
Imperial College London

PhD Thesis

A phylogenetic method to perform

genome-wide association studies

in microbes

Caitlin Collins

PhD Candidate

Department of Infectious Disease Epidemiology

Faculty of Medicine, Imperial College London

St. Mary’s Campus, Norfolk Place, London, W2 1PG

caitlin.collins12@imperial.ac.uk

supervised by

Dr. Xavier Didelot & Prof. Christophe Fraser

assessed by

Prof. Matthew Fisher & Prof. Sam Sheppard

June 14, 2019



Declaration of Originality

I declare that the work presented in this thesis is my own. All other work is appropriately

referenced in the text, and any contributions made by other parties are acknowledged in

a statement at the beginning of each chapter.

i



Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free

to copy, distribute or transmit the thesis on the condition that they attribute it, that

they do not use it for commercial purposes and that they do not alter, transform or

build upon it. For any reuse or redistribution, researchers must make clear to others the

licence terms of this work.

ii



Acknowledgements

First and foremost, I would like to thank my supervisor, Xavier Didelot, for all of the

time, effort, and care that he devoted to me throughout the course of my PhD. I owe

him an great debt of gratitude for providing years of lively discussion and valuable

instruction, for challenging and encouraging me, and for offering his endless patience

and steady guidance at every stage of this project. I would like to extend my sincere

thanks to Christophe Fraser, as well, for allowing me to pursue my doctoral research

under his supervision. This project would not have been possible without his generous

support. Nor could I have undertaken this work without the support of The Wellcome

Trust and the Biotechnology and Biological Sciences Research Council, and I would like

to thank them for their generosity in funding this work. I am very thankful for the input

and insights of Daniel Wilson and David Aanensen, who were kind enough to serve as

my assessors during the development of this work. I benefited greatly from our many

thoughtful discussions. I also want to express my gratitude to the assessors of this thesis.

Thank you, in advance, for volunteering your valuable time to review my work.

On a personal level, I am extraordinarily grateful to Nick Grassly, for the support and

understanding that he has shown me. I have been overwhelmed by his generosity, and I

could not have completed this work without his consideration. I feel incredibly fortunate

to have been able to complete my PhD at Imperial College. It has been a pleasure to work

in the Department of Infectious Disease Epidemiology, surrounded by the intellectual

creativity and individual character of the students, staff, and faculty in our research

community. I am immensely grateful to my colleagues, for their inspiration, collaboration,

and friendship during my time in the DIDE department. In particular, I would like to

thank my dearest neighbours, Daniel Laydon and Ben Lambert, for providing me with a

home away from home. I also want to say thank you to Alice Ledda, my chocolate fairy,

for your visits to my desk and for our chats in the kitchen. And, a special thanks to

Thibaut Jombart for introducing me to population genetics and R programming in the

first place, and for your moral support, alcohol consumption, and friendship ever since.

Above all else, my deepest thanks must go to my family. First, to Maher, I thank you

for the boundless love and care that you have shown me, despite enduring the entirety

of this process, with its ups and downs, late nights and busy weekends. Thanks are far

too small for what I owe you in return, but I submit my thanks in any case, and my

love. With all my heart. To Alex, my big brother, I will always be grateful for your

hugs, chats, and inspiration. Thank you for coming to visit me, without hesitation, and

for rescuing me with a sailing vacation. Finally, I reserve my deepest gratitude for my

parents. My loving, caring, working in lab all weekend mom and dad. It is only thanks

to your endless love and unwavering support that I have made it to where I am today. I

dedicate this work to you.

iii



Abstract

Genome-Wide Association Studies (GWAS) are designed to perform an unbiased search

of genetic sequence data with the intent of identifying statistically significant associations

with a phenotype or trait of interest. The application of GWAS methods to microbial

organisms promises to improve the way we understand, manage, and treat infectious

diseases. Yet, while microbial pathogens continue to undermine human health, wealth,

and longevity, microbial GWAS methods remain unable to fully capitalise on the growing

wealth of bacterial and viral genetic sequence data. Clonal population structure and

homologous recombination in microbial organisms make it difficult for existing GWAS

methods to achieve both the precision needed to reject false positive findings and the

statistical power required to detect genuine associations between microbial genotypic

and phenotypic variants. In this thesis, we investigate potential solutions to the most

substantial methodological challenges in microbial GWAS, and we introduce a new

phylogenetic GWAS approach that has been specifically designed for use in bacterial

samples. In presenting our approach, we describe the features that render it robust to the

confounding effects of both population structure and recombination, while maintaining

high statistical power to detect associations. Our approach is applicable to organisms

ranging from purely clonal to frequently recombining, to sequence data from both the

core and accessory genome, and to binary, categorical, and continuous phenotypes. We

also describe the efforts taken to make our method efficient, scalable, and accessible in its

implementation within the open-source R package we have created, called treeWAS. Next,

we apply our GWAS method to simulated datasets. We develop multiple frameworks

for simulating genotypic and phenotypic data with control over relevant parameters.

We then present the results of our simulation study, and we use thorough performance

testing to demonstrate the power and specificity of our approach, as compared to the

performance of alternative cluster-based and dimension-reduction methods. Our approach

is then applied to three empirical datasets, from Neisseria gonorrhoeae and Neisseria

meningitidis, where we identify core SNPs associated with binary drug resistance and

continuous antibiotic minimum inhibitory concentration phenotypes, as well as both core

SNP and accessory genome associations with invasive and commensal phenotypes. These

applications illustrate the versatility and potential of our method, demonstrating in each

case that our approach is capable of confirming known resistance- or virulence-associated

loci and discovering novel associations. Our thesis concludes with a review of the previous

chapters and an evaluation of the strengths and limitations displayed by the current

implementation of our phylogenetic approach to association testing. We discuss key areas

for further development, and we propose potential solutions to advance the development

of microbial GWAS in future work.
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Chapter 1

Introduction

Acknowledgements A version of some of the content in this chapter also appeared in

Collins and Didelot [1]. Caitlin Collins reviewed the literature and produced the report.

Xavier Didelot revised the report, and his feedback is reflected in the chapter below.

1.1 Microbes

No environment inhabited by man is free from cohabitation with microorganisms. Mi-

crobes from all three domains of life participate in complex mutualistic, commensal, and

parasitic relationships with humans, animals, plants, and with each other. Bacteria,

a diverse group of prokaryotic unicellular organisms, may aid in host metabolism [2],

cause disease [3], or colonise hosts without any effect [4]. Archaea, which are similar to

bacteria in morphology but genetically and metabolically distinct, have been observed

in mutualistic and commensal relationships primarily with bacteria and protozoa [5].

Eukaryotic protozoa, like the malarial agent Plasmodium falciparum, can cause disease

in both humans [6] and animals [7], but play an important role in decomposition [8].

Eukaryotic fungi are likewise known for their symbiotic role in plant growth [9], but may

parasitise both plants [10] and animals [11].

The micro- and macro-organisms mentioned above can also be infected by viruses, which

are made up of genetic material surrounded by a protein capsid and lipid envelope,

but rely on the cellular machinery of host organisms for replication. While viruses are

relatively simple, they are also common and diverse. Viruses ranging from the Flu virus

Haemophilus influenza to the AIDS-causing HIV virus can infect human hosts. The viral
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bacteriophages that infect bacteria and archaea, meanwhile, may be the most abundant

biological entity on earth [12]. Viral infection can result in asymptomatic carriage,

disease, or the death of the host [13]. Although, mutualistic relationships do occur

between viruses and host organisms or ecosystems [14, 15]. The infection of bacteria by

phages, for example, regulates bacterial population growth and provides critical benefits

to marine ecosystems [16] and human health [17]. Altogether, microbes form a complex

network that enters, improves, and ends the lives of macro-organisms every day.

1.2 Bacteria

Given the extent of microbial variation, we have chosen to focus this work primarily on

bacteria alone, although other microbes will receive some consideration in the pages to

come. Bacteria are microscopic unicellular organisms that are able to live and reproduce

independently, but form large communities that grow exponentially. The Earth is home

to approximately 5x1030 bacteria [18], found living everywhere from deep-sea vents [19]

to the human gut [20]. In fact, there are more bacterial cells in the human body than

there are human cells [21]. Our relationship to these microorganisms is both adversarial

and interdependent.

Bacteria are an essential part of our ecosystem and economy. They enrich the soil with

nutrients by degrading waste and enable plant growth by mediating nitrogen fixation [22].

We rely on the metabolic and acidifying enzymes that bacteria provide to facilitate

domestic animal growth and dairy production [23]. We may even engineer an end to

climate change by recruiting Clostridium thermocellum bacteria to generate renewable

energy from plant sources [24]. Meanwhile, however, long-dormant bacterial pathogens

are emerging from the melting permafrost and beginning to infect humans [25]. There are

2,000 species of bacteria that commonly colonise human hosts, though 99.5% of these are

either harmless commensal bacteria or beneficial mutualistic species [3]. Gut bacteria play

valuable roles in metabolism. Lactobacillus reuteri, for example, aids in the conversion

of carbohydrates into polysaccharides, while Escherichia coli and Bifidobacteria strains

enable vitamin K and folate uptake [26, 27]. Among commensal bacteria, Streptococcus

pneumoniae and Staphylococcus aureus are relatively frequent asymptomatic colonisers

of the human nasopharynx. It is estimated that 14% of the human population carry S.

pneumoniae, while 20% of people are persistent carriers of nasopharyngeal S. aureus and

60% are transient carriers [28, 29].

Some bacteria are obligate pathogens. Bacillus anthracis, for example, requires a human

or animal host to complete its life cycle, causing typically fatal anthrax infections in
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host organisms [30]. But, commensal and even mutualistic bacteria, including S. aureus,

S. pneumoniae, and E. coli, can become pathogenic and cause disease in their hosts,

leading to significant morbidity and mortality. Acute respiratory infections, caused by S.

pneumoniae as well as a number of viral pathogens, kill 4 million people annually [31].

Mycobacterium tuberculosis alone leads to an additional 1.5 million annual deaths by

tuberculosis [32]. Diarrhoeal diseases, caused by etiological agents including Vibrio

cholerae, E. coli, Shigella, Campylobacter, Salmonella, and rotavirus, take the lives of 1.3

million people per year, striking the young in developing countries most severely [33].

Worldwide, one in four deaths is attributed to infectious diseases [34], and in the

developing world infectious pathogens remain a leading cause of infant mortality [35].

Existing interventions and medications stand to substantially reduce the burden of

infectious disease in low- and middle-income countries [36]. However, over-reliance

on antibiotics to combat poorly understood infectious disease etiologies has already

sparked an arms race between pharmaceutical development and pathogenic escape

mechanisms; and, unfortunately, it appears that resistance is not futile for many infectious

pathogens [37,38]. Already, once readily-curable infectious diseases like gonorrhoeae must

be frequently treated with “last-line” antibiotics [39]. In the United States, methicillin-

resistant S. aureus (MRSA) now claims more lives than HIV [40]. Recent predictions

suggest that by 2050, antibiotic-resistant infections could cost US$100 trillion, and take

10 million lives annually [41]. The ability to understand at a molecular level what gives

rise to the phenotypic differences between bacteria is, quite literally, a matter of life

and death. Certainly, the identification of genetic structures that separate commensal

bacteria from their pathogenic relatives or distinguish antibiotic-susceptible bacteria

from drug-resistant isolates is of substantial interest to public health.

1.3 Bacterial genetics

A better understanding of how genetic differences give rise to the phenotypic variation

displayed by bacteria would have extensive potential applications. In biotechnology,

linking genotype to phenotype may allow us to co-opt advantageous bacterial behaviours

like those of Alcanivorax borkumensis, the alkane-degrading bacteria now used to clean

up oil spills [42]. Genetic data analysis may also enhance our responsiveness to outbreaks,

inform us of their origin, and allow us to determine what genetic features give rise to

increased virulence [43, 44]. By capitalising on the genetic sequence data and meta-

data collected by disease surveillance programs, we may refine our ability to identify

subtypes of disease, determine what genetic features characterise epidemic clones, and
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aid in the development of drugs and vaccines that will be more effective over longer

periods [45–47]. Likewise, our capacity to prevent the development of drug resistance

or predict the emergence of zoonoses may be determined by our ability to interrogate

bacterial genomes [48–53]. As globalisation continues to increase the rate and scope

of human interaction, with each other, and with animals, the evidence suggests this

process will be accompanied by parallel change in the spread and evolution of infectious

pathogens [43,46,54,55]. Our ability to mine solutions to these problems from a growing

wealth of pathogen genome sequences must continue to evolve as well.

In bacteria, genetic information is usually found in a single circular chromosome, although

multiple chromosomes and linear chromosomes also occur. The genome size of bacteria

range from 112 kb in Nasuia-ALF [56] to 14 Mb in Sorangium cellulosum [57], and

can even vary within species like E. coli by over 1 Mb [58]. In contrast to eukaryotes,

the protein-coding proportion of bacterial genomes is quite consistent, with around one

gene per kilobase of DNA. Larger bacterial genomes reflect larger numbers of genes and

more complex regulation of gene expression, and correspond to the variability of the

environments to which a bacterium may be adapted [59].

Reproduction in bacteria occurs via binary fission. The single-cell organism duplicates

its chromosome or chromosomes and undergoes cell division, preserving the parent cell

and creating a new clone that contains one copy of each chromosome. If no errors occur

during this process, the genomes of the parent cell and its clonal daughter will be identical.

However, genetic replication is a relatively error-prone process, and spontaneous point

mutations may occur in each generation, causing one or more bases in the daugter genome

to differ from the ancestral copy. With short generation times, clonal reproduction in

bacteria can lead the number of cells in a population to expand rapidly, doubling every

20 minutes in E. coli [60] and every 40 minutes in Neisseria meningitidis [61]. As a

result of this imperfect replication and rapid reproduction, genetic and even phenotypic

variation can easily accumulate via point mutation [62].

1.3.1 Recombination

In addition to the vertical inheritance of genetic variation that arises during clonal repro-

duction, the horizontal transfer of genetic information through a process of recombination

can also generate genetic variation in bacteria. Three mechanisms enable the acquisi-

tion of exogenous genetic material by horizontal gene transfer (HGT) : transduction,

conjugation, and transformation.

Transduction by bacteriophages can introduce novel genes or gene sequences. Bac-
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teriophages are viruses that rely on bacteria for their reproduction. Infection by a

bacteriophage can be fatal for the host bacterium. But, when the bacterium survives,

bacteriophage infection can result in the uptake of foreign DNA, either that of the phage

itself or DNA from previous bacterial hosts that the phage has been able to infect [63].

Like humans, bacteria develop mechanisms to resist viral infection. Hence, transduction

only takes place between similarly phage-susceptible bacteria [64].

Conjugation between bacteria allows genetic material stored in plasmids to be transferred

from a donor to a recipient cell. Plasmids are independently-replicating circularised

DNA molecules that are distinct from the chromosomal DNA of a bacterium. Plasmids

often contain useful accessory genes (non-essential genes found in a subset of species

members [65]) that can confer selectable traits like antibiotic resistance, virulence, and

secondary metabolic enzyme production [66,67]. Sharing these genes via conjugation can

improve the survival of bacterial populations facing changing environmental pressures by

adding functional capacities not already found in chromosomal genes [68]. Conjugation

is initiated by the plasmid-containing donor cell and proceeds when the donor cell

physically joins itself to the recipient by means of a pilus. The plasmid is linearised and

a single strand of its DNA is transferred to the donor, whereupon both cells synthesise a

complementary strand, completing the process of duplication.

Transformation allows bacteria to take up exogenous DNA from the environment. Frag-

ments of genetic material enter the environment of bacteria upon the lysis of other

bacterial cells. In certain conditions, for example during a particular growth phase [69]

or under environmental stress [70, 71], many bacteria will express a set of proteins that

render them “competent” for transformation. Over 80 bacterial species have been found

to demonstrate such “competence” naturally, allowing them to internalise exogenous

genetic material [69].

Once foreign DNA has entered the bacterial cell via HGT, gene conversion—integration

of the novel genetic material into the host genome—completes the horizontal process

of exchange. If gene conversion occurs through non-homologous recombination, the

exogenous donor DNA fragment is simply inserted into the recipient genome. If gene

conversion is mediated by the more common homologous recombination mechanism, donor

DNA is integrated by replacing a segment of the recipient genome. The incorporation of

recombinant DNA via homologous recombination only occurs where the exogenous DNA

fragment and the existing genome sequence share a sufficient degree of homology or

base-pair similarity [72]. Hence, as the genetic distance between two genomes increases

and homology decreases, the probability of homologous recombination is curtailed, for

example, by the inducement of mismatch repair genes or the reduced efficiency of the
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RecA recombinase [73]. Recombination has been observed in most bacterial species,

occuring at a wide range of rates [74] and under different constraints. In some bacteria,

horizontal exchange is restricted to occur within lineages but, in others, recombination

may cross species boundaries [75]. In highly recombinant organisms, like S. pneumoniae,

recombination can drive as much as 90% of sequence diversification [76]. A ratio of

r/m = 7 was estimated in these sampled genomes, indicating that substitutions at

pneumococcal loci arose seven times more often by recombination (r) than by point

mutation (m). Even in the predominantly clonal M. tuberculosis, a ratio of r/m = 0.49

implies that mutation contributes only twice as much as recombination to the generation

of genetic variation [77]. At the same time, recombination events have been estimated to

occur five times less frequently than point mutations in M. tuberculosis, though multiple

loci are impacted per event. Indeed, the evolution of most bacteria is impacted to some

extent by recombination as well as mutation, although the relative contributions of these

horizontal and vertical forces vary between species.

Recombination plays an important role in the diversification of bacterial genomes. The

variable integration of recombinant DNA fragments expands the repertoire of SNPs and

generates variation within genes in the “core genome”, defined as the set of genes present

in all sampled genomes (99-100% of isolates) [78, 79]. Recombination also facilitates the

diversification and proliferation of genes in the “accessory genome”, which contains genes

absent from one or more isolates [80, 81]. As a driver of bacterial sequence variation,

recombination also has the capacity to endow bacteria with new phenotypic traits,

enabling especially rapid adaptation in response to selection [82,83]. Efforts to identify

the genetic basis of bacterial phenotypes will, therefore, be more effective and more

powerful if they can incorporate and account for the effects of recombination.

1.4 Linking genotype to phenotype

The reasons why bacteria differ in their traits and behaviours are often encoded in their

genomes. Additional factors—host genetics, the environment, and related interactions—

can also contribute to phenotypic variation, complicating the relationship between

bacterial genotype and phenotype. Yet, so long as a microbial phenotype displays

heritability, in that a proportion of its variation can be attributed to microbial genetic

factors, genetic analyses can be used to better understand that trait. There are two

major classes of approach adopted to identify the genetic basis of phenotypic variation. In

molecular genetic or “reverse genetics” approaches, the genetic sequence is modified and

the resulting change in phenotype is assessed. Whereas, in “forward genetics”, genomes
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are examined or compared as a means of identifying the genetic basis of phenotypes

observed in a sample.

1.4.1 Reverse genetics

Reverse genetics techniques have been widely used in the study of bacteria [84]. These

include knockout and reversion experiments, in which the phenotypic state of a bacterium

is observed when a gene is inactivated and reactivated. Gene inactivation or alteration can

be accomplished by multiple means. Random mutagenesis can be induced by transposons

and, if followed by selection, can enable the inactivation or incorporation of a particular

gene [85,86]. Alternatively, for bacteria like Chlamydia trachomatis that not amenable

to this form of molecular genetic intervention in the laboratory, chemical mutagens

can be used to create inactive or mutant genes across the genome [87]. However, the

widespread and random generation of mutations by either approach may not be the most

efficient means of inactivating a particular gene. When the gene sequence of interest

is known, recombinant sequences can be specifically designed to remove or replace the

target sequence upon incorporation into the recipient genome. For example, so-called

suicide plasmids can be engineered to induce gene deletion via excision of the target gene

or to achieve site-directed mutagenesis by replacing the wild-type gene with a mutant

copy [88, 89]. Such approaches, however, are only possible in competent bacteria that

are capable of undergoing recombination in the laboratory.

Of course, a prerequisite for any reverse genetics technique is the suitability of bacteria

for life in the laboratory. Yet, it is estimated that only half of the major bacterial

lineages have species that can be grown in the laboratory [90]. Complex polygenic traits

involving epistasis between many genes will not be amenable to such approaches. In

addition, many bacterial phenotypes are ill-suited to re-creation in lab settings, where

environmental and host factors may be irreproducible [91]. Invasive disease can be

modelled in animals, for example, but the immune response and disease susceptibility

of mice and men may give rise to vastly different bacterial behaviours [92, 93]. For

phenotypes like host association, laboratory-based reverse genetics approaches alone are

unlikely to ever identify a genetic basis. Ultimately, when one considers the amount of

time and money that would be required to thoroughly investigate via reverse genetics

the phenotypic effects of all bacterial genes, let alone all polymorphic loci, one may be

thankful that an alternative approach exists.
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1.4.2 Forward genetics

Forward genetics provides another way to examine the relationship between bacterial

genotype and phenotype. If naturally-occurring or randomly-generated phenotypic varia-

tion exists in a bacterial sample, forward genetics approaches can be used to identify

trait-associated variation. If genetic sequences are available for a sample containing more

than one phenotypic state, these sequences can be compared and genetic differences

identified. Since the sequencing of the first complete bacterial genome in 1995, techno-

logical improvements have enabled rapid increases in sequencing speed and decreases

in sequencing cost. As a result, the number of bacterial whole-genome sequences has

exponentially increased over the past three decades [94]. Forward genetic analyses have

likewise progressed over time, from structural and functional dissections of a single se-

quence, to comparative analyses of two or more sequences, to more systematic approaches

for comparing large whole-genome samples. Today, over 100,000 bacterial genomes have

been published [95]. Hence, sequence-based forward genetics approaches have gained

prominence as a means of uncovering the genetic basis of phenotypic traits [91].

Comparative genomic approaches have been used to search for evidence of associations

between genotype and phenotype in bacteria. The observation of co-occurring changes in

genotype and phenotype is widely accepted as an indicator of allele-trait association. The

strength of this evidence is increased if changes occur multiple times over the evolutionary

history of the sample, which may contain closely-related isolates [96], isolates observed

and sequenced over time [97], or clades of evolutionarily-related isolates [98] Large-scale

statistical analyses enable even more rigorous examinations of the relationships between

genotype and phenotype.

1.5 Genome-wide association studies

Genome-wide association studies (GWASs) have become a popular and reliable way to

make inferences about the genetic basis of phenotypic variation. GWAS methods quantify

the degree of statistical dependence, or “association”, observed between a phenotype

of interest and the genotype at every locus in a genomic dataset. Where genotypic

differences at particular loci correlate systematically to differences in the phenotype,

to a greater extent than might be expected by chance, these loci are deemed to be in

significant association with the phenotype. Unlike hypothesis-driven laboratory-based

analyses, these statistical approaches allow for an unbiased exploration of naturally-

occurring genotypic and phenotypic variation. Although laboratory confirmation is
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required to establish causality and to ensure that a functional relationship exists between

a particular allele and phenotypic state, GWAS methods provide a powerful tool for

the identification of candidate loci in statistical association with a phenotypic trait. By

adopting systematic genome-wide approaches and reducing the number of genetic loci

that must be investigated in the laboratory by several orders of magnitude, GWAS

studies can generate more comprehensive descriptions of the genetic basis of phenotypic

traits while rapidly increasing the pace of discovery.

1.5.1 From human GWAS to microbial GWAS

Since the publication of the first GWAS studies in the early 2000s [99–102], GWAS

have become a tool of choice in human genetics. Given the infeasibility of undertaking

representative studies of human phenotypic variation in a laboratory context, and the

health and safety restrictions preventing experimental reverse genetics in human subjects,

great investment has been made in the development of bioinformatic approaches for

examining existing human genotypic variation. As such, methodological approaches to

GWAS have been developed primarily for the purposes of undertaking association studies

in humans. To date, over 3,000 human GWAS studies have been published, leading to

the discovery of over 60,000 single nucleotide polymorphisms (SNPs) associated with a

wide array of phenotypes [103]. It has long been anticipated that by applying GWAS

methods to microbes, similar discoveries might be made [104].

1.5.2 Challenges

Dramatic differences between human beings and bacteria have prevented the direct

transference of GWAS methods from one organism to the other (see Table 1.1). Humans

reproduce sexually, with recombination occurring at predictable intervals, while bacteria

undergo asexual reproduction and exchange genetic material by recombination at different

rates in a less predictable fashion. Human populations contain few genetically-identical

individuals; whereas, in the absence of mutation or recombination, entire bacterial

populations would consist of identical clones. Single strands of human chromosomal

DNA closely resemble parental copies, but new diploid combinations of genes ensure

that genotypic and phenotypic variation can increase in every generation. Copies of each

chromosome are inherited during reproduction. Although linkage disequilibrium (LD)

may be maintained among neighbouring genetic markers, linkage decreases predictably

with physical distance along the chromosome, as chromosomal crossing over causes re-

combination to occur during reproduction. In bacteria, by contrast, asexual reproduction
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Trait Humans Bacteria

Genome size large (3,234 Mb) small (112 kb - 14 Mb)

Ploidy diploid haploid

Reproduction sexual clonal

Recombination generational variable

Genetic linkage distance-based not distance-based

Genomic variation core core and accessory

Population structure
moderate

GWAS confounder

variable, potentially strong

GWAS confounder

Laboratory testing unethical possible

Table 1.1. Comparison of human and bacterial traits.

allows LD to persist across the entire haploid chromosome. Unless recombination or

point mutation intervenes to introduce a substitution, clonal inheritance will preserve the

widespread correlations between genetic loci and between genotype and phenotype. The

statistical non-independence between sites that results from these bacterial characteristics

presents us with a considerable challenge. As popular human GWAS methods are not

equipped to deal with clonal inheritance or long-range LD, the implementation of new

and creative methodological solutions will be essential for the success of bacterial GWAS.

Population structure is defined by the presence of systematic differences in allele frequen-

cies between subpopulations in a sample. Population stratification, a related concept

relevant in association studies, occurs when these ancestral allele frequencies differ sys-

tematically between the “cases” and “controls” or phenotypic groups being analysed

via GWAS [105]. One may infer that the repeated observation of directional genotypic

and phenotypic variance indicates a statistical or causal relationship between the two

variables. If, instead, variance in both genotype and phenotype is correlated to ancestry,

confounding bias can arise from the non-independence of these observations [106]. Hence,

when comparing ancestral populations with different phenotypes, one may mistakenly
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infer that all genetic variables that distinguish these populations are associated with the

difference in phenotype when, in fact, there may be no such link.

It has been well established in human GWAS that, if unaccounted for, population

structure can have confounding effects on the inferences made in association studies [107].

Great care is taken within human GWAS study design to screen out close genetic relatives

and to match cases and controls by ethnicity, sex, and other possible confounding factors.

Human GWAS methodologists are also pursuing more effective approaches to check the

spurious associations arising from “cryptic relatedness”, that is, the unrecognised genetic

or familial relationships between sampled individuals that give rise to subtle population

structures below the level of recognised “ancestral” population clusters [108, 109]. In

general, however, human ancestral relationships are well described by broad, admixed

populations of variable size and genetic relatedness. Hence, human GWAS studies have

been successful thus far in addressing population stratification at the level of large

ethno-geographic clusters. Although this is a simplification of the true picture, the

assumption that population structure is homogenous within these clusters is much more

easily justified in human analyses than it would be in even semi-clonal bacteria. The

most popular approach to account for the confounding effects of population structure

in human GWAS uses the principal components analysis (PCA) dimension reduction

method [107, 110]. PCA identifies major axes of variation that best separate these

populations in multivariate space (see Section 2.2.6). Using PCA to correct for the

genetic differences separating major population groups has been shown to sufficiently

correct for the confounding effects of ancestry in human GWAS [107,111].

In contrast, the clonal nature of bacteria can dramatically increase the strength of

ancestral relationships. In fact, the magnitude of this potential problem was great

enough to delay the advent of microbial GWAS [91]. In bacteria, the preservation and

accumulation of ancestral differences increases the extent to which allele frequencies

differ systematically by ancestry. Moreover, clonal inheritance encourages the formation

of rigid, nested sub-population structures. The partitioning of bacterial sub-populations

may also be linked to environmental differences, reflecting separation by geography, host

organism, or host tissue type [79,112,113].

The problems posed by clonality are confounded by the observation that in association

studies, phenotypic “cases” are often more closely related than phenotypic “controls”.

This is especially true in microbial GWAS. In human GWAS, efforts are made to

distinguish “close relatives” from effectively “unrelated” individuals, and to exclude the

former during sampling. Conversely, in microbial GWAS, it is not feasible to exclude

genetic relatives from samples composed of clonally-related isolates. The propensity for
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close genetic relationships is often even higher among phenotypic “cases”, especially

if these are sampled from disease outbreaks or transmission chains [114]. In addition,

patterns of clonal inheritance like clonal expansion can allow a particular phenotypic

state to dominate an ancestral clade or sub-population [97, 115], increasing the spurious

association between the phenotype and ancestral genotype. Altogether, this combination

of clonal population structure, biased sampling, and the interrelatedness of phenotypic

“cases”, greatly increases the challenge of confounding population stratification in microbial

association studies. Unless the bacterial clonal genealogy is obscured by widespread

recombination, methods of accounting for population structure in human GWAS will not

reliably control for this confounding factor in bacterial association studies [97].

Unlike the predictable recombination that accompanies human sexual reproduction,

highly variable and unpredictable recombination in bacteria also poses a challenge for

association studies. Specifically, recombination can distort the reconstruction of ancestral

relationships and thus increase the difficulty of accounting for the confounding effects

of population structure [1]. In addition, the probability of chance association with the

phenotype can also be affected by recombination. In conclusion, GWAS methods that

effectively prevent the identification of spurious associations at one recombination rate

may fail at other levels of recombination. Recombination, therefore, poses multiple

challenges in bacteria which human GWAS methods have not addressed.

1.5.3 Opportunities

Although, bacteria present many methodological challenges for GWAS, a number of their

features encourage the undertaking of association studies. Bacterial genomes are several

orders of magnitude smaller than human genomes, and a larger proportion of bacterial

genomes is composed of protein-coding sites [97]. (1) Genome-wide association tests must

be applied to fewer loci in bacterial analyses. This alleviates much of the burden imposed

by the need to correct for multiple testing, meaning that higher discovery power can be

maintained in microbial GWAS. (2) The sample sizes required to detect associations

in microbes can be much smaller than the thousands of individuals required in human

GWAS [116]. In humans, lack of power to detect statistically significant associations

between phenotypes and genetic loci of lower effect size has caused the number of findings

made by GWAS to plateau over time, even as sample sizes have increased [91]. (3) It

is feasible to generate larger samples for bacterial analyses, as their smaller genomes

are more easily sequenced. With larger samples, bacterial GWAS may even be capable

of detecting associations with low-effect genetic loci. Indeed, for microbial phenotypes

arising from combinations of low-effect alleles, it has been suggested that GWAS may be
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the only way of elucidating their genetic basis [117].

Homologous recombination may also offer important benefits for bacterial GWAS studies.

Despite the challenges inherent in performing association studies on clonal isolates that

also undergo recombination, the horizontal exchange of genetic information can be

a powerful diversifying force in microbial samples. Recombination can lead to rapid

evolution in bacteria and may even generate significant phenotypic differences between

close relatives. Moreover, alongside point mutation, recombination provides a key

mechanism for the breakdown of extensive LD in bacterial genomes. Thus, while less

predictable than recombination in humans, bacterial recombination can present a critical

means by which signals of association may be disentangled from noisy clonal backgrounds.

Finally, the ability to ethically manipulate bacterial genomes in the laboratory allows

GWAS results to be easily confirmed or rejected. The value of GWAS studies in

bacteria can thus be increased by becoming one component of a pipeline leading to

the identification of statistical associations, as well as the establishment of causal links

between microbial genotype and phenotype. As microbial GWAS stands to substantially

increase the pace of discovery, it promises to contribute to more rapid improvements

in human and veterinary medicine, and the public health management of outbreaks

and antibiotic resistance. The inherent advantages presented by bacteria encourage the

undertaking of association studies in these organisms. Although a number of challenges

not found in human GWAS continue to complicate this endeavour, the anticipation of

promising results provides significant impetus for the development of new methods that

will enable the widespread application of bacterial GWAS.

1.6 Microbial GWAS

While the advent of microbial GWAS has been relatively recent—a decade after human

GWAS—promising results can already be seen [49, 80, 106,114,116,118–132] (see Table

1.2). In applying GWAS methods to bacteria and viruses, these studies have adopted a

variety of methodological approaches (see Table 1.3)to address the challenges outlined

above, namely population stratification, variable recombination, and the need to maintain

high statistical power while rejecting false positive associations.

The microbial GWAS studies published thus far have adopted a wide range of approaches

to correct for the confounding potential of population stratification. We group these

approaches into three main categories: (i) cluster-based approaches, (ii) multivariate

dimension reduction methods, and (iii) phylogenetic approaches.
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Reference Organism Phenotype Recomb.
Rate

Genetic
Variant

Sample
Size

Number
of loci

Number of
significant

loci

Chen and Shapiro [126] M. tuberculosis Resistance Low SNPs 123 24,711 0

Chewapreecha et al. [49] S. pneumoniae Resistance High SNPs 3,701 392,524 301

Laabei et al. [120] S. aureus Virulence High SNPs 90 3,060 121 &
4

Weinert et al. [124] S. suis Host association High
SNPs,
genes,
k-mers

191
178,979 SNPs,

7,675,
125,593 k-mers

0 &
0

Howell et al. [80] H. parasuis Clinical High SNPs,
genes 212 65,137 SNPs,

6,053 genes
12 SNPs,
48 genes

Power et al. [116] HIV Resistance High SNPs 343 5,100 8

Bartha et al. [119] HIV Viral load High SNPs 1,071 3,125 0

Salipante et al. [125] E. coli Resistance High

CDS
(unique
coding

sequences)

312 446,152 20

Lees et al. [129]
S. pneumoniae
& S. pyogenes

Resistance &
Invasiveness

High &
Low k-mers 3,069 &

675 68,000,000 30,157 (9 loci) &
2 loci

Lees et al. [132] S. pneumoniae
Carriage
duration

High
SNPs,
k-mers

2,157 92,487 SNPs,
5,254,876 k-mers

1 SNP, 320 k-mers
& 0 SNPs, ≥ 1 PCs

Earle et al. [128]

E. coli &
K. pneumoniae &
M. tuberculosis &

S. aureus

Resistance

High &
High &
Low &
Low

SNPs, k-mers
PCs

241 &
176 &
1,735 &
992

263,604 &
417,645 &
654,425 &
107,480

14 &
20 &
6 &

28 genes

Maury et al. [133] L. monocytogenes Virulence Low
Core genes,

gene
families

104 1,791 43

Alam et al. [122] S. aureus Resistance Low SNPs 75 55,977 1

Phelan et al. [134] M. tuberculosis Resistance Low SNPs 127 19,248 7 &
18

Coll et al. [135] M. tuberculosis Resistance Low SNPs 6,465 102,160 43 &
147

Farhat et al. [106]
M. tuberculosis
& C. jejuni

Resistance &
Host association Low

SNPs,
genes

123 (16) &
192 (16)

4.4 Mb &
1.6 Mb

7 &
107 genes

Brynildsrud et al. [127]
S. epidermis &
S. pneumoniae

Resistance High &
High

Core genes,
accessory
genes

21 &
3,085

2.2 Mb &
2.4 Mb

6 &
1

Hall et al. [121]
E. coli, Shigella

& E. coli
Virulence &

Host association
High &
High SNPs

68 &
116

418,500 &
470,806

97 &
101

Desjardins et al. [130] M. tuberculosis Resistance Low SNPs 498 11,704 12

Farhat et al. [114] M. tuberculosis Resistance Low SNPs 123 24,711 50

Nebenzahl-
Guimaraes et al. [131]

M. tuberculosis Transmissibility Low

SNPs,
genes,

intergenic
regions

100 &
143

4.4 Mb 5 &
4

Sheppard et al. [118] C. jejuni Host association High k-mers 192 1.5 Mb
7,307 k-mers
(7 genes)

Table 1.2. Microbial GWAS studies.
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Reference Correction for
Population Structure

Association Test Software

Chen and Shapiro [126] Epiclusters CMH X2 test PLINK [136]

Chewapreecha et al. [49] BAPS clusters CMH X2 test PLINK [136], R [137]

Laabei et al. [120]
Genomic Control &
hierarchical clusters

X2 test &
bespoke

PLINK [136]

Weinert et al. [124]
DAPC &

BAPS clusters
Logistic regression &

CMH X2 test
R [137], PLINK [136]

Howell et al. [80] DAPC
Generalised
linear model R [137]

Power et al. [116] PCA (5 PCs) Logistic regression PLINK [136]

Bartha et al. [119] PCA (2 PCs) Linear regression PLINK [136]

Salipante et al. [125] PCA (3 PCs) Logistic regression R [137]

Lees et al. [129] MDS (1 PC)
Logistic &

linear regression SEER [129]

Lees et al. [132]
Kinship matrix &
PCA (30 PCs)

LMM &
linear regression

FaST-LMM [138]
& SEER [129]

Earle et al. [128] PCA (sig. PCs) LMM GEMMA [139],
bugWAS [128]

Maury et al. [133] Distance matrix
Generalised
linear model R [137]

Alam et al. [122]
Distance matrix &
phylogenetic tree

Regression &
PhyC Fisher test

(Q)ROADTRIPS [140] &
−

Phelan et al. [134]
Kinship matrix &
phylogenetic tree

LMM &
PhyC Fisher test

EMMA [141] &
−

Coll et al. [135]
Kinship matrix

and PCA (5 PCs) &
phylogenetic tree

LMM &
PhyC Fisher test

GEMMA [139] &
−

Farhat et al. [106] Sampling strategy Bespoke −

Brynildsrud et al. [127] Pairwise comparisons Binomial test Scoary [127]

Hall et al. [121] Phylogenetic tree X2 test PPFS [121]

Desjardins et al. [130] Phylogenetic tree
Generalised least
squares regression BayesTraits [142]

Farhat et al. [114]
Phylogenetic tree

(consensus)
PhyC

(bespoke)
−

Nebenzahl-
Guimaraes et al. [131]

Phylogenetic tree
(Bayesian)

PhyC −

Sheppard et al. [118]
Phylogenetic tree

(ClonalFrame [143])
bespoke −

Table 1.3. Microbial GWAS methods.
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Cluster-based approaches like the Cochran-Mantel-Haenszel (CMH) Test [144] have

become a popular means of mitigating the confounding effects of population struc-

ture [49, 124, 126]. Segregating isolates into ancestrally-related groups via clustering

algorithms allows the association study to be stratified by population. Dimension re-

duction techniques, like PCA [110], have also been successfully applied to microbial

GWAS [80, 116, 145]. These approaches represent population structure in principal

components (PCs), major axes of variation that can be used to control for ancestry in

regression-based association tests. These alternative GWAS approaches are described in

detail in Chapter 2.

A number of phylogenetic approaches to population structure have also been explored.

Some microbial GWAS studies have sought to assess the probability of chance associations

due to population structure by rearranging the phenotype [49, 116, 127]. Pairwise

approaches have also been implemented to examine allele-trait associations among pairs

of related isolates of different phenotype [106, 127]. Regression-based approaches like

ROADTRIPS [146] can take a phylogenetic tree as an input and use this to account for

the effect of ancestral relationships on the association between genotype and phenotype.

The most promising phylogenetic approaches have attempted to retain all information

rather than extracting isolate pairs and to rearrange the genotype rather than the

phenotype [114, 147]. In the following chapter, we will review how these corrective

mechanisms are implemented and evaluate the effectiveness of each approach in addressing

population stratification. As we will see, despite the adoption of a wide range of strategies,

clonal relatedness and confounding population stratification remains a challenge for

microbial GWAS.

While the confounding effects of ancestry are typically addressed by at least one of

many diverse approaches in all microbial GWAS studies, methods adequately designed

to account for the confounding effects of recombination are almost entirely absent from

the microbial GWAS literature. GWAS analyses of microbes that undergo both low

and high levels of recombination, like M. tuberculosis and S. pneumoniae, have been

performed with clustering methods, dimension-reduction techniques, and pairwise or

phylogenetic approaches to account for population structure (see Table 1.2 and 1.3).

Sheppard et al. [118] use ClonalFrame [143] to account for recombination while inferring

clonal relationships. However, no other bacterial GWAS method takes deliberate steps

to account for the confounding effects of recombination, either during ancestry inference

or when attempting to delineate between spurious and genuine associations.

A stated aim of all microbial GWAS studies has been to maintain high statistical power

while rejecting the false positive associations that arise by chance and as a result of

confounding factors. Each correction for the influence of ancestry in microbial GWAS is

designed to reject false positive findings. However, greater stringency or less accuracy in

these approaches can result in diminished power to detect genuine associations.
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Several GWAS studies experiment with different methods of varying stringency, leaving

the reader with mixed sets of null results and significant results of variable size [120,

122,124]. In the absence of an overarching or unifying framework, this use of multiple

methods complicates interpretation and renders the accuracy of conflicting findings

unclear. The method of Earle et al. [128] takes deliberate steps to improve power by

recapturing lineage-level associations. Most microbial GWAS methods, however, do not

implement creative approaches to improve statistical power.

In summary, there are a number of challenges that have prevented the widespread,

successful application of GWAS methods to microbes. We will discuss these issues in

depth in the following chapter, and we will indicate how we plan to address them in

developing our own microbial GWAS method.

1.7 Thesis structure

InChapter 2, we provide a detailed review of the literature. We introduce the contending

approaches available to address methodological issues in microbial GWAS. We examine

solutions to the problems posed by confounding population structure, recombination, and

association testing. We highlight the strengths and limitations of existing approaches

and support the choices we have made in developing our method.

In Chapter 3, we introduce our phylogenetic method for performing microbial GWAS.

We present the theoretical foundations underlying our approach, and we describe each

component of our method in detail. We also present the methodology used within the

simulation study that we devised as a means of testing and assessing our GWAS method.

We describe the approaches used to simulate genetic and phenotypic data, and we present

the range of parameters explored.

In Chapter 4, we present the results of our simulation study. We use simulation testing

in the development and refinement of our method, for example, to identify an appropriate

significance threshold and to select the best method of ancestral state reconstruction. We

then assess the performance of our method under three different simulation schemes. We

compare the performance of our method to that of existing GWAS approaches, and we

examine how performance varies with changes in population stratification, recombination,

the effect size of association, and dataset size.

In Chapter 5, we reveal the results of our applications to empirical data. We search

for associations in N. meningitidis core SNPs and accessory gene presence or absence

matrices. We analyse both antibiotic resistance and invasive disease phenotypes.
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Chapter 2

Literature survey of bacterial

population genetics and

GWAS

Acknowledgements An abridged version of the review of ancestral reconstruction

methods presented in the chapter below appeared in Collins and Didelot [1]. Caitlin

Collins and Xavier Didelot identified relevant publications and worked together to

determine the structure of this review. Collins reviewed the literature and produced the

first draft of this book chapter. Didelot edited the text and provided helpful suggestions

that are reflected in the published book chapter and in the chapter below.

2.1 Introduction

Pioneering efforts have demonstrated that GWAS studies have immense potential to

inform our understanding of the molecular basis of microbial phenotypic traits [49,80,106,

114,116,118–132] (see Table 1.2). Yet, the undertaking of association studies in microbial

samples has been hindered by a number of methodological challenges. If GWAS methods

are to gain widespread and successful application in microbial samples, the following

barriers must be overcome. First, it is necessary to counteract the confounding bias

introduced by the ancestral relationships between isolates. If unaccounted for, population

stratification can be a major source of spurious associations and, thus, false positive

findings. Approaches to association testing in microbes must therefore take steps to
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reconstruct the population structure of the sample, to quantify its potential confounding

effect, and to separate likely false positive findings from genuine associations with

statistical support. Second, we must be able to account for the impact that recombination

may have on the analysis. To remain robust in spite of the variable introduction of

genetic variation via horizontal transfer between isolates, efforts must be made to

control for the distortion that recombination can introduce, both when reconstructing

ancestral relationships and when making inferences during association testing. Third,

it is imperative that we complement efforts to eliminate false positive findings with

strategies to maximise the statistical power to detect associations. Optimal power in

microbial GWAS may only be achieved through the implementation of appropriate

measures of association, efficient strategies for controlling confounders, and with effective

use of the available data. In this chapter, we consider the potential solutions to these

major challenges in microbial GWAS. We describe existing methods, including those

that have been transferred from human genetics, as well as more recent approaches

that have been designed for microbial samples. The strengths and limitations of each

approach are evaluated, and critical gaps in the available methodology are identified. We

conclude by presenting a path forward for the methodological development surrounding

each key issue, indicating which strategies we will explore or which solutions we propose

to implement in our own microbial GWAS method.

2.2 Controlling for population stratification

GWAS provides a systematic approach through which we can compare genomes and

identify genetic loci that vary in association with a particular phenotype. This statistical

analysis relies on the assumption that the genotype of each individual in a sample varies

independently and that, therefore, the repeated observation of particular genotypic

states alongside a given phenotypic state can be taken as evidence of association. This

assumption of independence is often violated in GWAS, due to the presence of ancestral

relationships between individuals. This is especially true with regard to microbial

GWAS, where isolates may be drawn from highly clonal populations, as one can not

assume that individuals represent truly independent samples. Instead, sampled isolates

should be thought of as “pseudoreplicates”, with genomes possessing varying degrees of

sequence similarity as a result of common ancestry [148]. When phenotypic differences

coincide with the divisions between ancestral subpopulations, the confounding conditions

of population stratification are established. Spurious associations between genotype

and phenotype will be widespread unless the confounding impact of ancestry can be

revealed and removed. GWAS approaches typically address the problem of population
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stratification in a two-step process: (1) Reconstruct the ancestral relationships present

in a sample. (2) Compensate for the increase in spurious asociations expected, given the

observed population structure.

2.2.1 Genomic inflation

Some techniques have, however, been devised to allow population stratification to be

identified and corrected for without requiring the user to reconstruct or model the

population structure of their sample. Devlin and Roeder [108] developed a metric to

quantify population stratification, based on the observation that association test statistics

are inflated by this form of systematic bias. The genomic inflation factor, λGC , can

be computed from X2 test statistics that have been obtained from a set of i random

genetic markers. It is calculated by dividing the observed median X2 of the association

of all i loci by the expected median X2, with 1df (one degree of freedom), under the

null hypothesis of no association, as in equation 2.1 [108]:

λGC =
median(X2

i )

median(X2
1df )

(2.1)

This λGC value can be used within the genomic control (GC) approach as a uniform

correction for population stratification. To perform GC, one simply divides all association

test statistics by the overall λGC factor. One major limitation that arises from the

uniform nature of this ancestry adjustment is that it may over- or under-correct for

genomic inflation because the degree of differentiation between ancestral populations is

not uniform across genetic loci [149]. The straightforward and frequently conservative

approach that GC offers has nevertheless provided one solution to the problem of

population stratification within the microbial GWAS literature [120,126].

The genomic inflation factor is applied with even greater regularity as a tool to assess the

effectiveness of other approaches to correcting for population stratification. Both λGC

and quantile-quantile (QQ) plots are useful for diagnosing the inflation of association

test statistics and for comparing inflation when GWAS is performed with or without a

particular population structure control. Where λGC provides a quantitative measure of

inflation (indicated by λGC > 1.05), a QQ plot can provide an informative qualitative

alternative [150]. QQ plots allow for a visual comparison of the expected X2 distributed

−log10 P values with the observed −log10 P values. This can reveal systematic inflation

above the y = x line that may indicate population stratification [97]. On the other hand,

QQ plots showing inflation above y = x among only high −log10 P values may instead

indicate genuine polygenic traits in small samples. Meanwhile, systematic deflation may
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be caused by an excess of rare variants [116]. If interpreted correctly, both the QQ plot

and λGC can improve microbial GWAS by serving as diagnostic tools. However, more

complex approaches are likely to be required if we are to account sufficiently but not

excessively for the confounding effects of population stratification.

2.2.2 Reconstructing ancestral relationships

In the microbial GWAS literature published thus far, a wide array of approaches have

been adopted to tackle the problems posed by population structure. A relatively small

number of microbial GWAS analyses have either implemented no correction for population

stratification or have used the uniform GC correction, described above [120,126,151]. All

other microbial GWAS studies have undertaken a two-step process: first, reconstructing

the ancestral relationships between isolates, and then using this model of population

structure to help separate genuine signals of association from signals attributable to

ancestry alone.

In human genetics, a distinction is usually drawn between “ancestral” relationships that

are deep-rooted in the evolutionary past and “familial” relationships that occur at present

or in the recent past [150]. In bacterial populations, by contrast, clonal inheritance allows

us to consider genetic relatedness at all levels and on any timescale to be a suitable

target for methods attempting to reconstruct “ancestral relationships” between genomes.

Several methodological approaches have been designed to infer how genetic ancestry

links bacterial isolates. Below, we introduce these contending methods, grouped into

the following families: non-phylogenetic approaches, including model-based clustering

methods and model-free dimension reduction techniques, and phylogenetic approaches,

including standard methods and methods accounting for recombination. No single

method has emerged as the universal “Gold Standard” within this domain, as the relative

merits of each ultimately depend on sample characteristics and the aims of the analysis.

We will highlight the strengths and limitations inherent in each approach and indicate

which sample parameters might favour a particular method of reconstruction. The

level of recombination observed, for example, may restrict the choice of methodological

approach (see Table 2.1). Each method of ancestral reconstruction is also accompanied

by a number of corrective strategies, which allow one to translate ancestry inference into

a means of controlling for confounding bias. We will review these corrective mechanisms

and evaluate the effectiveness of each in the pages to come.
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Typical Evolution Optimal Method Example of Applications

Completely
clonal

Phylogenetic
methods
ignoring

recombination

Mycobacterium tuberculosis [106,114,130,131],
Leptospira interrogans [74]

Moderate
rate of

recombination

Phylogenetic
methods

accounting for
recombination

Escherichia coli [152],
Chlamydia trachomatis [153],
Clostridium difficile [154],

Neisseria meningitidis [155],
individual lineages of

Campylobacter jejuni [118] and
Streptococcus pneumoniae [49, 129]

High rate of
recombination

Phylogeny-
independent
approaches

Helicobacter pylori [156], HIV [116,119],
species-wide datasets of

Campylobacter jejuni [157] and
Streptococcus pneumoniae [76]

Table 2.1. Optimal method of ancestral reconstruction by recombination rate.

2.2.3 Non-phylogenetic methods

Non-phylogenetic methods reconstruct the population structure of a sample by separating

individuals into clusters or along principal component axes (PCs) according to the

variation in their genomes. In the case of model-based methods, this inference is made

within a parametric framework that allows users to incorporate prior information about

the population and its evolution, whereas model-free methods infer population structure

from the sequence data alone. The clusters and PCs identified by these approaches often

correspond to the major genealogical divisions on a phylogenetic tree [80,128,158,159].

These inference methods nevertheless return a more limited representation of ancestral

relationships than could be offered by a phylogeny linking all isolates back to their

most recent common ancestor. Even so, in some microbes, high levels of recombination

may make it impossible to reliably identify a clonal genealogy. For samples in which

recombination renders phylogenetic methods inapplicable, cluster-based and dimension-

reduction methods can provide valuable alternative approaches for inferring ancestral

relationships.

2.2.4 Model-based clustering methods

Model-based non-phylogenetic methods attempt to cluster individuals into a set of

genetically-similar groups that best represent the population structure of the sample. The

assignment of individual genomes or genetic loci to one of these k ancestral populations
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is accomplished within a Bayesian statistical framework. These methods allow for the

exploration of a parameter space that can be shaped by the prior inputs of analysts, with

the aim of identifying a population structure that gives a high likelihood of the observed

genetic data. All ancestral reconstruction methods inevitably identify an approximation

of the true biological reality that is influenced by the design of the approach in question

and its inherent biases. Model-based clustering methods identify ancestral populations

under an explicit population genetics model and a set of stated assumptions.

STRUCTURE is one of the older and better-known model-based clustering methods,

and its approach provides a representative example of the approaches adopted within

this class of methods [160,161]. In STRUCTURE [160], a Bayesian Markov chain Monte

Carlo (MCMC) algorithm is used to jointly estimate the quantities indicated in Box 2.1.

1. For each locus of each sequence, the probabilities of derivation from each of the k

ancestral populations.

2. For each locus and k ancestral populations, the population allele frequencies.

3. Additional global parameters, such as the average length of fragments inherited

from an ancestral population.

Box 2.1. STRUCTURE parameters

Figure 2.1) provides an illustration of typical STRUCTURE output. The linkage

version [161] makes STRUCTURE more applicable to bacteria by eliminating the assumed

independence of allele frequencies between loci, accounting instead for the fact that

neighbouring loci are more likely to be inherited from the same ancestral population.

These original STRUCTURE methods were, however, designed for multi-locus sequence

typing (MLST) data, and they are not able to handle the large volumes of whole-genome

sequence data typically collected for microbial GWAS analyses.

Faster alternative model-based programs have since been developed. The computationally

expensive MCMC of STRUCTURE has been implemented more efficiently in Bayesian

analysis of population structure (BAPS) [163], which has become one of the most popular

Bayesian clustering methods. Elsewhere, the STRUCTURE MCMC mechanism is

replaced with a maximum-likelihood optimisation approach in ADMIXTURE [164], a

copying model in fineStructure [165], and a Bayesian change-point clustering model in

BratNextGen [166]. Each of these implementations is more efficient than the original

STRUCTURE program. Some computational burden remains inherent in all model-based

methods, but these computational advancements have allowed model-based clustering

methods to remain a feasible option for reconstructing microbial population structure.
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Figure 2.1. Typical STRUCTURE output. STRUCTURE output for an example dataset (N = 10)

is represented graphically with STRUCTURE PLOT [162]. The STRUCTURE linkage model has assigned

to each locus in each genome a set of ancestry proportions, indicating the probability of inheritance

from the k ancestral populations. Individual genomes are represented in rows and genomic positions

are indicated along the x-axis. Linked blocks of loci are represented in columns, and their most likely

ancestral population is indicated in colour, according to the legend. Sampled isolates can be clustered

into populations on the basis of this ancestral inference.

These probabilistic approaches enable the objective exploration of complex multidimen-

sional parameter spaces. The pre-specification of population genetics model parameters

also allows for the incorporation of non-sequence information. Depending on the approach

in question, it may be possible to permit or prohibit admixture, set upper and lower

bounds on k, and allow or prevent hierarchical clustering. Users may also be able to

include spatial information and specify prior probabilities that either favour or constrain

genetic clustering to occur among physically proximate individuals.

Along with this expanded set of options, however, comes an increasing amount of

subjective decision-making on the part of the user. Because the clustering procedure is

guided by an explicit population genetics model, the output of these parametric methods

relies on a number of assumptions. The performance of model-based methods can be

highly sensitive to the assumptions made, although it is often unclear whether these
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assumptions can be justified or even tested. Among Bayesian clustering methods like

STRUCTURE [161] and BAPS [163], for example, it is commonly assumed that Hardy-

Weinberg equilibrium is upheld within populations and that representative sampling has

drawn fairly unrelated individuals from the wider population [163,167]. Yet, this is rarely

the case in microbial GWAS samples. Violation of these assumptions can strongly bias

estimates of k and make cluster memberships unreliable. In microbial GWAS, it may be

difficult to support the assumptions made by model-based clustering methods [104].

2.2.5 Correcting for ancestry with clustering methods

The clusters identified by model-based methods like BAPS [163] can be used to control

for the potential confounding effects of ancestral relatedness, either through stratification

or within regression models of association. Cluster-based controls have been successfully

applied within microbial GWAS [49,80, 120,124,126,168]. Cluster-based corrections for

population structure in microbial GWAS are usually implemented by stratifying the

association test [49,120,124,126]. In stratified analyses, most commonly performed using

the CMH test [144], the association test is repeated within each population cluster and

the results are pooled. The CMH test [144] uses a X2 test of association to examine the

relationship between genotype and phenotype within a set of k contingency tables, as

illustrated by Table 2.2, where i ∈ {1, ..., k}.

Genotype 1 Genotype 0 Row Total

Phenotype 1 Ai Bi N1i

Phenotype 0 Ci Di N2i

Column Total M1i M2i Ti

Table 2.2. Stratified 2x2 contingency table.

The combined odds ratio (OR) for k 2x2 contingency tables can be calculated as:

OR =

∑K

i=1
AiDi

Ti

∑K

i=1
BiCi

Ti

(2.2)

The X2 distributed CMH test statistic is used to assign a p-value to the observed OR

and to thus determine the statistical significance of the association being investigated.

The null hypothesis of no association is rejected when OR 6= 1. This indicates that
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the genotype and phenotype are not statistically independent in each sub-population.

Because the CMH test is designed to operate on contingency tables, it is applicable only

to nominal variables. In practice, CMH tests have been used to control for population

structure in binary analyses of antibiotic resistance in M. tuberculosis [126] and S.

pneumoniae [49], and host association in Streptococcus suis [124].

Clusters can also be used to account for ancestry in GWAS in regression-based ap-

proaches [124, 168]. Weinert et al. [124], for example, use sets of hierarchical clusters

identified with hierBAPS as covariates within a logistic regression model to test for

association with a binary host association phenotype in S. suis. By including cluster

membership as a fixed effect, the association between genotype and phenotype can

be examined while excluding the potential confounding effects of population structure

at a particular level of genetic clustering [150]. If genotype is not causally related

to phenotype, but instead differences in both genotype and phenotype correspond to

differences in the cluster membership of individuals, the incorrect inference of association

may be avoided by including clusters as covariates in a regression model. Regression

provides an alternative to the CMH test that renders cluster-based controls applicable

to continuous as well as categorical variables. Regression models also make it possible to

include additional covariates, to control for confounding effects that might be introduced

by environmental factors or other phenotypes, where this information is known.

Although model-based clustering methods have evolved to allow for admixed or hierar-

chical populations [163–165], cluster-based corrections for ancestral relatedness in GWAS

are not equipped to make use of the partial or nested cluster membership statuses of

individual genomes. Chewapreecha et al. [49], for example, use a set of previously-

identified [169] hierarchical BAPS clusters in a CMH test to stratify their association

study of antibiotic resistance in a large sample of 3,701 S. pneumoniae isolates. Whether

the set of 33 primary clusters or 183 secondary clusters will better control for confound-

ing can only be determined by repeating the analysis and comparing genomic inflation.

This reveals a substantial decrease with the larger k, from λGC = 6.58 to λGC = 2.56.

However, even the reduced value remains well above the accepted λGC < 1.05 threshold,

indicating that association test p-values may still be inflated considerably by population

stratification [150]. In these results, confounding effects can not be sufficiently eliminated

by either cluster-based control.

A major limitation of cluster-based controls is that they assume that the genetic variation

remaining within each population cluster is ancestrally homogenous. In microbial

samples, it can be especially challenging to identify a suitable set of k distinct, internally-

homogenous clusters, as clonal inheritance favours heterogeneous, hierarchical structures
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while recombination often blurs the boundaries between sub-populations. Furthermore,

the effectiveness of these techniques depends heavily on the appropriateness of the

number of clusters that are taken to represent population structure. Using too few

clusters will increase the type I error rate of the GWAS by violating the assumption

of genetic independence upon which association testing proceeds. Including too many

clusters will, conversely, increase the type II error rate by excluding relevant genetic

variation from the analysis. Methods exist to help select the k that best describes the

population structure of a sample [170–172]. But, without considering the phenotypic

states of individuals, the k clusters identified by these methods may not be those most

relevant to the problem of population stratification in a GWAS study. Whether the

phenotype is clustered in large clades, small groups, or not at all affects the probability

of spurious association due to ancestry (see Figure 2.2). While both genotypic and

phenotypic variance ought to influence the choice of k, there is still no widely-accepted

protocol for making this decision objectively. Moreover, as cluster memberships are

often unstable when k changes, the effectiveness of cluster-based controls may vary

unpredictably [160].

Clusters provide a clear, albeit simplified, representation of the ancestral relationships be-

tween isolates. Although more detailed reconstructions might be inferred by phylogenetic

methods, reliable clonal genealogies may not be attainable for highly-recombinant mi-

crobes. Model-based clustering methods present a straightforward alternative approach to

ancestry inference. Easily incorporated via the stratified CMH test or regression, cluster-

based controls have become one of the most popular means of addressing population

stratification in microbial GWAS [49,80,120,124,126,168].
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(A) (B)

(C)

Figure 2.2. Population stratification. Population stratification varies with genetic differentiation

and phenotypic clustering. Colours along each tree represent populations, as defined by k clusters

or (k − 1) PCs, and tip colours indicate phenotype (controls = grey, cases = black). A: Maximal

population stratification. All of the substitutions that separate the two major clades would appear

to be associated with the phenotype, even if only one of these truly caused the change. B: Moderate

population stratification. With the tree topology of (A), the stronger population differentiation may

reflect geographic or sampling differences. It may be possible to correct for this degree of population

stratification. C: Minimal population stratification. Despite the population structure of (B), because

the phenotype does not cluster within the ancestral lineages, there is no need to correct for population

stratification.
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2.2.6 Model-free dimension reduction methods

Model-free multivariate dimension reduction techniques allow for a more detailed de-

scription of population structure than the discrete clusters identified by model-based

methods. Unlike Bayesian clustering algorithms, these approaches are not based on an

explicit population genetics model. Instead, multivariate methods aim to summarise

genetic sequence data in a set of orthogonal (linearly uncorrelated) PCs of decreasing

variance, positioning all sampled individuals along these major axes of variation.

PCA uses the approach in Box 2.2 to summarise the variation in a genetic dataset within

a reduced set of orthogonal PC axes, or weighted linear combinations of the original

genetic variables whose squared coefficients sum to one [110, 173]. Figure 2.3 shows how

k − 1 PCs separate k populations in PCA space [174].

1. Let X be a matrix containing genotypes for individuals i and polymorphic loci j,

where j ∈ {1, ..., p} and i ∈ {1, ..., n}.

2. Compute the covariance matrix, C, of the sample via Equation 2.3, where Cjj is the

covariance of column j and column j of X, and C has n− 1 non-zero eigenvalues

and orthogonal eigenvectors.

3. Identify the first PC axis as the eigenvector of C that contains the greatest variance

and has the largest eigenvalue.

4. Identify the orthogonal PC with the next-largest variance as the second PC axis.

5. Repeat the previous step until all of the variance in the original dataset is sum-

marised in the reduced set of PC axes.

C =
1

n− 1
XX′ (2.3)

Box 2.2. PCA protocol

A large number of alternatives to PCA can be used to perform similar ordinations in

reduced space, but under different optimisation criterion [175]. PCA aims to separate

individual datapoints in multidimensional space by maximising the overall variance, or

squared Euclidean distance. The related metric multi-dimensional scaling (MDS) [176]

approach operates on any Euclidean distance, for example, enabling a PCA-like solution

for a distance matrix constructed from k-mers [129]. By contrast, discriminant analysis

(DA) [177] adopts a supervised approach that aims to maximise the distances between

groups only. Yet, DA can rarely be performed on genetic sequence data, because it
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Multivariate methods return output that reflects genetic sequence variation alone, un-

tainted by the potentially poorly-selected priors of model-based clustering methods.

Whereas model validation entails the computationally-intensive generation and likelihood-

based comparison of multiple models, model-free inference can be made from the single

set of eigenvectors and eigenvalues that reliably result from the application of a given di-

mension reduction method to a particular dataset. Multivariate methods are consequently

computationally efficient and scale well to large genetic datasets.

Figure 2.4. Comparing phylogeny and PCA. We simulated a genetic dataset (N = 30) along the

clonal genealogy (left). We performed PCA on the simulated genetic dataset, and we illustrate the

coordinates of each individual (terminal node) along the ten PCs with the largest eigenvalues (right)

according to the shades of grey indicated in the legend (below). The genealogical interpretation of

many PCs can be inferred from their coordinates, particularly in the most significant PCs. However,

it becomes increasingly difficult to predict, if not to interpret, the relationship between PC and tree

structure as we move right-ward into higher PC dimensions.

Dimension reduction can reconstruct ancestral relationships with greater resolution than

model-based clustering methods. By positioning all individuals at coordinates along each

synthetic PC axis, multivariate methods can not only indicate clusters, but describe the

relationships between clusters and among individuals within clusters, potentially revealing

clades, admixture, and clines [145]. The PC axes identified often have genealogical

interpretations, as Figure 2.4 demonstrates [158]. Yet, relevant population structuring

variation is not always neatly captured within a set of significant PCs [178]. Aside from

the differences between ancestral populations, PCs may be shaped by:

• How many and which genetic markers are included [174].

• Local LD, rather than genome-wide population structure [165,179].

• Assay artefacts, variable data quality [180].
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• Artefacts of sampling, sub-population sample size [158].

• Within-population variance [181].

• Variation introduced by recombination (see 2.3.2).

• Variation associated with a phenotype [182].

Nevertheless, as it is applicable to recombining organisms, and it can offer a more

informative description of population structure than clusters alone, PCA has become

the dominant means of controlling for population structure in human GWAS [150] and

an increasingly prevalent approach in microbial GWAS [116,119,125,128,183]. Related

dimension reduction methods have also been adopted in microbial GWAS [80, 124,129],

but how they are used and with what effectiveness remains far from settled.

2.2.7 Correcting for ancestry with dimension reduction methods

In microbial GWAS, multivariate methods can be used to control for the confounding

effects of population structure by regressing along significant axes of variation. Unlike

corrections made with GC, the corrections applied to genetic markers via PCA are not

uniform and, instead, vary site by site, such that greater control is exerted over loci that

exhibit large differences in allele frequencies across ancestral populations [150].

The approach adopted in the original EIGENSTRAT software [107] and used in hu-

man GWAS is to directly adjust the original genotypes of individuals by the ancestry

proportions reflected in significant PCs. First, PCA is performed, and the set of PCs

that are identified as significant are taken to represent the population structure of the

sample. The human GWAS literature stresses the importance of performing PCA on

unlinked, phenotype-independent genetic markers [107,150,174]. Yet, this issue has been

overlooked repeatedly in PCA-based microbial GWAS studies [116, 119, 122, 125]. A

linear regression is performed, modelling the genotype at each locus gij as a function of

the population-structuring axes of variation. This allows for the identification of regres-

sion coefficients specifying the degree to which genotypes gij are predicted by ancestry

alone. The original genotypes gij are “corrected” by subtracting this ancestry proportion.

The same transformation process may also be used to adjust the phenotypic values

by ancestry [107]. Association testing is then carried out on the corrected genotypes

and phenotypes. Alternatively, a linear or logistic regression can be used to model the

phenotype as a function of both the genotype and the set of significant PCs, which are

included as fixed effects [129]. Regression with PCA [116,119,122,125], MDS [129,132]

and DAPC [80] have all been used to correct for ancestry in microbial GWAS.
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Multivariate approaches can reduce the false positive rate attributed to clonal population

structure, although they are often less effective than phylogenetic approaches [97,132].

Unfortunately, these approaches also exclude potentially-relevant variation contained in

the set of significant PCs, which can substantially reduce the power to detect genuine

associations [128]. This problem is aggravated in microbial GWAS when selective pressures

acting on the phenotype also impact the population structure, entangling phenotypically-

associated polymorphisms and population-stratified variation. Additionally, because

the population structure inferred by PCA reflects variation due to both mutation and

recombination, correcting genetic data with PCA may eliminate trait-associated variation

instead of ancestral differences.

Like k selection in clustering methods, selecting the optimal number of PCs to control

for population structure in GWAS can be difficult, although a multitude of PC selection

methods exist [172, 184]. Approaches from human GWAS recommend that the set of

PCs account for a significant proportion of the total genomic variation [107, 174]. In

practice, most PCA-based microbial GWAS studies have selected the number of PCs

subjectively, by visually inspecting eigenvalue distributions or PCA plots. Moreover,

with any number of PCs, multivariate approaches often struggle to both maintain power

and eliminate false positive findings in microbial GWAS [97]. Using PCs as fixed effects

has been found to be effective in analyses of phenotypes under strong selection in single

HIV lineages with high levels of recombination and weak population structure [116,119].

But, where population differentiation is strong or the phenotype clusters within ancestral

lineages, PCA-based regression may only detect associations occurring at the tips of a

phylogenetic tree while overlooking associations that arise over the evolutionary history

of a sample [97, 132].

Recent proposals have attempted to recover the power lost by dimension reduction

methods. Instead of using a set of significant PCs as fixed effects within a regression

model, Earle et al. [128] use the entire correlation matrix between strains as a set of

random effects within a linear mixed model (LMM). This dramatically reduces the type

I error caused by population structure by capturing the extent to which genetically

similar strains are phenotypically similar, but also increases the type II error rate [150].

Associations that may be genuine but also correlated with the population structure of the

sample are captured within the set of background random effects. These associations are

thus excluded from the set of “locus effects” identified by mixed models. Earle et al. [128]

attempt to compensate for this behaviour by recovering population-stratified signals of

association in a secondary set of “lineage effects”, in the form of trait-associated PCs. It

does not necessarily seem desirable, however, to segregate associations into these two

sets of effects, and we believe this can be avoided.
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Both clustering and dimension reduction methods provide useful alternatives to phyloge-

netic methods for counteracting biases resulting from the genetic relationships between

isolates. For organisms that undergo very high levels of recombination, especially in

diverse species-wide samples, even phylogenetic methods that account for recombination

are unlikely to reconstruct accurate genealogical trees [185]. Where minimal clonality

remains, non-phylogenetic approaches may be essential. In such cases, PCA- or cluster-

based solutions are likely to be sufficient to control the confounding bias attributable to

ancestry.

On the other hand, for organisms where the clonal genealogy is not obscured by recombi-

nation, the spurious associations generated by strong ancestral relationships are unlikely

to be kept in check by the simplified representations of population structure provided

by a set of clusters or significant PCs [97]. In a large proportion of microbial GWAS

studies, therefore, a phylogenetic approach may be more effective.

2.2.8 Phylogenetic methods ignoring recombination

When attempting to reconstruct the ancestral relationships between bacterial genomes,

phylogenetic methods are the most obvious choice of approach. Phylogenetic methods

generate detailed reconstructions of population structure at all levels. Whether describing

genetic relationships on an evolutionary timescale or revealing genealogical links between

close relatives, phylogenetic trees can provide an intuitive representation of the ancestral

relationships between microbes. Among the older and more commonly-encountered

phylogenetic methods are those that ignore recombination. These methods assume that

the evolutionary history of all loci in the genomes of sampled isolates can be adequately

described by a single clonal genealogy. Hence, in modelling bacterial population structure,

standard phylogenetic methods are most useful for predominantly clonal organisms that

undergo minimal recombination (see Table 2.1).
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Distance-based methods aim to identify the tree that results from progressive ag-

glomerative clustering of similar individuals, taking the steps outlined in Box 2.3.

1. Define the distance di,j between sampled individuals i and j as the proportion of

genetic loci at which they differ.

2. Compute the distance matrix, Di,j , containing the distances di,j between all pairs

of sampled individuals.

(a) For NJ method, let Di,j = di,j −
∑

k 6=i di,k/(n− 2)−
∑

k 6=j dj,k/(n− 2).

3. Cluster together the two individuals or clusters separated by the smallest di,j .

4. Update Di,j to reflect the grouping of individuals i and j into the cluster n. Define

the distance dk,n between an individual or cluster k and cluster n according to the

method you are using by selecting the appropriate formula from Table 2.3.

5. Repeat Steps 3 – 4 until all individuals have been merged into a single cluster.

Box 2.3. Distance-based phylogenetic method

NJ

Neighbour-Joining [186]

dk,n = (dk,i + dk,j − di,j)/2 (2.4)

UPGMA

Unweighted Pair Group Method
with Arithmetic Mean [187]

dk,n = (Nidk,i +Njdk,j)/Nn (2.5)

Complete

Complete Linkage
Agglomerative Clustering [188]

dk,n = max(dk,i, dk,j) (2.6)

Single

Single Linkage
Agglomerative Clustering [187]

dk,n = min(dk,i, dk,j) (2.7)

Table 2.3. Combinatorial formulas for

distance-based trees. dk,n is the distance

from an observation/cluster k to a cluster n

containing observations/clusters i and j.

An array of distance-based methods exist, each relying on a unique

criterion to identify the clustering order, including Complete-

Linkage [188], Single-Linkage Agglomerative Clustering [187],

Unweighted Pair Group Method with Arithmetic Mean (UP-

GMA) [187], and Neighbour-Joining (NJ) [186]. Distance-based

methods run in polynomial time, enabling rapid analyses even

for large datasets (e.g., N=1,000) [189].

The most popular distance-based method is the NJ approach [186]

and its extensions (e.g., BIONJ [190], FastME [191]). Many stud-

ies use NJ as a first approach to show relationships between

bacterial pathogen genomes, before more complex methods are

applied, because it is easy to apply and has well known proper-

ties [118,147]. By contrast to the linkage clustering procedures,

which assume a molecular clock [192], the NJ algorithm accounts

for heterogeneous evolutionary rates. Consequently, linkage pro-

cedures such as UPGMA output rooted, ultrametric trees where

the distance from the root to any leaf is identical, whereas, NJ

outputs unrooted, non-ultrametric trees (see Figure 2.5).
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Figure 2.5. Typical phylogenetic output. Four standard phylogenetic reconstruction methods

have been applied to the same genetic dataset (N = 10). Their output is shown, with an axis indicating

branch length in units of substitutions per site. A: NJ outputs an unrooted, non-ultrametric tree. A

rooted representation is shown for comparative purposes. The NJ tree suggests that the molecular clock

hypothesis does not hold true for this dataset: compare the branch lengths connecting nodes 2 and

4 to their common ancestor. B: UPGMA outputs a rooted, ultrametric tree. UPGMA assumes that

evolution occurs at a constant rate, and its estimation is not robust to violation of the molecular clock.

C: Parsimony, with edge lengths estimated by ACCTRAN [193], outputs the shortest possible tree

which, here, is similar to the NJ reconstruction. D: ML estimates a phylogeny that is topologically

similar, in most respects, to the NJ and parsimony trees. The ML tree has comparatively long branch

lengths, which are based on evolutionary rates rather than genetic distance or homoplasy.
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Maximum-parsimony methods aim to identify the tree that requires the smallest

number of substitutions to explain the data, using the procedure in Box 2.4.

1. Select an initial tree topology.

2. Compute parsimony cost.

3. Apply a random modification to the tree.

4. Compute new parsimony cost.

5. Accept new tree if it reduces the parsimony cost; else, keep previous tree.

6. Repeat Steps 3 – 5 until no further improvements can be found.

Box 2.4. Maximum-parsimony phylogenetic method

The dnapars algorithm in PHYLIP [194] is among the most popular implementations of

parsimony. In practice, a reasonable starting tree is often estimated with a fast approach

like NJ [186]. We describe the methods used to assign branch lengths to parsimony trees

later in this chapter (see Box 2.9). Although the parsimonious phylogenetic reconstruction

method is not the most frequently cited in the bacterial genomics literature, many

examples of its successful application can be found, especially for the study of closely

related genomes within genetically monomorphic pathogens, such as M. tuberculosis

lineage Beijing [195], Y. pestis [196,197], and S. enterica serovar Agona [198].

Parsimony methods operate according to a single criterion: minimisation of the parsimony

cost of the tree. This approach requires few assumptions and does not attempt to over-

complicate the model of evolution. Parsimony trees represent a “minimum evolution”

scenario and provide the simplest phylogenetic explanation of the data. Although this

may not perfectly reconstruct the genuine evolutionary history of the sample, it can

nevertheless offer a useful representation of the relationships between sampled genomes.

Maximum-likelihood methods aim to simultaneously estimate a phylogenetic tree

and set of evolutionary model parameters. They use the approach described in Box 2.5

to select those which achieve the highest probability of observing the genomic data [199].

Among the most popular maximum-likelihood methods for bacterial pathogen genome

analysis are PhyML [200], RAxML [201], GARLI [202] and FastTree [203,204].
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1. Select an initial tree and parameters of the model of sequence evolution.

2. Compute likelihood.

3. Propose changes to the tree and parameters.

4. Compute new likelihood.

5. Accept proposed changes if likelihood increased; else, reject changes.

6. Repeat Steps 3 – 5 until no further improvements can be found.

Box 2.5. Maximum-likelihood phylogenetic method

ML methods take a more complex approach than parsimony methods and require a model

of sequence evolution and evaluate the probability associated with different substitution

rates, which are allowed to vary between sites and across the tree. This rate-based

approach may estimate longer branch lengths than standard parsimony or distance-based

methods, as repeated substitutions are permitted (see Figure 2.5. ML reconstructions

may offer a more realistic representation of the true evolutionary history of a sample,

which is often less straightforward than a parsimonious reconstruction might suggest.

ML methods are more computationally intensive than the methods described above. ML

methods are often used to reconstruct bacterial phylogenies, with many appearing in high

profile studies, for example, in V. cholerae [205], S. aureus [206], or C. trachomatis [153].

Bayesian methods aim to simultaneously estimate a phylogenetic tree and evolutionary

model parameters, selecting a sample of trees from the posterior probability distribution.

Bayesian phylogenetic methods use the approach outlined in Box 2.6.

1. Select an initial location in the parameter space (defined by tree topology, branch

lengths, and parameters of the model of sequence evolution).

2. Propose changes to the parameters according to a proposal distribution.

3. Compute the Metropolis-Hastings ratio [207, 208], R, between the previous and

proposed parameter values.

4. If R > 1, adopt the proposed changes. If R ≤ 1, accept the changes only if u < R,

where the value of u is randomly sampled from U(0, 1).

5. Repeat Steps 2 – 4 until convergence is achieved.

Box 2.6. Bayesian phylogenetic method

Standard Bayesian methods include those offered by MrBayes [209], BEAST [210], and

BEAST2 [211]. Like ML methods, Bayesian approaches require a model of sequence
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evolution to reconstruct a phylogenetic tree, although Bayesian evolutionary models can

be more complex. In addition, Bayesian methods allow for the specification of prior

probability distributions, which permit the user to either inform or bias the outome [212].

In bacterial population genomics, BEAST is a popular choice for reconstructing a timed

phylogeny, where leaves are aligned with their known sampling dates and the age of

ancestors is estimated. In bacterial GWAS, Bayesian methods may be useful for studies

carried out longitudinally [132]. The MCMC approach allows Bayesian methods to

identify a point estimate of the phylogeny, or to sample a set of possible trees from the

posterior probability distribution. Where phylogenetic uncertainty is a concern, this

feature may be useful in either quanitifying the uncertainty present or as a means of

comparing alternative representations of the phylogenetic relationships between isolates.

2.2.9 Phylogenetic methods accounting for recombination

Recombination disrupts the pattern of clonal inheritance on which traditional phylogenetic

methods rely. Failing to adequately account for recombination when constructing a

phylogeny can obscure the true clonal relationships between isolates [213–215]. Even very

low levels of recombination can cause standard phylogenetic methods to produce trees

that are topologically inaccurate [215] and have distorted branch lengths [213, 216]. The

evidence suggests that, if recombination is present, the conclusions drawn from standard

phylogenetic inference should be questioned [217].

Some authors have suggested that by removing recombinant regions, the clonal frame [218]

can be revealed using standard phylogenetic methods [196,219,220]. But, the evidence

suggests that this removal can, in fact, intensify the distortive effect that recombination

has on the tree [216]. Phylogenetic methods that explicitly account for recombination

offer a more appropriate solution in the case of clonally-related recombinant organisms.

As clonality persists across the genome wherever recombination is not taking place, it

remains possible to infer the clonal genealogy even in the presence of recombination.
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ClonalFrameML aims to reconstruct the clonal genealogy, while accounting for recom-

bination and identifying the location of recombinant regions, as in Box 2.7

1. Construct an initial maximum-likelihood tree.

2. Reconstruct ancestral sequences using maximum-likelihood.

3. Estimate branch lengths, recombination parameters (rate, length of events, average

donor/recipient distance), and locations of recombination events for each branch

via Baum-Welch Expectation-Maximisation algorithm.

4. Estimate uncertainty using a bootstrapping procedure.

Box 2.7. ClonalFrameML recombination-aware phylogenetic method

ClonalFrame [143,221] is one of the most frequently-used phylogenetic approaches that

explicitly models and accounts for recombination. The original ClonalFrame [143] worked

well for MLST data or very few genomes, identifying clonal genealogies in samples of

C. trachomatis [222, 223] and E. coli [152], which were found to recombine at low to

moderate rates, respectively, across or within lineages. ClonalFrameML [221] offers a

more efficient alternative that scales well to hundreds of genomes. This implementation

has been applied to organisms ranging from the relatively clonal M. tuberculosis [224]

to the moderately- and highly-recombinogenic C. jejuni [225] and S. pneumoniae [226].

ClonalFrame [143] is the only method we are aware of that has been used to reconstruct

a recombination-aware phylogenetic tree in microbial GWAS. It is used to identify

associations with host source in one C. jejuni dataset, in the simulation-based approach

of Sheppard et al. [118] and in the phylogenetic samping strategy of Farhat et al. [106].

Gubbins aims to reconstruct the clonal genealogy, while finding and excluding regions

of likely recombination, using the approach in Box 2.8.

1. Construct initial maximum-likelihood tree.

2. Reconstruct ancestral sequences using maximum-likelihood (FastML [227]).

3. Identify putative recombinant regions (i.e. clusters of substitutions unlikely to have

arisen through point mutation) using a sliding window scan.

4. Remove putative recombinant sites.

5. Iterate through Steps 1-4 until convergence occurs.

Box 2.8. Gubbins recombination-aware phylogenetic method
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Gubbins [185] has been used many times to examine the population structure and

dynamics of S. pneumoniae [169, 228–231], the pathogen for which it was initially

designed, as well as in analyses of C. trachomatis [153] and L. monocytogenes [232].

However, in their H. parasuis GWAS, Howell et al. [80] find that the need to remove

recombinant sites prevents Gubbins from identifying a core-genome phylogeny.
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Figure 2.6. Typical recombination-aware phylogenetic output. These figures show the output

obtained from two phylogenetic reconstruction methods that account for recombination, A: Clonal-

FrameML and B: Gubbins, when applied to the same example dataset (N = 10). Each figure contains the

inferred clonal genealogy (left) and a representation of the inferred genomic locations of recombination

(right). Coloured regions represent recombinant loci occurring at positions in the genome indicated

by the scale that runs along the x-axis. A key difference between the two methods can be seen in the

right-hand panels of each figure. In (A), ClonalFrameML indicates recombination among both terminal

and ancestral nodes; whereas, in (B), Gubbins indicates recombination in terminal nodes only, whether

recombination events have occured on terminal or internal branches.

Both Gubbins [185] and ClonalFrameML [221] return rooted, non-ultrametric trees

and indicate any recombination events inferred in the sampled genomes (see Figure

2.6). Instead of accounting for recombination like ClonalFrameML [221], Gubbins [185]

eliminates recombinant regions when reconstructing the clonal genealogy. In addition,

ClonalFrameML [221] identifies recombinant regions in both the sampled genomes of

terminal nodes and the un-sampled genomes of ancestral nodes, focusing on processes

between internal and terminal nodes. Gubbins [185], on the other hand, delimits

recombinant regions only in the set of sampled genomes, focusing on outcomes at the

terminal nodes of the genealogy.
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The use of recombination-aware phylogenetic methods in GWAS has been recommended

since the undertaking of association studies in bacteria was first considered [91]. These

approaches provide a high-resolution reconstruction of the ancestral relationships between

isolates. Critically, they make it possible to identify clonal relationships while accounting

for the fact that recombination can introduce multiple polymorphisms in single events

and can transfer DNA between close relatives, distant lineages, and even separate species.

By using recombination-aware phylogenetic approaches in GWAS, we can ensure tight

control over the confounding effects of ancestral relationships while revealing instances

of phenotypic differentiation between close relatives, which are of great relevance to

association studies.

2.2.10 Correcting for ancestry with phylogenetic methods

Although clonality poses a major challenge to microbial GWAS, it also enables the

adoption of phylogenetic solutions [106,114,118,121,127,130,131]. Phylogenetic trees allow

for the detailed identification of genetic relationships, not only at the level of population

clusters, but also at the resolution of subpopulations and individual relationships. Where

clonal relationships among isolates are apparent, phylogenetic methods are likely to

offer better control over type I errors arising from ancestry in microbial GWAS than

non-phylogenetic approaches [97, 183]. And, thanks to recombination-aware phylogenetic

methods [143,185,233], the adoption of a tree-based approach in GWAS does not require

evolution to be treated as purely clonal, nor that recombination be ignored, since the

effects of recombination events can be considered within a phylogenetic framework.

Phylogenetic approaches are by far the most popular method to describe microbial

population structure, and therefore they are a natural option to control for population

structure when performing GWAS in microbes. The literature displays a variety of ways

in which phylogenetic information can be incorporated in microbial GWAS.

A number of microbial GWAS studies permute the phenotype along the tips of the tree to

identify a significance threshold [49,116]. However, these methods rely on an assumption

of exchangeability that is violated by the varying degrees of genetic relatedness between

individuals. Hence, phenotypic permutation approaches provide a poor solution to the

problem of population stratification in microbial GWAS, because they do not account

for genetic covariance. Within-cluster label switching has been proposed as a means of

rendering permutation techniques more robust to genetic non-independence; but this

approach may, conversely, be overly conservative [183].

Farhat et al. [106] and Brynildsrud et al. [127] have, respectively, proposed a phylogeny-

based sampling strategy and a pairwise comparisons approach [234]. Both select a
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reduced set of phenotypically discordant but genetically proximate pairs of isolates from

within the wider phylogeny. This removes ancestral correlations between genotype and

phenotype, and makes it possible to search for genotypic and phenotypic homoplasies

that may indicate convergent evolution. By design, however, only ≤ N/2 comparisons

can be made, so a substantial proportion of the dataset is exclued from the association

test. This information loss reduces the statistical power to detect associations. The

association score adopted by Brynildsrud et al. [127] further restricts their approach to

binary phenotypes only. As phylogenetic corrections for population stratification can be

achieved without eliminating valuable data [114,118,123,130,235], alternative approaches

are preferable to sampling strategies and pairwise approaches.

More sophisticated approaches further capitalise on the phylogenetic framework, by using

it to infer ancestral states and thus to expand the association test into ancestral lineages.

The approach of Hall et al. [121] is relatively straightforward. The authors apply a X2

test of association, first, to the genotypic and phenotypic ancestral states inferred at

internal nodes and, second, to the substitutions inferred along the branches of the tree.

Because these tests are performed sequentially, they successively narrow down the set

of significant findings. To be deemed significant by this approach, an association must

be broadly upheld throughout the evolutionary history of the sample, and it must also

display correlated evolution. Desjardins et al. [130] use BayesTraits [142], an approach

developed for use in phylogenetic comparative methods, to test for association with

antibiotic resistance in M. tuberculosis. BayesTraits [142] uses MCMC to estimate

evolutionary rates for the genotype and the phenotype. It then performs a tree-based

test for correlated evolution by calculating the likelihood of models of the dependent

and independent evolution of both variables and comparing the two hypotheses with a

likelihood ratio test [236]. The approaches of Hall et al. [121] and Desjardins et al. [130]

are able to extend the association test across the evolutionary history of the sample.

Both approaches rely heavily on the accuracy of their reconstructions of the phylogeny

and set of ancestral states or evolutionary rates, which may render them highly sensitive

to uncertainties in these estimates [237].

Two other bacterial GWAS methods use simulation-based approaches, inspired by

phylogenetic comparative methods [238, 239], to obtain phylogenetically-correct null

distributions of association test statistics [114,118]. Sheppard et al. [118] use simulations

to generate null genetic data by randomly assigning substitutions to branches of the

phylogenetic tree. Association testing is performed along the tips of the tree in both the

simulated and empirical datasets to identify alleles that are over-represented alongside

either binary phenotypic state. Empirical association tests statistics that fall within the

simulated null distribution are inferred to be made possible by the tree structure alone
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and are, therefore, rejected. The “PhyC” method of Farhat et al. [114] uses simulations

to test for convergent evolution, examining substitutions along the phylogenetic tree.

Association is defined by the number of genotypic substitutions that occur alongside or

after a change in phenotype. PhyC does not simulate a null genetic dataset, nor does it

identify a genome-wide null distribution. Instead, it creates one null distribution for each

number of genotypic substitutions inferred. Empirical associations that have undergone

N mutations are evaluated against hypothetical associations between the ancestral

phenotype and random samples of N substitutions. This establishes a conditional

significance for each locus, assessing the probability that one would observe such an

extreme association by chance, given the number of substitutions observed. Sheppard

et al. [118], by contrast, work with a single null distribution to establish genome-wide

significance, by measuring the probability that one would encounter such an exteme

deviation somewhere along the genome. As this criterion aligns more closely with the

goals of a GWAS study, it is probably the better approach. The simulation-based

framework allows both approaches to capitalise on the high resolution reconstruction of

ancestral relationships provided by the phylogenetic tree. While these simulation-based

phylogenetic approaches have generated promising results thus far, this foundational

work leaves open many opportunities for improvement.

2.2.11 Rationale for our approach

In developing our own approach to microbial GWAS, we want to build on the foundations

identified by our search of the literature. This ensures that methodological development

in microbial GWAS moves thoughtfully forward, rather than occurring in parallel. We

determined that a simulation-based phylogenetic approach would allow our microbial

GWAS method to most effectively address the biases introduced by ancestral relatedness

as well as other confounding factors. A number of additional procedures were designed

to overcome critical limitations and gaps in the methods proposed thus far. We aimed

to distinguish our approach from existing phylogenetic methods by adding the flexibility

needed to appropriately analyse a wider range of organisms, including recombinant as

well as clonal bacteria. Towards this end, we planned to use a recombination-aware

tree-building method and to implement new procedures for addressing recombination

and mutation rates, as discussed below. A more informed data simulation procedure

was developed, to allow for the estimation and incorporation of additional empirical

parameters, drawn from each dataset. We wished to account for features like the empirical

distribution, and mutation and recombination rates. These impact the probability of

spurious association and the discovery power of association tests, yet they are overlooked
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by existing approaches [91,240–242]. Since available simulation-based methods have been

criticised for being too stringent, we pursued greater discovery power by implementing a

new approach to association testing, as described below [183]. As phylogenetic GWAS

approaches have thus far been restricted to binary phenotypes, we also sought to extend

our association tests to categorical and continuous phenotypic data types. Finally, we

implemented our approach in effective and accessible software, taking additional steps

to improve the efficiency of our software package. This set our method apart from

other simulation-based pipelines, which have been restricted in practice by burdensome

computational demands on time and memory. Ultimately, we were able to release the

first user-friendly, simulation-based phylogenetic GWAS tool that was tailor made for

use in microbial data.

2.3 Accounting for recombination

While the clonal structures produced by vertical inheritance are a central feature of

bacterial population genetics, we must not overlook the impact of horizontal mechanisms,

which can shape evolution via recombination. Once underestimated in frequency, extent,

and significance, genetic recombination has been revealed by research in recent decades

to be a widespread and powerful force [243, 244]. Recombination has now been observed

to varying degrees in most bacterial species [74,245]. It can be a crucial driver of genetic

sequence differentiation, accelerating evolution and accentuating phenotypic variation,

while serving to break up genome-wide LD in the process. Recombination can, therefore,

make it easier for GWAS methods to separate genuine signals of association from a

confounding clonal background that otherwise generates widespread dependence between

genetic loci [91]. Of course, it remains critical that microbial GWAS methods account for

the clonal relationships between isolates. It is, however, evident that being additionally

suitable for use in recombinant organisms will enable the accurate identification of

associations in a much larger range of datasets.

In organisms with a natural competence for the uptake of exogenous DNA by HGT,

recombination rates are known to vary across lineages or genomic regions in response to

selective pressures acting on bacterial phenotypes [96, 246]. Under selection, the genetic

polymorphisms introduced by recombination may face rapid expulsion or spread quickly

in a population [72]. This can conflate population-stratified variation with genuine signals

of association in competent organisms. In the two most frequently-studied traits in

bacterial GWAS, drug resistance and virulence, phenotypic differences have been found

to drive lineage-level variation in recombination rates [247,248]. When recombination
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is present but not accounted for, GWAS methods may make faulty inferences about

population structure or the evidence for association. Association studies will clearly

benefit if they can accurately account for both clonal inheritance and recombination.

The GWAS methods developed thus far, however, have not been equipped with the tools

necessary to reliably address both of these fundamental features of bacteria.

2.3.1 Measuring recombination

Before performing an association study in bacteria, it is recommended that the recombi-

nation rate of the organism under analysis be assessed. The recombination rates of many

bacterial species have been previously characterised [74]. However, recombination rates

are known to vary within species, and even within genomes, particularly as a result of

selection [72]. Isolates sampled from an outbreak, for example, might reflect the results

of a clonal expansion; hence, a species-level estimate of recombination may provide

an over-estimate of the sample recombination rate [249]. As the rate of homologous

recombination in a particular sample may not align with estimates taken from the wider

species or other samples, recombination is best estimated in the sample being submitted

to GWAS analysis.

Recombination is often indicated by a high prevalence of genetic homoplasy. Homoplasy

is inferred to occur when the distribution of states at a particular genetic locus can

only be explained by a mutation or recombination event, given a particular phylogenetic

tree [206,249]. Many methods of estimating recombination rates rely on this principle,

including measures of the phylogenetic congruence between loci [250], and measures of the

extent of genome-wide LD, via the four-gamete test [251], D’ measure [252], or r-squared

measure [253]. Alternatively, more sophisticated model-based approaches can be used

to infer recombination rates [166,233,254]. We recommend using ClonalFrameML [221]

to estimate recombination rates before performing GWAS. This will ensure an accurate

assessment of recombination and, unless a phylogenetic approach is contraindicated by

excessive recombination, the tree reconstructed by ClonalFrameML can then be fed

directly into our phylogenetic GWAS approach.

2.3.2 Confounding by recombination

Recombination can act to confound association studies in two major ways. First,

recombination can interfere with the inferences made by most methods of ancestral

reconstruction, preventing accurate adjustments for the confounding effects of population
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stratification. Second, recombination can alter the probability of spurious association,

directly impacting the inferences made during association testing.

Confounding of ancestry inference

Recombination can act to confound reconstructions of the ancestral relationships between

isolates. As the accurate inference of clonal ancestry is necessary to reject spurious

population-stratified associations, it is critical in bacterial GWAS that recombination is

accounted for during this preliminary stage of any method. Yet, aside from the use of

ClonalFrame [143] in the analysis of C. jejuni by Sheppard et al. [118] and re-analysis

by Farhat et al. [106], we are unaware of any bacterial GWAS studies that have taken

steps to account explicitly for the effects of both clonal inheritance and recombination

during ancestry inference.

Although non-phylogenetic clustering and dimension reduction methods are applicable

in the presence of recombination, the population structure inferences made by these

methods will nevertheless reflect both the vertical and horizontal transfer of genetic

information. Hence, whether standard phylogenetic methods or lower-resolution clustering

and dimension reduction methods are used, recombination can render genuine clonal

relationships unclear. For instance, a recombination event might encourage these methods

to separate a clade of true clonal relatives into two populations. As a result, GWAS

methods might be presented with spurious evidence for the presence of two distinct

hypervirulent lineages when in fact virulence has arisen only once among these genetic

relatives. On the other hand, the interference of recombination might cause these methods

to group together clonally-distinct lineages [91]. As a result, GWAS methods might

mistakenly identify population-stratified variants as significant associations or reject

genuine associations.

Moreover, because phenotypically adaptive variants often spread rapidly via recom-

bination [72], standard phylogenetic methods, clustering techniques, and PCA-based

approaches may mistake trait-associated variants for population-structuring alleles. As a

result, they may encourage both the removal of phenotypically-relevant genetic variation

and the preservation of confounding ancestral variation. Hence, the use of recombination-

naive ancestral reconstruction methods is likely to be particularly problematic in bacterial

GWAS. Both the power and false positive rate of microbial GWAS methods are likely to

be improved by explicitly accounting for recombination when reconstructing ancestral

relationships.
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Confounding of association inference

The second major challenge, which has been largely overlooked by bacterial GWAS

methods, is that recombination can more directly confound the inferences made in

association testing. The number of substitutions, Nsub, that occur in the evolutionary

history of a sample affects the probability of spurious association. We can illustrate this

point with the aid of Figure 2.7. The terminal distribution of the phenotype in Figure

2.7A is the result of seven substitutions across the tree. Suppose that in a genetic dataset,

substitutions randomly occur along the tree according to the homoplasy distribution

Figure 2.7C. It is easy to see how the distribution of binary genotypic states at many

of these loci could, by chance, take on a similar pattern to the phenotype. Likewise, as

17 substitutions give rise to the phenotype in Figure 2.7B, chance associations would

be expected with larger numbers of substitutions at genetic loci, as in the homoplasy

distribution in Figure 2.7D. Conversely, we would expect to see considerably lower

probabilities of spurious association between (A) and (D), or (B) and (C). Thus, by

modulating the substitution rate, recombination changes the probability of chance

association with the phenotype.

Even if the clonal genealogies of two samples are topologically identical, as in Figure

2.7, a difference in recombination rate can alter the probability of spurious association.

Variation in mutation rates can have a similar, if usually smaller, effect. Therefore,

unless the impact of recombination and mutation on chance association is accounted for,

GWAS methods will be unable to reliably reject false positive findings.

2.3.3 Controlling for recombination

With respect to ancestry inference, we have already introduced the problem posed by

recombination, and we have presented potential solutions above. Unless clonal relation-

ships are entirely obscured by recombination, we should be able to inhibit the inflation

of association statistics due to ancestry by using a recombination-aware phylogenetic

method in our simulation-based approach [91]. We choose to use ClonalFrameML [221]

within our bacterial GWAS method. This allows us to identify high-resolution phyloge-

nies while accounting for the impact of recombination, which, in turn, enables accurate

corrections for the clonal relationships linking isolates.

51/239





Chapter 2. Literature survey of bacterial population genetics and GWAS

Maximum-parsimony methods aim to identify the ancestral states that require the

smallest number of substitutions to explain the data, minimising the “parsimony cost”.

Parsimonious ancestral state reconstruction proceeds as described in Box 2.9.

1. Postorder traversal (from tips to root) to assign parsimonious character states to

ancestors.

2. If the root’s direct descendants differ in state, assign one of these states to the root

at random.

3. Preorder traversal (from root to tips) to modify descendants’ states where they do

not match direct ancestor’s state.

4. If the root’s direct descendants had differed in state in Step (2), repeat Step (3)

with the other state and compare the parsimony costs.

5. Return the set or sets of ancestral states associated with the lowest parsimony cost.

Box 2.9. Maximum-parsimony ancestral state reconstruction method

Popular implementations include Fitch’s parsimony [255], whose steps are outlined in Box

2.9, and Wagner parsimony [193]. Parsimony methods can take either a one-pass or two-

pass approach. One-pass approaches, like the most parsimonious reconstruction (MPR)

method, reconstruct ancestral states sequentially, from the tips to the root, selecting

the most parsimonious states at each ancestral node based on its direct descendants

only. Two-pass approaches, including Fitch [255] and the accelerated transformation

(ACCTRAN) approach in Wagner parsimony [193], instead infer ancestral states from

tips to root and back again. Two-pass procedures remain fast, and they are more likely

to resolve ties and less likely to identify sub-optimal solutions.

Parsimony methods are computationally efficient, straightforward in application and

intuitive in interpretation. By design, parsimony methods assume that changes between

all states are equally probable [256]. Although, if this assumption is known to be incorrect,

weighted parsimony algorithms [257] can improve accuracy by altering the relative cost

of state changes. Parsimonious reconstructions are informed by terminal states and

tree topology, but branch lengths are not taken into account when making inferences

about ancestral states. Ultimately, as their name indicates, parsimonious approaches

aim to identify the sparsest “minimum evolution” scenario. This can provide a useful

reconstruction of the states and state changes among ancestral isolates, although it may

or may not reflect the genuine evolutionary history of the sample.
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Maximum-likelihood methods treat the set of ancestral states as parameters and

aim to select those that give the highest probability of observing the data, by taking the

steps in Box 2.10.

1. Select an initial set of ancestral states and parameters of the model of evolution.

2. Compute likelihood.

3. Propose changes to the ancestral states and parameters.

4. Compute new likelihood.

5. Accept the proposed changes if the new likelihood is higher than the previous one;

else, reject the changes.

6. Repeat Steps 3 – 5 until no further improvements can be found.

Box 2.10. Maximum-likelihood ancestral state reconstruction method

The initial ancestral states in Step 1 can be selected at random; although, in practice,

these are often selected with more efficient distance-based or parsimony methods. ML

methods can perform either marginal or joint reconstructions. Marginal reconstructions

proceed upward, from tips to root, identifying the most likely state at each ancestral

node with reference only to its direct descendants. Joint reconstructions take a more

holistic approach and attempt to identify the set of ancestral states at all internal nodes

that, collectively, maximise the likelihood of the data. Joint ML reconstructions are more

computationally intensive, but they are less likely to get trapped at local optima [256].

In general, ML methods propose ancestral states and model the probabilities of transition

across each branch of the phylogeny. Unlike parsimony, ML methods take branch length

into account and are not penalised for proposing larger numbers of evolutionary transitions.

Evaluating the amount of evolutionary time available may lead to more realistic inferences

of ancestral states and substitution rates. Yet, ML estimates of evolutionary change can

be easily skewed when substitutions are very frequent or exceedingly rare, or if they occur

on very short or even zero-length branches [258]. Like parsimony, ML methods identify

a single “best” set of ancestral states. However, ML methods explicitly acknowledge

and quantify uncertainty in the reconstruction. Parsimonious reconstructions may reveal

uncertainty in some equally-parsimonious ties. ML reconstructions, by contrast, can

quanitfy their overall likelihood and, for discrete variables, the relative likelihood of every

possible state at each ancestral node.

With the aid of ML or parsimonious reconstruction methods, we will be able to infer

ancestral states and to estimate the corresponding genome-wide homoplasy distribution of

Nsub values. Our approach can then use these inferences to estimate how the unobserved
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processes of recombination and mutation may have shaped the distribution of association

statistics observed. While other GWAS approaches might struggle to incorporate this

information, our simulation-based approach provides a natural opportunity to do so. By

using the homoplasy distribution to inform our simulation of the null genetic dataset

along the tree, we can maintain both the empirical population structure and the Nsub

variation observed. In this way, we can account for the confounding effects of mutation

and recombination in association testing, as well as during ancestry inference.

Furthermore, in accounting for mutation, recombination, and tree structure within

our simulation procedure, we expect to find that our simulated allele frequencies will

approximate their empirical counterparts [259]. Previous phylogenetic simulation proce-

dures [118], despite faithfully recreating tree topology, may make inappropriate inferences

about branch lengths and population allele frequencies and their impact on the proba-

bility of chance association [260]. We hope that by extending our simulation procedure

to account for these inter-related empirical characteristics and evolutionary processes,

the incorporation of additional parameters will enhance the power and precision of our

GWAS method.

2.4 Detecting associations

2.4.1 Estimating heritability

GWAS methods will only be able to identify associations with a phenotypic trait that is

heritable. Broad-sense heritability (H2) measures the proportion of phenotypic variation

that is attributable to genetic factors alone, relative to the collective contributions of

both genetic and environmental factors [261].

H2 =
σ2
G

σ2
G + σ2

E

(2.8)

H2 includes both additive and epistatic effects. By contrast, narrow-sense heritability

(h2) measures the proportion of H2 that can be ascribed to additive genetic variation,

relative to dominant or epistatic effects.

Often, the literature contains sufficient evidence to support a claim of heritability. If not,

several methods can be used to estimate this parameter. First, the variance component

(VC) approach allows H2 to be estimated by comparing phenotypic covariance to genetic

relatedness [262]. VC can be transferred from humans to microbes by replacing family

pedigrees with matrices of pairwise genetic similarity [261]. Second, ANOVA can be used
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to estimate H2 by comparing phenotypic variance within and among clonal lineages [263].

Third, if enough donor-recipient transmission pairs are available, H2 can be estimated

via linear regression [264]. Fourth, using SNP-based genomic relatedness as random

effects, LMM can perform H2 estimation, enabling the inclusion of additional potential

confounders as covariates [132]. Finally, phylogenetic approaches like Pagel’s λ [265] and

phylogenetic mixed models (PMMs) [266] can also be used to assess whether phenotypic

variation is correlated to evolutionary history. While GWAS methods are hypothetically

applicable to any phenotype with H2 > 0, the success of GWAS will require large sample

sizes if heritability is low.

2.4.2 The power to detect associations

In GWAS, statistical power depends on both the dataset and the method of analysis. The

power of an association study increases with the effect size and the MAF of associated

loci. As natural characteristics of the data, however, these two parameters are beyond

the control of the analyst. Increasing sample size, on the other hand, provides one

avenue by which we can increase statistical power. Indeed, even with a sensitive GWAS

method, larger samples may be needed to detect small-effect loci that contribute to

weakly-heritable, probabilistically-determined phenotypes. It is therefore important that

we develop a GWAS method that scales efficiently to larger datasets. Even when sample

size is within our control, we hope that our GWAS method can extract the highest

statistical power possible, without compromising the specificity of the association test.

Genotypic data

Discovery power in bacterial GWAS can be enhanced by capitalising on all available

information. As such, we aim to develop a bacterial GWAS method that does not

squander valuable genetic data by ignoring isolates, like existing pairwise comparisons

methods and phylogenetic sampling strategies, or exclude potentially-relevant genetic

variation, like PCA-based regression methods. To capitalise on the available sequence

data, our GWAS method should test for associations across the pan-genome. How best

to explore this variation remains an open question in bacterial GWAS [183].

In microbial GWAS, the pan-genome is typically either explored by performing GWAS

on two smaller datasets of core SNPs and accessory genes, or by performing GWAS on

one much larger dataset of pan-genome k-mers. In the first approach, data pre-processing

steps must be completed prior to association testing. First, sequence assembly must be

undertaken to compile and align genomic data for all sampled isolates, with the aid of
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dedicated software [267–269]. This is usually accomplished by mapping short contiguous

sequence reads to a reference genome; or, a reference-free alignment can be achieved

through the more intensive de novo assembly process of mapping sequence reads to

one another. Second, sites must be assigned to either the core or accessory genome,

according to their inclusion in all (> 99%) or a subset (≤ 99%) of sampled genomes.

Finally, SNPs must be identified within the core genome and gene presence or absence

must be indicated in the accessory genome.

The second approach provides an alignment-free alternative, using k-mers, sub-sequence

strings of length k. K-mer datasets span the pan-genome and contain the set of all

possible, overlapping k-length sub-strings. K-mers are designed to facilitate association

testing on non-SNP variation, like insertions and deletions (INDELs) or copy number

variations (CNVs), although these variants can also be incorporated into more traditional

SNP-based approaches with relative ease [49, 120, 155, 270, 271]. A distinct benefit of

k-mers, however, is their ability to detect associations with non-gene variation in the

accessory genome, enabling the extension of GWAS to SNPs in accessory genes, and to

variation in promoters and inter-genic regions within the accessory genome.

Thus far in the microbial GWAS literature, however, few associations have been identified

with k-mers that could not have otherwise been identified with more efficient parallel

analyses of core SNPs and accessory genes [129,132]. Furthermore, the marginal benefits

that may be offered by k-mers are also accompanied by 50-fold increases in the number of

loci that must be tested for association [132]. Given the need to correct for multiple testing

in genome-wide analyses, this difference can have a substantial impact on the statistical

power of association studies. The the scale of k-mer-based approaches also drastically

reduces the efficiency and scalability of GWAS studies. Yet, because the optimal value

of k is difficult to estimate in advance, this computational burden is often compounded

by repeating the analysis with multiple values of k. The added computational expense

of k-mer-based approaches may be difficult to justify in many cases, especially for more

intensive methods, like simulation-based approaches. The interpretation of GWAS results

is also more challenging in k-mer-based analyses. Although k-mers can be identified

without an alignment, additional efforts must be spent on pinpointing the source of

association in any k-mers identified as significant by GWAS studies. Overall, the costs

imposed by k-mer-based approaches—on statistical power, computational efficiency, and

ease of interpretation—appear to outweigh the potential benefits. In light of the available

evidence, we prefer not to focus our efforts on a k-mer-based approach. Although we

will aim to develop a GWAS method that is also applicable to k-mer data, we intend

to work with core SNP and accessory gene presence-or-absence data when performing

association studies.
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Phenotypic data

Phenotypic data also comes in many forms, and preserving the richness of carefully

collected phenotypic data can improve both the statistical power and accuracy of

association testing methods. Generally speaking, phenotypes can be binary, categorical,

or continuous. Binary phenotypes take on one of two states, for example, “drug resistant”

or “susceptible”. Categorical phenotypes can take on any number of discrete states

or factor levels. These may represent numbers whose relative values are meaningful,

for example, a number of flagella. Alternatively, levels may correspond to unordered

non-numeric categories, as in the analysis of multiple hosts, such as “cow”, “chicken”,

and “pig”. Continuous phenotypes, by contrast, are numeric variables that can take on

any value in a given range. The minimum inhibitory concentration (MIC) values used to

quantify drug resistance, virulence metrics like set point viral load in HIV, and measures

of toxicity are all examples of continuous variables. These phenotypic data types differ

in information content, increasing from binary (least informative), to categorical, to

continuous (most informative).

Many microbial association tests have only been designed to be applicable to binary

variables. Indeed, the majority of microbial GWAS studies have sought to identify

associations with binary drug resistance phenotypes that are highly determined by a

relatively small number of high-effect genetic loci (see Table 1.2). It is possible for both

continuous and categorical phenotypes to be reduced to binary variables, if required,

although information loss results. Alam et al. [122], for example, reclassify continuous

MIC values into a “high” and “low” resistance phenotype. This artificial binary distinction

prevents any perception of the difference between the median and maximum MIC values.

If such differences represent a considerable component of the relationship between

genotype and phenotype, this information loss might undermine the explanatory power of

a GWAS analysis. On the other hand, recoding continuous phenotypic values into binary

or categorical phenotypic states can generate artefactual class differences between truly

similar individuals. Hence, reclassifying data not only reduces the information available

for association testing, but it also makes this information less reliable. We therefore

aim to develop an approach that is applicable to binary, categorical, and continuous

phenotypes. Users may choose to transform or re-categorise their phenotypic data, but

this choice should not be dictated by methodology too narrow to properly explore the

variation that microbial life displays. Instead, by developing a strategy that preserves

the integrity and complexity of both phenotypic and genotypic data, and fully explores

the associations between both variables, we aim to increase both the power and precision

of our GWAS method.
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2.4.3 Measures of association

The strength of an association between genotype and phenotype can be measured in a

number of ways. The association tests used in microbial GWAS to date can generally be

broken down into “allele-counting” and “homoplasy-counting” approaches [126].

Allele-counting measures

Allele-counting approaches define association as the over-representation of a particular

allele alongside a given phenotypic state. The majority of association scores used thus

far in microbial GWAS have been allele-based measures. Popular allele-based tests of

association include the Fisher’s exact test and the X2 test, as well as the CMH test,

multivariate regression approaches, and the association test performed at terminal nodes

in the approach of Sheppard et al. [118].

Allele-based measures of association work only with the data observed. A broad sample-

wide relationship between genotype and phenotype is required to achieve a high allele-

based association score. In the proper evolutionary context this may indicate widespread

support for association. But, because it can be difficult to separate genuine allele-based

association scores from those due to population stratification alone, moderate allele-based

scores must often be rejected to avoid false positive findings. Suppose a phenotype

is entirely determined by either SNP 1 or SNP 2, but neither locus accounts for the

majority of variation in the terminal phenotype. An allele-based measure, like that used

by Sheppard et al. [118], may overlook both truly-associated loci. Because they do not rely

on inferred states or substitutitons among unseen ancestors, allele-counting approaches

incorporate less uncertainty and are less error prone. On the other hand, without

considering ancestral states, allele-based measures can overlook signals of association

that can be revealed when the evolutionary history of isolates is examined.

Homoplasy-counting measures

The homoplasy-counting framework appears only within phylogenetic GWAS approaches.

Homoplasy-based GWAS methods seek to identify signals of convergent evolution and

positive selection. Traditional measures of selection, like those used in the dN/dS

method [272] or haplotype-based tests [77], perform poorly in clonally-related samples.

In GWAS, however, homoplasy-based measures have been able to take as evidence for

association the repeated and independent emergence of substitutions in both genotype and

phenotype along the branches of a phylogenetic tree. Phylogenetic GWAS methods that
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adopt a homoplasy-counting approach include the PhyC method [114], BayesTraits [142],

the tree-based X2 test of Hall et al. [121], and pairwise comparative methods [106,127].

Homoplasy-based methods make it possible to expand the association study into the

inferred evolutionary history of the sample. Working within a phylogenetic framework

allows them to evaluate the evolutionary support for association. If phylogenetic or

ancestral reconstructions are unreliable, homoplasy-counting methods may exaggerate

estimation errors and draw incorrect conclusions about associations. But, if homoplasy-

based metrics are applied to reliably estimated ancestral states, they may be able to draw

greater insight from a dataset. Homoplasy-counting methods can pick up on repeated

patterns of association occuring in a subset of the data. If association is not upheld across

the phylogenetic tree, but it repeats across several substitutions in both genotype and

phenotype, homoplasy-counting measures may nevertheless detect a strong association.

Then again, their requirement for simultaneous substitutions can allow homoplasy scores

to overlook associations upheld across all observed isolates.

Overall, it is clear that both the allele-based and homoplasy-counting approaches make

distinct, potentially-valuable contributions to association testing, and that their strengths

and limitations counterbalance one another. Instead of arguing the merits of either the

allele-based or homoplasy-counting approaches to association testing, we believe that the

most sensible solution may be to draw on both frameworks. In our efforts to improve

the power of our stringent phylogenetic GWAS approach, we will therefore consider both

indicators of association.

Alternative measures

There is not always a straightforward, deterministic relationship between genotype and

phenotype. Less strictly heritable and more probabilistically determined phenotypes

may be associated with less frequent or less penetrant alleles. Phenotypes like host

association may be partially influenced by multiple alleles, as well as non-genetic factors

like host immunity. Figure 2.8 shows how complex phenotypes may be favoured through

the accumulating impact of genotypic substitutions that can occur before, during, and

after substitution in the phenotypic state, posing a challenge for both allele-based

and homoplasy-based methods. Allele-based measures may fail to detect such weak

associations, if they are not widely upheld across the sample. Homoplasy-based measures

may also struggle, if genotypic and phenotypic substitutions do not occur repeatedly on

the same branches. The PhyC [114] homoplasy score modifies this requirement, detecting

loci that undergo substitutions either alongside or after a substitution in the phenotype.
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Figure 2.8. Probabilistic association with host. Probabilistic association is illustrated by a multi-

stage process of host switching between chickens (red) and cows (blue). The spectrum (bottom) indicates

relative fitness in chicken and cow hosts. In the centre of the image, we see five examples of genotypes

for five SNPs and five individuals. In each frame, the highlighted polymorphism either occurs or reverses,

increasing or decreasing fitness according to the mechanism stated above the frame. Host switching

occurs in the centre of the figure, where the preference for either cow or chicken hosts is exerted by

the substitution, shifting the probabilistic association towards one end of the spectrum. Adaptive

substitutions make an isolate more fit in a particular environment. For example, just right of centre,

an adaptive substitution enabling vitamin B5 biosynthesis in C. jejuni isolates increases fitness in cattle

by facilitating adaptation to host diet (as in Sheppard et al. [118]). Compensatory substitutions

make up for the fitness costs of previous adaptive substitutions. For example, at right, if B5 biosynthesis

is metabolically expensive for the isolates to maintain, an alternate metabolic pathway or another

fitness-enhancing trait could be activated by a compensatory substitution. This new trait-associated

locus would likely then be taken up throughout the population as selective pressures are exerted by the

present cattle host environment.

Unfortunately, this criteria allows both false positives and false negatives to slip through.

Suppose, for example, that a phenotypic change occurs on one of two branches descending

from the root node. Repeated genotypic substitutions occurring at any locus in the

descendant clade may be inferred as significant evidence of association, even though

these might be associated with any other single-origin phenotype or genotype that

distinguishes the ancestor of this clade from the ancestor of the other clade. This

theoretical limitation has already been observed in practice, requiring users of PhyC [114]

to remove deep phylogenetic mutations by hand and to manually comb through significant

findings for sites truly associated with lineage rather than phenotype [134]. On the other

hand, suppose a genotypic substitution from SNP 0 to 1 falls on the branch preceding

a phenotypic change from chicken to cow host. Using the PhyC homoplasy score,
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even if SNP 1 and the cow phenotype were maintained in all subsequent descendants,

the only association measured in this case would be between SNP 1 and the chicken

phenotype [114]. Hence, when applied to probabilistic, complex phenotypes, like host

association and virulence, both allele-based and homoplasy-based measures may fail to

accurately identify associations. We will, therefore, consider whether any additional

approaches to association testing may improve our ability to detect the weaker signals of

association that accompany some of the most interesting relationships between genotype

and phenotype.

Multiple measures

Although the majority of microbial GWAS methods have relied on a single measure

of association, methods using multiple measures have also been proposed. Chen and

Shapiro [126] suggest a sequential two-step procedure, in which an allele-based approach

selects genomic regions broadly correlated with the phenotype, and then a targeted

homoplasy-based method extracts only those loci that also demonstrate convergent

evolution with the phenotype along the tree. Hall et al. [121] implement a version of this

approach, by performing a phylogeny-wide correlation test on ancestral states, and then

subsequently reducing these initial findings by requiring significant correlation among

substitutions as well. Brynildsrud et al. [127], likewise, adopt a sequential implementation

to narrow down results through increasingly stringent association tests. We recognise

the potential value of using multiple measures of association, yet we question whether

they are best applied in succession or if we might, instead, explore a new approach by

adopting a parallel implementation. Instead of narrowing down the pool of associated

loci identified, this could serve to expand the set of findings detected by GWAS. Whereas

running multiple association tests in succession might increase specificity, a parallel

implementation might allow us to achieve greater statistical power and, if we can ensure

high specificity through other components of our method, better performance overall.

2.5 Objectives

In our review of the literature, we examined a number of major challenges that have

prevented the widespread, successful application of association testing to microbial

samples. In developing our own microbial GWAS method, we aim to address the following

methodological issues. Each of these objectives represents a significant limitation of

existing approaches and presents a substantial opportunity for improvement.
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2.5.1 Account for clonal ancestry

First, we aim to address the problems of confounding population structure and homologous

recombination. We set out to develop a method that can distinguish true signals of

association from the spurious associations that arise as a result of ancestral relationships

in clonal organisms. We intend to use a recombination-aware phylogenetic reconstruction

method, like ClonalFrameML [221], to correct for the confounding influence of ancestry.

If integrated within a simulation-based parametric bootstrap approach, a phylogenetic

tree should allow us to achieve the greatest precision and the most robust check on bias

due to population stratification.

2.5.2 Account for variable recombination

We also wish to address the less predictable, more variable confounding effects of

homologous recombination. We aim for the microbial GWAS method that we develop

to be applicable to organisms ranging from purely clonal to moderately recombinant.

The method that we develop should not only adjust for recombination during ancestry

inference, but it should actively account for the impact of recombination on the inferences

made during association testing. Once we have developed a GWAS method that is able

to address both clonality and recombination, we will compare the performance of our

method to that of competing cluster-based and dimension reduction methods by testing

each on simulated datasets.

2.5.3 Balance sensitivity and specificity

Second, it follows that we face a challenge of effective inference-making. We must not

only eliminate false positives that arise from confounding population structure and

recombination, but we must do so while maintaining high power to detect associations.

We need to determine which measures of association will give our approach the greatest

statistical power. We aim to make evidence-based decisions by comparing the performance

of approaches through applications to simulated data. We intend to explore diverse

approaches to association testing, including measures of allele-trait correlation and

indicators of convergent evolution. In addition, we will consider whether some combination

of these approaches may improve sensitivity further still. Finally, in our efforts to develop

a robust yet high-powered approach, we will address open questions in microbial GWAS

about how best to assess significance and how to control for multiple testing [183].
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2.5.4 Capitalise on data diversity

Third, we would like to develop a microbial GWAS method that will be applicable to

as many forms of genotypic and phenotypic data as possible. This should include core

SNPs, accessory gene presence-or-absence data, and k-mers. Our method should be

computationally efficient and scalable to large genetic datasets, spanning the entire

pan-genome. To make the most effective use of available phenotypic data, it will also

be beneficial if our method is able to test for associations with binary, categorical, and

continuous phenotypes, and those drawn from longitudinal samples. In order to preserve

phenotypic information, we will need to develop measures of association that are versatile

and generalisable. Most of the bacterial GWAS methods to date have investigated binary

phenotypes under strong selection, like drug resistance, that are highly-determined by a

small number of high effect loci. We are motivated to develop methods of association

testing that have the flexibility and power to detect lower-effect associations that give

rise to more probabilistic phenotypes, like host association.

2.5.5 Build an effective, accessible tool

Finally, we want to consolidate our ideas within a coherent, overarching approach to

microbial GWAS, and we want to package our approach in effective, user-friendly software

that will render our approach most useful to others. We hope that our contribution in this

area will, more generally, expand the reach and popularity of the phylogenetic approach

in microbial GWAS, which has thus far been hindered by a dearth of usable software (see

Table 1.3). Our method should be able to provide objective solutions that do not require

the user to make subjective assessments about population structure, as in cluster-based

and multivariate approaches. Our approach should generate reproducible results that

have clear, meaningful interpretations. The tool that we develop should be user-friendly,

well-documented, and accessible to users from across a wide range of biological and

computational backgrounds. Our approach should also be implemented efficiently, and it

should offer the flexibility needed to address a variety of GWAS problems in a range of

datasets.
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3.1 Introduction

We have developed a novel method to perform GWAS in microbial samples that overcomes

many of the limitations in available methodology, discussed above. In this chapter, we

introduce our phylogenetic GWAS approach and explain its components in detail. We

demonstrate how our approach meets the aims outlined in Chapter 2, simultaneously

tackling the confounding influences of both clonal relatedness and variable recombination,
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while achieving high power yet maintaining a low false positive rate. Our approach

makes effective use of the available diversity of both genotypic and phenotypic data, and

operates within a user-friendly platform. We also describe the implementation of our

method in the R programming language, in our R package, treeWAS. Finally, we highlight

features of treeWAS that improve the computational efficiency of our implementation

and that render our approach flexible and accessible to users.

3.2 Overview of the method

The central aim of our GWAS approach is to delineate true signals of association from a

noisy background of spurious associations. As a GWAS method, our approach adopts

a systematic statistical approach that requires no prior hypotheses about potential

associations at candidate loci. We perform an unbiased search, assessing the degree of

association between each locus in a genetic dataset and a phenotype of interest.

As clonal relatedness and homologous recombination may act to increase or decrease the

probability of spurious association in microbial GWAS, it is essential that we evaluate both

the statistical and evolutionary support for association. To address these confounding

factors, we adopt a simulation-based approach. First, we characterise the features of the

empirical dataset that may bias the inferences made during association testing. Then,

we use these parameters to guide the simulation of a genetic dataset that recreates these

confounding factors but does not have any true association with the phenotype. The

purpose of generating this simulated genetic dataset is to estimate the null distribution

of association score statistics expected under the null hypothesis of “no association”. We

use the null distribution to determine which association score values in the empirical

dataset are likely to be truly significant and which may, in fact, arise by chance as a

result of confounding factors. Our approach maintains strict control over the number of

false positive findings by rejecting nearly all empirical associations that fall within the

null distribution.

To ensure that our approach is powerful, as well as robust, we have devised a strategy to

increase sensitivity through the parallel application of multiple measures of association. To

this end, we have developed three association scores that draw on distinct, complementary

signals of association. First, an allele-based measure is applied to the genotypes and

phenotypes observed along the tips of the phylogenetic tree, returning high scores in

the presence of broad, sample-wide association. Second, a homoplasy-based approach

is used to expand the association test into the reconstructed evolutionary past, where

it confers high scores if inferred substitutions in genotype and phenotype occur on
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the same branch of the phylogenetic tree. Third, an integral-based measure draws on

both the maintenance of allelic states and the presence of homoplasies to determine

whether association is widely indicated across the branches of the tree. Each of these

scores is capable of identifying associations with either binary, categorical, or continuous

phenotypes. These three scores are applied in parallel, so that they can collectively

ensure a thorough exploration of the potentially diverse landscape of association signals.

By identifying only associations with strong evolutionary and statistical support, but

from multiple complementary measures, our approach is able to pair conservative control

over confounding factors with a high-powered test of association.

Symbol Description

panci
Phenotypic state at the ancestral node of branch i

pdesi
Phenotypic state at the descendant node of branch i

ganci
Genotypic state at the ancestral node of branch i

gdesi
Genotypic state at the descendant node of branch i

li The length of branch i of the phylogenetic tree

Nbranch Number of branches in the phylogenetic tree

Nind

Number of individuals in the empirical genetic dataset (or

terminal nodes in the tree)

Nloci Number of loci in the empirical genetic dataset

Nassoc Number of phenotypically-associated sites in the genetic dataset

Nsim Number of simulated loci in the null genetic dataset

Nsub Number of substitutions

Nscore Number of association scores measured

Si The association score value at empirical locus i

sj The association score value at simulated locus j

Pi The empirical p-value for an association at empirical locus i

αbase The base p-value specifying the overall significance level

α The p-value specifying the per-test significance level

Table 3.1. Mathematical notation.
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Figure 3.1. treeWAS method pipeline. This figure summarises our bacterial GWAS method in a series of illustrated

steps, showing the key procedures implemented in treeWAS, as described below, in the Method Protocol (Section 3.3)

and in the remainder of Chapter 3. The analysis begins, at the top left of the figure, with one phenotype (p) and Nloci

genotypes (gi) for the Nind individuals that make up the sample. In Step 1, we reconstruct the clonal genealogy via

phylogenetic estimation. Ancestral character estimation of p and gi in Step 2 enables the identification of the homoplasy

(Nsub) distribution in Step 3. The inferences made in Steps 1-3 inform Step 4 in the simulation of a “null” genetic dataset,

whose only associations to the phenotype will arise from the confounding effects of ancestry, mutation and recombination.

The reassignment of substitutions (e.g., Nsub = 5) is represented by the presence of yellow “x”s along the tree. Once all

Nsim loci have been simulated, we proceed with Step 5 by reconstructing the ancestral states of all simulated gi. In Step

6, we use Score 1, 2, and 3 to quantify all {p, gi} associations in both the real and the simulated datasets, generating three

empirical and three null distributions of association statistics. The significance threshold for each metric is drawn in Step

7 at the upper (1 − α) tail of the respective null distribution. Finally, in Step 8, any empirical locus that exceeds this

significance threshold, in Score 1, 2, or 3, is identified as a significant association.
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3.3 Method protocol

Our approach is implemented in the following steps, which are described in greater detail

in the sections below. The mathematical notation used is defined in Table 3.1.

1. Phylogenetic reconstruction is performed to identify the ancestral relationships

between sampled isolates. As the clonal genealogy must be reconstructed without

interference from homologous recombination, we prefer to reconstruct the phylogeny

with a recombination-aware approach like ClonalFrameML [221]. If recombination

can be ruled out, standard phylogenetic methods can also be used.

2. Estimation of empirical ancestral states is performed to identify a marginal

reconstruction of the ancestral states of both genotype and phenotype at all internal

nodes of the phylogenetic tree. Parsimony methods [255] are used to infer the

ancestral states of the genotype and the phenotype, if it is a binary variable. ML

reconstruction methods [236, 273] are used if the phenotype is a continuous or

categorical variable.

3. Inference of the homoplasy distribution is performed with the Fitch parsi-

mony algorithm [255]. The homoplasy distribution describes the minimum number

of substitutions, Nsub, that must occur at each genetic locus in the empirical

dataset. This includes substitutions arising by both mutation and recombination.

4. Simulation of null genetic data facilitates the delineation of true associations

from spurious associations. Simulated under H0, the null hypothesis of “no as-

sociation”, the “null” genetic dataset embodies potentially confounding features

of the empirical dataset, but does not contain any genuine associations with the

phenotype. The simulation procedure is guided by three parameters: (i) the phy-

logenetic tree, (ii) the homoplasy distribution, and (iii) the number of loci to be

simulated, Nsim. The empirical phenotype is also maintained across the tips of the

tree. Each of the Nsim loci is simulated along the phylogenetic tree, from root to

tips, undergoing a number of substitutions drawn from the homoplasy distribution

on branches selected randomly with probabilities proportional to branch length.

The resulting simulated dataset resembles the empirical dataset in its sample size,

ancestral relationships, and terminal phenotypic distribution, thereby recreating

the level of confounding population stratification observed. The simulated dataset

also approximates the observed Nsub and MAF distributions, allowing us to account

for the effects of both mutation and recombination, as well as the strength of LD

in the empirical dataset. By comparing the simulated and empirical datasets, we

can separate genuine signals of association from associations caused by chance and

confounding factors.
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5. Estimation of simulated ancestral states is required prior to association

testing, in each analysis performed by treeWAS, so that associations in the simulated

dataset can be calculated across branches of the phylogenetic tree. To ensure a fair

comparison can be made between the empirical and simulated datasets, we infer

ancestral states in the same way in both datasets. The phenotype has already been

reconstructed in Step (2), so we need only to use parsimony [255] to reconstruct

the binary genotype.

6. Association testing is carried out in both the empirical and simulated datasets.

Associations between simulated loci and the empirical phenotype are measured to

allow for the identification of a null distribution of association score statistics under

H0. Associations between empirical loci and the phenotype are then measured

and evaluated with reference to this null distribution. We use three independent

tests to measure association with the phenotype at each locus in both datasets

The use of these multiple measures improves statistical power by expanding the

test to capture different signals of association.

7. Identification of the significance threshold and associations is achieved

by drawing a threshold in the upper tail of the null distribution, at the value

corresponding to a base p-value (e.g., αbase = 0.01) that has been corrected for

multiple testing via Bonferroni correction to account for both Nloci and Nscore.

Among the set of empirical association scores, all values that exceed this threshold

are deemed to be statistically significant associations and, thus, candidates for true

biological association, pending subsequent confirmatory analyses.

3.4 Data processing

Two sources of data are required by our GWAS approach: genetic sequence data and

a phenotype. The evolutionary history of the sample, its ancestral states, and relevant

association metrics are all inferred from these data. Before performing the analytical

steps outlined in our method protocol, some measures are taken to ensure that the data

is appropriately organised.
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3.4.1 Genetic data

Our GWAS method is applicable to any form of binary genetic data, including SNPs,

genes, INDELs, and k-mers We prefer to analyse genome-wide data by applying our

approach to core SNPs and accessory gene presence-or-absence data (see Chapter 2).

We recommend this approach to ensure good coverage of pan-genome variation. Genetic

datasets must be aligned, with individuals in their rows and loci in their columns, and

with unique identifiers labelling each. As no associative relationship can be inferred

at a non-polymorphic locus, we exclude fixed loci (MAF = 0) from the analysis, once

phylogenetic estimation is completed.

We let all genetic variants be represented by binary states. In the treeWAS R package,

all loci are encoded in matrices of logical values, which require less memory than numeric

or character objects. Any tri- or tetrallelic sites are redefined in terms of biallelic loci.

Suppose the bases A, C, and G appear at a given position (i.e., column) in the sequence

alignment. To express this in terms of binary variables, we replace the original column

with three new dummy variables, such that the original triallelic column is represented

by three biallelic columns. At the first of these new new biallelic sites, individuals with

allele A at the original locus will be assigned state 1, and all other individuals will be

assigned state 0. This procedure will be repeated for allele C, at the second dummy

locus, and for allele G at the third. Submitting these three biallelic sites to analysis by

our GWAS approach allows us to identify associations between the phenotype and any

of the three original alleles.

Our approach permits missing values in genetic data, which arise due to sequencing errors

or low-quality samples. Where necessary, the inferences required for data simulation

and association testing can be made on the basis of partial information. Any genome or

genetic locus entirely composed of missing values is, however, removed prior to analysis.

We also recommend the exclusion of any locus whose states are known among ≤ 25% of

individuals. As these loci are unlikely to generate sufficient support for association, their

removal is likely to improve computational efficiency without sacrificing power.

Less efficient or scalable GWAS methods often attempt to further alleviate their com-

putational burden by restricting GWAS to non-synonymous SNPs in coding regions,

perceiving the additional erosion of statistical power as a marginal and acceptable

cost. Although protein-coding regions account for the majority of microbial GWAS

discoveries made to date, we are conscious of the mounting evidence linking non-coding

and synonymous SNPs to phenotypes of interest, often exposing important regulatory

relationships [274, 275]. We therefore prefer to retain synonymous SNPs and variants in

non-coding regions within the genetic datasets submitted to our GWAS approach. To

facilitate this, we have pursued other means of minimising the computational expense of

our approach (see Section 3.11.2).
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3.4.2 Phenotypic data

Our approach is applicable to most phenotypic data types. The phenotype may be binary,

for example, indicating whether an isolate is “pathogenic” or “commensal”. Categorical

phenotypes are also permitted, although these must be ordered, interval variables It

would be inappropriate to use our method, for instance, to identify associations with

a tertiary host association phenotype containing “cows”, “chickens”, and “pigs”, as

these levels do not differ in magnitude. Our approach could, however, be applied to

the toxicity phenotype examined by Laabei et al. [120], as the authors have classified

initially-continuous data into categories of “low”, “medium”, and “high” toxicity. The

phenotype may also be a continuous variable, like MIC values measuring drug resistance

on a continuous scale. The phenotype submitted to analysis by the treeWAS R package

must be a vector or factor whose names correspond to the row names of the genetic

dataset. Any individual whose phenotype is unknown is excluded from the analysis.

Imbalanced phenotypes

The accuracy of association tests can be reduced by the imbalanced sampling of phenotypic

states (e.g., an extreme ratio of “cases” to “controls”) [276]. If the phenotypic distribution

is clearly skewed or significant phenotypic outliers are present in a sample, relevant

variation between the phenotypes of most individuals can be overshadowed by the large

differences between the bulk of the values and the rarer extreme phenotypes.

We recommend that users consider the distribution of phenotypic states prior to analysis.

Efforts should be made during sampling to ensure adequate representation of the pheno-

type at each of its levels or across its range. For skewed continuous variables, it may also

be possible to improve the analysis by transforming the phenotype. Transforming the

phenotype by rank, for example, will lead to a more uniform distribution of phenotypic

values, spreading the initially-skewed values more evenly within their range. Association

inference may be improved by analysing these relative phenotypic values, as greater

weight will be given to a larger proportion of the variation contained in a dataset.
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3.5 Phylogenetic reconstruction

Our analytical approach begins by identifying the phylogenetic tree that describes the

ancestral relationships linking the Nind isolates under analysis. To obtain a reliable

estimate of ancestry, phylogenetic reconstruction is performed on aligned whole-genome

sequence data, regardless of the type of genetic data under analysis. If, for example,

GWAS is being performed on accessory gene presence-or-absence data, we still wish to

analyse patterns of gene gain and loss along the clonal evolutionary history of the sample,

as inferred from genome-wide data. Because the tree topology and the relative length of

branches shape the data simulated within our method and inform the inferences made

by our approach, a reliable reconstruction of the phylogenetic tree is important.

To uphold the evolutionary model embodied by our phylogenetic tree, we must reconstruct

only the vertical process of genetic inheritance. If the absence of recombination has been

empirically established for a given dataset, standard phylogenetic methods should be able

to reliably reconstruct ancestral relationships. For purely clonal organisms, tree-building

can be performed within treeWAS via maximum parsimony [277] or distance-based

methods [186, 190]. Under these circumstances, our R package allows users to simply set

the “tree” argument of the treeWAS function to one of “parsimony”, “NJ”, or “BIONJ”.

In any sample where recombination has not been ruled out, we encourage users to

account for recombination during phylogenetic reconstruction. To this end, the treeWAS

R package provides tools for integration with ClonalFrameML, facilitating conversion

between the output of ClonalFrameML and the format required by our method. We

use a standard parsimony method, which does not enforce ultrametricity, to identify an

initial estimate of the clonal genealogy. We submit the initial phylogenetic estimate to

a recombination-aware phylogenetic method, using the ClonalFrameML [221] software.

This resolves inaccuracies in the initial tree caused by homologous recombination, which

can distort branch lengths and tree topology [213,215,216].

We measure branch lengths in units of the expected number of substitutions per site

across the tree. By excluding the effects of recombination from the clonal genealogy, we let

branch lengths reflect the number of substitutions introduced by mutation. These branch

lengths do not include substitutions due to recombination; but, instead, they represent

the amount of evolutionary opportunity available for the introduction of substitutions

by recombination events. For parsimony trees, we use the ACCTRAN [193] procedure to

infer the minimum Nsub per site on each branch b, where b ∈ {1, ..., Nbranch}. We define

the length of a branch lb by the Nsub on that branch at all i loci, where i ∈ {1, ..., Nloci},

such that:
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lb =
1

Nloci

Nloci
∑

i=1

Nsub(i,b) (3.1)

When calculating the matrix of pairwise distances for distance-based approaches, we

use the Jukes and Cantor [278] substitution model to specify equal substitution rates

across sites. If NJ [186] or BIONJ [190] give any lb < 0, we set lb = 0, as negative branch

lengths have no clear biological interpretation and may have an undesirable impact on

data simulation along the tree. Our simulation procedure is time-reversible. Our GWAS

method is applicable to both rooted and unrooted phylogenies, as well as ultrametric

and non-ultrametric trees.

3.6 Reconstructing ancestral states

To better inform our data simulation and association testing procedures, we estimate

the ancestral states of the genotype and phenotype at all internal nodes. For the binary

genotypic data, we use parsimony [255] to infer the most probable state at ancestral

nodes, for each locus (see Chapter 2, Box 2.9). We assume a minimum evolution model

and use the two-pass ACCTRAN procedure [193] to infer substitutions between genotypic

states along the branches of the tree only where these are required to explain the data

observed. A binary state is assigned to each internal node or, in a small number of

ambiguous cases, a value of 0.5 may indicate equally probable states.

ML methods can also be used to reconstruct the ancestral genotype (see Chapter 2, Box

2.10). The ML approach is more computationally intensive, but it allows uncertainty

in the estimates to be quantified. To incorporate this source of uncertainty into the

inferences made in association testing, we work with the marginal likelihoods of the

binary genotype, instead of working with the point estimates, as in parsimony. In

Chapter 4, through applications to simulated data, we compare the performance of our

approach with parsimonious and ML reconstructions (results in Tables 4.3, 4.4, and 4.5).

No significant difference in the overall performance of our approach is observed with

either reconstruction method. Users of the treeWAS R package may use ML methods to

reconstruct ancestral genotypes, if they prefer. However, we recommend parsimony, as it

can achieve similar performance in minimal computational time.

For the phenotype, the appropriate ancestral reconstruction method depends on the data

type. Binary phenotypes can be reconstructed via parsimony, using the same approach

as for the genotypic data [193, 255]. Continuous phenotypes should be reconstructed

with continuous ML methods [236,273]. Categorical phenotypes can be reconstructed by
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either parsimony or ML methods and treated as either discrete or continuous variables.

A parsimonious or a discrete ML reconstruction should be selected if it is illogical for

ancestral nodes to have taken on intermediate phenotypic states. These methods will

treat the transitions between all states as equally likely, unless relative weights are

specified by the user [257] If the levels of a categorical phenotype represent classifications

of a naturally continuous trait, like host age in years, a continuous ML reconstruction

is likely to be more appropriate. Point estimates of the ancestral phenotypic states are

analysed by our association tests.

3.7 Accounting for recombination and mutation

3.7.1 Impact on spurious association

In Chapter 2, we discussed how variable rates of substitution due to recombination

and mutation can alter the probability of spurious association and thus confound the

inferences made during association testing (see Figure 2.7). Both evolutionary processes

can produce genuine associations with a phenotype. Recombination, in particular,

can drive rapid phenotypic change by repeatedly introducing substitutions in adaptive

alleles. If non-associated sites undergo far fewer substitutions, associated sites may

stand out more clearly against this background. But, if substitutions occur frequently

across the genome due to widespread mutation and recombination, some proportion of

phenotypically-neutral alleles may correlate with the phenotype by chance alone. To

distinguish between spurious and genuine associations, we therefore need a way to account

for the impact of mutation and recombination in microbial GWAS. Without accounting

for this source of bias, existing GWAS methods are likely to over- or underestimate

the support for association. Somewhat surprisingly, microbial GWAS methodology has

largely overlooked this issue. In contrast, we anticipate that by accounting for the

number of substitutions observed, our GWAS approach will achieve greater accuracy and

reliability when making inferences about association in a range of datasets.

3.7.2 The homoplasy distribution

After reconstructing ancestral states, we identify the homoplasy distribution, comprising

the number of substitutions per site at all empirical loci. We use Fitch’s parsimony

procedure [255] to calculate Nsub at each site, defining Nsub as the parsimony cost,

or the minimum number of substitutions that must have occured across the clonal
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genealogy. The parsimony procedure can be applied to any type of binary genetic data,

whether these are core SNPs or accessory gene presence-or-absence data; only the unit of

substitution changes. Ancestral states and substitutions are inferred at recombinant as

well as non-recombining sites. Though recombination events are excluded from the clonal

genealogy, we do not remove recombinant regions from the sequences under analysis.

We can thus identify substitutions along the tree due to both vertical and horizontal

evolutionary mechanisms.

3.7.3 Implementation and rationale

Within our simulation procedure, we account for the effects of both mutation and

recombination at the level of individual substitutions. The simulation procedure is

described in detail below. Simply stated, however, at each simulated locus, Nsub is

drawn from the homoplasy distribution and Nsub substitutions are redistributed with

uniform probability along the phylogenetic tree. As we reassign individual substitutions

to new branches on the phylogenetic tree, the link between our simulation procedure

and the process of mutation is straightforward. The ability of our approach to simulate

the effects of recombination is perhaps less intuitive.

An alternative approach might attempt to more closely recreate the genuine process of

recombination, in which substitutions tend to be generated at multiple adjacent sites

through the introduction of an exogenous sequence fragment. Farhat et al. [106], for

example, suggest that each recombinant fragment should be treated as a “single site”.

In such an approach, instead of reassigning individual substitutions to new branches

of the phylogeny, one might try to reassign contiguous sequence fragments. To do this,

one would need to estimate the distribution of recombinant sequence fragment lengths

in the evolutionary history of the sample. Attempting to infer these unobserved events

from the data would be computationally expensive and it would introduce an additional

source of error into the simulation procedure. Critically, we do not believe this would

improve the simulation procedure or our estimation of the null distribution.

To explain why, we can compare two hypothetical scenarios, occurring in the evolutionary

history of a sample: (A) A 5 bp sequence fragment has recombined into the ancestral

genome at three locations along the phylogenetic tree, or (B) 5 adjacent loci have

undergone three mutations on the same three branches of the tree. Both (A) and (B)

would produce the same pattern in the genome sequences of sampled individuals. In

the homoplasy distribution, both would be represented by five values of Nsub = 3. We

have two options for how to simulate these events in the null genetic dataset. For the

mutation events in (B), we could simulate five separate loci by randomly reassigning
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three substitutions to new branches of the phylogeny in each case. For the recombination

event in (A), we could either do the same and treat the five loci separately, or we could

reassign the three substitutions at these five loci together to the same randomly-selected

branches of the phylogeny.

In the latter case, the five simulated loci would achieve identical association scores,

resulting in five identical contributions to the null distribution. In the former case, by

contrast, the association scores at these five loci would probably differ, and five separate

values would be added to the null distribution. Recall, however, that we simulate

≥ 10Nloci sites. Moreover, most values of Nsub repeat at hundreds or thousands of

empirical loci. Hence, whether we make five identical contributions to the null distribution

or five separate contributions in this instance, over many such randomisations we will

still converge on the same null distribution.

Our simulation procedure is therefore able to recreate the impact of recombination without

having to precisely recreate the process of recombination. We can use the homoplasy

distribution to summarise both mutation and recombination. And, by simulating the

randomised outcome of both processes, our approach can generate the appropriate

distribution of substitutions-per-site and accurately estimate the resulting probability of

spurious association.

3.8 Data simulation

The purpose of the data simulation procedure implemented within our association testing

approach is to generate a “null” genetic dataset that represents the null hypothesis of “no

association”. Our simulation procedure recreates the following features of the empirical

dataset, each of which influence the underlying probability of chance association:

1. The sample size.

2. The population structure.

3. The phenotypic distribution.

4. The mutation rate.

5. The recombination rate.

6. The genetic composition (MAF).

7. The strength of linkage disequilibrium.
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Each of these potentially confounding factors affects the probability of spurious association

in the dataset under analysis. Yet, these spurious associations cannot be immediately

distinguished from genuine associations. Our motivation for simulating data, therefore, is

to reproduce the degree of association observed due to confounding factors alone. Then,

by comparing the empirical dataset to its simulated counterpart, we can determine which

associations are likely to be caused by chance or confounding bias and which garner

sufficient support to suggest a true biological link.

We reconstruct the phylogeny, ancestral states, and homoplasy distribution as described

above. Our estimates of these empirical parameters are then used to inform the simulation

process. We simulate Nsim loci, such that Nsim ≥ 10Nloci, where the optimal value

of Nsim was determined through applications to simulated data (see Chapter 4). This

ensures that the null distribution is estimated with sufficient accuracy and that it

accounts for the variability inherent in our simulation-based approach. Finally, we

maintain the empirical distribution of phenotypic states along the terminal nodes of the

tree. This allows us to account for population stratification, considering both the strength

of population structure and the extent to which phenotypic states cluster in ancestral

lineages. We assume that, under the null model, mutations and recombination events

happen at a constant rate along branches of the clonal genealogy. Substitution events

occur independently of one another, constrained only by the tree structure and homoplasy

distribution. We generate each simulated genetic locus gi, where i ∈ {1, ..., Nsim}, by

following the simulation procedure in Box 3.1.
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1. The number of substitutions, Nsub, to occur along the tree at genetic locus i is

randomly drawn from the homoplasy distribution.

2. Nsub branches of the phylogenetic tree are randomly sampled without replace-

ment, and the probability of selecting branch j depends on its relative length:

Pr(branchj) =
lj

∑Nbranch

j=1 lj
(3.2)

Sampling without replacement ensures that the per-branch Nsub ≤ 1 at each

locus, to uphold the minimum evolution model assumed by the parsimonious

homoplasy distribution.

3. The state to be assigned to the root of the phylogeny is randomly sampled from

a discrete uniform distribution of the possible gi values, where gi ∈ [0, 1].

4. The states of gi at descendant nodes are set to be the same as their direct

ancestor, unless the branch j connecting ganci to gdesi was assigned a substitution

in Step 2. If this is the case, then we let gdesi = |ganci − 1|.

5. Step 4 is repeated until the simulation of gi completes its journey from root to

tips, and the states of gi have been defined at all internal and terminal nodes.

6. Calculate the MAF of gi at terminal nodes. If gi is not polymorphic, repeat

Steps 2 to 5 until MAF ≥ 1/Nterm, to ensure that some genetic variation is

present at each simulated locus, as in the empirical dataset.

,

Box 3.1. Simulation of genetic loci.

We ground all stochastic processes in pseudorandom number generation, which was,

in fact, developed for use in similar Monte Carlo simulation procedures [279]. So, in

Box 3.1, Steps 1-3 truly contain pseudorandom sampling processes. This ensures that

effectively random results can be achieved for each simulated locus and with each run of

the algorithm. At the same time, it gives users the opportunity to specify a seed, so that

identical results can be reproduced in subsequent analyses, if desired.

The simulation process allows the observed relationship between genotype and phenotype

to vary, but only within constraints established by the empirical dataset. Our simulations

recreate the empirical phylogenetic structure and approximately maintain the observed

LD strength and MAF distribution. This allows us to estimate the statistical non-

independence between isolates due to ancestry and between loci due to linkage. Hence,

whereas clonal relationships undermine the precision of most existing GWAS methods,

our approach is better prepared to delineate genuine associations from correlated spurious
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findings. By incorporating the homoplasy distribution, our simulation process recreates

the variation introduced by both mutation and recombination. With a recombination-

aware phylogeny, this renders our GWAS method applicable to recombinant as well as

clonal organisms. As we demonstrate in Figure 3.2, preserving the Nsub distribution and

tree structure improves our ability to recreate the empirical population structure and

distribution of allele frequencies [259]. The strength of association and the probability

of chance correlation with a phenotype are influenced by the MAF of empirical loci

and the underlying processes of mutation and recombination [241,280]. The ability to

simulate these parameters and account for their effects is a valuable addition to our

GWAS method.

Altogether, our simulation-based approach allows us to acount for the effects of seven

properties of the empirical dataset, each of which influences the potential for confounding

bias in association inference. Only one or two of these are addressed by most existing

microbial GWAS approaches. In addition, our approach inherently allows us to account

for interactions between these factors. Alternative approaches may struggle to accurately

quantify the individual and collective impact of this complex web of confounding variables.

Our Monte Carlo method provides a natural solution to this problem, replacing direct

calculation with estimation through simulation. As the simulated dataset captures

known confounders found in the empirical dataset, but does not recreate any genuine

associations with the phenotype, we proceed under the assumption that this dataset

represents the null hypothesis. Therefore, by comparing the distributions of association

score statistics in the empirical and simulated datasets, we should be able to separate

true signals of association from the noisy background of associations due to chance and

confounding factors.
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3.9 Tests of association

An effective GWAS method must (i) eliminate false positive findings, and (ii) retain the

statistical power to identify genuine associations. Our data simulation procedure, above,

facilitates a robust estimation of the empirically-shaped null distribution. This addresses

our first marker of effectiveness by enabling strict control over FPR in a wide range of

datasets, with any measure of association. In GWAS, control over type I error often comes

at the expense of control over type II error. Yet, the low FPR of our simulation-based

approach, in fact, presents an opportunity to augment the discovery power of our GWAS

method. We can attempt to increase the sensitivity of our approach by implementing

multiple independent tests of association. While GWAS methods with weaker control

over FPR would be unable to benefit from this strategy, we can draw on the findings of

multiple association tests to increase power without excessively compounding the FPR

of our approach as a whole.

We have designed three separate association scores to capture distinct, if overlapping,

signals of association. Each score is described in detail below (for notation, see Table 3.1).

Figure 3.3 summarises the purpose of each score, alongside an illustration of the type

of association it aims to detect. Our three measures are designed to complement one

another. By expanding the search for associations, our three measures should increase

the probability of detecting genuine associations. Collectively, these measures should

equip our GWAS method with greater power and flexibility, which will be a valuable

asset when facing unknown association landscapes in each new dataset analysed.

As opposed to existing phylogenetic GWAS methods, all three of our association tests can

be applied to binary, categorical, and continuous phenotypic data, and any type of genetic

data. This prevents the information loss and artificial categorisation required when

phenotypes must be reclassified as binary or categorical variables. In addition, unlike the

ad hoc or comparative applications of multiple association tests seen in some microbial

GWAS studies [120, 122, 132, 134], our three association tests have been specifically

designed to work together within a single, cohesive approach.

For reasons disussed below, and tested in Chapter 4, we apply our three association scores

in parallel. We quantify the relationship between each genetic locus and the phenotype,

in both the simulated and empirical datasets, with each measure of association. We

estimate a null distribution for each score from the values calculated for the simulated

dataset. This enables the identification of significant associations in the empirical dataset,

with each measure. Finally, each test contributes a set of well-supported associations to

the collective set of significant findings for our approach overall.
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Figure 3.3. Evolutionary scenarios detected by our association scores. The three complemen-

tary tests of association in treeWAS assign high scores to different patterns of association, examples of

which are illustrated above. Each panel displays the phenotype (left) and the genotype of one associated

locus (right), with binary states plotted along the tips of the phylogenetic tree (Nterm = 40) and

reconstructed ancestral states indicated along the branches of the tree (blue = 0, red = 1, grey =

substitution). A: Score 1 aims to detect association among terminal nodes and assigns a relatively high

value of 0.7 to this terminal configuration of phenotypic and genotypic states. B: Score 2 measures

association by counting how many branches contain a substitution in both genotype and phenotype,

assigning this pattern a score of 5. C: Score 3 is designed to find associations maintained loosely across

the phylogenetic tree, resulting in a Score 3 value of 10 in this scenario.

3.9.1 Score 1

Score 1, the “Terminal Score”, measures sample-wide association across the leaves of

the phylogenetic tree. With Score 1, we perform a straightforward allele-based test

of association on the basis of observed data only. This measure operates on the same

theoretical principles as the Quadrant Score described by Kruskal [281], rendering it

applicable to association testing, as previously proposed by Sheppard et al. [147]. For a

binary phenotype, Score 1 is calculated on the basis of a 2x2 contingency table containing

the possible combinations of terminal states, with and without the phenotype, and with

and without the genotype. Generalizing to continuous phenotypes gives Equation 3.4.
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Score 1 =

∣

∣

∣

∣

∣

Nterm
∑

i=1

1

Nterm

(pdesi gdesi + (1− pdesi )(1− gdesi )− (1− pdesi )gdesi − pdesi (1− gdesi ))

∣

∣

∣

∣

∣

(3.4)

The Nterm denominator in Equation 3.4 ensures that Score 1 values always fall in [-1,1].

The null and empirical distributions for Score 1 (as for Scores 2 and 3) are expected to

be approximately symmetric around zero. This allows us to take the absolute value of

each association statistic when estimating the phylogenetically-correct significance level

of empirical associations, enabling the identification of a single significance threshold for

Score 1 (as described below). The treeWAS R package reports the initial sign of each

association, to inform users of the directionality of all quantified relationships between

genotype and phenotype. We use the same convention to express directionality for Scores

1, 2, and 3, where Si is the value of one of our three measures of association at locus i:

Si







< 0 net negative association (gdesi pdesi ∈ {01, 10}, predominantly)

> 0 net positive association (gdesi pdesi ∈ {00, 11}, predominantly)
(3.5)

With respect to Score 1, association at a given locus is defined as the over-representation

of an allele among individuals with a particular phenotypic state, or according to the value

of the phenotype. To achieve a high Score 1 value, the relationship between genotype

and phenotype must be upheld across a relatively large proportion of terminal nodes. In

Figure 3.3A, for example, 85% of terminal nodes (34/40) are positively associated, while

only 15% (6/40) display negative association. As a result of this relatively consistent

pattern of association, Equation 3.4 produces a high Score 1 value of 0.7 (= 0.85− 0.15),

suggesting that the genotype and phenotype do not vary independently.

Score 1 considers observed data only, ignoring reconstructed ancestral information.

Measurements of association strength made by Score 1 will, therefore, be robust to

errors in phylogenetic or ancestral state reconstruction. Score 1 will also retain the

capacity to identify terminal associations even in the absence of homoplastic substitutions.

For example, in Figure 3.3A, the inferred ancestral states show that no branch of the

phylogenetic tree contains a coincident change in genotype and phenotype. According to

the homoplasy-counting framework for association testing, this scenario would provide no

evidence for association. Yet, by focusing only on the observed genotypic and phenotypic

states of sampled individuals, we can clearly see widespread allele-based association along

the tips of the tree. Score 1 aims to ensure that such relationships are not overlooked.
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3.9.2 Score 2

Score 2, the “Simultaneous Score”, takes an orthogonal approach to our first asso-

ciation score, adopting a homoplasy-based approach that defines association as the

over-representation of repeated, independently-emerging, coincident state changes in

both genotype and phenotype. With Score 2, we extend the association test back into the

evolutionary history of the sample, where it can capitalise on the additional information

inferred during phylogenetic and ancestral state reconstruction. Equation 3.6 quantifies

the amount of association between the phenotype, pi, and the genotype at a given locus,

gi, across each branch i of the tree.

Score 2 =

∣

∣

∣

∣

∣

Nbranch
∑

i=1

(panci − pdesi )(ganci − gdesi )

∣

∣

∣

∣

∣

(3.6)

For a binary phenotype with a parsimonious ancestral state reconstruction, Equation 3.6

is equivalent to counting the number of branches containing a simultaneous substitution

in genotype and phenotype. Score 2 was initially designed to count substitutions, though

Equation 3.6 now achieves the same goal for all phenotypes. To preserve this information,

we do not include a denominator as we had done in Equation 3.4. We also deliberately

exclude branch length from Equation 3.6, as we assume that all simultaneous substitutions

provide equally valid evidence of association.

Unlike Score 1, Score 2 does not require a sample-wide relationship to infer association.

In Figure 3.3B, for example, there is no net association across the tips of the tree (Score

1 = 0). But, as five simultaneous substitutions do provide evidence of association, Score

2 achieves a relatively high value of 5. By measuring distinct signals of association,

therefore, our second and first association tests act to complement one another. In

clonal populations, strong population stratification may prevent Score 1 from detecting

associations. Yet, if some loci undergo homoplastic mutations that deviate from the

pattern of ancestral correlation, Score 2 may be able to detect associations by separating

these loci from the genome-wide LD. In recombinogenic organisms, the horizontal

introduction of many trait-associated variants may modulate the phenotype to varying

degrees across the sample. If association at any one variant is insufficient for detection

by Score 1, it may nevertheless be caught by Score 2.
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Complementary pathways

Our second association test is also designed to detect loci that give rise to the phenotype

through complementary pathways. Equation 3.6 imparts a cumulative character to Score

2. Simultaneous substitutions increase the score, but branches with substitutions in

one or neither variable do not decrease its value. Equally significant values of Score 2

might be achieved by a strong association upheld in half of the phylogeny, or a weaker

association upheld across the tree. Returning to Figure 3.3B, we can see that Score 2

finds evidence for association only in the upper-most of the two major clades, at this

locus. Other loci may be responsible for the phenotype in the lower clade. Score 2

may detect elements of both complementary pathways, whereas Score 1 would reject

each on a sample-wide basis. Hence, by pairing our first allele-based measure with this

homoplasy-counting approach, we expand the scope of our search for associations.

3.9.3 Score 3

Score 3, the “Subsequent Score”, aims to quantify the association between genotype

and phenotype across the entire phylogenetic tree. It combines elements of both the

allele-based and homoplasy-counting frameworks. Score 3 attempts to identify any

associations that may have been overlooked, if any gaps have been left by Scores 1 and 2.

Score 3 is the mathematical solution to the integral of an association score, Cx, that

is measured at all points along the tree. Let Px and Gx represent, respectively, the

probable value of the phenotype and genotype at a point x on a branch i of length li. Px

and Gx are identified using a linear interpolation between the known or reconstructed

states at the ancestral and descendant nodes of branch i.

Px =
1

li
(panci (li − x) + pdesi x) (3.7)

Gx =
1

li
(ganci (li − x) + gdesi x) (3.8)

Let the initial “correlation score”, Cx, represent the degree of association between the

phenotype and genotype at point x. We can express Cx in terms of Px and Gx:

Cx = PxGx + (1− Px)(1−Gx)− Px(1−Gx)− (1− Px)Gx (3.9)
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Fully describing Cx in terms of its components, Px and Gx, gives us the following

expanded form of Cx, which can be measured at any point x along branch i.

Cx =
panci (li − x) + pdesi x

li

ganci (li − x) + gdesi x

li
+

(

1−
panci (li − x) + pdesi x

li

)

ganci (li − x) + gdesi x

li
−

panci (li − x) + pdesi x

li

(

1−
ganci (li − x) + gdesi x

li

)

−

(

1−
panci (li − x) + pdesi x

li

)

ganci (li − x) + gdesi x

li

(3.10)

Let Score 3 be defined as the absolute sum, for all branches i, of the integral of Cx,

where the point x takes all positions along branch i, from 0 to li.

Score 3 = |

Nbranch
∑

i=1

∫ li

0

Cxdx | (3.11)

Instead of solving the integral of Cx numerically upon each calculation of Score 3,

we have been able to achieve greater computational efficiency by solving the integral

mathematically:

Score 3 = |

Nbranch
∑

i=1

(−1 + 2panci )(−1 + 2ganci )li −

(−panci + pdesi − ganci + 4panci ganci −

2pdesi ganci + gdesi − 2panci gdesi )li +

4

3
(panci − pdesi )(ganci − gdesi )li |

(3.12)

Simplifying this gives Equation 3.13

Score 3 = |

Nbranch
∑

i=1

li
4

3
panci ganci +

2

3
panci gdesi +

2

3
pdesi ganci +

4

3
pdesi gdesi

− panci − pdesi − ganci − gdesi + 1 |

(3.13)
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Our evaluation of Score 3 through applications to simulated data (Section 4.3.1) indicates

that the performance of Score 3 is improved by removing the branch length term, li.

This produces the final form of Equation 3.14, which gives all edges equal weight. We

calculate Score 3 as follows, for each genetic locus and across all branches of the tree:

Score 3 = |

Nbranch
∑

i=1

4

3
panci ganci +

2

3
panci gdesi +

2

3
pdesi ganci +

4

3
pdesi gdesi

− panci − pdesi − ganci − gdesi + 1 |

(3.14)

The contour plot in Figure 3.5 illustrates how Equation 3.14 responds to change in the

genotype and phenotype. As the figure legend explains, Score 3 achieves its highest

values whenever a particular genotypic allele and phenotypic state are maintained across

a branch of the phylogeny.

If a substitution in one variable is followed, on a subsequent branch, by a substitution in

the other variable, Score 3 will incur no penalty for the lack of simultaneous change and

will capture the downstream association in so far as it is maintained. In Figure 3.3C,

for example, a substitution changes the genotype from 0 to 1 on the branch leading to

the largest of four clades in the right-hand phylogeny. A phenotypic substitution then

follows on a descendant branch in the left-hand phylogeny. Association is subsequently

maintained across many descendant branches within this subtree, though substitutions

near its tips disrupt the pattern of association among terminal nodes. This clade and,

indeed, the entire Figure 3.3C phylogeny illustrate how Score 3 can detect relationships

between genotype and phenotype that emerge along the tree, without requiring substi-

tutions in both variables to occur on the exact same branch. Even in the absence of

terminal association (Score 1 = 0) and simultaneous substitution (Score 2 = 0), Score 3

retains the ability to infer association through its more flexible phylogeny-wide measure.

Score 3 may be able to identify probabilistic patterns of association, which fluctuate

across the evolutionary history of the sample. In host association, for example, genetic

adaptation may contribute to host switching by increasing affinity for a different host or by

offering compensatory fitness advantages once in a new environment [147]. Figure 2.8 in

Chapter 2 illustrates how these more complex associations may emerge through staggered

substitutions and persist following the transition between phenotypic states. Score 3

aims to detect these less deterministic relationships. While Score 1 may capture broad,

sample-wide associations and Score 2 may detect convergent evolution or complementary

associations, weaker phylogeny-wide associations overlooked by our first two measures

may yet be captured by Score 3.
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Figure 3.5. Score 3 contour plot. This contour plot shows how Score 3 varies as a function of the

change in phenotypic and genotypic states across a branch of the phylogenetic tree. The figure is plotted

along two summary variables, Psum and Ssum, where Psum = panc
i + pdesi and Gsum = ganc

i + gdesi .

This allows us to illustrate in two dimensions how the four parameters, panc
i , pdesi , ganc

i , gdesi , affect the

value of Score 3. The contour plot uses color to represent the Score 3 values that result from each set

of original variables (red = +, purple ≃ 0, blue = −). Towards the corners of the figure, where both

phenotype and genotype maintain states near 0 or 1 across a branch (Psum ∈ {0, 2}, Gsum ∈ {0, 2}),

we see regions of increasingly large positive and negative Score 3 values, approaching ±1. Smaller values

(Score 3 ≃ ±1/3) result from simultaneous substitutions, owing to uncertainty in the proximity of the

two substitutions along the branch in question. Towards the central region of the figure, values begin to

approach zero, reflecting either a state change in only one variable or the maintenance of intermediate

states (≃ 0.5) in both genotype and phenotype.
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3.9.4 Pooling results

The three association scores described above have been designed to work together. As

Figure 3.3 illustrates, each measure may pick up on signals of association that are

overlooked by one or both of the other scores. To capture the benefits of each score, we

therefore adopt a parallel implementation of our three tests of association. To the best of

our knowledge, this has not been done elsewhere in microbial GWAS. Yet, the simulation

study in Section 4.5.4 provides ample support for our parallel implementation.

With each score, we quantify the association between the phenotype and the genotype

at each locus, in both the simulated and empirical datasets. We select a significance

threshold for each score, with reference to the relevant null distribution (as detailed

below). One set of significant associations is identified by each test, with a high degree

of statistical and evolutionary support. Each of these findings, therefore, constitutes a

suitable candidate for further investigation. Although it may provide additional support

for a finding, identification by a second or third association test is not required for overall

significance.

The findings from our three tests are pooled together to give one larger, collective set of

findings for our approach as a whole. Instead of merging our three well-defined measures

into one less informative aggregate score, we report three separate scores and p-values

for each locus. This improves the interpretability of our findings, by pairing measures of

significance with meaningful insight into the nature of each association.
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3.10 The threshold of significance

We use the null distribution to assess the significance of associations in the empirical

dataset. We distinguish significant findings from probable chance associations by selecting

a threshold of significance in the upper tail of the null distribution. Identification of the

significance threshold involves the following elements:

1. A base p-value, αbase.

2. A correction for multiple testing.

3. A means of estimating empirical p-values from the null distribution.

4. A number of simulated loci, Nsim, to make up the null distribution.

Each of these four elements can be achieved in several ways. In Chapter 4 (Section 4.4),

we use applications to simulated data to guide our selection of the most appropriate

approach in each case. We introduce each approach below, as we have implemented

these in the treeWAS R package to offer users greater flexibility. We indicate, at the end

of this section, which approach is recommended by our analysis.

3.10.1 The base p-value

The base p-value, αbase, allows us to specify the acceptable type I error rate for a given

association study. It represents the probability of incorrectly rejecting the null hypothesis

when, in fact, no association is present at the locus in question. With a base p-value of

αbase, we permit a αbase ∗ 100% chance of identifying a false positive association. It is

typical to see αbase = 0.05 in significance testing, allowing a 5% FPR, although this is an

arbitrary threshold. We view this as the minimally stringent threshold for significance.

To compare the standard αbase to a range of more conservative base p-values, we examine

results with: αbase = 0.05,0.01,0.001,0.0001.

3.10.2 Multiple testing correction

The multiple comparisons problem states that, as the number of statistical inferences

increases, the number of incorrect inferences will also increase. This problem is especially

pronounced in GWAS, where the number of statistical tests can number in the millions.

Multiple testing correction mechanisms compensate for the increased probability of

incorrectly rejecting H0 due to multiple comparisons.
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The Bonferroni correction provides a simple, conservative solution to the multiple

comparisons problem [282]. The Bonferroni correction controls the total number of type

I errors, to ensure that the significance of findings from each test remains valid when all

tests are considered. With no correction, if the overall significance level αbase = 0.01,

then ≤ 1% of all tests should return false positives. Instead, we work with a per-test

significance level, α, letting Pr(Ti = +|H0) ≤ α, such that Pr(some Ti = +|H0) ≤ αbase.

We identify α by adjusting αbase to account for the total number of independent statistical

tests performed:

α =
αbase

NscoreNloci

(3.15)

We define the number of tests by multiplying the Nloci tested by Nscore, the number of

association scores measured at each locus, where Nscore = 3 by default.

Condition Positive

(HA)

Condition Negative

(H0)

Test Positive

(Ti = +)

True Positive

(+)

False Positive

(Type I Error)

Test Negative

(Ti = −)

False Negative

(Type II Error)

True Negative

(−)

Table 3.2. Significance testing outcomes. Ti is a test of association performed at genetic locus i.

Under H0, the null hypothesis, no association exists between locus i and the phenotype. Under HA, the

alternative hypothesis, locus i and the phenotype are in association.

The False Discovery Rate provides a less stringent correction for multiple testing.

It may be appropriate, as many correlated tests are expected in microbial GWAS. The

Benjamini-Hochberg procedure [283] controls the false discovery rate (FDR) at the

significance level αbase, such that if αbase = 0.01, then ≤ 1% of test positives should be

false positives. We can define FDR, using the notation in Table 3.2, as:

FDR = E

[

FP

(TP + FP )

]

= Pr(H0 = true | reject H0) (3.16)

We take the following steps to control FDR:
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1. Identify the per-test significance level, α, by adjusting αbase to account for the

total number of independent statistical tests performed:

α =
αbase

NscoreNloci

(3.17)

2. Calculate a p-value, Pj , from the null distribution, for each simulated association

score, sj , where j ∈ {1, ..., Nsim}.

3. List Pj in ascending order, using an index k, such that Pk=1 is the smallest p-value.

4. Find the largest k such that:

Pk ≤ kα (3.18)

5. Let the corresponding value of sj=k be the location of the significance threshold.

3.10.3 Empirical p-value estimation

The null distribution estimates the distribution of association score values expected

under H0, “no association”, given confounding factors in the empirical dataset. For each

empirical association, we can derive a phylogenetically-correct empirical p-value from

the null distribution. For score S at locus i, we define the empirical p-value, Pi, as the

probability of observing an association as extreme as Si by chance under H0:

Pi = Pr(S ≥ Si|H0) (3.19)

The count-based approach is the most straightforward means of estimating empirical

p-values from the null distribution. Let Si represent the association score at empirical

locus i and sj represent the association score at simulated locus j, where i ∈ {1, ..., Nloci}

and j ∈ {1, ..., Nsim}. For each association score, we define the null distribution as the

histogram of all sj values. We estimate the upper tail of the null distribution to extend

only up to max(sj).

Let Cij be a binary count indicating the relative positions of a pair of scores sj and Si:
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Cij =







0 if sj < Si

1 if sj ≥ Si

(3.20)

We define the empirical p-value Pi as the proportion of sj falling at or above Si.

Pi =
1

Nsim

Nsim
∑

j=1

Cij , (3.21)

For any Pi = 0, we state the empirical p-value as Pi < 1/Nsim, as this more accurately

reflects the extent to which we can estimate the probability of spurious association.

The kernel density approach attempts to improve our estimation by smoothing out

the shape of the null distribution that was inferred directly from the sj values. We define

the null distribution as the kernel density estimate constructed from sj . Kernel density

estimation replaces the discrete count-based histogram with a continuous function, whose

density is expressed by:

f(s) =
1

Nsim

Nsim
∑

j=1

Kh(s− sj), (3.22)

where Kh is a Gaussian kernel function with smoothing bandwidth h [284]. For empirical

association score Si, we define the empirical p-value Pi as the area under the curve

sketched by f(s) that lies above Si:

Pi = 1−

∫ Si

0

f(s)ds (3.23)

Again, we state any Pi = 0 as Pi < 1/Nsim.

While the count-based procedure is intuitive and easy to apply, the kernel density

approach may provide a more refined estimate of the null distribution. The smoothing

procedure is expected to extend the estimated upper tail of the null distribution into

higher association score values. If the counts of sj under-estimate the variance of the

null distribution, the kernel density approach may reduce type I error. Alternatively, the
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density function may over-extend the upper tail of the null distribution and increase type

II error, rejecting genuine associations when there is, in fact, little evidence to suggest

that similar values are likely to occur by chance. Because the count-based approach

does not involve further estimation procedures, it is not susceptible to this type of error.

Hence, if the simulated data accurately estimates the shape and variance of the null

distribution, the count-based procedure may be more reliable.

3.10.4 The number of simulated loci

Our choice of Nsim will affect the null distribution and our assessment of significance.

If we let Nsim = Nloci, then for each empirical locus, we generate only one estimate of

the potential association score value at such a site under H0. Yet, by simulating across

many sites with the same Nsub value, we may still be able to estimate the shape and

variance of the null distribution with adequate resolution with Nsim = Nloci.

If we let Nsim = 10Nloci, we should achieve a more refined estimate of the null distribu-

tion. The less prevalent, more extreme chance association score values may be better

represented, and the upper tail of the null distribution may be better defined. If so,

this will improve our estimation of the significance threshold. We anticipate that as

Nsim increases, the accuracy of inferences made with respect to the null distribution will

also increase. However, increasing Nsim will also increase the computational cost of the

simulation procedure. Past a point, diminishing returns in improved accuracy will be

outweighed by computational efficiency considerations. This trade-off will also depend

on the other components of the threshold-selection mechanism.

3.10.5 Selecting the significance threshold

In Section 4.4, we compare the threshold-selection mechanisms above on simulated data.

Based on this evidence, we use the following procedures in our GWAS approach:

1. Set αbase = 0.01.

2. Account for multiple testing with the Bonferroni correction.

3. Estimate Pi with the count-based procedure.

4. Simulate Nsim = 10Nloci.

Altogether, we take the following steps to identify the significance treshold and empirical

p-values, for Scores 1, 2, and 3. First, specify the overall significance level as αbase = 0.01.
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Then, use the Bonferroni correction to get the per-test significance level, α:

α =
αbase

NscoreNloci

=
0.01

3Nloci

, (3.24)

Let Cxj record whether sj in the simulated “null” dataset falls at or below sx:

Cxj =







0 if sj > sx

1 if sj ≤ sx
(3.25)

Let F (s) be the empirical cumulative distribution function describing the simulated null

distribution. Then, F (sx) is the probability that the null distribution will take a value

less than or equal to sx:

F (sx) =
1

Nsim

Nsim
∑

j=1

Cxj (3.26)

We draw the significance threshold at the sx below α ∗Nsim null distribution values:

The significance threshold is drawn in the upper tail of the null distribution, at the sx

below At the sx value below α ∗ 100% of the null distribution above sx α Solve for sx to

get the location of the significance threshold:

F (sx) = 1− α (3.27)

Then, calculate the empirical p-value Pi for association Si, for all i ∈ {1, ..., Nloci}. Let

Cij record whether sj in the simulated “null” dataset exceeds Si, as in Equation 3.20.

Cij =







0 if sj < Si

1 if sj ≥ Si

(3.28)

Finally, define Pi as the proportion of null distribution values that fall at or above Si:

Pi =
1

Nsim

Nsim
∑

j=1

Cij , (3.29)

where Pi < 1/Nsim for any Pi = 0.
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3.11 Implementation in the treeWAS R package

The key aims of this project encompassed not only the development of a new approach

to microbial GWAS, but also the implementation, improvement, and application of

this method. Our next objective was thus to translate our proposed approach from

theory into practice, through the implementation of an effective, efficient, and user-

friendly software package. On a pragmatic note, embedding our GWAS method within

a stable computational tool would be necessary for us to test, assess, and refine our

approach. More importantly, however, the development of a dedicated software package

could facilitate the uptake and wider application of our method. The treeWAS R

package implements our tree-based microbial GWAS method in the R programming

language [137]. It is freely available at https://github.com/caitiecollins/treeWAS.

The treeWAS package aims to offer both flexibility and accessibility to users from a

variety of scientific backgrounds and skill levels. In its simplest form, treeWAS requires

only two arguments: a genetic dataset and a phenotype to be analysed. Supported by

the broader architecture of the package, our GWAS approach can be run with one core

function, treeWAS. However, sixteen optional arguments give users control over elements

ranging from phylogenetic and ancestral reconstruction, to memory usage and output

visualisation. Forty-one additional functions are implemented to execute the procedures

described above, either within treeWAS or independently.

3.11.1 Presentation of results

Output returned

Upon completion of the association analysis, we report the following:

Significant findings are presented, giving the column names and sequence positions of

all genetic loci identified as significantly associated with the phenotype. We first present

the entire pooled set of findings identified by treeWAS, as a whole. Then, we list the

three sets of significant findings, identified by Scores 1, 2, and 3 individually.

Association statistics are included for each association score, specifying the Si and sj

score values that were calculated at each empirical and simulated genetic locus. Each

empirical locus is also accompanied by an empirical p-value. The lowest estimable value

of Pi is noted, to represent any Pi = 0. For each association score, the threshold of

significance is indicated. For each association score, a summary table gives the names,

positions, Pi, and Si values of all significant loci identified, alongside the cell counts of a

gixpi contingency table, if the genotype and phenotype are binary.
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The data that was used in the analysis is provided to the user. This includes data

generated by treeWAS, like the simulated dataset, the homoplasy distribution, and

phylogenetic and ancestral state reconstructions. The cleaned genetic dataset and

phenotype are returned in the exact form analysed. This improves transparency, and it

enables reproducibility and further analysis, if desired.

Visualisation

The high dimensionality of genome-wide data can make it difficult to interpret GWAS

results. With appropriate visual summaries, however, we can dramatically improve

the interpretability of our findings. The treeWAS R package implements several cus-

tomisable plotting functions for this reason. In each analysis, three separate graphical

representations are produced by treeWAS, unless otherwise directed.

First, we generate a plot of the estimated or input phylogenetic tree, as in Figure 3.6A.

We represent the phenotype along the tree with a blue-to-red colour scale, which is

binary, discrete, or continuous to match the phenotype. We indicate the phenotypic

states observed at terminal nodes, as well as those inferred by treeWAS at ancestral nodes

and across branches (grey = substitution). Our rapid data cleaning and reconstruction

procedures allow this figure to be generated within seconds, providing users with a simple

initial visual check of the data. Furthermore, it enables an examination of the phenotypic

and ancestral genotypic variation in the dataset. In addition, when the analysis reports

its findings, this figure will serve as a valuable reference, allowing users to trace the

evolutionary origins of the significant associations identified by each measure.

Two other types of plot are produced upon completion of the analysis. One set

contains Manhattan plots, showing the empirical association score values, Si, for all

i ∈ {1, ..., Nloci}, as measured by Scores 1, 2, and 3 (as in Figures 3.6B, D, and F). Each

point represents one empirical association, Si, at the sequence position indicated on the

x-axis and with a score value shown along the y-axis. The colour of points serve only to

visually break up the x-axis. The significance threshold is drawn in red, horizontally,

at y = sx. Points above this line represent significant associations. Alternatively, the

manhattan.plot function can be used to plot the negative log-transformed p-values along

the y-axis, as is commonly done in human GWAS. We find our original association

score values to be more informative, especially as they can be compared to values in the

null distribution. Figure 3.6 contains an illustration of the plots produced by treeWAS

during a typical analysis. In real empirical analyses, these plots can show much greater

complexity and may indicate linkage or reveal relationships among associated sites.
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Third, the null distribution is plotted as a histogram of the simulated association scores,

sj , for j ∈ {1, ..., Nsim}, for Scores 1, 2, and 3, as in Figures 3.6C, E, and G. In its upper

tail, a significance threshold is drawn, at sx. Above this threshold, significant empirical

associations are represented with labelled arrows pointing to the x-axis at Si, for each

Si > sx. This plot function can also be used to visualise the empirical distribution, or to

overlay the null and empirical distributions (as in Figure 4.12).

3.11.2 Optimisation and efficiency

The treeWAS R package provides an efficient implementation of our phylogenetic GWAS

method. treeWAS can perform GWAS on a typical dataset (Nind = 100, Nloci = 100, 000)

on a standard laptop computer in under two minutes (Figure 4.18). Over time, treeWAS

has undergone considerable improvements in computational efficiency. Compared to

previous versions, the current implementation of treeWAS achieves a four-fold reduction

in the run time required for analysis and a three-fold decrease in memory demands.

These efficiency gains were attained through an iterative process of development, testing,

and refinement. We reduced the memory burden of our approach by encoding all genetic

variation in binary sites and storing it in logical matrices rather than numeric or character-

based sequences. By excluding fixed loci, following phylogenetic reconstruction, we were

able to further decrease the time and memory required to run treeWAS, without impacting

the power or performance of our GWAS approach (as Pr(H0 = true|MAF = 0) = 0). At

the same time, we were able to achieve efficiency without having to eliminate synonymous

SNPs or SNPs in non-coding regions. A growing body of evidence indicates that, by

removing these sites, GWAS methods may be overlooking genuine functional relationships,

for example, in the regulation of gene expression [285–288].

Additional streamlining was achieved at polymorphic sites. Instead of repeating all

procedures at every empirical locus i and simulated locus j, for all i ∈ {1, ..., Nloci} and

j ∈ {1, ..., Nsim}, we found we could restrict most procedures to the subset of unique sites

only. To ensure accurate estimation of the null distribution, simulation is independently

performed at all Nsim loci. But, we reconstruct ancestral states and compute association

scores in the empirical and simulated datasets at unique sites only, as these calculations

will be identical for duplicate patterns. We retain one representative of each unique

column pattern gi ∈ {0, 1}Nind , but any identical site gj (Dij = 0) is indexed and

set aside. Before using the simulated null distribution to make any inferences about

the significance of empirical associations, we expand all calculations according to the

index, to preserve the original distribution of column patterns. This procedure reduces
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redundancy by eliminating potentially large proportions of the Nloci sites to be analysed,

which consistently and often dramatically improves the efficiency of treeWAS.

Line-by-line profiling allowed us to identify and address lingering redundancies and

bottlenecks in the code. Any loops implemented over the Nloci columns, for example,

were reoriented along a smaller dimension (e.g., Nind, Nbranch) or, wherever possible,

they were reconfigured to perform all procedures simultaneously. For example, our

approach to data simulation is described in Box 3.1 as a step-wise procedure, repeated

Nsim times. In practice, these steps are performed only once, and all Nsim loci are

independently but simultaneously simulated. Likewise, the Nsub substitutions to occur at

each simulated site are not drawn Nsim times; instead, a more efficient implementation

randomly draws Nsim samples of Nsub together, in a single step. Efforts to optimise

treeWAS methodology, in terms of its sensitivity and specificity, were also pursued

through comparative applications to simulated datasets (see Chapter 4).

With large microbial genome-wide datasets, some computers may still find it challenging

to carry out our simulation-based approach to GWAS, despite the improvements in

efficiency offered by the current version of treeWAS. Insufficient available memory is

most often the limiting factor in these conditions. Memory constraints can, however, be

overcome if the initial large volumes of sequence data can be broken down and analysed

in more manageable fragments. In a genetic dataset with Nind rows and Nloci columns,

we consider each sequence to be a concatenation of smaller chunks of sequence, Ci, where

i ∈ {1, ..., Nchunk} and
∑Nchunk

i=1 Ci = Nloci. Chunk size, Ci, is the same for all i, with

the possible exception of Ci=Nchunk
. The optimal value of Ci depends on Nloci, Nsim,

the number of unique column patterns, and the memory available on the computer at

the time of analysis. Our phylogenetic GWAS procedure can be carried out across any

number of chunks, as we propose in Box 3.2.
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1. Select Ci, the size of each chunk, in one of two ways:

(a) Specify Ci to be an integer between 1 and Nloci (e.g., Ci = Nloci/2).

(b) Set treeWAS argument mem.lim = TRUE to determine the maximum Ci

possible without breaching memory limits.

2. Perform phylogenetic and reconstruction and data cleaning on all input sites.

3. Reconstruct ancestral states at all Nloci polymorphic sites and identify the homo-

plasy distribution.

4. Get Nchunk contiguous subsets of the Nloci sites, s.t. chunk 1 spans loci gi∈{1,...,Ci}.

5. For chunk i, where i ∈ {1, ..., Nchunk}:

(a) Define Nsim for chunk i as Nsim(i) = Ci ∗Nsim/Nloci.

(b) Simulate Nsim(i) sites along the tree, drawing Nsub from the genome-wide

homoplasy distribution.

(c) Reconstruct ancestral states at each simulated locus.

(d) Measure associations at each epirical and simulated locus, storing Si and sj

for all i ∈ {1, ..., Ci} and j ∈ {1, ..., Nsim(i)}, for Scores 1,2, and 3.

(e) Remove any data that was used in chunk i but is no longer needed.

6. Repeat Step 5 for all chunks, until association scores Si and sj have been calculated

for all i ∈ {1, ..., Nloci} and j ∈ {1, ..., Nsim}.

7. Using all sj to estimate the null distribution, follow the procedure in Section 3.10.5

to identify the significance threshold and significant values of Si for each measure.

Box 3.2. Chunk-by-chunk procedure.

The chunk-by-chunk procedure provides a valuable alternative implementation of our

GWAS method. Naturally, computational time increases as a function of Nchunk. Hence,

where memory limits are not restrictive, the default behaviour of treeWAS prioritises

efficiency in computational time by setting Ci = Nloci and following the standard

procedure. However, on machines with insufficient memory, our ability to control

the trade-off between time and memory requirements allows treeWAS to escape the

constraints imposed by prohibitive memory limits. Time permitting, therefore, treeWAS

should be able to analyse datasets of any size on almost any computer.

3.11.3 Accessibility and user resources

To ensure that users get the most out of the treeWAS R package, we provide detailed

examples, tutorials, and documentation. Each function in treeWAS is accompanied by a

thorough description of its purpose, arguments, and output. Useful information is also
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printed out during the execution of key functions, to inform the user of changes made

during data cleaning, to provide updates on processes underway, and to offer suggestions

in case any argument is contraindicated by the data under analysis. Worked examples

and sample data are included to illustrate useful applications of treeWAS functions,

and to provide a practical demonstration for users unfamiliar with expected inputs and

outputs, argument usage and data formatting. A more extensive tutorial is presented

in vignettes, available within treeWAS and in our online Wiki. Users can follow this

documentation through each stage of the analytical process, from the installation of

treeWAS, to data cleaning, conversion, and integration with ClonalFrameML, through the

treeWAS association testing pipeline, to the visualisation of output and the interpretation

of results. We encourage users to interact with us on our online forum, where we provide

detailed explanations and implement new features in response to user questions and

requests. The treeWAS R package has been released under version ≥ 3 of the GNU

General Public License. All code and documentation in the treeWAS R package can

be viewed online at https://github.com/caitiecollins/treeWAS/issues. We are

pleased that, in addition to meeting our fundamental aims of efficacy and efficiency,

we have been able to implement our GWAS method in software that is open-source,

user-friendly, and freely available to the public.
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4.1 Simulation study

In this section, we apply our GWAS method to a large number of simulated datasets and

we examine how its performance varies. Our motivation for performing this simulation

study is two-fold. First, we use analyses of simulated data to guide the development of

our GWAS method. We make isolated changes to our approach and, by comparing the

resulting performance in a controlled, simulated setting, we are able to make evidence-

based decisions about which methodological choices are likely to produce more accurate

and reliable results in real analyses. Second, once we have optimised our approach and

settled upon a stable version of our GWAS method, we use analyses of simulated data to

evaluate the performance of our method and to compare it to alternative approaches.
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We apply treeWAS and six comparator methods to over 600 unique synthetic datasets.

Our protocols for simulating genotypic, phenotypic, and associative data are described

below and implemeted in the treeWAS R package. We evaluate the performance of our

method, we describe how it changes as we vary parameters of the simulated datasets, and

we compare its performance to that of existing GWAS methods. Altogether, through

applications to simulated data, we aim to refine our GWAS method and to provide an

assessment of its capacity to identify associations across a diverse array of datasets.

4.1.1 Honing methodology

We first apply our GWAS approach to simulated datasets as a means of improving our

developing method. We observe how performance varies when different methodological

choices are made, presenting a detailed examination of these components:

• Ancestral state reconstruction method: parsimony or maximum-likelihood.

• Score 3 calculation: including or excluding branch length (Eqn 3.13 or 3.14)

• Significance threshold selection: combinations of (i) base p-value, (ii) multiple

testing correction, (iii) p-value estimation, (iv) number of simulated sites.

• Association testing: single score or multiple scores, in parallel or sequentially.

In each case, we use the evidence generated by the simulation study to identify the

optimal approach, which we then either permanently encode in the treeWAS R package

or establish as the recommended option for users of our GWAS method.

4.1.2 Parameters explored

We then use this simulation study to evaluate the performance our method. We assess

the performance of our method, as a whole and in terms of each association score, and

we compare this to the performance of alternative GWAS methods. Simulated data

allows us, for example, to see how the sensitivity and specificity of GWAS methods vary

as a function of the relative strength of simulated associations and confounding factors.

We assess how performance varies as a function of the following parameters:

• Simulation framework: Sets A, B, and C.

• Recombination rate: 0, 0.01, 0.05, 0.1.

• Number of individuals: 50 to 200.

• Number of genetic loci: 10,000 to 100,000.

• Accessory genome sim.: Nind = 100, Nloci = 5, 000, R = 0.2.
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(A)

(B)

(C)

(D)

Figure 4.1. SimBac

homoplasy distributions

by recombination rate. x =

Nsub, y = Frequency. A: R = 0

B: R = 0.01 C: R = 0.05 D:

R = 0.1.

Unless otherwise indicated, the following parameters remain fixed through-

out the study. We set Nind = 100, Nloci = 10, 000, Nassoc = 10, phenotypic

Nsub ∼ Pois(15), we require the frequency of the minor phenotype to be

≥ 25%, and we simulate indiviuals along coalescent phylogenetic trees.

4.1.3 Simulating non-associated loci

The vast majority of sites in our simulated genetic sequences are not asso-

ciated with the phenotype. Genetic variation at these loci is characterised

by the ancestral relationships between individuals and shaped by mutation

and recombination. Before simulating the 10 trait-associated sites, we

simulate these 9,990 background loci as follows:

1. Define the clonal genealogy linking isolates by simulating a binary,

ultrametric, coalescent tree with Nind = 100 terminal nodes.

2. Define the homoplasy distribution by using SimBac to estimate Nsub

for particular rates of mutation and recombination (see below, Figure

4.1).

3. Simulate neutral evolution along the tree according to the procedure

described in Box 3.1, such that mutation and recombination events

at each site occur at a constant rate across the tree.

4.1.4 Simulating recombination

To assess performance as a function of the recombination rate among

non-associated loci, we simulate datasets at four values of R, varying by an

order of magnitude. We used SimBac [289], software specifically designed

to simulate the effect of homologous recombination on bacterial evolution,

to estimate the effect of recombination on the homoplasy distribution. We

simulated four genetic datasets with SimBac, setting the recombination

rate parameter, −R, to 0, 0.01, 0.05, and 0.1, where these site-specific rates

specify E[Nsub] across the evolutionary history of simulated genomes due

to within-species homologous recombination. We selected these −R values

to simulate the range of recombination rates that we expect to encounter

in bacterial association studies performed in organisms for which a clonal

genealogy can be inferred [221].
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We fixed all other SimBac parameter values. In each case, we simulated −N = 100

individuals, and a large number of loci in each dataset, specifying −B = 1, 000, 000 sites

with no gaps between them (−G = 0). We set the average length of a within-species

recombinant interval to −D = 500. We specified no between-species recombination

(−r = 0), with no variation (−m = 0,−M = 0), and we set the site-specific mutation

rate to −T = 0.01. At the four within-species recombination rates examined, r/m

= 0, 1, 5, and 10, ranging from ratios observed in clonal L. interrogans [74] and M.

tuberculosis [290] to those of recombinant C. jejuni [157] and N. meningitidis [74].

We estimated the homoplasy distribution of each SimBac simulated dataset. First, we

inferred the clonal genealogy, using ClonalFrameML [221] to account for recombination,

with an initial tree reconstructed with the dnapars algorithm in PHYLIP [194] We used

the Fitch parsimony algorithm [255] to calculate the minimum Nsub per site. This allowed

us to identify homoplasy distributions characteristic of the four recombination rates we

wished to investigate (see Figure 4.1). We use these homoplasy distributions to simulate

recombination among the 9,990 non-associated loci in each simulated dataset. The three

simulation sets described below are each used to simulate 80 datasets for performance

testing, with 20/80 datasets simulated at each of the four recombination rates above.

4.1.5 Simulating trait-associated loci

To test the performance of our GWAS method, we devised three different protocols for

simulating phenotypically-associated genetic variables. The synthetic datasets analysed

in this study are primarily grouped into three main panels, termed Set A, B, and C, which

are defined by the simulation framework used to generate the trait-associated columns

in each genetic dataset. Each set operates on a different definition of “association” and

takes a unique approach to simulate the relationship between the Nassoc = 10 associated

loci and the phenotype. We analyse 240 simulated datasets, comprising 80 datasets

from each set, in the comparative performance evaluation at the core of this simulation

study. An additional 394 unique datasets are simulated under the sophisticated Set C

framework to facilitate a sensitivity analysis of performance and run time variation.
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4.1.6 Set A

Set A was designed with the same conception of association as Score 1, in that associations

are defined and quantified primarily at the terminal nodes of the tree. In Set A, the ten

genotype-phenotype associations are generated in a three-step procedure:

1. Simulate the phenotype.

(a) Let phenotypic Nsub Pois(λ = 15), such that E[Nsub] = 15.

(b) Sample one value from Pois(15) to determine how many phenotypic Nsub will

be simulated along the tree.

(c) Distribute the Nsub phenotypic substitutions along the tree by sampling Nsub

branches such that Pr(branchj) ∝ lj .

(d) Select proot by sampling one value from U(0, 1).

(e) Determine the state of all nodes. From root to tip, set pdesj = pancj , unless

branchj contains a substitution, in which case, pdesj = (1− pancj ).

2. Generate perfect association.

(a) Select the sequence positions of the 10 associated loci by sampling 10 values

from U(1, 10000).

(b) Define the genotype at each associated locus i on branch i as gi,j = pj ,

producing perfect correlation with the phenotype at all nodes.

3. “Dilute” association at terminal nodes.

(a) Specify dilution factor δ = 0.1 and randomly sample δ ∗Nind terminal nodes,

for each associated locus.

(b) At each associated locus, dilute the association by redefining sampled nodes

gtermd as (1− gtermd ).

This procedure weakens the initially-perfect association simulated between the ten genetic

variables and the phenotype. Note that setting δ = 0.1 will give Score 1 = 0.8 (= (90 -

10)/100) at each associated locus in Set A. Whereas, because nodes d will differ among

the ten associated loci, Scores 2 and 3 will vary.
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4.1.7 Set B

Set B was designed to test, in particular, the potential of Score 2 to identify associated

genetic loci that give rise to the phenotype through two non-overlapping complementary

pathways. In Set B, complementary associations between each of the ten genetic loci

and the phenotype are created as follows:

1. Simulate phenotypic states pj as in Set A, Step 1.

2. Generate perfect association at sites gassoc
i∈[1,10], as in Set A, Step 2, s.t. gi,j = pj .

3. Create two complementary pathways and assign five associations to each.

(a) Bisect the phylogeny into K = 2 major clades by identifying two subtrees.

(b) If Nk < 1
3Nind in either clade k = 1 or k = 2, transfer sub-clades from the

larger to the smaller major clade until 1
3Nind < Nk < 2

3Nind.

(c) To generate complementarity, maintain perfect association at gassoc
i∈{1,...,5} in

one subtree but set gassoc
i∈{1,...,5} = 0 in all genomes in the other subtree. Repeat,

with the opposite subtrees, for gassoc
i∈{6,...,10}.

Our purpose in generating these strong associations in subtrees alone is to test the ability

of Score 2 to detect associations that give rise to the phenotype through complementary

pathways. We do not expect that any of the other tests of association, in treeWAS or

competing approaches, will perform particularly well in this simulation set.

4.1.8 Set C

Set C was designed to generate the most complex and subtle associations of our three

simulation sets, through a simulation process that more closely recapitulates genuine

evolutionary processes. Similar to the conceptual framework adopted in Score 3, Set C

conceives of associations as probabilistic relationships in a constant state of flux across the

phylogenetic tree. In Sets A and B, a pre-determined number of phenotypic and genotypic

substitutions are assigned to the branches of the tree, with perfect associations generated

and then subsequently modified. By contrast, in Set C, the processes of substitution

and association at the ten associated loci are stochastically generated, according to an

instantaneous transition rate matrix, Q, in a time reversible Markov chain.

In Set C, association is simulated as follows:

1. Let Q control the rate of transition between all four possible combinations of a

binary genotype, gi, and phenotype, pi across branch i of the tree.
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2. Specify Q with two parameters: s, the baseline substitution rate, which applies to

all columns of Q; and a, the association factor, which encodes the preference for

positive association {(0, 0), (1, 1)} over negative {(0, 1), (1, 0)}.

3. Let Q be a matrix whose cells Qij specify the instantaneous rate of transition

between the ancestral genotypic and phenotypic states (ganc, panc) in row i and

descedant states (gdes, pdes) in column j. Because we assume that transitions do

not occur instantaneously in both variables, let Qij = 0 along the antidiagonal.

Along the main diagonal, set Qij such that
∑4

j=1 Qij = 0 in each row.

Q = (ganc, panc) x (gdes, pdes) =













0, 0 0, 1 1, 0 1, 1

0, 0 −2s s s 0

0, 1 sa −2sa 0 sa

1, 0 sa 0 −2sa sa

1, 1 0 s s −2s













(4.1)

4. Parameterise Q to create a dependent relationship between genotype and phenotype

at associated sites.

(a) Set s = 20 and a = 10 to get E[Nsub] ≃ 15 for the phenotype. This

will generate moderate population stratification in a sample of Nind = 100

clonally-related individuals, because phenotypic states will tend to cluster

along ancestral lines.

(b) To account for the total branch length of the tree, divide s by
∑Nbranch

i=1 li.

With a tree whose branch lengths sum to 8.48, setting s = 2.35 (= 20/8.48)

and a = 10 gives:

Q =













0, 0 0, 1 1, 0 1, 1

0, 0 −4.717 2.358 2.358 0.000

0, 1 23.585 −47.169 0.000 23.585

1, 0 23.585 0.000 −47.169 23.585

1, 1 0.000 2.358 2.358 −4.717













(4.2)

5. Convert the stationary rate matrix, Q, into a matrix of probabilities, P . Define the

P matrix as (ganc, panc) x (gdes, pdes). Let the cells of Pi specify Pr(gdesi , pdesi |ganci , panci )

for a branch of length li.

6. Create the P matrix for branch i by using matrix exponentiation to account for

the length, li, of the branch in question.
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Pi = exp(Qli) (4.3)

Shorter branches reduce the probability of transition, favouring the initial states of

both genotype and phenotype. For example, if li = 0.0001, Pi is calculated as:

Pi =













0, 0 0, 1 1, 0 1, 1

0, 0 0.999 0.000 0.000 0.000

0, 1 0.004 0.993 0.000 0.004

1, 0 0.004 0.000 0.993 0.004

1, 1 0.000 0.000 0.000 0.999













(4.4)

Longer branches favour transition, increasing the probability of substitution in one

or both of the genotype and phenotype, depending on their initial states and the

relative preference for association established in Q. For example, if li = 1, Pi is

calculated as:

Pi =













0, 0 0, 1 1, 0 1, 1

0, 0 0.459 0.045 0.045 0.450

0, 1 0.455 0.045 0.045 0.455

1, 0 0.455 0.045 0.045 0.455

1, 1 0.450 0.045 0.045 0.459













(4.5)

7. Progressing from root to tips, define Pi for each branch i ∈ {1, ..., Nbranch}, and

draw the genotypic and phenotypic states at the descendant node, letting Pr(gdesi ,

pdesi ) be a function of (ganci , panci ) and li.

(a) Because we simulate one phenotype but ten associated loci, we simulate

all genotypes simultaneously. Using the P matrix to guide the selection

of the state of pdesi , we draw the descendant states of all ten associated

loci simultaneously from the probability distribution of its possible states,

conditional on the state of pdesi .

8. Repeat this process of transition across all branches i ∈ {1, ..., Nbranch}, until

genotypic and phenotypic states have been selected at all nodes, from root to tips,

for all trait-associated sites.
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4.1.9 Comparator GWAS methods

To benchmark the performance of our approach, we carried out a comparative analysis

of GWAS approaches, by applying multiple methods to the same simulated datasets.

In addition to our own phylogenetic GWAS method, we also applied six alternative

approaches to each of the 240 datasets simulated. We aim to compare the performance

of different GWAS methods under the three simulation set frameworks for generating

associated loci and while varying the parameters controlling non-associated loci. Table

4.1 presents, for our approach and the six comparator GWAS methods, which tests of

association are used and which corrective measures are taken to counteract confounding

population structure. A detailed description of these alternative GWAS approaches can

be found in Chapter 2.

We use the Fisher’s exact test, and the X2 test available in PLINK as benchmarks, to

demonstrate what results would be found by two of the most popular tests of association

when no correction for population stratification was applied [136,291]. The PLINK X2

test with Genomic Control (GC) provides the simplest solution to population stratification.

As high λGC values are likely to be calculated for our simulated clonal populations, we

expect that the uniform correction by λGC may reduce the power of GC [136].

We include two multivariate approaches, Principal Components Analysis (PCA) and the

Discriminant Analysis of Principal Components (DAPC). These approaches summarise

the variation contained in a genetic dataset by identifying synthetic PC dimensions that

represent major axes of overall (within- and between-group) variation, in PCA, and

that maximise between-group variation in DAPC [110,145]. PCA is the method most

commonly used to correct for population stratification in human GWAS [107, 174] and a

prevalent approach in microbial GWAS [116,119,122,125]. DAPC has more recently been

proposed as a potential improvement on PCA, and it has also been applied in bacterial

GWAS [80, 145]. We followed the protocol used in human genetics and corrected for

ancestry by regressing along the significant PCs of PCA or DAPC, continuously adjusting

the genetic data by the amounts attributable to ancestry, according to the method in

question [107]. We then identified significant associations via X2 test. Both PCA and

DAPC were implemented in the R programming language [137], using functions encoded

in the adegenet R package [292]. Our implementation of PCA is similar to the sequence

element enrichment analysis (SEER) method of Lees et al. [129]. As in SEER, we use

regression to model the phenotype as a function of both the genotype and the set of

significant PCs, incorporating these descriptor variables as fixed effects. However, as we

decribe below, we use additional optimisation procedures to select the number of PC

axes retained in each application of both PCA and DAPC in our comparative analysis of
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GWAS methods.

The sixth and final comparator GWAS method included in our simulation study is the

Cochran-Mantel-Haenszel (CMH) test. The CMH test implements a cluster-based control

for population structure by stratifying the association test along k population clusters

within a 2x2xk design [144]. The CMH test is among the most popular microbial GWAS

methods [49, 124, 126]. We implemented the CMH test with functions from the stats

R package in the R software [137]. The number of clusters, k, was objectively selected

through the k-means clustering procedure described below [292,293].

Method Association Test Population Stratification Correction Reference

Fisher Fisher’s exact test None. [291]

PLINK X2 test None. [136]

GC X2 test Adjusts all association statistics by a factor, λGC ,

that quantifies overall inflation due to population

stratification.

[136]

PCA Analysis of Variance

(ANOVA)

Corrects the genetic data matrix by regressing

along the significant PCs of PCA.

[110] [294]

DAPC Analysis of Variance

(ANOVA)

Corrects the genetic data matrix by regressing

along the significant PCs of DAPC.

[145] [294]

CMH Stratified X2 test Stratifies the association test by population. [144]

treeWAS Scores 1, 2, 3 Compares associations to a null distribution gen-

erated by simulating genetic data along the tree.

[295]

Table 4.1. GWAS methods compared.

Choosing the number of clusters and PC axes:

To use the CMH test, PCA, or DAPC to correct for confounding population structure

in microbial GWAS, one must first determine how many clusters or PC dimensions

will be used to represent ancestral populations or significant axes of ancestral variation,

before these can be used to stratify the analysis or included as fixed effects in the

regression model. How best to make this decision remains a topic of debate, with many
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proposed solutions [170,172,184]. To eliminate this potential source of subjective bias

and variation from our comparative analysis of GWAS methods, we chose to use one

objective approach, k-means clustering, as the basis for selecting the number of significant

clusters or dimensions for all three approaches.

We use the find.clusters algorithm implemented in the adegenet R package to apply

k-means clustering to the PCA-transformed genetic data [292,293]. The optimal k to

describe the population structure of a dataset is inferred by identifying the value of k

associated with the lowest BIC, as shown in Figure 4.2. When performing GWAS with

the CMH test, we stratify the association analysis according to this configuration of k

population clusters. In the PCA analysis, we correct the genetic data by regressing along

(k− 1) significant PCs, the number of dimensions required to separate the k populations.

Likewise, we set (k − 1) PCs as the number of discriminant functions to be retained in

the DA component of the DAPC analysis.
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Figure 4.2. K-means clustering. Ex-

ample output, plotting BIC values by num-

ber of clusters, k. The red line at min(BIC)

indicates the optimal value of k = 7.

We carry out a separate procedure to objectively estimate the

optimal number of PCs to be retained in the initial PCA step of

the DAPC analysis. We perform this optimisation procedure via

stratified cross-validation, using our own implementation of the

procedure in the xvalDapc algorithm, which is available in the

adegenet R package [292]. At each level of PC retention, from 5

to 45 PCs, DAPC is performed on 30 different “training sets”,

comprising stratified random samples of 90% of the data from

each cluster. The results of each training set analysis are used to

predict the cluster memberships of individuals in the remaining

10% test set, and predictive success is plotted as a function of the

number of PCs, as in Figure 4.3. The number of PCs associated

with the minimum mean squared error in prediction, and usually

also the maximum mean predictive success, is inferred to be the

optimal number of dimensions to retain in the PCA step of DAPC.

By using this estimate to set the level of PC retention in the

final DAPC analysis, we ensure that the best fitting model of

population structure is selected.
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4.2 Optimising our approach

Our first purpose for undertaking this simulation study was to assess and improve

upon our analytical approach. We simulated data as described above and analysed

these datasets with two or more variants of our microbial GWAS method. Below, we

present the results of these applications to simulated data, which allowed us to make

evidence-based decisions about how we could most effectively reconstruct ancestral states,

calculate Score 3, select the threshold of significance, and peform association testing.

4.3 Ancestral state reconstruction

Within our GWAS approach, we reconstruct the ancestral states of the phenotype

and the genotype, at each locus in both the empirical and simulated datasets, and we

infer the locations of substitutions across the tree. Ancestral states can be inferred

by both parsimony-based and ML reconstruction methods. As explained in Chapter 2

(see Box 2.9 and 2.10), parsimony and ML methods operate on distinct principles and

make different assumptions. The estimates made by both methods may agree when the

genuine evolutionary history of a trait is defined by a small number of unambiguous

transitions betwen states [258]. Yet, when faced with more complex patterns of ancestral

substitution, parsimonious and ML reconstructions often deviate from one another, as

uncertainty and inaccuracies increase in one or both approaches. Our implementation

of these two methods also differs, as described in Chapter 3 With the parsimonious

reconstructions, we perform association testing on the point estimates of the ancestral

states. By contrast, with the ML reconstructions, we work directly with the marginal

likelihoods of binary states, so that the uncertainty quantified by the ML method can be

incorporated into our association test.

To determine objectively which method of ancestral state reconstruction would improve

the performance of our approach, we applied our GWAS method twice, to each simulated

dataset (N = 240). In the first instance, we performed a parsimonious reconstruction of

the ancestral states of the genotype and phenotype. In the second, we performed a ML

reconstruction and let the ancestral states of both variables be defined by the marginal

likelihood of binary state zero.

For both analyses of each simulated dataset, we calculated the four performance metrics

in Table 4.2, generating matched pairs of each statistic. We then performed a two-sample

Wilcoxon rank sum test to assess the change across these matched pairs. The results of

this non-parametric test are presented below, stratified by simulation set, in Tables 4.3,
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4.4, and 4.5. Note that results are not included for Score 1 as the reconstructed ancestral

states do not inform its calculation or performance. The sign of the median difference

indicates which reconstruction method improves performance along metric x, such that:

Median(x)







< 0 ML supersedes parsimony along x

> 0 parsimony supersedes ML along x
(4.10)

Rows containing a statistically significant difference (p < 0.05) are highlighted in yellow.

∆ (Parsimony −ML)
Association Score Statistic P-value C.I.Lower Median C.I.Upper

1 Score 2 F1.score 0.0102 -0.0819 -0.0527 -0.0125
2 Score 2 PPV 0.0454 -0.1458 -0.0909 -0.0001
3 Score 2 sensitivity 0.0237 -0.1500 -0.1000 0.0000
4 Score 2 FPR 0.3045 -0.0001 0.0001 0.0001

5 Score 3 F1.score 0.0000 0.3766 0.4616 0.5641
6 Score 3 PPV 0.0340 0.0101 0.3920 0.7046
7 Score 3 sensitivity 0.0000 0.3000 0.4000 0.5001
8 Score 3 FPR 0.6078 -0.0001 0.0000 0.0001

9 treeWAS (all) F1.score 0.0533 -0.0793 -0.0455 0.0000
10 treeWAS (all) PPV 0.0519 -0.0974 -0.0520 -0.0001
11 treeWAS (all) sensitivity 0.1486 -0.1500 -0.1000 0.0499
12 treeWAS (all) FPR 0.0242 0.0000 0.0000 0.0001

Table 4.3. Wilcoxon Test: Reconstruction Method (Set A).

∆ (Parsimony −ML)
Association Score Statistic P-value C.I.Lower Median C.I.Upper

1 Score 2 F1.score 0.1510 -0.3150 -0.1428 0.0030
2 Score 2 PPV 0.2363 -0.2262 -0.0378 0.1050
3 Score 2 sensitivity 0.1200 -0.5000 -0.5000 0.0000
4 Score 2 FPR 0.5184 -0.0001 0.0000 0.0001

5 Score 3 F1.score 0.2342 -0.0001 0.6458 0.6667
6 Score 3 PPV 1.0000 NA NA NA
7 Score 3 sensitivity 0.1294 NA NA NA
8 Score 3 FPR 1.0000 NA NA NA

9 treeWAS (all) F1.score 0.1565 -0.2569 -0.0576 0.0029
10 treeWAS (all) PPV 0.2158 -0.1666 -0.0596 0.0238
11 treeWAS (all) sensitivity 0.2986 -0.5000 -0.4999 0.0000
12 treeWAS (all) FPR 0.5811 0.0000 0.0001 0.0001

Table 4.4. Wilcoxon Test: Reconstruction Method (Set B).
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∆ (Parsimony −ML)
Association Score Statistic P-value C.I.Lower Median C.I.Upper

1 Score 2 F1.score 0.0675 -0.1541 -0.0783 0.0064
2 Score 2 PPV 0.1151 -0.2374 -0.0950 0.0354
3 Score 2 sensitivity 0.0634 -0.1999 -0.1000 0.0000
4 Score 2 FPR 0.3045 0.0000 0.0001 0.0001

5 Score 3 F1.score 0.0516 0.0000 0.1056 0.2137
6 Score 3 PPV 0.6089 -0.2251 0.0417 0.3590
7 Score 3 sensitivity 0.0656 -0.0001 0.1000 0.2000
8 Score 3 FPR 0.6598 -0.0001 0.0000 0.0001

9 treeWAS (all) F1.score 0.4652 -0.0952 -0.0292 0.0555
10 treeWAS (all) PPV 0.2416 -0.1454 -0.0514 0.0416
11 treeWAS (all) sensitivity 0.2403 -0.1500 -0.0500 0.0499
12 treeWAS (all) FPR 0.2522 0.0000 0.0000 0.0001

Table 4.5. Wilcoxon Test: Reconstruction Method (Set C).

The only significant differences observed between the two reconstruction methods are

found in Table 4.3, for the simple Set A simulations. All metrics except FPR show

significant variation in both Scores 2 and 3. Yet, the signs of the median differences

indicate that the reconstruction methods have opposite effects of the performance of

the two individual association scores. ML improves the performance of Score 2, while

parsimony improves the performance of Score 3. It is notable, however, that with

parsimony the composite F1 score measure experiences a nearly 50% increase in Score 3,

which is almost ten times the magnitude of the increase conferred by ML to the overall

performance of Score 2. In Sets B and C, the signs of the median differences follow a

similar opposing trend in the performance of Scores 2 and 3, although none of these

differences is significant.

Overall, it appears that the relative benefits and disadvantages of each ancestral state

reconstruction method for Scores 2 and 3 cancel each other out in the performance of

our approach as a whole. Even in Set A, where performance differences for individual

association scores are significant, Table 4.3 reveals that neither reconstruction method

improves the performance of our approach overall. A significant difference is observed

for FPR in Set A, but no median difference within four significant digits is observed in

either direction. Even the upper 95% confidence interval indicates that ML led to, at

most, one fewer false positive finding with Nloci = 10, 000. We conclude, therefore, that

there is no clear advantage conferred by adopting either reconstruction method over the

other.

One other variable that must be considered is computational time. We found that parsi-

monious reconstructions were consistently completed in a matter of seconds, whether we
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were working with Nloci = 100 to Nloci = 1, 000, 000. ML reconstructions, on the other

hand, demanded more computational time and took several minutes to produce recon-

structions for genetic datasets with Nloci ≥ 100, 000. Hence, computational efficiency

considerations favour parsimony over ML.

We make both methods available to users of the treeWAS R package, for the reconstruction

of both genotypic and phenotypic ancestral states. In light of the evidence provided by

this analysis and the practical value of computational efficiency and scalability, however,

we choose parsimony to be the default method for reconstructing the ancestral states of

the genotype within our GWAS approach. We work with parsimonious reconstructions

in all analyses below.

4.3.1 Excluding branch length improves Score 3 performance

In designing our third measure of association, we wished to explore whether Score 3

would give better results with the branch length term li included, as in Equation 3.13,

or excluded, as in Equation 3.14. To determine which formulation of Score 3 would

provide the more effective measure of association, we compared the performance of the

two versions in applications to simulated data. When analysing each of these simulated

datasets (N = 240), we repeated the calculation of Score 3, substituting Equation 3.14

without branch length (Score3NoBL) with Equation 3.13 with branch length (Score3BL).

Following each analysis, we recorded the performance of each version of Score 3 along

the four evaluation metrics defined in Table 4.2.

We ran a two-sample Wilcoxon rank sum test on matched pairs of our four performance

statistics under the two conditions. We present the results below, for simulation sets A,

B, and C, in Tables 4.6, 4.7, and 4.8. The sign of the median difference indicates which

formulation of Score 3 improves performance along metric x, such that:

Median(x)







< 0 including branch length improves performance along x

> 0 excluding branch length improves performance along x
(4.11)

Rows containing a statistically significant difference (p < 0.05) are highlighted in yellow.
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∆ (Score3NoBL − Score3BL)
Statistic P-value C.I.Lower Median C.I.Upper

1 F1.score 0.0002 0.0978 0.1685 0.2321
2 PPV 0.5698 -0.1548 0.0379 0.2046
3 sensitivity 0.0189 0.0000 0.1499 0.2500
4 FPR 0.7447 -0.0001 0.0001 0.0001

Table 4.6. Wilcoxon test: Score 3 (Set A).

∆ (Score3NoBL − Score3BL)
Statistic P-value C.I.Lower Median C.I.Upper

1 F1.score 1.0000 NA NA NA
2 PPV 1.0000 -0.8333 -0.0595 0.8333
3 sensitivity 0.5653 0.0000 0.0000 0.5000
4 FPR 0.6600 0.0000 0.0000 0.0001

Table 4.7. Wilcoxon test: Score 3 (Set B).

∆ (Score3NoBL − Score3BL)
Statistic P-value C.I.Lower Median C.I.Upper

1 F1.score 0.0147 0.0123 0.1041 0.1628
2 PPV 0.5261 -0.3214 -0.0461 0.1917
3 sensitivity 0.0137 0.0001 0.1000 0.2000
4 FPR 0.2986 0.0000 0.0000 0.0001

Table 4.8. Wilcoxon test: Score 3 (Set C).

Significant results were found for Set A and Set C. In both Table 4.6 and Table 4.8, we

find that treating all branch lengths as equal improves the sensitivity of Score 3, leading

to a median increase of 10% - 15%. No significant impact on FPR or PPV is observed, so

there is no concomitant cost of excluding the branch length term. As a result, we see an

increase in the F1 score that corresponds to the increase in sensitivity. No change in any

variable is observed in Table 4.7, but this is in line with expectation for Score 3 in Set B,

where associations arise through complementary pathways, as only Score 2 is explicitly

designed to detect such associations. Overall, based on this evidence, we choose to adopt

this version of Score 3 within our approach. We implement Equation 3.14 in treeWAS

and we calculate Score 3 without the branch length term in all analyses below.

121/239



4.4. Selecting the threshold of significance

4.4 Selecting the threshold of significance

Base

p-value

Multiple

testing
P-value

estimation

N sim

(x Nloci)

1 0.0001 Bonferroni Count 1
2 0.0001 Bonferroni Count 10
3 0.0001 Bonferroni Density 1
4 0.0001 Bonferroni Density 10
5 0.0001 FDR Count 1
6 0.0001 FDR Count 10
7 0.0001 FDR Density 1
8 0.0001 FDR Density 10
9 0.001 Bonferroni Count 1
10 0.001 Bonferroni Count 10
11 0.001 Bonferroni Density 1
12 0.001 Bonferroni Density 10
13 0.001 FDR Count 1
14 0.001 FDR Count 10
15 0.001 FDR Density 1
16 0.001 FDR Density 10
17 0.01 Bonferroni Count 1
18 0.01 Bonferroni Count 10
19 0.01 Bonferroni Density 1
20 0.01 Bonferroni Density 10
21 0.01 FDR Count 1
22 0.01 FDR Count 10
23 0.01 FDR Density 1
24 0.01 FDR Density 10
25 0.05 Bonferroni Count 1
26 0.05 Bonferroni Count 10
27 0.05 Bonferroni Density 1
28 0.05 Bonferroni Density 10
29 0.05 FDR Count 1
30 0.05 FDR Count 10
31 0.05 FDR Density 1
32 0.05 FDR Density 10

Table 4.9. Threshold-selection mechanisms.

The central aim of GWAS is to ac-

curately delineate between significant

and insignificant association score val-

ues. As discussed in Chapter 3, our

approach relies on the simulation of an

empirically-shaped null distribution to

estimate the appropriate location of the

significance threshold. To identify as-

sociations for each of our association

scores, our method must draw a signifi-

cance threshold within the upper tail of

the relevant null distribution.

How best to select this significance

threshold remains unresolved. In Chap-

ter 3, we outlined four components of

the threshold-selection mechanism used

within our approach, and we introduced

various implementation strategies for

each component. Here, we used sim-

ulated data to make an evidence-based

decision about the optimal approach. In

applying our approach to each of the sim-

ulated datasets (N = 240) generated in

our three simulation sets, we selected the

threshold of significance in 32 different

ways, accounting for all unique combina-

tions of the four parameters that control

the mechanism of threshold-selection.

These four parameters took on the fol-

lowing values:

• Base p-value (αbase): 0.0001, 0.001, 0.01, 0.05.

• Multiple testing correction: Bonferroni correction [282], FDR correction [283].

• P-value estimation: count-based approach, kernel density estimation.

• Number of simulated loci (Nsim): Nloci, 10Nloci.
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The results above reveal the relative dominance of threshold-selection mechanisms that:

1. use a Bonferroni correction

2. use the count-based approach to estimate p-values

3. estimate the null distribution with 10Nloci simulated sites.

Among the threshold mechanisms examined in Figures 4.4, 4.5, and 4.6, we find that

threshold 18 ensures the best performance. It combines each of the aforementioned

approaches and, in doing so, achieves among the highest F1 scores in each simulation

set and consistently strikes the most favourable balance between high PPV and high

sensitivity. In light of these findings, we make these three parameter values the default

settings within treeWAS to ensure optimal selection of the significance threshold. In all

analyses carried out below, these three parameters remain fixed at these optimal values.

Variation in the fourth parameter, the base p-value, had no additional effect on the

performance of the threshold-selection mechanism. Figures 4.4, 4.5, and 4.6 show

repeating patterns of four-way ties, reflecting the fact that all four base p-values examined

(αbase =0.0001, 0.001, 0.01, 0.05) resulted in the same performance. This remains true

when the performance statistics are separated by association score. Owing to the

correction for multiple testing, the effective difference between the four base p-values is

minimal. With the Bonferroni correction, they become 3.3x10−9, 3.3x10−8, 3.3x10−7,

and 1.7x10−6, in this simulation study. Without definitive evidence in support of any

particular base p-value, we have opted for a moderate value of 0.01 in all analyses. To

ensure that our comparative performance assessment is as fair as possible, we also set the

significance level to αbase = 0.01 when performing GWAS via each of the six alternative

methods examined in the pages below.

4.5 Evaluating performance

4.5.1 Set A

In Figure 4.7, we examine the performance of our approach and its individual association

scores, and compare it to the performance of the six alternative GWAS methods that

were applied to Set A simulations. Along all four of our evaluation metrics, our ap-

proach performs very well. treeWAS demonstrates greater precision and stronger overall

performance than any other GWAS method in Set A.
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A, albeit on a discrete scale, by measuring associations on a phylogeny-wide basis. Both

our sample- and tree-wide measures are reduced by the “dilution” of signal at terminal

nodes in Set A. Score 2 achieves the strongest sensitivity by uncovering many of the

simultaneous substitutions that were used to establish association in Set A. Associations

missed by Score 2 are recovered by Score 1 in 31 cases and Score 3 in 8. By combining

their findings, treeWAS achieves greater sensitivity than Score 1, 2, or 3 alone. Even

when the nature of associations favours one score over others, pooling multiple scores

improves the discovery power of our approach.

Scores 1, 2, and 3 achieve high PPVs in Figure 4.7C, as each rejects all or nearly all

false positive findings. The collective precision of treeWAS is, thus, very high. Critically,

while each score enhances the sensitivity of treeWAS, the accumulation of false positives

does not undermine its PPV in Set A. The F1 scores in Figure 4.7D confirm that the

incorporation of multiple metrics improves the overall performance of our approach.

Our approach stands out against the six other GWAS methods examined in Figure 4.7.

The only approaches to exceed treeWAS in sensitivity are the population-naive Fisher’s

exact and X2 tests, both of which identify all ten truly-associated loci in in Figure 4.7B.

Yet, Figure 4.7C reveals that these uncorrected tests found 30-65 false positives for every

true positive identified. Our approach clearly represents a substantial improvement over

this baseline error rate. At the other extreme, the uniform correction applied by GC

consistently reduces FPR to zero in Figure 4.7A. But, in the clonal and semi-clonal

populations simulated, this highly specific approach appears to sharply over-correct for

population stratification, repeatedly giving GC zero sensitivity in Figure 4.7B.

Among the ancestry-aware GWAS methods, the CMH test displayed the strongest

sensitivity in Set A, aside from treeWAS. Though with a slightly lower mean and more

variation, the cluster-based test achieves similar power to our tree-based approach in

Figure 4.7B, as both regularly find nine or ten of the ten associated sites. DAPC

and PCA have sensitivities well above GC and just above our sample-wide Score 1 and

phylogeny-wide Score 3, yet clearly below the CMH test and treeWAS as a whole. Greater

performance gaps are exposed in Figure 4.7C, where PCA and DAPC show surprisingly

poor precision, with PPV values closer to the uncorrected Fisher and X2 tests than

to our approach. In PPV, the CMH test is again the closest competitor to treeWAS.

But, where CMH and treeWAS sensitivities differed slightly in Figure 4.7B, their PPVs

diverge significantly in Figure 4.7C. In Set A, treeWAS consistently found one or zero

false positives; whereas, the CMH test regularly found as many false positives as true

positives. Ultimately, Figure 4.7D sets treeWAS starkly apart from all other GWAS

methods, with a mean F1 score > 50% above the next-best CMH test. We conclude

that, with high sensitivity and unmatched precision, our phylogenetic approach was able

to achieve the strongest overall performance in Set A.
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distinct sets of truly-associated loci. Individually, the sensitivities of our three scores

fell below all methods except GC. But, together, they achieved a 20% increase on our

most powerful Score 2, discovering a mean 6.8 true positive findings. Their collective

power pushed treeWAS above all population-aware alternatives in Figure 4.10B. We are

especially pleased to find that the high power of our multi-measure approach is upheld

in our most sophisticated and biologically-realistic simulation set. These results suggest

that the flexibility and sensitivity gained by pooling our three scores will be an equal or

greater asset to treeWAS in real GWAS studies than in the three simulation sets above.

The PPVs in Figure 4.10C take on a familiar pattern. Scores 1-3 achieve high PPV values,

contributing 0.09, 0.46, and 0.09 false positives, on average. The collective precision of

treeWAS, thus, remains very high (median = 0, mean = 0.6 false positives). Among

comparator methods, the precision of GC in Figure 4.10C is robbed of its utility without

any power in Figure 4.10B. PCA and DAPC, meanwhile, sacrifice considerable sensitivity

in Figure 4.10B for only modest FPR reductions in Figure 4.10A. This produces ratios

of true and false positive findings similar to the uncorrected Fisher and X2 tests in

Figure 4.10C. In fact, the F1 scores in Figure 4.10D suggest that, in Set C, correcting for

ancestry via GC, PCA, or DAPC may be more detrimental to overall performance than

making no correction at all. The CMH test is clearly more precise than any of these

methods. Still, in Set C, as in Sets A and B, one could not be any more certain that

a CMH test finding was a true positive than a false positive. This major weakness in

precision, suffered by even our strongest competitor, is overcome by treeWAS once again

in Set C. At the same time, treeWAS displays greater power in Figure 4.10B than any

ancestry-aware alternative. The result, in Figure 4.10D, is that the overall performance

of treeWAS exceeds all other methods by the largest margin of any simulation set.

4.5.4 Association scores are most informative when pooled

One of our aims in this study was to determine how our three association scores could be

used most effectively within our GWAS method. We considered three possible approaches:

1. Single score: use only the best-performing score.

2. Multiple scores implemented in parallel: treeWAS = (Score 1 ∪ Score 2 ∪ Score 3).

3. Multiple scores performed sequentially: treeWAS = (Score 1 ∩ Score 2 ∩ Score 3).

The strongest single measure in Sets A, B, and C was Score 2. However, we repeatedly

found that all three scores improved the collective power and overall performance of

our approach. Score 3 made the smallest marginal contribution to treeWAS sensitivity,
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though this was not surprising. Its purpose, where possible, was to compensate for any

gaps left between our primary allele-based Score 1 and homoplasy-based Score 2. Given

the comparatively modest power of Scores 1 and 3, additional analyses, including those

in Chapter 5, may help us determine whether allele-based metrics are less sensitive by

nature or if bias in our simulations simply favoured the homoplasy-counting scheme.

Notably, the relative contributions of our three measures varied both between and within

simulation sets. The dominance of Score 2 was not universal, as Scores 1 or 3 achieved

the greatest power and/or precision in many analyses. We cannot expect to predict which

score will be most useful in each new empirical analysis. Thankfully, the performance

of our collective approach was rarely exceeded by any measure on its own. Therefore,

rather than relying on a single score, we have chosen to incorporate multiple measures of

association within our GWAS method.

The results of this study indicate that, in parallel, our three measures produce good

statistical power and very low type I error, despite the accumulation of false positives

with each score. A sequential implementation would progressively narrow down the set

of significant findings. Our simulation study suggests that this could reduce type I error,

but only very minimally. However, it would likely increase type II error to a considerable

degree. Indeed, we suspect that both Approach 1 and 3 will be under-powered in most

analyses. We expect that our GWAS method will achieve greater power, similar precision,

and better overall performance by pursuing Approach 2 and pooling the findings of our

three tests of association.

The Venn Diagram in Figure 4.11 lets us compare the proposed parallel implementation to

the single-score and sequential implementations used elsewhere in microbial GWAS [114,

121, 126, 127, 147]. Given the true positives in Figure 4.11A, the power we can derive

via Approach 1 with Score 2 is 57% (459/800). If we pool findings via Approach 2,

power reaches 68% (540/800). Conversely, if we take their intersection via Approach 3,

power drops to 29% (235/800). Of course, as all three scores never misidentify a spurious

association in Figure 4.11B, Approach 3 eliminates all false positive findings. Still,

Approach 1 finds just 0.46 false positives per analysis, and Approach 2 only increases this

to 0.6. The parallel implementation gives a mean F1 score of 0.78; whereas, this decreases

to 0.67 with Score 2 alone, and it drops to 0.45 with the sequential implementation.

Therefore, rather than relying on a single score or a sequential implementation, we prefer

to adopt a parallel implementation of our three scores in treeWAS.
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association, each of which upheld H0 correctly at all 9,990 non-associated sites in ≥ 75%

of the above analyses. And, they provide support for our multi-measure association

testing strategy, demonstrating that treeWAS can maintain high specificity even when

the results of Scores 1-3 are pooled. In fact, ours was the only GWAS method that

demonstrated a reliable ability to separate true from false positive findings in this study.

While the precision of treeWAS relied on the unwavering stringency of each association

test, its high collective power was supported by more variable sensitivities in our three

scores. Our conservative approach to significance testing produced moderate sensitivities

in each score, often below most competing approaches. But, with robust findings from

each score, our pooled approach attained high levels of statistical power. The collective

power of treeWAS regularly exceeded any of its individual components, obtaining the

strongest cumulative effect in our most realistic, final simulation set. Remarkably, while

maintaining far greater precision than any other method, our approach also achieved

greater power than any population-aware alternative in Sets A and C, with power

approaching most competitors in Set B. Altogether, treeWAS was able to achieve the

highest F1 scores and the best overall performance of any method in each simulation set.

4.5.6 Comparison with other GWAS methods

In this simulation study, five of the six comparator approaches repeatedly failed to reject

large numbers of false positive findings. Only treeWAS and the strict GC approach

regularly avoided type I errors. PCA, DAPC, and the CMH test reduced FPR below

the level incurred with no correction for population structure, but, for every genuine

association they detected, respectively, 25, 19, and 3 spurious associations were deemed

significant. Our results suggest that these popular dimension-reduction and cluster-based

methods may not correct sufficiently for confounding population structure in microbial

GWAS. In practice, the type I error rates displayed by PCA, DAPC, and CMH would

cause a lot of time and money to be wasted following up on truly insignificant leads.

Each of the non-phylogenetic controls for population structure simplify the extensive

genetic relationships between isolates. Population stratification is summarised by GC

in the single λGC statistic, by the CMH test in k clusters, and by PCA and DAPC

in (k − 1) PCs. These approaches work well in a human genetics context, where an

explicit distinction can be made between ancestral “population structure” and recent

“cryptic relatedness” or unknown family relationships [140, 150]. However, this paradigm

does not naturally apply to the ancestral relationships in many microbial samples. The

k-means clusters used in CMH, and the PCs of PCA and DAPC often correspond to the

lineages of a phylogenetic tree [80,128,159]; although, as we showed in Figure 2.4, this
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relationship is not always intuitive. But, using (k − 1) PCs or k clusters as fixed effects

in microbial GWAS requires the analyst to make a conceptual delineation at a given

height on the genealogical tree, between what will and will not be considered parts of the

population structure. Our approach, by contrast, retains relevant information at all levels

of the clonal population structure by working directly with the full phylogeny. And, in

maintaining the phenotype along the tips of the tree, our approach makes sure to account

for stratification as a function of both phenotypic and genotypic covariance. Most of the

non-phylogenetic methods examined in this simulation study are plagued by type I errors

because they rely on an assumption that is often unjustifiable in microbial GWAS, that,

within k clusters or beyond (k − 1) PCs, genetic variation is ancestrally homogenous

and confounding bias is not responsible for statistically significant associations [297].

Our approach avoids this pitfall by using inference of the full evolutionary history to

determine which associations are unlikely to arise by chance.

Whereas the power of treeWAS was enhanced by combining multiple precise association

tests, this study revealed the non-phylogenetic approaches to be reliant on a zero-

sum trade-off between sensitivity and specificity. No comparator method offered both

high PPV and high sensitivity. GC paired high PPV with low-to-zero power, rarely

producing any findings, correct or incorrect. PCA and DAPC achieved only moderate

power, typically below treeWAS. Both methods sacrifice power as they exclude major

axes of variation that correlate with the phenotype [128, 297]. DAPC restricts this

cost to higher-order lineage effects by maximising between-group variation, while PCA

sensitivity is further weakened by the within-group variation in its (k− 1) PCs [145,181].

Nevertheless, confounding variation persisted, particularly among lower levels of the

population structure, leaving both methods with high FPRs and low PPVs. Increasing the

number of PCs in an effort to reduce FPR in this study regularly resulted in a complete

loss of sensitivity. Our results suggest that when PCA and DAPC are used in microbial

GWAS, depending on the population structure and the effect size of associations, a

satisfactory trade-off between sensitivity and specificity may be unattainable. Compared

to PCA and DAPC, the CMH test more effectively managed the sensitivity-specificity

trade-off by performing a more stringent stratified test, without regressing out relevant

information. In fact, CMH sensitivity fell just below treeWAS in Sets A and C. But,

while it was more precise than PCA and DAPC, CMH precision fell well below treeWAS.

Whereas ≥ 90% of treeWAS test positives were true positives, almost half of CMH test

results were false positives in Sets A, B, and C. In terms of overall performance, CMH F1

scores were similar to the weakest individual association test in treeWAS. Furthermore,

the CMH test attained these F1 scores by adopting the less conservative approach of

favouring high sensitivity at the expense of precision. In practice, it may be preferable
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to pursue a precision-led strategy, even at some cost to sensitivity, to ensure that results

remain reliable and follow-up studies worthwhile.

Though we implemented optimisation procedures for PCA, DAPC, and CMH, it is

possible that additional optimisation efforts could produce further improvements in

performance. For example, we could attempt to improve the model of population

structure or alter k or the number of PCs, through visual inspection or by comparing

the results of repeated analyses, guided by metrics like λGC . In this way, we might

strike a better balance between sensitivity and specificity, although it would have been

impractical to perform this process for each of the 240 analyses in this study. This is a

clear limitation of these alternative approaches, as it demands more time and human

effort, requires considerable user experience, and increases the subjectivity and variability

of GWAS results. Our approach removes these barriers by carrying out any necessary

optimisation procedures automatically within treeWAS. This ensures that treeWAS

can objectively identify the significance threshold with precision, without squandering

sensitivity.

In comparing methods across Figures 4.7,4.8, and 4.10, we found that the performance of

the non-phylogenetic methods was limited by multiple factors: the focus on higher-order

population structure, insufficient control for the confounding effects of ancestry, lack of

control for the impact of substitution on spurious association, and the need to make

inefficient trade-offs between sensitivity and PPV. By avoiding these pitfalls, the design

of treeWAS is able to produce stronger performance on these simulated datasets.

4.6 Evaluating performance by recombination rate

One potentially significant limitation of existing microbial GWAS methods is that they

do not account for the impact of varying substitution rates on the probability of spurious

association. We designed our simulation study to explore how the performance of

treeWAS and existing GWAS methods varies as a function of recombination rate. In

each of our three simulation sets (N = 80), we generated 20 datasets at each of four

recombination rates (R = 0.01, 0.05, 0.1) by defining Nsub according to the homoplasy

distributions in Figure 4.1.
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Figure 4.13. Performance by recombination rate. Interquartile mean performance by GWAS method and recombination rate is

plotted along four statistics (by row), presenting A-C: False Positive Rate, D-F: Sensitivity, G-I: Positive Predictive Value, and J-L: F1

Score values across three simulation sets (by column), with Set A first (A, D, G, J), Set B second (B, E, H, K), and Set C third (C, F, I,

L). Each plot contains average values of the relevant statistic (y-axis) at four recombination rates (x-axis), showing performance trends

for treeWAS and six comparator GWAS methods (legend at bottom).
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Figure 4.13 shows how the performance of our approach and the six comparator GWAS

methods responds as the background recombination rate varies from clonal to increasingly

recombinant. The FPR values of the Fisher’s exact test and X2 test in Figures 4.13A-C

vary noticeably as the recombination rate changes along the x-axis. As neither test

corrects for population stratification or recombination, these FPR values represent the

baseline number of false positive findings expected at particular recombination rates,

given the relative numbers of phenotypic and genotypic substitutions in each dataset.

Looking back at Figure 4.1, we can see that as R increases from 0 to 0.01, 0.05, and

0.1, the upper tail of the homoplasy distribution among non-associated sites approaches,

reaches, and then exceeds the mean of 15 phenotypic substitutions. Figures 4.13A-C show

a corresponding trend in the Fisher and X2 FPR values, as the number of false positive

findings increases, plateaus, and finally declines as the recombination rate increases above.

Striking a clear contrast, treeWAS maintains a stable FPR at zero and consistently

eliminates false positives as the recombination rate increases, demonstrating a distinct

ability to control for the confounding effects of mutation and recombination.

In Figures 4.13D-F, while the sensitivity of competing approaches vary noisily, the

sensitivity of treeWAS appears to decrease with increasing recombination. As Figure

4.12 shows, our sensitivity declines because treeWAS can no longer attribute significance

to some more weakly associated loci when similar patterns of association are likely to

occur by chance. This data-dependent behaviour varies by context, reducing sensitivity

in Sets B and C more than in Set A, acting only where necessary to suppress FPR.

We do see a slight decline in the PPV of treeWAS as recombination increases in Figures

4.13G-I. But, in practice, this implies only a small shift from an average of zero to one

false positive finding between R = 0 and R = 0.1. On the contrary, the PPV trends of

PCA and DAPC reveal a major weakness in the use of PCs as fixed effects to control for

ancestry. In Figures 4.13A-C, the FPRs of both multivariate approaches clearly improve

with increasing recombination, decreasing by half between R = 0 and R = 0.1. This

is reflected in a slight PPV increase in Figures 4.13G-I. While PCA and DAPC may

eliminate more false positives in more recombinant organisms, however, it is clear from

their PPV trends that if signals of clonality remain (whether at R = 0 or R = 0.1), the

vast majority of test positives identified by either multivariate approach may be false

positives nonetheless. The behaviour of the CMH test also differs from that of treeWAS.

The CMH test maintains relatively stable sensitivity as R increases in Figures 4.13D-F,

whereas Figures 4.13G-I show a sharp decline in CMH PPV in response to increasing

recombination. This considerable increase in the number of false positives identified by

CMH indicates a lack of control for recombination.
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Although the F1 scores of treeWAS and the CMH test in Figures 4.13K and L appear to

narrow with increasing recombination, it is important to note the practical implications

of the trade-offs being made by both methods. For example, while the sensitivity of the

CMH test exceeds that of treeWAS at the highest recombination rate (R = 0.1) in Figure

4.13F, this sensitivity benefit corresponds only to the identification of one additional true

positive finding on average. A comparison of the PPV values in Figure 4.13I, however,

reveals that the CMH test has paid a disproportionate penalty in precision. Conversely,

treeWAS uses its estimation-by-simulation procedures to identify a more useful trade-off,

instead exchanging a marginal sensitivity cost for a substantial specificity benefit. As a

result, even where the F1 score of CMH comes closest to that of treeWAS, at R = 0.1 in

Set C, treeWAS finds less than one false positive on average, while the CMH test results

contain as many false positives as true positives.

In the presence of recombination, the microbial GWAS literature recommends the use

of dimension reduction or cluster-based controls for population structure. Yet, at all

recombination rates in this study, our results indicate that equal or greater precision and

overall performance can be achieved by our recombination-aware phylogenetic approach.

The cluster-based CMH test, which is evidently the strongest non-phylogenetic method

examined, repeatedly achieves its greatest precision and overall performance in purely

clonal conditions (Figures 4.13G-K; R = 0). Moreover, we find that the CMH test is

not robust to the introduction of even minimal recombination. Ultimately, none of the

non-phylogenetic alternatives to treeWAS is able to recognise the variable influence

of recombination or to respond appropriately to the changing probability of spurious

association. Across four recombination rates in three simulation sets, our approach

strikes a more sensible balance between power and precision than any other method.

As the F1 scores in Figures 4.13J-L demonstrate, our approach not only produces the

strongest overall performance, but by accounting for recombination, it is able to maintain

this advantage across a range of backgrounds, from purely clonal to recombinant. In

addition to providing a more thorough control over population structure, treeWAS was

the only method capable of accounting explicitly and appropriately for the variable

confounding effects of recombination in this study.

4.7 Evaluating performance by dataset size

The dimensions of the datasets analysed in the simulation study above were selected to be

within the typical range for microbial GWAS and to give representative results without

being so large as to reduce the number of repetitions performed. Naturally, however,

we expect that in empirical analyses our GWAS method will encounter both larger and
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smaller microbial samples, with larger or smaller genome sizes. To determine whether

the performance of treeWAS is robust to such variations in dataset size, we simulated

three additional panels of datasets. In each case, N = 100 datasets were simulated along

randomly-generated coalescent trees, and the phenotype and associations at ten genetic

loci were simulated according to the Set C framework.

Figure 4.14. SimBac homoplasy

distribution (R = 0.2). A his-

togram of the number of substitutions

per site when R = 0.2.

We first aimed to simulate accessory gene presence-or-absence data

which, compared to core SNP data, usually contains fewer genetic

variables that often undergo more frequent substitutions, especially

when facing the selective pressures common in GWAS. In the first

panel of datasets, therefore, we set Nind = 100 and we reduced Nloci

to 5,000 sites. We used SimBac [289] to simulate a genetic dataset with

a recombination rate of R = 0.2, twice as high as any rate examined

above, and we estimated the homoplasy distribution in Figure 4.14

with Fitch parsimony [255]. Accesory genomes were simulated along

randomly-generated coalescent trees, using the R = 0.2 homoplasy

distribution to simulate the evolution of accessory genome variation

with frequent gain and loss of genetic elements.

Our aim in simulating the second and third set of additional datasets

was to examine how the change in dataset size alone might impact the

performance of treeWAS and competing GWAS methods. In the second panel of datasets,

we set Nind = 100, and we let Nloci increase from 10,000 to 100,000, by selecting 100

uniformly-distributed values, such that Nloci ∈ {10000, 10909, ..., 99091, 100000}. In

the third panel, we set Nloci = 10, 000, and we let Nind vary uniformly in [50, 200],

such that Nind ∈ {50, 52, ..., 198, 200}. We applied treeWAS and the six comparator

GWAS methods to each of the 100 datasets in all three panels. Figure 4.15 compares the

performance of each method on accessory genome datasets. Figure 4.16 plots performance

as a function of the number of genetic loci in a dataset, and Figure 4.17 shows how

performance varies with the number of individuals.

4.7.1 Performance on accessory genome data

To determine whether the typically small genomes and more frequent recombination

of accessory genome datasets would impact performance, we applied treeWAS and the

six comparator methods to 100 accessory gene presence-or-absence datasets, simulated

with Nind = 100, Nloci = 5, 000, and R = 0.2. Figure 4.15 presents the results, revealing

trends broadly similar to those observed above.
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4.7.2 Performance by genome size
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Figure 4.16. Performance by number of genetic loci. The interquartile mean performance of

treeWAS and six comparator methods is presented as a function of the number of genetic loci simulated

per dataset (N = 100), where Nloci ∈ {10000, 10909, ..., 99091, 100000}. Performance statistics are

aggregated over 20,000-loci intervals and presented along four metrics: A: False Positive Rate. B:

Sensitivity. C: Positive Predictive Value. D: F1 Score.

The results presented in Figure 4.16 suggest that the number of genetic variables in

a dataset may have a modest effect on the performance of GWAS methods. As Nloci

increases along the x-axes in Figure 4.16, while the number of associated sites and

all other parameters remain unchanged, the ratio of associated to non-associated sites

declines, and the genome-wide signal to noise ratio decreases with it. In Figure 4.16A,

the FPR of the uncorrected Fisher and X2 tests appears to increase with Nloci, with

a linear increase between Nloci = 30, 000 and Nloci = 100, 000. PCA, DAPC, and, to a

greater extent, the CMH test, dampen this trend by moving FPR closer to zero at each

point. But, only treeWAS and the GC approach keep FPR at zero at all Nloci.

Figure 4.16B reveals that, in achieving zero FPR, GC also sacrifices all discovery power.

The sensitivities of most other methods vary noisily, although all population-aware

approaches appear to lose some power as Nloci increases. Unlike the variable PCA,
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DAPC, and CMH approaches, treeWAS uses Nloci to inform its estimation of the null

distribution. So, although it experiences a similar decrease with increasing Nloci, the

sensitivity of treeWAS displays greater stability and undergoes more incremental, linear

change than competing methods, indicating a more controlled underlying process.

Our approach stands out most distinctly in Figure 4.16C. The uncorrected tests and

both dimension reduction methods, which achieve little precision to begin with, lose

precision as Nloci increases, with the uncorrected tests experiencing the sharpest decline

in PPV. The more moderate PPV of the CMH test varies noisily and shows no clear

trend corresponding to the change in Nloci. We do, however, observe that CMH precision

maintains an approximately inverse proportional relationship to its sensitivity. Meanwhile,

at allNloci, treeWAS keeps its precision at a maximum. In fact, our PPV even rises slightly

with genome size. We attribute this to the fact that, as Nsim increases proportionally with

Nloci, treeWAS can make ever more refined estimates of the location of the significance

threshold in larger datasets.

The F1 scores in Figure 4.16D show that no alternative approach is able to offer a

combination of sensitivity and precision that is more effective than treeWAS. Competing

approaches obtain lower overall performance than treeWAS when genomes are small. As

Nloci increases, the F1 scores of comparator methods only decline further, displaying

unpredictable variation along the way. The F1 scores of treeWAS vary only marginally,

between 0.82 and 0.74. Therefore, across all values of Nloci explored, treeWAS maintains

strong overall performance with limited variation.

4.7.3 Performance by sample size

Figure 4.17 reveals that the number of individuals in a dataset can have a substantial

impact on the performance of all GWAS methods examined. The steady rise in FPR

experienced by the uncorrected Fisher and X2 tests in Figure 4.17A indicates that, all

else being equal, increasing Nind in our simulated datasets increases the probability

of spurious association. Indeed, while the expected phenotypic Nsub and genotypic

Nsub distribution are controlled by fixed parameters, population stratification should

increase with Nind, as each substitution is inherited by an ever-larger clade of descendants.

Because ours is the only approach that accounts for each of these factors, it is the only

method equipped to make an informed assessment about the changing probability of

spurious association in this context. Figure 4.17A confirms that only treeWAS and GC

prevent FPR from increasing with Nind; although, once again, GC accomplishes this by

eliminating all true and false positive findings. All other methods reduce FPR below the
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Figure 4.17. Performance by number of individuals. The interquartile mean performance of

treeWAS and six comparator methods is presented as a function of the number of individuals simulated

per dataset (N = 100), where Nind ∈ {50, 52, ..., 198, 200}. Performance statistics are aggregated over

20,000-loci intervals and presented along four metrics: A: False Positive Rate. B: Sensitivity. C: Positive

Predictive Value. D: F1 Score.

uncorrected baseline level. But, DAPC, PCA, and CMH each fail to prevent FPR from

increasing with Nind.

Figure 4.17B indicates that, alongside FPR, sensitivity increases with Nind. The smooth,

increasing trend displayed by the uncorrected tests is replicated by all population-aware

approaches, except GC, though they introduce more noise and begin with only half the

power of population-naive approaches where Nind ∈ [50, 75]. It is not surprising that

larger sample sizes increase the power of GWAS approaches. It is, however, notable that

treeWAS power deviates from all ancestry-aware alternatives in smaller samples, where

Nind ≤ 100. At the smallest sample size in Figure 4.17B, for example, our approach is

able to match the sensitivity of both uncorrected tests, tripling the sensitivity of the

CMH test. Where Nind > 100, treeWAS joins comparator methods in experiencing a

similar positive sensitivity trend as Nind increases.

Figure 4.17C shows a stark difference between the PPV behaviour of treeWAS and
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competing approaches. Ours is the only method to maintain high precision (PPV ≃ 1) as

Nind increases. In the five other sensitive GWAS methods, by contrast, the proportion

of true positive findings approaches zero as Nind increases. CMH PPV remains high

where Nind ≤ 125 but declines precipitously thereafter, falling to near zero with other

methods as Nind approaches 200. This has serious implications for our assessment of

the CMH test, especially because our evaluation thus far has been based on simulations

with Nind = 100. These findings suggest that the performance of our closest competitor

may not remain near that of treeWAS when the CMH test is applied to samples with

Nind > 125, which is already smaller than many samples examined in microbial GWAS.

Ultimately, the F1 scores in Figure 4.17D demonstrate that treeWAS is able to achieve

the strongest overall performance at all Nind. Moreover, driven by the divergence in PPV,

this performance advantage increases as sample size grows. Our empirically-parameterised

GWAS method offers a clear benefit in this regard, one which we anticipate will only

increase in relevance as microbial GWAS progresses and the average sample size increases.

4.7.4 Computational time

Our final aim in performing this simulation study was to provide an estimate of the

amount of time required to run our approach on a standard computer and to assess

the scalability of treeWAS with increasing dataset size. We applied our approach to

two panels of simulated datasets: first, varying the number of individuals, as above,

such that Nind ∈ {50, 52, ..., 198, 200} (N = 100); and, second, varying the number

of genetic loci, such that Nloci ∈ {10000, 11919, ..., 198081, 200000} (N = 100). Each

dataset was analysed on a standard computer with default arguments, and the amount

of computational time required to complete the analysis was recorded. In Figure 4.18,

we plot treeWAS run time as a function of Nind and Nloci.

Figure 4.18A shows that, for genetic datasets with 10,000 sites and up to 200 individuals,

the treeWAS R package can execute our GWAS approach in under thirty seconds.

Meanwhile, Figure 4.18B shows that our approach can be performed in under four

minutes for any dataset with 100 individuals and up to 200,000 sites. These results

also show that treeWAS run time scales approximately linearly with both Nind and

Nloci. Hence, we can extrapolate from the line of best fit to estimate treeWAS run

times for a wider range of hypothetical datasets. Even in large datasets, for example,

with Nind = 1, 000 and Nloci = 100, 000, we would still expect treeWAS to complete the

analysis in under 20 minutes on a standard personal computer.

The line of best fit in Figure 4.18A suggests that treeWAS will take approximately 12.2
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Concluding remarks

In setting out to perform this simulation study, we developed multiple simulation

frameworks to provide variable parameter and association landscapes for these analyses.

These methods of data generation allowed us to determine, among other things, that our

approach could achieve optimal performance with a parsimony based method of ancestral

state reconstruction, and that Score 3 would offer a better combination of performance

and efficiency if we excluded the branch length term. We also made an evidence-based

choice of threshold selection mechanism to be implemented in the treeWAS R package

and in subsequent empirical analyses. Having implemented these simulation tools in the

treeWAS R package, we hope they will be useful to others, for example, in facilitating

additional sensitivity studies, performance assessments, or comparative analyses of our

own or other GWAS methods in the future.

We had hoped that our method would perform well in these applications to simulated

data, but we had nevertheless anticipated that other GWAS approaches would have the

upper hand in some circumstances or parameter ranges. We were therefore very pleased

with our results, as they demonstrated that our phylogenetic GWAS method was able

to achieve the strongest performance of any GWAS method examined in nearly all of

the above analyses. In terms of overall performance, our approach was able to dominate

all competitors in all three simulation sets and across all parameter ranges explored. In

exploring multiple parameter ranges, we found that our approach was both robust and

flexible, maintaining stronger performance than other GWAS methods as the size, scope,

and complexity of datasets varied.

Our results revealed that treeWAS was able to achieve unmatched precision, as well

as comparable sensitivity to alternative approaches by pooling our three association

scores. We were especially impressed with the power of our homoplasy-counting Score

2. However, we were somewhat surprised by the comparatively modest performance

of Score 1 and the relatively poor performance of Score 3. We acknowledge that some

of this performance differential may be attributable to the nature of the simulations

examined in this chapter. We will therefore re-examine the relative contributions of

our three scores when we complete the analyses of empirical data examined in the next

chapter.

148/239



Chapter 5

Applications to Empirical Data

Acknowledgements This chapter includes some written and illustrated content that

appeared, in a related form, in the publication of our method [155]. Xavier Didelot

guided us in our search for interesting phenotypes and useful datasets to analyse and

provided feedback during the writing of our publication and the chapter below. We would

like to extend our gratitude to the Cloud Infrastructure for Microbial Bioinformatics

(CLIMB) project, for generously providing us with access to their computing cluster. We

are grateful to Daniel Wilson and David Aanensen for providing useful feedback during

the development of this work. We also thank the two anonymous reviewers who provided

helpful suggestions that we incorporated in our paper.

5.1 Introduction

In this chapter, we present the results of multiple applications of our GWAS approach

to empirical data. We aim to demonstrate that treeWAS can accurately identify trait-

associated loci in biological sequence data and to confirm that the power and precision

observed in our simulation study translates to empirical analyses. We analyse three

datasets from N. gonorrhoeae and N. meningitidis, to examine the performance of our

GWAS method in organisms known to display both clonal population structure and

homologous recombination [72,298]. Our association testing method is applied to both

accessory and core genome variation. Phenotypes are examined as both binary and

continuous variables, where appropriate, to further explore the versatility of our approach.

First, we analyse a previously-characterised phenotype of resistance to the antibiotic

drug cefixime in a N. gonorrhoeae dataset (N = 200) that was published by Grad et

al. [96]. This allows us to appraise our results by making direct comparisons to the

findings of the authors. Second, we use treeWAS to test for associations with a related
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pencillin resistance phenotype, in serogroup B N. meningitidis isolates (N = 171). To

evaluate our findings in this original analysis, we refer to the available literature, in which

the genetic basis of penicillin resistance is well described. Third, we apply treeWAS

to a more complex invasive disease phenotype in serogroup C N. meningitidis isolates

(N = 129). Despite the public health relevance of invasive meningococcal disease, the

genetic basis of this pathogenic phenotype remains incompletely-characterised [47]. We

hope that treeWAS can confirm associations previously-identified in the literature, and

that it may also identify novel candidate loci whose link to meningococcal virulence

has yet to be established. All analyses were run on a standard laptop computer, with a

4-core Intel processor, a CPU clock speed of 2.60GHz, and 16 GB of RAM available.

In applying our approach to these three datasets, we aim to demonstrate that the

novel design features implemented in treeWAS allow our method to identify associations

effectively in empirical analyses. Given the results of our simulation study, we hope to

find few spurious findings and to confirm that our approach accounts appropriately for

the confounding factors present in real datasets. As we encounter unfamiliar association

landscapes, shaped by mutation, recombination, and selection, we hope to find that

our multiple measures of association equip treeWAS with the power to confirm known

associations and detect novel relationships between genotype and phenotype.

5.2 Cefixime resistance in Neisseria gonorrhoeae

We begin by applying our GWAS method to a previously-characterised phenotype in a

published empirical dataset, so that we can validate our results and make intial estimates

of the performance of our method. We examined cefixime resistance in 200 N. gonorrhoeae

genomes drawn from the genomic epidemiology study of Grad et al. [96] (see Appendix,

Tables A.1, A.2, A.3). N. gonorrhoeae are obligate human pathogens that typically

colonise the genito-urinary tract and spread easily through sexual contact between

hosts [299]. Recent increase in both gonorrhoea incidence and antibiotic resistance brings

renewed public health relevance to the study of N. gonorrhoeae [44].

Cefixime is a member of the cephalosporin class of β-lactam antibiotics. It is one of only

two remaining effective first-line gonorrhoea treatments [300]. Like penicillin, cefixime

uses β-lactams to bind gonococcal penicillin binding proteins (PBPs). This interferes

with the essential contribution that PBPs make to peptidoglycan synthesis and cell

wall biogenesis, which prevents the survival of N. gonorrhoeae bacteria. Over time,

however, cefixime susceptbility has declined in N. gonorrhoeae [301]. The previous

analysis performed by Grad et al. [96] attributes cefixime resistance primarily to penA

alleles that encode PBP variants capable of escaping β-lactam binding. We set out

to determine whether our GWAS approach could confirm the association status of
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these previously-identified cefixime-associated loci. We also wish to assess whether the

precision, power, and efficiency observed in our simulation study remains consistent

when treeWAS is applied to empirical data.

We downloaded aligned whole-genome sequence data for the 200 N. gonorrhoeae isolates

from the Neisseria Bacterial Isolate Genome Sequence Database (BIGSdb) [302]. We

assembled two genetic datasets to be analysed by our GWAS method:

1. The core SNP dataset contains all polymorphic loci found in the core genome,

amounting to 23,932 binary SNPs.

2. The accessory gene dataset notes the presence-or-absence status of 3,036 genes.

The core and accessory genome datasets were produced with the Basic Local Alignment

Search Tool (BLAST) [303]. BLAST uses a sliding window approach was to identify the

locations of probable genes, evaluating the protein-coding potential of the transcribed

genome, in 20-nucleotide sequence fragments (“words”). The repeated observation of

particular genomic features across multiple sequences may, further, indicate genetic

homology [304]. We set a 95% threshold to distinguish core from accessory genome

variation, such that any gene or intergenic region that is present in ≥ 95% of the isolates

in a given sample is included in the core genome dataset [78,79]. Conversely, any gene

absent from 5% of sampled genomes is added as a column of the accessory genome

dataset. When testing for association with the phenotype, core genome variation is

examined at the level of individual nucleotides. Accessory genome variation is evaluated

with respect to the presence or absence of the gene as a unit.

Phenotypic information was extracted from the published meta-data [96]. We analysed

the cefixime resistance phenotype in two ways:

1. The binary phenotype categorised isolates as “sensitive”, if MIC ≤ 0.25µg/mL,

or “resistant”, if cefixime MIC > 0.25µg/mL.

2. The continuous phenotype was defined by ranking cefixime MIC values.

The rank-transformed phenotype was more uniformly distributed and contain more

useful information than the original MIC values (see Figure A.1). This allowed our

association tests to give greater weight to the differences observed between a larger

number of individuals.

Neisseria provide a representative example of semi-clonal organisms [305]. In this N.

gonorrhoeae dataset, the recombination to mutation ratio was r/m = 1.9. This amount of

recombination will warp the inferences of traditional phyogenetic methods [1]. Moreover,

the presence of large, resistance-associated genomic islands will have negative implications

for both ancestry inference and association inference, if inappropriately addressed [306].

Yet, the underlying clonal relationships likewise remain strong enough to introduce bias
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in association inference and clear enough to permit the use of recombination-aware

tree-building methods. We reconstructed the phylogenetic tree from whole-genome

sequence data. An initial parsimony tree was estimated with the dnapars algorithm in

PHYLIP [194], and we provided this as an input to ClonalFrameML [221], which we

used to infer the clonal genealogy while accounting for recombination (Figure 5.1A).

We applied treeWAS to the accessory and core genome datasets, and to both the

binary resistance and continuous MIC phenotypes. No accessory genes were found to

be significantly associated with either the binary or continuous cefixime phenotypes.

treeWAS did, however, identify many core SNPs as significantly associated with both

forms of phenotypic data. The core SNP GWAS was performed by treeWAS in just over

2 minutes. The accessory genome analysis was completed in 15 seconds.

5.2.1 Identifying associations with cefixime resistance

The application of treeWAS to the set of core SNPs resulted in the identification of

132 SNPs significantly associated with the binary cefixime resistance phenotype (Table

5.1). Of these, 129 SNPs were located in the NEIS1753 (penA) gene, indicating that

changes in PBP2 affect resistance. This confirms the primary finding of Grad et al. [96].

We also found three significant SNPs in the neighbouring NEIS1751 (murE ) gene. The

previous hypothesis-driven analysis did not investigate this locus. Yet, additional evidence

implicates murE in the same cell wall biosynthesis pathways as penA [307]. Experimental

analyses in N. gonorrhoeae have shown that cefixime resistance correlates with variation

in murE and that murE regularly accompanies penA in resistance-associated recombinant

fragments [308, 309]. In this analysis, all three of the association scores in treeWAS

found associated loci within the same two genes. The findings of Scores 1-3 and the

overlap between these findings, however, varies across subsequent empirical analyses, as

discussed in Section 5.5.
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Gene N.SNPs SNPs Gene product

NEIS1751
(murE)

3 1125522.a 1126060.c 1126111.c UDP-N-
acetylmuramoyl-
alanyl-D-
glutamate–2, 6-
diaminopimelate
ligase

NEIS1753
(penA)

129 1126892.g 1126940.g 1126976.g 1127054.a 1127077.t 1127116.a 1127120.g
1127177.a 1127225.t 1127234.c 1127238.c 1127240.g 1127258.c 1127264.c
1127267.c 1127303.c 1127306.c 1127312.c 1127315.c 1127333.c 1127339.c
1127354.c 1127399.t 1127411.c 1127414.g 1127429.c 1127434.c 1127444.c
1127450.c 1127453.t 1127461.g 1127468.c 1127470.g 1127487.c 1127591.g
1127619.c 1127630.g 1127792.g 1127795.t 1127818.a 1127819.t 1127828.g
1127833.g 1127834.g 1127835.c 1127836.c 1127837.a 1127849.g 1127852.g
1127867.c 1127879.g 1127886.c 1127900.c 1127909.c 1127911.c 1127912.a
1127913.c 1127918.g 1127921.c 1127929.t 1127930.t 1127934.c 1127940.c
1127951.g 1127954.g 1127957.g 1127969.g 1127970.c 1127978.a 1127982.a
1127984.a 1127985.t 1127992.a 1127993.a 1127996.g 1127999.c 1128002.g
1128003.c 1128004.g 1128005.c 1128006.g 1128008.g 1128011.a 1128015.a
1128017.t 1128018.c 1128032.a 1128035.c 1128038.g 1128039.c 1128041.c
1128041.g 1128047.c 1128056.g 1128059.g 1128068.g 1128071.c 1128080.t
1128089.a 1128089.t 1128107.c 1128110.a 1128111.c 1128116.c 1128119.t
1128122.c 1128122.t 1128125.c 1128128.t 1128131.g 1128134.c 1128135.a
1128146.c 1128148.g 1128149.t 1128152.g 1128152.t 1128155.t 1128170.c
1128173.c 1128182.c 1128182.g 1128206.c 1128212.a 1128221.c 1128222.c
1128230.t 1128234.g 1128239.c

penicillin-binding
protein 2

Table 5.1. SNPs associated with cefixime resistance in N. gonnorrhoeae. These 132 SNPs were identified as significantly

associated with the binary cefixime resistance phenotype when treeWAS was applied to core SNPs from 200 N. gonorrhoeae isolates.
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penA SNPs on cefixime resistance. Experimental studies have investigated some of

the polymorphisms in penA, and our results contain many of these loci [299,300,306].

For example, site-directed mutagenesis has been used to introduce SNPs 1128089.a/t,

1128107.c, 1128125.c, and 1128230.t into N. gonorrhoeae genomes. This results in amino

acid substitutions F504L, A510V, A516G, and P551S, and leads to a five-fold reduction

in β-lactam binding [311]. A role in cefixime resistance has also been experimentally

confirmed for 1128071.c (T498) [312], 1128080.t (A501V) [300], 1128122.c/t (I515V) [311],

and 1128212.a (G545S) [313]. Interestingly, some of these sites have been found to impact

cefixime MIC only in the presence of other residues [312]. Yet, thanks to selective

pressures acting on epistatically-interacting sites, our site-by-site approach has been able

to identify these loci. Although further laboratory investigation is needed to evaluate the

remaining SNPs in Table 5.1, our ability to confirm the previously-identified penA and

murE genes, and known functional SNPs within these regions, provides strong support

for the performance of our approach.

Overall, through its use of the clonal framework to simulate a neutral distribution

of Nsub across the tree, our approach has been able to demonstrate robust control

over the confounding effects of population stratification, genetic linkage, mutation and

recombination. One limitation of these stringent efforts to reject spurious findings is

that our approach may have rejected additional SNPs, likely in penA and murE, whose

weaker relationship with the phenotype may still have been genuine. On the other hand,

with only nine unique SNP column patterns among the 132 SNPs identified, we do not

have enough information to separate epistatic effects from LD within the mosaic penA

gene [314]. Finding small sets of perfectly-linked SNPs is not surprising, nor particularly

problematic. In comparison, human GWAS requires fine mapping to hone in on causal

SNPs that may be linked to a marker SNP detected kilobases away [315]. To confirm

and refine our findings, we could repeat the analysis with a larger sample size, perform a

meta-analysis, or interrogate SNPs experimentally.

5.2.2 Results from other GWAS methods

Found by treeWAS In murE-penA
GWAS method Total Yes No Yes No

treeWAS 132 132 0 132 0
Fisher 4,001 132 3,869 304 3,697
X2 3,688 132 3,556 302 3,386
GC 0 0 0 0 0
PCA 384 109 275 276 108
DAPC 382 109 273 276 106
CMH 403 119 284 314 89

Table 5.2. Comparing associations with cefixime resistance by GWAS method.

For comparative purposes, we repeated the analysis of cefixime resistance with the GWAS
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methods examined in our simulation study. Table 5.2 suggests that similar relative levels

of performance are obtained in empirical analyses, even with this straightforward, highly

heritable phenotype. While all methods except GC found most or all of the SNPs

identified by treeWAS, they also found large numbers of additional loci. Aside from

the null results of GC, alternative approaches deemed many other sites in murE-penA

“significant”, though many of these are likely atttributable to LD alone. Furthermore,

each method found many loci with no known connection to the phenotype, adding many

probable false positives.

The evidence suggests that our method was able to achieve better precision by using

simulations to evaluate the impact of ancestry at all levels of the population structure.

Meanwhile, the performance of competing approaches was undercut by false positive

findings Owing to the phenotypic uniformity of some sub-populations, the CMH test

was only able to account for k = 4 clusters in this dataset, leaving correlations between

phenotype and clade were left unchecked in other sub-populations. PCA and DAPC more

thoroughly accounted for the population structure, with k = 10. Yet, neither clusters nor

PCs adjusted for the true clonal ancestry of the sample, as widespread recombination

was not accounted for. Altogether, by accounting for the clonal genealogy, recombination,

mutation, and the phenotypic distribution, our approach more effectively counteracted

confounding factors in this empirical dataset. We also balanced stringency with power,

by drawing on our three association scores. Our GWAS method thus achieved similar

sensitivity to competing approaches, while excluding volumes of their likely false positive

findings.

5.2.3 Identifying associations with cefixime MIC

Unlike many existing GWAS methods, our appraoch makes it possible to identify

associations with continuous phenotypes. This allowed us to analyse the underlying

cefixime MIC phenotype from which the binary categories above were derived. In our

analysis of the continuous rank-transformed MIC phenotype, treeWAS identified 222

significant SNPs. All significant SNPs fell in penA and murE, as in the binary analysis,

with strong LD between significant sites (see Figure A.4). Although additional laboratory

analyses would be needed to support a causal association at individual SNPs in Table 5.3,

we have already presented evidence confirming that both genes are functionally related

to cefixime resistance [299,306–308]. Indeed, variants of penA have been found to induce

8- to 500-fold changes in cefixime MIC in N. gonorrhoee [300].

Our analyses of the binary and continuous phenotypes were both performed on the same

genetic dataset, using the same phylogenetic model of population structure. And, while

the binary analysis was successful, the analysis of the continuous phenotype provided

a distinct perspective and enabled a more detailed examination of the data. Whereas
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Gene N.SNPs SNPs Gene product

NEIS1751
(murE)

6 1125247.a 1125258.a 1125266.c 1125522.a 1126060.c 1126111.c UDP-N-
acetylmuramoyl-
alanyl-D-
glutamate–2, 6-
diaminopimelate
ligase

NEIS1753
(penA)

216 1126892.g 1126901.t 1126940.g 1126964.c 1126976.g 1127009.t 1127015.c
1127054.a 1127077.t 1127116.a 1127120.g 1127177.a 1127195.c 1127196.c
1127199.t 1127203.g 1127204.c 1127206.a 1127210.c 1127213.c 1127222.t
1127225.t 1127234.c 1127238.c 1127240.g 1127258.c 1127264.c 1127267.c
1127282.a 1127303.c 1127306.c 1127312.c 1127315.c 1127333.c 1127339.c
1127354.c 1127399.t 1127411.c 1127414.g 1127429.c 1127434.c 1127444.c
1127450.c 1127453.t 1127461.g 1127468.c 1127470.g 1127487.c 1127492.c
1127498.t 1127510.t 1127522.t 1127528.g 1127531.a 1127534.c 1127537.a
1127543.c 1127544.g 1127545.t 1127546.g 1127552.g 1127555.g 1127565.g
1127567.g 1127574.a 1127575.c 1127576.c 1127576.g 1127580.t 1127581.t
1127582.g 1127584.a 1127588.a 1127589.c 1127590.g 1127591.g 1127592.c
1127594.g 1127600.g 1127602.a 1127609.t 1127618.a 1127619.c 1127622.t
1127625.c 1127630.g 1127636.c 1127645.t 1127651.c 1127654.c 1127655.t
1127681.g 1127687.g 1127699.c 1127702.a 1127705.c 1127711.g 1127717.g
1127718.c 1127719.g 1127720.t 1127723.c 1127724.g 1127725.g 1127726.c
1127727.g 1127729.c 1127730.g 1127741.t 1127744.c 1127753.t 1127756.a
1127759.g 1127762.c 1127763.a 1127765.c 1127768.t 1127774.t 1127780.c
1127783.g 1127792.g 1127795.g 1127795.t 1127818.a 1127819.t 1127828.g
1127833.g 1127834.g 1127835.c 1127836.c 1127837.a 1127837.c 1127849.g
1127852.g 1127867.c 1127879.g 1127886.c 1127900.c 1127909.c 1127911.c
1127912.a 1127913.c 1127918.g 1127921.c 1127929.t 1127930.t 1127934.c
1127940.c 1127951.g 1127954.g 1127957.g 1127969.g 1127970.c 1127978.a
1127982.a 1127984.a 1127985.t 1127992.a 1127993.a 1127996.g 1127999.c
1128002.g 1128003.c 1128004.g 1128005.c 1128006.g 1128008.g 1128011.a
1128015.a 1128017.t 1128018.c 1128032.a 1128035.c 1128038.g 1128039.c
1128041.c 1128041.g 1128047.c 1128056.g 1128059.g 1128068.g 1128071.c
1128080.t 1128089.a 1128089.t 1128107.c 1128110.a 1128111.c 1128116.c
1128119.t 1128122.c 1128122.t 1128125.c 1128128.t 1128131.g 1128134.c
1128135.a 1128146.c 1128148.g 1128149.t 1128152.g 1128152.t 1128155.t
1128170.c 1128173.c 1128179.c 1128182.c 1128182.g 1128206.c 1128212.a
1128221.c 1128222.c 1128227.c 1128230.t 1128234.g 1128239.c

penicillin-binding
protein 2

Table 5.3. SNPs associated with cefixime MIC in N. gonnorrhoeae. These 222 SNPs were identified as significantly associated

with the continuous ranked cefixime MIC phenotype when treeWAS was applied to core SNPs from 200 N. gonorrhoeae isolates.

the binary phenotype in Figure 5.1A falls mainly into four large clades, two susceptible

and two resistant, the continuous MIC phenotype in Figure 5.3A produces a less rigid

correlation between ancestral population and phenotype, by introducing moderate values

into the major phenotypic clades. The MIC phenotype also resolves artefacts of the

binary phenotypic categorisation. In Figure 5.1A, significant SNP genotypes offered no

explanation for the six “sensitive” isolates in the upper-most resistant clade, or “sensitive”

isolate 27241 in the central clade. As each of these isolates conversely receives a high

MIC rank in Figure 5.3A, the continuous phenotype allows our approach to make more

appropriate inferences about association in these genomes. Furthermore, especially as

resistance phenotypes are known to evolve through the accumulation of substitutions

in associated loci [307, 316], the analysis of continuous MIC data provided a valuable

opportunity to examine phenotypic changes across a more refined gradient than the
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binary analysis could allow.

With the more informative continuous phenotype, treeWAS appears able to make a

stronger distinction between population-associated loci and probable phenotypically-

associated sites. As the estimated probabilities of spurious association are reduced across

the genome, the null distributions shift left-ward from Figures 5.1B-D to 5.3 B-D, and

the significance thresholds for Scores 1, 2, and 3 are reduced by 50%, from 0.9, 4, and

372 with the binary phenotype to 0.5, 1.7, and 176 with the continuous phenotype.

Meanwhile, the initial set of resistance-associated SNPs remain significantly associated

with the MIC phenotype, and an additional 90 core SNPs in penA and murE are found

to be associated with cefixime resistance. Some of these have also been functionally

validated [317], but further experimental analyses will be needed to investigate the impact

of each candidate SNP on cefixime MIC. If their roles can be confirmed, we will be able

to infer that, in this N. gonorrhoeae dataset, our approach achieved greater power with

the continuous phenotype while maintaining the precision of the binary analysis.

We recommend that GWAS be applied to both binary and continuous phenotypes,

where possible. Subsequent analyses will allow us to more thoroughly discuss how

treeWAS performance varies as a function of phenotypic data type (see Section ). In

this case, the continuous analysis appeared to reduce population stratification and

add power to association inference. Both analyses can be informative, however, and

additional insight may be gleaned from a comparison of their findings. Overall, in this

application, our approach demonstrated the ability to identify phenotypically-associated

recombinant regions and to select relevant loci within them, when applied to both binary

and continuous phenotypic data. Similar applications of our GWAS method will be

useful in areas ranging from drug development to surveillance.
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5.3 Penicillin resistance in Neisseria meningitidis

In our second analysis, we applied our approach to a dataset of N. meningitidis isolates

with a penicillin resistance phenotype. N. meningitidis isolates typically inhabit the

human nasopharynx, where they can be carried asymptomatically. Less often, meningo-

cocci invade host tissues, causing septicemia by infecting the bloodstream or giving rise

to meningococcal meningitis by invading the central nervous system. Young children and

immunocompromised individuals are especially at risk. Thirty million cases of these two

diseases occur annually, alongside other manifestations of meningococcal infection [6].

Penicillin has mitigated the risks from meningococcal infection since it first became

publicly available in 1942 [318]. Like cefixime, penicillin is a member of the β-lactam class

of antibiotics. It interrupts the life cycle of N. meningitidis by preventing peptidoglycan

synthesis and inhibiting meningococcal cell division and survival. In the past thirty

years, however, N. meningitidis has become increasingly resistant to this life-saving drug.

Although no previous studies have examined penicillin resistance in the dataset below,

this phenotype is thought to be well characterised in the literature. Empirical evidence

indicates that recombination plays a larger role in the evolution of the β-lactam resistance

in N. meningitidis than in N. gonorrhoeae [310]. Nevertheless, many of the same genes

are known to be involved in both gonococcal cefixime resistance and meningococcal

penicillin resistance [319]. We test that, as in the above analysis, our GWAS method

can confirm the identity of known resistance loci. We will, again, compare the results

of our binary and continuous analyses of the resistance phenotype, to investigate how

performance varies between empirical datasets.

We downloaded 171 serogroup B N. meningitidis whole-genome sequences from the

Neisseria BIGSdb database [302] (see Tables A.4, A.5, A.6). We assembled two genetic

datasets to be analysed by our GWAS method:

1. The core SNP dataset contained 166,848 binary SNPs.

2. The accessory gene dataset notes the presence-or-absence status of 2,808 genes.

N. meningitidis has a fairly high recombination rate, with previous estimates indicating

r/m ≃ 2 (95% C.I. 0 - 5) [320] and suggesting that 40% of core genes are impacted

by recombination [47]. Our approach remains applicable in this context, provided

that recombination is accounted for during phylogenetic inference [1]. As above, we

reconstructed a recombination-aware phylogenetic tree from whole-genome sequence data

by building an intial tree with PHYLIP [194] and using ClonalFrameML [221] to identify

the clonal genealogy (Figure 5.5A).

The penicillin resistance phenotype was analysed in two ways:

1. The binary phenotype categorised isolates as either penicillin “sensitive”, if MIC

≤ 0.06µg/mL, or “resistant” if MIC > 0.06µg/mL.

2. The continuous phenotype was defined as the ranks of the MIC values (see

Figure A.2).
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We applied treeWAS to both the accessory genome and core SNP datasets, with both

the binary and continuous phenotypes. No accessory genes were found to be significantly

associated with binary resistance or continuous MIC. Many core SNP associations were,

however, identified with both phenotypic variables. treeWAS completed the accessory

and core genome analyses in 23 seconds and 24 minutes, respectively.

5.3.1 Identifying associations with penicillin resistance

The application of treeWAS to the set of N. meningitidis core SNPs resulted in the

identification of 162 SNPs significantly associated with the binary penicillin resistance

phenotype. Table 5.4 shows that the majority, 126 SNPs, were in the well-known

NEIS1753 (penA) gene encoding PBP-2, while 36 SNPs were located in the NEIS1751

(murE ) gene. The connection between variation in penA and penicillin resistance in N.

meningitidis is supported by ample evidence [299,321,322]. Even at the level of individual

polymorphisms, a causal relationship has already been established experimentally for

many of the penA SNPs we identified, in Table 5.4 [299,323]. The role ofmurE in penicillin

resistance has also been confirmed in N. meningitidis [324]. Additional experimental

analyses are still needed, however, to ascertain the impact of particular murE SNPS. In

fact, while we had expected penA to feature in both our cefixime and penicillin analyses

in these separate Neisseria species, we had not predicted the recurrence of murE. Given

the under-representation of muropeptides like murE in the β-lactam resistance literature,

we hope that our identification of murE candidate loci may provide motivation and

direction for future work of this kind [155].

More murE and penA diversity underlies penicillin resistance in N. meningitidis than

cefixime resistance in N. gonorrhoeae, above. In Figure 5.5A, we see 67 unique column

patterns among the 162 significantly-associated polymorphic sites. The associated loci

display both recurring linkage blocks and site-specific variation, with the bulk of this

variation occuring in the genomes of resistant isolates. We infer that resistance arises

primarily via recombination. The variation observed among associated sites may be due

to mutation or the integration of exogenous DNA at variable sites. Compared to cefixime-

associated loci, significant sites display more moderate and less uniform correlation (see

Figure A.5). The literature attributes the extensive mosaicism in meningococcal PBPs, as

compared to gonococcal variants, to more frequent intra- and inter-specific recombination

events [310]. Indeed, hundreds of mosaic penA variants have been identified in N.

meningitidis [299]. In this dataset, it would have been impractical and inappropriate to

treat recombinant regions as single units, as suggested by Farhat et al. [106], as resistance

has not evolved in durable, well-defined recombinant blocks. By operating at the level

of individual sites, our approach was better suited to the identification of associated

variants in this analysis.
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5.3.2 Identifying associations with penicillin MIC

Analysis of the continuous penicillin MIC phenotype identified 30 significant SNPs. Table

5.5 indicates that the majority were located in the penA gene, as expected. Of the 23

penA SNPs identified, at least six have already been confirmed experimentally [299, 323].

The identification of additional SNPs in murE further suggests that the role played by

this locus may merit greater attention in research and drug development. SNPs in two

additional genes were also found to be associated with penicillin MIC. The transcription

factor nusA facilitates gene expression and is known to play a role in the resistance of N.

meningitidis to other antibiotics [325,326]. The NEIS0367 nucleotidyltransferase may

participate in DNA damage repair and stress response, as similar gene products do in

other Gram-negative bacteria [327]. If the gene does not impact penicillin resistance

directly, it may increase MIC values by conferring a marginal fitness advantage in the

presence of antibiotics [117]. All candidate SNPs, especially the two in novel genes,

should be subjected to experimental validation to determine whether a causal link to

penicillin MIC can be established, beyond the broader gene-level association.

Gene N.SNPs SNPs Gene product

NEIS0376 1 270097.g putative sugar-phosphate
nucleotidyl transferase

NEIS1556
(NusA)

1 1093364.c transcription elongation
factor

NEIS1751
(murE)

5 1241046.c 1241050.a 1241056.t 1241721.c 1241724.a UDP-N-acetylmuramoyl-
alanyl-D-glutamate–2,
6-diaminopimelate ligase

NEIS1753
(penA)

23 1243959.c 1243977.g 1243986.c 1243995.c 1244001.c 1244010.g
1244016.t 1244018.c 1244022.c 1244032.a 1244034.c 1244037.t
1244040.c 1244040.t 1244043.t 1244058.c 1244067.c 1244109.c
1244110.c 1244118.t 1244134.g 1244185.a 1244190.c

penicillin-binding protein
2

Table 5.5. SNPs associated with penicillin MIC in N. meningitidis. These 30 SNPs were identified as significantly associated

with penicillin MIC when treeWAS was applied to core SNPs from 171 serogroup B N. meningitidis isolates.
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Inverting the trend observed in our analyses of gonococcal cefixime resistance, our

analyses of meningococcal penicillin resistance identified fewer associations with the

continuous phenotype than with the binary phenotype. The binary phenotype was,

again, more clustered and population-stratified than the continuous variable. But, with

far more variation in the penicillin resistance phenotype, there was limited opportunity

for population stratification to arise, even with the binary variable. As in the cefixime

analysis, the significance thresholds for Scores 1-3 were reduced with the continuous

phenotype. But, in the penicillin analysis, this did not lead to improvements in power,

as power was not limited by population structure to begin with. Instead, penicillin

MIC produced weaker association scores at significant loci. Yet, most associations with

penicillin MIC were found with the same strongly-resistant isolates as in the binary

analysis. To achieve the power needed to detect associations with intermediate penicillin

MIC values, we would likely require a larger sample size. In this MIC GWAS, however,

we even lost the variation at significant SNPs in resistant genomes that was permitted

in the binary analysis. With few exceptions, MIC-associated SNPs were thus strongly

correlated with one another (see Figure A.6). Several SNPs identified in the binary

analysis, including two functionally-validated SNPs (1243956.g (T483S) and 1244139.t

(P551S) [299]), were subsequently overlooked in the continuous analysis. Overall, whereas

MIC values had improved sensitivity in the cefixime analysis by “diluting” a rigidly

population-stratified phenotype, in the penicillin analysis, MIC values added noise to an

already noisy relationship and drowned out many signals of association.

Across our analyses of binary and continuous β-lactam resistance phenotypes, the

phenotypic data type alone was not predictive of the strength of confounding bias,

nor the power or precision of our approach. But, despite considerable variation in

the confounding effects encountered across the four analyses above, our approach was

consistenty able to eliminate all or nearly all false positive findings. Although the number

of significant SNPs varied, our approach was able to identify significant variants in known

resistance-associated genes in each analysis.

Our results in these analyses of Neisseria suggest that association inference in treeWAS

is accurate, efficient, and robust to the confounding influences of both vertical and

horizontal evolutionary forces. By detecting new resistance-associated genetic variants,

similar applications of treeWAS may be used to update and improve surveillance schemes,

or to discover valuable molecular targets for drug development. As drug resistance

continues to rise in many bacteria, evolving most rapidly in recombinant species, the

suitability of treeWAS to both clonal and recombinant organisms, and to both binary

and continuous phenotypes, will substantially increase the scope of our GWAS method

and improve its capacity to uncover solutions to this and other public health challenges.
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5.4 Invasive disease in Neisseria meningitidis

Having demonstrated the ability of our approach to identify associations with strongly

genetically-determined resistance phenotypes, we wanted to attempt a more ambitious

application of our method. We applied treeWAS to a sample of serogroup C N. meningi-

tidis isolates, to search for associations with an invasive disease versus carriage phenotype,

whose etiology is more complex than antibiotic resistance and less well understood. The

invasive potential of meningococcal isolates is determined more probabilistically than

resistance, arising from the contributions of multiple pathogen genetic factors, as well

as external factors, like host immunity [328]. Whereas resistance-associated SNPs were

repeatedly introduced in a recombinant genomic island, virulence factors are known to

evolve through point mutation, intragenic recombination, and the gain and loss of whole

genes and genomic islands [47]. Pathogenicity may emerge via recombination in otherwise

commensal populations [329], or it may be restricted to hyper-virulent lineages [330].

Recombination should help to disrupt the extensive linkage of loci within the clonal frame,

which may improve our ability to distinguish virulence-associated loci. The conflicting

influences of clonal inheritance and recombination are nevertheless expected to confound

the analysis, unless appropriately addressed. We aim to demonstrate the capacity of our

GWAS method to disentangle and account for both factors, and to show that the design

of treeWAS equips it with the precision, power, and flexibility needed to successfully

identify both genes and SNPs associated with such subtle and complex phenotypes. We

hope to identify both previously-characterised and novel invasiveness factors.

From the Neisseria BIGSdb database [302], we downloaded 129 European N. meningitidis

sequences from serogroup C (see Tables A.7, A.8). We assembled two genetic datasets:

1. The core SNP dataset contains 115,386 binary SNPs.

2. The accessory gene dataset indicates the presence or absence of 2,809 genes.

As above, our approach will have to contend with the competing influences of clonal

inheritance, mutation, and recombination in this application. We reconstructed the phy-

logenetic tree from whole-genome sequences, estimating an initial tree with PHYLIP [194]

and using ClonalFrameML [221] to account for recombination while inferring the clonal

genealogy (Figure 5.9A).

The phenotype was analysed as a binary variable. We extracted metadata from the

BIGSdb database and used this to assign either an “invasive” or “carriage” phenotype

to each isolate, according to the clinical status of the human host from which each

isolate was sampled. Carriage isolates were sampled by taking throat swabs from healthy

individuals, and invasive isolates were sampled from the blood or of unhealthy patients.

Virulence was not quantified, so the phenotype was not analysed as a continuous variable.

We applied treeWAS to the accessory and core genome datasets, completing analyses in

17 seconds and 7 minutes, respectively. Our approach identified significant associations

in both cases.
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5.4.2 Identifying accessory genes associated with invasiveness

Gene Gene product

NEIS1969 (NadA) Neisseria adhesin A
hmbR Haemoglobin receptor protein
igr NEIS0405 0406 intergenic region between NEIS0405 and NEIS0406
NEIS0596 (MafA-2 ) Multiple adhesin family A 2
NEIS0832 hypothetical protein
NEIS0956 cell-surface protein
NEIS0975 putative outer membrane protein
NEIS1124 hypothetical protein
NEIS1574 (comEA-2 ) DNA transport competence protein
NEIS1880 DNA transport competence protein
NEIS1996 (comE ) DNA transport competence protein
NEIS2072 putative periplasmic protein

Table 5.7. Genes associated with invasive disease in N. meningitidis. These 12 genes were

identified as significantly associated with invasive disease when treeWAS was applied to 129 accessory

genome gene presence-or-absence sequences from N. meningitidis serogroup C.

Unlike the resistance GWASs above, this analysis uncovered significant associations in

the accessory genome, linking 12 genes to carriage or invasive disease (Table 5.7, Figure

5.9). It is encouraging to see that our method is able to identify both known and novel

associations in the accessory genome, when they are predicted to exist [47]. Notably,

none of the six comparator GWAS methods examined in Chapter 4 were able to find

any significant associations to virulence among either core SNPs or accessory genes.

Three of the 12 genes were found to be positively associated with invasive disease. We

were able to confirm the functional role of each by consulting the literature. NadA is

an adhesin with well-characterised roles in virulence, enabling adhesion, colonisation,

and invasion of host mucosal cells [344, 345]. It is one of the antigen targets of the

Bexsero meningococcal vaccine [333]. MafA2, another adhesin, facilitates adhesion to

human cells via glycolipid binding [346] and plays a similar role to NadA in pathogenic

Neisseria [347]. hmbR is a haemoglobin receptor protein, which facilitates iron acquisition

and haeoglobin uptake [348]. These processes have been shown to enhance the growth

of invasive meningococci within the bloodstream [349]. As the hmbR gene is highly

conserved [350], it may represent a good target for vaccine development.

We also identified nine accessory genes whose presence was associated with Neisserial

carriage. Virulence factors that improve commensal fitness rather than pathogenic inva-

siveness are, in fact, widely known to be enriched in the accessory genome, where they

mediate interaction and communication with host cells and facilitate adaptation to selec-

tive pressures induced by host immune responses, competition from other nasopharyngeal

microbes, and environmental conditions [47,351]. Three comEA-like competence proteins

were identified, encoded by the NEIS1574, NEIS1880, and NEIS1996 genes. Analyses in

S. pneumoniae have recently established A similar link between competence genes and

carriage duration has recently been established in S. pneumoniae [132,352]. These genes

may have enduring, if non-specific, effects on the phenotype, as an enhanced capacity

for recombination can improve the flexibility and responsiveness of Neisseria [337,353].
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5.4. Invasive disease in Neisseria meningitidis

Considering epistatic interactions associated with invasive disease

Evidence from the literature indicates that individual meningococcal virulence genes

are rarely necessary or sufficient to independently convert commensal isolates into

pathogenic ones, or vice versa [357]. Comparing the patterns of accessory gene presence

and absence in Figure 5.9A to the terminal distribution of “invasive” and “commensal”

phenotypic states, it appears that none of the 12 significant genes has a deterministic

effect on virulence in isolation. Accordingly, in Figures 5.9B and D, all but one of the 12

virulence-associated genes displays weak sample-wide association.

On the other hand, virulence is known to be probabilistically determined through the

contributions and interactions of multiple loci [358]. Strong pairwise correlations between

many of the virulence-associated accessory genes may, in fact, represent significant

interactions (see Appendix, Figure A.8). Notably, although resistance-associated loci

displayed even stronger correlations, the physical proximity of these significant sites along

the chromosome meant that we had insufficient evidence to distinguish any potential

epistasis from physical linkage. By contrast, as the putative virulence genes identified

above are separated by considerable distance along the chromosome, the correlations

among these sites are less likely to reflect LD and more likely to indicate epistatic

interactions. For example, the perfect correlations and significant interactions (p < 0.001)

observed among the three competence genes in Table 5.7 (NEIS1574 comEA-2, NEIS1880,

NEIS1996 comE ) fit with our understanding of the epistatic interaction between genes

and the integration of gene products that enable bacterial transformation [359,360]. This

network of significant interactions also appears to extend to NEIS0956, NEIS0975, and

NEIS1124, prompting an expanded view of the protein-protein interactions that may

be involved in recombination. More broadly, this preliminary analysis enhances our

understanding of the individual actions and epistatic interactions displayed by accessory

genes associated with meningococcal colonisation and invasive disease.
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Chapter 6

Discussion

6.1 Summary of previous chapters

We opened this thesis with an introduction to microbial genetics and microbial GWAS,

more specifically. In Chapter 1, we described the comparative analytical approach adopted

in association studies. We argued that the efficiency, broad applicability, unbiased nature,

and genome-wide design of GWAS methods offered clear advantages over traditional

laboratory techniques, particularly in the “omics” era [48]. This was followed by a review

of the GWAS studies that have been carried out thus far in microbial samples. We

underscored the vast potential that association studies have to improve our understanding

of infectious pathogens. However, we noted that the undertaking of microbial GWAS

studies has been hampered by a lack of purpose-built and thoroughly-tested methodology.

Chapter 2 was devoted to a review of the literature and a thorough examination of

the major methodological challenges in microbial GWAS. We focussed on three main

areas, namely population stratification, recombination, and association testing. Potential

solutions to each issue were considered, and their strengths and limitations compared.

This allowed us to lay out our motivations for the choices we made when developing our

own microbial GWAS method in the next chapter.
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6.1. Summary of previous chapters

In Chapter 3, we introduced our new phylogenetic, multi-measure, Monte Carlo approach

to microbial GWAS. We proposed the following procedure. First, a recombination-

adjusted phylogenetic tree is reconstructed from whole-genome sequence data, and

ancestral states and substitutions are reconstructed via maximum parsimony. A Monte

Carlo simulation process is then carried out along the inferred phylogeny, while preserving

additional empirical parameters, including the homoplasy distribution. This allows us

to model the neutral evolutionary process expected under the null hypothesis of “no

association”, while accounting for confounding bias due to clonal ancestry, variable

mutation and recombination rates, and variation in other empirical parameters. To

ensure that our robust approach could also achieve good statistical power, we developed

a strategy to enhance sensitivity through the parallel application of three measures of

association, including both allele-based and homoplasy-counting scores. A comparison

of the null and empirical distributions of each association statistic then allows us to

distinguish statistically and evolutionarily significant relationships between genotype and

phenotype from a noisy background of spurious associations. We concluded this chapter

by describing the implementation of our GWAS method in the treeWAS R package,

highlighting features that enhance its accessibility, efficiency, and effectiveness.

In Chapter 4, we presented the results of over 600 applications of our GWAS method to

simulated datasets. We began by introducing multiple simulation frameworks, which

were developed for these analyses and implemented in the treeWAS R package. We then

described how genotypic and phenotypic datasets were simulated for this simulation study,

varying parameters governing the dimensions of simulated datasets, the phylogenetic

relationships among individuals, the recombination rate among genomic loci, and the

frequency, nature, and strength of associations between genotype and phenotype. In

the first set of analyses presented, we applied treeWAS to these synthetic datasets to

evaluate elements of our GWAS method, prompting evidence-based decisions in favour of

parsimony for ancestral state reconstruction and against scaling Score 3 by branch length.

We also determined that optimal performance could be achieved with a count-based,

Bonferroni-corrected significance threshold, with αbase = 0.01 and Nsim = 10Nloci. Next,

applications to simulated data were used to evaluate the performance of treeWAS and

compare it to six popular alternative approaches, including uncorrected association tests

and approaches with uniform, dimension reduction, and cluster-based adjustments for

ancestry. Exceeding expectations, treeWAS achieved by far the greatest precision of

any method while reaching comparable sensitivity. As a result, our approach displayed

the strongest overall performance of any approach in Sets A, B, and C, respectively

identifying simple, complementary, and more complex associations. Finally, we applied

treeWAS and alternative approaches to datasets simulated while sample size, genome
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size, and background noise were varied across wide parameter ranges. Here, again,

our approach consistently out-performed the other GWAS methods examined. Our

simulation study thus provided strong support for our GWAS method. Indeed, these

results suggested that treeWAS would be more effective than alternative approaches at

identifying genuine associations in analyses of real biological sequence data.

In Chapter 5, we applied our GWAS method to empirical datasets from N. gonorrhoeae

and N. meningitidis. In examining both antibiotic resistance and virulence phenotypes,

treeWAS was able to both confirm well-known loci and to uncover novel associations.

We were pleased to find that a putative functional link, or a homologous relationship

in another species, could be gleaned from the literature for a large majority of the

previously-unreported associations identified by our approach. Furthermore, these

analyses confirmed that the performance of treeWAS observed in our simulation study

was reasonably representative of its true power and precision in empirical analyses.

If anything, the variable contributions of Scores 1-3 to our empirical findings suggest

that our analyses of simulated data may have underestimated the flexibility, utility,

and perhaps even the power of our GWAS method. These applications to empirical

data also provided a practical demonstration of the versatility of treeWAS, as we were

able to identify significant findings in both the core and accessory genome, with both

deterministic and complex associations, examined as both binary and continuous variables.

Altogether, these applications to empirical data provided a powerful demonstration of

the potential of our GWAS approach in real genetic data analyses.

6.2 Strengths

Through a process of development, testing, and refinement, we created a new approach to

GWAS that was tailor-made for use in microbial samples. We implemented new solutions

to each of the three major methodological challenges examined in our review of the

literature. Moreover, we were able to achieve each of the primary objectives identified in

Chapter 2, by developing a method that was able to:

1. Address the confounding effects of clonal ancestry.

2. Account for the variable confounding influence of homologous recombination.

3. Augment discovery power without sacrificing precision.

4. Improve accuracy and expand reach by capitalising on all available data.

5. Ensure efficiency and accessibility by implementing the treeWAS R package.

179/239



6.2. Strengths

The results of our analyses of simulated data attest to the merits of our approach.

Furthermore, our applications to empirical datasets provide a powerful case for the

potential of treeWAS to lead to new discoveries that will advance our understanding of

microbial genetics and infectious disease. Ultimately, through a process of development,

testing, and refinement, we were able to overcome a number of critical limitations in

existing GWAS methods, by producing an approach that was:

Designed for clonal and recombinant microbes Our approach derives its greatest

benefits from the fact that it was specifically designed for use in microbes, unlike most

of the GWAS methods that have been applied to microbes thus far. For example, we

know from empirical evidence that most organisms display both clonality and recom-

bination to some degree, and that strong clonal relationships and variable homologous

recombination are two of the most significant sources of confounding bias in microbial

GWAS studies [74, 97,183,245]. We were able to ensure that the confounding effects of

ancestral relationships could be sufficiently addressed, even in strictly clonal organisms,

by adopting a phylogenetic approach. Our simulation study showed that uniform, PC-

based, and cluster-based corrections for population structure were, conversely, unable to

offer comparable precision and power when applied to the same datasets [97,183]. Our

simulation study also raised new questions about the advertised benefits of dimension

reduction techniques and cluster-based methods in the presence of recombination. We

were pleasantly surprised to find that the precision and performance of our simulation-

based approach remained well above all competing approaches at all recombination rates

examined. Despite these clear strengths, treeWAS is still the only phylogenetic GWAS

method to explicitly account for recombination as well as clonality during ancestry and

association inference. We hope that these positive results may encourage further research

into recombination-aware, tree-based approaches.

Powerful and versatile Another advantage of our approach is that it incorporates

multiple, complementary association testing frameworks within a single overarching

method. In addition to the allele-based measure that we first developed, in Score 1, our

tree-based approach enabled the implementation of our homoplasy-counting Score 2 and

allowed us to extend our allele-based Score 3 into the evolutionary past. By drawing on

three distinct measures, treeWAS is likely to identify a broader range of associations with

more diverse evolutionary backgrounds, as one might expect to encounter in analyses of

diverse microbial genotypic and phenotypic datasets. The results of multiple applications

to simulated and empirical data allowed us to confirm this in practice and to state

confidently that our multi-measure approach improves power without undermining
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performance. The parallel application of our three measures proved additionally useful in

providing more detailed insights into the nature of each association identified. Whereas

most alternative approaches produce a binary significant/insignificant result at each

locus, our method offers three clear perspectives on the association present at every

significant locus. This improves the interpretability of our findings, for example, as

compared to approaches that merge measures from multiple tests [130] or that separate

findings into lineage and locus effects [128]. As demonstrated in our empirical analyses,

treeWAS can identify associations between any form of binary genetic data and any

binary, continuous or ordered categorical phenotype, unlike many other methods. The

modular structure of our R package will also ensure that treeWAS can accommodate

additional or alternative association scores, in future. This will allow treeWAS to be

updated and expanded as association testing measures are improved and extended to

meet new analytical aims.

Efficient and accessible The treeWAS R package itself offers a number of advantages

over alternative software tools. The computational efficiency and scalability of the

treeWAS R package will be an asset in any analysis, whether our GWAS method is being

applied to accessory genome data, core SNPs, or evem k-mer datasets. Indeed, our efforts

to optimise the efficiency of treeWAS managed to alleviate the computational burden

often associated with simulation-based phylogenetic methods [183]. The treeWAS R

package also eliminates much of the subjectivity inherent in most other GWAS methods.

PCA, DAPC, and the CMH test, for example, require users to perform separate analyses

of the population structure and to select k, through visual inspection, with reference to

one of many goodness-of-fit measures, or by choosing a particular k-selection procedure.

We avoid these non-standardised decision-making procedures, by implementing objective,

automated optimisation procedures within the treeWAS R package. By eliminating this

source of variation, our approach reduces subjectivity and error.

Perhaps the greatest testament to the benefits of this project has been provided by the

positive reception of our publication [155] and the treeWAS R package. We are proud

to report that the treeWAS R package has developed an active community of users,

who have applied our method to a wide variety of organisms. Melnyk et al. [361], for

example, have used the treeWAS R package to successfully identify genes associated

with pathogenicity in the plant pathogen Pseudomonas fluorescens. We have certainly

been encouraged to see that, since the publication of our paper [155] earlier this year,

it has been downloaded over 3,800 times and viewed by over 11,000 people. Our work

has generated much interest among members of the scientific community from over 30
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countries, sparking more discussion on social media than 98% of papers published during

the same period. In this thesis, we demonstrated the power and potential of treeWAS

through applications to simulated and empirical data. But, the widespread uptake and

popularity of treeWAS may provide an even stronger endorsement of the utility of our

new GWAS method and the value of this work.

6.3 Limitations

Although our results showed that the design of our microbial GWAS method gives

treeWAS a considerable performance advantage over alternative GWAS approaches, a

number of areas remain open to improvement.

Phylogenetic uncertainty One potential limitation of our approach is that it assumes

that there is no uncertainty about the phylogenetic tree. An unreliable tree topology

or incorrect branch lengths will impact the association scores calculated and the data

simulated within our method, increasing our chances of making incorrect inferences about

the nature and significance of associations. Thankfully, we do not expect phylogenetic

reconstruction to be a major source of uncertainty in our GWAS analyses. Because our

samples must contain multiple phenotypic substitutions, they tend to be fairly diverse,

often spanning an entire lineage or species. The availability of genome-wide data also

improves phylogenetic accuracy. Still, some uncertainty will inevitably occur, especially

in samples that undergo recombination.

Limits on recombination We designed our approach to account for both clonal in-

heritance and recombination during phylogenetic reconstruction and association inference.

While our approach should be able to handle clonal population structure of any strength,

we acknowledge that there is an upper limit on the acceptable level of recombination.

When recombination exceeds mutation to the extent that it obscures the clonal genealogy,

the essential ancestry and association inference components of our method will become

unreliable and alternative approaches may be more appropriate. In the publication and

documentation of our method, we encourage users to estimate r/m and to question the

applicability of treeWAS in each analysis [155]. However, at present, we cannot state

precisely at what relative levels of recombination and mutation treeWAS will be rendered

inappropriate. In lieu of our current call for caution, it would be better if we could

provide users with an evidence-based r/m cutoff, to provide a clear upper bound on the

level of recombination that is acceptable in treeWAS analyses.
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Skewed continuous phenotypes We indicate in Chapter 3, and demonstrate in

Chapter 5, that our method can be applied to skewed continuous phenotypes when

suitable transformations are applied to the data. We have, thus far, been able to provide

advice on this topic and to aid individual users through the treeWAS forum, available

online at https://github.com/caitiecollins/treeWAS/issues. A treeWAS tutorial

now describes the visual assessment of continuous phenotypic distributions, as well as the

transformation by rank of continuous MIC values that we used in our MIC analyses [155],

which has since been adopted elsewhere [362]. Nevertheless, treeWAS would benefit

from stronger guidelines about what constitutes a problematic level of skew and what

steps might be taken to address this. We may want to recommend particular measures

of skewness and indicate acceptable upper bounds [363]. We could also make clearer

recommendations about what data transformations would be appropriate in different

conditions.

Score 3 Our simulation study revealed that Scores 1, 2, and 3 were each a net benefit

to treeWAS, as each contributed more true positives than false positives to our pooled

set of results. But, in empirical analyses, whereas Scores 1 and 2 made many unique

contributions to the findings of treeWAS, Score 3 clearly remained the weakest contributor

in applications to both simulated and empirical datasets. We were not too surprised by

this, as Score 3 was designed to fill in any remaining gaps between Scores 1 and 2. But,

I still wonder if we can improve upon the current implementation of Score 3. It may

be worth pursuing either improvements to Score 3 or the development of one or more

additional association scores, to see if we can identify any measures that out-perform

Score 3 or otherwise improve the performance of treeWAS. The modular design of our R

package makes it straightforward to incorporate new measures of association, which can

be used either instead of or in addition to any of the three association scores currently

implemented in treeWAS.

Additional confounders We know that variation in the host genome or the environ-

ment can also affect bacterial phenotypes. However, at this point, our GWAS approach

does not account for variables outside of the bacterial genome. At present, if unknown or

unmeasured external confounders were a concern, we would recommend either increasing

the sample size or repeating the analysis in a separate sample to validate results [49].

If we were concerned about a particular external factor, we could stratify the analysis

by the potentially-confounding variable, applying treeWAS to separate samples, each

containing little to no variation in the confounding factor. Alternatively, we could repeat

the treeWAS analysis to test for association with the confounding variable as well as
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the phenotype. We remain somewhat cautious about modifying treeWAS to account for

additional measured or unmeasured confounders, as analyses on simulated data have

shown that these approaches can increase error without improving performance [364].

However, we note that regression models have been successfully used in microbial GWAS

to account for covariates, like environment, serotype, and host source. Controlling for

correlations with these variables has been shown to reduce confounding bias and improve

precision in some cases [134,135]. Additional variables have also been incorporated in joint

analyses, by testing for associations either with multiple correlated phenotypes [365,366]

or with interacting host and pathogen genotypes [119, 367, 368]. As these approaches

have been shown to improve precision and power in certain circumstances, they merit

further consideration as well.

Analyses of simulated data could help us to estimate the impact of external confounders

and to guide any future efforts to account for additional variables in treeWAS.

6.4 Future directions

6.4.1 Application to viruses

Although our focus in this thesis has been on bacterial GWAS, our approach should

also be able to test for phenotypic associations with viral genetic variation. Compared

to bacterial samples, viral genomic data is often characterised by shorter sequences,

higher rates of mutation and recombination, and more variation. Therefore, we expect

that our GWAS method will encounter a lower multiple testing burden, less population

stratification and lower rates of confounding bias in analyses of viral sequence data. On

the other hand, the higher rates of recombination exhibited by many viruses may be

problematic for tree building and thus for treeWAS as well. Both Bartha et al. [119]

and Power et al. [116], used PCA to correct for population structure in GWAS analyses

of HIV. The success of these applications has been mixed, however, with no significant

findings being identified in the former study. The applications of treeWAS to synthetic

accessory genome data in Chapter 4 provide our closest approximation to viral genomic

analyses. Given the positive results of these analyses, especially as compared to cluster-

based and PCA-based methods, it seems reasonable to expect that treeWAS should be

applicable to some viral datasets. It would be interesting to confirm this hypothesis

in future, by applying treeWAS to empirical sequence data from real viral samples,

preferably beginning with analyses of well-characterised phenotypes. Overall, provided

recombination does not vastly exceed mutation, we may find that treeWAS can be a
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powerful method of analysis in the smaller and more diverse genomes of many viral

samples.

6.4.2 Detecting rare variants and impenetrant associations

GWAS has been a valuable addition to the field, but it nevertheless remains a fairly

blunt instrument. Approaches to association testing, including our own, have become

increasingly proficient at identifying strong associations with Mendelian traits, like

antibiotic resistance. It is, of course, useful to identify new genes that are simply

correlated with or co-evolve with a phenotype. These may account for much of the

variation in some phenotypes. But, if the relationships among genes and phenotypes can

be as complex as we suspect, then GWAS methods have a lot of room for improvement.

A logical next step is to expand the scope of treeWAS by developing association tests

that will be attuned to the larger number of rare variants and impenetrant associations

that underlie complex traits, like virulence and host association.

Our current measures of association, especially Scores 1 and 3, assume that causal sites

will have allele frequencies similar to the phenotype. We assume, therefore, that relevant

causal sites have been exposed to selective pressures and that their relative frequency of

their alleles (i.e., MAFs) have been altered as a result. This makes treeWAS less likely to

identify rare variants (which have arisen recently in few individuals) as associated with a

phenotype that is not similarly rare in the sample. It also makes treeWAS less likely

identify incompletely penetrant associations (alleles that are prevalent in the sample, but

which are only responsible for the phenotype in a subset of individuals). These associated

sites may have arisen through random neutral mutations that have only become adaptive

due to a change in environment or a new epistatic mutation [369,370].

Our current Score 2 is somewhat successful in detecting these types of associations,

as demonstrated by the identification of associations arising through complementary

pathways in Set B. But, to detect marginal associations with allele-based scores, we

will need to consider alternative measures of association. A suitable allele-based score

would presumably have to be scaled by the relative frequencies of the phenotype and

genotype in question [371]. Available allele-based association tests that are scaled by

frequency include the burden test, X2 test and Fisher’s exact test. Although we found

that our current Score 1 out-performed the Fisher test when both were implemented

in treeWAS and applied to the simulated datasets analysed in Chapter 3 (data not

shown), the reverse may be true in different circumstances. We may want to consider

implementing some proportional measures of association and testing their efficacy by

simulating data with weaker or less frequent associations to the phenotype. Especially
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given the widespread linkage in bacterial genomes, it will not be trivial to tease apart all

of the rare and impenetrant associations underlying bacterial phenotypes [314]. But, if

we can make both absolute and relative measures of association strength available in

treeWAS, we may be able to enhance future efforts to fully characterise the genetic basis

of microbial traits.

6.4.3 Accounting for phylogenetic uncertainty

The phylogenetic tree forms the backbone of our GWAS method. Yet, we can never be

certain that we have inferred the true tree. This concern will be heightened in samples

where phylogenetic signal must contend with the conflicting influence of recombination.

So, instead of assuming that we can rely on the inferred tree, it may be preferable to

ensure that phylogenetic uncertainty is acknowledged and addressed. It would be useful

to perform a sensitivity analysis in future, to get a better idea of how uncertainty or bias

in the estimated phylogeny impacts the performance of treeWAS.

Future work will be needed to fully develop and implement a method of incorporating

phylogenetic uncertainty into the treeWAS approach. However, we can sketch out a

reasonable proposal here. It would be natural to begin by estimating the amount of

phylogenetic uncertainty associated with a given sample or tree. If the current methods

of phylogenetic reconstruction implemented in treeWAS were to be used, we would

need to add an additional estimation step. Resampling procedures like the bootstrap

or jackknife would allow us to quantify the uncertainty associated with an inferred

tree [372–374]. Better yet, we could use a Bayesian phylogenetic approach, like BEAST

or MrBayes [210,375], to simultaneously estimate the tree and associated uncertainty.

Bayesian reconstruction methods would also allow us to replace the point estimate of

a tree produced by other phylogenetic methods with a representative distribution of

possible trees. To address uncertainty in treeWAS, we could then select a set of likely

trees by sampling from the posterior distribution. We could then repeat the treeWAS

analysis over this set of trees, avoiding the bias inherent in assuming that any single

“best” tree was reliable. This would, of course, produce multiple sets of results. Whereas

related approaches often take the mean of multiple sets of findings, in our case, a more

sensible approach might be to accept only significant sites present in the findings of a

large proportion (e.g., ≥ 80%) of the analyses performed on different trees. By pooling

these significant findings together, we should be able to identify associations without

falling prey to the biases or errors inherent in any particular reconstruction of the sample

phylogeny. Instead, this approach may allow us to identify a set of consensus findings

that is representative of the space of probable trees.
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6.4.4 Testing for epistatic interactions

GWAS brings new insights with the discovery of each independent, trait-associated locus.

Nevertheless, our understanding of most microbial phenotypes will remain incomplete

until we consider the interactions between sites. Indeed, epistatic relationships, protein-

protein interactions, and compensatory mechanisms are widely known to shape bacterial

evolution and phenotypic variation, especially for complex traits [376–378].

We suspect that we may also be able to use treeWAS to test for epistatic relationships

between two sites, much in the way that we have used it to test for associations between

genotype and phenotype. In fact, Melnyk et al. [361] have already used treeWAS to

identify associations between genes, by using the presence or absence of a pathogenicity-

associated island as the “phenotype” in their GWAS study. This analysis was more

narrowly focussed than the epistasis analysis we envision, but their work nonetheless

confirms that treeWAS can be used to identify interactions between genes.

Preceding the epistasis test with a filtering step may be necessary, as the number of

potential interactions between pairs of loci can be overwhelming, even in the relatively

small genomes of bacteria. A genome of just 10,000 sites will amount to nearly 50

million pairwise tests. Cordoner et al. [379] have shown that reducing the number of sites

submitted to pairwise testing can dramatically improve both the power and precision

of epistasis analyses. They recommended filtering sites by MAF, or by a biological

parameter like hydrophobicity [379]. Even an uncorrected X2 test can be useful to

eliminate sites with a low probability of significance in the epistasis analysis. In our case,

sites could be filtered by their individual significance in treeWAS analysis, performed

prior to epistasis testing.

As a proof of concept, we used a modified version of treeWAS to expand our exploratory

analysis from Section 5.4.2, where we had examined interactions among invasive disease

loci in N. meningitidis. This time, we tested for epistasis between every accessory gene

and each of the 12 previously-identified significant virulence-associated genes (see Table

5.7). We measured the strength of interactions by calculating Score 2, quantifying

the association between pairs of genes. To estimate the null distribution of gene-gene

associations, while accounting for confounding factors, we also computed Score 2 for pairs

of sites drawn from the simulated dataset. To reduce the number of comparisons required

in this exploratory analysis, we restricted Nsim to 1,000 (amounting to nearly 500,000

pairwise tests in the simulated dataset). The empirical distribution of interactions

between genes and virulence-associated genes was then compared the null distribution of

interactions between gene-gene pairs from the simulated dataset. We found significant

Score 2 values for six additional loci (see Table A.9) with significant positive interactions
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to our initial set of virulence-associated genes. With the exception of one hypothetical

protein (NEIS1357), each of these genes has a known or previously-proposed connection

to pathogenicity. The competence protein encoded by NEIS0041 is known to interact

with the three previously-identified comEA-like loci, to facilitate transformation, and

to promote virulence [359, 380]. The three O-antigen rfb genes promote invasiveness

through their roles in capsular synthesis, lipooligosaccharide biosynthesis, and adhesion

to host cells [381–384]. Likewise, the outer membrane pilus protein encoded by NEIS0213

(pglA) participates in invasive disease by facilitating interaction with and adhesion to

host cells [384,385]. Overall, we were delighted with these results. We had hoped to show

that, in theory, treeWAS could be adapted to test for epistasis as well as association. In

fact, we found that treeWAS was not only capable of testing for interactions, but that it

may have already proved useful in uncovering epistatic relationships between significant

genes as well as genes not identified in the initial association analysis.

This preliminary examination proved to be a powerful demonstration of the potential

benefits that might be gained by extending and applying treeWAS to the analysis of epis-

tasis. Of course, much additional work will be needed to tailor treeWAS to this purpose

and to test any proposed modifications. Among other things, we will need to consider

which measures of association will be best suited to this new purpose. For example, in the

above analysis, Scores 1 and 3 were excluded because the widespread correlations among

genetic loci produced atypical behaviour and left-tailed null distributions. As in our

discussion of rare and impenetrant variants, above, we may find that frequency-adjusted

measures of association are better suited to this task than our current measures of

allele-based association. Another consideration that will need to be addressed is the

relationship between correlation and LD. Our phylogenetic, simulation-based approach

is ideally tailored to control for chance associations due to physical linkage, in purely

clonal oganisms. As we have noted, however, the short-range LD within recombination

fragments may generate small numbers of false positive findings, especially in smaller or

less diverse samples. Relevant in association studies, this concern will only be heightened

in epistasis analyses. Finally, if we wish for treeWAS to be broadly applicable to epistasis

testing, we will need to undertake additional efforts to tackle the considerable computa-

tional burden that comes with even filtered-down pairwise testing. In time, we expect

that these concerns and many others can be addressed by appropriate modifications

and additions to the treeWAS method. Our first attempt at epistasis testing certainly

encourages us to make this a focus of future work. We have little doubt that expanding

our GWAS framework to consider the interactions between sites will make it possible to

produce deeper insights into the true complex molecular nature of microbial phenotypes.
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Chapter 6. Discussion

6.5 Concluding remarks

Genetic data analysis has revolutionised the way we understand and respond to the

microbes that surround us. Over the past century, the knowledge base established with

experimental methods and observational studies has significantly improved our ability

to mitigate the health risks posed by infectious diseases, by informing public health

campaigns and guiding drug development. Today, we face new pressures, as globalisation

drives up the rate and extent of pathogen transmission, and rapid evolution continues

to equip microbial pathogens with novel mechanisms of immune escape and antibiotic

resistance. But, we face new opportunities, too. Improvements in sequencing technologies

have produced an increasing abundance of genetic data for an ever-widening range of

microbial organisms. The analysis of sequence data is already leading to discoveries

that will help us to improve treatment efficacy, identify new drug targets, and design

surveillance schemes to detect emerging threats. Furthermore, genetic data analysis can

substantially increase the pace of discovery over conventional laboratory-based techniques

alone. To capitalise on the opportunities presented by the sequencing era, however,

it is essential that the accumulation of whole-genome sequences does not outpace the

development of statistical and computational tools for their analysis.

GWAS studies represent a valuable, versatile addition to the genetic data analysis

toolbox. Association studies will not supplant experimental analyses as a means of

discovery. Instead, by focusing experimental efforts towards appropriate candidate

genes, GWAS methods will enhance the benefits that can be derived from laboratory

work. The power of GWAS methods, established in human genetics, is now becoming

clear in the microbial domain. Although the development of appropriate microbial

GWAS methodology is still in its early days, microbial GWAS studies have already

uncovered novel associations with critical phenotypes, like antibiotic resistance [49,114,

116,121–123,125–130], transmissibility [131], host- and tissue-specificity [106,118,124,131],

toxicity [120], and virulence [80,119,155]. As association studies are applied to additional

phenotypes and larger samples, we expect to see the number of discoveries expand. Even

greater progress will be achieved if microbial GWAS methods can better account for

ancestry and recombination, incorporate new measures of association, apply to a wider

variety of organisms, adjust for uncertainty, and consider epistatic interactions. As the

first purpose-built microbial GWAS methods emerge, the evidence suggests that GWAS

methods will have great power to provide insight into the genetic mechanisms that give

rise to the phenotypic diversity observed across the microbial world. We hope that

our contributions to microbial GWAS methodology will ultimately help to advance our

understanding of health-relevant microbial traits and that the research presented in this

thesis will be useful to others who share in this pursuit.
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6.5. Concluding remarks

My sincerest thanks to each of you for reading

all the way through this thesis!
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ID ENA
Accession

Cefixime
Resistance

Cefixime
MIC

Cefixime
MIC Rank

Country Clinic Year Sexual
Orientation

MLST

1 27429 ERR191730 R 0.25 145 USA CHI 2009 MSM 1901
2 27457 ERR191731 S 0.015 17.5 USA CHI 2009 MSM 1901
3 27315 ERR191732 R 0.25 145 USA CHI 2009 MSM 1901
4 27422 ERR191733 S 0.015 17.5 USA CHI 2009 MSM 1901
5 27318 ERR191734 R 0.5 195 USA CHI 2009 MSM 1901
6 27467 ERR191735 S 0.015 17.5 USA CHI 2009 MSM 8110
7 27367 ERR191736 R 0.25 145 USA CHI 2009 MSM 1901
8 27276 ERR191737 S 0.015 17.5 USA CHI 2009 MSM 1588
9 27256 ERR191738 R 0.25 145 USA DEN 2009 MSM 8126
10 27230 ERR191739 S 0.015 17.5 USA LVG 2009 MSM 1580
11 27431 ERR191740 S 0.06 82 USA DTR 2009 MSW 1893
12 27411 ERR191741 S 0.06 82 USA DTR 2009 MSW 1893
13 27375 ERR191746 R 0.25 145 USA HON 2009 MSM 1901
14 27238 ERR191747 S 0.015 17.5 USA HON 2009 MSM 9363
15 27379 ERR191748 R 0.25 145 USA HON 2009 MSM 1901
16 27405 ERR191749 S 0.015 17.5 USA SDG 2009 MSM 1579
17 27414 ERR191750 R 0.25 145 USA HON 2009 MSM 1901
18 27325 ERR191751 S 0.06 82 USA SDG 2009 MSM 1901
19 27391 ERR191752 R 0.25 145 USA HON 2009 MSW 1901
20 27343 ERR191753 S 0.06 82 USA HON 2009 MSW 7823
21 27337 ERR191754 R 0.25 145 USA HON 2009 MSM 1901
22 27455 ERR191755 S 0.06 82 USA SDG 2009 MSM 1901
23 27301 ERR191756 R 0.25 145 USA HON 2009 MSM 1901
24 27404 ERR191757 S 0.015 17.5 USA SDG 2009 MSM 1901
25 27291 ERR191758 R 0.25 145 USA HON 2009 MSM 1901
26 27319 ERR191759 S 0.015 17.5 USA SDG 2009 MSM 1901
27 27374 ERR191760 R 0.5 195 USA HON 2009 MSM 1901
28 27259 ERR191761 S 0.03 51.5 USA SDG 2009 MSM 1901
29 27473 ERR191762 R 0.25 145 USA LAX 2009 MSW 1901
30 27466 ERR191763 S 0.06 82 USA ORA 2009 MSW 7371
31 27357 ERR191764 R 0.25 145 USA LAX 2009 MSW 1901
32 27456 ERR191765 S 0.03 51.5 USA ORA 2009 MSW 1901
33 27444 ERR191766 R 0.5 195 USA LAX 2009 MSM 1901
34 27237 ERR191767 S 0.015 17.5 USA LAX 2009 MSM 9363
35 27341 ERR191768 R 0.25 145 USA LVG 2009 MSW 1901
36 27307 ERR191769 S 0.03 51.5 USA LVG 2009 MSW 7823
37 27469 ERR191770 R 0.25 145 USA LVG 2009 MSM 1901
38 27380 ERR191771 S 0.06 82 USA LVG 2009 MSM 1901
39 27306 ERR191772 R 0.25 145 USA LVG 2009 MSW 1901
40 27265 ERR191773 S 0.06 82 USA LVG 2009 MSW 1901
41 27336 ERR191774 R 0.25 145 USA LVG 2009 MSW 1901
42 27313 ERR191775 S 0.06 82 USA LVG 2009 MSW 1901
43 27312 ERR191776 R 0.25 145 USA LVG 2009 MSW 1901
44 27330 ERR191777 S 0.03 51.5 USA LVG 2009 MSW 1901
45 27356 ERR191778 R 0.25 145 USA LVG 2009 MSW 1901
46 27292 ERR191779 S 0.015 17.5 USA LVG 2009 MSW 8154
47 27326 ERR191780 R 0.25 145 USA LVG 2009 MSW 1901
48 27442 ERR191781 S 0.03 51.5 USA LVG 2009 MSW 1901
49 27390 ERR191782 R 0.25 145 USA LVG 2009 MSW 1901
50 27320 ERR191783 S 0.06 82 USA LVG 2009 MSW 1901
51 27358 ERR191784 R 0.25 145 USA PHI 2009 MSM 1901
52 27437 ERR191785 S 0.06 82 USA PHI 2009 MSM 1901
53 27418 ERR191786 R 0.25 145 USA PHX 2009 MSM 1901
54 27410 ERR191787 S 0.03 51.5 USA PHX 2009 MSM 1901
55 27370 ERR191788 R 0.25 145 USA PHX 2009 MSM 1901
56 27264 ERR191789 S 0.06 82 USA PHX 2009 MSM 1901
57 27447 ERR191790 R 0.5 195 USA POR 2009 MSM 1901
58 27231 ERR191791 S 0.015 17.5 USA POR 2009 MSM 1580
59 27298 ERR191792 R 0.25 145 USA POR 2009 MSM 1901
60 27271 ERR191793 S 0.06 82 USA POR 2009 MSM 1893
61 27359 ERR191794 R 0.25 145 USA POR 2009 MSM 1901
62 27415 ERR191795 S 0.015 17.5 USA LVG 2009 MSM 1901
63 27406 ERR191796 R 0.25 145 USA SDG 2009 MSM 1901
64 27475 ERR191797 S 0.015 17.5 USA SDG 2009 MSM 1901
65 27328 ERR191798 R 0.25 145 USA SDG 2009 MSW 1901
66 27460 ERR191799 S 0.03 51.5 USA SDG 2009 MSW 1901
67 27371 ERR191800 R 0.25 145 USA SDG 2009 MSM 1580

Table A.1. Isolates in the N. gonorrhoeae dataset (I/III).
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ID ENA
Accession

Cefixime
Resistance

Cefixime
MIC

Cefixime
MIC Rank

Country Clinic Year Sexual
Orientation

MLST

68 27471 ERR191801 S 0.015 17.5 USA SDG 2009 MSM 6712
69 27419 ERR191802 R 0.25 145 USA SDG 2009 MSM 1580
70 27235 ERR191803 S 0.015 17.5 USA SDG 2009 MSM 1583
71 27389 ERR191804 R 0.25 145 USA SDG 2009 MSM 1901
72 27395 ERR191805 S 0.015 17.5 USA SDG 2009 MSM 1901
73 27401 ERR191806 R 0.25 145 USA SDG 2009 MSW 1901
74 27383 ERR191807 S 0.015 17.5 USA SDG 2009 MSW 1901
75 27385 ERR191808 R 0.25 145 USA SEA 2009 MSM 1901
76 27365 ERR191809 S 0.015 17.5 USA SEA 2009 MSM 1901
77 27400 ERR191810 R 0.25 145 USA SEA 2009 MSM 1901
78 27285 ERR191811 S 0.06 82 USA SEA 2009 MSM 1902
79 27245 ERR191812 S 0.03 51.5 USA SFO 2009 MSM 9363
80 27251 ERR191813 S 0.015 17.5 USA SFO 2009 MSM 9363
81 27452 ERR191814 R 0.25 145 USA SFO 2009 MSM 1901
82 27435 ERR191815 S 0.03 51.5 USA SFO 2009 MSM 1901
83 27346 ERR191816 R 0.25 145 USA SFO 2009 MSW 1901
84 27449 ERR191817 S 0.125 98 USA SFO 2009 MSW 1901
85 27443 ERR191818 R 0.25 145 USA SFO 2009 MSM 1901
86 27279 ERR191819 S 0.015 17.5 USA SFO 2009 MSM 1588
87 27316 ERR191820 R 0.25 145 USA CHI 2010 MSM 1901
88 27254 ERR191821 S 0.06 82 USA CHI 2010 MSM 1580
89 27310 ERR191822 R 0.25 145 USA CHI 2010 MSM 1901
90 27461 ERR191823 S 0.03 51.5 USA CHI 2009 MSM 1901
91 27453 ERR191824 R 0.25 145 USA CHI 2010 MSM 1901
92 27260 ERR191825 S 0.03 51.5 USA CHI 2010 MSM 9363
93 27373 ERR223603 R 0.5 195 USA CHI 2010 MSM 1901
94 27240 ERR223604 S 0.03 51.5 USA CHI 2010 MSM 9363
95 27440 ERR223605 R 0.5 195 USA CLE 2010 MSW 1901
96 27361 ERR223606 S 0.06 82 USA DTR 2010 MSW 1893
97 27470 ERR223607 R 0.25 145 USA DEN 2010 MSM 1901
98 27288 ERR223608 S 0.125 98 USA ALB 2010 MSM 1901
99 27462 ERR223609 R 0.25 145 USA DEN 2010 MSM 1901
100 27381 ERR223610 S 0.125 98 USA ALB 2010 MSM 1901
101 27299 ERR223611 R 0.25 145 USA DEN 2010 MSW 1901
102 27450 ERR223612 S 0.015 17.5 USA PHX 2010 MSW 8126
103 27345 ERR223613 R 0.25 145 USA GRB 2010 MSM 1901
104 27463 ERR223614 S 0.03 51.5 USA BAL 2009 MSM 1901
105 27421 ERR223615 R 0.25 145 USA HON 2010 MSM 1901
106 27258 ERR223616 S 0.03 51.5 USA SFO 2010 MSM 9363
107 27287 ERR223619 R 0.25 145 USA HON 2010 MSM 1901
108 27295 ERR223620 S 0.015 17.5 USA SDG 2009 MSM 1901
109 27352 ERR223621 R 0.5 195 USA HON 2010 MSM 1901
110 27327 ERR223622 S 0.015 17.5 USA SDG 2009 MSM 1901
111 27284 ERR223623 R 0.25 145 USA HON 2010 MSW 8129
112 27255 ERR223624 S 0.03 51.5 USA HON 2010 MSW 9363
113 27355 ERR223625 R 0.25 145 USA HON 2010 MSM 8129
114 27261 ERR223626 S 0.015 17.5 USA SDG 2009 MSM 9363
115 27368 ERR223627 R 0.5 195 USA LAX 2010 MSM 1901
116 27428 ERR223628 S 0.06 82 USA LAX 2010 MSM 1901
117 27438 ERR223629 R 0.25 145 USA LAX 2010 MSM 1901
118 27360 ERR223630 S 0.125 98 USA LAX 2010 MSM 1901
119 27387 ERR223631 R 0.25 145 USA LAX 2010 MSM 1901
120 27241 ERR223632 S 0.125 98 USA LAX 2010 MSM 9363
121 27331 ERR223633 R 0.25 145 USA LAX 2010 MSM 1901
122 27242 ERR223634 S 0.03 51.5 USA LAX 2010 MSM 9363
123 27324 ERR223635 R 0.25 145 USA LAX 2010 MSM 1901
124 27441 ERR223636 S 0.03 51.5 USA SDG 2009 MSM 1901
125 27413 ERR223637 R 0.25 145 USA LAX 2010 MSM 1901
126 27342 ERR223638 S 0.06 82 USA SDG 2009 MSM 1901
127 27363 ERR223639 R 0.25 145 USA LAX 2010 MSM 1901
128 27340 ERR223640 S 0.03 51.5 USA SDG 2009 MSM 1901
129 27317 ERR223641 R 0.5 195 USA LAX 2010 MSM 1901
130 27253 ERR223642 S 0.03 51.5 USA LAX 2010 MSM 9363
131 27314 ERR223643 R 0.25 145 USA LAX 2010 MSM 1901
132 27232 ERR223644 S 0.015 17.5 USA LAX 2010 MSM 9363
133 27398 ERR223645 R 0.25 145 USA LAX 2010 MSM 1901
134 27424 ERR223646 S 0.06 82 USA LAX 2010 MSM 1901

Table A.2. Isolates in the N. gonorrhoeae dataset (II/III).
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Accession

Cefixime
Resistance

Cefixime
MIC

Cefixime
MIC Rank

Country Clinic Year Sexual
Orientation

MLST

135 27388 ERR223647 R 0.25 145 USA LVG 2010 MSW 1901
136 27273 ERR223648 S 0.015 17.5 USA LVG 2009 MSW 1579
137 27309 ERR223649 R 0.25 145 USA LVG 2010 MSW 1901
138 27234 ERR223650 S 0.06 82 USA LVG 2009 MSW 1580
139 27386 ERR223651 R 0.25 145 USA LVG 2010 MSM 1901
140 27281 ERR223652 S 0.03 51.5 USA LVG 2009 MSM 1588
141 27382 ERR223653 R 0.25 145 USA LVG 2010 MSW 1901
142 27334 ERR223654 S 0.03 51.5 USA SFO 2009 MSW 1901
143 27396 ERR223655 R 0.25 145 USA LVG 2010 MSW 1580
144 27474 ERR223656 S 0.015 17.5 USA SDG 2009 MSW 1903
145 27427 ERR223657 R 0.25 145 USA LVG 2010 MSW 8129
146 27300 ERR223658 S 0.06 82 USA LVG 2010 MSW 7822
147 27412 ERR223659 R 0.25 145 USA LVG 2010 MSW 1580
148 27280 ERR223660 S 0.015 17.5 USA SDG 2009 MSW 8130
149 27430 ERR223661 R 0.25 145 USA MIN 2010 MSM 1901
150 27250 ERR223662 S 0.03 51.5 USA MIN 2010 MSM 9363
151 27329 ERR223663 R 0.25 145 USA NYC 2010 MSM 1901
152 27425 ERR223664 S 0.03 51.5 USA PHI 2009 MSM 1901
153 27393 ERR223665 R 0.25 145 USA ORA 2010 MSM 1901
154 27426 ERR223666 S 0.015 17.5 USA SDG 2009 MSM 1901
155 27408 ERR223667 R 0.25 145 USA ORA 2010 MSM 1580
156 27472 ERR223668 S 0.015 17.5 USA SDG 2009 MSM 8152
157 27323 ERR223669 R 0.25 145 USA PHI 2010 MSM 1901
158 27303 ERR223670 S 0.03 51.5 USA PHI 2009 MSM 1901
159 27451 ERR223671 R 0.25 145 USA PHX 2010 MSM 1901
160 27458 ERR223672 S 0.015 17.5 USA PHX 2009 MSM 1901
161 27339 ERR223673 R 0.25 145 USA PHX 2010 MSM 1580
162 27297 ERR223674 S 0.06 82 USA PHX 2010 MSM 1901
163 27311 ERR223675 R 0.25 145 USA PHX 2010 MSM 1580
164 27293 ERR223676 S 0.06 82 USA PHX 2010 MSM 1901
165 27351 ERR223677 R 0.25 145 USA PHX 2010 MSM 1580
166 27266 ERR223678 S 0.015 17.5 USA PHX 2010 MSM 1893
167 27338 ERR223679 R 0.25 145 USA PHX 2010 MSM 1580
168 27243 ERR223680 S 0.03 51.5 USA PHX 2010 MSM 9363
169 27304 ERR223681 R 0.25 145 USA PHX 2010 MSM 1580
170 27248 ERR223682 S 0.015 17.5 USA PHX 2010 MSM 9363
171 27454 ERR223683 R 0.25 145 USA PHX 2010 MSW 1901
172 27445 ERR223684 S 0.03 51.5 USA PHX 2010 MSW 1901
173 27289 ERR223685 R 0.5 195 USA POR 2010 MSM 1901
174 27392 ERR223687 R 0.5 195 USA POR 2010 MSM 1901
175 27417 ERR223689 R 0.25 145 USA POR 2010 MSM 1901
176 27399 ERR223691 R 0.25 145 USA POR 2010 MSM 1901
177 27277 ERR223692 S 0.03 51.5 USA LVG 2009 MSM 1588
178 27335 ERR223693 R 0.25 145 USA POR 2010 MSM 1901
179 27269 ERR223694 S 0.03 51.5 USA LVG 2009 MSM 1588
180 27416 ERR223695 R 0.25 145 USA SDG 2010 MSM 1901
181 27384 ERR223696 S 0.03 51.5 USA SDG 2010 MSM 1901
182 27348 ERR223697 R 0.25 145 USA SDG 2010 MSM 1580
183 27257 ERR223698 S 0.03 51.5 USA SDG 2010 MSM 9363
184 27436 ERR222892 R 0.25 145 USA SDG 2010 MSW 1580
185 27423 ERR222894 R 0.25 145 USA SDG 2010 MSM 1901
186 27333 ERR222895 S 0.03 51.5 USA SDG 2010 MSM 1901
187 27344 ERR222896 R 0.25 145 USA SDG 2010 MSM 1580
188 27290 ERR222898 R 0.25 145 USA SDG 2010 MSW 1580
189 27402 ERR222900 R 0.25 145 USA SDG 2010 MSM 1580
190 27252 ERR222901 S 0.03 51.5 USA SDG 2009 MSM 9363
191 27407 ERR222902 R 0.25 145 USA SDG 2010 MSM 1580
192 27446 ERR222904 R 0.25 145 USA SDG 2010 MSM 1901
193 27354 ERR222906 R 0.25 145 USA SDG 2010 MSM 1580
194 27332 ERR222908 R 0.25 145 USA SDG 2010 MSM 1580
195 27275 ERR222909 S 0.03 51.5 USA PHX 2009 MSM 1588
196 27272 ERR222911 S 0.03 51.5 USA SDG 2009 MSM 1588
197 27434 ERR222931 S 0.06 82 USA SEA 2010 MSM 1901
198 27349 ERR222933 S 0.06 82 USA SEA 2010 MSM 1901
199 27420 ERR222935 S 0.06 82 USA SEA 2010 MSM 1901
200 27302 ERR222937 S 0.06 82 USA SEA 2009 MSM 8129

Table A.3. Isolates in the N. gonorrhoeae dataset (III/III).
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ID ENA
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Sero-
group

Penicillin
Resistance

Penicillin
MIC

Penicillin
MIC Rank

Disease Source Country Year

1 945 ERR133700 B S 0.032 56.5 carrier throat Czech 1993
2 964 ERR133711 B S 0.008 5 carrier throat Czech 1993
3 965 ERR133712 B S 0.008 5 carrier throat Czech 1993
4 969 ERR133716 B S 0.008 5 carrier throat Czech 1993
5 976 ERR133723 B S 0.008 5 carrier throat Czech 1993
6 991 ERR133734 B S 0.008 5 carrier throat Czech 1993
7 1585 ERR133743 B S 0.016 17.5 carrier throat Czech 1993
8 1588 ERR133745 B S 0.032 56.5 carrier throat Czech 1993
9 1618 ERR137097 B S 0.032 56.5 carrier throat Czech 1993
10 1655 ERR137132 B S 0.032 56.5 carrier throat Czech 1993
11 1656 ERR137133 B S 0.032 56.5 carrier throat Czech 1993
12 1885 ERR137138 B S 0.016 17.5 carrier throat Czech 1993
13 1948 ERR137144 B S 0.008 5 carrier throat Czech 1993
14 1949 ERR137145 B R 0.063 121 carrier throat Czech 1993
15 2220 ERR137149 B S 0.032 56.5 carrier throat Czech 1993
16 4145 ERR310532 B S 0.032 56.5 invasive CSF Czech 2000
17 5171 ERR310530 B S 0.016 17.5 invasive CSF Czech 2000
18 7891 ERR310539 B R 0.063 121 invasive blood Czech 2004
19 7892 ERR310540 B R 0.063 121 invasive blood Czech 2004
20 8139 ERR137154 B S 0.016 17.5 carrier throat Czech 1993
21 8141 ERR137156 B S 0.032 56.5 carrier throat Czech 1993
22 8144 ERR137159 B S 0.016 17.5 carrier throat Czech 1993
23 8149 ERR137164 B S 0.016 17.5 carrier throat Czech 1993
24 8151 ERR137166 B S 0.016 17.5 carrier throat Czech 1993
25 8156 ERR137170 B S 0.016 17.5 carrier throat Czech 1993
26 9214 ERR133685 B S 0.016 17.5 invasive CSF Czech 1993
27 9215 ERR133746 B S 0.016 17.5 invasive CSF Czech 1993
28 14777 ERR133688 B S 0.032 56.5 invasive − Czech 1993
29 14782 ERR133690 B S 0.016 17.5 invasive − Czech 1993
30 15172 ERR137134 B S 0.016 17.5 invasive − Czech 1993
31 15249 ERR137173 B S 0.032 56.5 invasive − Czech 1993
32 35227 ERR847079 B R 0.25 164 invasive blood UK 2009
33 35228 ERR847080 B S 0.03 41 invasive blood UK 2009
34 35229 ERR847081 B S 0.03 41 invasive CSF UK 2009
35 35230 ERR847082 B R 0.25 164 invasive blood UK 2009
36 35231 ERR847083 B R 0.12 141.5 invasive blood UK 2009
37 35232 ERR847084 B S 0.06 100 invasive blood UK 2009
38 35234 ERR847086 B S 0.06 100 invasive CSF UK 2009
39 35235 ERR847087 B S 0.03 41 invasive blood UK 2009
40 35236 ERR847088 B S 0.03 41 invasive CSF UK 2009
41 35237 ERR847089 B S 0.03 41 invasive blood UK 2009
42 35238 ERR847090 B S 0.06 100 invasive CSF UK 2009
43 35239 ERR847091 B S 0.06 100 invasive blood UK 2009
44 35240 ERR847092 B R 0.25 164 invasive blood UK 2009
45 35241 ERR847093 B S 0.045 71 invasive blood UK 2009
46 35242 ERR847094 B S 0.003 1 invasive blood UK 2009
47 35243 ERR847095 B S 0.03 41 invasive blood UK 2009
48 35244 ERR847096 B S 0.023 27 invasive blood UK 2009
49 35245 ERR847097 B R 0.25 164 invasive blood UK 2009
50 35246 ERR847098 B R 0.375 169.5 invasive blood UK 2009
51 35247 ERR847099 B S 0.06 100 invasive CSF UK 2009
52 35248 ERR847100 B S 0.06 100 invasive blood UK 2009
53 35250 ERR847102 B S 0.03 41 invasive blood UK 2009
54 35251 ERR847103 B R 0.08 123 invasive blood UK 2009
55 35252 ERR847104 B S 0.045 71 invasive blood UK 2009
56 35253 ERR847105 B S 0.045 71 invasive blood UK 2009
57 35254 ERR847106 B R 0.18 154 invasive blood UK 2009
58 35255 ERR847107 B S 0.06 100 invasive blood UK 2009
59 35256 ERR847108 B S 0.012 9.5 invasive blood UK 2009
60 35257 ERR847109 B S 0.03 41 invasive blood UK 2009
61 35259 ERR847111 B S 0.03 41 invasive blood UK 2009
62 35260 ERR847112 B S 0.06 100 invasive blood UK 2009
63 35261 ERR847113 B S 0.045 71 invasive blood UK 2009
64 35262 ERR847114 B S 0.06 100 invasive blood UK 2009
65 35263 ERR847115 B S 0.06 100 invasive other UK 2009
66 35264 ERR847116 B R 0.125 149 invasive blood UK 2009
67 35265 ERR847117 B S 0.06 100 invasive blood UK 2009

Table A.4. Isolates in the serogroup B N. meningitidis dataset (I/III).
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68 35267 ERR847119 B S 0.03 41 invasive blood Iceland 2009
69 35269 ERR847121 B S 0.008 5 invasive blood UK 2009
70 35270 ERR847122 B S 0.03 41 invasive blood UK 2009
71 35272 ERR847252 B R 0.12 141.5 invasive blood UK 2010
72 35273 ERR847125 B S 0.045 71 invasive blood UK 2010
73 35274 ERR847126 B R 0.18 154 invasive blood UK 2010
74 35275 ERR847127 B S 0.045 71 invasive joint fluid UK 2010
75 35276 ERR847128 B S 0.023 27 invasive blood UK 2010
76 35277 ERR847129 B S 0.06 100 invasive blood UK 2010
77 35278 ERR847130 B S 0.06 100 invasive blood UK 2010
78 35279 ERR847132 B R 0.09 128.5 invasive blood UK 2010
79 35280 ERR847133 B S 0.045 71 invasive blood UK 2010
80 35281 ERR847134 B S 0.045 71 invasive blood UK 2010
81 35282 ERR847135 B R 0.12 141.5 invasive blood UK 2010
82 35284 ERR847137 B S 0.047 80 invasive blood UK 2010
83 35285 ERR847138 B R 0.09 128.5 invasive blood UK 2010
84 35286 ERR847139 B S 0.06 100 invasive blood UK 2010
85 35287 ERR847140 B S 0.045 71 invasive CSF UK 2010
86 35288 ERR847141 B S 0.023 27 invasive blood UK 2010
87 35290 ERR847143 B S 0.03 41 invasive blood UK 2010
88 35291 ERR847144 B S 0.045 71 invasive blood UK 2010
89 35292 ERR847145 B S 0.06 100 invasive blood UK 2010
90 35293 ERR847146 B R 0.18 154 invasive blood UK 2010
91 35294 ERR847147 B S 0.012 9.5 invasive blood UK 2010
92 35296 ERR847149 B S 0.023 27 invasive blood UK 2011
93 35297 ERR847150 B S 0.03 41 invasive blood UK 2010
94 35298 ERR847151 B S 0.045 71 invasive blood UK 2011
95 35299 ERR847152 B S 0.045 71 invasive blood UK 2011
96 35300 ERR847153 B S 0.04 62 invasive CSF UK 2011
97 35301 ERR847154 B R 0.18 154 invasive blood UK 2011
98 35302 ERR847155 B S 0.06 100 invasive blood UK 2011
99 35303 ERR847156 B R 0.18 154 invasive blood UK 2011
100 35304 ERR847157 B S 0.03 41 invasive blood UK 2011
101 35305 ERR847158 B R 0.375 169.5 invasive CSF UK 2011
102 35306 ERR847159 B S 0.06 100 invasive blood UK 2011
103 35307 ERR847160 B S 0.06 100 invasive blood UK 2011
104 35308 ERR847161 B R 0.09 128.5 invasive blood UK 2011
105 35309 ERR847162 B S 0.06 100 invasive CSF UK 2011
106 35310 ERR847163 B R 0.12 141.5 invasive CSF UK 2011
107 35311 ERR847164 B R 0.12 141.5 invasive blood UK 2011
108 35312 ERR847165 B S 0.03 41 invasive blood UK 2011
109 35313 ERR847166 B R 0.09 128.5 invasive blood UK 2011
110 35315 ERR847168 B R 0.18 154 invasive blood UK 2011
111 35316 ERR847169 B S 0.06 100 invasive blood UK 2011
112 35318 ERR847171 B S 0.015 11 invasive CSF UK 2011
113 35319 ERR847172 B R 0.12 141.5 invasive blood UK 2011
114 35320 ERR847173 B R 0.25 164 invasive blood UK 2011
115 35321 ERR847174 B S 0.045 71 invasive blood UK 2011
116 35322 ERR847175 B S 0.03 41 invasive blood UK 2011
117 35324 ERR847178 B S 0.03 41 invasive blood UK 2011
118 35325 ERR847179 B S 0.023 27 invasive blood UK 2011
119 35326 ERR847180 B S 0.06 100 invasive CSF UK 2011
120 35327 ERR847181 B S 0.03 41 invasive blood UK 2011
121 35328 ERR847182 B S 0.03 41 invasive blood UK 2011
122 35329 ERR847183 B R 0.25 164 invasive blood UK 2012
123 35330 ERR847184 B R 0.25 164 invasive blood UK 2012
124 35331 ERR847185 B R 0.12 141.5 invasive blood UK 2012
125 35334 ERR847188 B R 0.09 128.5 invasive blood UK 2012
126 35335 ERR847189 B R 0.12 141.5 invasive blood UK 2012
127 35337 ERR847191 B R 0.12 141.5 invasive blood UK 2012
128 35339 ERR847193 B S 0.06 100 invasive blood UK 2013
129 35340 ERR847194 B S 0.06 100 invasive blood UK 2013
130 35341 ERR847195 B S 0.06 100 invasive blood UK 2013
131 35342 ERR847196 B S 0.06 100 invasive blood UK 2013
132 35343 ERR847197 B S 0.06 100 invasive blood UK 2013
133 35344 ERR847198 B R 0.09 128.5 invasive blood UK 2013
134 35345 ERR847199 B S 0.045 71 invasive CSF UK 2013

Table A.5. Isolates in the serogroup B N. meningitidis dataset (II/III).
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135 35346 ERR847200 B R 0.12 141.5 invasive blood UK 2013
136 35347 ERR847201 B S 0.023 27 invasive blood UK 2013
137 35350 ERR847204 B S 0.06 100 invasive blood UK 2013
138 35351 ERR847205 B S 0.06 100 invasive blood UK 2013
139 35352 ERR847206 B R 0.09 128.5 invasive blood UK 2013
140 35353 ERR847207 B R 0.12 141.5 invasive blood UK 2013
141 35354 ERR847208 B R 0.12 141.5 invasive blood UK 2013
142 35355 ERR847209 B R 0.18 154 invasive CSF UK 2013
143 35356 ERR847210 B S 0.023 27 invasive CSF UK 2012
144 35357 ERR847211 B S 0.045 71 invasive blood UK 2012
145 35358 ERR847212 B R 0.12 141.5 invasive blood UK 2012
146 35360 ERR847214 B R 0.12 141.5 invasive blood UK 2012
147 35361 ERR847215 B S 0.045 71 invasive blood UK 2012
148 35362 ERR847216 B S 0.06 100 invasive blood UK 2012
149 35363 ERR847217 B R 0.25 164 invasive blood UK 2012
150 35364 ERR847218 B R 0.19 159 invasive blood UK 2012
151 35365 ERR847219 B R 0.094 134 invasive blood UK 2012
152 35368 ERR847222 B R 0.18 154 invasive CSF UK 2012
153 35369 ERR847223 B S 0.03 41 invasive blood UK 2012
154 35372 ERR847226 B R 0.09 128.5 invasive CSF UK 2012
155 35373 ERR847227 B S 0.06 100 invasive CSF UK 2012
156 35374 ERR847228 B R 0.09 128.5 invasive blood UK 2012
157 35375 ERR847229 B S 0.06 100 invasive blood UK 2012
158 35378 ERR847232 B S 0.045 71 invasive CSF UK 2009
159 35379 ERR847233 B R 0.25 164 invasive blood UK 2009
160 35381 ERR847235 B R 0.09 128.5 invasive blood UK 2013
161 35383 ERR847237 B R 0.45 171 invasive blood UK 2013
162 35385 ERR847239 B S 0.06 100 invasive CSF UK 2013
163 35386 ERR847240 B S 0.06 100 invasive CSF UK 2013
164 35387 ERR847241 B S 0.06 100 invasive blood UK 2013
165 35388 ERR847242 B S 0.06 100 invasive blood UK 2013
166 35389 ERR847243 B S 0.06 100 invasive blood UK 2013
167 35390 ERR847244 B S 0.03 41 invasive blood UK 2013
168 35392 ERR847246 B S 0.06 100 invasive blood UK 2013
169 35394 ERR847248 B R 0.18 154 invasive blood UK 2013
170 35395 ERR847249 B S 0.06 100 invasive blood UK 2013
171 35396 ERR847250 B S 0.06 100 invasive blood UK 2013

Table A.6. Isolates in the serogroup B N. meningitidis dataset (III/III).
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ID ENA
Accession

Sero-
group

Disease Source Country Year

1 642 ERS006926 C invasive − UK 1996
2 662 ERR063503 C invasive − UK 1997
3 665 ERR063495 C carrier − UK 1997
4 666 ERR063497 C carrier − UK 1997
5 667 ERR063498 C carrier − UK 1997
6 669 ERR063494 C carrier − UK 1997
7 670 ERR063500 C invasive − UK 1997
8 671 ERR063496 C invasive − UK 1997
9 672 ERR063493 C invasive − UK 1997
10 684 ERR036073 C invasive − Czech 1993
11 932 ERR133693 C carrier throat Czech 1993
12 939 ERR036099 C carrier throat Czech 1993
13 940 ERR036103 C carrier throat Czech 1993
14 942 ERR036104 C carrier throat Czech 1993
15 946 ERR036105 C carrier throat Czech 1993
16 948 ERR036106 C carrier throat Czech 1993
17 949 ERR036107 C carrier throat Czech 1993
18 950 ERR036108 C carrier throat Czech 1993
19 952 ERR036109 C carrier throat Czech 1993
20 954 ERR036110 C carrier throat Czech 1993
21 955 ERR036100 C carrier throat Czech 1993
22 957 ERR036101 C carrier throat Czech 1993
23 958 ERR036102 C carrier throat Czech 1993
24 973 ERR133720 C carrier throat Czech 1993
25 977 ERR133724 C carrier throat Czech 1993
26 978 ERR036112 C carrier throat Czech 1993
27 979 ERR036116 C carrier throat Czech 1993
28 981 ERR133726 C carrier throat Czech 1993
29 982 ERR036118 C carrier throat Czech 1993
30 992 ERR036119 C carrier throat Czech 1993
31 993 ERR036120 C carrier throat Czech 1993
32 994 ERR036121 C carrier throat Czech 1993
33 1169 ERR522738 C invasive CSF Greece 1996
34 1170 ERR522746 C carrier throat Greece 1996
35 1178 ERR522777 C invasive CSF Greece 1997
36 1179 ERR522785 C carrier throat Greece 1997
37 1180 ERR522793 C carrier throat Greece 1997
38 1207 ERR557644 C invasive − UK 1999
39 1212 ERR036122 C carrier throat Czech 1993
40 1571 ERR036113 C carrier throat Czech 1993
41 1572 ERR036114 C carrier throat Czech 1993
42 1573 ERR036115 C carrier throat Czech 1993
43 1574 ERR133736 C carrier throat Czech 1993
44 1578 ERR036060 C carrier throat Czech 1993
45 1582 ERR036064 C carrier throat Czech 1993
46 1583 ERR036065 C carrier throat Czech 1993
47 1587 ERR036066 C carrier throat Czech 1993
48 1592 ERR133754 C carrier throat Czech 1993
49 1622 ERR137101 C carrier throat Czech 1993
50 1636 ERR137115 C carrier throat Czech 1993
51 1641 ERR137120 C carrier throat Czech 1993
52 1650 ERR036067 C carrier throat Czech 1993
53 1652 ERR036068 C carrier throat Czech 1993
54 1659 ERR137137 C carrier throat Czech 1993
55 1893 ERR133683 C invasive CSF Czech 1993
56 1941 ERR137143 C carrier throat Czech 1993
57 4193 ERR522813 C carrier throat UK 1999
58 8150 ERR137165 C carrier throat Czech 1993
59 8157 ERR036069 C carrier throat Czech 1993
60 8159 ERR036070 C carrier throat Czech 1993
61 14765 ERR036061 C invasive − Czech 1993
62 14776 ERR133687 C invasive − Czech 1993
63 15024 ERR133747 C invasive blood Czech 1993
64 15032 ERR036062 C invasive − Czech 1993
65 15035 ERR036063 C invasive − Czech 1993
66 15154 ERR036078 C invasive − Czech 1993
67 15174 ERR036079 C invasive − Czech 1993

Table A.7. Isolates in the serogroup C N. meningitidis dataset (I/II).
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Appendix A. Appendix

ID ENA
Accession

Sero-
group

Disease Source Country Year

68 15176 ERR036080 C invasive − Czech 1993
69 15238 ERR036081 C invasive − Czech 1993
70 15242 ERR036082 C invasive − Czech 1993
71 15255 ERR137175 C invasive CSF Czech 1993
72 15261 ERR036084 C invasive − Czech 1993
73 15315 ERR036074 C invasive − Czech 1993
74 15316 ERR036075 C invasive − Czech 1993
75 15319 ERR036076 C invasive − Czech 1993
76 15325 ERR036086 C invasive − Czech 1993
77 15330 ERR036090 C invasive − Czech 1993
78 15336 ERR036091 C invasive − Czech 1993
79 15342 ERR036093 C invasive − Czech 1993
80 15344 ERR036094 C invasive − Czech 1993
81 29738 ERR558124 C invasive − UK 1997
82 29739 ERR558125 C invasive − UK 1997
83 29740 ERR558126 C invasive − UK 1997
84 29913 ERR1134940 C invasive − UK 1999
85 29914 ERR557947 C invasive − UK 1999
86 29915 ERR1134942 C invasive − UK 1999
87 29916 ERR1134944 C invasive − UK 1999
88 29917 ERR1134946 C invasive − UK 1999
89 29919 ERR1134948 C invasive − UK 1999
90 29920 ERR557949 C invasive − UK 1999
91 29921 ERR1134950 C invasive − UK 1999
92 29922 ERR557950 C invasive − UK 1999
93 29923 ERR1134952 C invasive − UK 1999
94 29925 ERR1134954 C invasive − UK 1999
95 29926 ERR557952 C invasive − UK 1999
96 29927 ERR1134956 C invasive − UK 1999
97 30185 ERR557632 C invasive − UK 1996
98 30186 ERR1134901 C invasive − UK 1996
99 30187 ERR1134903 C invasive − UK 1996
100 30188 ERR557634 C invasive − UK 1996
101 30189 ERR1134905 C invasive − UK 1996
102 30190 ERR557637 C carrier − UK 1996
103 30191 ERR557638 C carrier − UK 1996
104 30192 ERR557639 C carrier − UK 1996
105 30193 ERR557641 C carrier − UK 1996
106 30194 ERR1134907 C invasive − UK 1999
107 30195 ERR1134909 C invasive − UK 1999
108 30196 ERR557645 C invasive − UK 1999
109 30197 ERR1134911 C invasive − UK 1999
110 30198 ERR1134913 C invasive − UK 1999
111 30200 ERR1134917 C invasive − UK 1999
112 30201 ERR1134919 C invasive − UK 1999
113 30202 ERR557648 C invasive − UK 1999
114 30203 ERR1134921 C invasive − UK 1999
115 30204 ERR1134923 C carrier − UK 1999
116 30205 ERR1134925 C carrier − UK 1999
117 30206 ERR557653 C carrier − UK 1999
118 30207 ERR1134927 C carrier − UK 1999
119 30208 ERR1134929 C carrier − UK 1999
120 30232 ERR557668 C invasive − UK 1996
121 30233 ERR1134949 C invasive − UK 1996
122 30279 ERR557631 C carrier − Portugal 2012
123 30282 ERR557633 C carrier − Portugal 2012
124 36202 ERR976804 C invasive CSF Greece 1996
125 36203 ERR976805 C carrier throat Greece 1996
126 41784 ERR063501 C invasive − UK 1997
127 41785 ERR063502 C carrier − UK 1997
128 41786 ERR036071 C carrier throat Czech 1993
129 41787 ERR036083 C invasive − Czech 1993

Table A.8. Isolates in the serogroup C N. meningitidis dataset (II/II).
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Figure A.3. Correlation between SNPs associated with cefixime resistance. A visualisation

of the correlation matrix describing the similarity between the unique column patterns observed among

the 132 core SNPs identified as significantly associated with the cefixime resistance phenotype in N.

gonorrhoeae. The Pearson’s correlation is given above the diagonal and the significance level of each

correlation is indicated by the number of asterisks below the diagonal (* = 0.05, ** = 0.01, *** = 0.001).
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Figure A.4. Correlation between SNPs associated with cefixime MIC. A visualisation of the

correlation matrix describing the similarity between the 14 unique column patterns observed among the

222 core SNPs identified as significantly associated with the cefixime MIC phenotype in N. gonorrhoeae.

The Pearson’s correlation is given above the diagonal and the significance level of each correlation is

indicated by the number of asterisks below the diagonal (* = 0.05, ** = 0.01, *** = 0.001).
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Figure A.5. Correlation between SNPs associated with penicillin resistance. A visualisation

of the correlation matrix describing the similarity between the unique column patterns observed among

the 162 core SNPs identified as significantly associated with the penicillin resistance phenotype in

N. meningitidis. The Pearson’s correlation is given above the diagonal and the significance of each

correlation is indicated by the presence of an asterisk below the diagonal (* ≤ 0.05).
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Figure A.6. Correlation between SNPs associated with penicillin MIC. A visualisation of the

correlation matrix describing the similarity between the 19 unique column patterns observed among the

30 core SNPs identified as significantly associated with the penicillin MIC phenotype in N. meningitidis.

The Pearson’s correlation is given above the diagonal and the significance level of each correlation is

indicated by the number of asterisks below the diagonal (* = 0.05, ** = 0.01, *** = 0.001).
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Figure A.7. Correlation between SNPs associated with invasive disease. A visualisation of

the correlation matrix describing the similarity between the 7 core SNPs identified as significantly

associated with the invasive disease phenotype in N. meningitidis. The Pearson’s correlation is given

above the diagonal and the significance level of each correlation is indicated by the number of asterisks

below the diagonal (* = 0.05, ** = 0.01, *** = 0.001).
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Figure A.8. Correlation between accessory genes associated with invasive disease. A

visualisation of the correlation matrix describing the similarity between the 12 accessory genes identified

as significantly associated with the invasive disease phenotype in N. meningitidis. The Pearson’s

correlation is given above the diagonal and the significance level of each correlation is indicated by the

number of asterisks below the diagonal (* = 0.05, ** = 0.01, *** = 0.001).
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Gene Gene product

NEIS0041 DNA transport competence protein

NEIS0045 (rfbC ) O-antigen capsular region D

NEIS0047 (rfbB) O-antigen capsular region D

NEIS0065 (rfbC2 ) O-antigen capsular region D’

NEIS1357 hypothetical protein

NEIS0213 (pglA) Pilin glycosyltransferase

Table A.9. Genes interacting with invasive disease genes in N. meningitidis. These 6 accessory

genes were identified as having significant interactions with one or more of the 12 significant virulence-

associated genes identified in Table 5.7. Using a modified version of treeWAS, Score 2 was measured

between each of the 12 putative virulence genes and all other accessory genes (Nloci = 2, 809) in a

dataset containing gene presence-or-absence sequences (Nind = 129) from N. meningitidis serogroup C.
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260. Platt A, Vilhjálmsson BJ, Nordborg M. Conditions under which genome-wide

association studies will be positively misleading. Genetics. 2010 Nov;186(3):1045–

1052.

261. Anderson TJC, Williams JT, Nair S, et al. Inferred relatedness and heritability

in malaria parasites. Proc Biol Sci. 2010 Aug;277(1693):2531–2540.

262. Blangero J, Williams JT, Almasy L. Variance component methods for detecting

complex trait loci. Adv Genet. 2001;42:151–181.

263. Walsh M, Lynch B. Genetics and Analysis of Quantitative Traits. 1998;.

264. Fraser C, Lythgoe K, Leventhal GE, et al. Virulence and pathogenesis of HIV-1

infection: an evolutionary perspective. Science. 2014 Mar;343(6177):1243727.

265. Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999

Oct;401(6756):877–884.

266. Housworth EA, Martins EP, Lynch M. The phylogenetic mixed model. Am Nat.

2004 Jan;163(1):84–96.

229/239



Bibliography

267. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using

de Bruijn graphs. Genome Res. 2008 May;18(5):821–829.

268. Chaisson MJ, Pevzner PA. Short read fragment assembly of bacterial genomes.

Genome Res. 2008 Feb;18(2):324–330.

269. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly

algorithm and its applications to single-cell sequencing. J Comput Biol. 2012

May;19(5):455–477.

270. McCarroll SA. Extending genome-wide association studies to copy-number

variation. Hum Mol Genet. 2008 Oct;17(R2):R135–42.

271. Xu L, Cole JB, Bickhart DM, et al. Genome wide CNV analysis reveals additional

variants associated with milk production traits in Holsteins. BMC Genomics.

2014 Aug;15:683.

272. Kryazhimskiy S, Plotkin JB. The Population Genetics of dN/dS. PLoS Genet.

2008 Dec;4(12):e1000304.

273. Felsenstein J. Maximum-likelihood estimation of evolutionary trees from continu-

ous characters. Am J Hum Genet. 1973 Sep;25(5):471–492.

274. Remmele CW, Xian Y, Albrecht M, et al. Transcriptional landscape and essential

genes of Neisseria gonorrhoeae. Nucleic Acids Res. 2014 Aug;42(16):10579–10595.

275. Wang Y, Qiu C, Cui Q. A Large-Scale Analysis of the Relationship of Synonymous

SNPs Changing MicroRNA Regulation with Functionality and Disease. Int J

Mol Sci. 2015 Sep;16(10):23545–23555.

276. Blagus R, Lusa L. Class prediction for high-dimensional class-imbalanced data.

BMC Bioinformatics. 2010 Oct;11:523.

277. Nixon KC. The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis.

Cladistics. 1999;15:407–414.

278. Jukes TH, Cantor CR, Others. Evolution of protein molecules. Mammalian

protein metabolism. 1969;3(21):132.

279. Von Neumann J. Various techniques used in connection with random digits. Appl

Math Ser. 1951;12(36-38):3.

280. Kim SY, Lohmueller KE, Albrechtsen A, et al. Estimation of allele frequency and

association mapping using next-generation sequencing data. BMC Bioinformatics.

2011 Jun;12:231.

230/239



Bibliography

281. Kruskal WH. Ordinal Measures of Association. J Am Stat Assoc. 1958;53(284):814–

861.

282. Dunn OJ. Multiple Comparisons Among Means. J Am Stat Assoc.

1961;56(293):52–64.

283. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and

Powerful Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol.

1995;57(1):289–300.

284. Silverman BW. Density estimation for statistics and data analysis. Monographs

on Statistics and Applied Probability, London: Chapman and Hall, 1986. 1986;.

285. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment

with gene gain, loss and rearrangement. PLoS One. 2010 Jun;5(6):e11147.

286. Fu S, Octavia S, Tanaka MM, Sintchenko V, Lan R. Defining the Core Genome

of Salmonella enterica Serovar Typhimurium for Genomic Surveillance and Epi-

demiological Typing. J Clin Microbiol. 2015 Aug;53(8):2530–2538.

287. McNally A, Oren Y, Kelly D, et al. Combined Analysis of Variation in Core,

Accessory and Regulatory Genome Regions Provides a Super-Resolution View into

the Evolution of Bacterial Populations. PLoS Genet. 2016 Sep;12(9):e1006280.

288. Thorpe HA, Bayliss SC, Hurst LD, Feil EJ. Comparative Analyses of Selection

Operating on Nontranslated Intergenic Regions of Diverse Bacterial Species.

Genetics. 2017 May;206(1):363–376.

289. Brown T, Didelot X, Wilson DJ, De Maio N. SimBac: simulation of whole bacterial

genomes with homologous recombination. Microb Genom. 2016 Jan;2(1).

290. Comas I, Coscolla M, Luo T, et al. Out-of-Africa migration and Neolithic

coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet.

2013 Oct;45(10):1176–1182.
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379. Codoñer FM, O’Dea S, Fares MA. Reducing the false positive rate in the non-

parametric analysis of molecular coevolution. BMC Evol Biol. 2008 Apr;8:106.
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