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Abstract—The semantics of web services can be described
using ontology or formally specified in mathematical notations.
The former is comprehensible and searchable, while the latter is
testable and verifiable. To take advantage of both, we proposed,
in our previous work, a transformation that takes an algebraic
specification of a web service to generate a domain ontology
and a semantic description of the service on that ontology.

This paper investigates the quality of these two outputs by
proposing a general framework of ontology evaluation that
assesses them on 4 aspects of quality, which are decomposed
into 8 factors and then measured by a set of 37 metrics. It
reports a case study on 3 real-life examples of web services.
The results show that the ontologies and semantic descriptions
generated from formal specifications are of satisfactory quality.

Keywords-Service Semantics; Algebraic Specifications; On-
tology Evaluation; Ontology Metrics.

I. INTRODUCTION

The accurate description of semantics plays a crucial role
in service discovery, composition and interaction. Existing
techniques fall into two categories: ontology-based approach
and formal methods based approach. The former uses a
vocabulary defined in application domain ontologies to an-
notate services, while the latter uses mathematical notations
to formally define the functions of the software system.

Semantic Web Services have been advanced in the context
of Big Web Services (i.e. those based on WSDL, SOAP and
UDDI, etc.) as well as RESTful Web Services [1]. They
describe services using domain ontologies [2], which are de-
fined in ontology definition languages, such as OWL-S [3],
MicroWSMO/hRESTS [4], WADL [5] and SA-REST [6],
WSML [7], etc. In this approach, the domain ontologies give
metadata-like labels that can be applied to the operations as
well as to their input and output parameters. Such labels
are easy for human developers to understand and efficient
for computers to process. However, they cannot provide
a verifiable and testable definition of a service’s function,
because ontology is limited to stereotypes formed from the
relationship between the concepts and their instances.

Formal methods, which we consider as an alternative to
the ontological approach, have been developed over the past
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40 years to define the semantics of software systems in
mathematical notations. One such formal method, algebraic
specification, was first proposed in the 1970s for specifying
the semantics of abstract data types. Since then, it has
been extended to concurrent systems, state-based systems,
software components and service-oriented systems [8], [9].

Algebraic specifications are at a very high level of ab-
straction, independent of any implementation details, and
can be used directly in automated software testing [10]-[12].
However, algebraic specifications do not directly support
efficient searching of services, and neither do other formal
methods. To bridge the gap between algebraic specifica-
tions and ontological descriptions, we proposed a trans-
formational approach in [13]. In this approach, algebraic
specifications of services are transformed automatically into
an ontology-based semantics description. This confers on
formal specifications the machine-readability and human-
understandability benefits of ontologies. The tool is called
TrS20 (Translator from Specification to Ontology) and has
been implemented in Java [14]. Its input formal specifi-
cations are written in SOFIA and its output ontological
descriptions of services in OWL-S.

It remains an open question, however, whether the gener-
ated ontological semantic descriptions are of good quality.
This paper addresses this problem by developing a metrics-
based ontology evaluation framework and conducting a case
study on three real-world examples. The remainder of the
paper is organised as follows. Section II briefly reviews
the related work. Section III gives the framework of our
evaluation of domain ontology. Section IV formally defines
a set of metrics of ontologies. They are applied to real web
services in a case study in Section V. Section VI concludes
the paper with a summary of our main contributions and a
discussion of future work.

II. RELATED WORK

Ontology evaluation is a technical judgment of the quality
of a given ontology with respect to certain criteria for
a particular purpose. Among the early work on ontology
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evaluation, Gomez-Perez [15] emphasised on the following
five aspects of ontology quality: Consistency, Completeness,
Conciseness, Expandability and Sensitiveness.

Aiming at establishing a systematic approach to the eval-
uation of ontologies, Vrandecic [16] proposed eight qual-
ity criteria: Accuracy, Adaptability, Clarity, Completeness,
Computational efficiency, Conciseness, Consistency and Or-
ganizational fitness. Gangemi et al. [17] considered ontology
evaluation as a diagnostic task, and classified criteria into
three categories: Structural, Functional and Usability, and
defined nine quality attributes.

Recent work adapted and applied the software quality
standards, trying to propose standardised methods for evalu-
ating the quality of ontologies. Duque-Ramos [18] proposed
a general framework called OQuaRE to define the quality
of ontologies. The aspects of ontology quality that they
measured are: Structural, Functional adequacy, Reliability,
Performance efficiency, Operability, Maintainability, Com-
patibility, Transferability and Quality in use. However, most
of the criteria are subjective and very hard to measure di-
rectly. In this paper, we only employ objectively measurable
criteria for ontology evaluation.

As Vrandecic pointed out [16], an ontology is a complex,
multi-layered information resource. He identified a number
of aspects that are variable for an ontology, thus they are the
subject to be evaluated. These include Vocabulary, Syntax,
Structure, Semantics, Representation, and Context. In this
paper, we are only concerned with four of these six aspects
identified by Vrandecic. Syntax and Representation are ir-
relevant because the ontologies that we evaluate are gener-
ated from algebraic specifications automatically. With minor
changes to the transformation tool, we can generate the same
ontology in different ontology definition languages and with
different representations. Therefore, we define metrics at a
higher level of abstraction so that they are independent of
the ontology definition language. Consequently, our metrics
can be used to evaluate and compare ontologies defined in
different languages.

Most existing ontology metrics are structural; see [19] for
a survey. Yao et al. [20] used the number of root classes, the
number of leaf classes, and the average depth of inheritance
tree as cohesion metrics to measure modular relatedness
of OWL ontologies. Later, Yang et al. [21] measured the
complexity of ontology in the context of ontology evolution
using the number of concepts, the total number of relations,
the total number of paths, the average length of paths, the
longest length of paths, the average number of relations per
concept, the average number of paths per concept, the ratio
of max length of paths over average length of paths. In
addition to cohesion metrics, Orme et al. [22] and Oh, et
al. [23] also proposed coupling metrics for the evaluation of
ontologies.

In this paper, we propose a metrics-based approach to
evaluate ontology in the context of their uses in semantic

description of web services and apply it to the evaluation of
ontologies generated from algebraic specifications.

III. THE EVALUATION FRAMEWORK

An ontology is an explicit specification of a conceptu-
alisation [24]. It represents the knowledge of a specific
application domain by means of conceptualisation. Most
ontologies used in computer science and information tech-
nology contain a vocabulary that represents the concepts
of a specific domain as classes, individuals as instances of
concepts, attributes as properties of the objects and classes,
and relationships between the classes as relations. They
share many structural similarities regardless of the language
in which they are expressed. Ontologies in many different
languages can be obtained from a single algebraic speci-
fication by changing the transformation rules slightly. For
this reason, our framework must be language-independent.
Therefore, we define an abstract model of domain ontologies
based on their structural features common to all ontology
description languages. The metrics of ontologies will be
defined based on this model.

A. Abstract Model of Ontologies

Definition 1: (Domain Ontology)

A domain ontology O is a tuple (C, I, A, R), where

1) C is a finite set of classes. Each element ¢ € C
represents a concept of the domain.

2) I = {I¢|c € C} is a collection of finite sets indexed
by C. Each « € I¢ is an instance of the concept c.

3) A = {A°c € C} is a collection of finite sets of
attributes. For each ¢ € C, ¢ € A¢ is an attribute of
concept c. The value of an attribute ¢ for an instance
a € I of concept ¢, denoted by ¢(«), is either a data
of type T or an instance of a class ¢’. In the former,
@ is a data property and in the latter, it is an object
property. In both cases, we say that ¢ and T (or ¢’)
are the domain and codomain of attribute , and write
p:c—T (or p:c—c).

4) R={ry,---,ri} is a finite set of binary relations on
the set of concepts. For each 7 € R and r C C x C,
we have that (¢, ¢’) € r means that concept c is related
to ¢ by r. O

Two examples of relations that are particularly widely

used are the is-a and has-a relations, defined as follows:

e (c¢,c') € is-a means that each instance « of concept ¢ is
also an instance of concept ¢/, i.e. Voo € [ = «a € I¢.
The is-a relation is also called the sub-super relation,
or inheritance relation between concepts.

e (¢,c') € has-a means that for each instance « of
concept c, there is an instance o’ of class ¢’ such that
o’ is a part of o. The has-a relation is also called the
whole-part relation between concepts.

Figure 1 shows an example of an ontology of people

and family relationships. It will be used as the running



example throughout the paper. Here, classes are depicted in
solid line boxes, data types in solid line boxes with rounded
corners and instances in dotted boxes. If a concept referred
to is external to the ontology then a grey box is used. The
is-a and has-a relations are represented with unfilled and
filled arrows respectively. Arrows representing attributes are
labelled with the name of the attribute and depicted in red
for data properties and green for object properties.
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Figure 1.

Model of Family Ontology

B. Quality Attributes and Factors

We identify four quality attributes of ontologies, which
are decomposed into a few factors as shown in Fig. 2. Each
quality factor is then measured by a number of metrics.

1) Completeness: how well the ontology represents the
knowledge of a subject domain.

We employ an “gold standard” ontology as a repre-
sentative of the domain knowledge. Whether an ontology
completely represents the knowledge of a domain can be
measured by the coverage of the gold standard. Two lev-
els of coverage are recognised: syntactic coverage refers
to the vocabulary that exactly matches the corresponding
vocabulary of the gold standard; semantic coverage refers
to the subset of vocabulary of the gold standard that can be
derived semantically from the ontology. Another factor of
an ontology’s completeness with respect to a domain is the
compatibility of the ontology to the gold standard. Metrics
are defined to measure both coverage and compatibility on
various aspects of ontology, including concepts, instances,
attributes and relations.

2) Conciseness: whether the ontology is informative.

The key factor of conciseness is the redundancy within the
ontology. Metrics are defined on the redundancy of various
types of ontology components.

3) Well Structuredness: whether it can be decomposed
into smaller modules, to make the ontology easier to under-
stand, use and maintain. These smaller modules often form
ontologies of sub-domains that can be used separately with
references to other modules/ontologies.

Whether the decomposition is well structured can be
judged on two factors: the cohesion and coupling between
the modules. Here, cohesion means the interaction within
one module/ontology, while coupling means the cross ref-
erences or relations between different modules/ontologies.
A well-structured decomposition should have high cohesion
and low coupling. A number of coupling and cohesion
metrics are defined.

4) Usability: whether an ontology is easy to use for
a specific task, which, in this paper, is to describe the
semantics of services.

A service consists of a number of operations on the state
of the system. A semantic service description describes the
meanings of the states of the system, the service requests,
responses and the operation in the vocabulary of the ontol-
ogy. Two factors of usability in this context are recognised:
definability refers to whether the states and functions of
the services can be defined within the ontology; description
complexity refers to how complex the description of the state
and functions of a service, if they are definable. Metrics are
defined for both of them.
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IV. METRICS OF ONTOLOGY

We now define a set of metrics on ontologies. They are
classified according to the aspects of the ontology that they
measure. In the sequel, we use O = (C, I, A, R) to denote
a given ontology to be measured.

A. Vocabulary

The vocabulary of an ontology is the set of names defined
in it, comprising the names given to the concepts, instances,
attributes and relations. We first define a set of basic metrics
for the sizes of an ontology on various aspects.

Definition 2: We define sizes of an ontology as follows.

Sizec(0) = [IC]], Sizer(0) = Y I1°],

ceC
Sizea(0) = S_ 1A%, Sizer(0) = S lIrll,
ceC reR

Size(O) = Sizec(O) + Sizer(0O) + Sizea(O) + Sizer(O).

O



In the evaluation of an ontology’s coverage of an applica-
tion domain, a gold standard is often used [25]. This acts as
the ideal representation of domain knowledge. The following
metrics measures the domain coverage of an ontology O
with respect to a second ontology Q = (C',I’', A", R’) as
the gold standard.

Definition 3: (Vocabulary Coverage)

Ontology O’s vocabulary coverage with respect to {2 on
O’s constituent parts is defined as follows.

Cov(0) = S¢/Sizec(); Cov}(0) = S1/Sizer(Q);
C’ovg(O) = Sa/Sizes(Q); Cov}%(O) = Sr/Sizer(Q);
(Sc +Sr+Sa+Sgr)

Q _
Cov(0) = Size(Q)

where

Sc =|lcnc], Sr=_llrenre|,

ceC
Sa=Y_llAnA®|, Sp=>_lrnr|],
ceC r€ER
where 7’ is the relation corresponding to r in R/. O
Example 1: Let  be the ontology Family, and O be
Family with the class Pet removed. Then, O’s vocabulary
coverages with respect to {2 are as follows.

Sc =21, Sizec() =22, S;=5, Sizer(Q2) =5,
Sa=1, Sizeys(2) = 8, Sr =16, Sizer(Q2) =16,
Covd(0) =21/22, Cov(0)=1, Cov}(0)=71/8,
Cov$2(0) =1, Cov}(0) = 49/51. O

These coverage metrics measure the proportion of classes,
instances, attributes and relations that are defined directly
in the reduced ontology. However, an ontology may define
only the key components and leave out the other components
definable from the basic ones. We will investigate this in
Section IV-C.

B. Structure

Structural metrics are among the most widely explored
metrics and of these, in particular, cohesion metrics measure
the degree of relatedness between concepts in an ontology
and coupling metrics measure the interactions across differ-
ent ontologies.

o Cohesion Metrics

We construct a directed graph for each relation separately
and measure the relatedness and complexity of the ontology
relative to that, using the notions of graph theory.

Definition 4: (Graph on Relation)

Let r € R be any given relation of ontology O. The graph
of O on relation r, denoted by Graph,(O), is a directed
graph G = (N, E), in which the nodes n € N are concepts
of the ontology, and the edges e € E are the r-relationships
between the concepts, i.e. there is an edge e € E from node
cto ¢, if and only if (¢,¢') € r. O

The graph for the is-a relation of Ontology Family is
shown in Figure 3.

Figure 3. Graph for is-a realtion of Family Ontology

Before defining metrics on the ontology, we will first
recap a few graph theory notions that will be needed.
A node a in graph G is a root node, if there is no edge
e that enters node a. A node a is a leaf node, if there is no
edge e that leaves a. A node a is an isolated node if it is
both a root node and a leaf node i.e. it is not linked to any
other node in the graph. Formally, we define root and leaf
nodes as follows.
Root,(0) = {ce C|=Fz € C - (z,c) €T}
Leafr(O) ={ceC|-3z € C - (c,z) €T}

A path p in Graph,.(O) is a sequence (ny,ng,...ng) of
K > 0nodes in the graph such that forall¢ =1,--- | K —1,
there is an edge e in the graph from node n; to node n; .
A path is a simple path if all the nodes on the path are
different. The length of path p, written Length(p), is the
number of nodes on the path. If there is a path from node
a to node b in the graph, we say that node b is reachable
from node a in the graph, and write a ~» b. We also write
p : a ~ b to denote that p is a path from node a to b.
For ¢ € Root,.(O), we define Reachable? (c) as the set of
nodes reachable from c. Formally,

Reachable? (c) = {x € Clc~ z}

Definition 5: (Relation-Based Structure Metrics) Let r €
R be any given relation of the ontology. We define the
following structural metrics.

1) Number of Root Nodes: NRN,(O) = ||Root,(O)||.

2) Number of Leaf Nodes: NLN,-(O) = ||Leaf-(O)||.

3) Maximal Length of Simple Paths:

MazSPL,(0)= M Length(p)) .
ax (0) pePat%L)f«(O)( ength(p))

4) Number of Isolated Nodes:
NIC,(O) = ||Root(0) N Leafr(O)]|.

5) Total Number of Reachable Nodes from Roots:

TNRNR(O)= > ||Reachable? (z)||.
x € Root,.(O)
6) Average Number of Reachable Nodes from Roots:

ANRNR,(0) = TNRNR,(O)/|[INRN,(O)||. ©



Example 2: For the Family ontology in Figure 1, the is-a
relation-based structure metrics are:
NRN =2, NLN =10, MazSPL =3,
TNRNR =15, ANRNR=T7.5.

NIC =0,

The has-a relation-based structure metrics are:
NRN =1, NLN =1, MaxSPL=2, NIC =0,
TNRNR=1, ANRNR=1. O

For any well-structured ontology, the graph of the is-a and
has-a relations must be acyclic. For these and other acyclic
graphs, we can define depth and width of nodes. The depth
of a node c is the length of the longest path from a root
node to ¢. More formally,

Depth@(c)= M Length(p :
epthy’ (c) e pax o beng (p:z~0)
The width of a node is the number of nodes it is related

to. More formally,
Width? (c) = |[{z € C|(c,2) € r}|

We can now define the following further metrics for
acyclic relations.

Definition 6: (Metrics for Acyclic Relations)

For acyclic Graph,.(O), we define the following metrics.

1) Average Depth of all Leaf Nodes:

S>> DepthQ(c)
ce€Leaf,(O)

NLN,(O)
2) Average Width of all Non-Leaf Nodes:
S WidthQ(c)

AWNLN,.(0) = <&Leefr(9)
" NAN,(O) — NLN.(O)’

where N AN, (O) is the number of all nodes.
3) Maximal Depth of all Leaf Nodes:

MaxDepth,(O) = cethz/{z%‘)f(O) (Depth? (c)) .

4) Maximal Width of Non-Leaf Nodes:

MazWidth,(0) =  Max (Wzdth?(c)). o
c#Leafr(0)

ADLN,(0) =

Example 3: For the Family ontology in Figure 1, the
structural metrics for the acyclic relations are as follows.
For the is-a relation:

ADLN = 3,AWNLN = 15/7, MazDepth = 3, MazWidth = 3.

For the has-a relation:
ADLN =2, AWNLN = 1, MaxDepth = 2, MaxWidth = 1. O

e Coupling Metrics

An ontology may refer to concepts defined in other
ontologies through attributes and relations. This means that
the ontologies are coupled together.

Definition 7: (Coupling Metrics)

We define the following coupling metrics.

1) Number of External References through Attributes:

NERA(O) = Z I[{p € A%l :c— ,c is externall}||.
ceC
2) Number of External References through Relations:
NERR(O) = Z [{(e,c') € r|c or ¢ is external}||
rER
3) Ratio of External Concepts:
REC(0) = H{CGCI? is external}H. -
Sizec(O)
Example 4: Suppose that the classes Food, Pet and their
subclasses are defined in another ontology and referenced in

the Family ontology, then the coupling metrics are:
NERA(O)=2, NERR(0O)=0, REC(O)=1/11. O

C. Semantics

Now, we define a set of metrics that measure the extent to
which two ontologies of the same domain are semantically
compatible with each other.

Ontologies not only introduce terminology but also repre-
sent knowledge about the world by specifying a conceptuali-
sation through axioms to constrain the possible interpretation
of the defined terms. It is worth noting that, based on
the concepts, relations and attributes defined directly in an
ontology, further elements can be defined by employing a
formal logic system, which can also be used for reasoning
about the knowledge. For the sake of generality we will
not specify such a logic system but simply assume that
for an ontology O and associated axioms, a certain set of
components can be defined and further statements can be
inferred. In the sequel, we use O F x to denote that x
is definable in ontology O, where = can be a concept, an
attribute, an instance, or a relation.

The semantical completeness of an ontology can therefore
also be measured by the following metrics of derivable
spaces. Similar to Section IV-A, we will assume the ex-
istence of a gold standard ideal ontology 2 of the domain
that contains all concepts, relations, attributes and instances
of the domain.

Definition 8: (Semantic Coverage)

Ontology O’s semantic coverage with regard to ) on
various components is defined as follows.

SCowE(0) = D¢ /Sizec(Q);
SCow(0) = Dy/Sizer();

SCov}(0) = Do /Sizen();
SCow(0) = Dr/Sizer();
SCov*(0) = (Do + Dy + Do + Dg)/Size(Q);

where o — i e o+ L,

Dr= Y |{ael'“|O+c,0Fa},
ceC’

Da= Y [{peA¢0rc 0F o},
cec’

Dr= Y |{(ab)€r'|OF (a,b) €r'}|l. O
r’eR’



Example 5: Let ) be ontology Family again, and let O be
Family with Pet and its subclasses removed. The semantic
coverage of O with respect to (2 is as follows:

SCowE(0) =21/22, SCowP(0)=1, SCov}(0)="17/8,
SCow(0) =1, SCov*?(0) = 49/51. O

A domain ontology is only semantically correct if its re-
lations are, so we need to check whether they are consistent
with the ideal ontology.

Definition 9: (Semantic Compatibility)

Ontology O’s semantic compatibility with regard to €2 on
various components is defined as follows.

1) Ratio of Correct Concepts:

RCC2(0) = [{c G.C | @kl

Sizec(0)

2) Average Ratio of Correct Instances:
S RCIZ(c)

Q _ ceC

ARCIT(0) = Sizec(0)

3) Average Ratio of Correct Attributes:
S>> RCA%(c)
ARCA%(O) =Y

Sizec(O)

4) Average Ratio of Correct Relations:

;RI\{(w,y) Er|Qt (z,y) erl
ARCRY(0) ==

[|1R]|
where for each ¢ € C,

0 1, if I°=10
RCI*(c) =1 ||{acI® | QFacI®}]|

e , fIC#D

CA%(c) i A=
R Cc) = c c

[{peA H‘ASEELPGA }H} ’Lf AcC ?é @

O
Example 6: Let €) be the Family ontology, O is obtained
from Family by adding a class Profession, an attribute
occupation to class Person with Profession as its codomain.
Then, ontology O’s semantic compatibility w.r.t. £ are:
RCC%(0) = 22/23, ARCI®(0) =1,
ARCA®(0) = 206/207, ARCR%(0) = 1. O

An ontology may contain concepts, instances, attributes
and relations that are redundant. Here, an element in an
ontology is redundant if it can be defined or derived from
other elements of the ontology. More formally, redundancy
can be defined as follows.

Definition 10: (Redundant Elements in Ontology)

1) A subset C’ C C of concepts is redundant, if

Vee C'. ((C—-C',I,A,R)Fc).

2) A subset I' = {I'® C I°lc € C} of instances is
redundant, if

Va el ceC. ((C,I-1'A,R)Fa€cl.

3) A subset A’ = {A’® C A°|c € C} of attributes is
redundant, if

Vo€ A% ceC.((C,I,A— A" R)F o € A°).

4) Let R' = {r},---,r}}, where for each r, € R, 1} C
r;. The collection of relations R’ is redundant, if
V(c,d') erj,ie{l,--,k}. (O'F (c,c) €ms).

where O’ = (C,I,A,R—R’). O
The metrics of semantic redundancy of an ontology can
be defined as follows. Note that, for a set of concepts there
may be many different subsets of redundant concepts. The

same is true for instances, attributes and relations.
Definition 11: (Redundancy Metrics)

1) Concept Redundancy:
CR(O) = ||CRl|/Sizec(0),

where C'i is the largest set of redundant concepts of
0.
2) Instance Redundancy:
IR(0) =) _ [[I}l|/Size1(0),
ceC
where Ip = {I%|c € C} is the largest collection of
redundant instances of O.
3) Attribute Redundancy:
AR(0) = ) ||Agll/Sizea(0),
ceC
where Ar = {A%|c € C} is the largest collection of
redundant attributes of O.
4) Relation Redundancy:
RR(O) = Y |Ir'[|/Sizer(0),
r’eR’
where R’ is the largest collection of redundant rela-
tions of O. O

Example 7: Suppose we add an attribute Age for the class
Person in the ontology Family. Then the redundancy metrics
are as follows.

CR=0, IR=0,

AR(O)=1/9, RR(O)=0.

This is because Age can be derived from the attribute
Date of Birth. O

D. Context

In computer science and information technology, ontolo-
gies are used to support certain computation and information
processing tasks. A key question to be answered when
evaluating an ontology is whether it is easy to use for these
tasks. In this paper, we focus on service-oriented computing
and ask whether an ontology is a good basis for describing
the semantics of services.

Assume that a web service S provides m operations
Op1, - -+, Op,, and stores s, -+, s; types of internal data.
We write Op; : (i1, Tin,) — (Yi1, " Yik) tO
denote that operation Op; takes a service request containing



parameters (x;1,--- ,%;n,) and responses with a message
containing parameters (y; 1, - ,Yik, ). An ontological de-
scription of the semantics of such a web service consists of
the following expressions:
e Expop, that describes the functionality of the service
operation Op;, where : = 1,---  'm;
o Exp,, , that defines the meaning of the parameter z; ;
in the service request, where j = 1,---  n;;
o Exp,, . that describes the meaning of the parameter
Yi,; in service response, where j = 1,--- , k;;
e Exp,, that describes the meaning of the internal state
of the service, where i = 1,--- ,1[.

Ideally, these expressions should be statements in the
application domain ontology. A good domain ontology will
enable these expressions to be simple, but in a badly-
designed domain ontology they might be complicated, or
even impossible to formulate. We start with metrics to
measure the definability of a service semantics.

Definition 12: (Definability of Service Semantics)

The definability of the state of a web service S, denoted
by DState®(0), is defined as follows.

DStateS (0) = 14/1,

)

where [, is the number of state components that are definable
in O.

For each operation Op; (Ti1y s Tim,) —
(Yi1s- -+ »Yik) provided by the service, the definability of
the operation in O, denoted by DFun®?:(0), is defined as
follows.

DFun®?i(0) = NDoy/(n; + k; + 1),

where NDo, = nqg+kq+ Opg, nq and kg are the numbers
of request parameters and response parameters definable in
O, respectively. Opg = 1, if the functionality of the operation
is definable in O; otherwise, Opy = 0.

The definability of the service system .S in ontology O,
denoted by DServ®(0), is defined as follows.

DServ® (0) = DState®(0) x Z DFun®Pi (0)/m. m]

=1

Better metrics of definability of a service in an ontol-
ogy should take into consideration the complexity of the
semantic descriptions. Here we use the following simple
complexity metrics of expressions.

Let Exp be an expression that uses the vocabulary defined
in O and also logic operators, qualifiers and data opera-
tors. The complexity of the expression Exp, denoted by
Cmplz(Exp), is defined as follows.

Cmplz(Exzp) = NOP + NV,

where NOP is the number of occurrences of logic and
data operators in the expression, and NV is the number
of occurrences of vocabulary defined in ontology O in the
expression.

Definition 13: (Complexity of Semantic Description)
The Complexity of Semantic Description of the State of
Service S in O is defined as follows.

1
CState® (0) = Z Cmplx(Exps,).
=1
The Complexity of Semantic Description of the func-
tionality of operation Op; of Service S in O, denoted
CFun©P:(0), is a metric defined as follows.
CFun®Pi(0) = Cmplx(Expoyp,)
ng ki
+ Z Cmplx(Empzi,j) + Z Cmplm(E:):pyiyj)
j=1 j=1
The Complexity of Semantic Description of Service S in
O, denoted by C'Serv®(0), is a metric defined as follows.

CServ®(0) = CState®(0) + »  CFun®?i(0). O

i=1
Example 8: Consider a web service that provides services
for registering personal information and answers queries
about family relationships between persons etc. It contains a
database of personal information, which is the internal state
of the system. The service operations provided are:
Register : (n : String, f,m : Person,d : Date) — (id : Nat)
QueryParents : (id : Nat) — (f,m : Person)

Table I gives the semantic descriptions of the service and
the complexity measures. O

Table I
EXAMPLE: SEMANTICS DESCRIPTION
Op / Param Semantics Description Comp
State List of Person 2
n Name of the Person 2
d Date of Birth of the Person 2
f Father of the Person 2
m Mother of the Person 2
id NI Number of the Person 2
Register Add the Person into the List of Person 2
f, m are in List of Person.
QueryParents | f and m are the Father and Mother of 2
the Person.
The Person’s NI number is id.
CFunRegister 12
CFunQue'ryParents 8
CServ 22

We have implemented the metrics defined in this paper as
a part of our formal engineering environment of services.

V. CASE STUDY

This section reports a case study on real world examples
of web services.

The purpose of the case study is to assess the quality
of the ontology generated from formal specification of web
services. The subjects of the case study are 3 different web
services of weather information. They are referred to as WS1
[26] , WS2 [27] and WS3 [28] respectively in the sequel. One
weather ontology [29] is used as the gold standard (GS) of
the domain knowledge.



Table II
NUMBER OF UNITS IN SPECIFICATIONS OF Weather Services

Package WS1 | WS2 | WS3

Definition of Weather Entities 12 14 12

Definition of External Entities 3 6 2

Definition of Operations 5 10 3
Table III

S1ZES OF THE ONTOLOGY MODULES

Ontology Module | #Cls | #Insts | #Attrs | #Rels
GS 14 11 17 10

Domain WS1 12 2 26 13
WS2 13 72 31 11
WS3 12 9 28 11
WS1 8 0 6 18

Op WS2 19 0 28 35
WS3 5 0 6 9

A. Specifications and Ontologies of Web Services

These three weather information web services are for-
mally specified in SOFIA. A SOFIA specification consists
of a collection of specification units. Each unit specifies one
concept of the real world or a type of software entity. This
enables the specification structure to reflect the structure of
software systems and also the conceptual structure of real
world. Units closely related to each other are encapsulated
into a package. The specification of each weather web ser-
vice consists of three packages. The first contains units that
specify the structure and semantics of various application
domain related entities and concepts, i.e. concepts related
to weather. The second is for external entities and concepts,
such as location, city etc. The third is for specifying the
operations of the services, including the valid requests and
responses of service operations as well as the semantics of
the operations. The numbers of specification units in the
specifications are shown in Table II.

Using the TrS20 tool [14], we transformed specifications
of the web services into ontologies. Each package transforms
into an ontology module. We focus on the weather and
service operation modules of ontologies in our case study.
Table III gives the sizes of these ontology modules, where
#Cls, #Insts, #Attrs and #Rels are the numbers of classes,
instances, attributes and relations, respectively.

The ontologies generated from specifications are then
analysed for syntactic matching and semantic definability
before metrics are applied. Table IV gives the comparison
of classes between GS and WSI, where Point and Spatial
Thing are external classes that are referred to in the weather
domain ontology.

B. Results of Evaluation

The metrics defined in Section IV are applied to the
ontologies through using our implementation of the metrics.
The results are given in Table V.

In Table V, the second column is the metrics used to
evaluate the quality factors given in the first column. The
data in columns of WS/, WS2 and WS3 are the values of the
ontology on the metrics given in the second column.

It is worth noting that the metrics produce quantitative
values in different ranges. For example, the metrics for
measuring completeness and conciseness produce relative
values, but some metrics for structuredness and usability
produce absolute values. To make the results of measure-
ment on various metrics clearly indicate the quality of the
ontology on the specific quality attributes and factors, we
employ the subrange technique of data normalisation, which
is widely used in software quality evaluation. In particular,
for each metric, we divide the range into 5 subranges so
that a value in the subrange 1 means poorest quality on the
specific attribute and factor as measured by the metric, while
a value in the subrange 5 indicates a best possible quality.
Table VI gives the details of the mapping from metrics’
values to the subranges.

Figure 4 shows the result of evaluation of three ontologies
after the metrics are normalised. Figure 5 compares three on-
tologies using the average normalised scores of the metrics
on each quality attributes. As shown in Figure 5, WS2 gets
the highest completeness and WSI gets the highest score
for well structuredness. It is apparent that all of these three
ontologies scored very well on conciseness, structuredness
and usability. The weakest aspect of quality for all three
ontologies is on the completeness. This is because the web
services in the case study do not use all knowledge about
weather contained in the gold standard ontology. An overall
conclusion that can be drawn from the evaluation is that
the quality of these ontologies generated from the algebraic
specifications is high. This demonstrates that the transfor-
mation of formal specification into ontological semantic
descriptions of web services is both feasible and practically
useable.

VI. CONCLUSION

The main contributions of the paper are as follows.
First, we proposed a framework for evaluation of the
quality of ontologies on four quality attributes, which is

Table IV
COMPARISON OF CLASSES BETWEEN GS AND WS1

Classes No.
Wind, Dew Point Temperature, Cloud 8

Class Types
Defined both in GS

and WS1 Cover, Weather State, Humidity,
Atmospheric Pressure, Temperature,
Point
Defined in GS and | Weather Phenomenon 1
derivable from WS1
Defined in GS but | Air Pollution, Precipitation, Solar Irra- 5
not in WS diance, Weather Condition, SpatialTh-
ing

Defined in WS1 but
not in GS

Visibility, Speed, Direction, TEMUnit 4




Table V
EVALUATION OF THE Weather ONTOLOGIES
Quality Factor Metric WS1 | WS2 | WS3
Vocabulary Cov 0.57 | 057 | 043
Coverage C’ovsl2 0 0.64 0
Cov} 0.65 | 0.59 | 0.29
C ov% 0 0 0
Cov'’ 0.37 | 048 | 0.21
Semantic SCovZ [ 0.64 | 0.64 [ 043
Coverage SCov¥ 0 0.64 0
SCov} 0.65 | 0.59 | 0.29
SCov’ 0.5 0.5 0
SCov’ [ 048 | 0.6 [ 021
Semantic RCCT ] 069 [ 064 | 05
Compatibility ARCT? | 092 | 0.86 | 0.83
ARCAY ] 053 | 047 | 023
ARCR™ ] 026 | 029 0
Redundancy CR 0 0 0
IR 0 0 0
AR 0 0 0
RR 1 1 1
Relation-Based NRN 1 2 2
Cohesion NLN 9 9 9
MaxSPL 3 3 3
NIC 0 0 0
TNRNR 13 11 14
ANRNR 13.0 5.5 7.0
Acyclic ADLN 256 | 2.33 | 2.89
Cohesion AWNLN 2.6 2.75 2.0
MaxDepth 3 3 3
MaxWidth 8 7 4
Coupling NERA 0 0 0
NERR 1 0 0
REC 0.08 0 0
Definability DState 1 1 1
DFun 1 1 1
DServ 1 1 1
Description CState 2 4 1
Complexity CFun 12 24 6
CServ 14 28 7
5
4
3
mWS1
2 ws2
1
0 L
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Figure 4. Normalised Metric Scores of the Ontologies

decomposed into eight factors and measured by a set of
thirty seven metrics. All the metrics are implemented as
a part of our formal engineering environment for service
oriented computing. The framework has the following three
distinctive features.

1) Objectiveness: The evaluation is completely based on

Table VI
MAPPING FROM METRICS VALUES TO SUBRANGES

. Subranges
Metric i 5 3 7 3
Cov [0,0.2] | (0.2,04] | (0.4,0.6] | (0.6,0.8] | (0.8,1]
SCov [0,0.2] | (0.2,04] | (0.4,0.6] | (0.6,0.8] | (0.8,1]
RCC [0,0.2] | (0.2,04] | (0.4,0.6] | (0.6,0.8] | (0.8,1]

ARCI [0,0.2] | (0.2,04] | (0.4,0.6] | (0.6,0.8] | (0.8,1]

ARCA [0,0.2] | (0.2,04] | (0.4,0.6] | (0.6,0.8] | (0.8,1]

ARCR [0,0.2] | (0.2,04] | (0.4,0.6] | (0.6,0.8] | (0.8,1]

CR (0.8,1] | (0.6,0.8] | (0.4,0.6] | (0.2,0.4] | [0,0.2]
IR (0.8,1] | (0.6,0.8] | (0.4,0.6] | (0.2,0.4] | [0,0.2]
AR (0.8,1] | (0.6,0.8] | (0.4,0.6] | (0.2,0.4] | [0,0.2]
RR (0.8,1] | (0.6,0.8] | (0.4,0.6] | (0.2,0.4] | [0,0.2]
MaxSPL >8 (6,8] (4,6] (2,4] [1,2]
NIC >3 3 2 1 0
ANRNR [1,3] (3,5] (5,8] (8,12] >12
ADLN >8 (6,8] (4,6] (2,4] [1,2]
AWNLN >8 (6,8] (4,6] (2,4] [1,2]
REC (0.8,1] | (0.6,0.8] | (0.4,0.6] | (0.2,0.4] | [0,0.2]
DServ [0,0.2] | (0.2,04] | (0.4,0.6] | (0.6,0.8] | (0.8,1]
CServ >80 (60,80] (40,60] (20,40] [2,20]

2)

3)
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Figure 5. Comparison of Ontologies on Quality Attributes

objective metrics. Many of the metrics are novel, such
as those that compare an ontology against a gold
standard ontology and those about the semantics of
ontology.

Language Independence: Our metrics are defined
based on a abstract general model of ontologies rather
than on the concrete syntax of any specific ontology
definition language. These metrics cover all variable
aspects of ontology that are not related to the syntax
and representation of the ontology. They are therefore
generally applicable.

Usage Orientation: We developed a set of new metrics
for the evaluation of ontologies in its usage context of
describing the semantics of web service. They have
been successfully applied in the evaluation of the web
services in our case study.

Secondly, we have conducted a case study with the pro-

posed framework on 3 real-world examples. The case study
demonstrated that ontologies obtained from the transforma-
tion of algebraic specifications are of satisfactory quality.



Thus, for the first time we have proved the feasibility and
effectiveness of the transformation from algebraic specifica-
tions to ontological descriptions of services. Therefore, the
gap between formal methods and ontological approaches to
semantic description of web services can be bridged.

The work reported in this paper is a part of our long term
research agenda on formal engineering of service oriented
systems. The evaluation framework and the implementation
of the metrics reported in this paper is a part of our formal
service engineering environment. It serves as a means of
automated evaluation of the quality of the specification and
design of web services. We are conducting more empirical
studies for the identification of more quality attributes and
factors, and metrics as well. Another possible avenue for
future work is to check the consistency of specification using
both ontological reasoning and equational logic inferences.
This will further reduce the need for human interaction in
the evaluation of ontologies.
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