
Tenant Level Checkpointing of Meta-Data for Multi-Tenancy SaaS

Basel Yousef, Hong Zhu and Muhammad Younas
Department of Computing and Communication Technologies

Oxford Brookes University, Oxford, OX33 1HX, UK
Email:{basel.yousef-2011, hzhu, m.younas}@brookes.ac.uk

Abstract

Traditional checkpointing techniques are facing a
grave challenge when applied to multi-tenancy soft-
ware-as-a-service (SaaS) systems due to the huge scale
of the system state and the diversity of users’ require-
ments on the quality of services. This paper proposes
the notion of tenant level checkpointing and an algo-
rithm that exploits Big Data techniques to checkpoint
tenant’s meta-data, which are widely used in configur-
ing SaaS for tenant-specific features. The paper pre-
sents a prototype implementation of the proposed tech-
nique using NoSQL database Couchbase and reports
the experiments that compare it with traditional im-
plementation of checkpointing using file systems. Ex-
periments show that the Big Data approach has a sig-
nificantly lower latency in comparison with the tradi-
tional approach.
Keywords -- Cloud Computing; Software-as-a-Service;
Multi-tenancy; Meta-data; Checkpointing; Fault Toler-
ance; NoSQL database; Big Data.

1 Introduction
In two recent incidents of outage, the Salesforce’s mul-
ti-tenancy software-as-a-service (SaaS) system took
more than 10 hours to recover [1, 2]. Salesforce, one of
the world leading SaaS providers, was widely criti-
cized for the lost of services to its tens of thousands of
tenants during the outages. This flags a signal that tra-
ditional checkpointing techniques [3,4,5,6,7,8] are fac-
ing a grave challenge. SaaS does not only require
checkpointing to be capable of dealing with a huge
volume of data with minimal disturbances of the ser-
vices to a huge number of tenants, but also capable of
recovering swiftly from failures. These issues motivate
the need for a new solution.

In this paper, we propose a novel checkpointing
technique called a tenant level checkpointing. The
basic idea is to extract and save the data that belong to
a specific tenant for each invocation of the checkpoint-
ing operation. Its main advantage is that each check-
pointing operation can be done at an appropriate time
that has minimal effect on the whole system’s perfor-
mance. The whole system’s state can be saved through
a number of invocations of checkpointing operations,

for example, in a tenant-by-tenant way. Another ad-
vantage of the proposed approach is that frequency of
checkpointing can be tailored (and varied) according to
the tenant’s requirements on reliability and quality of
services. Moreover, after a system outage, the rollback
can also be preformed gradually in a tenant-by-tenant
way so that the total time of system outage can be
shortened and critical tenants be restarted sooner with
minimal loss of services. In the case of system’s partial
failure, rollback can also be performed via restarting
only the affected tenants.

 The second basic idea of the proposed approach is
to employ Big Data technology in the implementation
of checkpointing operations. This further reduces the
time latency and other overheads by taking the ad-
vantages of parallel processing power of cloud infra-
structure and the distribution of checkpoint data over a
cluster of servers.

The remainder of the paper is organized as follows.
Section 2 briefly reviews the architectures of multi-
tenant SaaS. Section 3 outlines our proposal. Section 4
reports the implementation of a prototype and the re-
sults of some preliminary experiments. Section 5 con-
cludes the paper with a comparison with related work
and a discussion of future work.

2 SaaS Architectures
Multiple tenant SaaS can generally be provided in one
of two types of architectures [9]: multi-instance archi-
tecture and single-instance architecture. The former
employs virtual machine to install multiple instances of
the software so that each tenant is served by one in-
stance. In contrast, the later only runs one instance of
the software on the servers and deliver the services to
all tenants. Thus, it is called multi-tenancy architec-
ture.

It is widely accepted in industry that the multi-
tenancy architecture has advantages in terms of cost
reduction, scalability, maintainability, and usability
over multi-instance approach [10]. A number of vari-
ants of multi-tenancy SaaS architectures have been
developed; see [9] for a survey.

In general, as shown in Figure 1, the multi-tenancy
architecture consists of two data storage/processing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/326509617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

components [11]: one uses traditional relational data-
base for structured data, and the other uses NoSQL
database for semi-structured or unstructured data.
There is often an ETL engine that extracts, transforms
and loads data between them [12].

Figure 1. A General Model of SaaS Architectures

A common characteristic of multi-tenancy architec-
tures is that tenant-specific features and customer con-
figurations of the software are specified via meta-data,
which are interpreted by a runtime engine [13, 14, 15].
Meta-data are mostly unstructured, thus, usually stored
in a NoSQL database. They have the following fea-
tures.
• Large volume. For example, it is estimated that

there are tens of GBs in one of Google file system
clusters [18]. Salesforce uses terabytes of storage
space to store its metadata in thousands of caching
servers distributed around the world [16, 17].

• Small proportion. Meta-data is usually only a
small proportion of all data on a cloud. For exam-
ple, meta-data occupy only about 1% of all data in
Google file system [18].

• High demand. Meta-data is usually highly ac-
cessed by the users. For example, an analysis of
Unix file system has reported that 50% - 80% of
all file system accesses are to meta-data [19].
Therefore, in practice, meta-data are often cached
in memory to deliver sub-millisecond random
reads, with high-throughput writes.

• Separable ownership. Meta-data mostly belong to
different tenants. The existing cloud systems and
SaaS applications, such as Salesforce, support the
identification of the ownership for each piece of
meta-data for security reasons [17].

Meta-data plays a crucial role in the operation of

SaaS applications. It is desirable to ensure the integrity
of meta-data by employing a reliable and efficient fault
tolerant technique. Currently, cloud service providers
do take meta-data fault tolerance into serious consider-
ation. However, the current practice is unsatisfactory.

3 The Proposed Approach
3.1 Architecture
Figure 2 shows the architecture of the proposed ap-
proach. It extends the generalized SaaS architecture
shown in Figure 1 and is comprised of the following
components.

Figure 2. Multi-Tenancy Checkpointing System Structure

• Operation Manager. The manager is responsible
for the invocation of checkpointing and recovery oper-
ations. It manages the partial state checkpoint data and
communicates with the SaaS application to obtain sys-
tem operation state; e.g., whether a tenant is active or
inactive, whether the system is busy or lightly loaded,
etc. It uses such information to decide when to check-
point a particular tenant according to a timing strategy
and a tenant selection policy. It then invokes the
checkpointing operator to create checkpoints and to
store them in the system. It also updates the records of
Checkpoint Database. It will also decide when to re-
move a checkpoint from the system according to the
duplication strategy. When required, it invokes the
rollback operator and uses the checkpoint data to roll-
back the system’s state to the previous state saved in
the checkpoints. It will use the Checkpoint Database to
retrieve the information about checkpoint data and to
decide on the sequence of rollback operations using a
Rollback strategy.
• Checkpointing Operator. It creates various types of
partial state checkpoints. The input parameters of the
operator include:
(a) the owner of the checkpoint data, such as the ten-

ant ID or the system;
(b) the type of the checkpoint data, such as structured

data, unstructured data, meta-data, etc.
• Rollback Operator. It recovers the system by re-
loading a set of checkpoint data back to the system.

Database'Servers'

NoSQL'Document'Cluster'

Server'1'

Ac7ve'

Doc' Meta'
Data'

Replica'

Doc'

Server'2'

Ac7ve'

Doc'

Replica'

Doc'

Server'n'

Ac7ve'

Doc'

Replica'

Doc'

ETL'

Tenant'1'
App'

Tenant'2'
App'

Tenant'N''
App'

App'Generator'/'
Customiza7on'

Engine'

Tenant'
data'

Applica7on'
data'

Users'
data'

Meta''
data'

Meta'
Data'

Meta'
Data'

Meta'
Data'

Meta'
Data'

Meta'
Data'

Rela%onal(
Database(Servers(

NoSQL((((((((
Database(Servers(

Tenant(1(
App(

Tenant(N((
App(

App(Generator(/(
Customiza%on(

Engine(

Opera%on(Manager(

Checkpoin%ng(
O
perator(

Rollback(
O
perator(

Checkpoint(
Data(O

perators(

Checkpoint(
Database(

Tenant(Level(Checkpoin%ng(Facility(

• Checkpoint Data Operator. It provides a set of op-
erations on checkpoint data, such as:
(a) deleting a checkpoint data from the system when it

is out of date because new checkpoint data be-
comes available;

(b) relocating a checkpointing data from one place to
another.

• Checkpointing Database. It is a database that stores
information about checkpoint data. Typically, it keeps
the following information about checkpoints:
(a) the timestamp of the creation of the checkpoint;
(b) the type of checkpoint, such as meta-data check-

point, or user data checkpoint, or system data
checkpoint, etc.;

(c) the owner of the checkpoint, i.e. the tenant ID;
(d) the location where the checkpoint data is stored;
(e) the size of the checkpoint data,
(f) the health state of the checkpoint data, etc.

In the next subsections, we give further details of
the checkpointing operator. Due to the space limitation,
details of other components are omitted.

3.2 The Checkpointing Algorithm
The checkpointing process consists of two stages.
• Collecting Data
During this stage, a collection of relevant data that rep-
resents a partial view of the system/application’s state
is collected from the cloud cluster. Such a partial view
is characterized by a set of data selection criteria,
which include the identifiers of checkpointed tenant(s),
the type of data (such as meta-data), the time inter-
val(s), etc.
• Saving Data
In this stage, the checkpoint data retrieved in the col-
lecting stage are divided into a number of units and
then stored. There are a number of different ways that
these checkpoint data can be stored. In particular, the
following two alternative ways are applicable.
− A checkpoint can be stored in a specific file system

on a dedicated server in the same way as in the tradi-
tional disk-based checkpointing.

− A checkpoint can be saved back to the cloud cluster,
but on different machines. This is similar to the disk-
less checkpointing techniques.

In both cases, the location information of the saved
data will be stored together with the view description
and maintained by the manager. It is used in the roll-
back operation.

Figure 3 describes the main steps of the algorithm.
CPID is the checkpoint identifier, which consists of the
tenant ID and the timestamp of the checkpointing op-
eration to provide a unique ID for the checkpoint data.
The Map function is executed on all servers to collect
the kind of checkpoint data for the tenant whose identi-

fier is TenantID. Here, the kind can be either meta-data
or normal data. The collected checkpoint data CPData
are in Result, which is split into a number of blocks.
The block size is predetermined. Each block has a
unique sequence number SeqNum so that it can be re-
assembled when needed for rollback. Each block is
saved through the Save function either to a file on a
dedicated server or distributed back to the cloud
through a NoSQL database. The Save function also
inserts to the checkpoint database CPDB a record that
consists of the checkpoint identifier CPID, the block
sequence number SeqNum and the location where the
block is saved in. These records are used when check-
point data is used in rollback or deleted when it be-
comes outdated. After the checkpointing operation is
completed, a record of this operation is also added into
the checkpoint database CPDB by invoking the In-
sertCPDB function.
Algorithm Checkpointing
Input TenantID: Int;
 Kind: {Meta-Data, Data};
Begin
 Setup connection;
 CPID = <TimeStamp, TenantID>;
 Result = Map(TenantID, Kind);
 SeqNum = 0; j = 0; CPData = nil;
 For i=0 to Length(Result)-1 do
 { CPData = CPData+Result[i];
 j++;
 If j == BlockSize then
 {Save(CPID, SeqNum, CPData);
 CPData=nil; j=0; SeqNum++;
 };
 If CPData <> nil then
 {Save(CPID, SeqNum, CPData); SeqNum++};
 Close connection;
 InsertCPDB(CPID, SeqNum);
End algorithm
Figure 3. Checkpointing algorithm

3.3 Prototype Implementation
We have implemented the checkpointing algorithm in a
prototype system called Tench, which stands for Ten-
ant level Checkpointing. It is developed using Eclipse
3.7.2 with Couchbase Java SDK library.

Tench checkpoints tenant’s meta-data stored in the
NoSQL database Couchbase Server 2.1.1(1). It is con-
figured to offer a caching layer to store the documents
contents as keys and values by using Membase as a
cache storage layer. Queries in Couchbase are stored in
views that can be called to get the required results.
While Couchbase can be configured to store a number
of replicas for every bucket, here we choose to have
only one replica per bucket in the experiment.
 The prototype system is deployed and executed on a
small cluster of PC computers running on Linux Ub-
untu 12.4 that consists of 8 machines connected via

(1) http://www.couchbase.com/

Ethernet. Two of the compute nodes have Intel i5
2.67GHz processors, and the other ones have Intel
Core 2 Duo 3.0GHz processors. All of the computers
have 4GB memory.

4 Experiments
We have conducted preliminary experiments with the
prototype system Tench. Given the importance of me-
ta-data in multi-tenancy SaaS applications, the experi-
ments focused on checkpointing meta-data. This sec-
tion reports the results of the experiments.

4.1 Design of the Experiments
The experiments are designed to demonstrate the feasi-
bility of tenant level checkpointing and to find out
whether using NoSQL database for saving checkpoint
data is more efficient than traditional disk-based
checkpointing (with dedicated checkpoint file server).
We conducted experiments on the following research
questions.
1) How does checkpoint latency vary with the size of

checkpoint data?
2) How does the number of tenants affect checkpoint

latency?
Here, the latency of a checkpointing operation is the
total time elapsed from the start of collecting check-
point data to the finish of saving the data.

To answer the above research questions, the follow-
ing two experiments were conducted.
− Experiment 1. In this experiment, the checkpointing

operation was applied to system states where the
size of the checkpoint data of a tenant varies from
10,000 records to 1,000,000 records, where each
record is a JSON document. Each step increases the
size by 10,000 records. Each record is of 128 bytes.

− Experiment 2. In this experiment, the size of data to
be checkpointed is fixed, but the number of tenants
in the system varies.

For each of these two experiments, a NoSQL data-
base (Couchbase) is populated with random data of
JSON documents of the following class.
Class Tenant {
 int Tenant_id; -- Tenant Identifier.
 String DataFormat;
 String DateFormat;
 String phone_number;}
The following is a typical example of randomly gener-
ated instance of the class Tenant.
{"Tenant_id": 0,
 "DataFormat": "lTTCUBXFDz0tG23MYI53",
 "DateFormat": "0nupP5ivm6kDECfU4Eos",
 "phone_number": "+49-85-176-771-15"}

Collecting checkpoint data for a tenant is performed
by applying a map function to all records in the data-
base. A map function is called a “view” in Couchbase’s
terminology. The following is the view for checkpoint-

ing the meta-data for the tenant whose Tenant_id is x.
View_Tenant_id (x) {
 if(doc.Tenant_id == x) {emit(doc)}
}
where the meat-data are instances of the class Tenant
and they are contained in doc.

Note that, for different parameters of the check-
pointing operator, different views are used to collect
the data or meta-data.

4.2 Experimental Results

• Latency of different checkpoint sizes
As shown in Figure 4, for disk-based approach, the
checkpointing latency increases linearly with the in-
crease of the size of checkpoint data.

Figure 4. Latency of Disk-Based Checkpointing

A similar observation is made in the experiments
with NoSQL database based checkpointing (see Figure
5). In both approaches, the latency increases in a linear
way with the increase in number of records.

Figure 5. Latency of NoSQL Based Checkpointing

However, the latency of saving checkpoint data to
the Couchbase NoSQL database is much smaller than
saving checkpoint data to a file as shown in Figure 8.
The main reason for this is that NoSQL databases
(such as Couchbase), use a multiple-level memory
cache system to store data, as shown in Figure 6. In
this structure, most recently accessed or created data
are saved in memory space. It is then written to hard
disks. Therefore, checkpoint data is first saved into
memories of the computers in the cluster, thus the
checkpointing operation finishes much faster than di-
rectly saving them to a file. In such a situation, using
NoSQL database to save checkpoint data is similar to
diskless checkpointing. Thus, we say that NoSQL da-
tabase based approach is diskless-like.

0	
50	
100	
150	
200	
250	
300	
350	
400	

0	 20	 40	 60	 80	 100	 120	 140	 160	
Ti
m
e	
	 (s
ec
)	

Checkpoint	 Size	 (Mbytes)	

0	

20	

40	

60	

80	

100	

0	 50	 100	 150	 200	 250	 300	

Ti
m
e	
(s
ec
)	

Checkpoint	 Size	 (Mbytes)	

Figure 6. Multiple level cache structure of NoSQL databases

The above explanation is supported by the experi-
ment data. Figure 7 and Figure 8 show the time spent
on collecting data and saving data in each checkpoint-
ing for two approaches, respectively. It shows that sav-
ing checkpointing data to file takes much longer than
saving to Couchbase.
• Latency of different numbers of tenants
Since a SaaS application may have a large number of
tenants, it is important to understand how the scale of
SaaS in terms of number of tenants will affect the la-
tency of checkpointing.

The experiment data shows that the number of ten-
ants has a minimal effect on latency for both disk-
based and diskless-like approaches.

Figure 7 Time Overhead of Disk-Based Checkpointing

Figure 8. Time Overhead of NoSQL Checkpointing

As shown in Figure 9 andFigure 10, the latency of
checkpointing varies little with the increase of the
number of tenants in the system if the total amount of
data in the system and the amount of data to be check-
pointed remain the same.

However, in NoSQL database based checkpointing,
the variation of latency is much larger than file-based
checkpointing. This is again caused by the multiple-
level cache structure of NoSQL databases.

Figure 9. Latency of Disk-Based Checkpointing

Figure 10. Latency of NoSQL Checkpointing

5 Conclusion
This paper proposes the notion of tenant level check-
pointing for SaaS applications. It differs from existing
levels of checkpointing operations, i.e., at system level
and at application level. Because each checkpoint data
is only a partial state of the SaaS application, it pro-
motes a new type of checkpointing techniques, i.e. par-
tial state checkpointing, in contrast to full state check-
point. The traditional incremental checkpointing tech-
niques can then be considered as a special type of par-
tial state checkpointing.

Tenant level checkpointing has a number of ad-
vantages. First, while a SaaS application is run contin-
uously, tenant level checkpointing can be performed
targeting a specific tenant when the users of the tenant
are less active. Thus, checkpoint may cause less dis-
ruption (or blocking) to the normal operation of the
system.

Second, tenants with different requirements of the
quality of service (e.g., varying level of reliability), can
be treated accordingly by changing the frequency of
tenant level checkpointing.

Moreover, cloud applications are often of huge
scale. It is unrealistic to save the state of the whole
system within one checkpointing operation. Tenant
level checkpointing decomposes the checkpointing
operation and the checkpoint data into a number of
partial states of much smaller scale. It makes check-
pointing more manageable and practical.

In the case of system crash, recovery can be per-
formed through tenant-by-tenant rollback so that the
most important tenants are recovered first. The total

RAM$

SSDSSDSSD$

Disk$Disk$ Disk$

Co
uc
hb
as
e*s
er
ve
r*

sto
ra
ge
*en
gin

e*

Recently$
accessed$
data$

Least$
recently$
accessed$

0	
40	
80	
120	
160	
200	
240	
280	
320	
360	
400	

0	 200	 400	 600	 800	 1000	

Ti
m
e	
(S
ec
)	

Checkpoint	 Size	 (K	 Records)	

Getting	 Results	 from	 Couchbase	
Saving	 Checkpoint	 to	 Files	
Total	 Execution	 Time	

0	

10	

20	

30	

40	

50	

60	

70	

80	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	 1000	

Ti
m
e	
(s
ec
)	

Checkpoint	 Size	 (K	 Records)	

Getting	 Results	 from	 Couchbase	
Saving	 Checkpoint	 to	 Couchbase	
Total	 Execution	 Time	
Linear	 (Getting	 Results	 from	 Couchbase)	
Linear	 (Saving	 Checkpoint	 to	 Couchbase)	
Linear	 (Total	 Execution	 Time)	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

0	 20	 40	 60	 80	 100	 120	 140	 160	

Ti
m
e	
(S
ec
)	

Number	 of	 Tenants	

Getting	 One	 Tenant	 Record	
from	 Couchbase	
Saving	 Checkpoint	 to	 Files	

Total	 Execution	 Time	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	
1.4	
1.6	
1.8	

0	 50	 100	 150	

Ti
m
e	
(s
ec
)	

Number	 of	 Tenants	

Getting	 Results	 from	 Couchbase	
Saving	 Checkpoint	 to	 Couchbase	
Total	 Execution	 Time	

outage time of the system can be significantly short-
ened.

Finally, through partial checkpointing, different
types of data can be treated differently. The more im-
portant the data is, the more frequent it can be check-
pointed. It is particularly useful for checkpointing the
meta-data, which plays a crucial role in SaaS applica-
tions in the multi-tenancy architecture.

In this paper, we also proposed an architecture for
managing the operations and data of partial check-
pointing and rollback in the context of multi-tenancy
SaaS architecture. A checkpointing algorithm and a
prototype implementation are presented. They use a
NoSQL database to collect and save checkpoint data.
Experiments are conducted to compare this approach
with the traditional approach that saves checkpoint data
in a file system on a dedicated checkpointing server.
Experimental results show that for both approaches,
the latency increases linearly with the size of check-
point data, while the number of tenants in the system
has little impact on latency. However, the NoSQL da-
tabase approach was proved to have a noticeably lower
latency in comparison to the traditional disk-based ap-
proach. It is due to the multiple level cache storage
structure used by NoSQL databases. Thus, the NoSQL
database approach demonstrates a diskless-like dynam-
ic behavior and performance. Moreover, NoSQL data-
bases like Couchbase have utilized parallel processing
power of cloud cluster by employing MapReduce in
processing database queries and updates. They are ca-
pable of dealing with large-scale checkpoint data, thus
more suitable for cloud applications, especially for
checkpointing meta-data.

We are further improving the performance of the
checkpointing operations by (1) combining partial
checkpointing with other techniques, such as compres-
sion and incremental checkpointing; (2) utilizing the
parallel processing power of MapReduce to collect and
save checkpoint data.

We are also investigating the policies and tech-
niques for deciding when to checkpoint the data and
meta-data of a tenant with minimal disruption to sys-
tem performance. Another future work is to study the
policy and technique for efficient rollback so that the
system can be recovered from failure rapidly.

References

[1] C. Kanaracus. “Salesforce.com hit with second major
outage in two weeks”. URL: http://www.infoworld.com/d/
cloud-computing/salesforcecom-hit-second-major-outage-in-
two-weeks-197383. Jul., 2012. Last Access: 14 Dec., 2013.
[2] R. Miller. “Major outage for salesforce.com”. URL:
http://www.datacenterknowledge.com/archives/2012/07/10/
major-outage-salesforce-com/. Jul., 2012. Last Access: 14
Dec., 2013.

[3] A. Agbaria and R. Friedman, “Virtual-machine-based
heterogeneous checkpointing.” Softw. Pract. Exper., Vol. 32,
No. 12, pp. 1175–1192, Oct., 2002.
[4] T. C. Bressoud and F. B. Schneider, “Hypervisor-based
fault tolerance.” ACM Trans. Comput. Syst., Vol. 14, No. 1,
pp. 80–107, Feb., 1996.
[5] C. Chen, y. Ting, and J. Hen, “Low overhead incremental
checkpointing and rollback recovery scheme on windows
operating system,” in Proc. of WKDD’10, IEEE CS, Jan.,
2010, pp. 268–271.
[6] B. Nicolae and F. Cappello, “Blobcr: efficient check-
point-restart for HPC applications on IAAS clouds using
virtual disk image snapshots,” in Proc. of SC’11, ACM,
Nov., 2011, pp. 34:1–34:12.
[7] J. S. Plank, K. Li, and M. M. Puening, “Diskless check-
pointing.” IEEE Trans. Parallel Distrib. Syst., Vol. 9, No. 10,
pp. 972–986, Oct., 1998.
[8] Z. Chen, e t a l . , “Fault tolerant high performance
computing by a coding approach,” in Proc. of PPoPP’05.
ACM, Jun., 2005, pp. 213–223.
[9] W.T. Tsai, X. Bai and Y. Huang, “Software-as-a-Service
(SaaS): Perspectives and Challenges”, Science In China, Vol.
53, No. 1, pp1–18. May, 2012.
[10] H. Koziolek, “The sposad architectural style for multi-
tenant software applications,” in Proc. of WICSA’11. Jun.,
2011, pp. 320–327.
[11] C. Weissman and S. Bobrowski, “The design of the
force.com multitenant internet application development plat-
form,” in Proc. of SIGMOD’09. ACM, Jun., 2009, pp. 889–
896.
[12] D. Abadi, et al., “Aurora: a new model and architecture
for data stream management.” The VLDB Journal, Vol. 12,
No.2, pp. 120–139, Aug., 2003.
[13] T. Kwok, T. Nguyen, and L. Lam, “A software as a
service with multi-tenancy support for an electronic contract
management application,” in Proc. of SCC’08. IEEE CS, Jul.,
2008. pp. 179–186.
[14] C. J. Gue, et al., “A framework for native multi-tenancy
application development and management,” in Proc. of
CEC/EEE’07, Jul., 2007, pp. 551– 558.
[15] C. Bezemer, et al., “Enabling multi-tenancy:an industrial
experience report,” in Proc. of ICSM’10, Sept., 2010, pp1–8.
[16] DeveloperForce, “Force.com sites best practices”. URL:
http://wiki.developerforce.com/page/Force.com_Sites_Best_
Practices. Last Access: 14 Dec. 2013.
[17] R. Woollen, “The internal design of salesforce.com’s
multi-tenant architecture,” in Proc. of SOCC’10. ACM, Jun.,
2010, pp. 161–161.
[18] S. Ghemawat, H. Gobioff, and S. Leung, “The Google
file system”, in Proc. of SOSP’03.ACM,Oct.,2003, pp.29–43.
[19] J. K. Ousterhout, et al., “A trace-driven analysis of the
Unix 4.2 BSD file system,” in Proc. of SOSP’85. ACM,
Dec., 1985, pp. 15–24.

