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Abstract 

Traditional checkpointing techniques are facing a 
grave challenge when applied to multi-tenancy soft-
ware-as-a-service (SaaS) systems due to the huge scale 
of the system state and the diversity of users’ require-
ments on the quality of services. This paper proposes 
the notion of tenant level checkpointing and an algo-
rithm that exploits Big Data techniques to checkpoint 
tenant’s meta-data, which are widely used in configur-
ing SaaS for tenant-specific features. The paper pre-
sents a prototype implementation of the proposed tech-
nique using NoSQL database Couchbase and reports 
the experiments that compare it with traditional im-
plementation of checkpointing using file systems. Ex-
periments show that the Big Data approach has a sig-
nificantly lower latency in comparison with the tradi-
tional approach.  
Keywords -- Cloud Computing; Software-as-a-Service; 
Multi-tenancy; Meta-data; Checkpointing; Fault Toler-
ance; NoSQL database; Big Data.  

1 Introduction 
In two recent incidents of outage, the Salesforce’s mul-
ti-tenancy software-as-a-service (SaaS) system took 
more than 10 hours to recover [1, 2]. Salesforce, one of 
the world leading SaaS providers, was widely criti-
cized for the lost of services to its tens of thousands of 
tenants during the outages. This flags a signal that tra-
ditional checkpointing techniques [3,4,5,6,7,8] are fac-
ing a grave challenge. SaaS does not only require 
checkpointing to be capable of dealing with a huge 
volume of data with minimal disturbances of the ser-
vices to a huge number of tenants, but also capable of 
recovering swiftly from failures. These issues motivate 
the need for a new solution.  

In this paper, we propose a novel checkpointing 
technique called a tenant level checkpointing. The 
basic idea is to extract and save the data that belong to 
a specific tenant for each invocation of the checkpoint-
ing operation. Its main advantage is that each check-
pointing operation can be done at an appropriate time 
that has minimal effect on the whole system’s perfor-
mance. The whole system’s state can be saved through 
a number of invocations of checkpointing operations, 

for example, in a tenant-by-tenant way. Another ad-
vantage of the proposed approach is that frequency of 
checkpointing can be tailored (and varied) according to 
the tenant’s requirements on reliability and quality of 
services. Moreover, after a system outage, the rollback 
can also be preformed gradually in a tenant-by-tenant 
way so that the total time of system outage can be 
shortened and critical tenants be restarted sooner with 
minimal loss of services. In the case of system’s partial 
failure, rollback can also be performed via restarting 
only the affected tenants.  

 The second basic idea of the proposed approach is 
to employ Big Data technology in the implementation 
of checkpointing operations. This further reduces the 
time latency and other overheads by taking the ad-
vantages of parallel processing power of cloud infra-
structure and the distribution of checkpoint data over a 
cluster of servers.  

The remainder of the paper is organized as follows. 
Section 2 briefly reviews the architectures of multi-
tenant SaaS. Section 3 outlines our proposal. Section 4 
reports the implementation of a prototype and the re-
sults of some preliminary experiments. Section 5 con-
cludes the paper with a comparison with related work 
and a discussion of future work.  

2 SaaS Architectures  
Multiple tenant SaaS can generally be provided in one 
of two types of architectures [9]: multi-instance archi-
tecture and single-instance architecture. The former 
employs virtual machine to install multiple instances of 
the software so that each tenant is served by one in-
stance. In contrast, the later only runs one instance of 
the software on the servers and deliver the services to 
all tenants. Thus, it is called multi-tenancy architec-
ture.  

It is widely accepted in industry that the multi-
tenancy architecture has advantages in terms of cost 
reduction, scalability, maintainability, and usability 
over multi-instance approach [10]. A number of vari-
ants of multi-tenancy SaaS architectures have been 
developed; see [9] for a survey.  

In general, as shown in Figure 1, the multi-tenancy 
architecture consists of two data storage/processing 
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components [11]: one uses traditional relational data-
base for structured data, and the other uses NoSQL 
database for semi-structured or unstructured data. 
There is often an ETL engine that extracts, transforms 
and loads data between them [12].  

 
Figure 1. A General Model of SaaS Architectures 

A common characteristic of multi-tenancy architec-
tures is that tenant-specific features and customer con-
figurations of the software are specified via meta-data, 
which are interpreted by a runtime engine [13, 14, 15]. 
Meta-data are mostly unstructured, thus, usually stored 
in a NoSQL database. They have the following fea-
tures.  
• Large volume.  For example, it is estimated that 

there are tens of GBs in one of Google file system 
clusters [18]. Salesforce uses terabytes of storage 
space to store its metadata in thousands of caching 
servers distributed around the world [16, 17].  

• Small proportion. Meta-data is usually only a 
small proportion of all data on a cloud. For exam-
ple, meta-data occupy only about 1% of all data in 
Google file system [18]. 

• High demand. Meta-data is usually highly ac-
cessed by the users. For example, an analysis of 
Unix file system has reported that 50% - 80% of 
all file system accesses are to meta-data [19]. 
Therefore, in practice, meta-data are often cached 
in memory to deliver sub-millisecond random 
reads, with high-throughput writes.  

• Separable ownership. Meta-data mostly belong to 
different tenants. The existing cloud systems and 
SaaS applications, such as Salesforce, support the 
identification of the ownership for each piece of 
meta-data for security reasons [17].  

Meta-data plays a crucial role in the operation of 

SaaS applications. It is desirable to ensure the integrity 
of meta-data by employing a reliable and efficient fault 
tolerant technique. Currently, cloud service providers 
do take meta-data fault tolerance into serious consider-
ation. However, the current practice is unsatisfactory.  

3 The Proposed Approach 
3.1 Architecture  
Figure 2 shows the architecture of the proposed ap-
proach. It extends the generalized SaaS architecture 
shown in Figure 1 and is comprised of the following 
components.  

 
Figure 2. Multi-Tenancy Checkpointing System Structure 

• Operation Manager. The manager is responsible 
for the invocation of checkpointing and recovery oper-
ations. It manages the partial state checkpoint data and 
communicates with the SaaS application to obtain sys-
tem operation state; e.g., whether a tenant is active or 
inactive, whether the system is busy or lightly loaded, 
etc. It uses such information to decide when to check-
point a particular tenant according to a timing strategy 
and a tenant selection policy. It then invokes the 
checkpointing operator to create checkpoints and to 
store them in the system. It also updates the records of 
Checkpoint Database. It will also decide when to re-
move a checkpoint from the system according to the 
duplication strategy. When required, it invokes the 
rollback operator and uses the checkpoint data to roll-
back the system’s state to the previous state saved in 
the checkpoints. It will use the Checkpoint Database to 
retrieve the information about checkpoint data and to 
decide on the sequence of rollback operations using a 
Rollback strategy.  
• Checkpointing Operator. It creates various types of 
partial state checkpoints. The input parameters of the 
operator include:  
(a) the owner of the checkpoint data, such as the ten-

ant ID or the system; 
(b) the type of the checkpoint data, such as structured 

data, unstructured data, meta-data, etc. 
• Rollback Operator. It recovers the system by re-
loading a set of checkpoint data back to the system.  
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• Checkpoint Data Operator. It provides a set of op-
erations on checkpoint data, such as:  
(a) deleting a checkpoint data from the system when it 

is out of date because new checkpoint data be-
comes available; 

(b) relocating a checkpointing data from one place to 
another.  

• Checkpointing Database. It is a database that stores 
information about checkpoint data. Typically, it keeps 
the following information about checkpoints:  
(a) the timestamp of the creation of the checkpoint; 
(b) the type of checkpoint, such as meta-data check-

point, or user data checkpoint, or system data 
checkpoint, etc.;  

(c) the owner of the checkpoint, i.e. the tenant ID; 
(d) the location where the checkpoint data is stored; 
(e) the size of the checkpoint data,  
(f) the health state of the checkpoint data, etc.  

In the next subsections, we give further details of 
the checkpointing operator. Due to the space limitation, 
details of other components are omitted.  

3.2 The Checkpointing Algorithm 
The checkpointing process consists of two stages. 
• Collecting Data  
During this stage, a collection of relevant data that rep-
resents a partial view of the system/application’s state 
is collected from the cloud cluster. Such a partial view 
is characterized by a set of data selection criteria, 
which include the identifiers of checkpointed tenant(s), 
the type of data (such as meta-data), the time inter-
val(s), etc.  
• Saving Data 
In this stage, the checkpoint data retrieved in the col-
lecting stage are divided into a number of units and 
then stored. There are a number of different ways that 
these checkpoint data can be stored. In particular, the 
following two alternative ways are applicable.  
− A checkpoint can be stored in a specific file system 

on a dedicated server in the same way as in the tradi-
tional disk-based checkpointing.  

− A checkpoint can be saved back to the cloud cluster, 
but on different machines. This is similar to the disk-
less checkpointing techniques.  

In both cases, the location information of the saved 
data will be stored together with the view description 
and maintained by the manager. It is used in the roll-
back operation.  

Figure 3 describes the main steps of the algorithm. 
CPID is the checkpoint identifier, which consists of the 
tenant ID and the timestamp of the checkpointing op-
eration to provide a unique ID for the checkpoint data. 
The Map function is executed on all servers to collect 
the kind of checkpoint data for the tenant whose identi-

fier is TenantID. Here, the kind can be either meta-data 
or normal data. The collected checkpoint data CPData 
are in Result, which is split into a number of blocks. 
The block size is predetermined. Each block has a 
unique sequence number SeqNum so that it can be re-
assembled when needed for rollback. Each block is 
saved through the Save function either to a file on a 
dedicated server or distributed back to the cloud 
through a NoSQL database. The Save function also 
inserts to the checkpoint database CPDB a record that 
consists of the checkpoint identifier CPID, the block 
sequence number SeqNum and the location where the 
block is saved in. These records are used when check-
point data is used in rollback or deleted when it be-
comes outdated. After the checkpointing operation is 
completed, a record of this operation is also added into 
the checkpoint database CPDB by invoking the In-
sertCPDB function.  
Algorithm Checkpointing 
Input TenantID: Int;  
      Kind: {Meta-Data, Data}; 
Begin 
 Setup connection; 
 CPID = <TimeStamp, TenantID>; 
  Result = Map(TenantID, Kind);  
 SeqNum = 0; j = 0; CPData = nil; 
  For i=0 to Length(Result)-1 do 
  { CPData = CPData+Result[i]; 
    j++; 
      If j == BlockSize then  
     {Save(CPID, SeqNum, CPData); 
          CPData=nil; j=0; SeqNum++; 
    }; 
 If CPData <> nil then  
  {Save(CPID, SeqNum, CPData); SeqNum++}; 
  Close connection; 
 InsertCPDB(CPID, SeqNum); 
End algorithm  
Figure 3. Checkpointing algorithm 

3.3 Prototype Implementation 
We have implemented the checkpointing algorithm in a 
prototype system called Tench, which stands for Ten-
ant level Checkpointing. It is developed using Eclipse 
3.7.2 with Couchbase Java SDK library.  

Tench checkpoints tenant’s meta-data stored in the 
NoSQL database Couchbase Server 2.1.1(1). It is con-
figured to offer a caching layer to store the documents 
contents as keys and values by using Membase as a 
cache storage layer. Queries in Couchbase are stored in 
views that can be called to get the required results. 
While Couchbase can be configured to store a number 
of replicas for every bucket, here we choose to have 
only one replica per bucket in the experiment. 
    The prototype system is deployed and executed on a 
small cluster of PC computers running on Linux Ub-
untu 12.4 that consists of 8 machines connected via 

                                                             
(1) http://www.couchbase.com/ 



Ethernet. Two of the compute nodes have Intel i5 
2.67GHz processors, and the other ones have Intel 
Core 2 Duo 3.0GHz processors. All of the computers 
have 4GB memory.  

4 Experiments 
We have conducted preliminary experiments with the 
prototype system Tench. Given the importance of me-
ta-data in multi-tenancy SaaS applications, the experi-
ments focused on checkpointing meta-data. This sec-
tion reports the results of the experiments.  

4.1 Design of the Experiments  
The experiments are designed to demonstrate the feasi-
bility of tenant level checkpointing and to find out 
whether using NoSQL database for saving checkpoint 
data is more efficient than traditional disk-based 
checkpointing (with dedicated checkpoint file server). 
We conducted experiments on the following research 
questions.  
1) How does checkpoint latency vary with the size of 

checkpoint data? 
2) How does the number of tenants affect checkpoint 

latency? 
Here, the latency of a checkpointing operation is the 
total time elapsed from the start of collecting check-
point data to the finish of saving the data.  

To answer the above research questions, the follow-
ing two experiments were conducted.  
− Experiment 1. In this experiment, the checkpointing 

operation was applied to system states where the 
size of the checkpoint data of a tenant varies from 
10,000 records to 1,000,000 records, where each 
record is a JSON document. Each step increases the 
size by 10,000 records. Each record is of 128 bytes.  

− Experiment 2. In this experiment, the size of data to 
be checkpointed is fixed, but the number of tenants 
in the system varies.   

For each of these two experiments, a NoSQL data-
base (Couchbase) is populated with random data of 
JSON documents of the following class.  
Class Tenant { 
 int Tenant_id;  -- Tenant Identifier. 
 String DataFormat;  
 String DateFormat;  
 String phone_number;} 
The following is a typical example of randomly gener-
ated instance of the class Tenant.  
{"Tenant_id": 0, 
 "DataFormat": "lTTCUBXFDz0tG23MYI53", 
 "DateFormat": "0nupP5ivm6kDECfU4Eos", 
 "phone_number": "+49-85-176-771-15"} 

Collecting checkpoint data for a tenant is performed 
by applying a map function to all records in the data-
base. A map function is called a “view” in Couchbase’s 
terminology. The following is the view for checkpoint-

ing the meta-data for the tenant whose Tenant_id is x.  
View_Tenant_id (x) { 
   if(doc.Tenant_id == x) {emit(doc)} 
} 
where the meat-data are instances of the class Tenant 
and they are contained in doc.   

Note that, for different parameters of the check-
pointing operator, different views are used to collect 
the data or meta-data.  

4.2 Experimental Results 

• Latency of different checkpoint sizes 
As shown in Figure 4, for disk-based approach, the 
checkpointing latency increases linearly with the in-
crease of the size of checkpoint data.  

 
Figure 4. Latency of Disk-Based Checkpointing 

A similar observation is made in the experiments 
with NoSQL database based checkpointing (see Figure 
5). In both approaches, the latency increases in a linear 
way with the increase in number of records.  

 
Figure 5. Latency of NoSQL Based Checkpointing  

However, the latency of saving checkpoint data to 
the Couchbase NoSQL database is much smaller than 
saving checkpoint data to a file as shown in Figure 8. 
The main reason for this is that NoSQL databases 
(such as Couchbase), use a multiple-level memory 
cache system to store data, as shown in Figure 6. In 
this structure, most recently accessed or created data 
are saved in memory space. It is then written to hard 
disks. Therefore, checkpoint data is first saved into 
memories of the computers in the cluster, thus the 
checkpointing operation finishes much faster than di-
rectly saving them to a file. In such a situation, using 
NoSQL database to save checkpoint data is similar to 
diskless checkpointing. Thus, we say that NoSQL da-
tabase based approach is diskless-like.  
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Figure 6. Multiple level cache structure of NoSQL databases  

The above explanation is supported by the experi-
ment data. Figure 7 and Figure 8 show the time spent 
on collecting data and saving data in each checkpoint-
ing for two approaches, respectively. It shows that sav-
ing checkpointing data to file takes much longer than 
saving to Couchbase.  
• Latency of different numbers of tenants 
Since a SaaS application may have a large number of 
tenants, it is important to understand how the scale of 
SaaS in terms of number of tenants will affect the la-
tency of checkpointing.  

The experiment data shows that the number of ten-
ants has a minimal effect on latency for both disk-
based and diskless-like approaches.  

 
Figure 7 Time Overhead of Disk-Based Checkpointing  

 
Figure 8. Time Overhead of NoSQL Checkpointing  

As shown in Figure 9 andFigure 10, the latency of 
checkpointing varies little with the increase of the 
number of tenants in the system if the total amount of 
data in the system and the amount of data to be check-
pointed remain the same.  

However, in NoSQL database based checkpointing, 
the variation of latency is much larger than file-based 
checkpointing. This is again caused by the multiple-
level cache structure of NoSQL databases.  

 
Figure 9. Latency of Disk-Based Checkpointing  

 
Figure 10. Latency of NoSQL Checkpointing  

5 Conclusion 
This paper proposes the notion of tenant level check-
pointing for SaaS applications. It differs from existing 
levels of checkpointing operations, i.e., at system level 
and at application level. Because each checkpoint data 
is only a partial state of the SaaS application, it pro-
motes a new type of checkpointing techniques, i.e. par-
tial state checkpointing, in contrast to full state check-
point. The traditional incremental checkpointing tech-
niques can then be considered as a special type of par-
tial state checkpointing.  

Tenant level checkpointing has a number of ad-
vantages. First, while a SaaS application is run contin-
uously, tenant level checkpointing can be performed 
targeting a specific tenant when the users of the tenant 
are less active. Thus, checkpoint may cause less dis-
ruption (or blocking) to the normal operation of the 
system.  

Second, tenants with different requirements of the 
quality of service (e.g., varying level of reliability), can 
be treated accordingly by changing the frequency of 
tenant level checkpointing.  

Moreover, cloud applications are often of huge 
scale. It is unrealistic to save the state of the whole 
system within one checkpointing operation. Tenant 
level checkpointing decomposes the checkpointing 
operation and the checkpoint data into a number of 
partial states of much smaller scale. It makes check-
pointing more manageable and practical.   

In the case of system crash, recovery can be per-
formed through tenant-by-tenant rollback so that the 
most important tenants are recovered first. The total 
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outage time of the system can be significantly short-
ened.  

Finally, through partial checkpointing, different 
types of data can be treated differently. The more im-
portant the data is, the more frequent it can be check-
pointed. It is particularly useful for checkpointing the 
meta-data, which plays a crucial role in SaaS applica-
tions in the multi-tenancy architecture.  

In this paper, we also proposed an architecture for 
managing the operations and data of partial check-
pointing and rollback in the context of multi-tenancy 
SaaS architecture. A checkpointing algorithm and a 
prototype implementation are presented. They use a 
NoSQL database to collect and save checkpoint data. 
Experiments are conducted to compare this approach 
with the traditional approach that saves checkpoint data 
in a file system on a dedicated checkpointing server. 
Experimental results show that for both approaches, 
the latency increases linearly with the size of check-
point data, while the number of tenants in the system 
has little impact on latency. However, the NoSQL da-
tabase approach was proved to have a noticeably lower 
latency in comparison to the traditional disk-based ap-
proach. It is due to the multiple level cache storage 
structure used by NoSQL databases. Thus, the NoSQL 
database approach demonstrates a diskless-like dynam-
ic behavior and performance. Moreover, NoSQL data-
bases like Couchbase have utilized parallel processing 
power of cloud cluster by employing MapReduce in 
processing database queries and updates. They are ca-
pable of dealing with large-scale checkpoint data, thus 
more suitable for cloud applications, especially for 
checkpointing meta-data.  

We are further improving the performance of the 
checkpointing operations by (1) combining partial 
checkpointing with other techniques, such as compres-
sion and incremental checkpointing; (2) utilizing the 
parallel processing power of MapReduce to collect and 
save checkpoint data.  

We are also investigating the policies and tech-
niques for deciding when to checkpoint the data and 
meta-data of a tenant with minimal disruption to sys-
tem performance. Another future work is to study the 
policy and technique for efficient rollback so that the 
system can be recovered from failure rapidly.  
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