

978-1-7281-5611-8/20/$31.00 ©2020 IEEE

Architecture of a Cloud-based Fault-Tolerant Control
Platform for improving the QoS of Social Multimedia

Applications on SD-WAN

Kashinath Basu1 , Aws Hamdullah2, and Frank Ball3
1, 2 School of Engineering, Computing and Mathematics, Oxford Brookes University, Oxford, UK

3 Frank Ball Consulting, Oxford, UK
Contact author e-mail: kbasu@brookes.ac.uk

Abstract— Social media application are becoming multimedia
centric with live and stored video, audio, augmented reality,
haptic, etc. emerging as the main categories of traffic. Their QoS
requirements are more stringent than their legacy counterparts.
At the carrier level, Software Defined – Wide Area Network (SD-
WAN) is one of the promising technologies for transporting these
multimedia traffic. A SD-WAN will typically have a mesh of
centralized controllers managing the networking infrastructure.
Reliable operations of these controllers are a key requirement for
the successful operation of the WAN. Controller failure will
prevent the forwarding switches from communicating with the
controller. This will prevent the switches from forwarding any new
traffic, as well as flow entries from existing traffic will also time
out after a period bringing the network to a standstill. Rebooting
a controller or starting a new one will introduce delays degrading
the QoS. This research presents an architecture for handling
controller failure via transparent migration of the controller load
in a semi-meshed controller environment. The architecture
includes a real time cloud-based centralized storage of the flow
states north of the controllers and a virtualized connection
management unit at the south. The results demonstrate that the
proposed model can transparently handle controller failure
without affecting the QoS.

Keywords— SD-WAN; QoS; social media; Software defined
network; fault-tolerant; reliability; OpenFlow; cloud; NFV; flow
table

I. INTRODUCTION
From the communication point, the legacy social media

applications have been generally text and image based and had
long tolerable delay bounds but required lossless and error free
network service to maintain appropriate level of Quality of
Experience (QoE). The traditional networking infrastructure and
communication models was adequate to provision appropriate
network level Quality of Service (QoS) to support the QoE of
the users. In this setup, most issues of reliability and fault
resulting from the breakdown and fault of the infrastructure
devices and links were handled by a slow rerouting process of
the traffic and rebooting of the infrastructure. This however had

minimal impact on the QoE of the users since the applications
were inherently delay tolerant. In contrast, several of the present
and emerging social media applications such as YouTube,
Facebook, Snapchat, vTime, AltSpaceVR, etc. include
multimedia such as video, audio and animation (both in
streaming and real time interactive form) as well as multi
sensorial media such as haptic, olfactory, gustation, etc. along
with text-based media [1]. These wide varieties of media
demand a much stringent QoS with seamless continuous and
synchronized playback with minimal loss and error. This can be
partially handled at the network level with adequate
orchestration of network resources to keep delay and jitter at a
minimal. However, without a comprehensive fault-tolerant
framework, these network level QoS targets can be jeopardized
resulting in the degradation of the QoE.

This reliability concern is more serious in the context of the
emerging SD-WAN networking model which is an extension of
software defined networking (SDN) for enterprise and WAN.
The model is based on two key concepts: a) decoupling of
network control and transport functions into two separate planes
and b) centralization of control and management. To realize this
model, the architecture can be broadly classified into four key
components (Fig. 1) across these two planes: 1) the forwarding
switching fabric in the data plane, 2) the controller platform and
the 3) northbound application programming interfaces (APIs)
that controls the packet treatment in the control plane and the 4)
southbound control/data plane signaling interface between the
switches and the controller. In this model, the implication of
network failure and fault is significantly different from
traditional network. For example, in the context of packet
treatment in a traditional network the forwarding decision is
made either locally or based on intelligence gathered in co-
ordination between distributed forwarding devices. In this
traditional set up, most local failure has minimal impact and only
limited regional implications.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/326509663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1: The four components of the SD-WAN architecture

However, in the SD-WAN model, failure and fault is more
critical since control and network management is centralized at
the control plane. This model can be categorized into three fault
domains (Fig. 2). The forwarding fault domain includes failure
in the data forwarding plane and includes switches and links.
The interface fault domain involves failure of north bound and
southbound interfaces. The northbound interface is generally a
logical API based interface with the northbound applications
running either locally on the controller platform itself or on a
separate server. The southbound interface involves signaling
APIs and physical communication interfaces between the
forwarding devices and the controller(s). Finally, the controller
fault domain involves failure in the control platform, the brain
of the SD-WAN network responsible for network state
aggregation, liaison with the northbound application and
updating of the flow tables of the forwarding devices.

Fig. 2: Categorization of the SD-WAN architecture into failure and fault domains

A fault in the switch or link in the forwarding domain of a
SD-WAN network is simpler in some aspect to similar situation
in a traditional WAN network. In the SD-WAN, the flow rules
of the faulty switch in the centralized controller are unaffected
and the controller can temporarily reorganize the topology to
bypass the faulty region. Similar action can be taken for faulty
links. Once the switch or link is replaced, the topology can be
updated without any additional delay in relearning the topology.
The other two fault domains, the interface and the control
domain are critical and go hand-in-hand as a fault in one has a
cascading effect on the other and will result in the failure of the
entire network. When there is a fault in either of these two
domains, the data plane will not be able to receive any flow table

updates and existing entries will also eventually timeout. This
will bring the entire network to a standstill. Several papers have
referred to the significance of this problem; however, most
works have primarily focused on the problems in the data
forwarding plane [2, 3].

Reliable fault-tolerant solutions of the control and interface
domain are crucial for the wide scale deployment of the SD-
WAN by carriers and telecom operators for forwarding social
multimedia and other categories of time critical and isochronous
traffic. A controller could fail for various reasons such as of
server crash, power failure, security breach, etc. Similarly, the
link between the controller and the switches can also break. In
this paper, the focus is not on failure avoidance but on recovery
after failure through transparent load migration with minimal
disruption of the services. Here a network is considered to be
consisting of a semi meshed set of controllers which is the ideal
setup in both enterprise and carrier grade SD-WAN. The rest of
the paper is organized as follows: Section 2 gives a brief analysis
of the traffic characteristics of social multimedia traffic and the
significance of a fault-tolerant reliable networking
infrastructure; Section 3 presents related work on fault tolerance
in softwarized networks; Section 4 describes the architecture of
the proposed fault- tolerant control plane model. For
performance comparison, an alternative fully meshed model is
also presented. This however is not scalable but suitable as a
benchmark for comparison; in section 5 the simulation results of
the performance of these models in a mininet environment with
POX [4] controllers is discussed; and finally section 6 evaluates
the nobility of the work and presents the concluding remarks.

II. SOCIAL MULTIMEDIA TRAFFIC CHARACTERISTICS
There are wide categories of social media applications

ranging from blogging, image sharing, video streaming, live
video, interactive animation to augmented reality with
multisensory data. These applications generate a wide variety of
traffic profiles and have different levels of QoS requirements in
order to provide the optimal level of QoE for the end users. For
example, text centric blogging sites generate text-based data
which require loss and error free service but is relatively
tolerable to reasonable end to end delay 800 milliseconds.
Hence, these data are packetized in larger packets since longer
packetization delay is not a concern. Also, these types of social
media sites generally produce bursty traffic. On the other hand,
live video/audio and augmented reality traffic have a much
smaller end to end delay bound of 200 – 250 milliseconds and
hence have a smaller packet size to limit the packetization delay.
The traffic is continuous with either isochronous or synchronous
characteristics with very limited tolerable jitter. Here, any small
disruption in the transmission will immediately result in the
impairment of the QoE. Hence, the reliability of the
infrastructure is crucial. In the SDN-WAN environment, due to
the centralization of the control plane any fault in the controller
will have cascading impact on the performance of the
forwarding devices resulting in additional latency and delay for
the applications [5]. Therefore, a reliable control plane that is
robust and fast in managing fault is vital in SD-WAN.

III. RELATED WORK
The SD-WAN controller manages the flow entries of the

forwarding switches by sending the required commands that

either create new or update existing flow entries within the flow
tables in the WAN switches [6]. Hence, it is vital to continue the
operation of the control plane in the case of controller failure in
order to maintain the proper operation of SD-WAN and the
related services.

There are a number of open source and commercially
available controller products in the market. Some of these have
evolved as a community driven initiative such as NOX/POX,
OpenDaylight, Floodlight, Open Network Operating System
(ONOS) [7,8] whereas other came from established networking
industry vendors such as Juniper’s Contrail, HP’s Virtual
Application Network (VAN), Cisco’s Application Centric
Infrastructure (ACI), etc. In most of these products, the main
focus is on the reliability and fault tolerance of the switches and
links in the forwarding domain. In the control domain some of
the fault tolerance approaches include fast reboot of the failed
controller, redundancy across controller cluster [9], using
centralized database for fault tolerance and replication [10],
optimization of the location of the controller in the subnet [11],
etc. There are big questions on the scalability and performance
of these solutions in terms of recovery time and loss [12].

There are a number of ongoing researches specifically
focused on the fault tolerance issues of the controller. [13]
proposed a fault-tolerant procedure based on a distributed
control layer. This distributed controller architecture claims to
improve the availability, reliability and efficiency of the
softwarized network. The work is based on an external Java
based open-source toolkit named JGroups [14]. It can be used to
discover and cluster networks elements by broadcasting or
unicasting control messages among the network resident hosts.
It supports the functionality of networks monitoring and failure
detection. During controller failure, it performs load balancing
among the controllers by dynamically migrating the forwarders
from one controller to another.

Kim et al. presented another methodology for SDN
controller’s fault-tolerance which includes building controller’s
failure detection and recovery procedure inside a software
module named CORONET [15]. Here, the failure detection
method is based on a heartbeat mechanism that can be used to
monitor a network device’s status. It is represented by packets
being broadcasted at regular intervals within a network [16]. As
for the recovery, it uses a distributed dictionary or hash table
hosted on the Onix distributed control platform [17].

[18] presented a mechanism for SDN failure recovery using
the OpenFlow protocol. In this mechanism, the lifespan of a
flow state entry in the switch is varied to recover from a failure.
Here the arrival time of the last packet of each flow is recorded
and the expiration interval of the flow entries is managed by
using an idle and hard timeout period: The idle-timeout is the
idle interval in which if no packet is matched by a flow it will be
purged. The hard timeout is the interval after which a flow entry
will be removed from the flow table regardless of how many
packets are matched [19]. These timeout signaling primitives are
part of the standard fields of the OpenFlow protocol and can be
managed by the controller without any external module.

On the forwarding domain, there has been substantial
volume of work dealing with switch failure and recovery. [20]
presented a model for fault recovery in OpenFlow switches
using a reliable proactive and reactive mechanism. In the
proactive case, the controller calculates an alternative path
before the occurrence of a switch fault, whereas in reactive, the
controller will calculate the alternative path after it has been
notified of a switch failure. The work suggests storing all the
policies, rules and flow tables of the SDN resident switches in a
single compressed controller unit. In the case of a switch failure,
the controller will react by switching to the alternative path in
order to be able to connect to the rest of the forwarders that
reside on the other side of the failed switch. In addition, it will
update the alive switches with the alternative path from a
network-wide compressed forwarding state table.

Another approach used by some of the controllers [21] is the
use of clustering to diminish the probability of the single point
of failure and also to provide load balancing functionality.
Clustering has been demonstrated to increase the scalability,
performance and reliability of a network with the increase in the
number of clustered controllers. However, controller clustering
requires adequate synchronization of the flow rules among the
controllers. Another related approach is to interconnect the
software defined switches to multiple controllers to handle
failure [22]. In this case, the first controller is treated as a master
and the rest as slaves. This however requires a transparent
handover phase for the switch to migrate from a master to a slave
during failure.

Our proposed architecture addresses some of the
shortcomings of the research work discussed above and builds
on some of the good ideas to produce a novel and robust
solution.

IV. ARCHITECTURE OF THE PROPOSED SD-WAN CONTROL
PLATFORM

Fig. 3: Architecture of the fault-tolerant SD-WAN control platform

Fig. 3 presents the architecture of the SD-WAN fault-
tolerant framework for the deployment of a reliable SD-WAN
in a distributed controller-based environment. Having a
distributed set of controllers provide the reliability,
redundancy and scalability as required in a WAN
environment. In the framework, each controller directly
manages a set of physical and/or virtual switches and act as
the primary master controller for the set. In addition, a
controller may also act in parallel as a secondary slave
controller for a different set of switches. The slave controller
temporarily takes over as the primary controller for a set only
when the master controller is unavailable. The switches are
connected to the controllers through an intermediate controller
monitor called here as the SD-WAN Controller Monitor
(SCM). This logical unit can be implemented as a virtualized
distributed network function unit like a Network Function
Virtualization (NFV) component. This unit is responsible for
monitoring the status of the controllers and detection of
failures. It checks the status of the connection by regularly
broadcasting hello messages to the controllers which are
replied back if the controller is alive. If a failure is detected,
the SCM is then responsible to transfer the connections of all
the switches from the primary master to the secondary slave
controller. At the northbound interface of each of the
controllers, it is connected to a cloud-based centralized
database which stores a copy of the flow rules. It is stored as
a hash table for easy retrieval and can be invoked through
application programming interface (API). When a controller
failure is detected by the SCM, a copy of the flow table of the
failed controller is migrated from the cloud to the
corresponding secondary slave controller which takes over the
control of all the switches from the former and operates as a
temporary acting master controller for them. At a later stage,
when the failed controller becomes alive again, it updates it
current state from the cloud and the SCM transfers back the

control of the switches. This whole process of failure, transfer
of control and recovery of the controller is transparent to the
switches.

V. THE BENCHMARK CONTROL PLATFORM
This model is used here only as a benchmark to compare

the performance of our model above against this ideal
scenario. In this setup (Fig. 4), all the switches are connected
to all the controllers in the subnet in parallel in a fully meshed
configuration. All the controllers receive the same flow
information and maintain identical flow tables. However,

Fig. 4: The Benchmark control platform

from the controller to switch communication, the switch
receives identical replies from each of the controllers but only
processes the first copy and drops the other remaining copies.
This setup ensures the performance of the switches are
completely unaffected by the any particular controller failure.
Although this solution is not scalable in a real implementation,
it is suitable here for comparison purpose.

VI. EXPERIMENT SETUP AND RESULTS

A. Setup
The SD-WAN network was designed using Mininet with

POX controllers and Open vSwitch (OVS) switches.
OpenFlow was used for southbound signaling and the SCM
and the cloud-based hash tables’ remote procedures were
written in the Python programming language for compatibility
with POX’s Python core. All the connections between the
switches and the SCM as well as between the controllers and
the cloud were setup using TCP sockets. The iPerf3 [23]
toolkit was used to configure and capture flow statistics. The
htop [24] package was used to measure the memory and CPU
usage of the various modules.

The SD-WAN network was configured with eight OVS
and four controllers (Fig. 3). Each of the controllers directly
managed two switches acting as their primary master
controller. In addition, each controller also acted as the
secondary slave controller for a different set of switches. The
secondary slave controller for the switches managed by
controller-1 was set to controller-2, those managed by
controller-2 was set to controller-3 and so on. The link rates
were configured at 100 mbps and the aggregated social
multimedia traffic load were kept at 60mbps. A mixture of
flows with different start and inter-arrival times with a range
of packet length distribution were used to simulate different
categories of social multimedia traffic. All experiments were
run for 90 seconds; however, the first 30 seconds were only
for stabilizing the network and the flow tables. Hence, we only
focus on the last 60 seconds duration in our discussion. In this
60 second interval, the controller failure was set at the 4th
second and restoration point after the 44th second.

B. Results
Before analyzing the performance of our model, the first

experiment shows the impact of hard and idle timeout on the
performance of the open vSwitch during controller failure. As
mentioned earlier, idle timeout is the maximum idle interval
for an existing flow entry to be matched with a new packet
arrival; otherwise the entry is deleted from the forwarding
table. Hard timeout is the maximum duration of a flow table
entry after which it is purged irrespective of the amount of
matching traffic. In this first experiment, we compare the
performance of the OVS in three scenarios. In the first two
cases, there are no fault-tolerant mechanisms in the network.
In one case, only the idle timeout set to 30 seconds, and in the
other the hard timeout set to zero. This is compared against
the performance of the benchmark controller. In all
subsequent experiments, only hard timeout is used to clearly
distinguish the performance gain of the proposed SD-WAN
platform without the assistance of any idle timeout period.

Fig. 5: Impact of timeout period on the throughput of a switch during
controller failure

Fig. 5 shows the impact of the failure of the controller on
the traffic load of the directly connected OVS. As mentioned,
the proposed fault-tolerant platform has not been considered
here. Instead the timeout impact in the two cases have been
compared against the benchmark model. In the result, the
OVS in the benchmark threshold model is completely
transparent to the failure since it has direct connection with all
the controllers and therefore it continues to receive openflow
messages from the other identical controllers after the failure.
In the case with 30 second idle timeout, all existing flows
continued to be unaffected for 30 seconds depending on the
last packet arrival. New flows however were dropped along
with packets from existing flows which were idle for more
than 30 seconds. In the case with zero second hard timeout,
the throughput of the switch immediately becomes zero after
the controller failure. The result shows that idle timeout
duration can partly compensate the throughput of a switch
connected to a failed controller. However, it is challenging to
select an optimal timeout period that on one hand during fault
will provide transparent continuity of the social multimedia
traffic and maintain its QoE, and on the other hand during
normal condition will still ensure that the flow table entries
are still valid and up-to-date and have not become obsolete
due to dynamic route changes.

Fig. 6: Comparison of performance between the benchmark and the fault-
tolerant models

Fig. 6 shows the comparison of the performance of the
fault-tolerant SD-WAN platform with the benchmark model
in dealing with controller failure. Here the effect of controller
failure is monitored at a finer granularity by inspecting the
performance of an individual flow passing through the OVS
connected to the failed controller-1. At the 4th second,
immediately after the failure the SCM control monitor passes
the control of the switch to the secondary slave controller
(controller-2) and the associated flow rules are transferred
from the cloud. The process takes less than 200 milliseconds
and 0.06% of the traffic during the period is lost. This minimal
disruption of the social multimedia traffic can be readily
handled at the application level in the end systems using
various adaptive techniques [5]. Moreover, with a realistic idle
timeout period like in the previous experiment, this loss can
be further reduced close to zero. At the 44th second, when the
controller becomes alive again control is passed back to the
original primary controller. There is no loss during this
handover process which takes place only after the controller
is up and running and has synched the flow rules from the
cloud. The result shows the flow rate has been almost
unaffected by the controller failure and is identical to the
benchmark model. Similarly, it was found that for the
aggregate traffic passing through the switch the overall
throughput remained unaffected.

Fig. 7: Impact of timeout period on the throughput of a switch during
controller failure

The change in load distribution across the controllers
during the experiment run is presented in Fig. 7. After the
failure, the number of switches managed by controller-2 goes
up from two to four as it now acts as the primary controller for
its own two switches as well as for the two switches from
controller-1. Detail inspection of controller resource usage
also show that the memory and CPU utilization increased
from 18% to 30% during this stage. This later again returns

back to the earlier state when controller-1 comes alive and is
transferred back the management of its two switches.

VII. EVALUATION AND CONCLUSION

The results demonstrate that the proposed fault-tolerant
SD-WAN platform can handle controller failure in a
distributed controller-based SD-WAN environment. Both the
coarse level aggregate throughput of a switch and the granular
level individual flow rate of the social multimedia traffic were
negligibly affected by the failure of the primary master
controller. Any small minimal loss during the controller
migration phase after failure can be offsetted by the idle
timeout period as seen in the first experiment or by application
level adaptation mechanisms. The additional load on the
secondary controller during the failure period did not overload
the resources as found from the memory and processor usage.

The proposed solution is robust and provides transparency
to the physical and virtual switches and the traffic carried over
them from fault and breakdown of the controllers in an SD-
WAN. This is one of the key components to maintain
reliability of the SD-WAN infrastructure. Adequate
orchestration and provisioning of network level QoS along
with the proposed fault-tolerant platform can provide
consistent QoE of the social multimedia applications on SD-
WAN.

There are some optimizations possible on the proposed
platform. At this moment, the copies of the flow rules are
stored centrally at the cloud. As shown, this provides both
redundancy and recovery from failure. Furthermore, the SCM
control monitor is presently implemented as a single module.
In a scalable SD-WAN network, this could be implemented as
a NFV module and deployed in a cloud and offered as a cloud-
based network as a service (NaaS) function. These
enhancements can further improve the response time of the
system and hence the performance of the proposed platform.

REFERENCES
[1] L. Skorin-Kapov, M. Varela, T. Hoßfeld, and K.-T. Chen: ‘A Survey

of Emerging Concepts and Challenges for QoE Management of
Multimedia Services’, ACM Transactions on Multimedia Computing
Communications and Applications (TOMM) (SI on QoE
Management), vol. 14, no. 2, Apr. 2018

[2] C. M. Machuca, S. Secci, V. Vizarreta, et al. (20: ‘Technology-related
disasters: A survey towards disaster-resilient Software Defined
Networks’, Proc. 8th Int. Workshop on Resilient Networks Design and
Modeling (RNDM), Halmstad, 2016, pp. 35-42

[3] C. Cascone, L. Pollini, D. Sanvito, A. Capone and B. Sansó: ‘SPIDER:
Fault resilient SDN pipeline with recovery delay guarantees’, Proc.
IEEE NetSoft Conference and Workshops (NetSoft), Seoul, , pp. 296-
302G. Eason, B. Noble, and I.N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955.

[4] POX Wiki Open Networking Lab (2015), [online]
https://openflow.stanford.edu/display/ONL/Home (Accessed: 27 Nov
2019).

[5] M. Karakus and A. Durresi: ‘Quality of service in software defined
networking: A survey’, Journal of Network and Computer
Applications, Elsevier, vol. 80, pp. 200-218, Feb 2017

[6] D. Mattos, N. Fernandes, V. Costa, L. Cardoso, M. Campista, L. Costa
and O. Duarte: ‘OMNI: OpenFlow management infrastructure’, Proc.
International Conference on the Network of the Future (NOF), IEEE,
Paris, 2011.

[7] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov and R. Smeliansky:
‘Advanced study of SDN/OpenFlow controllers’, Proc. 9th Central &
Eastern European Software Engineering Conference in Russia, ACM,
p. 1, 2013.

[8] A. Bondkovskii, J. Keeney, S. van der. Meer and S. Weber:
‘Qualitative comparison of open-source SDN controllers’, NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium, Istanbul, pp. 889-894.

[9] M.C. Penna, E. Jamhour and M.L. Miguel: ‘A clustered SDN
architecture for large scale WSON’, Proc. Advanced Information
Networking and Applications (AINA), IEEE 28th International
Conference on Advanced Information Networking and Applications,
Victoria, pp. 374-381, 2014.

[10] F. Botelho, A. Bessani, F. M. Ramos, and P. Ferreira: ‘On the design
of practical fault-tolerant SDN controllers’, Proc. IEEE 3rd European
Workshop on In Software Defined Networks (EWSDN 2014),
Budapest, pp. 73-78, 2014.

[11] Y. Hu, W. Wang, X. Gong, X. Que and S. Cheng: On reliability-
optimized controller placement for software-defined networks. China
Communications, 11(2), pp.38-54, 2014.

[12] D. Kreutz, F.M. Ramos, P.E. Verissimo, C.E. Rothenberg, S.
Azodolmolky and S. Uhlig: ‘Software-defined networking: A
comprehensive survey’, Proc. IEEE, 103(1), pp.14-76, 2015.

[13] C. Liang, R. Kawashima, and H. Matsuo: 'Scalable and crash-tolerant
load balancing based on switch migration for multiple Openflow
controllers', International Symposium on Computing and Networking,
Shizuoka, pp. 171-177, 2014.

[14] JGroups: Available at: http://www.jgroups.org (Accessed 25 Oct 2019)
[15] H. Kim, M. Schlansker, J. Santos, J. Tourrilhes, Y. Turner and N.

Feamster: ‘CORONET: Fault tolerance for software defined
networks’, 2012 20th IEEE International Conference on Network
Protocols (ICNP), Austin, TX, pp. 1-2, 2012.

[16] M. Yang and Z. Fei: ‘Cooperative Failure Detection in Overlay
Multicast’, in Boutaba, R. et al (Eds.), NETWORKING 2005.
Networking Technologies, Services, and Protocols; Performance of
Computer and Communication Networks; Mobile and Wireless
Communications Systems. Springer, Berlin, pp 881-892, 2005.

[17] T. Koponen, M. Casado, N. Gude, et al. : ‘Onix: A distributed control
platform for large-scale production networks’, Proc. 9th USENIX
conference on Operating systems design and implementation
(OSDI'10), Vancouver, pp. 351-364, 2010

[18] S. Sharma, D. Staessens, D. Colle, M. Pickavet and P. Demeester: ‘A
demonstration of fast failure recovery in software defined networking’,
Testbeds and Research Infrastructure. Development of Networks and
Communities, Springer, Vol. 44, pp. 411-414, 2012.

[19] S. Hommes: ‘Fault detection and network security in Software-Defined
Networks with OpenFlow’, PhD thesis, The Faculty of Sciences,
Technology and Communication , Luxembourg University, 2014.

[20] Y. Zhang, S. Natarajan, X. Huang, N. Beheshti and R. Manghirmalani:
‘A compressive method for maintaining forwarding states in SDN
controller’, Proc. ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (HotSDN), Chicago, pp. 139-144, 2014.

[21] M. Ulema: ‘Vulnerabilities and opportunities in SDN, NFV and
NGSON’, IEEE CQR 2014 International Workshop - Emerging
Technology Reliability Roundtable, Manhattan College, USA, 2014.

[22] SDN Hub (2017) Experimenting with ONOS clustering: [online]
http://sdnhub.org/tutorials/onos/experimenting-with-onos-clustering/
(Accessed 07 Oct 2019).

[23] iPerf - The ultimate speed test tool for TCP, UDP and SCTP (2017):
[online] https://iperf.fr/ (Accessed: 4 Jan 2017).

[24] htop - an interactive process viewer for Unix (2017): [online]
http://hisham.hm/htop/ (Accessed: 4 Dec 2019).

