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Urban and forest habitats differ in many aspects that can lead to modifications of the

immune system of wild animals. Altered parasite communities, pollution, and artificial

light at night in cities have been associated with exacerbated inflammatory responses,

with possibly negative fitness consequences, but few data are available from free-living

animals. Here, we investigate how urbanization affects major immune pathways and

experimentally test potentially contributing factors in blue tits (Cyanistes caeruleus) from

an urban and forest site. We first compared breeding adults by quantifying the mRNA

transcript levels of proteins associated with anti-bacterial, anti-malarial (TLR4, LY86)

and anti-helminthic (Type 2 transcription factor GATA3) immune responses. Adult urban

and forest blue tits differed in gene expression, with significantly increased TLR4 and

GATA3, but not LY86, in the city. We then experimentally tested whether these differences

were environmentally induced by cross-fostering eggs between the sites and measuring

mRNA transcripts in nestlings. The populations differed in reduced reproductive success,

with a lower fledging success and lower fledgling weight recorded at the urban site.

This mirrors the findings of our twin study reporting that the urban site was severely

resource limited when compared to the forest. Because of low urban survival, robust

gene expression data were only obtained from nestlings reared in the forest. Transcript

levels in these nestlings showed no (TLR4, LY86), or weak (GATA3), differences according

to their origin from forest or city nests, suggesting little genetic or maternal contribution

to nestling immune transcript levels. Lastly, to investigate differences in parasite pressure

between urban and forest sites, we measured the prevalence of malaria in adult and

nestling blood. Prevalence was invariably high across environments and not associated

with the transcript levels of the studied immune genes. Our results support the hypothesis

that inflammatory pathways are activated in an urban environment and suggest that these

differences are most likely induced by environmental factors.
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INTRODUCTION

Urban areas are the fastest growing land cover globally and are
projected to increase a further 30% by 2030 (Seto et al., 2012).
Themodification of the natural landscape caused by urbanization
poses novel challenges to wildlife. For example, urbanization is
associated with altered food webs, parasite communities, and
chemical, light and noise pollution (Grimm et al., 2008; Alberti,
2015; Isaksson, 2015). To thrive in these novel environments
requires changes in behavior and physiology at the phenological
and, possibly, genetic level. Such changes have, indeed, been
found in urban populations of several species, indicating that
they accommodate some of the challenges of city life (Isaksson,
2010; Munshi-South and Kharchenko, 2010; Dominoni et al.,
2013a, 2016; Nemeth et al., 2013; Atwell et al., 2014; Gil et al.,
2014; Giraudeau et al., 2014; Davies et al., 2016; Watson et al.,
2017). Nonetheless, urban environments are linked to reductions
in fitness and health in a substantial number of organisms
(Chamberlain et al., 2009; Murray et al., 2015). Hence, urban
habitats are sometimes considered ecological traps which attract
organisms, for example by anthropogenic food availability, but
are insufficient for supporting successful rearing of offspring
(Plummer et al., 2013; Sumasgutner et al., 2014; Lamb et al.,
2017). There is a need, therefore, to understand the mechanisms
by which urbanization reduces reproductive success.

Despite their relevance for understanding urban adaptation,
the proximate physiological mechanisms that underpin
differences in behavior, life histories and fitness between urban
and rural populations of wild animals still remain largely elusive
(but see Dominoni et al., 2013b; Atwell et al., 2014; Davies
et al., 2016; Salmón et al., 2016). Whereas some physiological
responses in urban animals have been investigated thoroughly,
such as reproductive (Schoech et al., 2004; Partecke et al., 2006;
Dominoni et al., 2013b) and stress physiology (Bonier, 2012),
others have received little attention. Recently, a study using
transcriptome analysis (RNA-seq) has broadly examined the
ways physiological systems differ between an urban and rural
population of a songbird, the great tit (Parus major) (Watson
et al., 2017). Among the systems highlighted in this study,
immunity showed particularly clear differences, corroborating
reports of substantially reduced health of urban populations
in several species (Martin et al., 2010; Isaksson, 2015; Murray
et al., 2015). Given the central role of the immune system for
determining fitness and given its sensitivity to environmental
factors, differences in immunity are thus strong candidates for
linking urbanization to reduced reproductive success (Martin
et al., 2010; Isaksson, 2015; Watson et al., 2017).

Urban environments can affect the immune system by

modulating the structure of the parasite community to which

animals are exposed and potentially respond to. Cities have
been associated with altered parasite communities and altered
infection dynamics (Fokidis et al., 2008; Evans et al., 2009;
Giraudeau et al., 2014; Neiderud, 2015). For example, foraging
behavior in cities is thought to enhance the prevalence of
intestinal coccidians (Giraudeau et al., 2014), potentially driven
by increasing contact rates at feeders (Becker et al., 2015).
Several other factors associated with urban environments

can affect the activation of particular immune pathways of
wild animals. Prevalent urban conditions, such as chemical
pollution and artificial light at night, can act as environmental
stressors influencing the immune system and promoting pro-
inflammatory immune profiles (Halliwell and Gutteridge, 2002;
Bedrosian et al., 2011; Fonken et al., 2013; Isaksson, 2015;Watson
et al., 2017). Low-quality and changed diet in urban areas can also
enhance pro-inflammatory immune processes, which in turn can
impose behavioral and physiological costs on animals (McGraw
et al., 2006; Andersson et al., 2015; Becker et al., 2015; Isaksson,
2015). Furthermore, nutritional stress and resource restriction
can exacerbate trade-offs between different biological processes,
for example through resource allocation to growth vs. immunity
(Sheldon and Verhulst, 1996; Norris and Evans, 2000). The
findings of the transcriptomics study by Watson et al. (2017)
showed that in an urban songbird population, where some of
the above factors are effective, inflammatory immune genes were
indeed upregulated. Experimental studies that measure candidate
genes are now needed to clarify the origin of such differences, and
links to fitness need to be established.

Here we examined how urban life affects avian immunity
and fitness traits. As a study species, we used another parid
songbird that is common in city and forest environments,
the blue tit (Cyanistes caeruleus). Blue tits reportedly show
reduced reproductive investment (e.g., clutch size and egg size)
and reduced reproductive success in urban compared to rural
populations (Chamberlain et al., 2009; Bailly et al., 2016b). We
experimentally studied blue tits at two sites, one in an urban
park area in Glasgow (UK), and one in a National Park 40 km
away. The same populations were simultaneously investigated
in a twin study on food resource availability, food provisioning
and stable isotope signatures in eggs and blood samples (Pollock
et al., 2017). This parallel study design allowed us to link, for the
same sites, comparisons of immunity with resource restriction.
We first tested the hypothesis that adult urban blue tits show
increased expression of genes associated with inflammation
compared to blue tits from a forest habitat. Specifically, using
RT-qPCR, we measured the transcript levels of TLR4 and LY86,
which are involved in anti-bacterial and anti-malarial responses
(Medzhitov, 2001). We also tested the type 2 transcription factor
GATA3, which is central to innate and adaptive immunity against
parasitic helminths and immune homeostasis (Wang et al., 2011;
Tindemans et al., 2014) and showed elevated gene expression in
urban great tits (Watson et al., 2017).

We then investigated whether any urban-forest differences
in immune gene transcript levels are already present during
the nestling stage. Urban-forest immune differences in nestlings
could arise either through environmental effects during early
life, genetic or maternal effects. Thus, we cross-fostered eggs
between and within the urban and forest sites to distinguish
whether any difference in immune activation of nestlings was
induced by the environment or controlled by genetic or maternal
mechanisms (Watson et al., 2017). Finally, from the cross-
fostering experiment, we quantified the reproductive success
at the two sites and, thus, investigated possible associations
between environment, immunity and reproductive success. We
also examined prevalence of a common avian disease, avian
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malaria, as a potential driver of differences in expression of our
immune markers (Martin et al., 2014; Videvall et al., 2015).

Increased levels of TLR4 and LY86 in adult urban birds
are predicted on the basis of the hypothesis that the urban
environment enhances inflammation. We also predicted
increased levels of GATA3 in adult urban birds as a consequence
of high activation of immune pathways against intestinal
parasites, whose transmission is thought to be exacerbated by
anthropogenic food provisioning at bird feeders (Becker et al.,
2015). Expression of these three genes was also reported to be
increased in at least one tissue in the transcriptome study on great
tits (Watson et al., 2017). For nestlings blue tits, we predicted that
urban-raised offspring might also show heightened expression of
immune genes, indicating a direct effect of the environment on
their immune profiles within their short postnatal life-span. We
further predicted that cross-fostered nestlings should also differ
in their immune gene expression profiles by origin, either due to
micro-evolutionary change or based on differences in maternal
investment. Assuming that higher expression levels in immune
genes were selected for in urban birds, we expected higher
expression levels in nestlings originating from eggs laid the
urban environment regardless of their rearing environment. We
also expected lower reproductive investment, fledging success
and fledgling body mass in blue tits from the urban compared
to the forest environment. The differences in reproductive
success of urban and forest nests were indeed striking: 88%
fledgling success in the forest compared to only 30% in the city.
Consequently, in the cross-fostering experiment we obtained
robust sample sizes on gene expression only for nestlings
reared in the forest. We acknowledge limitations of our study
arising from low sample sizes and from a design that involves
only two sites (one urban and one rural) in a single year. Our
experimental approach, using cross-fostering, addresses some of
these concerns by effectively providing within-site replication.
However, urban ecology will require studies in multiple sites
and years, and on a broad range of organisms, before major,
generalizable advances can be achieved (Watson et al., 2017).

MATERIALS AND METHODS

Experimental Design and Field Protocol
Field work was carried out in one urban and one forest location in
Scotland inMay and June of 2014. In both sites, existing nest-box
study systems were used (woodcrete boxes: 260× 170× 180mm,
Ø = 32 mm, Schwegler, Germany). The urban site was located
in Kelvingrove Park, Glasgow (55◦ 52.18N 4◦ 17.22W), with a
total of 60 bird nest-boxes. The forest location was situated in oak
woodland near the Scottish Centre for Ecology and the Natural
Environment (SCENE; 56◦ 7.73N 4◦ 36.79W), with a total of
143 bird nest-boxes. Twenty clutches of blue tits in the city and
22 in the forest were manipulated prior to clutch completion:
10 nests in the city and 12 in the forest were swapped within
locations, representing control nests; and 10 nests were swapped
across locations, representing experimentally cross-fostered nests
(in total, 42 manipulated nests). Clutches within and across
locations were matched based on sixth-egg laying date. Before
swapping clutches, every egg involved in the experiment was

individually marked, weighed (±0.01grams) and kept at 4◦C
overnight. Clutch size was reduced to six viable eggs at both sites
in order to control for possible inter-habitat differences in clutch
size. After females laid the sixth egg, clutches were swapped as
explained above. When more than six eggs were present in a nest
on the day of swapping, the six experimental eggs were randomly
chosen. After swapping clutches, nests were checked every other
day and newly laid eggs were replaced by dummy eggs. Using
dummy eggs, we always kept the original number of eggs laid by
females (each nest contained six real eggs plus a variable number
of dummy eggs depending on the number of eggs that females
actually laid). Dummy eggs were removed from nests after real
eggs hatched. The total number of eggs laid by each female was
recorded and termed “natural clutch size.”

After the 10th day of incubation, nests were monitored daily
and hatch date was precisely assigned for every nest. On day 13
after first-egg hatching, blue tit nestlings were weighed (±0.05
grams), ringed with a unique metal ring and between 20 and 75
µL of blood were collected from their brachial veins (stored in
250µL of RNAlater R© for gene expression analysis). Additionally,
between 20 and 75 µL of whole blood were stored in >99%
ethanol for molecular screening of malaria parasites. Between 10
and 12 days post-hatching, we aimed to capture one or two of
the respective parents while provisioning and to sample adults as
described for chicks. However, when we realized the low overall
breeding success in our urban population we greatly reduced
efforts of catching parents to avoid additional risks to the broods.
In total, we obtained samples of 24 adult birds (Table 1). Nest-
boxes were checked 16–20 days after expected fledging dates in
search of dead nestlings. Since clutch size was reduced to six eggs,
hatching success was defined as number of hatchlings divided by
six. Number of fledglings over number of hatchlings represented
fledging success. Table 1 summarizes sample sizes throughout
different breeding stages between our urban and forest site, which
became progressively disparate because of high chickmortality in
the city.

Ethics Statement
All bird sampling was conducted following the directions and
legislations of UK Home Office (project license: 70/7899 to BH,
and personal licenses to DD and BH), Scottish Natural Heritage
(52463 to BH) and British Trust for Ornithology (Scientific C and
T licenses to BH and DD, respectively).

Expression of Immune and Reference
Genes
Primer Design
Blue tit sequences of TLR4 (toll-like receptor 4), LY86
(lymphocyte antigen 86, also known as MD1), GATA3 (GATA
Binding Protein 3) and of the candidate reference genes, HPRT
(Hypoxanthine-guanine phosphoribosyl transferase), PMM1
(Phosphomannomutase 1), SDHA (succinate dehydrogenase
complex, subunit A) and TFRC (transferrin receptor protein
1) (Olias et al., 2014) were obtained from the blue tit genome
(Mueller et al., 2016). Gene sequences were compared in
BLAST against the zebra finch (Taeniopygia guttata) genome
(Warren et al., 2010) in order to design primers on the
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TABLE 1 | Summary of sample sizes that entered the analysis: number of

clutches, nestlings and adults of each experimental group at every breeding stage

for our two study sites.

Initial number of nests

Urban Forest Total

Cross-fostered group 10 10 20

Control group 10 12 22

Total 20 22 42

Number of clutches successfully hatcheda

Cross-fostered group 7 6 13

Control group 8 9 17

Total 15 15 30

Number of hatchlingsb

Cross-fostered group 32 25 57

Control group 30 39 69

Total 62 64 126

Number of fledglings

Cross-fostered group 9 20 29

Control group 9 36 45

Total 18 56 74

Number of individuals sampled for RT-qPCR analysisc

Nestlings Cross-fostered group 4 16 20

Control group 4 24 29

Total 8 40 48

Adults 13 11 24

Cross-fostered clutches were swapped between sites, control clutches were swapped

within sites.
aClutches with at least one egg hatched. bMaximum number of hatchlings per clutches

was six since every clutch was experimentally reduced to six eggs. cWith successful gene

expression data for both reference genes used in data normalization.

correct gene regions. Primers were designed using Primer
ExpressTM 2.0.0 (Applied Biosystems) as described previously
(O’Shaughnessy et al., 2008). In order to avoid genomic DNA
(gDNA) amplification, every primer pair was designed to flank
an intron of more than 1,000 base pairs whenever possible. All
primer sequences (Table S1), as well as the validation of reference
genes (Figure S1), are detailed as Supplementary Material.

RNA Extraction, Reverse Transcription and RT-qPCR

Protocol
Blood samples stored in RNAlater R© were centrifuged for 5
min at 5,000 RPM, and RNA in the cell fraction isolated
using TRIzol R© reagent (Life Technologies, Thermo Fisher
Scientific 2015). Extracted RNA was reverse transcribed using
random hexamers and Moloney murine leukemia virus reverse
transcriptase (Superscript III, Invitrogen Ltd.) (for detailed
protocols see O’Shaughnessy and Murphy, 1993; O’Shaughnessy
et al., 1994). Levels of mRNA were measured by real-time
quantitative PCR using the SYBR Green method (O’Shaughnessy

and Murphy, 1993; O’Shaughnessy et al., 1994). The efficiency
of the seven employed primer pairs was between 91 and 120%
in all the cases. None of the primer pairs amplified gDNA.
One unique gene was run in each RT-qPCR 96-well plate along
with a non-template control (NTC). Every sample was always
run in duplicate and only samples with similar duplicate results
were considered for final analysis. The vast majority of samples
included in analyses had Ct differences between replicates below
one. Five samples showed Ct differences between one and two,
and two additional samples in the final analysis had replicate
Ct differences larger than two (2.07 and 2.18). The exclusion
of the samples with Ct differences above 2 or the samples with
Ct differences above 1 did not change the results. For details of
RT-qPCR data normalization, see Supplementary Material.

Screening of Malaria Parasites
Avian malaria collectively refers to blood parasites of the
three taxa Leucocytozoon, Haemoproteus and/or Plasmodium
[PMID:15357072]. We tested for the presence or absence of any
of these parasites using a nested PCR approach which identified
Leucocytozoon in one reaction, and either of Haemoproteus
and Plasmodium in another reaction (Hellgren et al., 2004).
In short, DNA from blood samples stored in >99%-ethanol
was extracted using a commercial kit (DNeasy whole-blood
extraction kit, Qiagen). Eluted DNA was amplified by 20
cycles at 94◦C for 30 s, 50◦C for 30 s and 72◦C for 45 s. A 2
µl-aliquot from the result of this reaction was further amplified
for 35 cycles at 94◦C for 30 s, 54◦C for 30 s, and 72◦C for
45 s. Both PCRs were performed in 20-µl reaction mixture
using 10 µl of GoTaq R© universal PCR master mix (Promega)
and 0.6 µM of each primer. Products of the second PCR
reaction were examined on a 1% agarose gel. The presence
of Leucocytozoon and/or Haemoproteus/Plasmodium parasites
was further checked by sequencing 24 PCR positive bands
(12 for Leucocytozoon and 12 for Haemoproteus/Plasmodium,
corresponding to samples positive for both taxa) (Eurofins
Genomics). In all the positive samples that we tested, sequencing
confirmed the presence of at least one avian malaria parasite,
Leucocytozoon (GenBank Accession Numbers KY981756-
KY981765) and/orHaemoproteus (GenBank Accession Numbers
KY981753-KY981755). No Plasmodium was detected. In nine
out of 12 samples that were positive for both Leucocytozoon
and Haemoproteus by PCR, sequencing revealed that only one
of the two parasites was actually present, suggesting that the
observed double infections might not always be true but possibly
an artifact of the PCR procedure due to cross-reaction of the
primers.

Statistical Analysis
Model Selection Approach
For every modeled response variable, data analysis started with
a global model including every biologically important predictor
(see below). Then, model selection based on Akaike’s Information
Criterion (AIC, Burnham and Anderson, 2002; Burnham, 2004;
Burnham et al., 2011) was applied to investigate alternative
hypotheses on the effects of urban–forests conditions and of
our experimental manipulation on immune gene expression,
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breeding investment and breeding success. Models were ranked
based on their AICc and considered similarly supported if their
1AICc value was<2. Poisson and binomial models were checked
for over-dispersion by comparing residual deviance and residual
degrees of freedom. Linear models and linear mixed model
residuals were inspected to check that they met the assumption of
normality, and collinearity between pairs of explanatory variables
was checked before accepting the results of any statistical model.
Data analysis was carried out in R 3.3.2 (R Core Team, 2016)
using the lme4 (Bates et al., 2014) and MuMin (Barton, 2016)
packages.

Immune Transcript Levels and Malaria Prevalence in

Adult Blue Tits
After RT-qPCR data normalization, adult levels of TLR4, LY86,
and GATA3 were analyzed using linear models (LMs). Habitat
(a factor with two levels: urban or forest) and adult body mass
10–12 days after hatching of their clutch were originally included
as predictors in every model. Weight information was missed
for two adult birds with successful gene expression data. Weight
appeared to have little importance in explaining variation in
gene expression and we, therefore, present statistical results for
models containing weight in Table S2. In the main text, we report
results for models without weight but include the two additional
birds to increase our sample size and, hence, the confidence in
our estimates of the effect of habitat. Malaria prevalence was
compared across habitats using Fisher’s exact test. Because little
variation in infection status was observed in adult birds, we
were unable to investigate its association with immune transcript
levels.

Immune Transcript Levels and Malaria Prevalence in

Cross-Fostered Nestlings
Originally, the main purpose of this analysis was to investigate
the effect of the original and rearing environment on immune
transcript levels. However, because of the high mortality in
our urban environment (see Section Results), sample sizes
from urban raised nestlings were very low. Hence, we focus
our main analysis only on nestlings raised in the forest and
present preliminary results for the full cross-fostering design as
Supplementary Material.

Nestling TLR4, LY86, and GATA3 transcript levels were
analyzed using linear-mixed models (LMMs). Original
environment (a factor with two levels: urban or forest) and
weight of chicks on day 13 were included as fixed effects. Malaria
infection status (factor with two levels, YES/NO) was also
included as a predictor. Nest ID was included as a random factor
in every model as several nestlings were measured per nest.

Reproductive Investment and Breeding Success of

Urban and Forest Cross-Fostered Nests
We compared several measures of reproductive investment and
breeding success of adult females as follows. Female investment
was quantified by number (i.e., natural clutch size) and size of
eggs laid. Natural clutch size was modeled as a Poisson variable
in a generalized linear model (GLM) including habitat, and
clutch completion date (as a linear and a quadratic term) to

account for temporal trends. We also included experimental
group (cross-fostered or control) and its interaction with site
to test whether our experimental design differed across habitats.
Individual egg weight was modeled using LMMs including as
explanatory variables original environment, experimental group,
their interaction, natural clutch size and 1st egg laying date (as a
linear and a quadratic term). Nest ID was always kept as random
factor.

We then examined reproductive success of the urban and
forest nests. Hatching and fledging success were analyzed with
generalized linear mixed models (GLMMs) using binomial
distributions with logit link functions. Due to over-dispersed
model residuals, observation-level random factors were
employed and yielded good model fit (Harrison, 2015).
Original and rearing environment, their interaction, and clutch
completion date—for hatching success—or hatch date (linear
and quadratic terms)—for fledgling success—were included
as explanatory variables. Weight of fledglings on day 13 after
hatching was analyzed by a LMM, keeping Nest ID as a random
factor and using original and rearing environment, their
interaction, hatch date (linear and quadratic terms), brood size
on day 13, and the interaction between rearing environment and
brood size as explanatory variables.

RESULTS

Immune Transcript Levels and Malaria
Prevalence of Urban and Forest Adults
Adult urban blue tits showed higher levels of TLR4 and GATA3
than forest blue tits (Figure 1). Including habitat as a predictor
generated models for these two immune genes that were superior
in AICc than intercept-only models (Table 2). Removing a
high-value outlier in GATA3 transcript levels of urban birds
(Figure 1) did not qualitatively change the statistical outcome.
After removal of this outlier, the model containing habitat as a
predictor was still the most supported by the data, with a decrease
in AICc of 2.4 compared to the intercept-only model. For LY86
expression, we did not find statistical evidence for an alteration
across habitats (Table 2, Figure 1B). Body weight of adults 10–12
days after hatching of their clutch was not an important predictor
for transcript levels of any immune gene (Table S2).

Every screened adult urban bird scored positive for malaria
infection (n = 6). Out of 9 forest birds tested, 8 were positive for
malaria parasites. These results indicated no association between
malaria prevalence and habitat in adult blue tits (Fisher’s exact
test, p > 0.90), suggesting that differential pressure of malaria
parasites across environments does not underlay our results of
immune gene expression.

Immune Transcript Levels and Malaria
Prevalence of Forest-Reared Nestlings
Our data suggested no differences in transcript levels of TLR4
and LY86 in forest-reared nestlings due to habitat of origin,
malaria parasite infection or weight 13 days after hatching
(Figure 2). For the expression of these two genes, intercept-
only models were most supported by the data (Table 3). The
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FIGURE 1 | Relative expression of (A) TLR4, (B) LY86, and (C) GATA3 for

adult, breeding blue tits. Y-axis values refer to levels of gene expression relative

to the expression of reference genes. Main bars illustrate raw data mean

values and dark error bars illustrate ± 2 standard errors. Dots represent raw

data points. Sample sizes are illustrated at the base of each bar.

presence of malaria parasites did not predict TLR4 or LY86
levels. Malaria infection status was only kept in models with
1AICc values larger than 2. For GATA3, we found some
evidence for an effect of the original environment on nestling
transcript levels. Urban-originated nestlings reared in the forest
had higher levels of GATA3 than forest-originated forest-reared
birds (Figure 2C). Four competing models scored very similar
AICc values, two of them containing original environment and
weight on day 13 as predictors (Table 3). However, after removal
of an urban-originated outlier with high GATA3 (Figure 2C),
the effect of weight and of the original environment lost much
importance and the intercept-only model became the most
supported one (Table S3). Results for the full cross-fostering
experiment, including urban-reared forest birds, are shown in
Figure S2.

Prevalence of avian malaria in forest-reared nestlings was
79.16% (n = 48, SE = 5.92%), whereas every screened urban-
reared nestling was found positive (n = 4). Within forest-reared
birds, malaria prevalence did not vary based on nestling origin
(Fisher’s exact test, p = 0.468, n = 38. Prevalence ± standard
error: forest-originated birds = 0.83 ± 0.38, urban-originated
birds= 0.72± 0.46).

Breeding Success in Urban and Forest
Cross-Fostered Nests
Most metrics of breeding investment and success were lower
in the urban compared to the forest site (Figure 3). Despite
observed differences in clutch size between habitats (mean
clutch size ± SE: urban clutches = 7.70 ± 0.34, n = 20;
forest clutches = 8.63 ± 0.48, n = 22), they did not received
strong statistical support (Table 4). Urban-originated eggs were
slightly lighter than forest-originated eggs and habitat of origin
appeared in three out of four models with 1AICc < 2 for
egg weight (the most supported one amongst them); however,
the effect size was small, with urban eggs only 0.045 g lighter
than forest ones. Experimental group was also kept in the set
of top models showing that cross-fostered eggs were 0.05 grams
heavier than control eggs (Figure 3A). No predictor was retained

TABLE 2 | Summarizing table of statistical models employed to explain variation in TLR4, LY86, and GATA3 transcript levels for adult blue tits.

Estimates of model coefficients (standard error)

Response term Intercept Habitat – urbana k AICc 1AICc w

TLR4 gene expression (n = 16; 14 nest-boxes) 0.055 (0.033) 0.090 (0.041) * 3 −29.5 0.0 0.69

0.111 (0.022) 2 −27.9 1.6 0.31

LY86 gene expression (n = 20; 17 nest-boxes) 0.464 (0.055) 2 4.1 0.0 0.79

0.486 (0.083) −0.041 (0.112) 3 6.7 2.7 0.21

GATA3 gene expression (n = 22, 17 nest-boxes) 0.206 (0.077) 0.229 (0.106) * 3 6.5 0.0 0.72

0.321 (0.058) 2 8.4 1.9 0.28

Models are presented along with their coefficient estimates and standard errors [estimate (SE)]. k, number of model parameters; w = Akaike’s weight, defined as the probability of

a model given the data and the candidate set of alternative models. a“Habitat – forest” set as reference level and, therefore, equals zero. When top models contained “habitat,” this

predictor was assessed by a likelihood-ratio test against the intercept-only model and * illustrates a p-value < 0.05. See Table S2 for model estimates including adult weight.
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FIGURE 2 | Relative expression of (A) TLR4, (B) LY86, and (C) GATA3 for

forest-reared nestlings hatched from cross-fostered eggs of the urban or forest

site. Y-axis values refer to transcript levels relative to the expression of

reference genes. Main bars illustrate raw data mean values and dark error bars

illustrate ± 2 standard errors. Dots represent raw data points. Sample sizes

are illustrated at the base of each bar. Removal of the urban outlier in GATA3

analysis (C) led to qualitative and quantitative changes in the results regarding

this gene (Table S3). Differences in sample size between Figure 2 and Table 1

are due to two nestlings with missing information for body weight. The

inclusion of these additional data points does not change the results regarding

the effect of the rearing habitat.

in the most supported model for hatching success (Table 5,
Figure 3B) and habitat of origin only appeared in a model
featuring a 1AICc value of 1.89 (ranked third in support).
These results suggested no differences in hatching success due
to habitat of origin or rearing habitat (Table 5). The urban
rearing environment, however, had a very strong negative effect
on fledging success as well as on nestling weight (Table 5).
Regardless of their origin, forest-reared nestlings were on average
1.33 grams heavier and more than twice as likely to fledge as
urban-reared birds (Figures 3C,D). Rearing habitat appeared in
every model within the 12 set for fledging success and nestling
weight (Table 5).

DISCUSSION

Reproductive success of blue tits was dramatically reduced in the
city compared to the forest. Our study adds to existing evidence
that urban environments commonly impair fitness and health
in wild populations (Chamberlain et al., 2009; Murray et al.,
2015; Bailly et al., 2016b). In most avian studies, fledging success
and nestling weight were lower in urban than in more rural
habitats (Chamberlain et al., 2009; Bailly et al., 2016b; Sprau
et al., 2017). These findings are matched by observations in this
study and in the parallel study of effects of food availability on
other nests at our sites (Pollock et al., 2017). In addition to
immediate effects of the environment on developing offspring,
such differences could also reflect prenatal maternal investment
(e.g., differences in egg composition, Toledo et al., 2016) or
genetic differences between urban and rural populations (Mueller
et al., 2013). Our cross-fostering experiment does not support
these latter hypotheses as we found no strong effects of natal
origin on reproductive and fitness traits (Figure 3). Slightly larger
cross-fostered eggs from both sites were a spurious outcome
of our alternating, experimental swaps. Overall, we provide
experimental support for the existence of a significant negative
postnatal effect of the urban environmental on breeding success
in blue tits, although we acknowledge that further replication will
be needed to consolidate these results.

These findings converge with a recent study on closely related
great tits which also used a cross-fostering experiment and
showed that negative implications of urban nesting (in this
case, shortened telomeres) arose from the raising environment
and not from genetic or maternal factors (Salmón et al., 2016);
however, this study did not investigate the possible mechanistic
causes of such differences. Our parallel study on food availability
and provisioning behavior provided clear evidence of resource
limitation and nutritional stress in our urban site compared to
our forest location (Pollock et al., 2017). Whereas nestlings in the
forest received predominantly caterpillars, the proportion of this
preferred, high-quality diet was substantially lower for nestlings
in the city. Pollock’s data further suggest that parents partly
resorted to other food, possibly including anthropogenic sources,
to feed their nestlings and presumably themselves (Pollock
et al., 2017). Shifts in diet, which were also reported for urban
populations in other species (e.g., Murray et al., 2015), can
have important effects on the nutritional state of urban animals,
and consequently, also on their health (Andersson et al., 2015).
Thus, the findings that we present here on immunity have to be
interpreted against the backdrop of resource restriction in the
urban site.

Our results from adult blue tits on transcript levels of

immune genes support some of our initial hypotheses. Urban
blue tits showed increased transcript levels of TLR4, a marker
of inflammatory processes, although these findings were not
paralleled for LY86. Several factors have been proposed to explain
how the immune system of urban organisms is expected to
change in response to the environment (Isaksson, 2015). Malaria
parasite infection has been shown to affect the expression of
TLR4 (Martin et al., 2014) and also LY86 in passerines birds
(Videvall et al., 2015). In our study, malaria infection status
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TABLE 3 | Summarizing table of statistical models employed to explain variation in TLR4, LY86, and GATA3 transcript levels for forest-reared nestlings.

Estimates of model coefficients (standard error)

Response term Intercept Original Habitat

– urbana
Malaria

parasitesb
Weight Original Habitat –

urbana X weight

k AICc 1AICc w

TLR4 gene expression (n = 28;

13 nest-boxes)

0.036 (0.004) 3 −128.9 0.00 0.39

0.104 (0.060) −0.006 (0.005) 4 −127.4 1.46 0.19

0.039 (0.005) −0.007 (0.008) 4 −126.9 1.98 0.14

0.036 (0.010) 0.001 (0.011) 4 −126.2 2.73 0.10

0.115 (0.059) −0.008 (0.008) −0.007 (0.005) 5 −125.5 3.36 0.07

0.106 (0.060) 0.004 (0.011) −0.007 (0.005) 5 −124.6 4.33 0.05

0.040 (0.011) −0.001 (0.011) −0.001

(0.008)

5 −123.9 4.96 0.03

LY86 gene expression (n = 32;

13 nest-boxes)

0.418 (0.039) 3 1.7 0.00 0.41

0.453 (0.050) −0.086 (0.079) 4 3.1 1.45 0.20

0.392 (0.091) 0.032 (0.101) 4 4.2 2.52 0.12

0.357 (0.597) 0.005 (0.053) 4 4.3 2.61 0.11

0.434 (0.098) −0.084 (0.079) 0.023 (0.010) 5 5.9 4.23 0.05

0.504 (0.601) −0.087 (0.080) −0.005 (0.053) 5 5.9 4.27 0.05

0.389 (0.605) 0.032 (0.106) 0.0002 (0.056) 5 7.0 5.35 0.03

1.183 (0.761) −1.710 (1.168) −0.065 (0.067) 0.146 (0.105) 6 7.1 5.44 0.03

GATA3 gene expression (n = 32,

14 nest-boxes)

0.548 (0.228) −0.037 (0.020) 4 −57.6 0.00 0.21

0.109 (0.020) 0.059 (0.032) 4 −57.6 0.03 0.21

0.131 (0.017) 3 −57.2 0.37 0.18

0.458 (0.229) 0.047 (0.031) −0.030 (0.020) 5 −57.0 0.65 0.15

0.574 (0.230) 0.021 (0.044) −0.041 (0.021) 5 −55.0 2.59 0.06

0.113 (0.040) 0.059 (0.032) −0.005

(0.041)

5 −54.8 2.85 0.05

0.137 (0.040) −0.008

(0.044)

4 −54.6 2.96 0.05

0.343 (0.292) 0.333 (0.454) −0.020 (0.025) −0.025 (0.040) 6 −54.3 3.31 0.04

0.478 (0.232) 0.046 (0.031) 0.019 (0.042) −0.034 (0.021) 6 −54.1 3.51 0.04

Models within a ∆ICc value of six are presented along with their coefficient estimates and standard errors [estimate (SE)]. k = number of model parameters; w = Akaike’s weight, defined

as the probability of a model given the data and the candidate set of alternative models. a“Original habitat – forest” set as reference level and, thus, equals zero. bMalaria parasite =

“NO” fixed as reference level; therefore, the given coefficients represent the change in gene transcript levels associated with the presence of malaria parasites. The statistical importance

of weight and habitat in the top two models for GATA3 was further assessed by a likelihood-ratio test comparing such models against the intercept-only one. In both cases, these tests

yielded a p-value of 0.08.

probably had little importance for TLR4 and LY86 levels across
habitats. In contrast to other studies (Evans et al., 2009), malaria
prevalence was consistently high at both of our sites; however,
our statistical power was small and the lack of differences
across habitat needs to be considered cautiously. Other intra-
cellular pathogens found to vary in prevalence between urban
and rural sites (Giraudeau et al., 2014) or in association with
anthropogenic food provisioning (Becker et al., 2015), may also
be important determinants of TLR4 and LY86 levels. Because
we lack information on the wider pathogen assembly in our
study sites, we cannot discard differences in other inflammatory
pathogens as a cause of the observed gene expression patterns.
Additional environmental factors could also explain differences
in immunity between urban and forest populations. Low-quality

and restricted diets are known to promote pro-inflammatory
immune processes (Blount et al., 2003; McGraw et al., 2006;
Isaksson, 2015; Nettle et al., 2017). Given our parallel findings
of significant diet differences between our study populations
(Pollock et al., 2017), it is likely that resource limitation has
contributed to elevated inflammation in the city (Larsson et al.,
2004; Isaksson, 2015). Costs of inflammation under resource
limitation could have contributed to the birds’ low reproductive
success via exacerbated physiological trade-offs.

In contrast to TLR4, transcript levels of LY86 in adult blue
tits did not match our predictions. Because TLR4 and LY86
interact (Lee et al., 2012), we expected to find a correlated
pattern of expression between their gene expression. However,
the interaction between these molecules is complex and can vary
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FIGURE 3 | Breeding investment and breeding success for urban and forest blue tits. (A) Egg size across original habitats (urban and forest) and experimental groups.

Cross-fostered eggs were swapped between sites and were reared in the fostering habitat; control eggs were swapped between nests within site. In the urban rearing

habitat, forest- and urban-originated eggs differed in weight, whereas in the forest rearing habitat eggs in both experimental groups had similar weights. (B) Hatching

success, (C) fledging success, and (D) weight of 13-day old nestlings across original and rearing habitats. Black dots illustrate raw data mean values and black bars

illustrate ± 2 standard errors. Raw data points are represented as partially transparent dots (see legend). Sample sizes are given beside mean values.

between cell types (Divanovic et al., 2005). The lack of differences
in LY86 across habitats, in contrast to our findings regarding
TLR4, indicates that these two genes might respond differentially
to the urban environment. TLR4 expression may be particularly
sensitive to urban-related environmental stressors. As well as
acting as a receptor for pathogens (gram negative bacteria
molecular patterns), TLR4 is implicated in the recognition of
damage-associated molecular patterns that follow tissue damage
or cellular apoptosis (Liu et al., 2014). Conceivably, TLR4
could have been additionally enhanced by urban-associated
environmental factors that promote oxidative stress and tissue
damage, for example, air pollution and artificial light at night
(Isaksson, 2010; Fonken et al., 2013). Our findings on TLR4 and
LY86 transcript levels can be compared to recent findings of the

transcriptomic comparison between urban and rural populations
of another parid, the great tit (Watson et al., 2017). In fully grown
great tits, expression of TLR4 (gene ID ENSTGUG00000003342)
tended to be elevated in blood and liver also in the city compared
to the forest (Watson et al., 2017, Supplementary Datasets
1 and 2). Expression of LY86 (gene ID ENSTGUG00000002305)
also tended to be higher in liver of urban great tits, but not in
blood. Largely, therefore, patterns were similar in the two parid
species.

The findings of higher GATA3 transcript levels in adult
urban compared to forest blue tits also followed our initial
predictions. The type 2 transcription factor GATA3 constitutes a
major regulatory component of the immunity against helminth
parasites (Tindemans et al., 2014). Although we were unable
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TABLE 4 | Summarizing table of statistical models employed to explain variation in natural clutch size and egg weight (in g).

Estimates of model coefficients (standard error)

Response

term

Intercept Habitat –

urbana
Experimental Groupa

– Cross-fostered

Completion

Date – linear

Habitat ×

experimental groupa
Clutch size k AICc 1AICc w

Clutch size

(n = 42)

2.103 (0.054) Not included 1 186.0 0 0.29

2.156 (0.073) −0.115 (0.108) Not included 2 187.1 1.08 0.17

1.785 (0.406) 0.008 (0.011) Not included 2 187.6 1.58 0.13

Egg weight

(n = 248)

1.185 (0.020) −0.045 (0.024) 0.050 (0.024)* 5 −632.3 0 0.17

1.164 (0.017) 0.048 (0.025) 4 −631.0 1.33 0.09

1.151 (0.054) −0.043 (0.024) 0.048 (0.024) 0.004 (0.006) 6 −630.7 1.66 0.07

1.178 (0.022) −0.031 (0.033) 0.064 (0.033) −0.029 (0.047) 6 −630.6 1.73 0.07

Only models within ∆AICc < 2 are presented along with their estimates and standard errors [estimate (SE)]. k = number of model parameters; w = Akaike’s weight, defined as the

probability of a model given the data and the candidate set of alternative models. a“Forest” and “Control” categories are set as reference levels for “Habitat” and “Experimental Group,”

respectively, and, therefore fixed to zero. Correspondingly, estimates for “Habitat × Group” refer to the urban habitat and cross-fostered experimental group. The additional term

“Completion Date—quadratic” was included in candidate models but estimates for this variable are not shown as they do not appear in any model within a ∆AICc value of 2. Raw data

mean values ± SE for clutch size: urban clutches= 7.70 ± 0.34; forest clutches = 8.63 ± 0.48. Raw data mean values ± SE for egg weight: urban-originated eggs = 1.17 ± 0.01;

forest-originated eggs = 1.21 ± 0.01. Model coefficients for clutch size are shown in the scale of the link function (log). The statistical importance of variables in the top model for egg

weight was further assessed by a likelihood-ratio test, dropping one predictor at a time, and *illustrates p-values < 0.05.

TABLE 5 | Summarizing table of statistical models employed to explain variation in hatching success, fledging success and nestling weight (in g).

Estimates of model coefficients (standard error)

Response term Intercept Original Habitat –

urbana
Rearing Habitat –

urbana
Completion –

linear

Completion –

quadratic

k AICc 1AICc w

Hatching Success (n = 42) −0.126 (0.422) 2 166.4 0.00 0.33

2.187 (3.142) −0.060 (0.082) 3 168.2 1.80 0.13

0.146 (0.578) −0.565 (0.838) 3 168.3 1.89 0.13

Fledgling Success (n = 30) 4.652 (1.876) −7.046 (3.082)* 3 74.3 0 0.35

−9.252 (11.493) −6.503 (2.935) 0.246 (0.213) 4 75.3 1.07 0.20

5.112 (2.003) −1.335 (1.615) −6.780 (2.828) 4 76.2 1.95 0.13

Nestling Weight (n = 68) 11.190 (0.180) −1.328 (0.341) * 4 178.9 0 0.27

8.822 (2.145) −1.318 (0.330) 0.042 (0.038) 5 180.0 1.15 0.15

−32.250 (26.282) −1.075 (0.350) 1.526 (0.947) −0.013 (0.009) 6 180.1 1.22 0.15

11.300 (0.210) −0.278 (0.310) −1.322 (0.335) 5 180.4 1.54 0.12

Only models within ∆AICc < 2 are presented along with their estimates and standard errors (estimate (SE)). k = number of model parameters; w = Akaike’s weight, defined as the

probability of a model given the data and the candidate set of alternative models. The additional terms “Original habitat × Rearing habitat,” “Brood size” and “Rearing habitat × Brood

size” were included in global models but estimates for these variables are not shown as they do not appear in any model within a ∆AICc value of 2. a“Original Habitat – forest” and

“Rearing habitat – forest” were set as reference levels for coefficient estimation. Model coefficients for hatching and fledgling success are illustrated in link function scale (logit). The

statistical importance of rearing habitat in the top model for fledgling success and nestling weight was further assessed by a likelihood-ratio test against the intercept-only model, and

*illustrates p-values < 0.05.

to monitor intestinal parasite load in our study, our results
could be explained by potentially higher helminth pressure
in our urban location. Aggregation in feeding stations causes
high rates of horizontal transmission of directly-transmitted
parasites and, hence, affects parasite distribution (Becker et al.,
2015). If increased activation of GATA3-induced immunity in
our urban birds was, indeed, caused by increased helminth
infection, it might thus reflect a parasitological cost imposed by
supplementary feeding and contribute to some of the negative
effects of supplementary feeding on fitness (Plummer et al., 2013).
Results forGATA3 expression (gene ID ENSTGUG00000002134)

from an urban great tit study in Sweden were comparable for
liver, with higher levels in the city, whereas for blood expression
did not differ between sites (Watson et al., 2017).

For the nestling stage, our findings from the cross-fostering
experiment provide no evidence that urban as compared to
forest origin was associated with higher immune transcript levels
in nestlings (Figure 2). Unfortunately, our sparse data from
the urban rearing environment do not allow comprehensive
conclusions from the full cross-fostering experiment (Figure S2).
However, overall, transcript levels of nestling immune genes
appeared to be similar across habitats (Figure S2). Thus,
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pending confirmation by a larger dataset, our findings suggest
a differential impact of urbanization on the immune system,
becoming more pronounced in later life-history stages. The
contrasting patterns among age groups might be explained
by chronic effects of long-term exposure to urban-specific
environmental factors in adults (e.g., Bedrosian et al., 2011).
Genetic or prenatal maternal causes for increased TLR4 and
GATA3 transcript levels in adult blue tits are made unlikely
by our findings that among nestlings reared in the forest,
origin (city or forest) did not strongly affect transcript levels
of any gene (Figure 2). Hence, the cross-fostering experiment
indicates that urban-forest differences in transcript levels of
adult blue tits were most likely driven by the environment
(Salmón et al., 2016). However, we cannot fully exclude the
possibility that genetic or maternal factors are only identifiable
in adulthood and not in nestlings. In contrast to our findings,
a recent study on great tits did report differences in immune
status between urban and rural nestlings (Bailly et al., 2016a).
Interestingly, the differences were opposite to those we found
for adults blue tits: using physiological assays, rather than
gene expression studies, Bailly et al. (2016a) show that urban
nestlings produce less haptoglobin (a marker of inflammation)
than forest birds, and offer as an explanation that haptoglobin
production is compromised by food resource availability in the
urban site. Although caution is needed when comparing different
species and inflammatory markers, the opposite findings for
the age groups might reflect different trade-offs between
immunity and development: under resource restriction, growing
nestlings might not be able to mount costly responses in
the same way as fully grown adults (Sheldon and Verhulst,
1996; Norris and Evans, 2000; Alonso-Alvarez and Tella,
2001).

Our results contribute to a body of evidence suggesting that
urban living has reproductive costs and can impact the health
of wild animals by altering their immune system (Audet et al.,
2016; Bailly et al., 2016a; Watson et al., 2017). We acknowledge
that caution is needed when interpreting our result given our
sample size and the existence of only one urban-forest study
pair and one study year. However, our experimental approach,
with within-forest and within-city controls, allows us to draw
conclusions on the causal links between immunity, fitness and
the urban environment in our study system. Furthermore, the
results generally confirm our original predictions and are in
line with widespread evidence of reductions in fitness in urban
environments (Chamberlain et al., 2009; Bailly et al., 2016b) and
with recent discoveries on the effect of the urban environment
on gene expression profiles in wild birds (Watson et al., 2017).
We find evidence for elevated expression of immune genes in

adults of our urban compared to our forest population, and data
from our cross-fostering experiment indicate that such changes
are best explained by environmental factors. In combination
with our twin study on reduced food availability and modified
provisioning in the city (Pollock et al., 2017), we tentatively
identify links between resource limitation and altered immunity.
To better understand the impact of urbanization on the immune
system of wild animals, we need fine-scale characterization of the
urban environment including parasite assemblies, coupled with a

broader immune assessment of wild populations and information
on fitness across life stages. Such information would reveal the
role of the immune system for adaptation to urban life, as well
as the long-term demographic consequences of altered immunity
for urban-dwelling species.
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