 

U74|]) ∝ ∑ U74|S)ℙ7S|Q)S∈`7Q)  where a7Q) is the set of all the possible transmission pathways 

for Q. By imposing a flat prior on ℙ7S|Q) and as a consequence of the assumptions of a single 

parent node with an earlier symptom onset date the likelihood simplifies to 

U74|Q) ∝ ∑ ∏ U74Y|4*; [, \)7Y,*)∈ℰSS∈`7Q)                                 (1)  

 My derivation until this point is the same as that introduced by Wallinga and Teunis (Wallinga 

and Teunis, 2004) and extended to a wide variety of contexts by others (Morelli et al., 2012). 

However, methods based on Wallinga and Teunis make the strong simplifying assumption that 

the likelihoods of all spanning trees on S and therefore Q are constant. Thus, they fundamentally 

do not infer the most probable underlying network structure or jointly consider all infection times 

at once.  In contrast, by following the approach introduced by Gomez-Rodriguez and Shölkopf 

(Rodriguez and Schölkopf, 2012), one can solve the optimisation problem ] = max|c|dG U74|]) for a 

set of at most H edges, or transmission events linking cases. The two fundamental challenges with 

solving this optimisation problem are (a) the sum ∑ 7⋅)S∈`7Q)  is evaluated over all directed spanning 

trees in Q, which can be super-exponential in R, and (b) max|c|dG U74|]) is a special case of the 

maximum coverage problem which has been proven to be NP-hard (Khuller, Moss and Naor, 

1999) and therefore unsolvable without searching all possible transmission trees with brute force.  

Following previous approaches (Gomez-Rodriguez, Leskovec and Krause, 2010; Rodriguez and 
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Schölkopf, 2012), challenge (a) can be solved by observing that the resulting matrix U74Y|4*; [, \)  

for all 7f, g) ∈ ℰS pairs is an upper triangular connectivity matrix. From Tutte (2003) and Gomez 

and Shölkopf (2012) the connectivity matrix can be expressed as a determinant, which for an upper 

triangular matrix is the product of the diagonal elements. Therefore, the likelihood in equation (1) 

becomes tractable and can be evaluated in quadratic time as: 

U74|Q) ∝ ∏ ∑ U74A|4C; [, \)hi∈h,hijhkhk∈h  (2) 

Equation (2) can be evaluated on a log scale  

l74|Q) ∝ ∑ log n∑ U74A|4C; [, \)hi∈op:oido rhk∈h  (3) 

For challenge (b) it can be proved (Rodriguez and Schölkopf, 2012) that, while finding an optimum 

to solve max|c|dG l74|]) is NP-hard, the structure of l74|]) is submodular. Submodularity in the 

structure of l74|]) yields a natural property of diminishing returns. That is, the incremental value 

that a single edge makes when added to Q decreases as the size of the graph increases.  Optimising 

submodular functions is possible using the greedy algorithm with provable and near-optimal 

performance guarantees (Nemhauser, Wolsey and Fisher, 1978). To implement the greedy 

algorithm, we start with an empty graph, s, and then add edges sequentially such that the marginal 

gain from each iteration is maximised.  Formally, this means one starts with Q = s a and then 

each iteration 7�) evaluates the edge 't ∈ J@, BO  ∀B < @ that yields the best marginal gain, 't =
maxv∈Q\Qxyz

l7Qt(K ∪ J'O) − l7]t(K), and add this edge to the graph Q = Q ∪ J'tO . Edges 

continue to be added and stop when  Q = J'K, … , 'GO edges is reached. Due to submodularity, the 

solution quality on increases with each additional edge, however, the marginal gain quickly 

asymptotes, thus ensuring sparse solutions. The number of edges, k, can be determined by setting 

a cut-off point for when the marginal gain in likelihood of adding edges falls below a certain value.  
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Two modifications were made to the above optimisation algorithm. Firstly, to incorporate edges 

known to be importations, I constrain child/infectee, @, edges in ' ∈ J@, BO∀B < @ to be only non-

imported infections. This ensures that local infections cannot infect imported infections but 

imported infections can infect any node. Secondly, to account for variation in the serial interval 

distribution, I run the above greedy scheme for prior samples of [, \, as discussed above. This 

approach naturally lends itself to Bayesian formulations. As it currently is applied in this thesis, 

this formulation uses a proportional likelihood optimised by exploiting submodularity.  

2.2.4 Accounting for missing cases 

Assuming all cases reaching community health workers or health facilities are recorded, missing 

cases may be generated by two processes. Symptomatic cases may be missed by not seeking care 

or being found through active case detection. On the other hand, cases may be asymptomatic and 

therefore unlikely to seek care or be detected. They may have densities of parasites in their blood 

which are too low to be detectable by microscopy if active case detection occurs. These reasons 

for missed detection apply to both imported cases and locally acquired cases.  We assume the pool 

of asymptomatic cases in the country is low and has a small contribution to ongoing transmission.  

To explore the amount of cases which may be going undetected within the independent cascade 

framework, we consider additional edges |, that represent unobserved individuals who can infect 

any observed individual, @, in a transmission chain. Every observed individual @ can get infected by 

unobserved individuals, |, with an arbitrarily small probability ε.  This so called }-edge is 

connected to every node in the network and do not, by design, participate in the diffusion 

propagation. The }-edges prevents breaks in the network diffusion cascade where the likelihood 

of transmission between observed cases is sufficiently low, the case is linked to an external source. 

Additionally, }-edges ensure the likelihood is monotonic, that is, converting an }-edge to a network 

edge in Q only increases the likelihood.  The addition of }-edges was achieved by augmenting the 

pairwise transmission likelihood as follows:  U~4A�4C; [, \� = }(K[~4A − 4C − \�'(z
��~hk(hi(��  
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The specific value of ε should be set to balance between false positives and false negatives when 

linking cases by infection events. The higher the value of ε, the larger the number of nodes that 

are assumed to be infected by an external source.  

2.2.5 Estimating �� 

In solving ] = max|c|dG l74|])  via the greedy algorithm we estimate H edges 't ∈ J@, BO∀B < @ by 

iteratively maximising the marginal gain in the log transmission likelihood of that edge over all 

other edges 't = maxv∈Q\Qxyz
l7Qt(K ∪ J'O) − l7]t(K). We therefore can calculate a 7R −

�) × R matrix, ℳ, for R total infections and � imported infections of H ≤ 7R − �) × R marginal 

gains edges. The rows of the upper triangular matrix ℳ are therefore the infectees and the 

columns the infectors. Because the solution is a positive and monotonically increasing function 

and l74|]) is submodular, these marginal edge gains asymptote, thereby creating sparse solutions 

and diminishing gains for each additional edge.  

By normalising the rows/infectees of ℳ and creating a normalised matrix ℛ = ℳ[A,⋅C]/
∑ ℳ[A,C] ∀ J@ = 1, . . , 7R − �)ONC�K  we get a matrix that represents both which infector edges are 

connected to infectees and the normalised marginal gain of that edge. Intuitively then, by taking 

the row sums of ℛ we get the (fractional) number of secondary infections and therefore a point 

estimate of the time varying reproductive number 
�74C) = ∑ ℛ[⋅,C]N(�
C�K . This reflects for an 

individual, how many people they are likely to have gone onto infect. When multiple individuals 

have been infected at a given time and/or place, we can take the mean individual ℛ� and 

uncertainty in this value as an indicator of reproductive numbers for a given time and/or location.  

2.3 Algorithm 2: Inference of network transmission rates (implemented in 

Chapter 4) 

The submodular approach (Algorithm 1) was suited to the dataset and context to which it was 

applied in Chapter 3, where there are very few and sparsely distributed cases. However, in some 
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contexts it is advantageous to utilise a less heuristic approach within a single, fully Bayesian 

optimisation framework. Furthermore, to widen the utility of the approach, a more flexible 

framework was required which could be modified to include spatial information or other data 

sources such as genetic or demographic information. The [AC term can be decomposed into 

constituent variables or multiplied by an additional function, both allowing incorporation of 

additional sources of information.  There was also a need to devise a method which could be easily 

run on a larger dataset without a need for many computational resources in order to increase the 

utility of any approach by malaria elimination programmes. As a result, an approach was adopted 

which jointly infers separate transmission rates for each edge connecting potential infectors and 

infectees. This has been widely tested on simulated and real datasets, and is advantageous in both 

having a convex likelihood, meaning global optimal values can be estimated, and in encouraging 

sparse solutions by penalising non-zero values of [AC through the survival function. 

There are several key extensions and adaptations which I developed, considering applications to 

malaria surveillance data in elimination settings . Firstly, epsilon edges, �, were added to allow for 

unobserved sources of infection, acting as competing hazards with observed cases. Secondly, the 

algorithm was implemented in a Bayesian framework to incorporate uncertainty and prior 

knowledge about the serial interval distribution and proportion of unobserved cases.  

Additional versions of the algorithm were developed and coded in different coding languages to 

increase speed of computation and facilitate the analysis of larger datasets. I will first introduce the 

derivation of the general version and then explore the extensions and variations considered. 

2.3.1 Data and parameter inputs 

Data consist of a set of R infections/nodes � ∈ 7�K, … , �N) with associated times � = J4K, … 4NO ∈
ℝ� and binary yes/no importation status � = J|K, . . , |NO ∈ J1,0O 
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2.3.2 Serial interval distribution 

The serial interval distribution of malaria, defining the probability individual �C infected individual 

�A at times 4A > 4C   is defined through a shifted Rayleigh distribution U~4A�4C; [, \� =

[~4A − 4C − \�'(z
��~hk(hi(�� for shaping parameters [ and \ (Routledge et al., 2018).  

2.3.3 Algorithm derivation 

If we assume that infections are conditionally independent given the parents of infected nodes, 

then the likelihood of a given transmission chain can be defined as   

U7�; �) = ∏  U74A|4K, … , 4N\4A; �)hk∈�  71) 

Where �  is a parameter matrix. Computing the likelihood of a given transmission chain thus 

involves computing the conditional likelihood of the infection time of each infection (4A) given all 

other infections (4K, … , 4N\4A). If we make the assumption that a node gets infected once the first 

parent infects it (Kempe, Kleinberg and Tardos, 2003) and define a survival function  

�~4A�4C; [C,A� = 1 − � U~4A�4C; [C,A� 34 hk(hi
� 72) 

as the probability that infection �A is not infected by infection �C by time 4A then one can simplify 

the transmission likelihood as 

U7�; �) = ∏  ∑ U74A|4C; [C,A) ∏ �74A|4G; [G,A)��:h�jhk,����i�i:hijhkhk∈�  73) 

In this conditional likelihood the first term computes the probability the �C infected �A and the 

second term computes the probability that �A was not infected by any other previous infections 

excluding �C . This likelihood therefore accounts for competing infectors and finds the infector 

most likely to have infected �A. To remove the H ≠ B condition makes the product independent of 

B and results in the likelihood 
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U7�; �) = ∏  ∏ �74A|4G; [G,A)��:h�jhk ∑ �7hk|hi;�i,k)
 7hk|hi;�i,k)�i:hijhkhk∈�    (4) 

In equation 4,   
U7⋅) �7⋅)¡ = 8 is the hazard function or rate and represents the instantaneous 

infection rate between individuals �A and �C. 

Similar to the submodular approach used in Chapter 3 (Algorithm 1), to account for unobserved 

infectors within this framework I include a time-independent edge that can infect any individual 

(Figure 2.1). The survival and hazard functions for this edge are defined as ��7}A) = '(¢k and 

8� = }A. As we will see below, as a consequence of the optimisation problem these edges are 

encouraged to be sparse and only invoked if no other infectors can continue the transmission 

chain.  

 

Figure 2.1: Diagram showing the parameters estimated by Algorithm 2. The likelihood of transmission occurring between each 

pair of edges is determined by  [AC , representing a transmission rate/hazard and the εi estimated for each case, representing competing 

hazards from unobserved infectors. 
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In addition to unobserved edges, we assume that observed imported infectors can infect other 

cases but cannot be infected themselves. The final likelihood incorporating these two 

modifications becomes 

U7�; �, £) = ∏  ��7}A) ∏ �~4A�4G; [G,A���:h�jhk n8�7}A) + ∑ 8~4A�4G; [G,A��i:hijhk r hk∈� 75) 

In order to find the optimal parameters for �, £ we minimize the following log likelihood subject 

to positive constraints on the parameters: 

�@R@�@¦'�,£ − log U7�; �, £)         §f%B'&4 4¨ �, £ > 0  ∀@, B (6) 

This optimisation problem is convex and guarantees a consistent maximum likelihood estimate 

(Gomez Rodriguez et al., 2014).  

To prevent biologically implausible serial interval distributions, we impose a truncated normal 

prior probability distribution on � ~Normal(0.003,0.1) [0,0.01]. When optimising the likelihood, 

I  include this prior probability and therefore evaluate the Bayesian Maximum-a-Posteriori 

estimate. 

2.3.4 Estimating �� 

We can establish individual reproduction numbers for each case by creating a matrix where each 

column represents a potential infector and the rows represent a potential infectee, describing which 

infector edges are connected to infectees and the normalised likelihood of the cases being 

connected by a transmission event. Intuitively then, by taking the row sums we get the (fractional) 

number of secondary infections and therefore a point estimate of the time varying reproduction 

number 
�74C) This reflects for an individual, how many people they subsequently infect. When 

multiple individuals have been infected at a given time and/or place, we can take the mean 

individual 
� and uncertainty in this value as an indicator of reproduction numbers for a given 

time and/or location.  
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In contrast to traditional methods based on Wallinga and Teunis (2004) using the method in this 

way encapsulates not only the pairwise likelihood of transmission between two cases, but 

conditions this likelihood on the impact of competing edges in the inferred network (the survival 

of an edge). The estimates of 
� therefore consider the overall transmission tree in optimisation 

and allow for missing cases within the tree. 

2.3.5 Alternative versions  

Throughout the development of this work, several versions of the algorithm were devised and 

tested, mainly with the aim of adapting of the methods to suit larger datasets, or contexts with 

varying levels of uncertainty/information around key model inputs, where a Bayesian framework  

may be useful. 

The parameters were estimated both within a frequentist framework by Maximum Likelihood 

Estimation (MLE) using a bounded  Broyden-Fletcher-Goldfarb–Shanno (BFGS-B) algorithm to 

optimise the negative log likelihood and  within a Bayesian framework using Hamiltonian Markov-

Chain Monte Carlo methods (Duane et al., 1987)  in Stan, a C++ based language designed for 

efficient Hamiltonian MCMC sampling which was implemented through the rStan package (Stan 

Development Team, 2016).  

By working within a Bayesian framework, this approach allows the incorporation of prior 

knowledge around the serial interval, allowing better quantification of uncertainty, as for many 

outbreaks and infectious diseases there is some information about the serial interval from 

epidemiological investigation/natural history of the pathogen, but also a certain amount of 

variation and uncertainty.  

For increased speed and computing efficiency, allowing the analysis of larger datasets, the model 

was rewritten and implemented in TensorFlow (Abadi et al., 2015)  both as a frequentist and 

Bayesian model, where the maximum-a-posteriori estimate was calculated. TensorFlow is an 
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opensource library for numerical computation which is coded in the Python programming 

language but runs all numerical computation in C++.  

 

2.4 Algorithm 3: Network transmission rate inference incorporating distance 

metrics (implemented in Chapter 5) 

Following on from Algorithm 2, an approach was required which could incorporate additional 

information, such as Euclidian distance and accessibility information within one inference 

framework.  In order to incorporate features other than time, I extended the method by 

introducing a second function, U$, which describes the relationship between space (or distance of 

any kind) and likelihood of transmission. An appropriate function such as a power law distribution 

is decided and the parameters shaping that distribution, are estimated from the data. Together, the 

product returns a single function:  

U~©A, 4A�©C , 4C; [A,C, ª� = UK74A|4C;  [A,C) U$7©A|©C; ª)   

Determined by times 4, spatial locations ©, transmission rates [,  spatial parameter(s) ª. The 

specific functions used in UK74A|4C;  [A,C) and  U$7©A|©C; ª)   impact the outcomes of results and 

therefore the assumptions inherent in these choices must be made explicit and linked to the 

mechanisms of transmission.  In this thesis, two functions were used to model the relationship 

between space and the likelihood of transmission: Exponential and Gaussian Kernels. 
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Table 2.1: Summary of key equations for Algorithm 3. Equations for f1, f2, hazard and survival for time -only, and  spatial versions of the 
algorithm with Gaussian and Exponential transmission kernels 

 

 �«7�¬|�­;  �¬,­) �®7¯¬|¯­; °) Hazard Survival 

Exponential [~4A − 4C − \�'(K
$�~hk(hi(�� '(±7²k(²i)    ª[~4A − 4C − \�'(±7²k(²i) '(K

$�~hk(hi(�� 1
ª 

Gaussian [~4A − 4C − \�'(K
$�~hk(hi(�� '(±7²k(²i)�

 2³ª[~4A − 4C − \�'(±7²k(²i

√| '(K
$�~hk(hi(�� √|

2³ª 

Time only  [~4A − 4C − \�'(K
$�~hk(hi(�� 

n/a [~4A − 4C − \� '(K
$�~hk(hi(�� 

 

2.4.1 Derivation of hazard, survival and likelihood 

The pairwise likelihood of a case showing symptoms at 4A and at residence location ©A being 

infected by a case showing symptoms at time  4C and at residence location ©C , becomes  

U~©A , 4A�©C , 4C; [A,C, ª� =  [~4A − 4C − \�'(K
$�~hk(hi(��'(±7²k(²i)  74) 

The survival term is then the integral over all a time range and the real line of distances: 

�~©A , 4A�©C, 4C ; [A,C, ª� = 7 ¶  
·

²i��
¶ [~4A − 4C − \�'(K

$�~hk(o¸(��'(±7²k(²i)   34 3©  75)
hk

hi��
 

Which simplifies to:  

S~©A, 4A�©C, 4C; [A,C, ª� = '(z
��~hk(hi(�� �  '(±7²k(²i)   ·

²i�� 3© (6) 

S~©A, 4A�©C, 4C; [A,C, ª� = '(z
��~hk(hi(�� K

± (7) 
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Following on from this, as the hazard is equivalent to the likelihood divided by survival, 8 = �7⋅)
 7⋅), 

it follows that 

8~©A, 4A�©C, 4C; [A,C , ª� = �~hk(hi(��vyz
�¹nºkyºiy»rvy¼7½ky½i)

vy¹nºkyºiy»r z
¼

  (7) 

Which simplifies to 

 8~©A, 4A�©C , 4C; [A,C , ª� =  ª[~4A − 4C − \�'(±7²k(²i) (8) 

For the Gaussian function, the pairwise likelihood of a case showing symptoms at 4A and at 

residence location ©A being infected by a case showing symptoms at time  4C and at residence 

location ©C is 

U~©A , 4A�©C , 4C; [A,C, ª� =  [~4A − 4C − \�'(K
$�~hk(hi(��'(±7²k(²i)�   79)   

The survival term is again determined by integrating the likelihood over all potential infection times 

and all distances: 

�~©A, 4A�©C , 4C; [A,C, ª� = 7 ¶  
·

²i��
¶ [~4A − 4C − \�'(K

$�~hk(hi(��'(±~²k(²i��    34 3© 
hk(hi

hi��
710) 

Integrating over time returns: 

�~©A , 4A�©C, 4C; [A,C, ª� = '(K
$�~hk(hi(�� ¶  '(±~²k(²i��

·

²i��
 3© 711) 

Integrating over all distances gives 

�~©A , 4A�©C, 4C ; [A,C, ª� = '(K
$�~hk(hi(�� √|

2³ª  712) 
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Following equation 12, the hazard is equivalent to 

8~©A , 4A�©C, 4C; [A,C, ª� = [~4A − 4C − \�'(K
$�~hk(hi(��'(±7²k(²i)�

'(K
$�~hk(hi(�� √|

2³ª
 713) 

Which simplifies to 

8~©A, 4A�©C , 4C; [A,C, ª� = 2³ª[~4A − 4C − \�'(±7²k(²i)�

√|   714) 

2.4.2 Modelling missing cases using Ɛ edges 

The vast majority of disease surveillance and outbreak response datasets will not be able to capture 

all cases due to asymptomatic infection, underreporting and movement of people in/out of the 

surveillance area. Therefore, it is important to consider the impact of missing information on 

results and identify potential missing sources of infection. In the work described in this chapter, 

as in chapter 2, we use Epsilon edges, }A , to identify potential sources of infection. Here, each 

hazard is estimated as a further competing edge of transmission from an unobserved source, 

8�7}A) . Depending on assumptions for the likelihood and extent of unobserved infection sources, 

the epsilon edge value can be set to a high or low value. When high, we assume high amounts of 

unobserved infection and unless two cases have a very high likelihood of being linked, we assume 

the case was from an unobserved source.  When low, we assume little missing data and so cases 

are only linked to an outside source if they are very unlikely to be linked to an observed candidate 

infector.  
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Adding epsilon as a competing hazard and survival returns 

U7�, ¯; �, £, °) = ∏  ��7}A) ∏ �~©A , 4A�©C, 4C; [A,C, ª���:h�jhk n8�7}A) +hk∈�

∑ 8~©A , 4A�©C , 4C; [A,C, ª��i:hijhk r 715) 

The objective function is then 

�@R@�@¦'�,£ − log U7�, ¯; �, £, °)         §f%B'&4 4¨ �, £, ° > 0  ∀@, B (16) 

 

2.5 Evaluation and comparison of methodologies 

Simulations were carried out to explore the impact of various assumptions on the ability of the 

model to recover correct reproduction number estimates and serial intervals. Two approaches 

were used: firstly, simulating epidemics along explicit networks using a network based susceptible-

infected model, and secondly using a stochastic susceptible-infected-recovered (SIR) model with 

a given 
� distribution to simulate line lists. 

2.5.1 Simulation across networks  

For the first simulation, data were simulated by generating small-world networks using the igraph 

(Csardi and Nepusz, 2006) package in R version 3.3 (R Core Team, 2016).  Small world networks 

are hypothesised to reflect many real-life networks, which show both properties of regularity and 

randomness (Watts and Strogatz, 1998; Eubank et al., 2004). The network generated for this 

analysis is illustrated in Figure 2.2. Then a susceptible-infected (SI) model was run along the 

network, where during each time step infected nodes infect their neighbours with probability β. 

Under the SI model, at time zero 74 = 0), all nodes begin susceptible, bar a given number of seed 

nodes. For this simulation, initially one node was seeded with infection. At 4 = 1 the infected 

node can infect each neighbouring node which shares an edge with it (determined by the simulated 
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network), with probability β. For this simulation β is constant, provided the infected node is 

connected by an edge to a susceptible node. At 4 = 2 if any new infections occur, the newly 

infected nodes then become able to infect their neighbours with probability β. The chain continues 

for a set horizon of time or until all nodes are infected. The incidence time series generated by this 

simulation was then input into a frequentist version of the algorithm. 

Two factors were measured to explore the accuracy and effectiveness of the algorithm. Firstly, the 

mean [ACvalue returned by the model, which is defined as the instantaneous hazard of infection, 

which for an exponential parameterisation is not time dependent. The true alpha value was 

assumed to be β, the hazard of infecting neighbours. Secondly, the corresponding likelihood 

functions calculated from the hazard value, determining likelihood of transmission over time, were 

also compared. 
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Figure 2.2 Network used for simulation. Note the edges here represent potential connections and routes along which transmission could occur. 
Node 1, circled in red always seeded transmission. 

 

2.5.2 Stochastic SIR simulation of line lists 

To further test assumptions in model, line lists with missing data were simulated using EpiGenR, 

an algorithm and R package which simulates transmission events and then samples from this to 

represent a final detected line list. This model implements a stochastic Susceptible-Infected-

Recovered model over discrete time steps in the C++ language via the Rcpp package. Recovery is 

exponentially distributed, with rate parameter, \. This parameter determines the time to infection 

of the next generation and in turn the serial interval distribution.  Infectors infect a number of 

individuals, drawn from the offspring or reproductive number distribution, which is negative 

binomial with dispersion parameter ¿.  
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To reflect an elimination scenario, the distribution of individual reproduction numbers was defined 

as a negative binomial distribution with mean 0.5. I considered two values for the overdispersion 

parameter, ¿, as 0.1 (more over dispersed, more variance in 
�) and 1 (less over dispersed, less 

variance in 
�).  For both values of  ¿ 100 outbreaks of minimum infected size 100 were simulated 

over 1000 days, with an exponentially distributed serial interval with a mean of 30 days. Then the 

ability of the algorithm to detect the underlying offspring distribution was measured. Each 

outbreak had 100 seed infectors in a fully susceptible population of 50 000, with no further 

importation occurring, to ensure the final sample size was large enough to measure 
�. As the 

simulator draws integers, for better comparison of model estimated results, the distribution of 

maximum-a-posteriori estimates for 
� estimates were rounded to the nearest integer and 

presented alongside the raw estimates. Both the histograms and means of simulated versus 

estimated results were compared.    

To simulate missing cases, the fully observed dataset was sampled following a proportional 

approach where for each case the probability of observation was set at varying values between 1 

and 0.3, and then each individual observation was determined by drawing from a binomial 

distribution with the given probability.  

2.5.3 Simulation Results 

Simulated data on a small world network found the inferred mean [A,C, or instantaneous hazards 

of transmission to be relatively similar to expected values, as shown in Figure 2.3. The 

corresponding likelihood of infection also closely resembled the true likelihood (Figure 2.4), 

assuming the same parametric form (an exponentially distributed likelihood, determined by mean 

[AC and time). 
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Figure 2.3 Plot of true transmission rate, °  plotted against model estimated transmission rate (mean �¬,­ or hazard) for 

100 simulations of line lists with different values of  ° 



73 
 

 

Figure 2.4 Three randomly drawn estimated and actual transmission rate/hazard values from figure 2.3  showing the 
corresponding estimated and actual transmission likelihoods they represent. Colours show likelihoods of transmission over time for  

different values of actual [(solid line) and their corresponding estimated values (dotted line). 

 

2.5.3.1 Simulations from a more over dispersed R distribution (K=0.1) 

When the probability of observing a case was 1, E7&#§' ¨%§'"g'3) = 1, simulated line lists, 

simulated from a negative binomial 
�  distribution of mean (À) 0.5, with overdispersion parameter 

7¿), of 0.1 ( 
� ~ Â'!#4@g' Ã@R¨�@#Ä7 À = 0.5, ¿ = 0.1)) had a true mean 
�  of 0.56.  When 

the prior for the � edge was defined as having a  Truncated Normal prior with mean = 0.001 and 

standard deviation = 1, ( �"@¨"7�)~ a"fR&#4'3 Â¨"�#Ä7 À = 0.001, = 1))  the algorithm 

returned a mean of 0.54 when results were rounded to the nearest integer and 0.6 when decimal 

values were not rounded (Figure 2.5). When the probability of observation was 90%, this value 
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decreases to 0.52 (rounded) and 0.56 (decimal). The mean estimate continues to decrease with 

decreasing observations, but even with an average of 30% of cases observed, the mean 
�  was 

estimated as 0.41 and 0.46  when 
�  is a rounded integer or decimal estimate respectively (Figure 

2.8).  

2.5.3.2 Simulations from a less over dispersed R distribution (K=1) 

When the probability of observing a case was 1, E7&#§' ¨%§'"g'3) = 1, line-lists, simulated 

from a negative binomial 
� distribution of mean (À) 0.5, with overdispersion parameter 7¿), of 

1 ( 
� ~ Â'!#4@g' Ã@R¨�@#Ä7 À = 0.5, ¿ = 1)) had a true mean 
� of 0.59.  When the prior for 

the � edge was defined as having a Truncated Normal prior with mean = 0.00001 and standard 

deviation = 1, ( �"@¨"7�)~ a"fR&#4'3 Â¨"�#Ä7 À = 0.00001, ¿ = 1)), the algorithm 

returned a mean of 0.54 when results were rounded to the nearest integer and 0.53 when decimal 

values were not rounded (Figure 2.9). When the probability of observing a case was 0.9 

(E7&#§' ¨%§'"g'3) = 0.9), this value decreases to 0.49 (rounded) and 0.52 (decimal). When an 

accurate and informative prior for �  when  (E7&#§' ¨%§'"g'3) = 0.9) is chosen, the model 

accurately returns the mean 
�  of 0.59  (Figure 2.11).  With an average of 30% of cases observed, 

the mean 
�  was estimated as 0.41 and 0.44  when 
�  is a rounded integer or decimal estimate 

respectively. Observationally, the distribution of 
�s remain similar to the true value (Figure 2.11),  

however more quantitative analysis would be required to rigorously assess similarities in the 

distributions.  
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A B C 

Figure 2.5: Histograms of simulated Rc and model-estimated Rc when P(observation) is 1 and K is 0.1 

A) Histogram of individual reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when decimal 
estimates are used 
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A B C 

Figure 2.6 Histograms of simulated Rc and model-estimated Rc when P(observation) is 0.9 and K is 0.1 

 A) Histogram of individual reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when 
decimal estimates are used 
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A B C 

Figure 2.7: Histograms of simulated Rc and model-estimated Rc when P(observation) is 0.7 and K is 0.1 

A) Histogram of individual reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when decimal 
estimates are used 
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A B C 

Figure 2.8: Histograms of simulated Rc and model-estimated Rc when P(observation) is 0.3 and K is 0.1 

A) Histogram of individual reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when decimal estimates 
are used. 
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Figure 2.9: Histograms of simulated Rc and model-estimated Rc when P(observation) is 1 and K is 1 

When P(case observed) = 1.0 and an uninformative prior used for ε  (Truncated Normal(mean=0.0001,standard deviation=1). A) 
Histogram of individual reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest 
integer and C) when decimal estimates are used. 
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Figure 2.10: Histograms of simulated Rc and model-estimated Rc when P(observation) is 0.9 and K is 1 

When informative and accurate prior used for ε, Truncated Normal(mean=0.1, standard deviation=0.00001 A) Histogram of individual 
reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when decimal 
estimates are used. 
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Figure 2.11:  Histograms of simulated Rc and model-estimated Rc when P(observation) is 0.9 and K is 1 

When P(case observed) = 0.9 and an uninformative prior used for ε  (Truncated Normal(mean=0.0001,standard deviation=1). A) Histogram of 
individual reproduction numbers from simulated data, B) model estimated results when estimates rounded to the nearest integer and C) when decimal 
estimates are used. 
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2.6 Discussion  

This chapter introduced the key algorithms utilised in this thesis and tested the approach on several 

forms of simulated data. Firstly, the algorithm utilised in Chapter 3 on data from El Salvador was 

derived and described. This approach defines a range of the shaping parameters defining serial interval 

distributions for symptomatic, treated P. vivax malaria and samples from this to define the most likely 

route of transmission between cases, based on the time of infection and the likelihood of any case 

having an unobserved source of infection. This approach uses a greedy algorithm which uses pairwise 

likelihoods of transmission to build a transmission tree. Then the consensus or average connectivity 

between cases, as well as uncertainty around this estimate can be calculated. This approach is 

demonstrably suited to smaller observations of cases (Rodriguez and Schölkopf, 2012), but is heuristic, 

and harder to incorporate other sources of information within one statistically rigorous framework. 

In addition, it was not suited to use with large datasets due to computational running time. Therefore, 

this approach was built upon by the second algorithm introduced, which was a fully Bayesian 

framework implemented within TensorFlow for efficient inference from larger datasets. Then this 

algorithm was extended to incorporate features other than time of symptom onset, primarily Euclidian 

distance between cases, but as will be discussed in detail in Chapter 5, offers flexibility to incorporate 

other metrics such as accessibility matrices, travel times, or genetic distance.  

Simulations were carried out to test Algorithm 2 (the time-only network rate inference approach).  It 

was found that the model was robust to missing data when up to 30% of data were missing.  However, 

these simulations have not extensively explored whether this is robust to different parameterisations 

for the serial interval or for epsilon edges, representing missing sources of infection. 

There are several limitations to the simulations and findings. An important limitation of the simulation 

was that all infections occur at the end of the designated “infectiousness period”. Whilst this is a draw 
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from a distribution and varies for each case, it still makes the temporal signal of transmission 

potentially more identifiable than in a real epidemic. 

There is also a limitation to how missing data was simulated in this chapter. Missing cases here are not 

biased in any way. Sampling was carried out in a random and proportional way and so at each time 

point, of all cases a proportion of those cases will be missing. This potentially could have less of an 

impact on inferred results compared to biased missingness (not at random), and in reality it may be 

that individuals with persistent malaria infections (e.g. due to asymptomatic infection, lack of access 

to healthcare) are less likely to be detected by surveillance systems. This could be explored in further 

simulations which sample the fully observed dataset in non-random ways.  

It is important to note that the probability distribution of the serial interval used to simulate line lists 

is different to the assumptions made in our approaches.  Namely, the simulation uses an exponential 

distribution whereas the algorithms developed in this thesis use a shifted Rayleigh distribution. Given 

the inherent uncertainty and variability in the serial interval of malaria, it is reassuring that this 

approach can approximately recover reproduction number distributions despite different assumptions 

about the serial interval. Future work to use a Rayleigh distribution would be helpful to compare like 

for like and ensure that any divergence between actual and estimated 
� values is error in the approach, 

rather than the result of slightly different assumptions.  

It is also important to note that outbreaks were not simulated over space and therefore Algorithm 3 

was not evaluated here. However, in order to address this, Chapter 5 does include a detailed sensitivity 

analysis, exploring the interaction between parameters and the impact of priors used.  
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3  
Estimating spatiotemporally varying malaria 
reproduction numbers in El Salvador, a near 

elimination setting 
 

3.1 Introduction 

As introduced in Chapter 1, great strides have been made since 2000 in reducing the burden and 

mortality of malaria. The World Health Organisation (WHO) estimates that 57 out of the 106 

countries with endemic malaria transmission in 2000 reduced their incidence of malaria by more than 

75% between 2000 and 2015 (Cibulskis et al., 2016). As a result, malaria elimination at the national 

level, defined as the absence of local transmission within a country (Cohen et al., 2010), is now one of 

the targets in the WHO Global Strategy for Malaria 2016-2030 (Griffin et al., 2016). In 2016 the WHO 

identified 21 countries for which it would be realistic to eliminate malaria within the next five years 

(WHO, 2016).   

As countries attempt to move towards malaria elimination, tracking progress through quantifying 

changes in transmission over space and time is key. This information is necessary to effectively target 

resources to remaining ‘hotspots’ and ‘hotpops’ (Sturrock et al., 2013) where transmission remains, 

decide if and when it is appropriate to scale back interventions, and to evaluate the success of existing 

interventions. However, as countries approach zero cases, increasing focality in transmission and the 

impact of imported cases pose challenges to both reaching elimination (Cotter et al., 2013) and 

measuring progress towards that goal. Increased spatial and temporal heterogeneity in malaria cases 

(Carter, Mendis and Roberts, 2000; Bousema et al., 2012; Sturrock et al., 2016) in low transmission 

settings reduces the usefulness of national or regional level trends in incidence or prevalence, which 
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can mask small areas of high transmission intensity. Furthermore, end-game surveillance and control 

measures are increasingly expensive per case. Therefore, while interventions must be targeted 

efficiently to be cost-effective (Carter, Mendis and Roberts, 2000; Bousema et al., 2012), the identity 

of areas driving remaining transmission and their stability over time are poorly understood. 

 As touched on in Chapter 1, a wide variety of contextually varying factors have been hypothesised to 

drive transmission in low transmission settings, including increased risk in concentrated populations 

due to factors such as occupation (e.g. agricultural workers) (Cotter et al., 2013), asymptomatic 

individuals acting as reservoirs of infection (Sturrock et al., 2013; Bousema et al., 2014), changes in 

vector behaviour (Moiroux et al., 2012) and resistance to antimalarial (Dondorp et al., 2009) and 

insecticidal interventions (Sokhna, Ndiath and Rogier, 2013). Importation of malaria cases from 

neighbouring countries poses an additional challenge in many elimination settings. If many cases of 

malaria are imported, control measures may appear less effective due to small numbers of locally-

acquired cases arising from imported cases (Blumberg et al., 2013; Churcher et al., 2014).  If there is 

sufficient importation, local cases can continue to occur even when the reproduction number of 

malaria under control, ℛ�, is below 1. Conversely areas with a high underlying ℛ� but little importation 

may see sudden outbreaks of cases following a rare importation event due to their receptivity to 

malaria infection (Patel et al., 2014). Challenges arise in measuring the sustainability of elimination 

(Cotter et al., 2013; Churcher et al., 2014),  both in terms of quantifying the impact of control measures 

on transmission in the lead up to elimination,  and in determining the risk of resurgence once 

elimination is achieved (Cohen et al., 2012; Chiyaka et al., 2013; Smith et al., 2013).  This information 

is also important when deciding if, when, and how to scale back intervention and surveillance methods 

(Chiyaka et al., 2013). 
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Meeting these challenges requires measuring changes in transmission, often at fine spatial scales. 

However, existing methods used to quantify malaria transmission are poorly suited to elimination 

settings (Sturrock et al., 2016).  Parasite prevalence rates (PR) are not accurate below a PR of 1-5% 

(Yekutil, 1980; Hay, Smith and Snow, 2008) due to the large sample sizes necessary for precise 

estimates at low prevalence. The entomological inoculation rate (EIR), often seen as the “gold 

standard” in measures of transmission intensity, is not reliable when transmission is highly focal and 

potentially unstable since EIR is very sensitive to heterogeneities in vector populations (Hay et al., 

2000; Mbogo et al., 2003). Use of serological data, whilst promising (Corran et al., 2007; Dewasurendra 

et al., 2017; Yalew et al., 2017), is not currently feasible for use in many very low transmission contexts, 

as suitable cross-sectional survey data and/or appropriate markers to determine changes in malaria 

transmission are not available in all contexts.   

A possible alternative, or complementary, measure of malaria transmission is the incidence of malaria 

cases, obtained through routine surveillance by Ministries of Health. Surveillance data are widely 

collected and sensitive to short term changes in transmission. Whilst utilising these data can pose 

challenges, particularly in low-resource settings due to limitations in surveillance infrastructure and 

difficulty in establishing completeness of reporting, they can provide a wealth of information when 

such challenges are overcome.  Individual level incidence data can be used to reconstruct the most 

likely pathways of transmission and estimate individual reproduction numbers, providing fine-scale 

insights into spatiotemporal transmission characteristics. Whilst individual level surveillance data is 

often used in outbreak analysis of epidemic infections (Wallinga and Teunis, 2004; Jombart et al., 

2014), robust methods are rarely applied to vector-borne diseases such as malaria, with a few notable 

exceptions (Churcher et al., 2014; Reiner et al., 2015; Salje et al., 2016). 
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In this chapter I aim to estimate individual reproduction numbers over time and space by adapting 

methods from the study of information diffusion processes described fully in Chapter 2 and reviewed 

in section 3.2. of this chapter. These methods address the general problem of reconstructing 

information transmission using known or inferred times of  infection by a ‘contagion’ (Kempe, 

Kleinberg and Tardos, 2003; Gomez-Rodriguez, Leskovec and Krause, 2010; Rodriguez and 

Schölkopf, 2012; Gomez Rodriguez et al., 2014). They provide an adaptable framework to integrate 

multiple data types (Wang, Ermon and Hopcroft, 2012), identify likely unobserved cases/external 

infection sources, and have been evaluated using real and simulated transmission processes at multiple 

scales and network structures (Gomez Rodriguez et al., 2014).  

3.1.1 Malaria elimination in Central America 

Mesoamerica has made large strides towards malaria elimination over the past twenty years. Cases in 

Mesoamerica declined from roughly 123 000 in the year 2000 to roughly 10 000 cases in 2015 (Herrera 

et al., 2015) despite population growth, and strengthened surveillance and case detection systems which 

likely increased the proportion of cases which were reported. However the need for continued effort 

has been highlighted by recent halts in progress, with over 16 000 cases reported in the region in 

2017(WHO, 2018a). The potential for elimination in the region led to the formation of a regional 

eradication programme,  Elimination of Malaria in Mesoamerica and Hispaniola (EMMIE: 

Eliminación de Malaria en Mesoamerica y la Isla Española) in 2014,  which aims to achieve zero cases 

of locally transmitted malaria in Mesoamerica by 2020 (Herrera et al., 2015). Half of the 8 countries 

which form this area (Belize, Costa Rica, El Salvador and Mexico) have been designated by the WHO 

as likely to eliminate malaria by 2020 (WHO, 2016). Nonetheless countries including Panama, 

Nicaragua, Honduras and Guatemala still are in the control phase, with substantial levels of 

transmission still occurring, particularly in north eastern coastal areas of Nicaragua, south eastern 
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coastal areas of Honduras and some western and eastern coastal areas of Guatemala (Carter et al., 

2015; WHO, 2018a).  No country in Central America has yet been certified malaria-free.  

3.1.2 Malaria elimination in El Salvador 

In 1980, El Salvador had the highest incidence of malaria amongst all Mesoamerican countries – with 

95,835 cases and a 38% share of all cases in Mesoamerica. However, by 1995, the country contributed 

just 2%, maintaining low incidence until the present day (Figures 3.1 -3.3). The country is now in the 

elimination phase and reported seven malaria cases in 2015 (0.1% of cases in Mesoamerica) (Schneider 

et al., 2016). In 2017 the country reported zero locally acquired cases for the first time (WHO, 2018a). 

Epidemiologists in El Salvador have kept records at a high spatial and temporal resolution throughout 

their malaria control and elimination efforts. In addition there has been a long history of reactive and 

active case detection, testing and treating all patients with fever with antimalarials and an extensive 

network of community malaria workers has been in place since the 1950s (Schneider et al., 2016), 

evidence suggesting that case detection and treatment is strong.  A full understanding of elimination 

in El Salvador could therefore provide useful insights for other countries as they aim to achieve and 

sustain elimination.  

Using the epidemiological line-list maintained by the Ministry of Health, I applied methods described 

in Chapter 2 (Algorithm 1, submodular inference using a greedy algorithm) to these data to estimate 

how transmission varied over space and time in El Salvador between 2010 and 2016. The subsequent 

results illustrate the role of importation in driving transmission dynamics in this country and provide 

independent estimates of the likelihood that El Salvador can eliminate malaria by 2020. 
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3.2 Methods 

3.2.1 Data 

The data, obtained from the Salvadorian Ministry of Health (MINSAL), consisted of all confirmed 

cases of malaria between 2010 and the first two months of 2016 (N= 91 cases, of which 30 imported, 

6 P. falciparum, 85 P. vivax). All but two cases had an address listed. For these cases the location was 

available at the municipio, or municipality level, and the coordinates of the centroid of the municipality 

(which for both were cities) were used as the geo-location. Two cases had addresses listed outside of 

El Salvador, both of which were in Guatemala. All cases within El Salvador with full addresses (N=85) 

were georeferenced by latitude and longitude to caserío/ lotificación level, which is approximately 

neighbourhood or hamlet level. Name searches of streets, caseríos, and landmarks were carried out 

using Nominatim on Open Street Map1.  Google and Bing maps2 were also used to cross check and 

in the absence of information available on open street map. I also used several locality listing websites3 

to obtain and cross check georeferences for caseríos. 

Municipality (municipio) and district (distrito) were also provided, allowing cross checking for duplicate 

neighbourhood names and ensure continuity. In addition, searches were made online for local schools, 

churches, news stories and community groups to cross check locations. Many addresses listed 

geographic features such as landmarks or road names. Where possible, Google satellite imagery were 

examined for these features and/or evidence of dwellings.  

Data were captured through El Salvador’s national epidemiological surveillance system (VIGEPES). 

These include cases reported by 30 public hospitals, 746 health facilities and thousands of community 

health workers stationed throughout the country (approximately 3,246 in 2010)(El Salvador Ministerio 

 
1 https://nominatim.openstreetmap.org/ 
2 https://www.bing.com/maps; https://www.google.co.uk/maps/  
3 http://www.mapmonde.org/central-america/el-salvador/; http://www.maplandia.com/el-salvador/; 
https://es.wikipedia.org/wiki/Categoría:Cantones,_caseríos_y_comunidades_de_El_Salvador;  
https://geographic.org/geographic_names/el_salvador/index.html#F;  
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de Salud, 2011; Schneider et al., 2016). During this period, the number of blood slides tested per year 

remained similar (Table 3.1). The line-list featured a unique patient identifier, address, age, sex, 

symptom onset date, and treatment seeking date, as well as details about treatment and diagnostic 

testing.  All confirmed cases were treated. For cases recorded in 2010, time of both symptom onset 

and treatment were available, providing an opportunity to estimate the delay between symptom onset 

and treatment for that year (Figure 3.4). 

Detailed case investigation was carried out by MINSAL and cases were identified as imported or 

locally acquired based on travel history, as well as primary, secondary, tertiary or orphan cases without 

clear sources, based on relationship with and proximity to previous cases. I obtained the latitude and 

longitude of the address, accurate to caserío (hamlet) level, using Open Street Map (OpenStreetMap 

contributors, 2017). El Salvador carries out reactive case detection following presentation at health 

facilities. However, in 2011, of 4,500 slides examined through reactive case detection (representing 

4.5% of all slides examined), just one additional case was detected. Both passive and active screening 

of migrants at key border crossings and in agricultural areas near borders also takes place. In these 

targeted areas, individuals are monitored for fever in the past 30 days, tested, and a single dose of 

chloro-primaquine prophylaxis is provided. In 2011, the Ministry of Health reported that 33,000 

migrants were reached through active and passive case detection and an additional four cases of 

malaria were found (El Salvador Ministerio de Salud, 2011). Most cases were detected through passive 

surveillance in health facilities, at borders and by community health workers in rural areas.  

 



91 
 

 

Figure 3.1 Timeline of malaria in El Salvador 

 

 

Figure 3.2 Distribution of cases of malaria in El Salvador 2009-2015, reproduced from (Schneider et al., 2016) 



92 
 

 

Figure 3.3 Slide Positivity Rate (SPR) by country. Plot showing SPR over time for Central American Countries. Note El Salvador’s rapid decline 
in Malaria, which was mirrored at later dates by other countries. 

 

Table 3.1 Slides examined per year (Schneider et al., 2016) 

Year Slides examined 

2010 115 000 

2011 100 883 

2012 124 885 

2013  103 748 
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Figure 3.4: Distribution of time from symptoms to treatment, based on available data from 2010. A ) Raw data as histogram and 
B) gamma distribution fitted to data  

 

3.2.2 Serial interval distribution 

The serial interval is defined as the time between a given case showing symptoms and the subsequent 

cases they infect showing symptoms (Fine, 2003). For a given individual B  at time 4C , showing 

symptoms before individual @ at time 4A, the serial interval distribution specifies the normalised 

likelihood or probability density of case @ infecting case B based on the time between symptom onsets, 

4A − 4C . The serial interval summarises a number of distributions including the distribution of a) the 

times between symptom onset and infectiousness onset, b) the time for humans to transmit malaria 

parasites to mosquito vectors, c) the period of mosquito infectiousness, and d) the human incubation 

period. 

A B 
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I defined a prior range of possible serial interval distributions for malaria. The serial interval 

distribution of treated, symptomatic P. falciparum malaria, previously characterised using empirical and 

model based evidence(Huber et al., 2016) was adapted to inform the prior distribution for the 

relationship between time and likelihood of transmission between cases in El Salvador. Two cases 

imported from West Africa were P. falciparum, however the remainder of cases were P. vivax. As a 

result, the prior distribution was altered to better reflect the biology of P. vivax and the dominant 

vector species in El Salvador, Anopheles albimanus, but was uninformative enough to allow for possible 

variation in transmission dynamics, for example due to imported infections with P. falciparum. In 

addition, there is a possibility of a small number of asymptomatic or undetected and therefore 

untreated infections contributing to ongoing transmission, which will take on a longer serial interval.  

By defining a prior distribution for the serial interval distribution one can account for some of this 

uncertainty. 

A shifted Rayleigh distribution was used to describe the serial interval of malaria, which can be varied 

by changing two parameters: [  and \. The parameter [ governs the overall shape of the distribution, 

and \ is the shifting parameter accounting for the incubation period between receiving an infectious 

bite and the onset of symptoms (Figure 3.7A). The \ shifting parameter was defined as ranging between 

10 and 15 days to account for the minimum extrinsic incubation period within the mosquito and the 

minimum time between infection and suitable numbers of gametocytes in the blood to lead to 

symptom onset (Warrell and Gilles, 2002). The prior for the [ parameter determining the shape of 

the distribution was given a Uniform distribution and  bounded, giving an expected time between 

symptom onset of one case and symptom onset of the case it infects of 29 days (95%CI = 16 – 300 

days, sd = +/- 7 days), with the lower bound having an expected serial interval of 25 days (95%CI 

=16 – 299 days, sd = +/- 4 days)  and the upper bound  47 days (95%CI = 16-300 days sd= +/- 18 
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days).  By comparison the expected values for treated P. falciparum from existing literature range 

between 33 (Churcher et al., 2014) and 49.1 days (95%CI = 33- 69)(Huber et al., 2016).   

3.2.3 Determining the transmission likelihood 

I assume cases were classified correctly from case investigation as imported or locally acquired based 

on recent travel history. Following this assumption, locally acquired cases could have both infected 

others and been infected themselves. However imported cases could only infect others, as it is 

assumed that their infection was acquired outside of the country. There were no confirmed relapse 

cases in the dataset, and all cases were treated with primaquine and chloroquine (radical cure) after 

being detected. Treatment is initiated before cases are confirmed by microscopy (Ministerio de Salud 

El Salvador (MINSAL), 2015). Active case detection is initiated locally following a confirmed case and 

in active foci in which local surveillance is believed to be weak. In these scenarios blood slides are 

examined within 24 hours of being taken (Ministerio de Salud El Salvador (MINSAL), 2015). Given 

this, my approach assumes that an individual can only be infected once by a case that has shown 

symptoms earlier in time. 

The data input consisted of a time series of symptom (fever) onset 4 ∈ J4K, … , 4NO, time ordered such 

that 4K < 4$, … , < 4N. While the times of symptom onset are known, the data do not indicate who 

infected whom and the underlying transmission chain, S.  As described in Chapter 2, the goal of the 

model is to infer the most probable network structure, Q, connecting these R infections. One can view 

cases as nodes in a network Q, and possible transmission events as the edges linking nodes. Q is 

inferred solely from the symptom onset times 4,  a serial interval distribution, and prior probability 

distributions for the serial interval distribution parameters.   

Q contains all possible spanning transmission chains over which an infection could spread given the 

observed times. Q therefore, includes the most likely transmission tree, but also includes, other 
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possible trees supported by the data. One therefore can view a transmission tree S as a realisation of 

a stochastic diffusion process generated over an underlying network Q.  Crucially, Q, accounts for 

competing edges and is sparse (only includes plausible edges). 

For a given transmission tree S describing infection events linking cases and assuming the 

independent cascade model (Kempe, Kleinberg and Tardos, 2003),  the (upper triangular) likelihood 

of observing the times of symptom onset is simply the product of all permissible pairwise transmission 

likelihoods in the tree(Rodriguez and Schölkopf, 2012). This description until this point is the same 

as that introduced by Wallinga and Teunis (Wallinga and Teunis, 2004) and extended to a wide variety 

of contexts by others (Ypma et al.; Walker et al., 2010; Morelli et al., 2012; Jombart et al., 2014; Reiner 

et al., 2015; Salje et al., 2016). However, in contrast to previous methods based on Wallinga and Teunis 

this approach maximises the likelihood U74|]) conditional on an underlying  Q, a problem that is NP-

hard (Khuller, Moss and Naor, 1999). Previous approaches have either allowed all possible 

connections in  Q (Wallinga and Teunis, 2004), sampled from the likelihood (Ferguson, Donnelly and 

Anderson, 2001) or explored a limited number of pathways (Salje, Cummings and Lessler, 2016). Here, 

by following the approach introduced by Gomez-Rodriguez and Schölkopf (Rodriguez and 

Schölkopf, 2012), I find the most likely underlying transmission network given the timing of symptom 

onset for a set of H transmission events linking cases.  The computational hardness of maximising 

U74|]) meant that an optimal solution could only be found by exploring every possible transmission 

tree on ]. However, due to the submodularity of the independent cascade model (Kempe, Kleinberg 

and Tardos, 2003) a near optimal solution could be found using a greedy algorithm. Briefly, the greedy 

algorithm used starts with an empty graph, and then add edges sequentially such that the marginal gain 

in the likelihood of the transmission tree for each iteration is maximised. The marginal gain measures 

of importance for each edge of the network through the gain that each edge provides to the total 
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solution over competing edges, and therefore applies shrinkage to the raw pairwise likelihood with the 

likelihood of competing edges.  This process stops when have H edges are reached. Stopping at H 

edges ensures that the resulting network is sparse which not only ensures a parsimony but removes 

unnecessary edges that could influence 
�  calculations. An appropriate value of H is defined by adding 

edges until the marginal gain in likelihood of adding additional edges is below a given threshold 

(0.0005). Sensitivity analysis revealed that these results are robust to changes in this threshold between 

0.001 and 1e-10 (Appendix 1).  

 

Figure 3.5: Plot showing the marginal gain in likelihood by adding edges to network using greedy algorithm. Each coloured line 
represents different draws of alpha, and shows the marginal gain in likelihood of adding edges to the network. The cut off-point for marginal gain in likelihood 
used here  is 0.0005. 
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3.2.4 Estimating �� 

Individual reproduction numbers for each case were established by creating a matrix where each 

column represents a potential infector and the rows represent a potential infectee, describing which 

infector edges are connected to infectees and the normalised marginal gain of that edge. Intuitively 

then, by taking the row sums of ℛ we get the (fractional) number of secondary infections and therefore 

a point estimate of the time varying reproduction number 
�~4C�. This reflects for an individual, how 

many people they are likely to have gone onto infect. When multiple individuals have been infected at 

a given time and/or place, one can take the mean individual 
� and uncertainty in this value as an 

indicator of reproduction numbers for a given time and/or location.  

In contrast of traditional methods based on Wallinga and Teunis (Wallinga and Teunis, 2004) using 

the marginal gain in this way encapsulates not only the pairwise likelihood of transmission between 

two cases, but conditions this likelihood on the impact of competing edges in the inferred network. 

Given the provable near optimal solution of the greedy algorithm and the use of marginal gains in 

calculating ℛ, my estimates of ℛ provide more rigorous estimates of reproduction numbers than just 

using standard Wallinga and Teunis (Wallinga and Teunis, 2004) approaches, which do not consider 

the overall transmission tree in optimisation and do not account for missing cases. 

I assume cases were classified correctly from case investigation as imported or locally acquired based 

on recent travel history. Following this assumption, locally acquired cases could have both infected 

others and been infected themselves. Imported cases could only infect others, as I assume their 

infection was acquired outside of the country. I also assume a case showing symptoms at time t has 

been infected by a case which began showing symptoms earlier in time, due to the short time between 

symptom onset, presentation at health facilities and the beginning of treatment. 
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3.2.5 Accounting for missing cases 

Assuming all cases reaching community health workers or health facilities are recorded, missing cases 

may be generated by two processes. Symptomatic cases may be missed by not seeking care or being 

found through active case detection. On the other hand, cases may be asymptomatic and therefore 

unlikely to seek care or be detected. They may have densities of parasites in their blood which are too 

low to be detectable by microscopy if active case detection occurs. These reasons for missed detection 

apply to both imported cases and locally acquired cases.  We assume the pool of asymptomatic cases 

in the country is low and has a small contribution to ongoing transmission.  To explore the amount 

of cases which may be going undetected within the independent cascade framework, we consider 

additional edges |, that represent unobserved individuals who can infect any observed individual, @, 
in a transmission chain. Every observed individual @ can get infected by unobserved individuals, |, 

with an arbitrarily small probability ε.  This so called }-edge is connected to every node in the network 

and do not, by design, participate in the diffusion propagation. The }-edges prevents breaks in the 

network diffusion cascade where the likelihood of transmission between observed cases is sufficiently 

low, the case is linked to an external source. Additionally, }-edges ensure the likelihood is monotonic, 

that is, converting an }-edge to a network edge in Q only increases the likelihood.  The addition of }-

edges was achieved by augmenting the pairwise transmission likelihood as follows:  

 U~4A�4C; [, \� = }(K[~4A − 4C − \�'(�~hk(hi(��  

The specific value of ε was set at 1e-5 to balance between false positives and false negatives when 

linking cases by infection events. The higher the value of ε, the larger the number of nodes that are 

assumed to be infected by an external source.  
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3.2.6 Covariate assembly 

The environmental covariates (i.e., independent variables) used in the spatial mapping of 
� >1 risk 

consisted of raster layers that spanned El Salvador 2.5 arc-minute (~5 km x 5 km) spatial resolution. 

Covariate choice was based on key variables used within past malaria mapping endeavours (Bhatt et 

al., 2015). Raster datasets were then acquired or produced, and wherever possible dynamic versions 

(i.e., temporally varying products) were utilized to support the temporal aspect of the analysis. The 

majority of the raster covariates were derived from high temporal resolution satellite images and then 

aggregated to create dynamic covariates for every month throughout the study period (2010-2016).  

The covariates used are listed below in Table 3.2. 

 

Table 3.2: Covariates used in risk mapping �� >1 

Variable Class Variable(s)                                            Source                Type  

temperature land surface temperature (day, 

night and diurnal flux) 

MODIS product dynamic 

monthly 

precipitation mean annual precipitation WorldClim synoptic 

elevation digital elevation model SRTM static 

infrastructural 

development 

accessibility to urban centres and 

night-time lights 

modelled product 

and VIIRS 

static 

moisture metrics aridity and potential 

evapotranspiration 

modelled products synoptic 

 

3.2.7 Spatial methodology 

The underlying spatial statistical model was fitted to binomial data of 
� > 1 = 1; 
� < 1 = 0, using 

the logit link function: 


ÅK,A� ∼ Ã@R¨�@#Ä7�A, ÂA) 
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Ä¨!7�A/71 − �A))~]E7À, Ç) 

À = [ + 1Aª 

Ç = ÈÉÊË�v(K   

ÈÉÊË�v(K =  §¨Äg' 7H$ − Δ)¹ 
� ~Í©7§)� = Î7§)   

where 
ÅK,A are the number binary data points for 
� > 1 = 1; 
� < 1 = 0,  �A is the estimated 
ÅK, 

expressed as a logit transformed probability and modelled as a Gaussian process with À and precision 

Q. The GP mean À is a linear function of a global intercept [ and space-time indexed covariate values 

ÏA . Q is a sparse precision matrix and ÈÉÊË�v = Ç(K is the covariance matrix. Ç is the sparse finite 

element solution to the stochastic partial differential equation 7H$ − Δ)¹ 
� ~Í©7§)� = Î7§), where Δ is the 

Laplacian, H is the spatial scale/range parameter, Í controls the variance, [ is the spatial smoothness 

parameter (fixed at [ = 2), and Î7§) is the spatial white noise process.  To account for the curvature 

of the earth the distance metric s is defined on a spherical manifold in Cartesian ℝÐ. 
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Figure 3.6:  Area Under the ROC Curve (AUC) from cross validation of geostatistical model used to create riskmaps of P(Rc>1) 

AUC = 0.94, Sensitivity = 0.83, Specificity=0.58. The colours and labels (illustrated in the scale bar on the right side of  the x axis) represent the 
threshold for classification as 1 (Rc>0) or 0 (Rc=0). When the threshold is decreased, more positive values are returned, thus sensitivity (the true positive rate) 
increases and specificity (1- false positive rate) decreases. 

 

3.2.8 Estimating timelines towards elimination 

To explore trends in 
� over time, we fitted a generalised additive (GAM) model to the estimated 


�74) values and extended this line beyond the period of observation to 2030. We then also fitted 

Gamma, Power law and Exponential distributions to the estimated 
�74)  values, and found they were 

best represented by Gamma distribution according to AIC scores (Akaike, 1974). To explore the 

likelihood of elimination by a given time point, we randomly drew 10,000 
�  values from Gamma 

distributions with increasingly small mean reproduction numbers, keeping the fitted shape parameter 

constant. We then found the threshold mean 
�  below which the probability of an individual 


�exceeding one is less than 5%.  By extending the current fitted trendline for 
�values to 2030, we 
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identified the expected timepoint for 
� to reach this threshold value, given the observed decline 

in 
� observed over the study period. 

3.2.9 Mapping �� 

To map estimates of transmission risk, individual reproduction numbers were divided into those 

above and below one. The latitude and longitude of the reproduction numbers were included in a 

geospatial hurdle model implemented in rINLA (Rue, Martino and Chopin, 2009) where demographic 

and environmental covariates  were used to estimate the likelihood of a case having a reproduction 

number above 1 if imported into the area in 2010.  This is a measure of malaria “receptivity” or 

underlying transmission potential rather than overall malaria risk, as importation likelihood is not 

quantified in this analysis.  Area under the ROC curve scores from leave one out cross validation were 

used to assess model fit (Figure 3.6). 

3.3 Results 

Between 2010 and the first two months of 2016, a total of 91 cases of malaria were confirmed by 

microscopy in El Salvador, of which 30 were classified as imported. There was a total of six cases of 

P. falciparum, all of which were imported. The resulting estimated transmission network is shown in 

Figure 3.7. Overall, the temporal dimension dominates the identification of infector-infectee pairs 

(Figure 3.7B), informed by the prior distribution for the serial interval (Figure 3.7B). We identified two 

locally acquired cases which could not be plausibly linked to other cases within the dataset (Figure 

3.7C). These were estimated in periods in which a clear gap in the data was apparent, and may therefore 

represent unidentified importations, relapse cases or unreported locally acquired sources of infection.  

We estimated the mean individual reproduction number over 2010-2016 to be 0.61 (95% CI = 

0.56,0.65). This is consistent with the ratio of locally acquired to total cases (61:91 = 0.66), which has 

been proposed elsewhere as an approximate estimate of 
�  (Cohen et al., 2010). When fitting a 
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generalized additive model to the data, the overall trend was a decline from a fitted ℛ� of 0.73 at the 

start of the observation to 0.47 by the end of the period (Figure 3.8).  Individual reproduction numbers 

showed seasonal fluctuations through time, with regular peaks observed in December, which coincides 

with the end of harvest season for many crops in El Salvador and Guatemala, and August, which 

coincides with a period of national holiday and the end of the rainy season.  
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Figure 3.9 Maps of risk of  �� exceeding one. A) Distribution of  
�  values by location of residential address. Red points represent an 


�  value below one, blue points represent an 
�  value above 1. B) Distribution of imported and locally acquired cases by location of residential 

address. Yellow points represent locally acquired cases; green points represent imported cases. C) Map of risk of 
� exceeding 1 if a case were to 
occur in an area. Note this estimate does not consider risk of importation but estimates receptivity to transmission if importation were to occur.  
D) Standard deviation in risk estimates from C. 
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3.3.1 Spatial distribution of cases and �� 

Data were highly focal, with 70% of cases originating from two adjacent administrative departments 

neighbouring Guatemala, and 32% of cases originating from just two municipalities within these 

regions (Jujutla and Acajutla) (Figure 3.9A-B).  This pattern was also reflected in the spatial distribution 

of ℛ�. While most areas of the country are predicted to have a low risk of 
� reaching above one over 

the time observed, several regions have a much higher predicted risk of 
�  >1 (Figure 3.9C). In these 

regions, the majority of cases imported into the region could be expected to result in at least one 

onward transmission event. However, it is important to note that uncertainty in these predictions is 

high in areas where cases have not been seen. The area with the least uncertainty in the estimate, 

around the borders of Guatemala, suggest that the majority of cases occurring there did not contribute 

to onward transmission.  

3.3.2 Impact of imported cases on transmission 

The mean marginal gain to the likelihood of including infections from imported cases into the 

constructed transmission networks was much higher than including locally acquired cases (0.081 

compared to 3.44 '(Ò), suggesting that imported cases are a major driver of transmission. Visual 

inspection of the most likely chains of transmission (Figure 3.7) also are suggestive of this, where the 

index case in a cluster of linked cases was almost always an imported case.  

3.3.3 Endgame predictions based on �� and stochasticity 

To investigate potential timelines to elimination (i.e. the absence of local transmission) I characterised 

heterogeneity in the reproduction number using a Gamma distribution which, when fitted to the data, 

suggests a threshold mean 
�of 0.22, below which there would a less than 5% chance of any individual 

reproduction number exceeding one. Using the fitted trend in the mean 
� , one would expect this 

level to be reached by 2023, assuming no change in the rate of importation (Figure 3.8C). 
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3.4 Discussion 

Understanding how transmission varies over time and space is critical to efforts to achieve and 

maintain elimination of infectious diseases such as malaria. Reconstructing transmission chains and 

estimating individual reproduction numbers has been used widely within epidemiological analysis 

(Ghani et al., 2009; Walker et al., 2012; Jombart et al., 2014), but rarely used to study vector-borne or 

endemic diseases, albeit with a few notable exceptions (Reiner et al., 2015; Salje et al., 2016). Separately, 

similar problems have been approached within human social network analysis, through a family of 

approaches known as independent cascade models (Kempe, Kleinberg and Tardos, 2003; Gomez-

Rodriguez, Leskovec and Krause, 2010; Rodriguez, Balduzzi and Schölkopf, 2011; Rodriguez and 

Schölkopf, 2012). Here I have adapted these methods to routine data from an eliminating Central 

American context, El Salvador, in order to inform progress towards their malaria elimination goals.  

My results suggest that the time-averaged 
� has been below 1 in El Salvador since 2010, suggesting 

that sustained endemic transmission at the country level has already been interrupted. However, I 

estimated individual reproduction numbers exceeding one, resulting in ongoing outbreaks of 

transmission. Assuming the downward trend observed in 
� between 2010 and 2016 continues, one 

would expect the probability of such outbreaks to be less than 5% by 2023 if current levels of malaria 

importation and control continue. However, because imported cases were found to have higher 

reproduction numbers and their inclusion in the transmission tree increased the overall likelihood of 

the tree much more than locally acquired cases, it is important to note that the rate of importation is 

likely to affect the distribution of 
� . With increased importation this timeline to elimination could 

lengthen. Conversely, if importation was reduced, the timeline would be shortened. Thus, the levels 

of malaria importation from neighbouring countries would likely need to be decreased in order to 

achieve elimination by 2020, following current WHO certification policy of three years of zero locally 

acquired cases.  
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 Given the extensive surveillance of migrants already carried out by El Salvador, as well as the free-

movement and trade agreements which exist between El Salvador, Guatemala, Honduras and 

Nicaragua, the most efficient way of achieving this is likely to be through reducing the prevalence of 

malaria throughout Central America. However, given the seasonal peaks in 
� estimated to occur in 

August and December, which coincide with national holidays and the end of harvest season, there 

could additionally be an opportunity to increase surveillance activities and interventions during these 

key periods of high human mobility.     

The Elimination of Malaria in Mesoamerica and Hispaniola (EMMIE) initiative aims to eliminate local 

malaria transmission from the entire Mesoamerican region by 2020 (Herrera et al., 2015).  My results 

support the need for a regional approach to elimination. The clear impact of importation in driving 

residual transmission in El Salvador highlights the need for cross-border collaboration. In order to 

drive transmission down, areas of the highest “receptivity” to intervention and “vulnerability” to 

importation of cases must be identified. Approaches such as this, which map transmission risk, could 

be combined with information about human movement to identify foci for increased surveillance, 

vector control and other interventions. This approach using El Salvador as a case study could be 

adapted and used in other Central American countries or other contexts aiming for elimination. 

The analysis identified two cases with no clear source. When raising the threshold likelihood for linking 

observed cases as part of the sensitivity analysis and reducing the number of possible edges in the 

network, I find 7 missing cases. There is evidence in some low transmission contexts, especially where 

rapid declines of malaria have been seen recently, of significant asymptomatic and/or sub microscopic 

reservoirs of infection which may transmit to onwards transmission (Okell et al., 2012). These could 

be sources of the missing infections identified in this study. However, El Salvador is unlikely to have 

a large amount of asymptomatic cases due to a long history of low numbers of cases. If the missing 
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source of infections was mainly indigenous asymptomatic infections, it would signify that there is an 

asymptomatic reservoir contributing to onward transmission and that must be controlled to reach 

elimination. This could be achieved through PCR-based screening and treatment or increased vector 

control in focal areas. An alternative explanation is that there may be a small number of unreported 

symptomatic cases or relapse cases which were not reported or detected, which could be indigenous 

or imported. If due to importation this would further support the need for strong regional cooperation 

via initiatives such as EMMIE to reduce burden in neighbouring countries, and to maintain vigilance 

over extended periods in a very low transmission stage.  

There are several limitations to this work. Firstly, whilst this approach uses epsilon edges to identify 

potential external sources of infection, this approach is only appropriate for smaller numbers of 

missing cases. Given the long history of small numbers of cases and testing and treating ~100,000 

febrile patients per year (of which only 6 were positive for malaria in 2015), and the programme of 

active case detection, as well as cross-sectional surveys of school age children in historic foci finding 

0% prevalence by PCR  (Sorto et al., 2015), this is a reasonable assumption. However, in other 

contexts, this may be a larger concern and methods such as reversible jump MCMC methods (Green, 

1995; Chis Ster, Singh and Ferguson, 2009) for data augmentation and inference may be appropriate. 

Secondly, by the nature of a near elimination context, the sample size is very small. The methods used 

for estimating ℛ� are well suited to small, well observed infection cascades, however this small sample 

size does provide a limitation for mapping, meaning the resulting maps have relatively high levels of 

uncertainty outside of the areas of El Salvador where cases are seen principally around the pacific 

coast, Guatemalan border and in San Salvador. There is scope to incorporate expert knowledge to 

refine the map in areas where data are lacking. It is important to reiterate the uncertainty in risk map 

estimates for most of the country, where the standard deviation in risk estimates neared one in many 
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areas where no cases were observed. If this uncertainty is not clearly communicated to decision-makers 

this may lead to misleading conclusions, or reduce trust in the estimates in areas where there is high 

uncertainty.  

Finally, there is a large amount of uncertainty and simplifying assumptions inherent in the forward 

projections illustrated in figure 3.8C. Here a logistic regression was extended, assuming the observed 

decline between 2010 and 2016 would continue – i.e. there would be no change to importation, 

interventions or environmental and social factors which may shape the decline, or other 

epidemiological processes which could come into play as zero cases are reached. This is highly 

simplified, and whilst the uncertainty associated with this estimate is illustrated in the figure, and the 

figure was designed as a tool to show the feasibility of elimination at or around the 2020 target, but 

also illustrating the large amount of uncertainty around this, and the potential for much higher 

reproduction numbers, highlighting the need for sustained control and surveillance efforts. 

It is important to consider whether methods presented here can be used in low resource settings that 

are earlier in the elimination process. In these contexts, the number of cases is likely to be higher and 

there may be less complete reporting data and potentially a higher reservoir of asymptomatic infection. 

In order to address these challenges several adaptations to the methods presented here may be 

required. Firstly there may be a need to incorporate more sources of information, e.g. demographic, 

spatial and possibly genetic data (Wang, Ermon and Hopcroft, 2012; Jombart et al., 2014). Secondly, 

Bayesian data augmentation techniques (Walker et al., 2010)may be required to explore the implications 

of large amounts of missing infection and potential reporting biases. In the case of more asymptomatic 

or untreated malaria there may be more uncertainty in the serial interval of malaria, however using my 

current approach can propagate this uncertainty through the model. Generalisations to full likelihood 

based or Bayesian hierarchical inference (Gomez Rodriguez et al., 2014) can be beneficial by providing 
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flexibility through parametric forms by allowing for the  incorporation of additional factors (e.g. 

genetic distance) specific to the disease and context. 

 This work provides a novel framework for making use of routine surveillance data and allows 

quantification of malaria transmission and its variation over space and time in contexts where 

traditional methods such as parasite prevalence are unsuitable. This is key in designing optimal 

strategies to accelerate, achieve and maintain elimination. To apply to other contexts several 

adaptations and extensions may be required. Firstly, in this dataset there were no confirmed relapse 

cases, however in many contexts we may see P. vivax relapse, in which case the algorithm could be 

adapted to allow for a likelihood for “reinfection” or a looped network edge. Secondly,  in settings 

where transmission links are less clearly identifiable or different data sources  are available, this 

approach can be adapted to incorporate additional features such as spatial or genetic distance 

weightings into the likelihood function (Wang, Ermon and Hopcroft, 2012), following on from work 

based on Wallinga and Teunis approaches (Walker et al., 2010; Morelli et al., 2012; Jombart et al., 2014).  

Finally, asymptomatic reservoirs and causes of missing cases as well as their impact on transmission 

dynamics could be explored in more detail to consider surveillance system design and evaluation of 

its strength.  

In conclusion, this work adapts concepts from network theory to build and apply novel methods to 

map transmission over space and time in a very low transmission setting, using only routine malaria 

surveillance data. Such approaches offer opportunities to better understand transmission dynamics 

and their heterogeneities in near elimination settings to better target interventions for elimination. I 

estimated timescales for reaching elimination and clarified the effect of importation on the speed and 

feasibility of achieving and maintaining zero cases.  In the context of El Salvador, these results 

highlight the impact of importation on sustained transmission and highlights the need for cross-border 
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collaboration. This approach could be useful in a wide range of contexts where good quality routine 

surveillance data are collected, such as outbreaks and endemic diseases nearing elimination. 
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4  
Estimating spatiotemporally varying malaria 

reproduction numbers in Yunnan province, China 
 

4.1 Introduction 

In 2017 China reported no indigenous malaria cases for the first time since malaria became a notifiable 

disease in 1956 (Feng et al., 2018; WHO, 2018a). The country has experienced a major decline in the 

burden of malaria, from an annual incidence of 24 million cases (2961 cases per 100,000) in 1970 

(Zhou, 1981). This reduction has been attributed to a combination of socioeconomic improvements 

and the scale-up of interventions to control malaria (Yin et al., 2014). In 2010, China set out an 

ambitious plan for the national elimination of malaria by 2020 (the National Malaria Elimination 

Programme, NMEP). Elements of the plan included improved surveillance, timely response, more 

effective and sensitive risk assessment tools and improved diagnostics (Feng et al., 2014). A key policy 

change implemented in 2010 as part of the NMEP was the introduction of the 1-3-7 system: aiming 

for case reporting in one day, which is then investigated within three days, with a focused investigation 

and action taken in under seven days (Cao et al., 2014).   

Although China is making rapid progress towards this goal, 2,675 imported cases were reported in 

2017, highlighting the risk of re-introduction (Feng et al., 2018). Large numbers of people move 

between China and malaria endemic countries, both from sub-Saharan Africa and from South East 

Asia (Zhou et al., 2016; Lai et al., 2019),  driven by tourism and Chinese overseas investment (Lai et al., 

2016). Concerns remain about re-emergence of malaria, which has occurred several times in the early 

2000s as a result of importation and favourable climatic conditions for competent vectors (Lu et al., 

2014). Therefore, in order to achieve three consecutive years of zero indigenous cases (the requirement 
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for WHO certification of elimination), a sustained and targeted investment in surveillance together 

with efficient treatment is necessary.  

Yunnan province has recorded malaria outbreaks and remains an identified foci of residual 

transmission as other areas in the country have reached elimination (Xia et al., 2014; Feng et al., 2015; 

Hu et al., 2016; Lai et al., 2017; Shi et al., 2017). The province shares borders with Myanmar, Vietnam 

and Laos and has a strong agricultural focus. Previous studies suggest that seasonal agricultural 

workers and farmers are at highest risk of contracting malaria in Yunnan, with rice yield and the 

proportion of rural employees being spatial factors positively associated with malaria incidence (Yang 

et al., 2017). The border region of Myanmar and Yunnan is generally ecologically suitable for malaria 

transmission, has a large mobile population, with few natural geographic borders separating the two 

countries, as well as being a site of socio-political conflict and instability (Zhang et al., 2016). In this 

context, it can be unclear whether there is any sustained local transmission or if all the observed cases 

are the result of short, stuttering transmission chains following importation into suitable areas. As the 

area of highest concern for re-emergence in China and the last to reach zero cases, I therefore sought 

to characterise the transmission dynamics of both P. vivax and P. falciparum in the region as China 

approaches elimination certification. 
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As illustrated in previous chapters, methods from outbreak analysis and network research have 

recently been developed and applied to quantify the transmission of malaria and other infectious 

diseases in very low transmission and epidemic settings (Reiner et al., 2015; Routledge et al., 2018; 

Wesolowski et al., 2018). In China, as in other eliminating contexts, traditional metrics of malaria such 

as parasite prevalence are not appropriate due to small numbers and extremely sparse and 

spatiotemporally heterogeneous distributions of infections. However due to the strength of the 

surveillance system in China, detailed information is available about each individual case (including 

the time of symptom onset and location of residence), and case reporting is believed to be very high. 

 

Figure 4.1 : Characteristics of Yunnan province, China. A) Map showing location of  Yunnan Province. B) Case counts of  confirmed and probable P. vivax 
malaria 2011-2016, blue arrow shows Yunnan province, demonstrating both highest number of cases but also significant proportion of local cases, unlike most 
other provinces, (with exception of Hainan province).  

 

A B 
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By adapting and applying a continuous diffusion network approach (Gomez Rodriguez et al., 2014) 

within a Bayesian framework introduced in Chapter 2 I quantify case reproduction numbers, 
�, and 

uncertainty in these estimates for all P. vivax and P. falciparum cases of malaria recorded in Yunnan 

province between 2011 and 2016. I incorporate these estimates into Bayesian geostatistical models 

and time series approaches to estimate how 
� varied over space and time which I use to estimate 

timelines to elimination and likelihood of resurgence.  

4.2 Methods  

4.2.1 Data 

Anonymised case data for all confirmed (N=4078) and probable (N=285) malaria cases reported 

between 2011 and 2016 in Yunnan Province (N =4390) were obtained from the Chinese Centre for 

Disease Control (CCDC). For each case, data included date of symptom onset, GPS coordinates of 

symptom onset address, health facility address, travel history, and in some cases, the GPS coordinates 

of presumed location of infection. 

Of these cases, the majority were P. vivax (N = 3469, of which 2858 were classified as imported). Of 

all recorded P. falciparum cases (N=791), 91% (N=720) were imported. Small numbers of P. malariae 

(N=8) and P. ovale (N=1) were excluded from the analysis.  Cases defined as “untyped” (N=67) were 

also excluded. A small number (N=27) of cases classified as mixed infection were included in the 

separate analyses of each species. A full breakdown of the cases and species composition across 

Yunnan province between 2011 and 2016 is included in Tables 4.1 and 4.2.   
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Table 4.1: Cases by diagnosis type (probable and confirmed) and species across Yunnan Province 

  Mixed infection P. falciparum P. malariae P. ovale P. vivax Untyped 

Confirmed 27 770 8 1 3269 3 

Probable 0 21 0 0 200 64 

Table 4.2  Cases by imported/local status and species across Yunnan province 

  Mixed infection P. falciparum P. malariae P. ovale P. vivax Untyped 

Local 4 71 0 0 611 51 

Imported 23 720 8 1 2658 16 

 

4.2.2 Surveillance system in China 

The PRC has a sophisticated malaria surveillance system, described in detail elsewhere (Yang et al., 

2012; Cao et al., 2014; Feng et al., 2014; Zhou et al., 2015; Hu et al., 2016) and summarised here. 

Surveillance is carried out in both a passive and reactive manner, organised and administered at the 

national, provincial and county level. The centralised China Information System for Disease Control 

and Prevention (CISDCP) receives daily updates on case reports from health facilities  

Passive detection occurs according to a protocol at the local level, such that cases are tested by 

microscopy or Rapid Diagnostic Test (RDT) and reported to the central information system within 

24 hours. Case investigation is then pursued, where cases are confirmed via double readings of 

microscopy slides and in some cases polymerase chain reaction (PCR) confirmation at provincial 

laboratories. At this point it is also determined whether the case is locally acquired or imported by 

taking patient travel history – if a patient has travelled to a malaria endemic country within a month 

of symptom onset the case is then classified as imported (Cao et al., 2014). Case investigation should 

be completed within three days. 
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Foci investigation occurs once a case is detected to determine whether the foci is inactive, active or a 

pseudo-focus based upon the absence or presence of suitable vectors (inactive), and presence or 

absence of malaria in the resident area of the case if imported (pseudo-focus). Reactive Case Detection 

(RACD) of case contacts and populations with demographic similarities (for example individuals 

working in the same industry and vicinity as the case) is carried out. In active foci more intensive 

RACD screening of a larger pool of neighbours and contacts is carried out using Rapid Diagnostic 

Tests (RDTs) for immediate detection, followed by PCR testing of blood spots to detect low-density 

infections. IRS (Indoor Residual Spraying) is also carried out(Cao et al., 2014; Feng et al., 2014; Zhou 

et al., 2015).  

The Ministry of Health (MoH) in China has also been measuring the timeliness of the recommended 

protocol and follow-on ability to meet these targets. It was found that the one-day target for case 

reporting was almost always met because this is required by law. In the years following the introduction 

of the 1-3-7 policy, the proportion of cases investigated within three days increased from roughly 55% 

in 2011 to almost 100% by 2013. However the programme took longer to achieve the seven day focal 

point investigation goals, with just over 50% of foci investigated and treated within seven days by the 

end of 2013 (Cao et al., 2014). Nevertheless, by 2015, adherence to the 1-3-7 strategy improved and 

this figure increased to an estimated 96% (Zhou et al., 2015). Whilst some cases could still be missed, 

the thoroughness of the approach means numbers of missing cases are likely to be small.  

4.2.3. Defining the serial interval distribution 

The serial interval is defined as the time between a given case showing symptoms and the subsequent 

cases they infect showing symptoms (Fine, 2003). For a given individual B  at time 4C , showing 

symptoms before individual @ at time 4A, the serial interval distribution specifies the normalised 

likelihood or probability density of case @ infecting case B based on the time between symptom onsets, 
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4A − 4C . The serial interval summarises several distributions including the distribution of a) the times 

between symptom onset and infectiousness onset, b) the time for humans to transmit malaria parasites 

to mosquito vectors, c) the period of mosquito infectiousness, and d) the human incubation period. 

Taking a similar approach to  my work (Routledge et al., 2018) described in Chapters 2 and 3, I defined 

a prior distribution of possible serial interval distributions for malaria. The serial interval distribution 

of treated, symptomatic P. falciparum malaria, previously characterised using empirical and model based 

evidence (Thomas S. Churcher et al., 2014; Huber et al., 2016a) was adapted to inform the prior 

distribution for the relationship between time and likelihood of transmission between cases in China. 

I analysed P. vivax cases and P. falciparum cases separately.  The prior distribution was defined to  be 

flexible enough to reflect both the biology of P. vivax and P. falciparum  as well as the dominant vector 

species in Yunnan (recent surveys in Yunnan province have found Anopheles sinensis to be the dominant 

vector species in mid-elevation areas and rice paddies and Anopheles minimus s.l. the dominant species 

in low elevation areas (Shi et al., 2017; Zhang et al., 2018) ) and to  allow for possible variation in 

transmission dynamics, for example due to untyped infections or delays in seeking treatment. In 

addition, there is a possibility of a small number of asymptomatic or undetected and therefore 

untreated infections contributing to ongoing transmission, which will typically have a longer serial 

interval. I use a shifted Rayleigh distribution to describe the serial interval of both species, which can 

be varied by changing two parameters: [  and \. The parameter [ governs the overall shape of the 

distribution, and \ is the shifting parameter accounting for the incubation period between receiving 

an infectious bite and the onset of symptoms. The \ shifting parameter was fixed at 15 days to account 

for the extrinsic incubation period within the mosquito and the minimum time between infection and 

suitable numbers of gametocytes in the blood to lead to symptom onset (Warrell and Gilles, 2002). 

The prior for the [ parameter determining the shape of the distribution was given a Normal 
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distribution with mean 0.003 and standard deviation 0.1 (illustrated in Figure 4.2), giving an expected 

time between symptom onset of one case and symptom onset of the case it infects of 36 days, with 

the parameter value in the 2.5 percentile of prior having an expected serial interval of 21 days and the 

equivalent parameter from the 97.5 percentile having an expected serial interval of  60 days.  By 

comparison the expected values for treated P. falciparum from existing literature range between 33 and 

49.1 days (95%CI = 33- 69) (Churcher et al., 2014; Huber et al., 2016). Depending on how much 

uncertainty there is in the serial interval of malaria, the prior for α, the shaping parameter for the SI 

of malaria, may be varied. I explored the effects of different priors on the likelihood and posterior 

estimates. I used the same mean value for α (0.003) but set the α prior to standard deviation between 

1 and 0.01. The results of considering different priors for α, the parameter shaping SI distribution on 

estimated 
� values over time is shown in Figure 4.4. 

4.2.3 Defining the transmission likelihood 

I assume cases were classified correctly from case investigation as imported or locally acquired based 

on recent travel history. Following this assumption, locally acquired cases could have both infected 

others and been infected themselves. However imported cases could only infect others, as I assume 

their infection was acquired outside of the country. Given the evidence (Cao et al., 2014; Zhou et al., 

2015; Hu et al., 2016) of strong adherence to the 1-3-7 policy for reporting and response to case 

detection, and no evidence of relapse within the dataset (as each patient is given a unique identifier), 

I assume that an individual can only be infected once by a case that has shown symptoms earlier in 

time. 

4.2.4 Transmission model specifics 

To estimate the underlying pathways of transmission and likelihood of cases being linked by infection, 

I adapt and extend the NetRate algorithm (Gomez Rodriguez et al., 2014) as described in Chapter 2. 
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The adapted model introduces the ability to model serial interval functions, account for imported 

versus local infections and provides provision for missing or unobserved sources of infection, called 

epsilon edges (Rodriguez and Schölkopf, 2012; Routledge et al., 2018)). I also extended the NetRate 

algorithm from a frequentist to a Bayesian framework to incorporate prior knowledge about the serial 

interval of malaria. This analysis was carried out via TensorFlow, via the TensorFlow and reticulate 

packages in R (version 3.6.0). 

The data analysed consider of a set of R infections/nodes � ∈ 7�K, … , �N) with associated times � =
J4K, … 4NO ∈ ℝ� and binary yes/no importation status � = J|K, . . , |NO ∈ J1,0O .The serial interval 

distribution of malaria, defining the probability individual �C infected individual �A at times 4A > 4C  is 

defined through a shifted Rayleigh distribution U~4A�4C; [, \� = [~4A − 4C − \�'(�~hk(hi(�� for 

shaping parameters [ and \ (Routledge et al., 2018). For this analysis I fix \ = 15 days, fixed at 15 

days to account for the extrinsic incubation period within the mosquito and the minimum time 

between infection and suitable numbers of gametocytes in the blood to lead to symptom onset 

(Kitchen and Boyd, 1937; Warrell and Gilles, 2002). 

 If one assumes that infections are conditionally independent given the parents of infected nodes, then 

the likelihood of a given transmission chain can be defined as   

U7�; �) = ∏  U74A|4K, … , 4N\4A; �)hk∈�  71) 

Where � is a parameter matrix. Computing the likelihood of a given transmission chain thus 

involves computing the conditional likelihood of the infection time of each infection (4A) given all 

other infections, leaving out 4A (4K, … , 4N\4A). If I make the assumption that a node gets infected once 

the first parent infects it (Kempe, Kleinberg and Tardos, 2003) and define a survival function  

�~4A�4C; [C,A� = 1 − � U~4A�4C; [C,A� 34 hk(hi
� 72) 
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as the probability that infection �A is not infected by infection �C by time 4A then I can simplify the 

transmission likelihood as 

U7�; �) = ∏  ∑ U74A|4C; [C,A) ∏ �74A|4G; [G,A)��:h�jhk,����i�i:hijhkhk∈�  73) 

In this conditional likelihood the first term computes the probability the �C infected �A and the second 

term computes the probability that �A was not infected by any other previous infections excluding �C . 

This likelihood therefore accounts for competing infectors and finds the infector most likely to have 

infected �A. To remove the H ≠ B condition makes the product independent of B and results in the 

likelihood 

U7�; �) = ∏  ∏ �74A|4G; [G,A)��:h�jhk ∑ �7hk|hi;�i,k)
 7hk|hi;�i,k)�i:hijhkhk∈�    (4) 

In equation 4,   
U7⋅) �7⋅)¡ = 8 is the hazard function or rate and represents the instantaneous 

infection rate between individuals �A and �C . 

Assuming all cases reaching health workers or health facilities are recorded, missing cases may be 

generated by two processes. Symptomatic cases may be missed by not seeking care or not being found 

through active case detection, or cases may be asymptomatic and therefore unlikely to seek care or be 

detected. The latter may have densities of parasites in their blood which are too low to be detectable 

by microscopy if active case detection occurs. These processes apply to both imported cases or locally 

acquired cases. I assume the pool of asymptomatic cases in the country is low and has a small 

contribution to ongoing transmission. To account for unobserved infectors within this framework I 

include a time-independent edge that can infect any individual. The survival and hazard functions for 

this edge are defined as ��7}A) = '(¢k and 8� = }A. The introduction if this edge also makes the 

likelihood stable and never singular because the probability will not collapse to zero. As we will see 
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below, because of this optimisation problem these edges are encouraged to be sparse and only invoked 

if no other infectors can continue the transmission chain.  

In addition to unobserved edges, I assume that observed imported infectors can infect other cases but 

cannot be infected themselves. The final likelihood incorporating these two modifications becomes 

U7�; �, £) = ∏  ��7}A) ∏ �~4A�4G; [G,A���:h�jhk n8�7}A) + ∑ 8~4A�4G; [G,A��i:hijhk r hk∈� 75) 

In order to find the optimal parameters for �, £ I minimize the following log likelihood subject to 

positive constraints on the parameters: 

�@R@�@¦'�,£ − log U7�; �, £)         §f%B'&4 4¨ �, £ > 0  for all values of @, B (6) 

This optimisation problem is convex and guarantees a consistent maximum likelihood estimate 

(Gomez Rodriguez et al., 2014). To prevent biologically implausible serial interval distributions, I 

impose a truncated normal prior probability distribution on � ~Normal(0.003,0.1) [0,0.01]. When 

optimising the likelihood, I include this prior probability and therefore evaluate the Bayesian 

Maximum-a-Posteriori estimate. 
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Figure 4.2:  Plot illustrating the serial interval distributions used in the analysis. Red lines show 300 draws from the prior distribution 
used in the analysis for the Serial Interval distribution. The black line represents the expected function and the maroon lines represent the 2.5 
and 97.5 quantile values of the prior distribution for the shaping parameter, α. 

 

4.2.5 Estimating ��   

Individual reproduction numbers were estimated for each case by creating a matrix where each column 

represents a potential infector and the rows represent a potential infectee, describing which infector 

edges are connected to infectees and the normalised likelihood of the cases being connected by a 

transmission event. Intuitively then, taking the row sums gives the (fractional) number of secondary 

infections and therefore a point estimate of the time varying reproduction number 
�74C) This reflects 

for an individual, how many people they subsequently infect. When multiple individuals have been 

infected at a given time and/or place, one can take the mean individual 
� and uncertainty in this 

value as an indicator of reproduction numbers for a given time and/or location.  
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In contrast to traditional methods based on Wallinga and Teunis (Wallinga and Teunis, 2004)  the 

algorithm presented here encapsulates not only the pairwise likelihood of transmission between two 

cases, but conditions this likelihood on the impact of competing edges in the inferred network (the 

survival of an edge). The resulting estimates of 
� therefore consider the overall transmission tree in 

optimisation and allow for missing cases within the tree. 

4.2.6 Estimating timelines towards elimination and risks of resurgence 

It is important for national malaria control programmes to have information about likely timelines to 

elimination, chances of resurgence and uncertainty in these estimates. Using the distribution of ℛ�  
values and their seasonal and general trends, I analysed time series using the Prophet tool and R package 

(Taylor and Letham, 2017) to explore general and seasonal trends as well as the impact of holidays on 

results. 

This approach applies an additive regression model  

Û74) = !74) + §74) + ℎ74) + }h    (6) 

 which is composed of trend, seasonal and holiday functions , where Û74) is the observations at time 

4,  !74) is the general trend, modelled by a logistic growth model, §74) is the seasonal effect, modelled 

by Fourier coefficients,  ℎ74) is the effect of specific holiday dates and }h is the error term. I explored 

the overall trend as well as seasonal trends, in addition tothe predicted  
�  between 2011 and the 

beginning of 2020. I also explored the impact of the national holiday periods, some of which involve 

large scale movement, such as the Chunyun period around the spring festival.  I cross-validated 

predictions and calculated root mean squared error (RMSE) and mean absolute error (MAE). 
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4.2.7. Mapping  �� 

Transmission risk map estimates were constructed by separating individual reproduction numbers into 

those above and below  
� = 1 The latitude and longitude of the reproduction numbers were included 

in a binomial Gaussian random field model implemented in rINLA (Rue, Martino and Chopin, 2009), 

in which demographic and environmental covariates were used (Table 4.3) to estimate the likelihood 

of a case having  
� > 0 in the area each year from 2011 to 2016. This is a measure of malaria 

“receptivity” or underlying transmission potential rather than overall malaria risk, as importation 

likelihood is not quantified in this analysis.  Area under the curve (AUC) scores from leave-one-out 

cross validation were used to assess model fit (Figure 4.3) 

The underlying spatial statistical model was fitted to binomial data, where when 
�was above zero, it 

was assigned a value of one, and when Rc was equal to zero it was assigned a value of 0 ( 
� > 0 =
1; 
� = 0)  using the logit link function: 


Å�,A� ∼ Ã@R¨�@#Ä7�A, ÂA) 

Ä¨!7�A/71 − �A))~]E7À, Ç)   

 

À = [ + 1Aª 

Ç = ÈÉÊË�v(K   

ÈÉÊË�v(K =  §¨Äg' 7H$ − Δ)¹ 
� ~Í©7§)� = Î7§)   

where 
Å�,A�  are the number of binary data points where 
� > 0 = 1, ÂA   is the number of trials,  �A 

is the estimated 
Å�, expressed as a logit transformed probability and modelled as a Gaussian process 

with À and precision Q. The GP mean À is a linear function of a global intercept [ and a vector of 
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ª coefficients from space-time indexed covariate values ÏA. Q is a sparse precision matrix constructed 

as the sparse finite element solution to the stochastic partial differential equation 7H$ − Δ)¹ 
� ~Í©7§)� =

Î7§), where Δ is the Laplacian, H is the spatial scale/range parameter, Í controls the variance, [ is the 

spatial smoothness parameter (fixed at [ = 2), and Î7§) is the spatial white noise process.  To 

account for the curvature of the earth the distance metric s is defined on a spherical manifold in 

Cartesian ℝÐ.  

 

 

 

Figure 4.3: Area Under the ROC Curve (AUC) from cross validation of geostatistical model used to create riskmaps of 
P(Rc>0) for A) P. vivax and B) P. falciparum. The colours and labels (illustrated in the scale bar on the right side of  the x axis) represent the 
threshold for classification as 1 (Rc>0) or 0 (Rc=0). When the threshold is decreased, more positive values are returned, thus sensitivity (the true positive 
rate) increases and specificity (1- false positive rate) decreases. 
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Table 4.3: Table summarising covariates used in geostatistical model 

Variable Class Variable(s)                                            Source                Type  

temperature land surface temperature (day, 

night and diurnal flux) 

MODIS product dynamic 

monthly 

precipitation mean annual precipitation WorldClim synoptic 

elevation digital elevation model SRTM static 

infrastructural 

development 

accessibility to urban centres and 

night-time lights 

modelled product 

and VIIRS 

static 

moisture metrics aridity and potential 

evapotranspiration 

modelled products synoptic 

 

Table 4.4: Posterior covariate parameter estimates for P. vivax �� risk map 

Covariate Mean SD 0.025 Quantile 0.5 Quantile 0.975 Quantile Mode 

Elevation -0.00065 0.000369 -0.00137 -0.00065 7.82E-05 -0.00065 

Day temperature (monthly) 0.040258 19.13436 -37.5269 0.03972 37.57611 0.040258 

Night temperature 
(monthly) 

-0.11265 19.13447 -37.6801 -0.11319 37.42342 -0.11265 

Difference between day and 
night-time temperature 
(monthly) 

-0.07346 19.13443 -37.6408 -0.074 37.46253 -0.07346 

Precipitation -0.00041 0.000248 -0.00089 -0.00041 7.96E-05 -0.00041 

Urban -0.06908 0.301495 -0.66102 -0.06909 0.522361 -0.06908 

Intercept 4.065973 1.985619 0.167532 4.065917 7.961159 4.065973 
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Table 4.5: Posterior covariate parameter estimates for P. falciparum �� risk map 

Covariate Mean SD 0.025 
Quantile 

0.5 Quantile 0.975 
Quantile 

Mode 

Elevation 0.000112 0.000502 -0.00087 0.000112 0.001097 0.000112 
Day temperature 
(monthly) -0.01005 19.12776 -37.5643 -0.01059 37.51285 -0.01005 
Night temperature 
(monthly) -0.03118 19.12771 -37.5853 -0.03172 37.49163 -0.03118 
Difference between 
day and night-time 
temperature 
(monthly) -0.00245 19.12769 -37.5566 -0.00299 37.52031 -0.00245 
Precipitation 0.00015 0.00029 -0.00042 0.00015 0.000718 0.00015 
Urban 0.361755 0.452532 -0.52672 0.361743 1.249487 0.361755 
Intercept -1.86989 3.045358 -7.84895 -1.86998 4.104185 -1.86989 

 

 

4.3 Results 

4.3.1 �� estimates over time 

Between 2011 and 2016, 3496 cases of probable and confirmed P. vivax infection including mixed 

infections were observed in Yunnan province (2881 imported, 615 locally acquired).  Including mixed 

infections, 818 P. falciparum infections were observed, of which 75 were locally acquired.  The mean 


� value estimated for P. vivax during this period was 0.171 (95% CI = 0.165, 0.178)  and  0.089 (95% 

CI = 0.076,  0.103) for P. falciparum case.  A decline in 
� over time was estimated for both P. vivax 

(Figure 4.6) and P. falciparum (Figure 4.6), with the most rapid declines occurring between 2012 and 

2014 (Figure 4.5, Figure 4.6). No 
� values above one were observed after 2014 for either species. 

These findings are consistent with varying levels of uncertainty about the serial interval distribution 

(Figure 4.4).   

 



132 
 

Figure 4.4: Plot showing the impact of 
varying the prior distribution for alpha 
on results for A) Plasmodium vivax and B) 

Plasmodium falciparum. Figures A and B 
show the  estimated maximum a posteriori 
Rc estimates for a normally distributed 
prior with a mean of xx, but where the 
standard deviation was varied between 1 
(light blue) and 0.01 (dark blue).  The 
grey horizontal line represents an Rc of 
one. The smoothed loess curve for each prior 
is shown as a solid line and was consistent 
across all priors.
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Figure 4.6: �� estimates by year and month. Boxplots showing 
�  estimates for P. vivax (A and B) and P. falciparum (C and 

D), aggregated by year (A and C) and month (B and D) of symptom onset. Points represent individual 
� estimates. Boxplots show median, 

upper and lower quartiles for 
� each. 
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Figure 4.7:  �� by month compared to incidence. Figure showing reproduction numbers over time compared to incidence – showing 

patterns of incidence are different to reproduction numbers – likely importation driving increase in records rather than 
� 

 

4.3.2 Unobserved sources of infection  

For P. vivax, 19 out of 615 locally acquired cases were estimated to have a moderate chance of having 

an unobserved source of infection (estimated 0.8 Ý � Ý 0.5 ) and 2 cases were estimated to have a 

high chance of an unobserved source of infection (estimated � Ý 0.8 ) . Together, this represents 3% 

of locally acquired cases with a moderate to high chance of external infection sources. For P. falciparum, 

2 out of 75 local cases were estimated to have a high chance of having an unobserved source of 
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infection (estimated � Ý 0.8) and no other cases were estimated to have a moderate change of having 

an unobserved source of infection (Figure 4.8) 

4.3.3 Spatial patterns of �� 

As transmission declined between 2011 and 2016, I observed a reduction in the incidence of locally-

acquired cases which is reflected in a reduction in the estimates of the reproduction number of each 

locally-acquired case for both species (Figure 4.9). I estimate a decline in the probability of a 

reproduction number for a P. vivax case being above zero over this period (Figure 4.10), with the 

central parts of the province being the first to reach lower risks of non-zero 
�. The border area 

neighbouring Myanmar, where most cases were observed, had the lowest amount of uncertainty in 

the estimates. P. falciparum shows a decline in risk of  
� > 0 across the province, with the more isolated 

areas in the north of the province showing both the highest predicted risk (Figure 4.10) but also the 

most uncertainty, due to a lack of cases observed there (Figure 4.11). By 2016 all areas have reached a 

low risk, although there is more uncertainty in these estimates compared to P. vivax, almost certainly 

due to the smaller sample size. 
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Figure 4.8: Histogram of epsilon edges estimated  by model.



13
8 

 F
ig

u
re

 4
.9

: 
 M

ap
 o

f 
� �

 e
st

im
at

es
 b

y 
ye

ar
 fo

r 
A

) 
P

. v
iv

ax
 a

nd
 B

) 
P

. f
al

ci
pa

ru
m

. B
lu

e 
po

in
ts

 r
ep

re
se

nt
 lo

ca
lly

 a
cq

ui
re

d 
ca

se
s;

 r
ed

 p
oi

nt
s 

re
pr

es
en

t 
im

po
rt

ed
 c

as
es

. T
he

 d
ia

m
et

er
 o

f t
he

 p
oi

nt
 r

ep
re

se
nt

s 

th
e 

si
ze

 o
f t

he
 
 �

 e
st

im
at

e



139 
 

 

Figure 4.10: Map of risk of Rc > 0  and uncertainty in this estimate from application of a Gaussian Process geostatistical 
model with a logit link function to times and locations of observed cases for A) P. vivax and B) P. falciparum malaria across Yunnan 
province in each year 2011-2016. This represents the risk of a case having an Rc>0 if observed, stratified by year. 



140 
 

 

Figure 4.11: Standard deviations in estimate of risk mapped in Figure 4.10 from binomial INLA model. For A) P. vivax and 
B) P. falciparum 
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4.3.4 Short – term predictions and temporal patterns in timeseries of Plasmodium 

vivax cases 

Using the Prophet additive regression model to make short-term predictions, a posterior mean 
� of 

0.005 (95% CI = 0 - 0.34) was estimated for Plasmodium vivax cases up to 2020 (Figure 4.12A). A 

declining trend was observed, with the fitted trend for 
�, which estimates the general trend, separate 

to the influence of seasonal and holiday effects, declining from 0.31 (95% CI = 0.31, 0.34) at the start 

of 2011 to 0.004 (95% CI =0.002-0.006 ) by the end of 2019 (Figure 4.12B). I estimate a small effect 

of holiday periods to differences in 
� observed, with Chinese New Year and National Day associated 

with small increase risk in 
�  of 16% ( 95% CI = -112%, 152%)  and 39% (95% CI = -43%, 118%)  

(Figure 4.12B) which  in this very low transmission context could increase the probability of small 

outbreaks of local transmission in areas in which high rates of importation occur, although very wide 

credible intervals were associated with these estimates.  I did not identify a clear seasonal trend, 

however two peaks were identified, with up to 20% (95% CI = 14%, 26%) increases and 28% 

decreases (95% CI -35%, -22%) in risk of 
� associated with April/October and the beginning of 

January respectively (Figure 4.12B).  
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Figure 4.13 Results from cross validation of additive regression forecasting model  showing A) Mean Absolute Error (MAE) and B) 
Root Mean Squared Error (RMSE) using a horizon window of 365 days, training dataset of first 730 days. 
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4.4 Discussion 

Quantifying reproduction numbers and their spatio-temporal variation can provide useful information 

to inform strategies to achieve and maintain elimination in contexts where traditional measures of 

transmission intensity are not appropriate. I used individual level surveillance data to infer 

reproduction numbers by estimating the likelihood of cases being linked by transmission and applied 

this to a dataset of all confirmed and probable cases of P. vivax and P. falciparum occurring in Yunnan 

province between 2011 and 2016, which is a focus of concern for re-emergence.  My results suggest 

that transmission in this province decreased rapidly between 2011 and 2016 as shown by a declining 

risk of 
� exceeding zero across the province. This decline is relatively robust to assumptions about 

the serial interval distribution. Extrapolating this trend using time-series methods, I expect this trend 

to continue, predicting a mean 
� of 0.005 up to 2020. 

Given the consistently very low 
� values estimated by 2014 onwards, and the future projections 

based on observed reproduction numbers over time, the results suggest that re-emergence or 

outbreaks of sustained transmissions are unlikely, provided interventions are continued. However, as 

all data analysed was collected whilst the NMEP was in place, I cannot draw conclusions about the 

impact of scaling back interventions or consider other counterfactuals. There is also some uncertainty 

in the estimates of current and future 
�, although the 95% credible intervals of these estimates remain 

below 1. It is important to note that even with low 
� values it is still possible for locally acquired 

cases to occur following importation, however the probability of sustained chains of transmission 

decreases as 
� decreases.  There also is more uncertainty in the estimates of risk in areas that have 

not observed many cases. It is difficult to determine whether an absence of cases is due to a lack of 

detection, a lack of importation events occurring or a low underlying receptivity to transmission. 
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However, it is worth noting that the greatest uncertainty in spatiotemporal risk estimates of 
� > 0  

tends to be in areas of high elevation (elevation > 3000m), where there is unlikely to be transmission. 

Given the large numbers of imported cases, it is important to highlight these uncertainties and ensure 

control measures are maintained. Nonetheless, my findings are promising for China to meet their 2020 

elimination goal. The results presented here highlight the success the country has had in malaria 

control and highlights the difficulty of elimination certification in contexts where both distant and 

local cross border importation is common.  

The work presented in this chapter attempts to quantify receptivity, or the potential for local 

transmission to occur following the introduction of a case. It is important to note that while competent 

vectors are present in a place we would not expect a receptivity of zero (although if case detection and 

management is fast and effective we could expect a receptivity which is near zero). There are many 

areas where there have been no importation events and therefore there has been no opportunity to 

observe resulting local cases, therefore in some areas the geostatistical model predicts a risk of zero or 

near zero, but the uncertainty associated with this prediction is high. Conversely areas where there has 

been more importation allow more certainty in risk estimation.  

Whilst there is a clear peak in incidence of cases occurring in May (Figure 4.7) , the seasonality of 
� 

estimates were less clear, although there seemed to be two peaks in seasonal increases in 
�, one 

occurring in March/April, and one in October. This pattern could be an artefact of human movement, 

with both periods associated with seasonal movement and holiday periods – the Chunyun period occurs 

in China for Chinese New Year and the holiday week of the National Day in October and is associated 

with intranational travel to visit family. During this time, there is often movement from cities to rural 

areas, and so in these contexts there may be more opportunities for infection to occur as more people 

are exposed to bites from suitable vectors.  This is supplemented by the finding that these specific 
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holidays are associated with small to moderate increases in 
�, however it is worth noting the very 

wide credible intervals and the great deal of uncertainty associated with these estimates, and therefore 

caution is required when interpreting this finding.  

There are several limitations to this study. Firstly, there is a limitation in the classification of local and 

imported cases used in this study. For instance, the definition of importation used in case classification 

is defined by travel to any malaria-endemic areas outside China in the month prior to illness onset. 

This definition might include people who travelled abroad within the week prior to illness onset, but 

biologically their infection could not have been obtained during that time given the incubation period. 

However, in the absence of alternative information, travel history may provide a better indication of 

the likely importation status of a case than attempting to infer importation without this information, 

however there could be scope in future work to allow for incorrect travel history. As certification of 

elimination is now tolerant of introduced (first generation imported-to-local transmission) but not 

indigenous (second generation local-to-local transmission) cases, being able to differentiate between 

the two, and understanding how much transmission is indigenous versus imported or introduced is 

an important area of focus for future work. 

It is important to consider unobserved cases and their potential contribution to transmission 

dynamics. I do account for unobserved cases via epsilon edges; however, this method is still more 

suited to scenarios where most cases are observed.  In contexts with a high level of asymptomatic 

infection contributing to transmission or with poor case detection and/or reporting, these approaches 

would not be suitable.  

For the P. vivax data, it is important to note that the approach used in this chapter does not explicitly 

model relapse or recrudescence, but does allow for relapse as an unobserved source of infection. In 

addition to finding no duplicated patient identifiers (suggestive of repeated infection or relapse) within 
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in the individual- level electronic database,  there are several other features of malaria control in China 

that also provide evidence that it is unlikely that a large proportion of the observed cases are due to 

relapse. According to China's National Malaria Elimination Technology Program (2011), the 

epidemiological history of each case has been investigated to check the source of the infection and 

the history of previous infection and relapse malaria. In addition, all malaria cases received free 

antimalarial treatment, and each case of P. vivax malaria was treated with radical cure. 

Nonetheless, there is a chance of some relapse malaria which was missed during case investigation, 

treatment and surveillance. In our approach we jointly estimate unobserved sources of infection but 

are agnostic as to the specific cause of the unobserved source. As a result, relapses are considered as 

one of the potential unobserved sources of infection. Although large amounts of relapse are unlikely 

for the reasons outlined above, it is true that if there were very large amounts of relapse, the estimated 

reproduction numbers could be over estimated. However, given that we find such low reproduction 

numbers, even if this unlikely situation were the case, this does not impact our key findings and in fact 

would be stronger evidence of China achieving strong reductions in malaria transmission. 

A second limitation is the type of data available for inference. Although not available for this study, 

there are several data sources that increasingly are being collected and could enhance similar analyses 

in the future in eliminating and pre-eliminating contexts. Firstly, methods to make use of contact 

tracing data have been developed for emerging outbreaks (Nagraj et al., 2018) but have not to my 

knowledge been applied to endemic disease in the elimination.  Although contact tracing for indirectly 

transmitted diseases is more difficult, identifying if the likely source of infection is a breeding site near 

the home or a place of work is carried out through active case detection schemes, but often the 

resulting data are not made available alongside line list data.  This information could be used to weight 

certain connections. Genetic data are also increasingly available, and provide useful information about 
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movement of parasites (Chang et al., 2019; Tessema et al., 2019), the likelihood of two cases being 

linked by transmission, and can provide useful information to help distinguish imported from local 

cases and chains of transmission resulting from importation from on-going local transmission 

(Wesolowski et al., 2018).  Such data were not available in this context; however, a similar 

methodological framework or approach could incorporate information such as genetic distance. 

Historical data on incidence at fine scale (e.g. village level) could also be used to inform likelihood of 

asymptomatic infection. 

The effect of holiday periods had a large amount of uncertainty associated with the estimated effects 

they had on transmission, and therefore their impact should be interpreted with caution. However, 

the behavioural changes associated with Chinese New Year could lead to behavioural changes which 

may impact reporting and treatment seeking rates and therefore bias reporting during these times – 

due to individuals not being in work, travelling to other parts of the country. Changes in importation 

during this time due to travel to see family may also bias estimates. 

I introduced a new framework for analysing individual level surveillance data and found that in 

Yunnan province, 
� has seen a notable downward trend since 2011 and is expected to remain low 

with maintained interventions into 2020. This decline coincides with 1-3-7 strategy in improved 

adherence to guidelines. I predict a mean 
�  of 0.005 for 2019, however even with such low 
�  values 

estimated, there may still be a need to continue to invest in detecting and rapidly responding to 

imported cases in order to achieve three consecutive years of zero cases and prevent resurgence. 

Nevertheless, China’s elimination strategy and investment in surveillance provides a useful roadmap 

for other countries planning for malaria elimination by illustrating how coordinated and timely 

surveillance and response can be implemented, as well as sustained investment in surveillance, and 

region-focused international collaboration. 
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5  
Incorporation of distance features into the inference 

framework 

 
5.1 Background and motivation 

As discussed in earlier chapters, individual-level disease surveillance data, collected routinely and as 

part of outbreak response, capture a wealth of information which could improve measurements of 

transmission and its spatiotemporal variation, in turn informing the design of epidemiological 

interventions. In many cases, this includes additional forms of information to the primary data inputs 

used in previous chapters, namely the time of symptom onset and classification of cases as imported 

or locally acquired. For example, there may be geo-located health facility or residence data, 

demographic data about the patients such as sex, age and occupation. In some cases, molecular data 

such as parasite or viral genetic sequences or markers are also available. Robust methods to utilise 

these different forms of information are required in order best support decision making.  However, 

challenges exist in making use of these diverse data sources and leveraging the information they 

contain within a single inference framework. Geographic information, in the form of GPS coordinates 

or address of residence or health facility, is often collected but could be more effectively utilised, 

especially in combination with other information such as symptom onset time and genetic distance. 

Furthermore, the relative importance of location in determining observed patterns of infection and 

transmission risk compared to other factors remains poorly understood for many diseases. It is unclear 

whether simple models of distance can explain the variation observed and inform the design of 

effective interventions or whether more complex information and data are required, for example 
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models incorporating realistic models of human movement. In this chapter I extend the algorithm 

introduced in Chapter 4 to incorporate spatial or similar distance-based information to estimate 

reproduction numbers and their spatiotemporal variation. This approach is then applied to four 

malaria line list datasets from national malaria elimination programmes:  all confirmed cases recorded 

between 2010 and early 2016 in El Salvador (used in Chapter 3),  all suspected and confirmed cases 

of Plasmodium vivax and Plasmodium falciparum  malaria  recorded between 2011 and 2016 in China (the 

subset of this from Yunnan province was analysed in Chapter 4), and all confirmed cases between 

2010 and 2016 in the Kingdom of Eswatini, formally Swaziland (previously analysed in (Reiner et al., 

2015) to explore various assumptions about the relationship between locations of cases and likelihood 

of transmission occurring between them, as well as the impact of unobserved cases. The approach 

introduced in this chapter is flexible and provides the potential to incorporate other sources of 

information which can be converted into distance or adjacency matrices such as travel times or 

molecular markers.  

5.1.1. The importance of location in malaria transmission 

The importance of spatial location has long been identified as important in infectious disease 

transmission, as illustrated by the often-cited example of John Snow’s 19th century map of cholera 

cases in London which identified the Broad Street water pump as the likely source of infection (Snow, 

1855; Cameron and Jones, 1983). Diseases often are distributed non-randomly in space, and this 

distribution is often determined by co-variates which also vary over space such as temperature, land 

use, vector or human population distributions. Analyses of this variation and associated co-variates 

can identify disease risk factors, and importantly make predictions about risk of disease occurrence in 

unobserved localities. Over the past 15 years, there has been increased interest in using geostatistical 

methods to map malaria due to the development of statistical techniques, suitable computational 

power, and necessary data to carry out rigorous statistical analysis. Great strides have been made in 
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mapping many aspects of malaria epidemiology including burden and distribution of different 

Plasmodium species (Dalrymple, Mappin and Gething, 2015), vector distributions (Hay et al., 2010), 

clinical incidence (Bhatt et al., 2015) and climate/habitat suitability (Gething et al., 2011). Whilst these 

methods have been powerful in demonstrating changes in malaria transmission over time and the 

impact of control measures (Bhatt et al., 2015) they require large numbers of cases to estimate values 

of interest such as prevalence with a reasonable amount of uncertainty. As a result, they cannot be 

easily applied to elimination settings where case counts are low.  Furthermore, in elimination settings 

malaria transmission is thought to take on more epidemic dynamics (Cotter et al., 2013) ,meaning the 

importance of time and other highly  dynamic factors such as human movement patterns becomes 

more relevant, therefore space becomes more related to time and how mobile and connected infected 

individuals are and how far they travel.  

Malaria transmission requires a human infected with blood stage parasites to be bitten by a female 

mosquito, for that mosquito to ingest gametocytes and then for that mosquito to bite a susceptible 

human and inject sporozoites during the blood meal. Therefore, several spatially relevant processes 

must be considered, which occur on different scales (Figure 5.1).  In the absence of human movement, 

the flight range of the mosquito vector limits transmission distance.  Historical mark-release-recapture 

studies of Anopheles albimanus in El Salvador found the mean dispersal distance of vectors based on 

mark-release-recapture to be 548m in the dry season (Lowe, 1974) and 942m in the wet season (Lowe 

et al., 1975), with a maximum dispersal distance of 3km (Lowe, 1974), whilst a more recent study in 

Belize found recapture of  Anopheles  albimanus at 0m from the release point only. Anopheles sinensis, 

now thought to be the dominant vector species in South-western China (Huang et al., 2015; Zhang et 

al., 2017), was found to have a range of up to 12km, with 90% of captures occurring within 6km in a 

study in Korea. Studies within a Chinese city found that 90% of mosquitoes were recaptured within 

100m, with a maximum range of 400m (Liu et al., 2012).  Blood fed Anopheles gambiae has been 
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found to have a maximum flight distance of 10km, however as this was carried out within a flight 

chamber it is not clear what wild dispersal distance may be. Based on the information available, it is 

reasonable to assume that in most contexts the maximum range is 10km and most dispersal likely to 

be within 1km.  

Nonetheless, due to the period of time in which malaria parasites can reside within a human body,  

human commuting and migratory patterns can allow for the movement of parasites across longer 

distances (Lynch and Roper, 2011; Wesolowski et al., 2012; Wangdi et al., 2015), and for transmission 

to occur far from the point of infection if suitable vectors are present. Daily or weekly commutes over 

shorter ranges introduce the potential for frequent opportunities for parasites to travel between a 

residence location and a place of work.  Seasonal or one-off migration events, driven by economic, 

environmental, cultural or socio-political forces such as pilgrimages, fleeing violence or instability, or 

seeking seasonal employment opportunities, e.g. as a logger or agricultural worker also can lead to 

infections occurring over long distances (Cruz Marques, 1987; Wangdi et al., 2015; Surjadjaja, Surya 

and Baird, 2016). 

 

5.1.2.  Modelling the relationship between Euclidian distance and transmission 

likelihood 

A variety of models and functions have been used to describe the spatial component of infectious 

disease transmission. The most basic approach discussed in this thesis is to define binary near/far 

threshold, where all cases within a certain area or distance from each other are considered equally 

likely to occur (weighted 1) and cases outside this threshold are deemed unlikely (weighted as 0). This 

may be appropriate when there is an epidemiological reason for distance to be important at a certain 

threshold. An example of this may be a highly immobile, isolated population where only the pathogen 

moves, whereby the movement range of pathogen or vector determines the relevant threshold. In a 
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quarantine scenario a binary threshold may also be a valid model by differentiating between cases 

which occur within a quarantine area versus outside of it. Such approaches are simple however are 

likely to make oversimplifying assumptions in contexts where there is human movement, which often 

can occur to and from population centres, resources such as bodies of water or places of work such 

as agricultural land or mining sites. 

Another approach, adopted in this chapter, is to utilise a spatial kernel, also known in ecological studies 

as a dispersal kernel which is a probability distribution which describes the likelihood of either an 

infection event or dispersal of an organism or contagion as a function of distance (Lindström et al., 

2010). In many contexts empirically estimating the kernel is not possible and so a well-studied 

probability distribution is used to model the relationship between distance and the likelihood of 

dispersal/transmission occurring across that distance. The Gaussian kernel has been the traditional 

kernel of choice to model population spread and has been used to model a wide variety of diffusion 

processes, including the spread of vector borne livestock diseases (Szmaragd et al., 2009, Gerbier et al., 

2008),  and is the resulting assumption of a random-walk movement pattern (Turchin, 1998). 

However, there is evidence that in many contexts,  more leptokurtic, or “fat-tailed” distributions are 

found in outbreak data (Ferguson et al., 2001) and also human mobility patterns (Brockmann et al, 

2006),  which are indicative of higher frequencies of both short-distance and long-distance 

movements. One such example of a leptokurtic distribution is the exponential distribution.  

There are also several potential extensions to the spatial aspect of the model not explored in this 

chapter due to a lack of required population data to parameterise them, however which could be 

incorporated into the analytical framework in the same way the current exponential and Gaussian 

kernels are used.  One such approach is to use a gravity model. Gravity models assume human 

movement follows gravitational “pulls” to population centres, whereby distance to local centres of 
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dense populations are considered as well as Euclidian distance between two points or cases. The most 

basic gravity model is aAC =  tk¹Ni
¼

�7Þki), which describes the number or probability rate of individuals 

Tij moving between locations i and j per unit time. The Gravity model assumes this is proportional to 

a power (determined by α and β ) of population sizes of both locations i (�A�) and  j (RC
±

) and decreases 

with the distance between the populations, rij, following a function f(rij) which can be adapted according 

to the context and fit to empirical data.  However, the gravity model is dependent on these parameters 

which can be difficult to estimate.   In recent years, radiation models have been proposed as an 

alternative to gravity models to model population flows (Simini et al., 2012).  Another model adapted 

from physics to model human movement, the radiation model, instead models population flow as 

aAC = aA  tkNi
7tk�Éki)7tk� Ni�Éki) , where sij the total population in the circle of radius rij centred at i 

(excluding the source and destination population), aA is the total number of individuals moving from 

location I and  RC   is �A are the respective populations in location B and @ respectively.  

Recent work (Marshall et al., 2018) fitted travel data collected from Mali, Burkina Faso, Zambia and 

Tanzania specifically to elucidate travel patterns relevant to malaria transmission (Marshall et al., 2016) 

to both Gravity and Radiation models. They found that the radiation model was a better fit for travel 

to nearby populations, whilst the gravity model was a better fit to the overall data and for travel to 

large population centres. However other work has suggested that, based on mobile phone data, human 

movement can be described by a Truncated Power Law (Brockmann, Hufnagel and Geisel, 2006; 

González, Hidalgo and Barabási, 2008; Meyer and Held, 2014). 

5.1.3. Alternative distance measures 

Due to the different spatial scales at which malaria transmission and the processes driving it operate, 

Euclidian distance may not be the most appropriate metric of distance between cases  due to human 
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travel patterns and travel times not always being proportional to Euclidian distance, and other 

measures of distance could be incorporated into the framework introduced in this chapter. Indeed 

similar approaches to the one presented in this chapter (Wang, Ermon and Hopcroft, 2012) using 

Rayleigh hazard and survival functions have been developed to incorporate features of tweets posted 

on twitter such as the language of tweet and the similarity  in the wording of a text, in combination 

with temporal information. In the same way, features such as occupation, sex or other factors which 

may affect travel patterns to higher risk areas may be incorporated into the framework. This would be 

particularly important in contexts where P. knowlesi is a concern, and proximity to forest/occupation 

which takes one into a forest could indicate zoonotic transmission, whereas complete absence of time 

spent near or in a forest would indicate human to human transmission.  

One approach is to replace Euclidian distance with a measure of travel time or accessibility between 

places. Accessibility indices consider movement by looking at transport networks such as roads and 

calculate a “friction surface” which estimates the difficulty and time required to go from point A to 

point B (Weiss et al., 2018).  If available, travel or mobility data could also be used either to 

parameterise a spatial kernel or radiation/gravity model or used on an individual basis to weight likely 

transmission events.  

Increasingly genetic and molecular data are being collected as part of disease surveillance and outbreak 

response. Increasing interest in using for endemic diseases nearing elimination such as malaria 

(Wesolowski et al., 2018). There is evidence that genetic data can provide signals of movement of 

parasites between populations (Chang et al., 2019; Tessema et al., 2019a). There could be scope to use 

measures of genetic distance, particularly in contexts where the population genetics of malaria is not 

complicated by cases being infected with multiple clones, and therefore identity by descent (Taylor, 

2015) could be used as a metric of distance. 
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5.1.4. Aims and approach 

In this chapter, I  introduce a flexible framework which could extend the approaches introduced in 

chapter 4 to incorporate a range of approaches to modelling distance and transmission likelihood, as 

well as non-Euclidian distance metrics, whilst continuing to allow for unobserved sources of infection 

and incorporate estimates of uncertainty through prior distribution definitions. Then as proof of 

concept, I apply versions of this framework using Gaussian and Exponential kernels to four datasets 

from malaria elimination and near elimination contexts, as well as carrying out a detailed sensitivity 

analysis to explore the impact of varying assumptions about both the relationship between Euclidian 

distance and transmission as well as the likelihood of a case having been infected by an unobserved 

source of infection.  

5.2 Methods 

5.2.1 Data 

5.2.1.1 The Kingdom of Eswatini   

This dataset, analysed in by Reiner and colleagues (Reiner et al., 2015) captures malaria cases recorded 

by the national malaria elimination programme between January 2010 and June 2014. For each case 

detected during this time (N= 1373), case investigation was carried out. For each case the following 

were collected: GPS coordinates of household location, demographic information (age, occupation 

and sex), use of malaria prevention interventions such as long-lasting insecticide treated bednets 

(LLINs), and date of symptom onset, diagnosis and treatment, as well as travel history. Based on travel 

history cases were defined as locally acquired, imported. For a small number of cases (N=58) the 

local/imported status was determined “unknown”. For the purposes of this analysis, these cases were 

treated the same as local cases, i.e. they were assumed to have potentially been infected by other cases 

in the dataset and/or been infectors themselves. 
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5.2.1.2 China 

This dataset consists of individual-level case data for all confirmed and probable cases reported in 

China between 2011 and 2016 (Table 5.1 and Table 5.2). The data consist of an individual identifier, 

date of symptom onset, date of diagnosis and date of treatment, as well as the geolocated address of 

residence and health facility. If the suspected location of infection was in China and not in the same 

district, then the presumed location of infection was also included in the dataset. Demographic 

information such as age and sex were also collected.  A subset of this dataset, focussing on Yunnan 

province, is analysed in Chapter 4. For the analysis the data were separated into P. falciparum and P. 

vivax.  P. malariae (N=252) and P. ovale (N=822) were reported but excluded from the analysis due to 

the lower public health concern of these species. Untyped cases (N= 398)  

Table 5.1: Cases by diagnosis type (probable and confirmed) and species across China 

 
Mixed infection P. falciparum P. malariae P. ovale P. vivax Untyped 

Confirmed 260 11830 252 822 6631 87 
Probable 0 176 0 0 693 311 

 

Table 5.2: Cases by imported/local status and species across China 

  Mixed infection P. falciparum P. malariae P. ovale P. vivax Untyped 
Local 5 92 4 1 1711 95 
Imported 255 11914 248 821 5613 303 

 

5.2.1.3 El Salvador 

This dataset is analysed and described in Chapter 3. Briefly, the data consist of all confirmed cases of 

malaria between 2010 and the first two months of 2016 (N= 91 cases, of which 30 imported, 6 P. 

falciparum, 85 P. vivax). For each case, the date of symptom onset was recorded. Residential address 

was available for all but two cases.  For these cases the location was available at the municipio, or 

municipality level, and the coordinates of the centroid of the municipality (which for both were cities) 
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were used as the geo-location. Two cases had addresses listed outside of El Salvador, both of which 

were located in Guatemala. All cases within El Salvador with full addresses (N=85) were 

georeferenced by latitude and longitude to caserío/lotificación level, which is approximately 

neighbourhood or hamlet level. 
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Figure 5.1: Temporal patterns of incidence and reproduction number estimates for P. falciparum in China 

 Plot showing the relationship between estimated 
�  (red points) and incidence (shaded histogram) over time for both imported (lower row, blue, 
imported =1) and local cases (upper row, red, Imported =0) for P. falciparum in China 
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Figure 5.2: Temporal patterns of incidence and reproduction number estimates for P. vivax in China 

Plot showing the relationship between estimated 
� (red points) and incidence (shaded histogram) over time for both imported (lower row, blue, imported =1) 
and local cases (upper row, red, Imported =0) for P. vivax in China 
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Figure 5.3: Temporal patterns of incidence and reproduction number estimates for El Salvador 

Plot showing the relationship between estimated 
�  (red points) and incidence (shaded histogram) over time for both imported (lower row, blue, 
imported =1) and local cases (upper row, red, Imported =0) for P. vivax in El Salvador 
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Figure 5.4: Temporal patterns of incidence and reproduction number estimates for Swaziland 

Plot showing the relationship between estimated 
�  (red points) and incidence (shaded histogram) over time for imported (middle row, blue, 
Imported =1) and local cases (upper row, red, Imported =0) and “unknown” importation status  for P. falciparum in Swaziland 
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5.2.2 Transmission model specifics  

In order to incorporate features other than time, I extended the algorithm applied to Yunnan Province 

in Chapter 4 by introducing a second function, U$, which describes the relationship between space (or 

distance of any kind) and likelihood of transmission. An appropriate function such as a Gaussian 

kernel is defined and the parameter(s) shaping that distribution, β, are either fixed, or given a prior 

distribution and estimated from the data. Multiplied, together, this returns a single function:  

U~©A, 4A�©C , 4C; [A,C, ª� = UK74A|4C;  [A,C) x  U$~©A�©C; ª� 71) 

Determined by times 4, spatial locations ©, transmission rates [,  spatial parameter(s) ª. 

As before, the hazard is defined as the pairwise likelihood divided by the survival term: 

8 = �n©A , 4Aß©C , 4C; [A,C, ªr 
 n©A , 4Aß©C , 4C; [A,C, ªr  72) 

To derive the survival function, one integrates across all distances and times as follows: 

�~©A, 4A�©C , 4C; [A,C, ª� = 7�  ·
� � UK~4A�4C; [C,A�  U$~©A�©C; ª� 34 3© hk(hi

� 73) 

The specific functions used in UK74A|4C;  [A,C) and  U$7©A|©C; ª)    will have large impacts on the 

outcomes of results and therefore the assumptions inherent in these choices must be made explicit 

and linked to the mechanisms of transmission. 

 To illustrate this approach by applying to several malaria line-lists, I will use a shifted Rayleigh 

distribution to model serial interval distributions, UK74A|4C;  [A,C), as used in Chapters 3 and 4.  For the 

second part of the likelihood which model the relationship between space and the likelihood of 

transmission U$7©A|©C; ª), Gaussian and Exponential diffusion kernels were used (Table 5.3). 
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Table 5.3: Equations for f1, f2, hazard and survival for time -only, Gaussian and Exponential spatial kernels 

 

 �«7�¬|�­;  �¬,­) �®7¯¬|¯­; °) Hazard Survival 

Exponential [~4A − 4C − \�'(K
$�~hk(hi(�� '(±7²k(²i)    ª[~4A − 4C − \�'(±7²k(²i) '(K

$�~hk(hi(�� 1
ª 

Gaussian [~4A − 4C − \�'(K
$�~hk(hi(�� '(±7²k(²i)�

 2³ª[~4A − 4C − \�'(±7²k(²i

√| '(K
$�~hk(hi(�� √|

2³ª 

Time only  [~4A − 4C − \�'(K
$�~hk(hi(�� 

n/a [~4A − 4C − \� '(K
$�~hk(hi(�� 

 

 

Using a shifted Rayleigh distribution as before in Chapter 4 and an exponential kernel the pairwise 

likelihood of a case showing symptoms at 4A and at residence location ©A being infected by a case 

showing symptoms at time  4C and at residence location ©C , becomes  

U~©A, 4A�©C , 4C; [A,C , ª� =  [~4A − 4C − \�'(K
$�~hk(hi(��'(±7²k(²i)  74) 

As shown in Chapter 2, the survival term simplifies to:  

S~©A, 4A�©C , 4C; [A,C, ª� = '(z
��~hk(hi(�� K

± (5) 

And the hazard simplifies to 

 8~©A, 4A�©C , 4C; [A,C , ª� =  ª[~4A − 4C − \�'(±7²k(²i) (6) 
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For the Gaussian function, the pairwise likelihood of a case showing symptoms at 4A and at residence 

location ©A being infected by a case showing symptoms at time  4C and at residence location ©C is 

U~©A, 4A�©C , 4C; [A,C, ª� =  [~4A − 4C − \�'(K
$�~hk(hi(��'(±7²k(²i)�   77)   

The survival term is again determined by integrating the likelihood over all potential infection times 

and all distances 

�~©A , 4A�©C , 4C; [A,C, ª� = 7¶  
·

�
¶ [~4A − 4C − \�'(K

$�~hk(hi(��'(±~²k(²i��   34 3© 
hk(hi

�
78) 

Integrating over time returns 

�~©A, 4A�©C , 4C; [A,C , ª� = '(K
$�~hk(hi(�� ¶  '(±~²k(²i��

·

�
 3© 79) 

Integrating over all distances gives 

�~©A, 4A�©C , 4C; [A,C , ª� = '(K
$�~hk(hi(�� √|

2³ª  710) 

Following equation 10, the hazard is equivalent to 

8~©A, 4A�©C , 4C; [A,C, ª� = [~4A − 4C − \�'(K
$�~hk(hi(��'(±7²k(²i)�

'(K
$�~hk(hi(�� √|

2³ª
 711) 

Which simplifies to 

8~©A , 4A�©C , 4C; [A,C, ª� = 2³ª[~4A − 4C − \�'(±7²k(²i)�

√|   712) 
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5.2.3 Modelling missing cases using � edges 

The vast majority of disease surveillance and outbreak response datasets will not be able to capture all 

cases due to asymptomatic infection, underreporting and movement of people in/out of the 

surveillance area. Therefore, it is important to consider the impact of missing information on results 

and identify potential missing sources of infection. In the work described in this chapter, as in chapter 

2, we use Epsilon edges, }A , to identify potential sources of infection. Here, each hazard is estimated 

as a further competing edge of transmission from an unobserved source, 8�7}A) . Depending on 

assumptions for the likelihood and extent of unobserved infection sources, the epsilon edge value can 

be set to a high or low value. When high, we assume high amounts of unobserved infection and unless 

two cases have a very high likelihood of being linked, we assume the case was from an unobserved 

source.  When low, we assume little missing data and so cases are only linked to an outside source if 

they are very unlikely to be linked to an observed candidate infector.  

Adding epsilon as a competing hazard and survival returns 

U7�, ¯; �, £, °) = ∏  ��7}A) ∏ �~©A , 4A�©C , 4C; [A,C, ª���:h�jhk n8�7}A) +hk∈�

∑ 8~©A , 4A�©C , 4C; [A,C, ª��i:hijhk r 713) 

The objective function is then 

�@R@�@¦'�,£ − log U7�, ¯; �, £, °)         §f%B'&4 4¨ �, £, ° > 0  ∀@, B (14) 

Because this was carried out within a Bayesian framework the log posterior was maximised to obtain 

the maximum-a-posteriori estimates. 

5.2.4 Implementation of algorithm 

The algorithm was written in TensorFlow, implemented in R via the rTensorflow package. As in Chapter 

4, a prior probability was defined for the parameter shaping the serial interval of malaria, informed by 
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previous characterisations of the serial interval of malaria (Huber et al., 2016) . Because clear data about 

how likely the cases in each context explored here were to have moved long distances or the likelihood 

a case has been infected by an unobserved source of infection were not available, several different 

parameterisations of the model were used to represent different scenarios (Table 5.4) , and a detailed 

sensitivity analysis was carried out (Section 5.2.6 and Table 5.5). The versions of the model which are 

described in Figures represent different patterns of human/parasite movement, ranging from a 

context where there may be small amounts of movement (almost all under 10km) to moderate 

amounts of movement/travel( almost all under 50km) to a less restrictive parameterisation, where 

near cases were more likely but far away cases were not completely excluded.   

 These datasets to different versions of the algorithm, as well as temporal-only algorithm described in 

Chapter 2 and applied in Chapter 4, to explore the impact of different assumptions about the impact 

of space on estimated  
� values and their variation over time and space.  We also evaluate the 

performance of each approach by comparing differences in the second order AIC (ΔAICc), and the 

corresponding Akaike Weights. 

5.2.5 Comparison of including spatial information for each dataset 

Twelve scenarios (Table 5.4) were considered when defining parameters for each dataset. These 

scenarios consider three different levels of likelihood of transmission in relationship to Euclidian 

distance (due to the limited range of mosquito travel, this is considered in the context of human 

mobility), which was defined for both exponential and Gaussian kernels. These are illustrated in Figure 

5.5 - Figure 5.7.  Then the values for epsilon were set at 0.001 and 0.1, representing different levels of 

missing cases likely. This can be interpreted as the chance of a case having an unobserved source of 

infection. For example, 0.1 would represent P(unobserved source of infection) = 0.1. The results of 

simulations carried out in Chapter 2 demonstrated that setting correct, informative priors for epsilon 

returned accurate mean 
� values, whereas uninformative priors for epsilon returned slightly 
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underestimated values of 
� when not all cases were observed.  Varying standard deviations of the 

prior were also considered: 1 and 0.001, representing high and low confidence in missingness 

(informative and uninformative priors). Using the parameter definitions for each scenario for both 

Exponential and Gaussian Kernels 

The timeseries of R and its spatial patterns were illustrated for each dataset and parameter combination 

and compared to the results of the time-only version of the algorithm (Algorithm 2, implemented in 

Chapter 4). The results were also mapped to compare how spatial patterns in 
� were affected by 

assumptions about space and unobserved infections.  

In order to compare models quantifiably, the second order Akaike Information Criterion (AICc) was 

calculated using the equation  á�â� = −2 log U7©) + 2¿7 N
N(G(K), where U7©) is the model 

likelihood, K is the number of parameters estimated and n is the sample size of the data used to fit 

the parameters. The AIC(Akaike, 1974) is used in model comparison, by creating a comparison of 

negative log likelihood that penalises increases in model parameters, to prevent overfitting.  AICc is 

recommended for use with smaller datasets with larger numbers of parameters, and as the sample size 

R increases AICc converges to AIC(Hurvich and Tsai, 1989).   The differences in AICc for each model, 

known as ΔAICc, were calculated to compare models. Typically, a ΔAICc of greater than 10 is 

considered strong evidence that that model performs worse than the model it is being compared to.  

In addition, Akaike Weights were calculated, which are a measure of the relative likelihood of a model 

compared to the others considered. Akaike weights are determined by taking the normalised relative 

likelihood of a model which is '©�7 −0.5 ∗  ∆á�â& §&¨"' ), and then dividing by the sum of these 

values across all models to obtain a normalised result. 
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Table 5.4: Table illustrating the different scenarios and corresponding parameter values tested in scenario 
analysis 

Scenario Description Scenario  Beta (fixed) Epsilon 
(prior) 

Human movement unlikely, most movement under 
10km 
Missing cases more likely (but very uncertain) 

1 Gaussian = 0.005 

Exponential =0.1 

Mean = 0.1 

SD = 1 

Human movement unlikely, most movement under 
10km 
Missing cases more likely (confident) 

2 Gaussian = 0.005 

Exponential =0.1 

Mean = 0.1 

SD = 0.001 

Human movement unlikely, most movement under 
10km 
Missing cases less likely (but very uncertain) 

3 Gaussian = 0.005 

Exponential =0.1 

Mean = 0.001 

SD = 1 

Human movement unlikely, most movement under 
10km 
Missing cases less likely (confident) 

4 Gaussian = 0.005 

Exponential =0.1 

Mean =0.001 

SD =0.001 

Moderate human movement, most movement under 
50km 
Missing cases more likely (but very uncertain) 

5 Gaussian = 0.001 

Exponential =0.02 

Mean = 0.1 

SD = 1 

Moderate human movement, most movement under 
50km 
Missing cases more likely (confident) 

6 Gaussian = 0.001 

Exponential =0.02 

Mean = 0.1 

SD = 0.001 

Moderate human movement, most movement under 
50km 
Missing cases less likely (but very uncertain) 

7 Gaussian = 0.001 

Exponential =0.02 

Mean = 0.001 

SD = 1 

Moderate human movement, most movement under 
50km 
Missing cases less likely (confident) 

8 Gaussian = 0.001 

Exponential =0.02 

Mean =0.001 

SD =0.001 

Longer range human movement likely 
Missing cases more likely (but very uncertain) 

9 Gaussian = 0.0001 

Exponential =0.01 

Mean = 0.1 

SD = 1 

Longer range human movement likely 
Missing cases more likely (confident) 

10 Gaussian = 0.0001 

Exponential =0.01 

Mean = 0.1 

SD = 0.001 

Longer range human movement likely 
Missing cases less likely (but very uncertain) 

11 Gaussian = 0.0001 

Exponential =0.01 

Mean = 0.001 

SD = 1 

Longer range human movement likely 
Missing cases less likely (certain) 
 

12 Gaussian = 0.0001 

Exponential =0.01 

Mean =0.001 

SD =0.001 
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5.2.6 Sensitivity analysis and comparison of prior choice on estimated results  

In the scenario analysis above the distance shaping parameter is fixed. However due to the 

uncertainties in the relationship between distance and likelihood of transmission, in many contexts it 

may be useful to estimate ª. To explore the relationship between the estimated epsilon edges, },  and 

estimated shaping parameter, ª, for the distance function. a detailed sensitivity analysis was carried 

out to explore the impact of a) prior choice for } d) prior choice for ª on both the maxmum-a-

posteriori estimates for ª and the estimated mean 
�. 

To consider the effect of varying parameter values and explore their interactions, a range of distance 

and epsilon edge priors were considered. A truncated normal prior was used for both parameters, and 

the mean and standard deviation were varied.  For } the mean was varied between 1e-10 and 0.5, and 

the standard deviation was varied between 0.0001 and 0.1. For ª, the mean for a Gaussian Kernel was 

varied between 0.00001 and 0.01 and for an exponential kernel the means considered ranged between 

0.0001 and 0.1. For both the standard deviations varied between 0.0001 and 0.1 (Table 5.5). Every 

possible combination of the parameters were run for each dataset and both Gaussian and exponential 

spatial kernels, giving a total of 2400 parameter combinations tested per kernel, per dataset.  

Table 5.5 Different parameters considered in sensitivity analysis 

£ mean £ SD ° mean 

7åæçèèéæê) 

° ëìæê 
7íîïðêìêñéæò) 

° SD 

1e-10 
1e-5 
1e-3 
1e-2 
1e-1 
0.5 

0.0001 
0.001 
0.01 
0.05 
0.1 

0.00001 
0.0001 
0.001 
0.01 

0.0001 
0.001 
0.01 
0.1 

0.0001 
0.001 
0.01 
0.05 
0.1 
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Figure 5.5 : Illustration of likelihoods, hazards and survivals for less restrictive kernels (longer range human movement 
likely). Plots showing how the pairwise likelihoods, survivals and hazards vary with time and distance under different model structures. The first row of plots 
shows the pairwise likelihoods, the second row shows the pairwise survival and the third row shows the pairwise hazard values for different combinations of 
distance (in kilometres) and time between symptom onset (days). The first column shows the results for a time-only version of the algorithm. The second column 
shows results for an exponential kernel and the third column shows results for a Gaussian kernel.  In this example less restrictive values for beta, the shaping 
parameter for the distance kernels have been chosen, representing a context where there is more long-range movement of parasites.  
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Figure 5.6: Illustration of likelihoods, hazards and survivals for moderately restrictive kernels (moderate human movement, 
most movement under 50km). Plots showing how the pairwise likelihoods, survivals and hazards vary with time and distance under different model 
structures. The first row of plots shows the pairwise likelihoods, the second row shows the pairwise survival and the third row shows the pairwise hazard values 
for different combinations of distance (in kilometres) and time between symptom onset (days). The first column shows the results for a time-only version of the 
algorithm. The second column shows results for an exponential kernel and the third column shows results for a Gaussian kernel.  In this example values for 
beta, the shaping parameter for the distance kernels have been chosen to represent a context where there is more some movement of parasites, but where little 
movement is expected beyond 50-75km. The likelihood for the Gaussian Kernel is more concentrated, which could represent shorter range movement e.g. 
commutes, whereas the Exponential has a longer tail so could represent a mixture of short and longer range parasite movement. 
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Figure 5.7: Illustration of likelihoods, hazards and survivals for highly restrictive kernels (Human movement unlikely, most 
movement under 10km). Plots showing how the pairwise likelihoods, survivals and hazards vary with time and distance under different model structures. 
The first row of plots shows the pairwise likelihoods, the second row shows the pairwise survival and the third row shows the pairwise hazard values for different 
combinations of distance (in kilometres) and time between symptom onset (days). The first column shows the results for a time-only version of the algorithm. The 
second column shows results for an exponential kernel and the third column shows results for a Gaussian kernel.  In this example more restrictive values for 
beta, the shaping parameter for the distance kernels have been chosen, representing a context where there is very little movement of parasites, with very little 
movement beyond 10-20km expected.  
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5.3 Results  

The work presented in this chapter aimed to develop a framework to integrate distance information 

into the inference framework developed in Chapter 4 and then test the impact of varying assumptions 

about the relationship between location of cases and the likelihood of transmission as well as the 

impact of unobserved infection as modelled by epsilon edges, considering twelve scenarios, and 

applying them to four line-list datasets using two different spatial kernels.  

5.3.1 Results of model comparison by ΔAICc across different scenarios  

When ΔAICc scores were used to compare model results, all models which included distance had 

lower (and therefore better) ΔAICc scores than models which only included only time (Table 5.6). In 

addition, exponential kernels consistently outperformed equivalent scenarios using Gaussian kernels 

(Table 5.6). Two scenarios consistently returned the best ΔAICc results, namely Scenario 9 (El 

Salvador and Swaziland) and Scenario 11 (China, P. vivax and P. falciparum). Both scenarios assume 

longer range human movement likely and impose a smaller penalty on cases occurring larger distances. 

These scenarios also allow variation in epsilon edge values and use a very weakly informative prior on 

Epsilon edges, but with a different mean (0.1 for Scenario 9, 0.001 for Scenario 11).  These results 

also return smaller mean 
� results than time-only versions of the model (Figure 5.8 – 5.12) 

Table 5.6: Summary of ΔAICc results 

Dataset Best Model(s), by ΔAICc Akaike Weight 

Swaziland (Eswatini) Scenario 9, Exponential 1 

El Salvador Scenario 9, Exponential 

Scenario 11, Exponential  

0.621540909785805 

0.37845909 

China P. vivax Scenario 11, Exponential 1 

China P. falciparum Scenario 11, Exponential 1 
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5.3.2 �� estimates under different scenarios 

Across all datasets, large differences in 
� estimates were found depending on both � and 

ª parameters. When ª is higher, the assumption is that there is little movement of parasites within 

the country and therefore cases with residential addresses which are far away are unlikely to have 

infected each other. When this is the case and we assume there are unobserved sources of infection 

(either through a strongly informative prior on � with mean 0.1, or an uninformative prior with a 

lower mean), then 
� values are very low. However if we assume there are little or no unobserved 

sources of infection, but continue to make restrictive assumptions about space, then most 
� very low 

but in the localities where there are cases we estimate much higher 
� values as there are no other 

possible infectors within a reasonable time and/or spatial area.  This is illustrated in Figures 5.9 - 5.12. 

When looking at the spatial patterns of 
� estimates under different scenarios several trends are seen 

across all datasets. Scenario 4 is particularly interesting to note because this scenario considers the 

most restrictive assumptions, both about space and unobserved sources of infection. Across datasets, 

Scenario 4 results in increased focality and higher 
�s within these foci, but in comparison lower 
�s 

in other areas. All of the best scenarios as measured by ΔAICc resulted in small 
� estimates, but 

where comparably larger 
� estimates were estimated, they were in localities identified as foci.  
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Table 5.7 : Full results of ΔAICc and Akaike Weights for each scenario, dataset and spatial kernel considered 

 
Dataset Scenario Kernel ΔAICc Akaike Weight 

1 Swaziland Time Exp 7386293 0 

2 Swaziland 1 Exp 3692506 0 

3 Swaziland 2 Exp 3694136 0 

4 Swaziland 3 Exp 3692532 0 

5 Swaziland 4 Exp 3702805 0 

6 Swaziland 5 Exp 1111429 0 

7 Swaziland 6 Exp 1111429 0 

8 Swaziland 7 Exp 1111432 0 

9 Swaziland 8 Exp 1121581 0 

10 Swaziland 9 Exp 0 1 

11 Swaziland 10 Exp 1600 0 

12 Swaziland 11 Exp 59.5 1.20E-13 

13 Swaziland 12 Exp 10319 0 

14 Swaziland Time Gauss 7386293 0 

15 Swaziland 1 Gauss 3330479 0 

16 Swaziland 2 Gauss 3332136 0 

17 Swaziland 3 Gauss 3330507 0 

18 Swaziland 4 Gauss 3340768 0 

19 Swaziland 5 Gauss 2039970 0 

20 Swaziland 6 Gauss 2039970 0 

21 Swaziland 7 Gauss 2040024 0 

22 Swaziland 8 Gauss 2050183 0 

23 Swaziland 9 Gauss 193699 0 

24 Swaziland 10 Gauss 195254.5 0 

25 Swaziland 11 Gauss 193612 0 

26 Swaziland 12 Gauss 203761 0 

27 El Salvador Time Exp 50740.41 0 

28 El Salvador 1 Exp 25281.75 0 

29 El Salvador 2 Exp 25442.9 0 

30 El Salvador 3 Exp 25283.46 0 

31 El Salvador 4 Exp 25934.87 0 

32 El Salvador 5 Exp 7610.738 0 

33 El Salvador 6 Exp 7610.738 0 

34 El Salvador 7 Exp 7613.293 0 

35 El Salvador 8 Exp 8259.305 0 

36 El Salvador 9 Exp 0 0.621541 

37 El Salvador 10 Exp 160.5273 8.62E-36 

38 El Salvador 11 Exp 0.992188 0.378459 

39 El Salvador 12 Exp 651.3242 2.29E-142 

40 El Salvador Time Gauss 50740.41 0 
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41 El Salvador 1 Gauss 22802.16 0 

42 El Salvador 2 Gauss 22963.65 0 

43 El Salvador 3 Gauss 22805.51 0 

44 El Salvador 4 Gauss 23435.99 0 

45 El Salvador 5 Gauss 13967.11 0 

46 El Salvador 6 Gauss 13967.11 0 

47 El Salvador 7 Gauss 13970.42 0 

48 El Salvador 8 Gauss 14610.11 0 

49 El Salvador 9 Gauss 1326.18 6.56E-289 

50 El Salvador 10 Gauss 1486.707 9.88131291682493e-324 

51 El Salvador 11 Gauss 1327.086 4.17E-289 

52 El Salvador 12 Gauss 1976.551 0 

53 China P. vivax Time Exp 1.2E+08 0 

54 China P. vivax 1 Exp 59896712 0 

55 China P. vivax 2 Exp 59898508 0 

56 China P. vivax 3 Exp 59892352 0 

57 China P. vivax 4 Exp 60131916 0 

58 China P. vivax 5 Exp 18036424 0 

59 China P. vivax 6 Exp 18036424 0 

60 China P. vivax 7 Exp 18032128 0 

61 China P. vivax 8 Exp 18145920 0 

62 China P. vivax 9 Exp 4448 0 

63 China P. vivax 10 Exp 4616 0 

64 China P. vivax 11 Exp 0 1 

65 China P. vivax 12 Exp 61832 0 

66 China P. vivax Time Gauss 1.2E+08 0 

67 China P. vivax 1 Gauss 54024360 0 

68 China P. vivax 2 Gauss 54025048 0 

69 China P. vivax 3 Gauss 54020028 0 

70 China P. vivax 4 Gauss 54259728 0 

71 China P. vivax 5 Gauss 33089320 0 

72 China P. vivax 6 Gauss 33089320 0 

73 China P. vivax 7 Gauss 33085048 0 

74 China P. vivax 8 Gauss 33199024 0 

75 China P. vivax 9 Gauss 3151784 0 

76 China P. vivax 10 Gauss 3151928 0 

77 China P. vivax 11 Gauss 3147272 0 

78 China P. vivax 12 Gauss 3261120 0 

79 China P. falciparum Time Exp 10959165 0 

80 China P. falciparum 1 Exp 5479523 0 

81 China P. falciparum 2 Exp 5479818 0 

82 China P. falciparum 3 Exp 5479525 0 

83 China P. falciparum 4 Exp 5485952 0 
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84 China P. falciparum 5 Exp 1651271 0 

85 China P. falciparum 6 Exp 1651271 0 

86 China P. falciparum 7 Exp 1651267 0 

87 China P. falciparum 8 Exp 1654772 0 

88 China P. falciparum 9 Exp 315 3.97E-69 

89 China P. falciparum 10 Exp 290 1.06E-63 

90 China P. falciparum 11 Exp 0 1 

91 China P. falciparum 12 Exp 3505 0 

92 China P. falciparum Time Gauss 10959165 0 

93 China P. falciparum 1 Gauss 4941554 0 

94 China P. falciparum 2 Gauss 4941848 0 

95 China P. falciparum 3 Gauss 4941552 0 

96 China P. falciparum 4 Gauss 4947978 0 

97 China P. falciparum 5 Gauss 3027333 0 

98 China P. falciparum 6 Gauss 3027333 0 

99 China P. falciparum 7 Gauss 3027313 0 

100 China P. falciparum 8 Gauss 3030842 0 

101 China P. falciparum 9 Gauss 288014 0 

102 China P. falciparum 10 Gauss 288308 0 

103 China P. falciparum 11 Gauss 288046 0 

104 China P. falciparum 12 Gauss 291521 0 
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5.3.3 Results of Sensitivity Analysis 

5.3.4 El Salvador 

For the line-list dataset from El Salvador, within the range of values explored in the sensitivity analysis 

(Table 5.5), regardless of how informative the prior was for either β, the distance shaping function, 

or for ε, the epsilon edge, β was always estimated as whatever the mean of the prior was set as between 

the prior mean values of 1e-4 and 1e-2 (Figure 5.16). However, when the mean value was set at 0.1, 

the estimated parameter converged at a slightly lower value of 0.075, with the exception of  when the 

prior for ε was very low (all priors with mean ε of 1e-10 and also the more informative priors with 

mean 1e-5, when standard deviation was 1e-4). 
�  is strongly shaped by the value of ε, with higher 

values of ε returning lower values of  
�, however 
� also declined with increasing values of β. 

5.3.5 Eswatini 

Very similar patterns to El Salvador were observed in the sensitivity analysis of the Eswatini dataset. 

Again, regardless of how informative the prior was for either ε or β, β was always estimated as whatever 

the mean of the prior was set as between the prior mean values of 1e-4 and 1e-2 (Figure 5.17). 

However, when the mean value was set at 0.1, the estimated parameter converged at a slightly lower 

value of 0.075, with the exception of  when the prior for ε was very low (all priors with mean ε of 1e-

10 and also the more informative priors with mean 1e-5, when standard deviation was 1e-4).  Unlike 

El Salvador, for Eswatini, at higher values of ε (0.5 and 0.1) there are stark declines in 
� with 

increasing β. 

5.3.6 China 

For both P. vivax and P. falciparum datasets from China, within the parameter range explored in the 

sensitivity analysis, regardless of how informative the prior was for either β, the distance shaping 
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function, or ε, the epsilon edge, β was always estimated as whatever the mean of the prior was set as 

(Figure 5.18 and Figure 5.19), suggesting a lack of identifiability or information within the data.  When 

estimating 
�, and interesting interacting effect of ε (missing or unobserved infections) and β 

(distance) was seen. When β is low, although lower values of ε produce slightly higher mean 
� values, 

the difference in 
�estimates with varying prior values for ε is much smaller than when β is a higher 

value. In other words, when the prior for ε is low, 1e-10, 
� estimates do not vary as β changes, 

however when the prior for ε is much higher, then increasing β from 1e-4 to 0.1 reduces 
�  estimates 

(from 0.21 to 0.01 for P. vivax). 
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Figure 5.16 El Salvador sensitivity analysis. 

 Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping parameter, β. The different  colours and shapes represent different means and 

standard deviations respectively of the normally-distributed prior of epsilon, Ɛ,which represents shapes represent different hazards of infection by an external, unobserved source.  
For A-D, the x-axis represents the prior mean used for β. A) the y-axis shows the maximum a posteriori parameter estimate for the parameter β. B) shows the same results, 

stratified by the prior mean of  Ɛ for clarity.  C) Shows the impact of priors for β and Ɛ on the mean Rc estimate, and again D) shows the same result, stratified by the prior 

mean of  Ɛ. 
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Figure 5.17:  Eswatini  sensitivity analysis. 

Sensitivity analysis showing the impact of varying the prior means for Eswatini. Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping 

parameter, β. The different  colours and shapes represent different means and standard deviations respectively of the normally-distributed prior of epsilon, Ɛ,which represents 
shapes represent different hazards of infection by an external, unobserved source.  For A-D, the x-axis represents the prior mean used for β. A) the y-axis shows the maximum 

a posteriori parameter estimate for the parameter β. B) shows the same results, stratified by the prior mean of  Ɛ for clarity.  C) Shows the impact of priors for β and Ɛ on the 

mean Rc estimate, and again D) shows the same result, stratified by the prior mean of  Ɛ. 
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Figure 5.18: P. falciparum  China Sensitivity Analysis 

Sensitivity analysis showing the impact of varying the prior means for P. falciparum in China. Sensitivity analysis showing the impact of varying the prior means for 

Eswatini. Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping parameter, β. The different  colours and shapes represent 

different means and standard deviations respectively of the normally-distributed prior of epsilon, Ɛ,which represents shapes represent different hazards of infection by 
an external, unobserved source.  For A-D, the x-axis represents the prior mean used for β. A) the y-axis shows the maximum a posteriori parameter estimate for 

the parameter β. B) shows the same results, stratified by the prior mean of  Ɛ for clarity.  C) Shows the impact of priors for β and Ɛ on the mean Rc estimate, and 

again D) shows the same result, stratified by the prior mean of  Ɛ. 
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Figure 5.19: P. vivax  China Sensitivity Analysis 

 Sensitivity analysis showing the impact of varying the prior means for P. vivax in China. Sensitivity analysis showing the impact of varying the prior means for Eswatini. 

Sensitivity analysis showing the impact of varying the prior mean for the distance kernel shaping parameter, β. The different  colours and shapes represent different 

means and standard deviations respectively of the normally-distributed prior of epsilon, Ɛ,which represents shapes represent different hazards of infection by an external, 
unobserved source.  For A-D, the x-axis represents the prior mean used for β. A) the y-axis shows the maximum a posteriori parameter estimate for the parameter 

β. B) shows the same results, stratified by the prior mean of  Ɛ for clarity.  C) Shows the impact of priors for β and Ɛ on the mean Rc estimate, and again D) shows 

the same result, stratified by the prior mean of  Ɛ. 
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5.4 Discussion 

This chapter introduced a method which allows the flexible integration of distance metrics, either in 

the form of geographic distances, or other forms such as accessibility, with temporal information into 

a single inference framework. Twelve scenarios and corresponding parameter values were defined 

which represented varying likelihood of transmission over different geographic distances and 

likelihood of missing infections (as well as high and low confidence in this estimate). These scenarios 

were applied to four individual level datasets from malaria eliminating contexts and using two different 

spatial kernels. The estimated 
� values, their spatial and temporal distribution and the ΔAICc/Akaike 

weights for each model were compared alongside a time only model. These results suggest that 

including spatial information improved models as measured by AIC, compared to time only results. 

The prior/fixed values for both the distance function and epsilon value have very strong impacts on 

the estimated 
�, although relative temporal trends tend to stay consistent.  

For all datasets considered, all model versions which used geographic information had lower ΔAICc 

values than the time only model. Based on the Akaike Weights and ΔAICc values for each model, 

large differences in ΔAICc were seen between different scenarios. Scenarios 9 and 11 produced the 

lowest ΔAICc values. These were parameterisations which penalised long range transmission the least 

where and the prior on epsilon edges was only weakly informative. These parameterisations also return 

much lower reproduction numbers than using time alone.  

Exponential Kernels consistently outperformed Gaussian kernels as measured by ΔAICc.  Although 

classic models of dispersion are as a diffusion process with Gaussian displacement, more leptokurtic 

or “fatter-tailed” probability distributions, where more of the probability density is concentrated in 

the tails of the function, are often found to better represent empirical dispersal patterns than traditional 

Gaussian kernels (Bateman, 1950). This “fatter-tail” in the exponential can be seen in Figure 5.5 - 

Figure 5.7.  
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 However, there are many limitations to using ΔAICc in model comparison, particularly when 

estimation of some of the parameters are being carried out within a Bayesian context. We do not fix 

[AC  nor do we fix epsilon, but we do define priors and maximise the posterior rather than the log 

likelihood. Therefore, we are comparing negative log likelihoods from a maximised posterior, meaning 

we are not considering the information included in the prior.  In addition, many [AC values shrink to 

zero, however are still counted as parameters in the AIC estimation. Therefore, there is no recognition 

of which versions of the model produce fewer non-zero parameters. Whilst this difference in AIC is 

interesting to note, I would argue the broader trends in how 
� varies over time and space with 

different assumptions about both the spatial kernel and the number of unobserved sources of 

infection are more important to consider.  

An interesting pattern which was noted across scenarios and across datasets was how including spatial 

information in the likelihood tended to increase the seasonality of temporal patterns in reproduction 

numbers and reduced noise in the temporal distribution of reproduction numbers. This could be 

suggestive of importation events leading to localised infections. Scenario 4 is also an interesting set of 

assumptions to consider as it assumes cases generally only infect cases near them and that unobserved 

cases of infection are unlikely. Under this assumption foci of infection are very clear and clear 

“sources” of infection. 

The results of the sensitivity analysis reveal interesting differences between the different datasets and 

contexts contained in this dataset. For both El Salvador and Eswatini, which are both small countries 

(El Salvador has an area of 21,041 km² and Eswatini 17,364 km²), at higher mean priors for β, the 

model converged on an estimate for β which was informed by the data.  This was not the case for the 

dataset from China, which represents a much larger area geographically and where dynamics are likely 

to be strongly driven by importation. Given that for the kernels utilised in this chapter, increasing 
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values of β lead to more restrictive assumptions about the scale of transmission, perhaps this 

difference is due to the different spatial scales at which the analysis was being carried out.  

5.4.1 Limitations 

There are several limitations to this approach and analysis. Firstly, there is a potential lack of 

identifiability between ε, the epsilon edge, and β, the shaping parameter of the spatial kernel. To give 

an intuitive example, say two cases occurred 50km from each other in space within a reasonable 

timeframe of symptom onset times for transmission to have occurred. Without strong prior 

information about what the spatial kernel may be, and/or how likely cases are to have an external 

source of infection,  it is not clear whether these cases are linked by transmission (and there is some 

human travel/parasite movement, modelled by a less restrictive spatial kernel) or whether there are 

unobserved source(s) of infection leading to both cases. This is also exemplified in the results of the 

sensitivity analysis, where the mean of the prior for beta strongly shapes the final estimate of beta, and 

the epsilon value also shapes beta. 

In the absence of reliable information about either of these values, strong assumptions must be made 

about either/both the likelihood of cases being infected by unobserved sources of infection and the 

relationship between distance and. Similar approaches (Wang, Ermon and Hopcroft, 2012) 

recommend fixing the kernel shaping parameter, and indeed approaches from others have also noted 

problems with unconstrained distance kernels in space-time diffusion modelling (Swapnil Mishra, 

personal correspondence). One potential way to address this is divide epsilon edge by the distance 

parameter  
ó
±, thereby linking the two parameters and thereby penalising increases in ª. 

Indeed, for similar approaches analysing the diffusion of twitter hashtags, it was recommended to fix 

the parameter beta, and the authors acknowledged potential challenges in estimating this parameter. 

Whilst the temporal aspect is not fixed, I view the utility in this method in excluding or penalising 
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improbable transmission links between far away cases, rather than as a way of trying to determine 

what the spatial relationship between cases is for malaria transmission, or determining the relative 

contribution of space to malaria transmission.   

An additional approach which could alleviate this problem is to collect internal travel history as part 

of surveillance in future data collection efforts. This may help tease apart the relationship between 

space and transmission. There also may be regions where there is more information to parameterise 

both the spatial scales of transmission and the likelihood of cases being unobserved (for example 

through looking at reporting rates, rates of relapse in the case of P. vivax, and prevalence of 

asymptomatic infection). 

Secondly, as with all methods introduced in this thesis, the approach presented in this chapter was 

designed for application to near elimination and elimination settings, where surveillance and case 

management is very strong, numbers of cases are small, and therefore there is less overlap in potential 

infector/infectees, and changes in transmission are more apparent. If applying these approaches to 

contexts which are less far along the journey to elimination, the issue of identifiability may be even 

more of an issue as one cannot reasonably assume/fix epsilon edges to be a very small number. 

Asymptomatic infection will likely be more important to consider, more sophisticated methods to deal 

with missing cases will be required. There also will likely be a weaker signal in space and time, which 

may require the integration of additional information such as genetic distance. There also will be a 

transmission level above which these methods will no longer be useful, although we do not know 

what this exact level is.  

Finally, due to there being no “ground truth” and Bayesian nature of model it is hard to rigorously 

compare model performance. ΔAICc and Akaike Weights are standard, however as mentioned 

previously, there are import limitations in using these metrics for model comparison. A useful future 
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step would be to extend the simulations introduced in chapter 2 to space to investigate the impact of 

varying parameter values and the interaction between the shaping parameter of the spatial kernel and 

epsilon. Spatially explicit simulations may also reveal how tolerant the method is to missingness.  

5.4.2 Future work 

Currently, missing cases are dealt with in a relatively simple way, under the assumption that in the 

elimination settings used here, surveillance and control have been strong for an extended period of 

time as to ensure small case numbers and low prevalence of asymptomatic parasitaemia, and that the 

contribution of missing cases is small enough to be represented as a competing hazard. The latter 

assumption is supported by simulation results from Chapter 2 suggested that when missingness is 

unbiased, 
�  estimates are not strongly affected but produce a slight underestimation in 
�. However, 

if missingness was biased, it is not clear how strongly this would affect results. Further simulations 

which model different forms of missing data/sampling schemes would be useful to reveal the potential 

impact of non-random missing data. These simulations could also model different sources of 

unobserved infection – for example missing cases caused by relapse of dormant P. vivax, unreported 

cases or asymptomatic infection.  

Many of the potential ways to model and represent space discussed in the introduction section of this 

chapter (Section 5.1) have not been tested here due to the issues of identifiability seen even in simple 

models of space. Gravity, radiation, accessibility matrices all potential models of how space may affect 

the likelihood of transmission. As mosquitoes have a limited range and lifespan, developing better 

data and models of human movement, and how it varies in different cultural contexts and between 

different demographic groups, will provide useful information to appropriately parameterise and 

design the spatial component of the model.  
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Although the prior for the shaping parameter of the serial interval was selected under the assumption 

that the majority of cases are treated in a timely manner, In this analysis I have not  explicitly utilised 

information about the time and location of treatment,  although this is available in some contexts. 

This may be useful information to constrain the potential time window of infection occurring, as 

detailed information about infectivity and gametocyte carriage following treatment with anti-malarials 

is available (Bousema and Drakeley, 2011), although sub-optimal dosage, compliance and resistance 

have been associated with differing outcomes and therefore having additional information about 

treatment and prevalence of resistance would also be useful.  

Another avenue for future work would be to adapt the approach to incorporate further sources of 

information, such as genetic markers of similarity between parasites. For the approach developed in 

this chapter to be useful in contexts which are not at or within a few years of elimination, incorporation 

of additional information into the inference framework will be required. This could be carried out 

either directly by incorporating an additional term or function in the likelihood or indirectly through 

informing the value of parameters and allowing them to vary between individuals. Previous work 

within the machine learning and network analysis community has successfully integrated diverse 

sources of information about texts such as language and similarity of context into very similar 

algorithms to the one presented here (Wang, Ermon and Hopcroft, 2012) . 

5.5 Conclusion 

Increasingly, line-list data contain spatial and other forms of information. Finding useful approaches  

to leverage the information contained within these diverse datasets will increasingly be useful in 

malaria surveillance and epidemiology (Pindolia et al., 2012; Sturrock et al., 2016; Wesolowski, Aimee 

R. Taylor, et al., 2018) and developing a framework which flexibly takes on different forms of data 

within an integrated inference framework is a key aspect of this. There may be more useful information 

contained in genetic, and or travel, mobility data. However, as we have seen there can be issues of 
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identifiability, which becomes increasingly relevant when there is not enough data available about key 

parameters in the model. Finding ways for leveraging multiple datasets, understanding their 

relationships, how they can enhance info contained in others, or used to build consensus is important. 

In this chapter, I developed and tested an extension to the algorithm presented in Chapter 4, which 

flexibly allows the incorporation of distance or adjacency matrices describing the distance or 

connectivity between cases.  This was applied to individual malaria case data from four eliminating 

and very low transmission contexts and a detailed sensitivity analysis was carried out. The results of 

these analyses suggest that including space improves model performance as measured by ΔAICc, and 

that, for the contexts considered here, the best performing models produce lower reproduction 

estimates than using temporal information only, likely in part due to estimating more unobserved 

sources of infection.  However, this conclusion would be strengthened by more in-depth simulation 

studies. The approach presented here could be adapted to many different datasets and contexts, 

however issues of identifiability must be considered. The utility of this approach would be 

strengthened with further development of the methods of modelling unobserved sources of infection. 
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6  
Discussion 

6.1 Summary of aims and approach of thesis 

In this thesis my aim was to introduce a new approach to measure malaria transmission in near 

elimination settings by extending, adapting and applying approaches used in network analysis of 

information spread through online social networks (Gomez-Rodriguez, Balduzzi and Schölkopf, 2011; 

Gomez-Rodriguez and Schölkopf, 2012)  . With this approach, I utilised information about the time 

and location of cases showing symptoms of malaria to jointly infer the likelihood that a) each observed 

case was linked to another by transmission and b) that a case was infected by an external, unobserved 

source. This was carried out in a Bayesian (or in the case of Algorithm 1 used in Chapter 3, quasi-

Bayesian) statistical framework to incorporate prior information about the relationship between time 

and the likelihood of infection occurring (Huber et al., 2016).  This information was then used to 

calculate individual reproduction numbers for each case, or how many new cases are expected to result 

from each case. When this number is above one, we expect transmission to continue, and below one 

we expect an outbreak to die out. In elimination settings, quantifying the distribution of individual 

reproduction numbers provides useful information about how quickly a disease may die out, and how 

the introduction of new cases through importation may affect ongoing transmission.  These estimates 

were incorporated into timeseries analysis and forecasting models as well as geostatistical models to 

map how malaria transmission varied over space and time as well as considering timelines to 

elimination and the likelihood of resurgence of transmission once zero cases is achieved, as well as 

uncertainty in these estimates. I applied these approaches to previously unanalysed individual-level 

datasets of all recorded malaria cases from several eliminating contexts, including China and El 

Salvador. 
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6.2 Summary of key findings and their significance 

In Chapter 3, I used the timing of symptom onset and prior distributions of the serial interval for 

treated, symptomatic malaria to estimate individual level reproduction numbers (
�) for all reported 

and confirmed cases of malaria in El Salvador (2010 - early 2016). I then incorporated these results 

and the coordinates of geolocated cases into a binomial geostatistical model and explored estimates 

of risk of 
�exceeding one over space as well as time. I also fit the distribution of 
�  values to several 

distributions to determine the expected mean 
� required to be 95% confident of observing no 
� s 

above zero and then fitted a Generalised Additive Model to explore the chance of the mean 
�  

reaching this value by 2020, based on the current declining trend. The results of this analysis suggested 

that whilst the average number of secondary malaria cases was below one (0.61, 95% CI 0.55–0.65), 

individual reproduction numbers often exceeded one during the observation period. There was an 

estimated decline in 
� between 2010 and 2016. However , based on the distribution of estimated 
� 

values during this period, characterised heterogeneity in the reproduction number using a Gamma 

distribution which, when fitted to the data, suggests a threshold mean ℛ� of 0.22, below which there 

would a less than 5% chance of any individual reproduction number exceeding one. Using the fitted 

trend in the mean ℛ�, one would expect this level to be reached by 2023, assuming no change in the 

rate of importation. 

 

In Chapter 4 I utilise an alternative framework which allows the analysis of much larger datasets within 

a Bayesian framework and extended and applied the approach to an individual-level dataset from 

China CDC. Using a geo-located individual-level dataset of cases recorded in Yunnan province 

between 2011 and 2016, I introduce a novel Bayesian framework to model a latent diffusion process 

and estimate the joint likelihood of transmission between cases and the number of cases with 
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unobserved sources of infection. As in Chapter 3, this was  used to estimate the case reproduction 

number, 
�, and used within spatio-temporal geostatistical models to map how transmission varied 

over time and space, estimate the timeline to elimination and the risk of resurgence. Using this 

approach, the estimated mean 
� between 2011 and 2016 was 0.171 (95% CI = 0.165, 0.178) for P. 

vivax cases and 0.089 (95% CI = 0.076,  0.103) for P. falciparum cases. From 2014 onwards, no cases 

were estimated to have an 
� value above one. An unobserved source of infection was estimated to 

be moderately likely (p>0.5) for 19/ 611 cases and high (p>0.8) for 2 cases, suggesting very high levels 

of case ascertainment. These estimates suggest that, if current intervention efforts are maintained, 

Yunnan is unlikely to experience sustained local transmission up to 2020. However, even with a 

mean 
� of 0.005 projected up to 2020,  locally-acquired cases are possible due to high levels of 

importation. Testing the algorithm used in this chapter with simulated line-list datasets with varying 

levels of random missingness suggested the model can accurately return the mean 
� ( +/- 0.05 when 

the probability of a case being observed is one, and +/- 0.15 when the probability of a case being 

observed is 0.3 ), and that setting a correct prior on the epsilon edge can return improved estimates 

of 
�.  

In Chapter 5 I introduced a framework to incorporate additional distance metrics into the inference 

framework used in Chapter 4 and tested this algorithm on four line-list datasets, considering twelve 

scenarios and two spatial kernels  describing the relationship between Euclidian distance between 

residences and likelihood of transmission occurring, as well as a detailed sensitivity analysis.   

The contexts and datasets to which these methods were applied are very different ecologically, 

economically, demographically and culturally, yet both malaria control and elimination programmes 

provide useful success stories and pathways for other countries to learn from. My results are promising 

for both countries that are close to elimination certification – and indeed both El Salvador and China 
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have reported zero locally acquired cases in 2018 ( WHO, 2019b). However, the role of importation 

is important and it is interesting to note that in both contexts the highest estimate of 
� coincided 

with the highest periods of human movement. In the case of Yunnan province, recent studies of the 

dynamics of childhood diseases in South Western China found similar patterns, with highest 

transmission occurring during the time of the Spring Festival and in October, following the National 

Day holiday period (Saki Takahashi, personal correspondence).  These are the only two periods with 

national week-long holidays in China. During the 40 day Chunyun period in China around the Spring 

Festival, there are over 3.6 billion passenger journeys estimated to occur (Wang et al., 2014), and this 

period is described as the largest annual human migration in the world4.  In October, the national day 

is also a holiday period associated with travel to visit family, and there are not obvious environmental 

reasons why this bimodal peak would be seen, although the rainy season and time of highest 

environmental suitability is May-October (Bi et al., 2013) 

The approaches develop in this thesis and the results of their application are relevant to elimination 

planning and certification in several ways.  

Reproduction numbers directly relate to elimination in both a simple binary way, in terms of being 

above or below one, which is important for clear information for stratification and decision making, 

however by estimating individual reproduction numbers we also can identify the amount of individual 

variation, or variation over time and space, as well as looking at how close to zero estimates are, as an 

estimate of how quickly a disease will die out. Reproduction numbers have been useful metrics in a 

wide variety of outbreak scenarios to reveal characteristics of transmission, such as the amount of 

within community and within hospital transmission of Ebola (Faye et al., 2015), changes in 

transmission intensity over time (Cori et al., 2013) and assessing  (Boëlle et al., 2011), and in near-

 
4 https://edition.cnn.com/travel/article/lunar-new-year-travel-rush-2019/index.html 
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elimination and elimination settings also reveal changes in transmission over space and time for 

malaria.  

It is important to consider what these analyses reveal that is different from merely looking at incidence 

timeseries. In both El Salvador and China, the periods of year which had highest 
�  estimates did not 

coincide with times of highest incidence, but instead periods of increased human movement. This 

could be explained by an increase in imported cases (classified correctly or incorrectly), leading to 

short stuttering chains of ongoing transmission. In addition, being able to map risks of 
� exceeding 

zero or one provide a clear stratification of risk, and can highlight areas where there may not be cases 

observed but where there may still be risk of resurgence of cases if importation were to occur.  

The results of this thesis demonstrate how a network-based approach can provide additional insights 

into transmission in near elimination settings, identifying when 
� falls below 1, as well as estimating 

trajectories towards elimination. By incorporating these estimates into geostatistical models, this work 

also quantified where there was high and low uncertainty about there being minimal risk of ongoing 

transmission or resurgence, and how this has varied over time.  

In addition, whilst there is a great deal of uncertainty associated with the forward projections for 

timelines to elimination, providing countries with these trajectories to elimination,  and associated 

uncertainties, such as those produced during this thesis, can provide evidence to sustain current 

interventions and also highlight risks of resurgence.   

Together, these provide helpful insights for elimination programmes, and the methods introduced in 

this thesis have attracted the attention of several national malaria elimination programmes who were 

interested in applying the approach to their data.  
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There are several important policy implications and considerations when implementing  the findings 

described in this thesis.  The current WHO definitions of elimination, namely of three consecutive 

years of zero locally acquired cases, is very difficult to achieve in countries where there are large 

amounts of importation. Although technically cases which are the result of infection by an imported 

case ( introduced cases) are not classified as locally acquired by WHO definitions, in practice it is very 

difficult to classify cases as introduced. Approaches such as those introduced in this thesis could be 

used to identify the likelihood of cases being introduced cases rather than truly locally acquired cases, 

however this would require the imported case to have been observed.  Furthermore,  a country 

observing many importation events actually provides much stronger evidence that a country has 

achieved elimination and a low underlying receptivity to malaria if there are no or few resulting local 

cases than a country which has not experienced importation. Therefore, I would argue that the WHO 

should also factor importation into decision making when assessing the strength of evidence of 

elimination being achieved. The impact of importation also should be considered in relation to 

regional elimination. Certainly regional, international collaboration within both the Greater Mekong 

Subregion and the EMMIE initiative in Mesoamerica and Hispanola are thought to be key to ensuring 

the maintenance of very low cases of malaria in both El Salvador and China. The level of importation 

seen, particularly in China is high enough to render cross border collaboration essential.  

There are both opportunities and limitations which must be considered when applying the approaches 

taken in this thesis to other contexts. As we have seen, when both spatial relationships and the 

prevalence of unobserved sources of infections are unknown, inferred reproduction numbers and 

their spatial distribution can vary depending on prior assumptions about their values. This approach 

would be suited to similar contexts with  small numbers of cases and surveillance systems, such as the 

Cabo Verde islands, where there has been interest in using these approaches to analyse line lists of 

malaria outbreaks on the island (Dr Kimberley Linblade, personal communications)  



206 
 

Due to the uncertainty and assumptions made in this work, I do not advocate using these results to 

determine when and where to scale back interventions or surveillance. This is particularly notable with 

the forward forecasting and the risk maps produced in chapters 3 and 4.  It is important to 

communicate this uncertainty clearly if this work were to be used in decision-making. For example, 

the standard deviation and lack of observations made in the maps of El Salvador mean there are large 

areas of the map where there is so much uncertainty that the mean values cannot be used for decision 

making, and the focus should be on the area bordering Guatemala, where there have been more 

observations and more certainty in estimates. However, one major policy implication of this research  

surrounds when and where to introduce enhanced surveillance. This work has identified times of year 

and localities where there is likely to be some risk of transmission with little uncertainty in these 

estimates.  Where there is greater uncertainty in estimates due to a lack of data, active case detection 

or cross sectional surveys may be helpful to reduce this uncertainty. 

6.3 Limitations 

There are several limitations to the approaches taken here and to the datasets which these approaches 

were applied to. The frameworks developed in this thesis are designed to be general, flexible and 

adaptable to a variety of data types and elimination contexts. As a result, in order to adapt them to 

specific problems and datasets many assumptions are made about malaria in these contexts. In some 

cases, the ability to make recommendations based on the results presented here are limited by 

uncertainties in key parameter values.  This is particularly true because this work has focussed on 

retrospective studies of historical surveillance data, and therefore it is not possible to collect additional 

data about the cases, for example through taking travel surveys of cases or collecting molecular data. 

However, given this is often the most widely available data collected by Ministries of Health or 

National Malaria Control Programmes, it is important to make the most of these data, show the impact 

of varying assumptions and illustrate what one might expect under different scenarios.  
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In all versions of the algorithm presented in this thesis, the minimum incubation period has been quite 

conservative, set at 15 days, to avoid erroneously excluding cases. In reality, the combined intrinsic 

and extrinsic incubation period is likely to be longer than 15 days (Boyd and Kitchen, 1937; Kitchen 

and Boyd, 1937; Nishiura et al., 2007). Also, the assumption of the majority of cases being 

symptomatic, treated cases and therefore having a relatively less variable serial interval strongly impacts 

assumptions and the ability to infer connectivity between cases, as untreated malaria has  a much wider 

range of potential serial interval lengths (Huber et al., 2016) . 

There also is uncertainty in the reporting rate. Both El Salvador and China have invested in strong 

surveillance in rural areas, and carry out both active and passive surveillance, and so I make the 

assumption in this thesis that the reporting rate is high. In addition, the results of the simulations 

carried out in Chapter 2 of the thesis suggest that the model is relatively robust to missing cases in 

terms of the 
� estimates, and that epsilon edges, if given an accurate informative prior, can account 

for this missingness. However, it is important to note that the simulations carried out in this thesis 

assumes missingness is proportional and unbiased. I also make the related assumption that overall 

case detection is high/unbiased in missingness. In reality, there are key groups who may be less likely 

to be detected yet more likely to contribute to onward infection in some contexts e.g. itinerant workers 

who spend some time in forests.  

There is also uncertainty in asymptomatic infection prevalence, sub-microscopic infection prevalence 

and contribution of both to ongoing transmission. Meta-analyses and reviews (Okell et al., 2012; Teun 

Bousema et al., 2014; Tadesse et al., 2018)  can provide an indication of likely levels given the incidence 

and prevalence,  but given the evidence in these works that asymptomatic and/or sub-microscopic 

infection prevalence and its contribution to ongoing transmission is highly varied, it is difficult to 

estimate whether asymptomatic reservoirs are contributing to ongoing transmission. In the contexts 
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explored in this thesis, i.e. elimination settings, the numbers of cases are very small and sparse 

temporally, and incidence/prevalence has been maintained at a very low level over long periods of 

time. As a result, we assume that asymptomatic infections are unlikely to have a strong contribution 

to ongoing transmission, and any rare asymptomatic sources can be captured by �-edges. However, in 

low transmission settings which have recently seen rapid declines in malaria incidence, or where there 

is a much higher incidence of cases, quantifying the asymptomatic reservoir will be important.  

There is also uncertainty in the accuracy of imported/local classification. Whilst this classification has 

been carried out on the basis of epidemiological investigation and taking travel history, there may be 

inaccuracies in travel history, or in the case of P. vivax, an underlying infection which was acquired 

months prior.  Others have found that when attempting to reconstruct transmission networks based 

on simulated surveillance data, assuming the travel history is correct produces better results than 

ignoring it or allowing it to be incorrect if no other information is available (Alex Perkins, personal 

correspondence). 

There are aspects of Plasmodium vivax life history and epidemiology which I have made simplifying 

assumptions about in the analyses described in this thesis. The models do not explicitly model 

reinfection and relapse. This is likely to be a reasonable assumption in the contexts considered for this 

thesis, due to the lack of evidence for relapse in the electronic record, and through the policy of 

treating P. vivax cases with radical cure. As discussed in more depth in Chapter 4,  relapse cases 

incorrectly identified as new cases would  bias the results to estimate higher reproduction numbers 

than the true values, and therefore if this was the case would actually provide stronger evidence of low 

transmission levels achieved in both El Salvador and China.  However, there are other aspects of P. 

vivax epidemiology which could have shaped model results and should be discussed. For example, 

with P. vivax there can be  infectiousness before symptoms in first and subsequent relapse or balanced 
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by declining parasitaemia with relapse (and the presence of individual infection registers for known 

vivax patients).     

Finally, this analysis does not differentiate between data collected actively and passively, although 

reactive and targeted active case detection is used in surveillance in all the contexts presented in this 

thesis. Due to the non-random nature of reactive and targeted active case detection, data may be 

biased towards observing cases occurring in areas already identified as foci or higher risk, or close in 

time and space to other cases. Whilst this makes sense operationally, it means the datasets analysed 

may not be an unbiased sample of cases. 

 

6.4 Future Directions 

As discussed in Chapter 5, there is potential to incorporate more sophisticated models of human 

movement, such as gravity or radiation models, as well as accessibility matrices or friction surfaces. 

These methods are limited by the quality of the data available to parameterise population estimates 

using tools such as WorldPop (Tatem, 2017) , friction surfaces or population movement models, but 

provide approximate estimates which may help weight or exclude probable or unlikely locations of 

transmission pairs. In addition, simulations to test the assumptions and accuracy of the algorithms 

could be expanded to include space, to use a Rayleigh probability distribution for direct comparison.  

This would provide important and useful information to help tease apart some of the identifiability 

issues identified in Chapter 5, as well as demonstrate the impact of different patterns of 

movement/parasite dispersal on observed incidence. Combined with simulations of different forms 

of missing case data, these simulations would provide a clearer understanding of the applicability of 

the approaches introduced here to different epidemiological contexts.  



210 
 

In the contexts explored here, genetic and serological data were not available, however there is 

increasing evidence of their utility. Parasite genetic data have been found to provide useful information 

about latent processes such as past and current malaria transmission intensity (Nkhoma et al., 2013; 

Wesolowski, et al., 2018; Dalmat et al., 2019) and the movement of parasites between populations 

(Chang et al., 2019; Dalmat et al., 2019; Tessema et al., 2019). In near-elimination settings, genetic 

information may be most useful in identifying imported cases, however this is dependent upon the 

location of importation and the availability of reference genomes from importation population. 

With current sequencing technologies it is now feasible to collect genetic data as part of routine 

surveillance systems. However, methods to relate the signal in genetic data to epidemiologically 

relevant metrics are lacking. Key questions remain as to what types of genetic data are the most useful 

to collect, which sampling frameworks are optimal to use and how to meaningfully integrate genetic 

data with other data streams, such as traditional surveillance, to infer parameters of interest. 

As more countries reach the elimination stage for malaria and improve their surveillance, detection 

and response to malaria infection there is increasing applicability and utility of using methods such as 

this. In Chapter 5 we see the impact of uncertainty in both unobserved sources of infection and the 

distance kernel on performance of the methods. Based on these results, the sorts of contexts where 

this approach is suitable would be in contexts where there is good information about the travel 

patterns of people and/or where the amount of missingness can be quantified, however this could be 

better understood through more sophisticated simulations and investigations into the added benefit 

of incorporating additional sources of information.  

In addition, in order for the approaches developed in this thesis to be utilised by control programmes, 

they would need to be packaged into an operationally useful tool. This would require collaboration 
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and consultation with both control programmes and initiatives but would greatly improve the utility 

of approach.  

However, there is a limit to what can be inferred from existing data. Further studies to better 

characterise asymptomatic reservoirs and their contributions to ongoing infection (Tadesse et al., 

2018), reporting rates, and patterns and incidence of relapse in P. vivax endemic areas (White et al., 

2016) are required and will help parameterise these models. The different causes and prevalence of 

unobserved infections can indicate how well a current surveillance system is capturing the true 

dynamics of infection, as well as which interventions may be required to achieve progress towards 

elimination. From an intervention standpoint, different interventions may be suited to different 

sources of unobserved infection. For example, if asymptomatic reservoirs are known to be a major 

driver of residual malaria transmission, then they can be targeted through active case detection 

programmes, or through mass drug administration. However, if the contribution of asymptomatic 

reservoirs is negligible, then interventions focused on detecting and treating symptomatic individuals 

(as well as vector control) can be prioritised. In addition, diverse approaches and data collection at 

different scales are required to understand travel patterns relevant to malaria transmission, from 

mechanistic modelling and large-scale data analysis e.g. of mobile phone data, to focused, on the 

ground studies. 

More broadly, the case studies of China and El Salvador, countries reaching elimination, highlight the 

importance of regional and cross-border collaboration and initiatives. The importance of importation 

and cross-border movement in both contexts also highlights the utility of investing in reducing burden 

in neighbouring countries, thereby reducing the amount of importation into eliminating countries. 

Indeed, as China looks highly likely to reach three consecutive years of zero cases by 2020, there has 

been encouragement from the international community for China to make financial aid commitments 
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to malaria control efforts elsewhere. Although this has been framed as being in celebration of China’s 

achievements, investment in malaria control in high transmission countries could also be beneficial in 

reducing the likelihood of resurgence via importation.  

 

6.5 Conclusions 

Although malaria is still responsible for a great deal of death and illness in many parts of the world, 

many national control programmes have made great strides in controlling malaria and now are able to 

aim for elimination. However, in order to monitor progress towards elimination and plan 

interventions, it is crucial to measure malaria transmission and how it varies over space and time. In 

this thesis, I introduced an approach to flexibly incorporate line-list data to quantify reproduction 

numbers and how they varied over space and time, applying two individual level datasets from 

elimination countries. The results highlight the successes achieved by both China and El Salvador – 

the only two E-2020 countries to have zero locally acquired cases in 2018 which have not yet been 

certified as eliminated. This work shows the importance of considering not only environmental factors 

for seasonal patterns in malaria transmission, but the potential for human culture and movement 

patterns to also play a role in transmission dynamics in elimination settings. These tools could be of 

use to other national malaria control programmes to assess trajectories towards elimination based on 

recent historical line-list data.  
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Appendix 

Appendix 1:  Sensitivity Analysis for Chapter 3  

I explored the sensitivity of my approach by varying the threshold likelihood for linking cases, }, and 

the threshold gain in marginal likelihood used to define the number of edges to create, K. We consider 

several scenarios, illustrated in Figure A1: 

Scenario 1: epsilon = 0.01 and tolerance for edges = 0.003 

Scenario 2:  epsilon = 0.003 and tolerance for edges = 0.003 

Scenario 3: epsilon = 0.007 and tolerance for edges = 0.003 

Scenario 4:  epsilon = 0.007 and tolerance for edges = 0.005 

Scenario 5: epsilon= 1e-10, tolerance for edges = 1e-10 
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Figure A1 : Each row, numbered 1-5, shows model results for the correspondingly numbered scenarios : Scenario 1: 
epsilon = 0.01 and tolerance for edges = 0.003, Scenario 2:  epsilon = 0.003 and tolerance for edges = 0.003, Scenario 
3: epsilon = 0.007 and tolerance for edges = 0.003, Scenario 4:  epsilon = 0.007 and tolerance for edges = 0.005, 
Scenario 5: epsilon= 1e-10, tolerance for edges = 1e-10. Each column shows a different model output A) The marginal 

gain in tree likelihood from adding edges, B, the estimated Rc by month. C) 
�  over time D) A matrix, E) Maps 
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Appendix 2:  Associated publication, Chapter 1 
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Appendix 3:  Associated publication, Chapter 3 
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Appendix 4:  Associated papers, Chapter 4 
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