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Abstract

Emotions understanding represents a core aspect of human communication. Our social behaviours

are closely linked to expressing our emotions and understanding others’ emotional and mental

states through social signals. Emotions are expressed in a multisensory manner, where humans

use social signals from different sensory modalities such as facial expression, vocal changes, or

body language. The human brain integrates all relevant information to create a new multisensory

percept and derives emotional meaning.

There exists a great interest for emotions recognition in various fields such as HCI, gaming,

marketing, and assistive technologies. This demand is driving an increase in research on multi-

sensory emotion recognition. The majority of existing work proceeds by extracting meaningful

features from each modality and applying fusion techniques either at a feature level or decision

level. However, these techniques are ineffective in translating the constant talk and feedback

between different modalities. Such constant talk is particularly crucial in continuous emotion

recognition, where one modality can predict, enhance and complete the other.

This thesis proposes novel architectures for multisensory emotions recognition inspired by

multisensory integration in the brain. First, we explore the use of bio-inspired unsupervised

learning for unisensory emotion recognition for audio and visual modalities. Then we propose

three multisensory integration models, based on different pathways for multisensory integration

in the brain; that is, integration by convergence, early cross-modal enhancement, and integration

through neural synchrony. The proposed models are designed and implemented using third-

generation neural networks, Spiking Neural Networks (SNN) with unsupervised learning. The

models are evaluated using widely adopted, third-party datasets and compared to state-of-the-art

multimodal fusion techniques, such as early, late and deep learning fusion. Evaluation results

show that the three proposed models achieve comparable results to state-of-the-art supervised
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learning techniques. More importantly, this thesis shows models that can translate a constant

talk between modalities during the training phase. Each modality can predict, complement and

enhance the other using constant feedback. The cross-talk between modalities adds an insight

into emotions compared to traditional fusion techniques.
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Chapter 1

Introduction

1.1 Motivation

Humans perceive emotions in a multisensory manner, where information from different sensory

modalities such as facial expression, verbal, non-verbal speech signals, and body language

translate our emotional states. Multisensory emotional processing is driven by a constant cross-

talk between various sensory modalities.

Understanding emotions from multiple sensory modalities is crucial for Human Computer

Interaction (HCI) and affective computing with various applications such as gaming, mental

healthcare or car driving [24]. Multisensory emotions recognition does not only provide more

effective and efficient Human-Computer Interaction (HCI) but also facilitates the enhancement

and efficiency of assistive technologies or social robots for individuals facing challenges in

interpreting complex and subtle social cues [50, 24]. Therefore, it is crucial to analyse and focus

on multisensory relationship between different modalities to get a more accurate meaning and a

better interpretation of emotions.

There exists a high interest in developing effective multisensory systems for emotion recog-

nition in HCI and affective computing fields. Classical techniques have been used in feature

extraction, fusion and classification of multisensory signals. However, current data fusion tech-

niques are generally not able to translate the constant cross-talk and complementarity between

modalities. Moreover, current data fusion techniques applied in emotion recognition and affec-

tive computing do not translate the multisensory precept, where information is delivered from
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different modalities through a constant talk and feedback between multiple sensory modalities.

Recently bio-inspired approaches have started to emerge in the artificial intelligence field in

general and machine learning in particular. Applying bio-inspired architectures in multisensory

integration of social signals of emotions can represent a potential alternative to more classical

data fusion techniques. These new methods can address various challenges faced by existing

systems and can help not only in the fusion of information but in a more practical perceptual

understanding of emotions by modelling the learning and interaction between modalities.

1.2 Challenges

Nowadays, with the progress in sensing and intelligent technologies, social signals of emotions

from various sensory modalities can be captured through various means such as portable or

wearable devices in real-time. However, designing a practical integration approach is challenging,

since social signals from different modalities can come at different time onsets with noisy

environments. These can affect their reliability and contribution to the final inference. Systems

need to discern, extract, and process signals in order to derive meaningful interpretation of social

signals. With the current advances in machine learning, computer vision and human-computer

interactions techniques, there is growing interest in developing techniques for better interpretation

of multisensory social signals of emotions.

State-of-the-art multisensory fusion approaches offer a wide range of abilities. Recently, with

the advances of deep learning techniques, research has turned towards applying deep learning

architectures in social signals and social interaction recognition [63, 10, 116] for both unisensory

and multisensory recognition tasks. However, they only focus on features extraction and often

combine with conventional data fusion techniques such as feature concatenation or decision level

fusion [7, 15].

Current techniques often lack in accurately converting signals into new multisensory precepts

and integrating information from different modalities. They also fail to translate the relationship

and constant cross-talk between different sensory modalities, where each modality receives input

throughout the learning phase.

Current multisensory integration techniques face various challenges including inconsistency
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of one or more signals, lack of interaction between different modalities or timing, and asynchrony.

They do not translate cross-modal prediction [227]. The prediction, interaction and integration

play a significant role in translating multisensory information. This is how the integration of

multisensory social signals occurs in the human brain [82].

1.3 Aims and Objectives

Research presented in this thesis aims to explore and propose novel biologically inspired ar-

chitectures for multisensory integration. These novel methods are directly inspired by neuro-

computational models and studies in neuroscience on multisensory integration [40].

The main objectives of this research are summarised as follows:

1. Carry out a thorough literature review on existing multisensory data integration techniques

used in multisensory emotion recognition and identify their main challenges.

2. Investigative current research trends on neuroscience models and theories for multisensory

integration pathways in the brain.

3. Propose, create and design novel models for multisensory integration with application in

social signals of emotions.

4. Evaluate the proposed models on various multisensory emotions datasets, explore their

strength, and identify their limitations.

1.4 Thesis Hypothesis

The main hypothesis of this thesis is: “Bio-inspired architectures enable better multisensory

integration and more accurate translation of constant interaction between different modalities”

1.5 Research Questions

The main questions to be investigated in this thesis are:
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1. Are bio-inspired architecture effective for unisensory emotions recognition tasks?

2. Does applying bio-inspired models in multisensory integration increase the accuracy of

multisensory recognition systems?

3. Do bio-inspired models present better generalisation capacity compared to state-of-the-art?

4. Are bio-inspired architectures robust to signal noise?

In order to answer the presented questions, this thesis proceeds to the following tasks:

• Create bio-inspired models for unisensory emotion recognition for audio and visual data.

• Explore, investigate and create novel bio-inspired models for multisensory integration of

social signals of emotions.

• Evaluate the robustness to noise and generalisation capacity of such models.

1.6 Main Contributions

This thesis proposes novel bio-inspired approaches to not only model social signals of each

modality but also model their interaction and integration to enable more biologically plausible

signal integration and achieve better performance. This work is novel for affective computing in

general and multisensory integration in particular by using models inspired by the brain. The

main contributions can be summarised in the following sections.

1.6.1 Bio-inspired Model – Spiking Neural Network

Applying bio-inspired models in multisensory integration helps alleviate some of the challenges

faced by the current data fusion techniques. Preserving spatio-temporal relation between multiple

modalities is essential, as is the constant interaction between them. The implementation of the

proposed models is achieved through Spiking Neural Network (SNN). SNNs represents the third

generation of neural networks, and have been mainly used for implementing neuro-computational

models [176] [110]. The main difference from artificial neural networks relies in the way SNNs

process information based on spikes, where neurons communicate through series of spikes by
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firing spikes when they reach a certain threshold [221]. The computation in SNNs is based on

timing of spikes, where spikes that fire together get a stronger connection. SNNs are becoming

more popular with the advances in Neuromorphic computing research. They include various

applications such as audio signal processing, pattern recognition.

The first contribution in this research work consists of adapting SNNs with unsupervised

learning in a novel way for unisensory emotion recognition for both audio and visual data and

extract essential features that can be generalised across datasets and robust to noise degrada-

tion [179].

1.6.2 Multisensory Social Signal Integration

The most significant contribution is to propose three novel models for multisensory social signals

of emotions recognition, which focus on applying bio-inspired techniques derived from three

different pathways of multisensory integration in the brain.

Humans and animals perceive events in a multisensory manner, where information enters the

brain through various sensory modalities. Information is integrated following specific rules such

as temporal alignment and spatial and semantic congruence. Multisensory integration represents

the process of combining inputs from different modalities, such as visual and auditory. The

brain responds to multisensory information by first, processing information from each sensory

modality, and then integrating data to form a new multisensory percept.

The proposed models are detailed as follows:

• Integration through convergence Multisensory integration is the first proposed integration

model. This model applies a classical theory in multisensory integration which happens in

higher-order areas of the brain; that is, convergence of various information from unisensory

areas into one multisensory area [253]. First, information is processed in each unisensory

area. Then features converge in a higher-order multisensory regions. This method mainly

relies on firing rate changes in different cortical regions through a hierarchical and progres-

sive manner. In this approach, the integration happens in a convergence manner, where the

response to multisensory information is compared to the sum of response to unisensory

input.
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• Integration through cross-modal enhancement The second porposed model is integration

through early cross-modal enhancement. Early cross-modal enhancement is a pathway in

multisensory integration in the brain and is derived from the work detailed in [265]. Studies

suggest that multisensory areas such as Superior Colliculus (SC) use a Spike Timing

Dependent Plasticity (STDP) learning at a neural level for the interaction between different

unisensory modalities [265]. It has also been described that unisensory areas interact

at early sensory levels [14] during multisensory integration. Auditory and visual areas

interconnect with recurrent connections. This idea of early sensory interaction represents a

possibility of cross-modal prediction and interaction especially for audio-visual pathway

in emotions processing [20, 14] [191] [119].

The model proposed in this thesis enhances speech emotion recognition through visual

information and achieves better performance compared to most commonly used state-of-

the-art data fusion approaches in multisensory emotion recognition [310]. This model is

more simplified and computationally advantageous. Also, rather than a simple fusion, this

model promotes loose coupling between multiple signal modalities, which can be more

flexible and robust. For example, where one modality fails or is very noisy, it will less

affect the overall recognition accuracy.

• Integration through neural synchrony Integration through neural synchrony is the third

proposed model. Studies have identified various regions where multisensory integration is

achieved, such as the temporal frontal and primary sensory areas [283].

Neural synchrony represents one of the most recent views for multisensory integration

[133]. It is derived from various experiments on humans and animals. It is defined as the

simultaneous neural oscillations of different neuron groups in various brain cortical regions

connected by synapses. It is considered as the primary means of transferring information

in the brain. Numerous studies have been conducted in order to define the exact role of

neural synchrony in multisensory integration [284]. Neural synchrony is defined as the

synchronisation of different brain oscillations in different frequencies. Each frequency

band drives a specific type of information such as cognitive functions. Multisensory

integration through neural synchrony is modelled using SNNs and (Graph Convolution
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Neural Network (GCN))

The three models present three distinctive pathways in multisensory integration in the brain.

Multisensory integration in the brain has various pathways from early sensory areas to higher-

order areas. This thesis aims at representing the main pathways for multisensory integration from

early sensory interaction to higher-order multisensory areas.

1.7 Organisation of the Thesis

This thesis is organised in eight main chapters as follows:

• Chapter 2 introduces the background and the motivation of this thesis. It describes an

overview of the nature of emotions in humans. Then it gives a summary of state-of-the-art

emotion recognition techniques both in unisensory and multisensory tasks. It focuses on

emotion recognition from videos with audio-visual integration. It also outlines the main

challenges in current multisensory emotion recognition techniques.

• Chapter 3 describes how biological neurons function and how signals are transmitted in

the brain. It provides mathematical models about neurons communication. It introduces

SNNs, and describes their different possible architectures and learning methods.

• Chapter 4 proposes two bio-inspired models for unisensory emotion recognition. It details

the application of bio-inspired models for Facial Expression Recognition FER and Speech

Emotion Recognition SER tasks.

• Chapter 5 outlines the major contribution to this thesis. It details the design of three

models for multisensory integration. It details the architecture and design of multisensory

integration through convergence, early cross-modal enhancement and finally through

neural synchrony.

• Chapter 6 details all experimental setup and implementation details of various models

proposed in this thesis.
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• Chapter 7 details experiments to evaluation the bio-inspired methods for unisensory

emotion recognition in FER and SER. It describes all experimental setups, tools, baseline

models. It also details all experimental results and discussion.

• Chapter 8 describes the evaluation of the three proposed models for multisensory integra-

tion. It describes experimental setups, results for each models and a comparison of models

in generalisation and robustness to noise evaluations.

• Chapter 9 concludes the thesis and summarises the main contribution, evaluations and

results. It also discusses the limitations of the current work and points out the future

direction.
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Chapter 2

Background and Literature Review

2.1 Introduction

This chapter provides an overview of existing methods for multisensory emotion recognition

focusing on visual and auditory sensory modalities. It consists of three parts:

1) First, it outlines the nature of human emotions and emotion perception in psychology and

neuroscience. It starts by illustrating the importance of emotions for human communication.

Then, it explains different models for emotions in the literature. After that, it describes the nature

of emotions and social signals in the human brain and how humans perceive them.

2) The second part consists of a thorough review of emotion recognition in machine learning

and affective computing fields. Although the review describes various modalities such as body

language, text, facial expression or non-verbal speech, it focuses on two primary unisensory

modalities; that is, audio and visual. These are also the modalities that this thesis focuses on.

3) This chapter then outlines state-of-the-art for multisensory emotion recognition by list-

ing the most common multisensory integration and data fusion techniques used in emotion

recognition.

Finally, it identifies the main challenges faced by the recent multisensory emotion recognition

techniques, which will be tackled by this thesis.

9



2.2 The Nature of Human Social Signals of Emotions

Humans interact through multiple social signals, translating different mental states and feelings.

Emotions represent the way we communicate our internal mental states, resulting from reactions

to external stimuli. Emotions are driven by rewards and punishment motivations [234]. They are

considered as states elicited through reinforcement behaviours. According to [233], emotions

can have the following functions:

• Physiological changes: Physiological response elicitation such as changes in heart rate.

• Reinforcement: Changes in emotional response to external reinforcement stimuli, where

the brain responds to two types of reinforcement, either reward or punishment.

• Communication: Humans and primates can communicate through different means, includ-

ing facial expressions. Facial expression can translate various emotional states through

deformation of different facial muscles. There are special areas in the brain for processing

facial expressions.

• Social bonding: Emotions are linked to attachment in humans and primates, such as parents

and their children.

• Motivation: Emotions are motivating. For example, they can elicit reactions through

stimulus reinforcement associations in the case of fear.

• Effect on cognitive functions and memory: Emotions can help elicit and store events in

memory. Memories such as episodic memory can be facilitated through emotions. One

way for emotions to elicit memories is by triggering perceptual representation in the brain.

• Direction to behaviours: Emotions can change behaviours in both humans and primates,

such as fear that drives a change in behaviour.

Emotions have been investigated thoroughly throughout history. The first documented work

on human emotions dates back to 1872. Darwin [58] was the first to provide a theory of emotions

and facial expressions. According to Darwin’s studies, emotion expressions and affective states in

humans and other primates happen over time through deformation of various facial muscles. He
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has also claimed that some emotional expressions were universal and shared the same expression

through cultures and ethnic groups. Humans or animals from the same species react in the same

manner when presented with the same stimuli or facing the same situation in those universal

expression of emotions.

Emotions are categorised by their type, intensity and other parameters such as context [106].

These parameters make up emotion models. Emotion models consist of defining emotions based

on scores, dimensions and ranks. Existing emotion models are based on intensity, dynamic

change or even appraisal elicitation or behavioural change.

Research in psychology is dominated by two main theories for emotions: dimensional

or categorical. Categorical models describe emotions by category which are entirely distinct.

Ekman [70] has proposed one of the most popular categorical models. Ekman has researched

facial expression of emotions and studied the importance of facial expression in sharing one’s

mental states. He also identified six basic emotions shared across cultures (anger, happiness,

sadness, fear, disgust and surprise). Other studies have produced different models [280] as to the

definition of basic emotions.

On the other hand, dimensional emotions models as defined by Russel [239] define emotions

by dimensions of some predefined parameters. Dimensions comprise valence (indicating if

the emotion is positive or negative) and arousal (defining the intensity of the emotion). A third

dimension consists of dominance, indicating the level of control. Plutchik [220] proposed a hybrid

emotion model with eight basic emotions (anger, fear, sadness, disgust, surprise, anticipation,

trust, and joy ) with three-dimensional levels.

Figures 2.1, 2.2 and 2.3 show an example of Ekman’s categorical emotion model, Russel’s

dimensional model and the categorical dimensional model from Plutchik’s model. The categorical

model presented by Ekman as shown in Figure 2.1 shows emotions as discrete categories. On

the other hand, dimensional models such as Russel’s model as shown in 2.2 define emotions

as distributed in two dimensional space with the x-axis defining the valence and the y-axis the

arousal dimension. The hybrid model presented by Plutchik as shown in Figure 2.3 represent

emotions in three main dimensions representing a hybrid between the discrete basic emotions

and dimensional model. This emotion model results in several emotions with different intensities.

The main difference between categorical models such as Ekman’s and dimensional models such
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Figure 2.1: Ekmann’s emotion model (Categori-
cal) with six basic emotions (surprise, sad, happy,
angry, fearful and disgust

Figure 2.2: Russel’s emotion model (Dimen-
tional) [239]

Figure 2.3: Pultchik’s emotion model (Hy-
brid) [220] comprises concentric circles where
inner circle represent basic emotions and outer
circles more complex.
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as Russel’s or Plutchnik is that they present emotions in different dimensions in contrast to

discreet emotions proposed in categorical models.

In addition to facial expressions, there are other different ways of expressing emotions, such

as body gesture, verbal and non-verbals speech signals. This group of manifestations constitute

social signals. Social signals represent a significant part of humans interactions and are crucial in

understanding communications. They also influence behaviours, reaction and internal mental

states of individuals [187]. Methu et al. [187] have shown that humans’ mental states are closely

influenced by watching and hearing emotional stimuli such as laughter, cries, threatening gestures

or voices.

Social signals and emotions are interpreted differently depending on contexts such as cultural

differences, place or time [106]. For example, a facial expression can be interpreted in various

ways depending on a cultural context. Social signals cues can also play a role of context. A

tone of voice can affect and influence our understanding of facial expressions; this is primarily

present in complex emotions such as sarcasm. Thus, the ability to comprehend the whole picture

of emotions manifestation is crucial in humans communication.

Understanding others’ emotional state involves integrating various social signals such as

tone of voice, facial expression and body gesture. The inability to integrate these social signals

to understand others’ mental states and emotions can be missing. Individuals with disorders

and conditions such as autism, schizophrenia, or dementia find it very hard being in social

situations and making meaning from different social signals. This barrier creates challenges

in communicating with others. Therefore the integration of social signals is very crucial in

understanding the whole picture of emotional states and is referred to multisensory integration.

Social signals of emotions processing, understanding and perception involves various areas

of the brain and a complex network [120]. The human brain starts by parsing input from

different senses through segmentation and then works on constructing meaningful models

through integration [254]. These two processes are always active in the brain, constructing

meaningful interpretation of the present from past events. For example, in order to conclude a

speech sound, the brain needs to segment all possible auditory inputs from noisy environments

to identify which sound corresponds to the speech of a person. It is achieved by looking at

temporally and spatially adjacent sensory information from both visual and auditory inputs such
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as facial expressions and non-emotional verbal sounds.

2.3 Multisensory Integration of Emotions in the Brain

The brain goes through three main steps for integrating emotions social signals. It first uses

attention to select the emotional information for the observed data. It then integrates the affective

information where a new multisensory precept is created. In this step, all unisensory modalities

interact constantly. Finally, an evaluation and interpretation is made based on the new percept.

Multisensory integration represents the process by which information from different sensory

modalities are gathered and integrated to form an overall emotional precept. Multisensory

integration have been studied widely in neuroscience and psychology fields [23]. It comprises

various domains such as cognitive tasks, motor tasks or emotion recognition. Research includes

both behavioural experiments or imaging studies using Functional Magnetic Resonance Imaging

(fMRI), Electroencephalogram (EEG) or Magnetoencephalography (MEG) [60]. Most of recent

studies in multisensory integration focus on the interaction between faces and voices, body and

faces or body and voices [219].

Multisensory integration in emotions follows a different process in the brain [59] compared

to more general multisensory integration. In fact Davies et al. [59] have found that the brain

processes emotional information in a different manner, where brain regions such as right posterior

superior temporal sulcus (Right Posterior Superior Temporal Sulcus (rpSTS)) respond only to

multisensory emotional information, when the brain is presented with both audio and visual

emotional information.

The interaction and integration between faces and voice represents the most investigated

area in multisensory integration of emotions. Experiments range between studying static and

dynamic facial expressions. Static facial expression based experiments consist of employing

static images defining a emotional state. Dynamic facial expression based experiments, refers to

using dynamic expression through videos showing continuous change of facial expressions.

Experiments conducted by [60] have focused on static emotion recognition by presenting

participants with static facial expression ranging from happy to sad in addition to short spoken

sentences were added with either a happy or sad emotional voice tone. Participants were always
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biased and influenced by the voice when judging facial expression even if instructed to ignore

the voice stimuli.

Garrido et al. [82] have focused on dynamic facial expression and voices in emotion percep-

tion. They have investigated early cross-modal interaction between visual and auditory modalities.

They have presented participants with dynamic facial expressions such as angry, happy and

neutral as primes to auditory emotional tones happy and sad as targets. They have investigated

how visual information would affect early auditory processing and how cross-modal prediction

occurs. They have found that facial expressions affect auditory emotion processing at an early

stage. When information between visual and auditory information is incongruent, there is an

additional processing in the brain.

Multisensory integration of emotion have also been investigated through the interaction

of body gestures and voices. Studies show that body gestures do influence the perceptions of

emotions in voices [121].

Emotions are naturally multisensory, where each sensory modality influences, enhances and

complements the others. Having effective multisensory integration is crucial in understanding

emotions. Multisensory integration is not only crucial for affective perception but also major

cognitive processes. Studies show that individuals encountering difficulties in emotional un-

derstanding such as dementia, schizophrenia or autism may have a multisensory integration

impairment [236], [33] ,[74].

Most studies show an altered multisensory integration for emotional stimuli. Some research

hypothesise that this can be due to some defective neurofunctional mechanisms in some brain

areas such as the superior temporal cortex [282]. Therapy methods are focusing on assistive tech-

nologies to help individuals with emotional understanding. HCI, Human Robot Interaction (HRI)

and affective computing areas have witnessed a surge in applications in assistive technologies or

social robots [50] [24]. Applications in assistive technologies can alleviate some difficulties

faced by individuals with impaired emotions understanding. Therefore, it is imperative to capture,

interpret, and deliver the right social signals in assistive technologies.

Nowadays, following advances in sensing and intelligent technologies, signals from different

modalities can be captured through portable or wearable devices in real-time. Each modality

provides one aspect of social interaction and often needs to be integrated to derive a more
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robust and comprehensive meaning of a social situation. Creating a new percept or accurate

interpretation of data from different modalities can be very challenging, as they can come at

different timing onsets and need to be included in a noisy environment. Systems need to discern,

extract and process the right inputs to have a meaningful output and interpretation of social

signals.

The following sections outline the current research trends in both unisensory and multisensory

emotion recognition in affective computing and machine learning, focusing on facial expressions

and non-verbal speech modalities. First, the section describes state-of-the-art review of unisensory

emotion recognition focusing on the most popular ones; that is; speech and facial expression tasks.

Then, it details current trends in multisensory emotion recognition in the literature. Finally, an

outline of some critical challenges faced by current methods in multisensory emotion recognition

is given.

2.4 The Importance of Emotions Datasets

One of the most challenging steps in multisensory emotion recognition process is collecting

multisensory data reflecting various types of emotions from multiple subjects. Each dataset is

prepared using different conditions. Therefore, it can be challenging to compare models using

different datasets due to variation of subjects, data collection context or data dimension. Most

existing methods for multisensory emotion recognition are based on publicly available datasets,

where data are either acted or induced, or natural. However, there are very few datasets publicly

available. Acted or posed datasets are prepared by asking subjects to show predefined emotional

states. Induced emotions dataset, on the other hand, are usually prepared by putting subjects in

certain emotional situations. Natural emotions dataset are usually recorded in real-life situation,

where emotions expression are genuine and define the most natural emotional states. However,

the natural emotions datasets often contain other factors and noise beyond facial expression, so

state-of-the-art methods usually use acted or induced dataset emotion for evaluation and models

training.
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2.5 Facial Emotion Recognition

Facial expression recognition and classification represents one of the fast-growing and significant

research areas in recent years in the computer vision field. While the main goal is to facilitate

human-computer interaction, it forms the basis of affective computing where research is still

mainly concentrated on FER [112].

Facial expressions represent a crucial non-verbal means of expressing emotions and mental

states and are defined by the deformation of multiple muscles in the face. Distinct combinations

of these deformations form a representation of different emotions. The study of facial expression

goes back to Darwin and later to Ekman et al. [70] where they described that some expressions

are universal and have defined six basic expressions namely, sadness, happiness, disgust, fear,

anger and surprise.

Automatic facial expression recognition has developed significantly in recent years with the

development of computer vision, machine learning and image processing techniques. However

having accurate systems is still a challenging task in naturalistic and non-controlled environments,

due to changes in face dimensions, head pose or facial features. Most research report different

accuracy depending on datasets and methods used.

One can distinguish three main methods for facial expression recognition in the literature:

handcrafted features, model-based and deep learning. The majority of conventional approaches

consist of two primary methods; that is features and appearance-based. Feature-based approaches

aim at extracting facial features such as nose, brows eyes or mouth and assessing changes in the

geometrical features of these areas of interest. They usually rely on subtle changes in each facial

features and are very sensitive to noise.

Appearance-based approach, on the other hand, handle images in a holistic approach. These

methods apply spatial image analysis to the whole image and not only some regions of interest.

Deep neural networks (DNN) have been introduced recently and proved very useful in facial

expression recognition task, especially the convolution neural network (Convolution Neural

Network (CNN)). Studies have showed that CNN could distinguish several Action Units (AU)

features [139]. Action Units represent different deformation of facial muscles, defining different

facial expressions. FER tasks follow various steps such as follows :
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1. Image normalisation and noise reduction

2. Facial area detection

3. Facial features extraction

4. Training a model

5. Facial expression identification

Some models architectures follow an end-to-end approach such as deep learning models,

whereas other follow a pipeline approach such as methods using handcrafted feature extraction.

The following sections describe the most common state-of-the-art methods in facial expres-

sion recognition tasks.

2.5.1 Conventional FER Approaches

Extracting meaningful features from images in facial expression recognition represents a crucial

step in the classification process. There exists various methods to extract meaningful features

for facial expression recognition. Facial expressions changes are represented by subtle or minor

deformation of different facial parts and muscles such as brows, eyes or nose [243]. There are

two distinct methods for facial features extraction; that is, geometrical based and appearance-

based. Most methods are either based on geometrical differences or facial muscle deformation in

action units Action Units (AU), or appearance where various filters are applied to detect textures

differences.

2.5.1.1 Geometrical features

Geometrical based extraction techniques consist of extracting significant features from geometri-

cal information such as AU changes. They consist of selecting regions of interests, such as the

eyes or the mouth and detecting changes in the muscle. Geometrical-based features are one of

the most used features extraction techniques. Majumber et al. [177] have used geometrical and

appearance features in addition to a deep learning model based features fusion for automatic

facial expression recognition. The method consists of detecting different regions of the face

(eyes, nose and mouth). The geometrical features extracted represent the ratio of horizontal and
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vertical projection of each region in a sequence of frames. For each point, specific points are

extracted, such as the left corner and centre of eyes or brows. In total, there are 22 features on

each frame. The algorithm assumes that the first frame represents a neutral position of a face and

the features extracted from the successive frames represent the differences between the reference

(neutral) and the other frames. The algorithm also includes Local binary pattern (Local Binary

Pattern (LBP)) features which are detailed in the next section. The extracted geometrical and

appearance features are then fused using deep learning algorithm.

[87] have presented different techniques by using appearance model (AM) to track changes

in facial landmarks. The authors have experimented on two methods; that is, AdaBoost and

Support Vector Machines (SVM). The geometrical features are based on tracking changes in

facial expressions. Geometrical features are also used in [68], by using facial landmarks for

facial expression recognition. They use 18 facial points identifying regions of interested such as

eyes and mouth areas. Then they calculated Euclidean distances between all pointed and used an

Artificial Neural Network (ANN) classifier to infer facial expressions. Other techniques have

been used, such as curvelet local features such as in [71], where salient keys are extracted from

the face region.

2.5.1.2 Appearance Features

Appearance features are a set of image features based on the change of the texture [189]. LBP is

one of the most popular methods introduced by Ojala et al. [205]. They have been first used in

texture analysis and later applied in facial expression recognition. The basic algorithm works on

assuming that image texture has two complementary aspects which are pattern and the strength.

Liu et al. [165] have used LBP in a combination of grey pixel values. Then (Principal

Component Analysis (PCA)) is used for dimensionality reduction of the obtained features. The

algorithm utilises active facial patches using region of interests (ROI) where significant changes

occur in facial expressions. Ahonen et al. [4] also used LBP based algorithms, where each

face is divided into several regions of interest where LBP was applied. The operation resulted

in a histogram representation of the image. Histograms are concatenated and fed to a nearest

neighbour classifier for recognition.

Another popular appearance-based method consists on applying histograms of oriented

19



gradients (Histograms of Oriented Gradients (HOG)). HOG descriptors are based on constructing

a histogram feature vector by computing the accumulation of gradient direction over each pixel

of each small region. It was first successfully used in human detection [57]. Carcagni et al. [211]

conducted a comprehensive study on using HOG feature for facial expression recognition. The

authors test various HOG parameters in terms of cell size and number of orientation bins.

2.5.2 Model Based Approach

Model-based facial expression recognition methods is the process of reconstructing a model of

the face in order to track facial muscles deformation.

Tie et al. [279] propose a 3D deformable facial expression model with 26 fiducial points that

are tracked through video frames using multiple particle filters. They then used a discriminative

Isomap-based classification to classify the tracked facial deformation into a facial expression of

emotion. Gilani et al. [90] used 3D face model to compute the correspondence between different

constructed 3D models. The correspondence is achieved by morphing the model to new faces.

Chen et al. [48] have used 3D facial point-clouds on a CNN model. Their method has proved

accurate in term of speed of feature extraction and tolerance to pose changes. They have achieved

an accuracy of 86.67% using BU-3DFE dataset.

2.5.3 Deep Learning Based Approaches

Recently and with the advance in research turned toward using deep learning for FER.

Kim et al. [141] have used deep learning for facial expression recognition in the wild.

They use a descriminative convolutional neural network (Descriminative Convolutional Neural

Network (DCNN)) to fuse aligned and non-aligned facial frame input. The DCNN is also used to

align non-alignable faces in video input. Their proposed method achieved an accuracy of 73.73

% for the FER 2013 dataset.

CNN were also used in [167]. The authors used the CNN with specific data pre-processing

approach in order to overcome small datasets training. The authors added eye localisation ,

rotation correction and intensity normalisation before feeding their training data to the CNN

network. They have achieved an accuracy of 96.76% using CK+ dataset. [192] also used deep
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leaning for facial expression recognition. The author propose a novel architecture for a CNN with

two convolution layers where each is followed by a max pooling and four Inception layers. Using

Inception layers gives more depths and width to the network without affecting the computational

cost. Their model acheived an accuracy of 92.3% on CK+ and 66.4% on FER2013 datasets.

Zeng et al. [308] presents a framework for facial expression based on facial geometric and

appearance features. The have used these features along deep sparse auto-encoder (DSAE) for

classification they achieved an accuracy of 95.79% on the extended Cohen–Kanade (CK+).

2.6 Speech Emotion Recognition

Similar to facial expression recognition, SER represents an essential aspect in understanding

human emotions as it contains salient features. In addition to linguistic content, non-verbal com-

ponents play an important role in emotion comprehension. These features have been successfully

used in various research for developing SER systems. Prosodic features, for example, represent

the intonation or music of the voice and can be represented by energy and pitch [251]. Other

features are represented by phonetic features which can give a better insight on emotions.

There are various steps to follow in order to achieve emotion recognition through non-verbal

speech. The most crucial step in SER tasks consists of extracting and learning features translating

differences of various emotional states in speech. Audio features can represent both speech and

non-speech. Classification methods are then applied in order to get the classification of emotion.

This section describes state-of-the-art methods in audio features extraction in SER, then

details some of the most used method for SER classification techniques.

2.6.1 Features in Speech Emotion Recognition

Feature selection and extraction is the first and most crucial step in SER tasks. It is a challenging

task as any classification depends on it. Humans can distinguish automatically between different

vocal features, either linguistic or para-linguistic, and can distinguish between different features.

Voice features comprise various types, including excitation source, vocal tract, continuous speech,

global and local. The primary step preceding features extraction is to segment speech signal
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into temporal windows. In the following, we list some of the most popular features and their

extraction techniques used in SER.

• Mel Frequency Cepstral Coefficients (Mel Frequency Cepstral Coefficients (MFCCs)):

MFCCs are the most biologically plausible method and mimics how human process sound

[96]. They are one of the most common feature extraction method for vocal tract features,

along with LPCCs (Linear pre-sceptral coefficients). They are derived from the cepstral

domain representing the vocal tract. They are also referred to system or segments features.

They are based on vocal tract shapes for each temporal segment. They are used in various

applications of speech recognition, especially emotion recognition. They are computed as

a linear cosine transform of log power spectrum representing short-term power of signals.

• Spectral centroid: Spectral centroid represents the centre mass of the spectrum magnitude

indicating quick changes in the audio signal [277]. They are computed with the centre mass

of the magnitude of spectrum. They have been successfully used along with convolution

neural network [54].

• Pitch: Pitch represents the nature of a tone, either being high or low. It consists of the

quality of the audio signal computed by the vibration rate [214].

• Energy: Energy denotes the presence of a signal at a given temporal interval. Energy of

an audio signal is calculated by measuring the occurrence of an audio signal in a small

time window interval. [45] used energy along with volume, MFCCs, Zero Crossing Rate,

Formants and Spectral Centroid as predictors for emotion classification through speech.

Energy is usually calculated from small-time intervals and consists of finding the presence

of a signal through a temporal interval.

2.6.2 Conventional SER Approaches

Most SER models use MFCCs features to extract the best features for this particular tasks [96].

Another popular feature extraction for speech emotion recognition is spectral power, which

mainly represents the brightness of an audio signal [277]. Other forms of features are either used
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individually or in combination with the above features such as the energy or the pitch of the

signal.

Research mainly focus on two distinct areas in SER; that is, dynamic processing or static

processing. Dynamic processing or frame-based processing partitions auditory signals into frames

and focuses on learning temporal relationships between frames in emotion recognition [11].

Static processing, on the other hand, aims at the recognition of emotion through the whole

utterance of the emotion through the audio signal features [73]. For both aspects, the essential

steps reside in extracting meaningful features, which can translate the right emotion. Traditional

SER model use handcrafted features sited above and rely on classical machine learning algorithm

such as SVM in [46] [306]. Other classifiers are widely used such as Hidden-Markov Model

(Hidden-Markov Model (HMM)), Gaussian Mixture Models (Gaussian Mixture Models (GMM))

and more recently deep neural network. For example, Yang et al. have fed the above features

to SVM to recognise different emotional states [306]. Anagnostopoulos et al. [11]. have used

HMM in dynamic learning.

2.6.3 Deep Learning

Deep learning methods for SER have produced more accurate results compared to classical

methods [154]. The proposed deep learning on SER tasks apply deep learning architectures to

hand-crafted features such as MFCCs, or Spectrogram power. There have been few recent work

on applying deep learning to raw audio signal for SER tasks. Hand-crafted feature are considered

to represent the audio signal with a global level acoustic feature, where once extracted, they

tend to lose the dynamic relation in the temporal dimension. Most of deep learning work using

hand-crafted features take the feature input as a whole regardless of dynamic relationships within

time.

Niu et al. [201] and Satt et al. [245] both use spectrogram features as an input for a deep

learning network. Nio et al. [201] have proposed the application of Deep Retinal Convolution

Neural Network (DRCNN). This novel approach consists of two parts. The first is the data

augmentation step where the principal of retina and convex lens imaging is used on the set of

spectrogram features for each input. The second step involves applying a Deep convolution

Neural network on the spectrogram feature to extract high-level features. They obtained an overall
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accuracy of 48.8% on IEMOCAP dataset. Satt et al. [245] have investigated two types of network

on spectrogram features for SER tasks. They first trained a CNN on the extracted spectrogram

data, with experimentation on different network topologies. They then train a CNN in addition

to a Long Short Term Memory (LSTM) layer. Adding a LSTM layer proved beneficial to the

overall accuracy where it reaches 68% compared to 62% with CNN layers alone on IEMOCAP

dataset. Other deep learning techniques have been investigated by Lee et al. [158] where they

used a Recurrent Neural Networks (RNN) to draw feature representation of audio signals. Their

model acheived an accuracy of 63.89% on IEMOCAP dataset.

2.6.4 Bio-inspired Approaches

Bio-inspired approaches are under-explored in the literature for SER tasks. An early attempt

has been made in [36] where they use a spiking neural network for speech emotion recognition.

The primary approach consists of applying Spiking Neural Networks on raw speech data. The

SER task is applied on the linguistic part of the speech by decomposing each sentence into

different parts for each vowel occurrence. For each part, MFCCs feature are extracted. The

features are encoded into spike trains using average rate coding. The network is trained using

reinforcement learning algorithm. Another biologically-inspired approach is investigated in [168].

The author used raw speech signal as an input and used Liquid State Machines (Liquid State

Machines (LSM)) for classification. LSMs are a type of reservoir computing [80] which reservoir

represents a Spiking Neural Network. The speech input goes through several pre-processing

techniques, where linear prediction analysis is applied to audio signal. The overall classification

tasks has an accuracy of 82.35%, which is comparable to state-of-the-art for the same datasets.

2.7 Multisensory Emotion Recognition Fusion Techniques

Humans express their feelings and emotions through various social signals such as facial expres-

sions, body gestures and both verbal and non-verbal speech signals. The integration of these

different signals makes up distinct emotions precepts and enables us to communicate effectively.

With the developments of various computing areas such as in computer vision, affective

computing or human-computer interaction and having more accurate sensor technologies, it
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becomes very crucial to have adequate systems that can draw human emotional states through

multisensory integration approaches. The development of accurate real-time systems that can

derive emotional states from different signals can play an essential role in enhancing many

areas in human-computer interaction. It can have substantial positive effects on applications

such as assistive technologies or behavioural analytics. Various attempts have been made, where

research focus mainly on the development and enhancement of individual modalities recognition

techniques rather than focusing on enhancing multisensory integration and fusion techniques.

Social signals from different modalities only make sense when integrated in a specific way.

Multisensory social signals of emotions integration define the way we integrate information

from different senses and create a new precept from it. This new precept constitutes emotional

state interpretation [218]. Creating a new precept or concrete interpretation of information from

different modalities can be very challenging, as sensory information can come at different timing

onsets and need to be integrated in noisy environments. Systems need to discern, extract and

process the right inputs in order to have a meaningful output and interpretation of emotions.

Multisensory integration for emotions recognition is essential in fields such as affective com-

puting or assistive technologies [223]. Multisensory emotion recognition consists of evaluating

emotional states from various modalities such as facial expression, body gesture, verbal and

non-verbal speech. Integrating information from different sensory modalities is very crucial

as they provide additional information on subtle changes in unisensory modalities that can go

undetected in unisensory systems, such as facial expression systems only. Current research trends

aim at exploiting information from various modalities and focus on two integration techniques:

early and late fusion. Late or score-level fusion techniques is one of the most popular techniques

which works by fusing scores from individual modalities. Early feature level fusion, on the other

hand, consists of concatenating inputs at an early level and proceeding the final scoring using the

obtained features. Current state-of-the-art techniques in multisensory integration are described in

the following sections.

2.7.1 Early Fusion

Early fusion or feature level fusion is one of the most straightforward methods for fusing features

extracted from each modality. It works by concatenating extracted features together into one
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vector, then feeding them to classifiers for estimation and recognition. This fusion method often

results in a high dimensional feature vectors. The high dimensionality is alleviated by using

dimensionality reduction techniques. Feature level fusion remains the most adopted technique

for data fusion in multisensory emotion recognition.

Kessous et al. [137] have presented a framework for multisensory emotion recognition from

body gesture, facial expression and auditory speech information. The proposed method starts by

extracting features from facial, speech and body gesture input data. Combining three modalities

produces high accuracy of 78.3% compared to unisensory or bimodal emotion recognition with

48.3% and 62.5% for speech and facial modalities.

Schuller et al. [252] have concatenated audio and visual feature into one vector and then have

used Support Vector Regression (SVR) for classification as a baseline for AVEC 2012 emotion

recognition. The study uses four dimension measures for emotion recognition; that is, arousal,

valence, expectation and power.

Lingenfelser et al. have combined features extracted from audiovisual data to LSTM for con-

tinuous emotion recognition [162]. They use short timed events through a vector of space. Chao

et al. [44] also opted for early fusion; they first use LSTM-RNN for temporal feature extraction

on both audio and video. Then they concatenate the features vectors and feed them to SVM for

final emotion recognition. Liu et al. [164] have used deep learning approaches for multimodal

feature extraction in physiological data. They implemented a Restricted Boltzmann Machine

(Restricted Boltzmann Machine (RBM)) to extract features from EEG and eye movement data.

They then obtained intermediate features in the hidden layers. These are concatenated and fed to

a supervised SVM classifier.

Zhang et al. [312] have used CNN and 3D-CNN to extract meaningful features from audio

and visual modalities. Then features are concatenated using a Deep Belief Network (Deep Belief

Network (DBN)). Finally, a linear SVM is used for final classification of emotions. Ma et al.

[175] also employed a similar approach. They used a 3D-CNN for visual feature extraction and

a 2D-CNN for audio feature extraction. They then use a DBN for features concatenation and a

SVM for multisensory emotion classification.

Early fusion techniques are more useful when data from different modalities is completely

synchronised; that is, with no temporal overlap or delay. This is particularly difficult for audiovi-
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sual data, as frequently visual information is perceived earlier [196]. Another limitation of early

fusion is that it requires heavy pre-processing of different features due to the heterogeneity of

data. The difference between features from modalities is ignored, and it is very challenging and

difficult to learn any relation or relevance between modalities [224].

2.7.2 Late Fusion

Late fusion also referred to as decision level fusion is a commonly used technique in multimodal

emotion recognition, as it answers some of the early fusion challenges by emphasising the

uniqueness and individuality of each modality. In this fusion method, each modality is classified

separately. Then a rule is chosen for combining the classification results from each modality.

Considering that fusion is achieved using classification results of each modality, this fusion

technique is more advantageous compared to early fusion as the data fused have the same

dimension and format.

One of the most used decision level fusion techniques is Kalman filter as applied by Glodek

et al. [91]; that is, video is considered as a time series problem, and scores from individual

classifier are fused. The algorithm is mainly based on Markov model, with the primary goal to

reduce noise by taking several measurements and each step’s estimation into account. Glodek et

al. have used Kalman filters to track estimations for each classifier.

In decision level fusion, a local decision is derived from each individual modality classifier.

Then all decisions are combined to form a final score using various voting or classification

techniques. This method has been applied in most multisensory social signals and emotion

recognition [75]. For example, Felipe et al. [75] have proposed a real-time multi-modal system

based on decision level classifiers. The primary system consists of two parallel models for facial

and speech recognition respectively. The outcome of the two subsystems is then integrated using

a Dynamic Bayesian Network.

Schels et al. have created a classifier that fuses decisions inferred from video and physiological

EEG data [248]. Firstly a classifier for each module is created to classify different features. Then

a final classifier is built using different weights according to the accuracy on individual modules.

The authors have applied more weights to the audio and physiological data, as they have shown

more accuracy individually. They have also tested a combination of different classifiers, and the
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overall accuracy is around 60%.

Sun et al. [269] also have used late fusion by adopting weighted product rule for fusing

results from audio and visual modalities. SVM is applied for classification in each modality.

Fusion is achieved by multiplying the weights in the fusion network by the probabilities value of

each class in each obtained feature. Values belonging to the same class are added. They have

used values with greater probability for classification in each class. Huang et al. [113] used sum

and production rule to combine classification results from visual modality with facial expression

and EEG.

Other studies have also opted for the late fusion techniques. In [202] the authors have

compared late and early fusion for the prediction of persuasiveness in multimedia data where

data from multiple modalities are used to predict a person’s persuasiveness. They have explored

two techniques for late fusion which is averaging the confidence level for each classifier. They

have also experimented deep fusion where they have used the score for each classifier as an input

for a deep network classifier. This fusion technique has also been used in [67] where the authors

have developed a novel approach based on kernel extreme learning (ELM) for classification of

multi-modal physiological and audio visual data. The main characteristic for the kernel ELM

consists of one hidden layer feed-forward network, where the hidden layer doesn’t need to be

tuned and the kernel ELM is applied for each classier. Then a final Kernel ELM is applied on the

result from each classifier.

Decision level approaches represent a promising method in multisensory data fusion. How-

ever, their main challenge lies the lack of connection between modalities. In fact, in decision

level fusion, complete independence is assumed between modalities [163]. It can result in losing

crucial information about the inter-dependability and interactions of modality such as audio

and visual in emotion recognition. For example in emotion recognition, auditory information

is predicted by preceding visual information, where for a example a deformation of mouth can

predict the type of verbal sound produced.

2.7.3 Hybrid Fusion

Hybrid fusion consists of combining both feature and decision level fusion. A hybrid approach

has been designed for multimodal emotion recognition for E-learning environment [17]. First
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features are extracted from each modality and a decision level fusion is applied. Then feature

fusion technique is applied to combine all features from multimodal dataset.

Wolmer et al. [297] have proposed a hybrid technique for sentiment analysis from Youtube

videos dataset. Audio and visual features are extracted from video, and a bidirectional long short

term memory (BLSTM) is used to fuse data at feature level. SVM is use to classify text data.

Results from BLSTM and SVM are used in decision level fusion for estimating sentiments.

More recently, Amer et al. [9] have proposed a novel hybrid fusion approach for multimedia

data fusion. They first apply a Discriminative Continuous Restrictive Botlzmann Machine

(DCRBM) to account for the temporal dimension for each modality. Then a Multimedia DCRBM

is applied for the fusion of multiple DCRBMs combining multiple modalities.

2.7.4 Deep Learning Based Fusion

More recently deep learning techniques have been applied to fusion tasks, not only in feature

extraction but also for multisensory learning.

Zhang et al. [311] use CNN for multimodal emotion recognition. First, they use two CNNs

to extract features from visual and auditory modalities. They then integrate the obtained feature

in a fusion network to obtain a multimodal features representation.

Poria et al. [225] introduce a Convolution Neural Network (CNN) for sentiment and emotion

prediction in visual, audio and text data feature extraction. They use features extracted from all

modalities and input them in a Multiple Kernel Learning (MKL) classifier. Nguyen et al. [199]

have proposed a novel approach using 3D convolutional neural network (C3D) to model spatio-

temporal video information, along with DBNs representing audio and video streams. Bhandar et

al. [26] employ a modified stacked autoencoders in addition to a multilayer perceptron-based

regression model. Ortega et al. [208] propose a novel DNN architecture by integrating three

modalities: audio, visual and text. First, the network extracts individual modalities’ features

from hidden layers. Then extracted features are merged in a merging layer, followed by a fully

connected layer and a regression layer. The network is trained in an end to end fashion.
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Table 2.1: Summary of State-of-the-art multisensory integration techniques

Fusion Techniques Model Dataset Modality
Early Bimodal Deep Autoencoder [164] SEED, DEAP EEG and Eye Sig-

nals
Chao et al. [44] Emotiw 2015 Audio and Visual
Kessous et al. [137] Own database Audio and Visual
Schuller et al. [252] AVEC Audio and Visual
Linhenfelser et al. [162] Belfast Audio and Visual

Late Goltek et al. [91] AVEC Audio and Visual
Felipe et al. [75] SAVEE Audio and Visual
Schels et al. [248] AVEC Audio, Visual
Sun et al’ [269] AFEW Audio, Visual
DNN Nojavanasghari et al. [202] POM Audio, Visual and

Text
Duan et al. [67] EEG Audio, Visual and

EEG
Huang et al. [113] EEG capture Facial and EEG

Hybrid Bahreini et al. [17] SEMAINE dataset for training and a dataset with
12 participants for evaluation of the software

Audio and Visual

Olmer et al. [297] Youtube Audio, Visual, Lin-
guistic

Amer et al. [9] AVEC Audio and Visual

Deep Learning CNN Zhang et al. [311] RML Audio and Visual
CNN Poria et al. [225] IEMOCAP Audio, Visual, and

Text
DBN Nguyen et al. [199] eNTERFACE’05 Audio and Visual
autoencoder Bhandar et al. [26] RECOLA Audio and Visual
DNN Ortega et al. [208] RECOLA Audio, Visual and

Text
DBN Zhang et al. [312] eNTERFACE’05 Audio and Video
DBN Ma et al. [175] eNTERFACE’05, RML Audio and Visual

2.8 Challenges in Multisensory Emotion Recognition

Table 2.1 summarises the multisensory integration models described in the previous sections.

Most of the presented work describe fusion techniques for audio and visual data with categor-

ical emotions. Work presented in the literature displays varying accuracy results depending

on multiple factors such as datasets quality, feature extraction techniques, accuracy metrics,

experimental setup and mainly fusion techniques. For studies using categorical emotions with six

basic emotions and overall accuracy as metrics, the best performing models are the ones using

deep learning either as features extractors or fusion technique. Early research focused more on

the use of early fusion and later on late fusion. Recently, the most popular researched topic is

using deep learning models [223].

Although most cited techniques have promising overall accuracy results, they face various

challenges when it comes to social signals of emotions data. Multisensory integration of emotions
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have brought various challenges due to their complex types of interaction between modalities.

State-of-the-art methods on multisensory social signals and emotion recognition rely only on

applying conventional fusion techniques.

However, there is a significant difference in the multisensory processing of emotion data

compared to any other type of data in the human brain as explained in section 2.2. In this sense,

social signal of emotions integration should be different compared to general data integration.

One can consider social signals integration more as a constant communication and interaction

between sensory modalities rather than a simple fusion of features or classification results [55].

Current studies on social signal and emotions data fusion and recognition focus on the

integration of audio and visual data. This includes many challenges, as identified in [131].

Katsaggelos et al. [131] have identified some challenges for audiovisual data fusion in general

that are all applicable for general sensory data integration beyond social signal integration, which

are summarised as below [19]:

• Reliability: the reliability of each modality varies in a noisy environment. Some modalities

can be more reliable than others, where, for example, in a noisy auditory environment,

visual input is more important.

• Inconsistency: each modality might produce conflicting or inconsistent data. For example,

each data from each modality derives conflicting emotional states. There is a need to

resolve their uncertainty and derive a commonly agreed conclusion.

• Interaction: there exists cross-modal interaction and prediction between different modali-

ties. This occurs when signals from one modality can be used to predict signals in another.

For example, visual signals can be used to predict an auditory sound. Current fusion

techniques do not focus on the interaction between different modalities.

• Integration timing: integration time is particularly important for continuous and real-time

recognition. The integration of data from different modalities needs to occur at a particular

time after the onset of the sensory input. If the integration time is too long, data from

different sources might not be able to be integrated.
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• Asynchrony: time asynchrony where a visual input precedes auditory inputs is particularly

not accounted for in feature level fusion. Hence time dimensionality is mostly ignored.

This could result in errors or accuracy deficiency. Especially for social signals where time

plays an important role in the evolution of emotions [12].

• Real-time: state of the art fusion techniques rarely account for real-time applications where

a uni-modal classifier can fail, due to a defect of a sensor, for example. This can usually

solved by relying on the classification and estimations of other non-failing classifiers [124].

Although existing techniques and state-of-the-art methods attempt to address some of the

challenges, each method still have various drawbacks which can be summarised as follows :

• Early fusion techniques lack handling multisensory data when there is a difference of

reliability between modalities

• The main challenge facing late or decision-based fusion is the discrepancies between

results from different modalities

• Another main challenge in late fusion is a problem with time synchronisation, as results

from different modalities can translate temporal delays.

Another problem faced by state-of-the-art multimodal fusion for emotion and affective

computing is the dimensionality challenge. Affective data is highly dimensional, where extracted

features from various modalities contain thousands of variables. Dimensionality issue can be

alleviated using dimensionality reduction methods, which have been employed in order to reduce

features space. Denis et al. [232] use principal component analysis along with linear discriminant

analysis for dimensionality reduction.

Another major challenge from state of the art method, including deep learning methods is

that these methods usually ignore the constant cross-talk and temporal relationship between

different modalities, where modalities receive and send feedback to each other and information is

integrated within a temporal window. The recent study in cognitive neuroscience on cross-modal

modulation in emotion processing [82] has shown that cross-modal interaction is particularly

crucial in emotion recognition, where signals from different modalities can complement each
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other in learning and thus signals in one modality can used to predict the other. For example,

dynamic facial expressions can influence vocal emotion processing.

This thesis aims at answering three main challenges of the existing multisensory fusion

techniques in social signals of emotions recognition which are interaction, reliability and

asynchrony. The work in this thesis addresses those challenges by using findings in neuroscience,

to try to model the constant cross-modal interaction between modalities, more robustness to

noise.

2.9 Summary

This chapter presents existing work on emotion recognition in general and multisensory integra-

tion for social signals of emotions in particular. It first starts by describing the nature of emotions

in psychology. It describes the different emotion models as identified in psychology, such as

categorical or dimensional emotions. It also provides an overview of multisensory integration

and processing of emotions in the brain. Literature shows that emotions are mainly multisensory,

where humans understand and process emotions principally in a multisensory way. Work also

demonstrate that multisensory integration in the brain follow various paths, where various regions

of the brain are involved in the processing, and integration including early sensory regions.

The chapter outlines the related work in unisensory emotion recognition focusing on audio

and visual emotion recognition tasks. After that, it describes the current trends in multisensory

emotion recognition and existing fusion techniques. Finally, this chapter presents the current

challenges faced by current multisensory integration techniques and current limitation of these

methods. Challenges includes many aspects such as synchrony, timing, reliability, consistency

and more importantly translating the constant cross talk and interaction between modalities.

The next chapters describe novel biological architectures designed to address some of the most

significant challenges faced by current fusion techniques in multisensory emotion recognition

such as interaction, reliability, asynchrony and interaction.
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Chapter 3

Introduction of Spiking Neural Networks

3.1 Introduction

Spiking Neural Network (SNN) represent the third generation of artificial neural networks. They

are composed of spiking neurons inspired by biological neurons behaviours. They are different

from artificial neural networks in various aspects, where they are more biologically plausible and

follow different learning rules. SNNs represent the primary means for the implementation of the

proposed biologically inspired models for both unisensory and multisensory emotion recognition

in this thesis.

This chapter provides an introduction to SNNs. It first gives an overview of biological neural

networks. Then, it describes how information is transmitted in the brain between various brain

regions. It introduces the main components of SNNs and various steps in implementing them.

These include:

1. Computing neural dynamics through various neuron models.

2. Overview of different SNN topologies and architectures.

3. Description of the existing learning algorithms for SNN.
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3.2 Biological Neural Networks

Neurons are the primary component in the brain. They have different roles within brain functions,

from cognition and memory to motor action. The human brain can contain around 100 billion

neurons with billions of connections [169]. Neurons have a particular shape, compared to other

cells in the body. Having a longer shape enables them to send signals very rapidly and with

exceptional precision to other neurons.

Neurons are composed of three main parts: dendrites, axons and cell body (stoma) as detailed

in Figure 3.1. Dendrites which resemble small branches help neurons to receive information

and stimuli from linked neurons and transmit signals to other neurons’ cell body. Cell body or

stoma holds neurons’ nucleus and behaves a non-linear processor that creates a spike if the input

exceeds a certain threshold.

Neurons receive signals from dendrites and transmit information through axons. Many axons

are covered with an insulating substance called myelin. Myelin is produced by Scawnn cells.

There are gaps in the myelin refered to node of Ranvier. Their main function is to facilitate a

quick conduction of nerve impluses.

Axon terminal represent the axon endings and are button shaped. They make synaptic

connections with other nerve cells.

Communication between neurons happens at the synapse level, representing a junction or

link between them. Pre-synaptic cell sends signals, and post-synaptic cell receives a signal.

The brain is a very complex system, where signals are transmitted very rapidly. Connections

between neurons change according to their spiking patterns. These modifications make up various

cognitive patterns [114].

3.2.1 Information Transmission in the Brain

Information transmission in the brain goes through waves referred to as spikes. Spikes are

high-speed electrical signals that propagate information from one neuron to another. Information

is transmitted through junctions (synapses) when an axon terminal of pre-synaptic neurons is

very close to the cell body of a post-synaptic neuron.

The transmission creates a small gap referred to as synaptic cleft, where a chemical neuro-

36



Figure 3.1: Components of neurons

transmitter is released following the action potential generated by the pre-synaptic neuron. This

neurotransmitter is then detected by post-synaptic neurons, which permit an electrical current

to be passed, as shown in Figure 3.2. The primary role of synapses is to transform electrical to

chemical molecules.

The number of chemical neurotransmitters defines the strength of the electric current. Changes

in chemical synapses govern the synaptic strength effectiveness. This operation sets synaptic

plasticity. Synaptic plasticity describes changes of connection and modulate synaptic efficacy. It

helps create neuronal learning and memory, which constitute synaptic plasticity [122].

3.3 Spiking Neural Networks

Spiking Neural Networks are the third generation of neural networks [176]. They aim to bridge the

gap between artificial intelligence and neuroscience by using biologically inspired mathematical

models to model neurons behaviours. The main difference between SNN and classical Artificial

Neural Networks (ANN) remains in the way they process data based on spikes. Although classical

ANNs get some inspiration from biological networks, they diverge in their implementations.

ANNs use neurons with continuous variable outputs, and training usually happens using error

backpropagation. Neurons in SNNs communicate through series of spikes by firing excitatory
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Figure 3.2: Transmission of information in the brain

inputs when they reach a certain threshold. Then, these spikes are decreased by inhibitory inputs

[221]. Calculations are mainly achieved by differential equations representing various biological

processes. The membrane potential of neurons represents the most critical computation aspects.

3.3.1 Neuron Models

Neurons models represent the computation of behaviours for each neuron in the brain. Neurons

communicate by generating action potential representing electrical pulses [126], constituting the

core of communication in spiking neural models. Spiking neural networks work by processing

information from various inputs and produce one spiking output signal. They also operate by

generating spikes which increase at excitatory inputs and decrease at inhibitory inputs. Spikes

are fired when internal variables reach a certain threshold. Timing in spiking neural network

plays a significant role in implementing neuron models [85]. This sequence of time-based firing

information represent spike trains. Modelling spiking neurons is principal in two main aspects:

computing the evolution of the membrane potential and setting a mechanism of spike generation.

3.3.1.1 Huxley-Hodgkin Model

Huxley and Hodgkin model is first presented in [110]. The model is based on modelling the

electrochemical information transmission between neurons using electrical circuits containing
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capacitors and resistors. The model can be translated in the following equations [215]:

C
du
dt

= gNam3h(u−ENa)−gK n4(u−EK)−gL(u−EL)+ I(t) (3.1)

C represents the capacitance of a membrane, gNa , gK , gL represent the conductance parameters

denoting the different ion channels for the neuron-transmitters for sodium and potassium and L

represents leak conductance.

The equilibrium potentials for each ion channel are represented by EK , EL, ENa .

τn
dn
dt

=−
[
n−n0(u))

]
,τm

dm
dt

=−
[
m−m0(u))

]
,τh

dh
dt

=−
[
h−h0(u))

]
(3.2)

m, h, and n are variables describe voltage-dependent channels opening and closing. τn, τm

and τh represent membrane time constant for each voltage-dependent channel.

Figure 3.3: Electrical circuit representing membrane [110]

The model can be described by the circuit detailed in Figure 3.3

Hodgkin-Huxley model successfully models biologically realistic properties of membrane

potentials, with realistic behaviours comparable to natural neurons. This is characterised by a

sudden and large increase at firing time, which is followed by a refractory period where a neuron

cannot spike again, followed by a time interval where the membrane is depolarised.

Although Hodgkin-Huxley model demonstrates to be very powerful to model neuronal

behaviours realistically, its implementation is very complex for numerically solving the system
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of differential equation using SNNs. Computing the temporal interaction in the HH model is also

computationally very costly.

Large networks can be very difficult to model using the Hodgkin Huxley model [83], and it

is not particularly suitable in more complex tasks such as pattern recognition.

3.3.1.2 Leaky Integrate and Fire Model

Integrate and Fire (IF) more specifically, Leaky Integrate And Fire (LIF) models are a simpler

model compared to Hodgkin-Huxley neuron models. LIF models were introduced by Abbotts

[2]. LIF models are a simplification of Hodgkin-Huxley models by considering every spike as

a uniform event defined solely by the time of spiking. Besides, the shape of action potentials

is neglected in LIF models. The general dynamics and evolution of membrane potential in LIF

model neuron can be computed using a single first-order linear differential equation:

τm
du
dt

= urest−u(t)+RI(t)) (3.3)

where τm = R C represents a membrane time constant, C is the capacitor and R is the resistor. RI

represents the circuit resistor. When a membrane reaches a threshold uthresh, it is reset to a lower

value than urest .

The membrane potential u is equivalent to the urest when in resting phase. When the current

arrives to neurons, the capacitor is fed an electric current and is discharged through the resistor.

The membrane potential returns to urest when the current stops by leaking through the resistance

until it reaches the resting potential urest .

Figure 3.4 shows the LIF circuit. After receiving a stimulus, the membrane potential increased

up to a threshold VT. After that, v(t) is reset to its rest value Vrest. At this point a spike is

generated.

Compared to Hodgkin-Huxley models, LIF models are less biologically plausible. However,

LIF is less computationally costly. LIF model is suitable when using SNN in machine learning

and pattern recognition applications.
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Figure 3.4: The leaky integrate-and-fire circuit. [198]

3.3.1.3 Izhikevich Model

The Izhikevich model is introduced in 2003 by Izhikevich [118] to alleviate some problems

arising from the Hodgkin-Huxley model in terms of computational complexity and capability of

LIF models. The simplification of Izhikevich model is achieved by reducing previous models to

a two-dimensional system of ordinary differential equations. This model is particularly useful to

simulate extensive brain models using real biological neurons. The model can be summarised

through the following differential equations [118]:

dv
dt

= 0.04v2 +5v+140−u− I(t) (3.4)

du
dt

= a(bv−u), (3.5)

where v is the membrane potential and u represents the membrane recovery which negatively

feeds back to v. The model uses auxiliary after spike resetting represented by :

if v≥ 30mV , then

 v← c

u← u+d
(3.6)

where a is the time scale of the variable u. b represents the sensitivity of u to the sub-threshold

fluctuation of membrane potential v. c is a reset value of the membrane potential v. d describes

the reset value after spikes of u. Neurons in various brain regions can exhibit different value
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choices of the above parameters.

3.3.2 Synapse Models

Synapses represent the link by which neurons communicate and pass information as described

in Section 3.2.1. Chemical reactions represent the primary means of information transmission,

making pre-synaptic and post-synaptic neurons electrically coupled. Neurons model can also be

applied for synaptic spikes transmission. There exist two types of synapses: conductance and

current based models. When signals pass through synapses they provoke the following reactions

at the post-synaptic level:

• The flow of post-synaptic current (PSC)

• Opening of neuron membrane on nearby ion channels.

• Changes in voltage of membrane by either increasing or decreasing. This is referred to as

post-synaptic potential (PSP)

In synapses, the direction of the post-synaptic flow current and voltages depends on the nature

of neurons. In excitatory neurons, PSC depolarises the membrane and triggers the excitatory

post-synaptic potential (EPSP). For inhibitory neurons, PSC flow results in a membrane hyper-

polarisation and an inhibitory post-synaptic potential (IPSP). It is directly linked to the strength

of a synapse.

3.3.3 Architectures of Spiking Neural Networks

Similarly to classical Artificial Neural Networks (ANN), SNNs are designed using different

topologies described as follows:

• Feedforward: In this topology, information flows in one direction with no feedback connec-

tion. These kind of topology are usually used in SNN to model low-level sensory systems,

such as vision systems. They have also been used for binding tasks such as Spatio-temporal

spikes or spike synchronisation [273]. They have been used as topology in [260], and

[276].
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• Recurrent: Neurons interact through feedback connections, where a dynamic temporal

behaviour represents the network. Although this topology is harder to compute, it can have

higher computational power. Recurrent architectures are particularly useful for modelling

or analysing dynamic objects. However, it is computationally more challenging to apply

supervised learning on this type of architecture [62]. Recurrent architectures can also be

applied to investigate extensive population activities and analysing neuronal populations

dynamics.

Feedforward topology is the most common topology for general pattern recognition as it

mimics the hierarchical structure of visual cortex [5]. This topology represents the right candidate

for tasks such as emotion recognition.

3.3.4 Learning in Spiking Neural Networks

The primary mechanism for memory and cognitive function in the brain is primarily governed

by synaptic plasticity as described in Section 3.2. Computing synaptic plasticity can take various

forms, where the only difference resides in the time scale. Some models rely on pulse paired

facilitation while others use decay or even long term potentiation or depression.

3.3.4.1 Unsupervised Learning

Unsupervised learning in SNNs follows Hebb’s law. Hebb was the first to introduce the theory

on synapses modifying their weights to process and store data [103]. Hebb’s formula stipulates

that the change in weights affects synaptic coupling. Coupling between synapses strengthens

whenever neurons fire together. The original Hebb’s formula did not include the synaptic depres-

sion, which is later added along with potentiation by Stent et al. [266]. Automatic reorganisation

of connection in the Hebbian learning permits the ability of unsupervised learning with various

potential applications, such as clustering or pattern recognition. Unsupervised learning with

Hebbian formula enables learning of distinct pattern without using classes labels or having a

specific learning goal [109], [29], and [95].

Following neurophysiological studies, Markram et al. [183] have demonstrated that the

timing of spikes closely influence the plasticity computed through Hebbian learning. Besides,
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more experiments indicate that the order of pre-synaptic and post-synaptic spike creates different

Hebbian processes. The order is particularly important as it either induces depression or potenti-

ation. This phenomenon is described as Spike Timing Synaptic Plasticity (STDP) [39]. When

pre-synaptic spikes precede post-synaptic spikes, it creates a potentiation which mathematically

represents an increase in weights. Otherwise, if post-synaptic spikes precede pre-synaptic, this

induces a depression or a decrease in weights. STDP process is a modified version of Hebbian

learning [85]. STDP learning can be translated though the following general equation:

d
dt

w ji(t) = a0 +a1Si(t)+a2S j(t)+a3Si(t)S̄ j(t)+a4S̄i(t)S j(t) (3.7)

w ji(t) represents the strength of the synaptic coupling from neuron i to neuron j. Pre-synaptic

spike trains are represented by Si(t) and post-synaptic spike trains are represented by S j(t). Spike

trains are represented by Dirac impulses for each firing time:

S(t) = ∑
f

δ(t− t f ), (3.8)

where t f represents firing times for spike trains.

S̄i(t) and S̄ j(t) represent the low pass filter of pre-synaptic Si(t) and post-synaptic S j(t)

respectively. The level of change in the synaptic efficacy (weights) are governed by the constant

values a0 ... a4. The constants are related to weights and vary from 0 to (wmax−w)

One of the most popular STDP variant is the online STDP. The value for the pre-synatptic

trace is increased by 1 every time a spike reaches a synapse. It then decays exponentially in any

other cases. The weight modifications are computed using the synaptic trace using the following

equation:

∆w = η(xpre− xtar)(wmax−w)µ (3.9)

where ∆ w represents the weight change, η represents the learning rate, µ represents the

weight dependence of the previous weight. , xtar is the target value of the pre-synaptic trace and

(wmax is the maximum weight.
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3.3.4.2 Supervised Learning

The implementation of supervised learning in a Hebbian way for biologically inspired models

is achieved by adding a supervision signal to reinforce firing at target times. Studies of motor

learning and control have confirmed supervised learning in the brain, primarily in the cerebellum

and the cerebellar cortex [147]. In the motor, cortex uses supervised learning to learning specific

representations of the body and its environment [298], [66]. Some cognitive tasks may also be

processed through supervised learning in the brain, such as language acquisition [151].

Supervised learning in SNNs is achieved through applying Hebbian learning. The supervision

is done by spike-based Hebbian process by reinforcing the post-synaptic neuron in order to fire

at preset timing and not spiking at other times. The reinforcement signal is transmitted through

synaptic currents.

3.3.4.3 Reinforcement Learning

This kind of learning enables learning directly from the environment where SNN includes a

rewarding signal spike. Reinforcement learning is directly inspired by how animals learn new

instructions following constant feedback and reactions. Actions are mainly reinforced by positive

reward, whereas undesired action receives by negative feedback. Reinforcement learning has been

successfully applied, especially in machine learning [30]. Reinforcement learning in biological

neural models have only been investigated recently [210]. Several models of reinforcement

learning in SNN have been developed in the literature, such as the work from [72]. Farries

and Fairhall [72] have combined STDP learning with reinforcement learning. Most proposed

reinforcement learning models follow the following general equation [159]:

d
dt

w ji(t) = c ji(t)d(t), (3.10)

where w ji represents the weight of a synapse from neuron i to neuron j. c ji represents an

eligibility trace collecting weights changes from the general STDP learning process. d(t) is

defined by:

d(t) = h(t)−h0 (3.11)
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h(t) is the neuro-modulatory signal and its mean value is represented by h0. Reinforcement

learning in SNNs can be both applied in feedforward or recurrent architectures [159]. There have

also been applications in applying reinforcement learning in SNNs mainly in robotics [261] [27].

3.4 SNN Simulators

SNNs are implemented differently from traditional Neural Networks due to their nature. They

rely on spike timing rather than rate; therefore, their implementation or simulation needs to take

into account the precise timing of each spike firing. Thus, SNNs can be described as several

timed spikes. Parallel computing can be beneficial for SNN implementation, due to spiking

neurons not needing to receive weight values from each pre-synaptic neuron at each computation

step [215].

There have been various attempts to create full simulations for SNNs both in computational

neuroscience models and machine learning. Some first attempts such as NEURON [107] and

GENESIS [31] have aimed at simulating biophysical models of individual neurons rather than

whole networks of neurons. Hines et al. [107] have introduced a novelty in NEURON by imple-

menting event-driven mechanism and parallel computing ability in [108]. This addition enabled

more applications and computations using NEURON simulator. Verstraeten et al. [291] are the

first to introduce a toolbox for reservoir computing. They create a toolbox for the implementation

of three reservoir implementations and simulation: Backpropagation Decorrelation (BPDC)

learning rule, Echo State Networks (ESNs) and Liquid State Machines (LSMs).

Mouraud et al. [194] applied parallel computing for SNN simulation with a parallel event-

driven simulator. They present Distributed And Multi-threaded Neural Event-Driven DAMNED,

a simulator that runs efficiently and uses multi-threaded programming for communication

optimisation. They use an event-driven architecture. They implemented the simulator on a cluster

computer.

Goodman et al. [92] have introduced BRIAN – a clock-based SNN simulator with the ability

to have event-driven computation and was the first to create a simulator using Python. BRIAN

enables the implementation of various neuron models by implementing differential equation in

ordinary mathematical notations. They use vectorisation, which enables efficient simulations.
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BRIAN is particularly useful for simulating bio-inspired architectures and includes easy-to-use

syntax. BRIAN has applications in computational neuroscience and simulating machine learning

algorithms.

More recently, Hazan et al. [102] have introduced BINDsNet a platform for applying SNNs to

machine learning tasks. BINDsNet is implemented in Python with a wide range of functionality

focused on machine learning and reinforcement learning. It is built using PyTorch library for

deep learning. The implementation enables the implementation of SNNs in both CPU and GPU

environment. Although this simulator is very promising, it fails to implement the clock-driven

calculations in SNNs.

This thesis identifies BRIAN as the best simulator suitable for the implementation of bio-

inspired models for multisensory emotion recognition. BRIAN simulation is more biologically

plausible, and the use of clock-driven computing makes it more suitable for the models proposed

in this thesis.

3.5 Applications of SNN

SNNs have been successfully used to simulate the brain processes for different tasks, including

pattern recognition and image processing. Wu et al. have used an SNN architecture based on

Integrate-and-Fire IF neurons [301]. The design mimics the visual cortex, which consists of

various receptive fields for colour and orientation. Weights matrices are used for filtering different

patterns or colours.

Iakymchuk et al. [115] have used an SNN for pattern classification where the STDP algorithm

is applied. STDP represents a biologically inspired learning method in an unsupervised manner.

The main spiking neural network used in this work is mainly created for feature extraction

with applications in classification for embedded systems configuration. Experiments have been

conducted on a handwriting digit dataset.

Spiking neural networks have also successfully been used in modelling spatio-temporal data

such as EEG [129]. Kasabov et al. have created a framework using a SNN, called NeuroCube

for modelling spatio-temporal interaction of various brain imaging techniques. Fu et al. have

created a feedforward SNN architecture to recognise faces in a supervised learning manner [79].
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They employ a hierarchical architecture to simulate the visual cortex using SNN with supervised

learning for facial expression recognition.

More recently, there have been a surge in broader applications. Piotr et al. [207] applied SNNs

for classifying Fashion-MNIST images. They have used BindsNET library to implement and

SNN with LIF and Bernoulli distribution for input encoding. Al Zoubi et al. [6] have proposed

the use of SNNs to build a highly adaptive supervised learning based on divide and conquer

rule and hierarchical abstraction. Wu et al. [300] have proposed a model for automatic sound

classification. They proposed a framework using Self Organising Map (SOM) implemented

through SNN. It starts by extracting features from sound and feature representation learning.

They used temporal SNN classification in a bio-inspired fashion.

Rathi et al. [229] have presented a cross-modal framework using SNN for the classification

of digits. They create two unimodal ensemble using SNN and created connections between both

ensembles. They have demonstrated that adding connections between the ensembles increased

accuracy with 98% compared to 93.20% and 96% for visual and auditory unimodal, respectively.

Although this work proposes a novel approach on multimodal pattern recognition, they fail to

define a biologically plausible integration. The authors trained the unimodal ensembles first

for a particular iteration amount than connected the two modalities. This method is not in line

with multisensory integration pathway in the brain, where cross-modal interaction and learning

happens from the onset of stimuli.

3.6 Summary

This chapter has introduced the structure and basis of information transmission in the brain.

It also has detailed mathematical models translating the brain operations, which represent the

essential components of SNNs. It has also introduced various learning models in the literature

and described some successful applications of these networks. In addition it has presented various

possible architectures for SNN implementation. This thesis focuses on applying feedforward

architectures which represents the most biologically plausible one for visual, auditory and

multisensory tasks modelling.

The next chapters 4 and 5 will describe the proposed models in this thesis for both unisensory
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and multisensory emotion recognition. The proposed models are implemented using SNN as

described in this chapter.
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Chapter 4

Bio-inspired Unisensory Emotion

Recognition

4.1 Introduction

The previous chapter has given an introduction and general background of spiking neural

networks (SNNs), based on which this chapter will detail how to use SNN for unisensory

emotion recognition. This also forms the foundation for multisensory integration models that

will be described in Chapter 5.

As described in Chapter 3, there exists a variety of architectures, neuron models and learning

techniques in SNN. The application of SNN for pattern recognition and classification often needs

to identify the appropriate SNN architecture and topology for the task in hand. In unisensory

emotion recognition, we will choose a hierarchical topology that has been successfully adopted

for general pattern recognition in SNNs [65]. The topology follows the biological network

topology in the auditory and visual cortex in the brain [290], and [182]. We use LIF neuron

model, and apply STDP learning algorithms. The use of SNN will involve preparing input for

SNN via feature extraction and input encoding, training a SNN, and perform classification.

After choosing the right architecture for the network, the implementation of the models goes

through various steps, as shown in Figure 4.1.

1) Features extraction for each modality that is: audio and visual features;

2) Input encoding consisting of Spike-train generation for SNN;
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3) Learning method for SNN;

4) Training phase;

5) Labelling phase.

Figure 4.1: Process of applying SNN for unisensory emotion recognition

4.2 Architecture and Topology

This thesis selects a hierarchical model proposed in [65]. There are two reasons. First of all,

this model has been successfully adopted for pattern recognition tasks. Secondly, the biological

network topology in the auditory and visual cortex in the brain justifies the chosen hierarchical

topology [290], and [182]. The architecture is composed of three layers: input, excitatory, and

inhibitory layer. In the following, we will give a brief introduction of them.

1. Input Layer: The input layer is the first layer of SNN and its primary goal is to encode

the input to be suitable for SNN network. This thesis focuses on two types of inputs: (1)

visual input, consisting of facial expression images, and (2) audio input compromising raw

acoustic signals. On these two types of input, feature extraction process will be run and

the resulted features are encoded into Spike-trains to be fed to the next layers.

2. Excitatory Layer: The excitatory layer contains excitatory neurons groups and receives

input in the form of spike-trains from the input layer. Excitatory neurons are excited by

external stimuli such as audio or visual features. Excitatory layer neurons trigger a positive
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increase in the membrane of post-synaptic neurons when they reach a threshold. In this

layer weights of neurons are updated, and primary learning happens.

3. Inhibitory Layer: The inhibitory layer contains inhibitory neurons. These neurons trigger

a negative change in the membrane of a post-synaptic connected neuron. The inhibitory

layer contains neurons connected to the excitatory layer in a lateral fashion, where each

neuron in the inhibitory layer is connected to all neurons in the excitatory layer, at the

exception of the neurons it receives connection from them. The number of neurons in the

excitatory layer are proportionate to the number of neurons in the input layer.

Figure 4.2 presents a general example of SNN topology and architecture for facial expression

recognition task. The original architecture from [65] is modified to include convolution patches.

Each input is divided into various convolution windows or patches. Each patch is connected to a

number of neurons in the excitatory layer. Neurons in each patch of the input layer are connected

in a all to all way to the corresponding excitatory neurons group. There is no connection between

patches and each group of neurons receiving connections from each patch will learn a specific

feature. The excitatory neurons are connected in a lateral fashion to the inhibitory layer. Each

group of neuron in the inhibitory layer will inhibit all groups from the excitatory layer apart from

the one it receives input from.

In this thesis, both unisensory and multisensory emotion recognition models are built using

this basic SNN architecture with three main layers. In the following, we will introduce the setup

of a SNN for unisensory emotion recognition on visual and audio input. More specifically, we

will first introduce feature extraction (in Section 4.3), input encoding (in Section 4.4), neuron

models (in Section 4.5), learning algorithms 4.6), training process (in Section 4.7), and prediction

(in Section 4.8).

4.3 Feature Extraction

The first and most crucial step in applying SNNs to emotion recognition is to extract meaningful

features depending on the type and nature of the input. This thesis focuses on audio and visual

modalities consisting of non-verbal speech features and facial expression.
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Figure 4.2: SNN for unisensory emotion recognition: Raw input goes through features extraction
then input encoding. It is then fed to excitatory layer. The excitatory layer is connected to the
inhibitory layer in a lateral fashion

4.3.1 Facial Features Extraction

Before proceeding to feature extraction, raw input goes through various pre-processing steps.

First, all input images are resized to a uniform size and converted to greyscale. Then all input

images are cropped to the face area. Feature extraction consists of defining essential facial

features, distinguishing the main features that play a role in emotion recognition. Chapter 2

describes some of state-of-the-art methods in facial expression features extraction. This section

describes feature extractions techniques chosen for the application of SNNs in facial expression

recognition. The aim in the chosen features extraction technique is to distinguish between

different facial features and prepare the input for SNN.

Feature extraction starts by defining contours of essential facial characteristics in input

images. Spatial filters represent a beneficial way for contour detection in facial expression inputs.

Filters such as Different of Gaussian (DoG) are successfully applied to pre-process input data

and prepare it as input to SNNs. For example, DoG has been applied on pre-process handwriting

images [138]. This thesis applies Laplacian of Gaussian (LoG) to extract contours and edges
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of facial expression features on input images. Although LoG and DoG are quite similar, where

DoG represents an approximation of the LoG. LoG is selected as it achieves higher precision

[184] and is formulated in Equation 4.1.

∇
2Gσ(x,y) =

∂Gσ(x,y)
∂x2 +

∂Gσ(x,y)
∂y2 , (4.1)

where ∇2 is the Laplacian operator, σ is the smoothing value, and Gσ(x,y) is the Gaussian filter

applied to the image, given by:

Gσ(x,y) =
1

2πσ
2 e−

x2+y2

2σ2 (4.2)

Gaussian filters are first applied to remove noise and smooth the input image. Then Laplacian

filters are then applied to detect, locate and extract all critical facial contours and features. Having

well defined facial expression features enables input encoding and preparation for SNN.

4.3.2 Audio Feature Extraction

Audio signal processing goes through various steps such as analysis, feature extraction and

prediction of behaviour. There exist various ways to extract features from audio signals in

SER tasks. State-of-the-art methods in SER have used feature extraction techniques such as

Mel-Scale Spectrogram, pitch, MFCCs or raw input [274]. They also have used a combination

of approaches, such as prosody and spectral features. Rathi et al. [230] use raw audio data and

generate Lyon’s cochlear model. This thesis first explores several methods for features extraction

in audio, such as raw features, Mel-scale Spectrogram and MFCCs. The main goal in applying

feature extractions techniques to SER is to minimise the number of features, simplify and create

distinctive features.

This thesis uses audio features that have achieved the best performance in state-of-the-art

SER tasks [240]; i.e., Mel-scale Spectrogram, and MFCCs. The choice of audio features for

bio-inspired model using SNN in SER tasks is challenging because input needs to be encoded

into binary data and needs apparent, distinctive and concise features.

Mel-scale Spectrogram
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Mel-scale Spectrogram features are successfully applied in emotion recognition in the

literature [246]. Mel-scale frequency represent the frequency perception in humans and represent

the spectrum of frequency in audio signals [185]. For each audio sequence, Mel-scale spectrogram

are extracted using Fast Fourier Transform (FFT) [274]. First, the magnitude spectrogram is

calculated from the raw input signal. Then it is mapped onto the Mel scale with a power spectrum.

Mel Frequency Cepstral Coefficients (MFCCs)

MFCCs represent one of the most popular ways of extracting handcrafted features for emotion

recognition in the SER tasks. The main characteristics of these features reside in mimicking

speech processing in the human ears by applying Cepstral analysis [131]. MFCCs are extracted

from the Mel-Scale Spectrogram by applying logs of power which are computed for each Mel

frequency. Then Discrete Cosine Transform is applied on the Mel log powers. The log Mel

spectrum is then converted back to temporal signal. The Cseptral representation of the speech

enables the identification of local spectral properties of audio signals for each temporal frame.

Figure 4.3: The process of extracting MFCCs features from raw audio signal

4.4 Input Encoding

Input encoding is an essential step in the application of SNNs for emotion recognition. Input

encoding enables transforming input into a spike patterns. The process involved converting real

values input into temporal Spike-train. There are various methods for input encoding, where the

choice of methods depends on the nature of input.

Visual feature encoding Facial features encoding consists of transforming each pixel into

a neuron. Thus the number of neurons is equivalent to the total number of pixels. Poisson

distribution is the most popular method for input encoding applied to encode input into spike-

trains [41]. Poisson distribution is used to compute features into spike-trains, which represent a
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binary value of either true or false for each neuron. The Poisson distribution P is given by the

following equation:

P(n) =
(rt)n

n!
exp−rt (4.3)

where n is the number of spikes occurring in a time interval ∆t and r is randomly generated in a

small time interval where only one spike occurs. Each r has to be less than the firing rate in the

∆t time interval.

Number of neurons in the Poisson group represented by spike-train are equivalent the size

of the input. For example if an input image size is 100×100, the total number of neurons of

the spike train is 10000. Rates of neurons in the Poisson group are proportionate to each pixel

intensity in the input. The maximum rate is set to the maximum intensity of the input pixel. The

main process of converting input into Poisson spike-train is described through the following

algorithm:

Algorithm 1: Poisson spike train generation
Input: input features extracted for raw input
Output: Poisson spike-train
while input presented to for a period of time do

1- Set number of neurons to input size
2- Set firing threshold rates of neurons according to the corresponding input intensity
3- Set a time step
3- Sub-divide time into a group of temporal intervals using time step
4- Generate numbers x between 0 and 1 (number of x is number of neurons).
5- For each interval if x is higher than firing rate generate spike
4- Save spike train corresponding to the input

Figure 4.4 shows spike-train generation using Poisson distribution for an input image repre-

senting a facial expression.

Audio feature encoding

Similar to visual input, auditory input is encoded into Poisson groups of neurons with the

number of neurons proportionate to the size of the audio features. Figure 4.5 shows an example

of spike-train generation for audio features. Encoding temporal data, such as audio, is more

challenging as the results need preserving the temporal information of audio features such as

MFCCs or Sceptral features. There are two approaches in encoding audio features:
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Figure 4.4: Spike-train generation using Poisson distribution: input represents facial features.
Each pixel represents an input neuron. Rates of Poisson spike-train are proportionate to pixel
intensity

Figure 4.5: Spike-train generation using Poisson distribution: input represents audio features.
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• Temporal segments where input features are divided in small temporal segments, and

each segment is encoded separately,

• Input features with whole temporal information where features are encoded in one full

temporal segment, and the features are encoded as one.

In this thesis, features are encoded as a whole temporal information mainly to preserve the whole

temporal relationship and for computational efficiency in the training process.

4.5 Neuron Model

Chapter 3 describes numerous neuron models used in SNNs, LIF represents the most popular

and most straightforward method to translate neurons dynamics. Similarly to work presented

in [65], Leaky Integrate and Fire (LIF) model is identified as the most suitable model for

emotion recognition neurons dynamics. Neurons communicate through a series of spikes, and

thus neurons can learn unique features that distinguish different emotional states. The membrane

voltages of neurons are translated by the following equation:

τ
dV
dt

= (Erest−V )+ge(Ee−V )+gi(Ei−V ). (4.4)

V is the membrane voltage, and Erest represents the resting membrane potential. Ei and Ee

represent the equilibrium potential for inhibitory and excitatory synapses, respectively. ge and gi

represent the conductance of the synapses for the excitatory and inhibitory synapses. When a

membrane reaches a certain threshold, the neuron fires spikes followed by a resting phase Erest

for a specific time interval (5ms). The temporal interval represents a refractory period where the

neuron cannot spike. τ is a time constant representing the time a synapse reaches its potential,

and it is longer for excitatory neurons.

In order to achieve better network balance and stability, homoeostasis is employed. Home-

ostasis is first proposed by [41] as a stabiliser of STDP learning in SNN networks. It is an

adaptive membrane threshold Vthresh mechanism [65]. That is, Vthresh =Vthresh + θ, where Vthresh

initial value is a constant and θ increases when a neuron fires and then decays exponentially

when θ reaches the neuron’s rate with a time constant of (5ms) which is the time of the refractory
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period of the excitatory neurons. In this way, homeostasis prevents some neurons firing for all

presented inputs and as well as avoids few neurons from dominating emotional patterns [230].

We also employ lateral inhibition encouraging competition between neurons.

Changes in conductance drive synapses models. Synapses conductance increase when pre-

synaptic reaches a synapses; otherwise, the conductance decreases exponentially. The con-

ductance dynamics are governed by a time constant of post-synaptic potential following the

equation:

τge

dge

dt
=−ge, (4.5)

where τge is a time constant of post-synaptic potential. The time constant for the inhibitory

conductance is set to 1ms and for the excitatory to 2ms.

4.6 Learning Algorithm

Learning in the brain is occurs mainly in an unsupervised way, rather than supervised learning

[152]. Synapses in the neocortex are constantly influenced by changing patterns in sensory

neurons such as in visual and auditory cortices. The sensory information provided does not have

any supervised learning where information about the pattern is given in the learning phase.

As presented in Chapter 3, Spike Timing Dependent Plasticity (STDP) is one of the most

popular learning methods for classification tasks [138], [195]. The algorithm is successfully

employed in pattern recognition and image classification tasks [38]. This thesis proposes the

application and adaptation of STPD learning for emotion recognition in both facial expression

and speech tasks.

The difference between auditory and visual SNNs resides in the input pre-processing, feature

extraction and input layer settings. Learning from the input layer to the excitatory layer is

achieved through unsupervised STDP learning [65]; that is, learning distinctive features for

each emotional class label in an unsupervised manner. STDP represents a spike-based type of

Hebbian learning, where the connection between neurons strengthens when they fire together.

The plasticity is influenced by the timing of the pre-synatptic and post-synaptic spikes. Post-

synaptic weight are updated when a post-synaptic spike reaches a synapse, which is characterised
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by the following equation:

∆w = η(xpre− xtar)(wmax−w)µ (4.6)

η is the learning rate. wmax is the maximum weight and xtar is the target value of the pre-synaptic

trace when the post-synaptic spike fires. This is used to enable the disconnection of neurons

that seldom lead to firing, when the post-synaptic neuron is rarely active. µ is the dependence

of updates on previous weight. xpre is the pre-synaptic trace left every time pre-synpatc spike

reaches a synapse. That is, weights are increased by ∆w if pre-synaptic spikes fire prior to

post-synaptic spikes. Otherwise, they decrease. The changes of weights in STDP learning is

computed by a function of difference between pre-synaptic and post-synaptic spike firing timing.

Learning with STDP is advantageous compared to classical back-propagation as weights do not

need to be learned through backward and forward pass [101]. In SNN, weights representing

each synapse are updated independently according to time of spikes of their pre-synaptic and

post-synaptic neurons.

4.7 Training Process

The training phase starts by presenting input one by one to the network for a specific amount

of time with a delay after each input. This delay enables the network to reset all values and get

ready for the next input. The network records all neurons’ spikes where each group of neurons

represents a feature in the input. The network updates weights after each training interval during

the training phase. The training interval are decided dependent on the dataset size. After training,

a class label is assigned to a neuron group based on their spiking behaviour. For example, various

voting mechanisms can be identified for assigning neurons to class labels. Saunders et al. [247]

have presented three different voting mechanisms:

• all where excitatory spikes are summed for each label class and the label with the highest

sum is assigned;

• most-spikes where the neurons with the most spikes for a class label are assigned a class

label;
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• top percent where only a percentage of the most spiked neuron are used to identify a class

label; and

• correlation clustering where at each training interval a vector of the most spiked neurons

for each class label are recorded which are then compared to the testing phase vector and

labels are identified.

In this thesis, we use the most-spikes mechanism: neurons with the highest spike response

to a label class during a training phase are assigned to that class label. During the training phase,

neurons are assigned label at each training interval.Input where for both facial and audio features

are identified by distinctive patterns in both spatial and temporal locations in the input. The main

training phase is described in the following algorithm.

Algorithm 2: SNN training
Input: Input features extracted from raw input
Output: learned weights
while input presented to SNN for a period of time do

1- Encode input into Poisson spike trains;
2- Set input neuron group rates to the encoded input.
3- Unsupervised learning using STDP
4- Update weights after each update interval

4.8 Prediction

After the learning phase, neurons are assigned a label according to their spiking behaviours. A

neuron is assigned a label when it spikes more compared to other labels. After the learning stage

weights are fixed.

We adopt the ’most-spiked’ voting strategy, where neurons are assigned a label if they spike

most when presented with such label. The excitatory layer of the network represents the voting

layer where neurons are assigned labels following their spiking activity over time. First each

neuron is assign a random class label. Then, each output class is represented by a group of

neurons. When adding convolution layer to the network, each neuron group for each class

comprises subgroups, each representing a feature within a class label. This voting mechanism

enables the classification of new data according to neurons activation. In the prediction phase
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input are classified by analysing spiking activities of all neuron groups. Each class label has

specific spiking patterns where only a certain number of neurons have the highest spiking activity.

The prediction process can be summarised through the following algorithm:

Algorithm 3: SNN prediction phase
Input: input features
Output: label prediction
while input presented to SNN for a period of time do

1- Encode input into Poisson spike trains;
2- Set input neuron group rates to the encoded input.
3- Unsupervised learning using STDP
4- Record spike activity for each neuron
5- For each convolution patch count the spikes for neurons
6 - Get the number of neurons that spiked the most
7- Assign label when neurons spike most for a specific label

4.9 Summary

This chapter introduces the first contribution of this thesis; introducing novel methods of applying

bio-inspired architecture in emotion recognition tasks for unisensory models for both visual and

audio modalities. It starts with a SNN architecture. It describes techniques chosen to extract

features from input data for both visual and audio modality. After that, it describes input encoding

step, where audio and visual features are encoded into meaningful input for the SNN. The chapter

also details neuron models used for representing neural dynamics in the network, explaining

how individual neurons interact in the network. It also describes the learning algorithm chosen

for emotion recognition tasks, consisting of STDP with unsupervised learning. Unsupervised

learning represents the most biologically plausible learning method for emotion recognition

tasks. Finally, it describes the training, testing and labelling process for the network, where the

network if first trained in an unsupervised manner. Each group of neurons learns specific features

from the input.

The next chapter 5 will detail the proposed models for multisensory integration. The chapter

describes three main models based on different pathways of multisensory integration in the

brain. All multisensory models are implemented using SNN with similar neurons models and
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unsupervised STDP learning.
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Chapter 5

Bio-inspired Multisensory Emotion

Recognition

5.1 Introduction

As highlighted in Chapter 2, the key challenge in multisensory integration in emotion recognition

tasks is the inability to translate the multisensory nature of emotions. Most commonly used

fusion techniques such as early or late fusion, consider information from different modalities as

independent. These methods rarely translate the constant cross-talk between modalities, where

learning in each modality can be enhanced by feedback from other modalities. To directly tackle

this challenge, this chapter introduces three bio-inspired architectures in multisensory integration

that model three pathways in the brain of processing social signals.

This chapter starts by giving an overview of the nature of multisensory integration in the

brain for audio-visual data. Then it describes the design of three proposed models inspired by

three different pathways for multisensory integration; that is,

1) Multisensory integration through convergence in higher-order areas in the brain;

2) Multisensory integration through cross-modal enhancement happening in sensory areas

such as visual and auditory;

3) Multisensory integration through neural synchrony, translating the importance of the role

of temporal neural correlation in multisensory integration.
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5.2 Background on Multisensory Integration of Social

Signals

Social signals processing, understanding and perception involve various areas of the brain and

a complex network [120]. The human brain starts by parsing inputs from different sensory

modalities through segmentation then works on constructing meaningful representations through

integration [254]. The two processes are always active in the brain to interpret the present

from previous past events. For example, to process and understand a speech sound, the brain

needs to segment all possible auditory inputs from noisy environments to identify which sound

corresponds to which speech of a person. Segmentation is achieved by looking at temporally

and spatially adjacent sensory information from both visual and auditory inputs such as facial

expressions and non-verbal sounds.

The mechanisms of multisensory integration of social signals in emotions differs from

multisensory integration of other tasks in the brain. Social signals and affective information

automatically draw attention in the brain; that is, the brain automatically attends to emotional

and social information as a priority. It automatically processes emotional faces in a background

[272]. There exist four main steps in assessing and integrating social signals:

• Attention: The brain uses attention to select emotional information for observation.

• Detection: This first stage involves sensory modality-specific detection, where information

is processed through different brain regions. In this phase, all essential features from each

modality are extracted in early sensory regions such as visual or audio cortices.

• Integration: In this step, a new percept is created, comprising multisensory features.

Integration is not only achieved by fusing the extracted sensory features but through a

more elaborate mechanism. At this state, each modality is in constant interaction with

others. Integration also happens in the Superior Temporal Sulcus (STS) of the brain,

which includes a sub-region for each modality. In this region, there exists an overlapping

sub-region as well as linking modality-specific regions.

• Evaluation: This final stage involves the evaluation of the affective state in the Inferior
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Frontal Gyrus region of the brain. In this final stage, decisions are made on the interpreta-

tion of the social signal and emotional states.

Until quite recently, multisensory integration believed to be occurring only in high-level

associative areas. However, other pathways are also discovered. Evidence also shows that

multisensory integration happens with constant feedback between modalities. Multisensory

integration also involves in primary sensory areas such as visual or auditory cortices.

Literature identifies three main pathways of multisensory integration happening at various

areas in the brain. These pathways starts as soon as the brain receives sensory information. It starts

with an early cross-modal integration and enhancement between modalities. Then an integration

in higher-order areas such as STS. Higher-order areas contains multisensory neurons groups

facilitating integration. Multisensory integration is also driven through neural synchrony, where

synchronised spikes drive information. Multisensory integration follow three main principles:

1) spatial alignment, 2) temporal synchrony, and 3) inverse effectiveness where multisensory

enhancement plays a role of increasing any sparse or noisy sensory modality.

The next sections describe the proposed models based on three different pathways for

multisensory integration:

1) Multisensory integration through convergence simulating the integration in higher order

multisensory areas.

2) Cross-model enhancement in early sensory areas where one modality precedes, predicts

and enhances other modalities.

3) Integration through neural synchrony describing the integration through temporal and

semantic synchrony of neurons groups from different modalities, where the synchrony of various

neurons drive the integration of multisensory information.

5.3 Multisensory Integration through Convergence

This section describes the first model for multisensory emotion recognition based on multisensory

integration by convergence as experimented in some multisensory brain areas.
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5.3.1 Background on Multisensory Integration through Convergence

The most classical theory for multisensory integration is through convergence in areas such

as Superior Temporal Sulcus (STS). Multisensory integration through convergence develops

hierarchically through a progressive convergence of different sensory signals. Sensory signals get

integrated in higher-order areas such as Superior Colliculus SC [264]. This kind of areas includes

a higher number of multisensory neurons, which constitute a way to multisensory integration.

The common assumption is that multisensory areas, containing multisensory neurons, receive

convergent inputs from various modalities such as auditory and visual. Thus, multisensory

integration happens by changes in the firing rate of multisensory neuron populations [153]. Many

experiments have been conducted to explain multisensory integration by convergence.

Davies et al. [59] have proposed a hierarchical model for emotion integration of faces and

audio stimuli. They have conducted experiments to study the pathways of multisensory integration

of emotions, ranging from presenting congruent facial and audio stimuli and incongruent stimuli.

They also varied emotions stimuli from happy to fearful. They have found that the final integration

happens by merging in the right posterior superior temporal sulcus (rpSTS). rpSTS responds

more to bimodal information than unimodal facial stimuli. These findings are in conjunction with

the notion of supra-additivity in multisensory integration. While the response to multisensory

stimuli in some multisensory areas is more significant than responses to unisensory stimuli, it is

also higher than the algebraic sum of neuronal responses to unisensory stimuli [237]. Morrow et

al. [193] also proved that there were multisensory areas such as the amygdala in multisensory

emotion recognition. They demonstrated that large portions of neurons in the amygdala are

multisensory, receiving and responding more than one sensory modality.

5.3.2 Convergence model

Multisensory integration through convergence is the first model proposed in this thesis. This

model represents the multisensory convergence pathway in the Superior Colliculus (SC) brain

region. The SC region of the midbrain is a crucial multisensory area for audio-visual integration

[153]. Various neurons in this area respond to both audio and visual modalities and are fully

multisensory. There have been various studies on the computational principles of multisensory
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integration within the SC brain region. Research has focused on the study of responses of

multisensory neurons compared to unisensory modalities [55] [188]. The convergence model

presented in this section is more simpler than models presented by [55], where sensory areas

neurons are represented in one region for each modality and not in subregions. The simplification

of the convergence model makes it more suitable for affective computing applications as opposed

to creating neurocomputational models.

Integration through convergence represents the most common approach for multisensory

integration in the brain, as described in Section 5.3.1. In this thesis, multisensory by convergence

model architecture is designed by simulating the process of passing information from lower

sensory areas to higher-order multisensory areas for integration. The unisensory model described

in Chapter 4 is used to model unisensory lower-order areas such as visual facial expression or

auditory speech.

5.3.3 Model Architecture

Multisensory integration by convergence model is designed using SNN which follows the same

high-level design in terms of neuron models and learning as the unisensory models in Chapter 4.

The high level description of the model is shown in Figure 5.1. The figure shows how information

flows from both modalities and converges in a multisensory area. The network contains three

layers as shown in Figure 5.2. The main input layers consisting of inputs from both audio

and visual modalities connects to an excitatory layer. The excitatory layer contains three main

neurons groups. These are connected in a lateral way to inhibitory layers. We descirbe each layer

as follows:

• Input layer, receives features from each modality. For bimodal integration, the network

comprises two distinct neuron groups representing input from each modality. After feature

extraction from each modality, spike trains are generated from the extracted features.

• Excitatory layer, where groups of neurons with excitatory ability are created. The layer

comprises three main groups for bimodal integration. The first two groups define unisensory

modalities, such as audio and visual. The final group represents a higher-order multisensory

region. The whole learning occurs in the excitatory layer. Excitatory neuron groups for
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Figure 5.1: High level description of multisensory integration by convergence
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Figure 5.2: Multisensory integration by convergence model architecture

both modalities receive input from the input layer for each modality. The multisensory

excitatory group receives information from each excitatory modality group, as shown

in Figure 5.3. The recurrent connections between the unisensory neurons groups and

the multisensory neuron group allow learning of distinctive patterns features for each

class label. The connections from the multisensory group to each modality group enables

feedback from the multisensory to unisensory groups [286].The number of neurons in

the excitatory layer in each group depends on the choice of the number of features and

convolution window size and input neurons.

• Inhibitory layer, enables the network stability. The inhibitory layer comprises three main

neuron groups representing unisensory modalities and a multisensory area. Network

stability is achieved through lateral connections where each neuron in the inhibitory layer
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Figure 5.3: Recurrent connections at the excitatory layer

is connected to all other neurons, apart from the one it is receiving input. Each inhibitory

group is connected in a lateral fashion to the corresponding excitatory group.

5.3.4 Model Learning and Training

Learning in the convergence model happens in the same order as unisensory models; learning

is achieved through STDP. STDP is considered to be a powerful learning method as it enables

learning through unsupervised methods, as described in Chapter 3.

The main component of the convergence model is the simulation of higher-order multisensory

regions, where unisensory information converges to a multisensory area. Learning multisensory

patterns happens in two main stages. First, unisensory excitatory neuron groups receive infor-

mation from the input layer. Each group starts learning unisensory patterns where groups of

neurons spike for the same class label. Then, multisensory neuron group receive information

through connection from both unisensory excitatory groups. Learning in the convergence group

happen in an unsupervised manner through STDP where neurons spiking for the same class label

get a stronger connection. The connection between these neurons happens regardless of signals

modality. Training in the convergence model happens by presenting inputs from each modality

with a delay between input. This delay enables to mimic the biologically realistic small delay
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between visual and auditory sensory information reaching the brain. Learning in the network

happens in a temporal manner, where each input is presented for a certain temporal window.

5.4 Early Cross-Modal Enhancement

This section describes the second proposed model on applying bio-inspired architectures in

multisensory emotion recognition. It proposes a model based on early cross-modal enhancement,

which represents a different pathway of cross-modal interaction and multisensory integration in

the brain. This section first outlines a background on cross-modal enhancement. Then it details

the proposed model in terms of architecture and learning method.

5.4.1 Background on Cross-modal Enhancement

Early cross-modal enhancement denotes the interaction between visual and auditory cortices.

Activity in the auditory cortex is closely affected by visual information. Literature reveals that

there exists an early multisensory integration in the auditory cortex, where visual information

enhances the perception of auditory information [20, 14].

Most of the existing experimental studies proceed by presenting subjects with video in-

formation where there is a single utterance of a syllable [117]. In these experiments, visual

information is given earlier to investigate its influence on the auditory processing. Results show

that auditory information is often predicted by visual information which affects the brain’s

response to auditory information. The prediction happens within 100ms on the onset of auditory

stimuli [117]. Visual information is transmitted to the auditory cortex through multiple routes

and influences the auditory process [206]. Altigan et al. [14] have also demonstrated that there is

an early cross-modal enhancement of auditory processing using visual information.

Unisensory areas in the brain have a constant interaction at early sensory levels [265] during

multisensory integration. This idea of early sensory enhancement represents one possibility of

cross-modal prediction and interaction, especially for audio and visual pathways in emotion

processing [191].

Arnal et al. [13] have identified two main pathways for early cross-modal enhancement in

multisensory integration. The first pathway is defined by information from early visual sensory
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area influencing the auditory area through a third area; that is, the superior temporal sulcus (STS).

This indirect pathway helps predict the type of auditory stimuli. The second pathway has a direct

connection between the visual and auditory areas without any involvement of an intermediatory

area. Having a direct connection helps predict the onset of the auditory stimuli.

In emotion recognition, visual information usually precedes the auditory, leading to facilita-

tion of auditory processing by visual information [119]. There exist various studies investigating

the interaction between faces and voices in a social setting. Most studies lead to a similar con-

clusion; that is, auditory processing is influenced by visual information at very early stages

of processing. Jessen et al. [119] have investigated the role of early cross-modal enhancement

through various EEG studies. The experiments investigated the dynamic interaction between

body gesture and audio modalities.

Garrido et al. [82] also investigated the role of cross-modal enhancement in emotion recog-

nition. They study the dynamic interaction of visual and auditory emotional information. They

proved that facial expressions influence the processing of auditory prosody processing at very

early stages. They also discovered that any mismatch between facial expression and auditory

information results in further processing in the brain. The additional processing is due to the

violation of early cross-modal prediction from visual modality.

Lee et al. [156] studied the influence of visual information on auditory processing for emotion

understanding. Visual information influences auditory processing at a very early stage and in the

auditory area. Kokinous et al. [149] also investigated the role of cross-modal enhancement in

multisensory emotion recognition. They focused on two expressions that are angry and neutral.

They first experimented on auditory stimulus only as a baseline. They compare audiovisual

responses for both congruent and non-congruent stimuli. Their findings converge to conclude

that there exists an early cross-modal enhancement incongruent audiovisual information, which

also suggests a direct connection between visual and auditory processing areas.

Similarly to multisensory integration by convergence, early cross-modal enhancement is

simulated and implemented using SNN. The main difference resides in the network topology

and architecture. Weights are learned using STDP as described in the previous sections.
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5.4.2 Cross-modal Enhancement Model Architecture

Early cross-modal enhancement is modelled and implemented using a SNN with two separate

early pathways, corresponding to visual and auditory modalities respectively [265]. The cross-

modal enhancement model depicts the enhancement of the auditory modality with a preceding

visual modality as shown in Figure 5.4. Cross-modal enhancement model is represented by

adding connections from visual modality to the auditory modality at the excitatory layer level, as

shown in Figure 5.5. Those connections translate early multisensory integration in the brain with

early cross-modal enhancement; that is, influencing auditory processing with visual information

proceeding and vice versa. The auditory excitatory layer receives input from both auditory input

layer and visual excitatory layer, following the same pattern in the brain where visual information

precedes auditory processing by a few milliseconds.

This model differs from classical data fusion techniques employed in multisensory emotion

recognition from the state-of-the-art as detailed in Chapter 2. The existing fusion techniques

consist either of concatenating features extracted from each modality while ignoring interactions

between them, or late fusion where each modality is if first classified on its own, ignoring

any interaction between modalities. Cross-modal enhancement is also different from the recent

cross-model learning technique presented in [7] where a cross-modal transfer from the visual

to auditory data is applied. This thesis presents an approach that is more biologically plausible,

where the auditory part does not use only prediction from the visual modality but learns from

their spiking patterns. This type of learning is multisensory, which improves the propagation of

learning from the visual group to the auditory group [268].

Figure 5.6 shows the workflow of our approach, which mainly consists of two learning parts:

(1) Unimodal learning on visual and audio signals based on SNN;

(2) Early cross-modal interaction in the brain [20, 14] to enhance audio signals using visual

stimuli. In the following, we will detail the main design.

5.4.3 Model Implementation and Learning

Similar to the unisensory model in Chapter 4 and the above multisensory convergence model, the

proposed cross-modal enhancement model is implemented using SNN [65]. It follows the same
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Figure 5.4: High level description of cross-modal enhancement model

process in feature extraction and input encoding as in Section 4.3 and 4.4, in order to process

raw visual and audio signals and prepare inputs for the SNN.

Similar to the proposed architectures for unisensory models 4, a convolution layer is applied

on input features in each modality at the excitatory level; that is, the input layer is connected

to a convolution excitatory layer coupled with an inhibitory layer. Each input is divided into

convolution features windows where a stride window moves through the input. The stride window

moves along the temporal axis of the audio features and along adjacent features in visual input.

Adding a convolution layer has demonstrated to be beneficial in improving the overall accuracy

on unimodal learning from general image classification [247].

Poisson spike trains are generated from both visual and audio inputs. Then spike trains

representing each modality are fed to both visual and audio areas to learn distinctive features of

image and speech for each type of emotions. The input layer for each modality is recurrently

connected to an excitatory layer that is in turn connected to an inhibitory layer in a one-to-one
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Figure 5.5: Early cross-modal connections from visual to auditory modality in the excitatory
layer

aspect providing lateral inhibition. Neurons in the inhibitory layer are connected to neurons from

all features in the excitatory layer apart from the ones it receives input.

Connection are set between the neurons in visual modality at the excitatory layer to audio

neurons at the excitatory layer in the auditory modality. The choice of the direction of connection,

i.e from visual to auditory is justified by the nature of the task. In fact for emotions processing

and recognition the attention goes first to the face and facial expression information precedes

the auditory by few milliseconds [119]. These connections activate new neurons in the audio

modality. After receiving video frames input at the visual modality, the network runs and learns

different spike patterns. After learning from the video input, the network enters a resting phase.

The audio modality then learns from both the audio input and the visual spike patterns. Neurons

spiking for audio modality play a multisensory role; accepting connections from the visual

modality. Connections between the visual excitatory and the auditory neuron groups help the
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Figure 5.6: Main architecture of the cross-modal enhancement model

transfer of spikes from the visual to the auditory modality. The weights of these connections are

initialised similarly to the connection weights from inputs to excitatory layers.

The visual-audio interaction is learned through STDP in the same fashion as unimodal

modalities and convergence model. The evaluation of unsupervised STDP learning is achieved

in two stages. During the training, weights are updated after each training interval, and spiking

neurons for each feature at the audio excitatory layer are allocated a class label, according to

which neurons spiked most for each feature. In the second stage and during the testing phase,

classification is achieved by allocating the testing data with a class label for the most spiked

neurons saved through the training phase.
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5.5 Multisensory Integration through Neural Synchrony

The previous sections have introduced two biologically inspired models for multisensory inte-

gration. The two presented models translate two different pathways in the brain. Multisensory

integration by convergence and early cross-modal enhancement are explored, modelled and

simulated using Spiking Neural Networks (SNNs) with unsupervised online STDP learning.

This section introduces a third model based on the latest findings in neuroscience [133]. It

presents a model based on neural synchrony. It is inspired by temporal synchrony of spiking

neurons in various sensory regions corresponding to different types of stimuli. Temporal and

stimuli based synchrony drives multisensory integration of social signals of emotions. This sec-

tion first presents an overview and describes the importance of neural synchrony in multisensory

integration. Then it details a novel method for modelling multisensory integration through neural

synchrony based on SNNs and Graph Convolution Networks (GCN).

5.5.1 Background on Neural Synchrony

Humans perceive emotional events and social signals in a multisensory manner where information

enters the brain through various sensory paths. Multisensory information is gathered following

specific rules such as temporal alignment, spatial and semantic congruence.

Studies have identified various regions where multisensory integration happens, such as the

temporal frontal and primary sensory areas [283]. The brain creates connections that are feedfor-

ward, lateral and feedback for integrating information from several senses [140]. Multisensory

integration is facilitated by signals being adjacent temporally, spatially or both. The temporal

and spatial proximity of sensory stimuli makes the information likely to come from the same

event. Multisensory integration also depends on the semantic congruence between signals, i.e.

unisensory signals having come from the same stimuli. This section details the role of semantic

and temporal congruence in multisensory integration.

Role of Stimuli Congruence in Multisensory Integration

Multisensory integration depends strictly on various aspects such as stimuli or semantic

congruence between unisensory senses. Kim et al. [144] demonstrate that there is a difference

of multisensory learning effect between congruent stimuli and incongruent one. Multisensory
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learning with congruent audio and visual stimuli enhanced multisensory integration compared

to incongruent audiovisual stimuli. Barutchu et al. [21] also show an enhancement in learning

when presented with congruent stimuli for each modality. When stimulus from modalities in

audiovisual integration are incongruent, the perception of auditory information changes, creating

an illusional effect such as in McGurk effect [117].

Role of Timing in Multisensory Integration

Multisensory integration and interaction are closely affected by the timing of the onset of

different modalities. Sanders et al. [242] show through experiments that the temporal relationship

between audio and visual stimuli influences multisensory integration. In addition to the timing of

the onset of stimulus from different modalities, timing is essential in the relation between different

neuron groups. Timing synchrony between different cortical areas translates the coordination

between these areas. Neural oscillations in different frequencies and their synchrony drive

multisensory processing.

5.5.2 Neural Synchrony in Multisensory Integration

Neural synchrony, along with convergence and information binding, represents the main pathways

for multisensory integration [197]. Multisensory integration through convergence rely on firing

rate changes in different cortical region through hierarchical and progressive manner. The

integration happens in a convergence manner, where the response to multisensory information is

compared to the sum of response to each unisensory input. However, this theory experienced

limitations in terms of multisensory precepts generalisation. Multisensory integration does not

solely happen in a convergence way [197], but occurs through a constant crossmodal talk between

various unisensory areas including at an early level [132].

Neural synchrony is defined as the simultaneous neural oscillations of different neuron groups

in various brain cortical regions connected by synapses. It is considered as the main means of

transferring information in the brain. Numerous studies have been conducted to define the exact

role of neural synchrony in multisensory integration [284]. Neural synchrony is regarded as the

synchronisation of different brain oscillations at different frequencies. Each frequency band

drives certain types of information as defined below [134]:
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• Delta waves: having functions in memory with a frequency lower than 1Hz;

• Beta waves: dealing with attention or cognitive tasks and having a frequency range between

13 and 30Hz;

• Gamma waves: running over 30Hz and driving stimulus processing and features binding;

• Alpha waves: ranging from 8 to 12Hz and driving attention and distributing information;

• Theta waves: ranging from 4 to 7Hz and driving attention memory and cognitive control.

Role of oscillation band frequencies is detailed in [272] for emotion and social signal

processing. Symons et al. [272] have outlined a detailed study on the role of neural oscillations

synchrony for the perception of emotions in both unisensory and multisensory. They have argued

that neural synchrony drives the perception of multisensory emotions from auditory and visual

stimuli. Experiments show that audiovisual stimuli without delay provokes oscillatory activity

changes during multisensory emotion processing, where the integration of facial and voice

information is achieved through the increase in activity within the alpha and theta frequency

band within the STS area. On the other hand, experiments with induced temporal delays between

visual and auditory stimuli show a cross-modal enhancement from visual to auditory areas.

Neural synchrony also drives general multisensory integration as detailed in [133]. Kiel et al.

argued that the transfer of information between different brain area in primary sensory, frontal

cortical or multisensory areas, is achieved through neural synchrony in different oscillatory

frequencies. Distinct frequency ranges define the different aspects of multisensory integration.

The importance of neural synchrony is also demonstrated in [285] where neural synchrony within

different brain regions is altered in some conditions such as schizophrenia, epilepsy, or autism.

Temporal coordination of neuronal response plays a vital role in the integration and transfer of

information.

Various studies have been conducted to investigate and define the role of neural synchrony

in multisensory integration [253]. Data show that coherent and synchronised neural signals,

especially in the gamma band, drive the integration of multimodal information. More recently

[242] defined the importance of temporal binding window (TBW) in multisensory integration.

Temporal binding window is highly relevant in information integration from different modalities.
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In audio-visual stimuli, information needs to be integrated within a specific temporal range. In

humans, it ranges from 150 to 250ms [33]. Having a longer or shorter TBW can impair the

perception of multisensory integration such as in autism of schizophrenia [267]. TBW can be

plastic in human being; that is, it can be narrowed down by training such as for musicians [267]

[33].

The proposed model for integration through neural synchrony is implemented using SNN

and GCN, which will be described in the following sections.

5.5.3 Background on Graph Neural Network

Graph neural networks are gaining more and more attention in dealing with problems on

unstructured data such as classification of social networks, representations of biological systems

and chemical reactions. The notion of graph was first introduced by Gori et al. [93] to represent

the learning of graph-structured data through nodes neighbour information propagation. They

introduced the notion of Recurrent Graph Neural Networks (RGNN) where learning happen

in an iterative way until the network reaches a stable fixed point. Computing with iterations

is computationally costly especially for large networks with a large number of nodes. Other

research has attempted optimising these findings; for example, Yujia et al. [161] introduced the

use of gated recurrent units and optimisation for feature learning in Graph Neural Networks.

Following the success of Convolutional Neural Networks, Bruna et al. are one of the first who

have applied convolutional layers to graph neural network [35]. They employ a spectrum of

graph Laplacian that translates convolutional properties into the Fourier domain resulting in a

more straightforward representation of graph data.

Henaff et al. have applied graph convolutional network (GCN) and spectral learning to large

classification problems such as ImageNet object recognition and bioinformatics [105]. They

have designed unsupervised learning for graph estimation when the graph structure is unknown.

Spatial convolutions are introduced to address the limitations of spectral methods for large graph,

which allows learning functions by aggregating features between neighbouring nodes. They

are particularly useful for node classification as they do not require to process the whole graph

simultaneously as for spectral methods.

Kipf et al. have introduced a semi-supervised method using a localised first order approxima-
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tion of spectral graph convolutions for node classification [145]. This helps in alleviating the

complexity challenge of spectral convolutions on processing whole graph. They experiment on

citation networks and the results have shown that the model can effectively learn hidden layer

representations encoding local graph structure and features of individual nodes.

Hamilton et al. overcome the challenge of large graphs by introducing inductive node

embedding [97], where node features are used to learn an embedding function generalising on

unseen nodes. This is achieved by using the topological structure of local neighbours of each

node. It trains on aggregator functions instead of feature vectors on each node. An unsupervised

loss function is designed so as to enable training without using task-specific labels.

Gao et al. have used Learnable Graph Convolutional Layer (LGCL) to enable convolution

operations on large graphs [81]. This works by transforming the graphs into 1-D format grid to

make the use of convolutions easier and more accurate. They have developed subgraph training

to reduce the computational complexity of the current training method that uses the whole

adjacency matrix as an input.

Applications of GCN are starting to emerge in computer vision and affective computing

recently. Nian et al. propose the use of GCN in facial feature recognition [200]. They have used

GCN for defining facial attributes such as hair colour, eyes or brow shape. They first extract

facial features using CNN, which are then transformed into the above attributes. These are used

to construct a graph with nodes representing facial attributes and edges representing relations

between them.

GCNs have been used for emotion recognition through EEG data [259]. Song et al. have

proposed Dynamical Graph Convolutional Neural Network (DGCN) to model multi channel

EEG features where each EEG channel represents a node in the graph. The adjacency matrix is

learned in a dynamic way, where the matrix is updated at training time. This is the opposite of

classical GCN where the adjacency matrix is often fixed at the beginning of the training.

Zhang et al. have used GCN to model context in emotion recognition [309]. They compute

the relation between context information with a graph and one example of context is facial

expression of the interlocutor. Then facial features are extracted with CNN and concatenated to

context information.

GCNs have demonstrated promising results in various applications [303, 98] and play an
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important role in the advancement of affective computing and emotion recognition. In this paper,

we apply GCN in modelling neural synchrony to learn complex interaction patterns between

synchronised neuron activities captured in a spiking neural network. To the best of our knowledge,

we are the first to apply GCN to bio-inspired multisensory emotion recognition.

5.5.3.1 Notations and Definitions

This section introduces the main definitions and notations. It will also focus on graph convolution

neural networks (GCN). Graphs are defined by two main attributes: nodes and edges. Graph

are defined as follows: G = (V,E), where V is a set of nodes and E defines edges of relations

between nodes. Inputs in GCN are identified as follows:

• an input feature matrix X defined by N×D , where N is the number of nodes and D is the

number of input features for each node;

• an adjacency matrix A which defines the main structure of the graph network [145].

A GCN graph produces an output in the form of a feature matrix Z defined by N×F . F represents

the number of output features for each node, and N is the number of nodes. Generally all GCNs

share the same main architecture where layers can be represented as follows:

H(l+1) = f (H(l),A)) (5.1)

The first layer H(0) represents the input feature X and f represents the propagation rule. f can

be represented by a simple activation function such as ReLU. Each layer is represented by the

number of nodes and the feature representation of nodes. For each layer, features are aggregated

and represent the features in the subsequent layer. This is achieved using a propagation function

f . In this way features become more abstract.

5.5.4 Modelling Neural Synchrony for Multimodal Emotion Recognition

The previous section provides an overview about the role of neural synchrony in multisensory

integration. Neural synchrony drives multisensory integration through various network areas

from primary cortical regions to multisensory regions. This characteritic can be exploited for
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creating novel models for multisensory integration and data fusion. This will address some

challenges in current data fusion techniques for social signals and emotion recognition. The

temporal synchrony translates the temporal adjacency for multisensory information and can be

applied for constant cross-modal interaction.

This section describes a bio-inspired approach to model multisensory emotion recognition

using neural synchrony. It consists of three main components: (1) simulating and modelling

multisensory integration and interaction via SNN; (2) modelling neural synchrony through a

graph network; and (3) applying graph convolution network to multimodal emotion recognition.

In the following, we will describe each of these components in details.

Neural dynamics and learning rules in this model follow the unisensory modality learning

process described in Chapter 5. LIF model is used to model neurons dynamics and unsupervised

STDP learning is used to to model the multisensory learning.

5.5.4.1 Modelling Neural Synchrony in Graph Network

To enable multisensory integration, recurrent connections are set at the excitatory layer between

audio and visual neuron groups in order to allow cross-talk between modalities by connecting

neurons that spike together between both modalities.

After training SNN, important information is obtained on neuron activities and multisensory

interaction. This includes the spatial location of a neuron at the excitatory layer, time of spiking

in milliseconds, and the modality type of each neuron, which together defines patterns for each

type of emotional states.

Neural synchrony represents neurons spiking within the same temporal window. This facili-

tates the integration of information from different sensory sources [263]; that is, learning and

extracting relevant and crucial features from sensory inputs such as heterogeneous neuronal

populations [34]. This model proposes to model neural synchrony with a graph network. Neurons

are modelled as nodes and their spiking synchrony as edges. In this way, complex patterns can

be learnt between visual and auditory neuron groups through graph neural network to enable

multisensory emotion recognition.

Neural synchrony graph network is defined as an undirected graph: G = (V,E), where V is a

set of nodes representing neurons and E defines edges of relations between nodes. The edges
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include two types of relations: temporal and stimuli based. Edges are added between nodes

which spike within a temporal window of integration.

Node feature matrix XN×D is defined, where N is the number of nodes and D is the dimension

of input features on each node. Nodes represent neurons with features defining the type of

neurons; that is, either audio or visual. Nodes are connected if they belong to the same video

and spike within the temporal window of integration. The temporal window is set to 150ms to

simulate a biologically realistic temporal window of integration in multisensory integration [18].

The adjacency matrix A is represented by a sparse matrix containing adjacency matrices for

each subgraph that is constructed on a video input. The adjacency matrix is represented by two

main aspects: temporal coordination between neuron spikes and stimulus based relations, where

neurons belonging to the same subgraph and class type are linked together.

5.5.4.2 Multisensory Interaction Learning

Figure 5.7: High level model for integration through neural synchrony
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Figure 5.8: Workflow of the synchrony model. First features are extracted from both visual and
audio data, and then fed to a SNN where multisensory integration is simulated. After training,
neuron activities are recorded, based on which a graph is constructed.

Figure 5.8 describes the process of multisensory integration and interaction in a SNN for

graph construction. Input from audio and visual modality are captured through two different

neurons groups, representing each a modality. The input neurons groups are connected to the

neurons groups in the excitatory layer, where each modality’s neurons are connected to their

corresponding excitatory groups. Recurrent connections are set at the excitatory layer where

neuron groups receive connections from each other. This enables constant cross-talk between

modalities.

Given a video input, we obtain these two connected neuron groups, which will form into a
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subgraph. We compose each subgraph from videos in a complete graph, where neurons between

subgraphs are connected if they share the same class label; i.e., the same emotional state.

5.5.4.3 Multisensory Emotion Recognition via Graph Convolution Neural Network

We define emotion recognition as a subgraph classification problem; that is, assigning a class

label to each subgraph. The architecture is based on semi-supervised GCN model [145], which is

applied to node classification in GCN. It employs layer wise propagation rule based on first-order

approximation using spectral convolutions. Spectral convolutions represent filters as graph signal

processing based on spectral theory. Introducing the first-order approximation [145] allows a

simplification of the model and faster training time. Their model is particularly useful for our

neural synchrony model as it can better capture global complex patterns in graphs compared to

spatial convolutions methods that capture more local areas of nodes. Training the whole graph

instead of node batches helps maintain the neural synchrony structure. The reason is that the

classification of emotions is conveyed by the neural synchrony pattern instead of individual

nodes.

The model is adapted from [145] for the subgraph classification by introducing an additional

general pooling layer [69]. This is applied in order to have a higher representation of the features

learned at a node level. It results in features for each subgraph (video input). This is an essential

step, reducing the size of the overall graph and propagating the learned features for each subgraph

representing a video input.

Figure 5.9 shows the main architecture for graph convolution network for neural synchrony,

which stacks up multiple convolution layers. We have used a deeper architecture compared to the

one introduced in [145] by adding a hidden layer. Having a deeper network helps in aggregating

and translating the complex relationship between nodes to subgraphs.

At each layer a GCN produces an output in the form of a feature matrix ZN×D, where D

represents the dimension of output features for each graph and N is the number of nodes. Each

layer can be represented by:

H(l+1) = f (H(l),A), (5.2)

H(l) represents the activation matrix at the lth layer and the activation matrix for the first layer is

the feature matrix X . f is the propagation function that aggregates features at the lth layer with the
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adjacency matrix A, leading to features at the subsequent layer l +1. Spectral graph convolution

is applied to the graphs by applying Eigen-decomposition of the graph Laplacian. The spectral

convolutions are defined by the multiplication of graph signal x ∈ RN (which is a scalar value for

every node) with a filter gθ = diag(θ) where θ ∈ RN is in the Fourier domain [145]. The spectral

convolution can be translated by:

gθ ∗ x =Ugθ
UT x (5.3)

U represents the matrix of eigenvectors of the normalised graph Laplacian L = IN−D−
1
2 AD−

1
2

=UΛUT , where Λ is the diagonal matrix of the eigenvalues. gθ is a function of the eigenvalues

of L. UT x is the graph Fourier transform of the graph signal x.

The input to the network consists of multiple subgraphs each representing neural activities of

a video input. The network consists of three layers followed by a pooling layer over graph [69]

in order to combine features from all subgraphs and enable the classification of subgraph. The

main learning model and propagation rule can be defined as follows:

Z = f (X ,A) = softmax(Âσ(Âσ(ÂW (0)))W (1))W (2)), (5.4)

where weights are defined by weights matrices with W (0)) representing the input to hidden layer

weight matrix, W (1) is the weight matrix from hidden layer 1 to hidden layer 2 and W (2) is the

hidden to output layer weight matrix. Â = A+ IN is the adjacency matrix of the graph with added

self connection and IN is the identity matrix. The loss function is defined as the cross-entropy

over labelled neurons:

L =−
.

∑
C

∑
d∈yD c=1

Yd,clnZd,c (5.5)

yD is a set of neurons that are labelled and C represents the dimension of the output classes; i.e.,

six basic emotions. The networks weights W (0), W (1), and W (2) are trained with gradient descent,

where the full training set is used in each iteration [145].

5.6 Summary

This chapter details the main contribution of the thesis: designing computational models for

bio-inspired multisensory integration. Three models are attempted following three different
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Figure 5.9: Architecture of graph convolutional network for neural synchrony

pathways for multisensory integration in the brain.

1) Multisensory integration by convergence represents the first proposed model for multisen-

sory emotions recognition. Built on the basic SNN for a unisensory model, this first model is

inspired by the multisensory integration in the higher-order regions such as Superior Colliculus.

This region receives input from different sensory modalities and integration happens at a higher

order.

2) The second model, early cross-modal enhancement, represents integration at the lower

sensory region at early stages, where one modality precedes and enhances the other. This happens

particularly for multisensory integration in speech processing, where visual information in facial

features predicts the sound in the auditory area, thus enhancing the auditory signal.

3) The third proposed model, multisensory integration through neural synchrony, represents

the latest finding on the integration of multisensory social signals of emotion in the brain

through neural synchrony. Neural synchrony plays a role in driving information and multisensory

learning.

Table 5.1 summarises the three proposed models. The three models represent different

pathways of multisensory integration happening at different stages of multisensory integration.
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Table 5.1: Bio-inspired multisensory integration models

Model Brain Pathway Characteristic Learning
Method

Integration by
convergence

Superior Colliculus
(SC)

Unisensory modalities con-
verging into one multisensory
area

Unsupervised

Early cross-modal
enhancement

Auditory and Visual
cortex

Visual modality connected di-
rectly to the auditory one

Unsupervised

Integration
through syn-
chrony

Auditory and Visual
cortex

Constant cross-talk between
modalities, (decentralised).
Temporal coherence / Stimu-
lus driven

Unsupervised
and Semi-
supervised

The three models aim to address the challenges faced by current fusion techniques. Convergence

and enhancement models use unsupervised learning, whereas the integration through synchrony

model uses a combination of unsupervised and semi-supervised learning for classification. The

next chapters 7 and 8 will detail experimental evaluations for both unisensory models detailed in

Chapter 4 and multisensory models detailed in this chapter.
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Chapter 6

Evaluation Methodology and Experiment

Setup

6.1 Introduction

This chapter describes experimental setup for evaluating the proposed models. It introduces

different datasets being experimented, tools, features selection and extraction techniques, baseline

techniques, and model configuration.

6.2 Evaluation Objectives

The main objectives of this thesis are to address the following four questions:

1. Are -inspired architectures effective for unisensory social signals of emotions recognition

tasks?

To answer this question, we design experiments to evaluate the effectiveness of bio-

inspired architectures for unisensory models such as facial expression and speech emotion

recognition tasks.

2. Does applying bio-inspired models in multisensory integration increase the effectiveness

of multisensory recognition systems?
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To answer this question, we design experiments to evaluate three bio-inspired models;

convergence, enhancement and synchrony and compare their performance to state-of-the-

art multisensory integration techniques.

3. Do the bio-inspired models exhibit better generalisation capability compared to the state-

of-the-art machine learning and/or deep learning techniques; that is, training on one dataset

and testing on another dataset?

To answer this question, we design cross-dataset experiments; where we train all models

on one dataset and test on another dataset. We then compare the accuracy of the proposed

models against a collection of state-of-the-art techniques.

4. Do bio-inspired architectures present robustness to noise; that is, the accuracy of recognis-

ing emotions is not influenced by noise in sensory modality?

To answer this question, we evaluate all the proposed model with various types of noise on

both visual and audio data and assess the degradation level and accuracy of the bio-inspired

models against state-of-the-art techniques.

6.3 Datasets

Evaluations of the models presented in this thesis are conducted using still images, audio and

video data. The datasets selected are third party datasets that are widely used in state-of-the-art

emotion recognition. The use of third party datasets enables a more meticulous evaluation of the

proposed models and a fair comparison to state-of-the-art techniques using the same datasets.

Table 6.1 summaries the datasets. Most of the datasets used, present posed emotions, where

participants were instructed on how to elicit each emotion. This kind of data collection enables a

cleaner data for training the models. All the datasets include six basic emotions (anger, happiness,

fear, surprise, sadness, and disgust). The next sections introduce in details the specificity for each

dataset chosen in this thesis.
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Table 6.1: Multimodal emotions datasets

Dataset Facial expression Subjects Video Colour Type

RAVDESS
happiness, sadness
surprise, fear,
anger,disgust and neutral

24 1026 color Acted

eNTERFACE’05
happiness, sadness,
surprise, fear,
anger, disgust and neutral

42 1290 color Posed

CK+
happiness, sadness,
surprise, fear,
anger,disgust and neutral

123 593 color Posed

JAFFE
happiness, sadness,
surprise, fear,
anger,disgust and neutral

10 213 grey Posed

6.3.1 The Extended Cohen-Kanade Dataset CK+

The Extended Cohen-Kanade dataset plus is one of the largest and most popular publicly available

datasets for facial expression [170]. Subjects recorded in the dataset include 123 adults aged

between 18 and 50 years with a higher proportion of females and different ethnic background

[125]. The completed dataset consists of multiples frames per subject and per emotional type.

The images are mostly grey colour with a size of 640 × 490.

The dataset consists of a total of 3297 samples of seven basic emotions (Neutral, Surprised,

Sad, Disgusted, Fearful and Angry). For each emotion, there exist various intensities. For each

subject and each image only, the most intensified emotion frames are retained. The onset of the

frames is discarded as they represent the neural emotion class [170]. Figure 6.1 shows a sample

from the dataset with a wide range of emotion class labels.

6.3.2 Japanese Female Facial Expressions (JAFFE) Dataset

JAFFE dataset consists of a total of 213 images with seven basic emotions (Angry, Disgusted,

Fearful, Happy, Surprised, and Neutral). The dataset comprises ten female Japanese subjects.

The facial expressions executed by the subjects are in a controlled environment and acted, where

subject are asked to act different emotions. All images are in grey scale, with a size of 256× 256.

Figure 6.2 shows samples for some of the emotions present in the dataset.
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Figure 6.1: Sample of Cohen-Kanade dataset

Figure 6.2: Sample of JAFFE dataset

6.3.3 Ryerson Audio-Visual Database of Emotional Speech and Song

(RAVDESS) Dataset

RAVDESS [166] is a multimodal database with videos composed of basic emotions through

speech and songs. The dataset consists of 24 participants with a balanced gender number. All

subjects are professional actors, reading sentences in emotional states such as happy, sad, angry,

fearful, surprise and disgust. The dataset also consists of actors singing in different emotional

states. The recordings are available through video, audio, and audio-video options. In this thesis,

we use only spoken sentences subset with a total of 1026 video files all in colours with a size of

1280 × 720.
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6.3.4 eNTERFACE’05 Dataset

The eNTERFace dataset [217] is an acted dataset of 42 subjects from 14 nationalities, with a

proportion of 81% males and 19% females. This dataset includes subjects with glasses and facial

hair. The audio is recorded at 48000Hz in 16-bit format. Each subject records the same six basic

emotions. Subjects are recorded while reacting to particular emotions. Recordings results to

videos with an average of 4 seconds long.

6.4 Tools

This section describes all software, libraries and tools used in implementing experiments for the

evaluation of the proposed bio-inspired models in this thesis.

OpenCV

OpenCV [32] is an open source computer vision library. OpenCV includes multiple algo-

rithms for general image processing, segmentation, camera calibration, stereo 3D vision and

features extraction techniques. It is widely used in various applications of computer vision. It

supports various operating systems such Windows, Mac OS or Android.

Librosa Librosa [185] is a python package for audio signal processing and analysis. It is also

used for music processing and represents a basis for music creation. It is mainly useful for audio

features extraction such as MFCCs, and Mel Spectrogram.

Keras Keras is an open source library in written in Python [51]. Keras is mainly used for the

implementation of deep learning network with different architectures. It contains various building

blocks such as layers, activation functions, optimisers or objects. It also contains a range of

functions for image and text processing. Keras is particularly useful for convolution neural

networks and supports layers such as batch normalisation or pooling.

BRIAN Simulator BRIAN [92] is a spiking neural network simulator python library. This tool

is used to compute networks of neurons and has a range of neuron models. It is particularly

useful for models of networks of spiking neurons. Networks implementations are set through

differential equations, defining neuron groups and synapses connections.

Scikit-learn Scikit-learn is the most comprehensive machine learning library in Python [216].

It is part of SciPy (Scientific Python) group and is principally used for scientific computing
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data analysis. The package comprises various areas of machine learning algorithms, such as

supervised learning, unsupervised, data processing and transformation and models evaluation.

Scikit-Learn is widely used for classification and regression in supervised learning, and clustering

and dimensionality reduction in unsupervised learning.

6.5 Data Experimental Setup

For all experiments presented in this thesis, we chose repeated holdout method with 10 trials,

then average results [228]. Trials results are presented in APPENDIX B. We randomly shuffle

the data and split into 60% for training, 20% validation and 20% testing for CNN and GCN

based models. Data is split into 80% training and 20% testing for SNN and SVM based models

[305].

6.6 Baseline Models

This section describes baseline models representing some basic implementation as representative

of state-of-the-art techniques in emotions recognition tasks. They are implemented and used to

evaluate the proposed bio-inspired models.

6.6.1 FER Models

To evaluate SNN for facial expression recognition, we compare the performance of the most

basic models that are representative of state-of-the-art techniques. We have considered a range

of manual and automatic feature extraction techniques, including HOG, LBP and geometrical/

coordinates based features applied with an SVM classifier [205], [57]. We have also experimented

the implementation of a basic CNN and training the last layer of a pre-trained network [141].

The experiments are conducted on two facial expressions datasets CK+ and JAFFE.

The selected automatic and manual features extraction models are described as follows:

Coordinates based In this first approach, facial landmarks coordinates are extracted for each

image and added to a feature vector. Facial landmarks consist of detecting nose, eyebrows, eyes,

mouth and jawline areas. We use the open source library OpencV and dlib library to extract

98



Figure 6.3: Comparison of overall results for automatic and manual FER models

68 facial landmark features. Then each coordinate is added the the main features vector. The

coordinates features are fed to an SVM for training.

Distance to centroid The centre of mass or the centroid represents the mean location of

distribution of the coordinates in an image. The centre of mass of a 2D image is calculated using

the centroid at each axis:

X = Σ(x∗m)/Σ(m) (6.1)

Y = Σ(y∗m)/Σ(m) (6.2)

Where x and y are the coordinates and m is the intensity of each pixel.

We extract regions of interest in the image, that is the main facial landmarks points that

represent the eyes, brows, jawline, mouth and nose and calculate the centre of mass using the

coordinates of facial landmarks, as including all pixels of the image will lead to a shift of the

centroid.

Statistical standardisation The statistical method consists of applying statistical standard-

isation to facial landmarks coordinates. Data standardisation is very common when having
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data belonging to different categories in statistics. It consists of adjusting data according to a

population mean and standard deviation. Applying data standardisation such as z-scores enables

to prepare data when working with coordinates in order to accurately classify and compare

coordinates from different images sets. We first use standard deviation method on each image

facial landmarks. Then standard deviation values are used to obtain z-scores for the 68 facial

landmarks coordinates. Z-scores are calculated by the flowing formula

Z = X−m/σ (6.3)

Where X is the observed data, m is the mean of the data and is the standard deviation of the

population.

Local Binary Pattern Local Binary Pattern (LBP) represents one of the most popular feature

extraction techniques for facial expression recognition. The main algorithm consist of computing

local representation of texture for an image. This is achieved by comparing each pixel and its

neighbourhood by defining specific radius of neighbour pixels. LBP values are calculated for the

centre pixel. The main formula for generating is as follows:

LBPp,R(Xc,Yc) =
p−1

∑
p=0

s(gp−gc) (6.4)

where

s(x) =

 1, x >= 0

0 otherwise
(6.5)

and gc represents the central value,gp are the equally spaced pixels value within a neighbourhood

P.

Each image is first converted into grey scale. Then LBP is applied to each image in the

dataset using the open source Skimage python library. The algorithm radius is defined to 16x16

blocks. We apply the LBP algorithm to pre-processed and cropped image with only facial area

for each image. we obtain a feature vector of 16900 features.

Histogram of gradient orientation The HOG features extraction is performed using the

the library Skimage HOG extracting function. After images are pre-processed by resizing

and selecting the face region. The Histogram of Gradient Orientation algorithm is applied.We
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Table 6.2: CNN baseline architecture

Input (256x256)
convolution 1 (5x5) (1,2)
maxpool (3x3) (2,1)
convolution 2 (4x4) (1,1)
maxpool (3x3) (1,2)
convolution 3 (5x5) (1,2)
maxpool (3x3) (2,1)
fully connected
output

obtained features vector of size 22500.

CNN small network

The network consists of three main convolution layers followed by maxpool layer each and

a dropout layer to reduce over-fitting and a final fully connected layer. The three main layers

consists of a Relu activation. An output layer is added with a Softmax activation and categorical

cross entropy which suits best the multi-class problem. Each hidden layer includes a pooling

layer which reduces or down-samples the resolution of the feature extracted from the previous

layer. The architecture is similar to the baseline identified by [256]. We have used the same

parameters for the network architecture which are shown in Table 6.2. For hyperparameters

tuning we focus on learning rate, dropout, as we keep the model as basic as possible. We have

experimented on parameters such as dropout (0.25 -0.5), learning rate (0.1-0.0001). For the final

model we train it for 500 epochs and set the dropout value to .50 and learning rate 0.001.

Pre-trained CNN network We use a pre-trained network method to extract features. We use

the pre-trained network VGG16 for image classification on the ImageNet dataset. The pre-trained

network VGG16 is used to produces features vectors, with the last layer not being included.

Then, we create a fully connected layer where the features are fed for classification. The first

step in training consist of producing a vector of 512 features for each sample. Then the obtained

features are fed into a one layer dense network with 256 nodes with a softmax activation.

The best performing techniques are selected for both automatic and manual features as

show in figure 6.3, including HOG feature extraction for manual methods and a pre-trained

Convolution Neural Network with transfer learning for automatic methods, as the representatives

for manual and deep learning feature extraction techniques respectively. Scikit-image library
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Table 6.3: SER CNN baseline architecture

Input (40x388)
convolution 1 (5x5) (1,2)
maxpool (3x3) (2,1)
convolution 2 (4x4) (1,1)
maxpool (3x3) (1,2)
convolution 3 (5x5) (1,2)
maxpool (3x3) (2,1)
fully connected
output

[289] is used to extract the HOG features from each image, resulting in 22500 features. The

features are then fed to a linear SVM for classification. SVM has demonstrated as one of the

most popular and straightforward classifiers for FER [177].

6.6.2 SER Models

In order to evaluate SNN model for SER we have implemented some classic methods for SER

classification with SVM and CNN [270]. First MFCCs features are extracted from audio input,

using Librosa [185], with a total number of feature of 40 and temporal feature length of 388.

Choosing a higher number of features results in a higher level of spectral details. MFCCs as

an input for a simple SVM classifier. Many kernels have been experimented such as linear,

polynomial or radial basis function (RBF). The linear kernel have been retained as they produce

the best overall accuracy. CNN represents an effective way of extracting features for SER [142].

Here we choose a baseline CNN architecture that consists of three sets of convolution layers,

each followed by a max-pooling and batch normalisation. It also consist of a fully connected

layer [16]. The networks are implemented using Keras framework in python [51] on a GPU.

The network consists of three main convolution layers followed by maxpool layer each and

a dropout layer to reduce over-fitting and a final fully connected layer. The three main layers

consists of a Relu activation. An output layer is added with a Softmax activation. Each hidden

layers includes a pooling layers which reduces or down-samples the resolution of the feature

extracted from the previous layer. We have used the same parameters for the network architecture

in [256] which are shown in Table 6.3 :
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6.6.3 Baseline Multisensory Model

To evaluate the proposed bio-inspired multisensory models, we design a baseline deep learning

architecture for multisensory emotion recognition. Following state-of-the-art models introduced

in Chapter 2 CNN have been identified as a good candidate for features extraction and fusion

[37]. The model uses a basic architecture of fusion of features through CNN models. First, we

use CNN for the extracting visual features. The network is designed with two convolution layers,

followed by a single max pooling layer each. Similarly, the audio modality is designed using a

CNN with two convolution layers followed by a max pooling layer. The concatenated features

represent an input to a Multi-Perceptron (MLP) classifier with three fully connected layers using

a simple cross-entropy loss. MLPs has been successfully used as a feature fusion technique

[88]. Figure 6.4 shows the architecture of this baseline model. First, audio and visual CNNs

are used to extract features from audio and visual input respectively. The obtained features are

concatenated and passed to an MLP with fully connected layers. Training of the network happens

in two stages. First, features are extracted from raw input in both modalities. These features then

represent input for CNN in both modalities.

6.7 Bio-inspired Models Implementation Details

This section describes the implementation details, which starts from unisensory and moves to the

configurations for multisensory models. Section 6.7.1 illustrates the process of feature extraction

and input encoding for both visual (in Section 6.7.1.1) and audio input (in Section 6.7.1.2),

and SNN configuration for unisensory emotion recognition (in Section 6.7.1.3). Section 6.8

describes specific SNN configurations for each of the three integration models: integration

through convergence, named as Convergence (in Section 6.8.2), early cross-model enhancement,

named as Enhancement (in Section 6.8.3), and neural synchrony, named as Synchrony (in

Section 6.8.4).

6.7.1 Unisensory Configuration

Chapter 4 has detailed theoretical methods of the main methods used for feature extraction in

both visual and audio data. This section describes the implementation and parameters for feature
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Figure 6.4: Multisensory baseline model

extraction techniques used in experiments conducted for the evaluation of bio-inspired methods.

6.7.1.1 Visual Feature Extraction and Spike Train Encoding

Input images are first uniformly resized to 100×100 pixels, then converted to grey scale using

OpenCV Library. OpenCV is also used to detect facial area and crop the image to include only

the facial area. Then we apply the Gaussian filter to smooth and remove noise on each facial

image, and then apply the Laplacian filter to locate edges and corners of the image. Figure 6.5

presents the effect of LoG on a raw image input.

After input pre-processing and LoG features extraction, we obtain a feature vector with a

size of 100 × 100. These features are encoded into Poisson spike train, where each element

represents a neuron. Neuron rates are proportional to the intensity of the corresponding feature

point.
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Figure 6.5: Laplacian applied on an image with Gaussian filter

6.7.1.2 Audio Feature Extraction and Encoding

Mel-scale Spectrogram features

For each audio sequence, Mel-scale Spectrogram are extracted using Fast Fourier Transform

(FFT) [274]. First the magnitude spectrogram is calculated from the raw input signal. Then it is

mapped onto the Mel scale with a power spectrum. In this thesis, the FFT window with length

of 128 is chosen. This enables to transform the time domain signal into a frequency domain.

The Mel-scale features are then computed using Librosa python library [185]. The maximum

frequency used to the input is 8000 and the number of Mel bands is set to be 128. Although

using a higher maximum frequency gives better precision, this choice gives a smaller input to the

network input layer, which will be more computationally advantageous. Figure 6.6 represents

result of Mel-scale spectrogram from the eNTERFACE’05 dataset sample with ‘angry’ emotion.

Figure 6.6: Mel-scale spectrogram sample for ‘angry’ emotion class
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MFCCs features

MFCCs are extracted from the Mel-Scale spectrogram by applying logs of power which

are calculated for each Mel frequency. Then Discrete Cosine Transform is applied on the the

Mel log powers. The log Mel spectrum is then converted back to temporal signal. The Cseptral

representation of the speech enables the identification of local spectral properties of the audio

signal for each temporal frame. MFCCs are computed using the python library Librosa [185]. In

summary, feature extraction goes though the following steps:

• Fourier transform is applied to audio signal

• After extracting the power of the spectrum, it is then mapped to Mel-scale

• For each Mel frequency, logs of power are calculated

• The final step involves computing Discrete Cosine Transform on Mel log powers. The log

Mel spectrum is then converted back to temporal signal

The number of energies of filter banks is set at 40. All audio features are unified to have a

temporal length of 388. Audio signals which result in smaller size are padded to match the

chosen setting. A sample of the MFCCs features for ‘angry’ emotion is shown in Figure 6.7.

Figure 6.7: MFCCs features sample for ‘angry’ emotion label

Poisson Spike-train Poisson distribution is used to encode both Mel-scale Spectrogram and

MFCCs into spike train. In the end, the number of input neurons is 128 × 130 for Mel-scale

spectrogram and 40 × 388 for MFCC. Rates are obtained from MFCCs are shown in Figure 6.8.
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Figure 6.8: MFCCs spike-train generation

Figure 6.9: SNN workflow for FER: (a) LoG filters are applied to raw input, then the input is
processed to create Poisson spikes train. (b) Excitatory convolutional layer where a number
of features, stride and convolution window are chosen. (c) Inhibitory layer where each neuron
inhibits all convolutional feature neurons apart from the one it receives input from.
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Figure 6.10: SNN workflow for SER: (a) MFCC features are extracted and Poisson spike train
are created. (b) Excitatory convolution layer where a number of features, stride and convolution
window are chosen and convolution moves through temporal axis. (c) Inhibitory layer where
each neuron inhibits all convolution features apart from the one it receives input from.

6.7.1.3 SNN Configurations for FER and SER

Once features are extracted from raw inputs and transformed into spike-trains, they constitute the

input to SNNs for training, as shown in Figure 6.9 and 6.10. We apply a convolution layer across

input, as it proves beneficial for increasing the overall accuracy by defining various features

[247]. That is, each input is divided into several features of the same size and a stride window

that moves throughout the whole input. Each convolution window represents a feature, which

constitutes an input to the excitatory layer. The number of neurons O in the convolutional layer

are calculated through the formula:

O =
(insize− csize)+2P

cstride
+1 (6.6)

where insize is the input image size in the input layer, csize is the size of each feature in the

convolutional layer, cstride is the size of the stride in the convolutional layer, and P is the padding.

O is the convolutional output size that represents the squared root of the number of neurons in

the convolutional layer.

The third layer represents an inhibitory layer where feature neurons are inhibited apart
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from the one that a neuron is connected to. The number of neurons in the inhibitory layer is

proportional to the number of patches in the excitatory layer.

For FER tasks, the chosen network configuration consists of a convolutional layer containing

50 features, with a stride size of 15 and convolution size of 15. This configuration was retained as

it performed the best. The input data are all resized to 100 × 100. Thus, the number of neurons

in the input layers is set to 10000. At the convolutional layer, the number of neurons is calculated

using the chosen number of strides and convolution size according to Equation 6.6.

For SER tasks, two different network architectures are experimented. The first approach

consists of splitting the input into different frames where each frame represents an input to

the network with a 1D convolution layer. The second experimented approach takes extracted

features such as MFCCs and input them to the convolution layer running across the temporal

axis. The input layer of the network architecture consists of a group of neurons representing

audio spike-train with a dimension of 40×388. The input layer is then connected to an excitatory

convolution layer which is laterally connected to an inhibitory layer. Each audio input is divided

into convolutional windows where a stride window moves through the temporal axis of the audio

input. The initial number of features is set to 60 with a convolution window size and stride size

to 10.

Figure 6.11: Weight learning for FER through convolution SNN with size 25, stride 25, and
feature size 20

109



Network learning Weights are learned through STDP by either being increased when a

post-synaptic neuron fires after a spike reaches a synapse, or decreased when the post-synaptic

spike fires before a spike arrives at a synapse. Figure 6.11 shows an example of features learning

through time with a configuration of 20 convolution features with a window size of 25 and

stride size of 25. This configuration is too coarse to capture fine-grained features, therefore the

actual configuration used experiments in this thesis is of a larger feature size 50 with the smaller

convolution size 15 and the smaller stride size 15. When an input is presented for 350ms, spikes

are recorded for both excitatory and inhibitory layers as shown in Figure 6.12, where a group

of neurons spike for different features. The network weights are updated after each 100 input

interval.

Figure 6.12: Spike activity in excitatory and inhibitory layer for FER through convolution SNN

Bio-inspired architectures for FER and SER are implemented using the SNN simulator

BRIAN [92]. We use the same network parameters in terms of input firing rates, membrane

threshold and resting phase duration as the work presented in [65]. These are detailed in Table

6.4. Classification and labelling works by assigning labels to most spiked neurons. After each

training interval, neurons groups representing individual input features are assigned to a label

class according to their spiking activity.
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Table 6.4: SNN implementation parameters

Parameter Description Value
τ Membrane time constant 20 ms
Erest Inhibitory rest potential -60 mV
Erest Excitatory rest potential -65 mV
Ei Inhibitory equilibrium potential -25 mV
Ee Excitatory equilibrium potential -25 mV
Ve Excitatory threshold potential -65 mV
Vi Inhibitory threshold potential -60 mV
nueepre Pre-synaptic learning rate 0.0001
nueepost Post-synaptic learning rate 0.01

Table 6.5: Convolution parameters in unisensory SNN

Experiment Features Convolution Window Sride
FER 50 15 15
SER 80 10 10

6.7.2 SNN Convolution Parameters

Table 6.5 summarises the convolution window parameters in facial expression and speech

emotion models. Figure 6.13 presents how facial features are learnt over time in SNN. Each

feature is learnt by a group of neurons, where weights are updated according to their spikes.

Figure 6.13: Facial feature learning over time in SNN
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6.8 Multisensory Configuration

In this section, we detail the configurations for each of the multisensory integration models,

which will build on the above configuration of unisensory modalities; that is, from raw input to

features, to spike-trains, neurons models and their STDP unsupervised learning. Each integration

model will take sensory modalities spike-trains as input.

6.8.1 Feature Extraction and Encoding

Feature extraction and encoding follows the same process as the one described in Section 6.7.

Features from audio and visual modalities are extracted separately. Features are extracted from

two datasets, eNTERFACE’05 and RAVDESS. Both dataset contain balanced number in each

emotion class.

6.8.2 Convergence Setup

This section describes different design processes for evaluating the proposed models in this thesis

and answering the main research questions.

Similarly to unisensory SNN implementation, the general network dynamics for the con-

vergence are governed by the LIF model, and learning uses unsupervised STDP as detailed

in Section 6.7.1.3. Although there are some similarities with unisensory models architectures,

modelling the proposed multisensory integration by convergence goes through various complex

steps, and the network comprises the following layers:

Input layer

Unlike unisensory SNNs, the input layer consists of two distinct neuron groups each rep-

resenting a modality. After features extraction from each modality through MFCCs for audio

and LoG for visual data, inputs are encoded into meaningful Poisson spike train input for SNN

networks.

Excitatory layer

The excitatory layer comprises three distinct neuron groups. The first two groups define each

modality. The third is a multisensory group where integration happens. Visual neuron group

receives input from the visual input neuron group, and excitatory audio group receives input
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from the audio input group. Multisensory excitatory neurons receive connections from both the

visual and audio excitatory neurons. Similar to the unisensory model, a convolution layer is

applied. Neurons are connected to all neurons in the excitatory layer apart from the one receiving

information. Each input is divided into convolution features where a stride window moves

through the input. The convolution window in the audio modality moves along the temporal axis.

Convolutional windows are applied separately to each modality. That is, the visual and audio

both have different configuration in terms of convolution windows, the number of features and

the total excitatory neurons. We have experimented with various configurations and have chosen

the best-performing ones using 10 for the window an stride size in the auditory modality and 10

for the visual. We set the number of features to 60 for the auditory modality and 60 for the visual

modality.

Inhibitory layer

The inhibitory layer contains three distinct neuron groups. Two neuron groups are connected

laterally to each excitatory group in the corresponding modality. Then this group is connected to

the multisensory neuron group.

Connections

First, connections are set between input groups in each modality and their corresponding

excitatory neuron group. The second set of connections links the excitatory neuron group of each

modality to their corresponding inhibitory group. Neurons in the multisensory excitatory group

are also linked to the corresponding inhibitory group. A third set of connections are set between

excitatory neurons in each modality and the multisensory excitatory group. There is no direct link

between neurons from unisensory modalities. The main learning happens in the multisensory

convergence area, where it receives inputs from both modalities. During the learning phase

each modality drives information into the multisensory area. The multisensory area also sends

feedback for each unisensory area. When neurons in each group spike for the same features, their

connections get stronger.

The number of neurons for each group in the input layer is equivalent to the dimension of

the input. The input dimensions are set to 40×388 for audio and 100×100 for the visual inputs.

Similar to unisensory models, a convolution layer is added in each modality and the number of

features is set to 60 and the window size is set to 10 for both modalities.
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Neurons in the excitatory layer receive input from the input layer through connections. The

number of neurons in the excitatory layer corresponds to the total number of neurons in the

auditory and visual groups. The multisensory neuron group contains connections receiving

information from both the visual and auditory excitatory groups. SNN is trained by first receiving

input from the visual modalities through the pre-processing video frames. It then received

information from the auditory input. Patterns are learned through the excitatory layer using

an unsupervised STDP learning. Weights are initialised randomly and are identical for all

connections in the network. Neurons spiking for the same labels have stronger connections

between audio and multisensory and visual and multisensory groups. Therefore patterns are

learned mainly in the multisensory excitatory neuron group.

6.8.3 Enhancement Setup

Modelling multisensory through cross-modal enhancement follows a similar approach as mod-

elling multisensory integration through convergence, the general network dynamics for the

multisensory integration by convergence. Learning is governed by the LIF model and STDP. The

setup of the enhancement architecture is described as follows.:

Input layer

The input layer consists of two distinct neuron groups each representing a modality. After

features extraction from each modality through MFCC sfor audio and LoG for visual data, inputs

are encoded into meaningful Poisson spike train input for SNN networks.

Excitatory layer

The excitatory layer contains two distinct neuron groups representing each modality. Visual

neurons group receive input from the visual input neuron group. Audio excitatory group receives

input from the audio input group. Similar to the convergence model, convolution window size

and features number share the same parameters with 10 for the window and stride size and 60

features.

Inhibitory layer

The inhibitory layer contains three distinct neuron groups. Two neuron groups are con-

nected laterally to each excitatory group for each modality. Then this group is connected to the

multisensory neuron group.
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Connections

Connections are set between different layers and neuron groups. First connections are set

between inputs of each modality and their corresponding excitatory neuron group. The second

set of connections links the excitatory layer of each modality to their corresponding inhibitory

neurons group. To model cross-modal enhancement, connections are set from visual excitatory

modality neurons to audio excitatory modality neurons. The connections enable learning from

preceding visual information.

After processing the visual frames input, the audio input is fed to the network. Both visual and

audio layers are connected through their excitatory layers through a recurrent connection. Speech

features, visual features and cross-modal connections are learned using STDP unsupervised

learning.

6.8.4 Synchrony Setup

This section describes experiments conducted to evaluate the third proposed model for multisen-

sory integration through neural synchrony. This method consists of two main steps:

1) Training a multisensory neural network and recording spiking activities of audio and

visual modalities.

2) Constructing neural synchrony graph, and implementing Graph Convolution Network

(GCN) for the classification of emotion through neural synchrony patterns.

Network topology Neural synchrony network is implemented through SNN using LIF for

neurons behaviour modelling and STDP learning, as detailed in Section 6.7. Although this

model shares the main learning functions and network dynamics with both unisensory models,

multisensory by convergence and cross-modal enhancement models, there are differences mainly

in the network topology and connections set between various neuron groups.

Input layer

The input layer consists of two distinct neuron groups each representing a modality. After

features extraction from each modality through MFCCs for audio and LoG for visual data, inputs

are encoded into meaningful Poisson spike train input for SNN networks.

Excitatory layer
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The excitatory layer receives connections from the input layer and comprises two distinct ex-

citatory groups. Each excitatory group represents a modality :that is; audio and visual. Excitatory

groups receive input directory from the input layer groups. In this model we apply a convolution

window and stride size of 20 and number of features of 40. These parameters are different from

the two previous models; convergence and enhancement due to computational cost.

Inhibitory layer

The inhibitory layer contains two distinct neuron groups. Two neuron groups are connected

laterally to each excitatory group for each modality.

Connections

Connections between modalities are set at the excitatory level. Recurrent connections are set

between audio and visual excitatory neuron groups. This enables cross-talk between modality

between the whole learning process. Weights are learning using STDP learning.

6.8.4.1 Implementation and Network Configuration

We have designed the excitatory layer as a convolution layer for a better feature representation

[179], [247]. After features extraction and transforming inputs into Poisson spike trains [65]

for both audio and visual, we set the number of neurons for each group proportionally to the

dimension of inputs; that is, 40×388 for audio and 100×100 for visual neuron groups.

We have set convolution parameters separately each modality with a convolutional window

of 40 with an initial number of features of 20 for each modality. Although setting feature number

to a higher value and smaller convolutional window would increase the accuracy, we have chosen

the above setting due to computational power limitations.

The audio input is fed to the network after a 5ms delay. This is to model the natural temporal

lag between visual and auditory sensory inputs in the brain. Recurrent connections between

modalities are applied at the excitatory layer. This will enable the cross-talk between audio and

visual modalities and help simulate multisensory interaction where modalities influence each

other during the learning process. After training the network on the whole dataset, spike timing

and locations are recorded for the whole dataset.
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6.8.4.2 Graph Neural Network For Neural Synchrony

The constructed neural synchrony graph on RAVDESS dataset consists of 814 sub-graphs and

130008 nodes in total. On the eNTERFACE’05 dataset we have obtained 1260 sub-graphs

and 201600 nodes in total. After obtaining the basic structure for each graph, the input is

prepared for the GCN. Three-layer GCN is trained with a semi-supervised learning and have

initialised the weights randomly [145]. To determine the appropriate architecture for GCN, we

have experimented with different numbers of layers.

Figure 6.15 shows the learning curve of neural synchrony graph on training and validation

data for a three layer network. The loss for training and validation decreases to around 200 epochs

and then stabilises. The figure also shows that there is a small gap between the training and

validation loss compared to the original architecture with two layers from [145] in Figure 6.14.

Figure 6.14 shows that the gap of the loss is bigger between validation and training meaning that

when using only two layers, the model is underfitting and needs more training epochs. When

applying GCN with only two layers to graph classification, they have a tendency to underfit, this

has also been demonstrated in [304]. Having a third layer increases the learning capacity of the

network as the training and validation loss converge quicker than with a 2 layers network.

Figure 6.14: Loss on 2-layer GCN with RAVDESS dataset

Input is randomly shuffled and split by 60% for training 20% for validation and 20% for

testing. 10 trials are conducted with results detailed in Appendix A. The model uses the following

parameters:
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Figure 6.15: Loss on 3-layer GCN with RAVDESS dataset

• Adam optimisation

• Leaning rate of 0.0001. There was an experimentation of learning rate from 0.01, and the

best performing rate is selected.

• We experimented with two and three layers with 64 units.

• The network initial training epochs are 200. Then increased to 500 epochs.

• Dropout rate is set to 0.5.

6.8.5 Multisensory SNN Convolution Parameters

This section summarises the convolution window parameters used in different experiments

presented in this thesis. The choice of convolution window size and number of features affects

the accuracy of models as detailed in 7. The higher the features and the smaller the convolution

window leads to higher accuracy. Figure 6.16 shows an example of weight learning with a

convolution window of 40 and the number of feature of 10. However, having higher values of

features is computationally costly and leads to slow processing times.
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Table 6.6: SNN implementation convolution parameters

Experiment Features Convolution Window Stride
Convergence 60 10 10
enhancement 60 10 10
Synchrony 40 20 20

Figure 6.16: Facial feature learning over time with wider convolution windows

6.9 Summary

This chapter has described all experimental setups used in this thesis. It first outlines the datasets

used for the evaluation of the proposed bio-inspired models. It then outlines the different type

of software and tools used in this thesis. After that, a description of different video, audio

and image processing and feature extraction techniques used. It also provides details on the

configuration of Spiking Neural Network used in all experiments. Finally, this chapter details the

implementation setup for all proposed models in this thesis for both unisensory and multisensory

emotion recognition tasks. The next chapters 7 and 8 will present the evaluation results for

unisensory and multisensory models respectively.

119





Chapter 7

Results and Discussion On Unisensory

Emotion Recognition

7.1 Introduction

Chapter 4 has introduced novel models for applying bio-inspired architectures for emotions and

social signals recognition. It describes the application of bio-inspired architectures using SNN

for unisensory emotions recognition from facial expressions and non-verbal speech emotion

recognition tasks. Using the design and architectures described in Chapter 4 and experimental

setup described in Chapter 6, several experiments are conducted to evaluate the proposed models

for unisensory emotion recognition. This chapter presents the evaluation results for unisensory

models for facial expression and speech emotion recognition. It also presents evaluations of

generalisation capacity and investigate robustness to visual and auditory noise. Part of the

experiments in this chapters have been published in [179] and [180].

7.2 Facial Emotion Recognition (FER)

This section will present and discuss the results on facial emotion recognition in terms of

accuracy (in Section 7.2.1), cross-corpus generalisation (in Section 7.2.2), and robustness to

noise (in Section 7.2.3). To do so, we compare with a range of state-of-the-art techniques. We

have considered a range of manual and automatic feature extraction techniques, including HOG,
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LBP and geometrical/ coordinates based features applied with a SVM classifier [205], [57]. We

have also experimented the implementation of a CNN and training the last layer of a pre-trained

network [141]. The models are described in Chapter 6.

We present results on CK+ and JAFEE datasets. On each dataset, we apply repeated holdout

with 10 trials by splitting data into 60% is used for training, 20% for validation and 20% for

testing in CNN based models and 80% for training and 20% for testing in SNN and SVM models.

Data is shuffled randomly with a balanced distribution within classes on both training and testing

data. We obtain the accuracy for the 10 trials and average the accuracy. Appendix A presents the

results for the full trials.

For the SNN we use the parameters described in 6.4. For the SVM we use the linear kernel.

For the CNN we use the architecture and setting described in Chapter 6.6.1. The pre-trained

CNN model starts by extracting features from VGG16. We have done some hyperparameters

tuning to find the optimal parameters for the model. We have experimented on parameters such

as dropout (0.25 -0.5), learning rate (0.1-0.0001). We choose the activation function softmax,

and adam optimizer. We experience with epoch from 250 too 500. For the final model we train it

for 500 epochs and set the dropout value to .25 and learning rate 0.001.

7.2.1 FER Accuracy

Figure 7.1 shows FER accuracy for SNN, HOG, and CNN on JAFFE and CK+ datasets. On CK+

dataset, SNN achieves an average accuracy of 95.0%, which outperforms CNN by 14% while

lower than the HOG+SVM model by 4%.

On JAFFE dataset, SNN achieves an average recognition accuracy of 94.0% , similar to

HOG+SVM and exceeds CNN by 23%. CNN model experiences the lowest performance which

is mainly due to the small training size of JAFFE dataset compared to CK+ dataset; that is,

not enough to train the network to generate effective feature representations without any data

augmentation or pre-processing [167].

Tables 7.1, 7.2, 7.3, 7.4 present the confusion matrices of SNN and CNN on CK+ and JAFFE

datasets. On JAFFE dataset, the highest accuracy is 100% for all emotion classes apart from the

class ’sad’ where the accuracy is 66.7%. The same pattern can be noticed for CNN accuracy on

JAFFE dataset in Table 7.4 where the lowest accuracy is for the ’sad’ class with 33.0% accuracy
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Figure 7.1: Comparision of FER accuracy on SNN, HOG+SVM and CNN with models on CK+
and JAFFE

and 66.7% are either classified as ’happy’, ’fearful’ or ’disgusted’.

On CK+ dataset, the highest accuracy for SNN is 97.3% on ’disgusted’, and the lowest

accuracy is 90.5% on ’fearful’. SNN exhibits a more balanced accuracy for individual emotions

classes, where for both datasets the accuracy are over 60%. Whereas CNN exhibits very low

accuracy in some emotions labels for both datasets such as 26.0% for ’angry’ in CK+ and ’sad’

with 33.3 %.

7.2.2 FER Cross-corpus Generalisation Results

We have performed cross-datset generalisation experiments by training models on one dataset

and testing them using a different dataset with different distribution of data. Figure 7.2 presents

the accuracy of SNN, HOG, and CNN on generalisation capacity with cross-dataset validation.

In both cases, SNN has achieved consistently high accuracy: 85.0% – trained on CK+ and tested

on JAFFE, and 92.0% – trained on JAFFE and tested on CK+, which significantly exceed the

HOG+SVM and CNN techniques.

Tables 7.5, 7.6, and 7.7 present the confusion matrices of SNN, CNN and HOG+SVM on

cross-dataset validation. SNN has the best performance in all classes compared to CNN and

HOG+SVM. The highest class accuracy for both methods is ‘surprise’, where SNN achieved

123



Predicted

A
ng

ry

D
is

gu
st

ed

Fe
ar

fu
l

H
ap

py

Sa
d

Su
rp

ri
se

d

A
ct

ua
l

Angry 96.3 0.0 0.0 0.0 3.7 0.0
Disgusted 0.0 97.3 0.0 0.0 0.0 2.7

Fearful 1.6 0.0 90.5 1.6 1.6 4.8
Happy 0.0 0.7 0.0 97.2 0.0 2.1

Sad 5.9 0.0 0.0 0.0 94.1 0.0
Surprised 3.6 0.0 0.7 1.4 3.6 90.6

Table 7.1: Confusion matrix SNN on the CK+ dataset
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Angry 100.0 0.0 0.0 0.0 0.0 0.0
Disgusted 0.0 100.0 0.0 0.0 0.0 0.0

Fearful 0.0 0.0 100.0 0.0 0.0 0.0
Happy 0.0 0.0 0.0 100.0 0.0 0.0

Sad 16.7 0.0 16.7 0.0 66.7 0.0
Surprised 0.0 0.0 0.0 0.0 0.0 100.0

Table 7.2: Confusion matrix for SNN on the JAFFE dataset
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Angry 26.0 8.0 4.0 0.0 62.0 0.0
Disgusted 4.0 94.0 0.0 1.0 1.0 0.0

Fearful 0.03 0.0 78.0 0.0 14.0 8.0
Happy 0.0 0.0 7.0 92.0 0.0 0.0

Sad 0.0 0.0 0.0 0.0 100.0 0.0
Surprised 0.0 0.0 0.0 0.0 0.0 100.0

Table 7.3: Confusion matrix for CNN on the CK+ dataset
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Angry 100.00 0.0 0.0 0.0 0.0 0.0
Disgusted 0.0 60.0 20.0 0.0 20.0 0.0

Fearful 0.0 0.0 83.3 0.0 0.0 16.7
Happy 0.0 16.7 0.0 83.3 0.0 0.0

Sad 0.0 16.7 16.7 33.3 33.3 0.0
Surprised 0.0 0.0 0.0 33.3 0.0 66.7

Table 7.4: Confusion Matrix for CNN on JAFFE dataset
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Figure 7.2: Comparison of FER accuracy on SNN, HOG+SVM and CNN with models on
cross-dataset

100.0% and CNN 75.0%. Whereas the highest class accuracy using HOG features is ’fearful’,

and all classes are mainly classified as ’fearful’.

The supervised learning used in both CNN and SVM expects training and testing data to

have the same distribution and are more biased by the dataset used for training. They also work

better with larger datasets. Using JAFFE dataset with only ten subjects has a negative impact

on the accuracy for CNN and SVM, due to limited variation in faces, facial expressions and

cultural differences. JAFFE dataset has exclusively Japanese females subjects, whereas the CK+

dataset includes more diverse subjects. Similar findings have also been reported in [278, 167].

SNN accuracy does not seem to be affected much by this issue. The combination of applying

Laplacian Of Gaussian (LoG) filter, unsupervised learning, and convolutional layer enables the

model to generalise well without expecting the same distribution of the data, and the accuracy

is dependent on the number of features/patches chosen. LoG filters help define contours and

highlight key facial features.
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Fearful 4.0 0.0 80.0 0.0 0.0 16.0
Happy 4.2 0.0 4.2 91.7 0.0 0.0

Sad 0.0 8.3 12.5 4.2 70.8 4.2
Surprised 0.0 0.0 0.0 0.0 0.0 100.0

Table 7.5: Confusion matrix for generalisation SNN trained on CK+ and tested on JAFFE
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Disgusted 0.0 47.8 17.4 21.7 8.7 4.3

Fearful 0.0 0.0 48.0 12.0 20.0 20.0
Happy 0.0 0.0 41.7 54.2 0.0 4.2

Sad 4.2 8.3 37.5 16.7 33.3 0.0
Surprised 0.0 0.01 20.8 4.2 0.0 75.0

Table 7.6: Confusion matrix for generalisation CNN trained on CK+ and tested on JAFFE
Predicted

A
ng

ry

D
is

gu
st

ed

Fe
ar

fu
l

H
ap

py

Sa
d

Su
rp

ri
se

d

A
ct

ua
l

Angry 1.0 44.0 44.0 11.0 0.0 0.0
Disgusted 0.0 12.0 88.0 0.0 0.0 0.0

Fearful 0.0 0.0 67.0 33.0 0.0 0.0
Happy 0.0 0.0 89.0 11.0 0.0 0.0

Sad 0.0 33.0 44.0 22.0 0.0 0.0
Surprised 0.0 0.0 100.0 0.0 0.0 0.0

Table 7.7: Confusion matrix for generalisation HOG+SVM trained on CK+ and tested on JAFFE

7.2.3 FER Robustness To Noise Results

Various types of noise have been used in the literature to assess the sensitivity of models for

image recognition tasks. There exist various ways of assessing model robustness to image

degradation such as colours changing, noise such as salt and pepper or Gaussian noise [128].

Noise degradation is also used to assess the sensitivity of different CNN models (ALexNet, VGG,

and GoogleNet) [128].

We have experimented with different intensity parameters of salt and pepper noise degradation

ranging from 0 to .5. Salt and pepper noise represent intensity and sparse disturbances to an

image where original pixels are randomly replaced with black and white pixels. from 0.5 to 1

noise intensity probability, we have noticed that the image is completely covered, thus not any
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more useful to get more insight of the performance. Figure 7.3 shows the samples of salt and

pepper noise degradation of input images.

(a) (b) (c)

(d) (e) (f)

Figure 7.3: (a) Image no noise, (b) 0.1 noise probability, (c) 0.2 noise probability, (d) 0.3 noise
probability, (e) 0.4 noise probability, and (f) 0.5 noise probability.

Results for FER noise degradation tasks are summarised in Figure 7.4. The initial results of

the three models where no noise is applied are quite close. SVM model experiences the highest

accuracy with 99.6% overall, followed by CNN and SNN with 97.63% and 97.43% respectively.

Starting from the lowest probability of noise degradation of 0.2% we notice a drop in the

overall accuracy for all three models. The drop for the SNN model down to 92.39% is not as

significant as the drop in CNN to 84.96% or the significant drop for the SVM model to 32.6%.

The higher noise intensity results in a lower overall accuracy for all three models. However, SNN

performs best for all noise intensities. The lowest accuracy for SNN is using the 0.5 probability

distribution of noise with only 56.2%. However, the lowest accuracy for CNN and SVM is

significantly weaker: 22.64% and 14.10% respectively. SVM is the most affected by the artificial

noise degradation. The drop in accuracy pattern in all models does follow the results obtained
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in [238] and [127], where the increase of noise affect feature identification. Although accuracy

has dropped for SNN, it still maintains an accuracy over 65% up to the noise intensity of 0.4.

whereas we notice a quicker drop for the other models starting from intensity .1 for CNN and .02

for SVM. Figure 7.4 presents the trend of accuracy decreasing with the increase of noise ratio.
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Table 7.8: Confusion matrix for SVM for FER task with no noise
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Happy 99.0 0.0 1.0 0.0 0.0 0.0

Sad 98.0 0.0 2.0 0.0 0.0 0.0
Surprised 98.0 0.0 0.0 0.0 0.0 0.0

Table 7.9: Confusion matrix for SVM for FER task with 0.1 noise
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Surprised 98.0 0.0 1.0 1.0 0.0 0.0

Table 7.10: Confusion matrix for SVM for FER task with 0.2 noise
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Table 7.11: Confusion matrix for SVM for FER task with 0.5 noise
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Sad 0.0 0.0 0.0 0.0 98.0 0.0
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Table 7.12: Confusion matrix for CNN for FER task with no noise
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Angry 16.3 3.7 30.0 27.5 15.0 7.5
Disgusted 0.0 36.0 14.7 41.3 0.0 8.0

Fearful 0.0 0.0 65.1 33.3 0.0 1.6
Happy 0.0 0.0 1.4 98.6 0.0 0.0

Sad 0.0 2.0 33.3 7.8 43.1 13.7
Surprised 0.0 0.0 13.0 7.2 2.2 77.5

Table 7.13: Confusion matrix for CNN for FER task with 0.1 noise
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Angry 1.3 0.0 25.0 53.7 3.7 16.3
Disgusted 0.0 5.3 5.3 78.7 1.3 9.3

Fearful 0.0 0.0 31.7 68.3 0.0 0.0
Happy 0.0 0.0 2.1 97.9 0.0 0.0

Sad 0.0 2.0 41.2 45.1 2.0 9.8
Surprised 0.0 0.0 20.3 46.4 0.0 33.3

Table 7.14: Confusion matrix for CNN for FER task with 0.2 noise
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Angry 0.0 0.0 16.3 82.5 0.0 1.3
Disgusted 0.0 0.0 32.0 65.3 0.0 2.7

Fearful 0.0 0.0 28.6 71.4 0.0 0.0
Happy 0.0 0.0 25.5 71.0 0.0 3.4

Sad 0.0 0.0 25.5 70.6 0.0 3.9
Surprised 0.0 0.0 22.9 73.2 0.0 2.9

Table 7.15: Confusion matrix for CNN for FER task with 0.5 noise
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For individual emotions classes, Tables 7.8 7.9, 7.10 and 7.11 show confusion matrices for

noise application on the SVM model. Tables 7.12, 7.13, 7.14 and 7.15 show confusion matrices

for noise application on the CNN model. Tables 7.16, 7.17, 7.18 and 7.19 show confusion matrices

for noise application on the SNN model. All results show that the accuracy of SNN remains

stable within different classes. The accuracy drops significantly for the SVM commencing from

the noise probability of 0.1 for all classes, where all tests data are classified as ‘angry’. SVM is

less resilient to noise degradation and exhibits less robustness to image degradation. SNN is the

most robust to noise compared to SVM and CNN.

7.3 Speech Emotion Recognition (SER)

This section presents results and discussion on speech emotion recognition in terms of accuracy

(in Section 7.3.1), generalisation (in Section 7.3.2), and robustness to noise (in Section 7.3.3).

Data experimental setup is described in Chapter 6.5. We follow repeated holdout with 10 trials

with data split in 80% and 20% for SNN and SVM and 60% training 20% validation and 20%

testing for the CNN model. For the SNN we use the parameters described in 6.4. For the SVM

we use the linear kernel. For the CNN we use the parameters and setting described in Chapter

6.6.2. We have experienced various hyperparameters in CNN have been experienced with various

parameters in terms of learning rate, dropout rate of (0.25 -0.5). We also experimented with

various values in learning rate from (0.01- 0.0001). We started with the number of epoch from

500 to 1500. The best performing parameters chosen are 0.0001 for learning rate , dropout of

0.25 and 1500 epoch in training.

7.3.1 SER Accuracy

Table 7.20 presents accuracy for SER using two types of features: Mel-scale spectrogram and

MFCCs. MFCCs achieves a higher accuracy than raw audio signals or Mel-scale spectrogram on

both eNTERFACE and RAVDESS datasets with 72.2% and 80.29% respectively.

Results show that MFCCs features are more effective audio features for processing speech in

SNN, which is also in line with state-of-the-arts methods where MFCCs outperforms other types

of audio features in SER tasks [257].
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Figure 7.4: Models accuracy with different noise degradation intensity
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Angry 88.7 0.0 1.3 0.0 10.0 0.0
Disgusted 0.0 90.7 1.3 6.7 0.0 1.3

Fearful 0.0 0.0 100.0 0.0 0.0 0.0
Happy 0.0 0.0 0.0 99.3 0.0 0.7

Sad 0.0 0.0 0.0 0.0 100.0 0.0
Surprised 0.0 0.0 0.7 2.2 0.0 97.1

Table 7.16: Confusion matrix for SNN for FER task with no noise
Predicted

A
ng

ry

D
is

gu
st

ed

Fe
ar

fu
l

H
ap

py

Sa
d

Su
rp

ri
se

d

A
ct

ua
l

Angry 62.5 6.2 0.0 0.0 27.5 3.7
Disgusted 0.0 90.7 0.0 9.3 0.0 0.0

Fearful 0.0 0.0 92.1 1.6 6.3 0.0
Happy 0.0 0.0 0.0 0.0 98.0 2.8

Sad 0.0 0.0 0.0 0.0 98.0 2.0
Surprised 0.0 1.4 0.7 3.6 4.3 89.9

Table 7.17: Confusion matrix for SNN for FER task with 0.1 noise
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Angry 77.5 1.3 0.0 2.50 17.5 1.3
Disgusted 0.0 90.7 2.7 2.7 2.7 1.3

Fearful 6.3 0.0 87.3 0.0 6.3 0.0
Happy 2.1 4.8 3.4 80.0 4.1 5.5

Sad 0.0 0.0 0.0 0.0 100.0 0.0
Surprised 2.2 1.4 3.6 3.6 9.4 79.7

Table 7.18: Confusion matrix for SNN for FER task with 0.2 noise
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Angry 77.5 6.2 7.5 1.3 7.5 0.0
Disgusted 4.0 88.0 4.0 0.0 2.7 1.3

Fearful 4.8 11.1 82.5 0.0 1.6 0.0
Happy 15.9 23.4 20.0 20.7 19.3 0.07

Sad 2.0 5.9 3.9 0.0 88.2 0.0
Surprised 13.0 23.2 12.3 2.2 26.8 22.5

Table 7.19: Confusion matrix for SNN for FER task with 0.5 noise

Table 7.20: Comparison of SER accuracy between Mel-scale spectrogram and MFCC coefficients

Feature eNTERFACE (%) RAVDESS (%)
Mel-scale Spectrogram 43.1 45.1
MFCCs 72.2 80.3
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Table 7.21 compares SER accuracy between SNN, SVM and CNN implementations evaluated

on RAVDESS dataset. SNN have performed better results than both classical methods using the

same features, MFCCs. SNN outperforms CNN by 7% and SVM by 23%.

Table 7.21: Comparison of SER accuracies between SNN, SVM and CNN for RAVDESS dataset

Model Feature and classification Learning type Accuracy (%)
SNN MFCCs, SNN Unsupervised 80.3
SVM MFCCs, SVM Supervised 60.5
CNN MFCCs, CNN Supervised 76.3

Table 7.22 compares SER accuracy between the SNN and the state-of-the-art techniques on

eNTERFACE’05 dataset. Experimental setup used in previous work experiments are different

from the ones used in this thesis. Noroozi et al [204] and Ozseven et al. [209] has both have

used 10-fold cross validation. Fonnegra et al. [77] have use data split with 70% training and 30%

testing. Fu et al. [78] have used person-dependent experimental setting with 50% samples for

training, 25% for validation and 25% for testing. In this thesis we have used a repeated holdout

with 10 trials with 80% training and 20% testing. Although having different experimental settings

can have an impact on the overall accuracy [143], it is possible to compare the overall accuracy

to existing work using the same datasets.

As an unsupervised learning technique, SNN has produced comparable results, and in some

instances, it outperforms some state-of-the-art. The better performing techniques are Enhanced

Sparse Local Discriminate Canonical Correlation Analysis (En-SLDCCA) approach proposed

by Fu et al. [78], which uses multimodal feature learning representation. Fu et all [78] have

produced the best results with 80.1 % with data augmentation, which is out of scope of this thesis.

The proposed use of SNN with only one type of features MFCC is comparable to state-of-the-art

without the use of any data augmentation techniques or other features. In addition the evaluation

setup used in the presented models presents an advantage by using more data for training.

The accuracy of SNN for SER can be enhanced by choosing different parameters for number

of features, window and stride size for the convolution window as shown in Figure 7.5).

Results in Figure 7.5 show that the overall accuracy increases when the convolutional size

is smaller, and the number of features is higher. Increasing the number of features leads to an

increase in the number of excitatory neurons; i.e.,, a better accuracy. The pattern is observed
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Table 7.22: Comparison of SER accuracy between SNN and the state-of-the-art techniques on
the eNTERFACE’05 dataset

Model Feature extrac-
tion

Experimental
Setting

Accuracy (%)

Noroozi et al [204] RF/MFCC 10-fold
cross-
validation

47.1

Ozseven [209] Acoustic analysis 10-fold 56.3
Ozseven [209] Texture analysis

of Spectrogram
10 fold
cross-
validation

60.9

SNN MFCCs Repeated
holdout

72.2

Fu et all [78] En-
SLDCCA

MFCC Person-
dependent

80.1

Fonnegra et al [77]
Spread auto-encoder

MFCC Data split
70/30

74.0

Figure 7.5: Effect of convolution window configuration on overall accuracy

134



using both MFCCs and Mel-scale Spectrogram features [65]. Having more features and more

excitatory neuron leads to learning more features. However, having more excitatory neurons is

more computationally costly.

7.3.2 SER Cross-corpus Generalisation Results

This section presents evaluation results for the investigation of generalisation capacity for

cross-corpus of SNN on SER tasks. SNN accuracy is compared to baseline methods such as

SVM and CNN. Models are trained using RAVDESS and tested using eNTERFACE’05. SNN

exhibits the highest performance for both overall accuracy and generalisation, where it performs

69.47% compared to 31.28% and 20.80% for CNN and SVM respectively for RAVDESS dataset.

Figure 7.6 shows generalisation results for models trained with RAVDESS and testing with

eNTERFACE’05.

Figure 7.6: Generalisation results for SER tasks where model trained with RAVDESS

Figure 7.7 shows generalisation results for models trained with eNTERFACE’05 and tested

on RAVDESS. Models trained with eNTERFACE’05 exhibits the same patterns for results as

the models trained with RAVDESS, with SNN outperforming SVM and CNN baselines for

generalisation using RAVDESS as a test dataset. That is, SNN achieves an overall accuracy

of 70.80 % compared to 68.5% and 58.3% for SVM and CNN respectively. Exploiting the

unsupervised learning using SNN and the feature learning using convolution layers, we obtain a

more robust model that can learn features.
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Figure 7.7: Generalisation results for SER tasks where model trained with eNTERFACE’05

7.3.3 SER Noise Robustness Results

The work in this section investigate the sensitivity and robustness to noise for SER models. Noise

is added artificially with three levels of noise with different power spectrum noises such as white,

pink and brown noise. White noise is characterised by a flat frequency spectrum, where the noise

has an equal power spectrum. Thus the white noise designates flat power. Pink and brown noise

are represented by uneven power. These three levels of noise are used in speech recognition

tasks to test the effect of noise in real-word error rate [52]. Figure 7.8 shows the effect of the

application of different noises on the extracted MFCC features.

Table 7.23: Comparison of SER accuracy for noise degradation tasks for RAVDESS

Model No Perturbation (%) Brown Noise (%) White Noise (%) Pink Noise (%)
SNN 80.3 73.7 80.1 73.3
CNN 76.3 18.0 15.8 16.7
SVM 60.5 23.5 16.0 16.5

Table 7.24: Comparison of SER accuracy for noise degradation tasks for eNTERFACE’05

Model No Perturbation (%) Brown Noise (%) White Noise (%) Pink Noise (%)
SNN 77.2 70.3 68.5 73.2
CNN 68.5 34.4 28.1 32.2
SVM 58.3 32.1 13.5 19.4
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(a) (b) (c) (d)

Figure 7.8: (a) MFCC feature with no noise, (b) White noise, (c) Pink noise, and (d) Brown
noise.

The results of SER noise degradation experiments on RAVDESS are summarised in Ta-

ble 7.23. The application of SNN to SER without noise perturbation results in much higher

accuracy than CNN and SVM. Test results show an overall accuracy of 85.04% for SNN model,

76.31% for CNN and 60.52% for SVM. Applying noise leads to a significant drop on CNN and

SVM accuracy. However, a much less significant drop is noticed in SNN with the lowest accuracy

experienced with pink noise at 73.3%. However, the accuracy of CNN drops significantly to

lower than 20%.

Table 7.24 shows noise degradation results on eNTERFACE’05. Similar to the results on

RAVDESS, we have observe a degradation in accuracy for all audio noise with SNN performing

best for the three audio noise effects. Noise affects the overall accuracy of all tested models.

However, the less affected model for both tasks is SNN, as with unsupervised learning, it can

overcome various degrees of noise degradation for both images and audio inputs. Results are

consistently in line with the generalisation tasks results, where the best performing models is

SNN.

7.4 Summary

This chapter has presented experiments for the evaluation of bio-inspired architectures for

unisensory emotion recognition: visual and audio modalities. Both experiments have shown that

SNN, using unsupervised learning technique, has achieved better or at least comparable accuracy

to the state-of-the-art supervised learning techniques.

In addition, SNN exhibits better generalisation capability. In FER, facial features learned in

the SNN models are less biased by training datasets diversity such as different facial dimensions,
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diverse ways of expressing emotions through cultural differences or even different data capturing

conditions. In SER, SNN abstracts away individual differences in gender and age from emotional

characteristics inherent in MFCCs. SNN has also demonstrated robustness to noise degradation

with different noise densities, compared to the state-of-the-art techniques such as SVM and

CNN.

All these unisensory experiment results are promising and validate SNN as a viable option

for emotion recognition. They also form the foundation for multisensory integration models, and

each unisensory SNN will be used for extracting features; i.e., neuron groups on visual and audio

signals. The next chapter will detail experimental evaluations of multisensory models proposed

in this thesis. The chapter will describe results of multisensory models and evaluations compared

to state-of-the-art models.
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Chapter 8

Results and Discussion on Multisensory

Emotion Recognition

8.1 Introduction

Chapter 5 has described the three multisensory integration models inspired by three different

pathways of multisensory integration in the brain. The objective of this chapter is to evaluate the

effectiveness of these models and answer the key research questions:

1) Does applying more bio-inspired architectures improve multisensory emotion recognition?

2) Do bio-inspired models present better generalisation capacity compared to state-of-the-art?

3) Are bio-inspired architectures robust to signal noise?

This chapter first evaluates results of multisensory integration by convergence (convergence)

by implementing it using SNN. The second model to evaluate is early cross-modal enhancement

(enhancement), where speech modality is enhanced through visual modality. Then, this chapter

describes the experiments conducted for the evaluation of multisensory integration through neural

synchrony (synchrony) model. Finally it details evaluation results for cross-corpus generalisation

capacity and robustness to audio and visual noise.

Experimental evaluations in this chapter use the same parameters and design methodology

introduced in Chapter 6. We also use the experimental setup explained in Chapter 6.5. The primary

metrics for evaluating all models presented in this chapter is the overall accuracy. This choice of

metrics is driven by the nature of the datasets used. Both RAVDESS and eNTERFACE’05 are
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balanced and have the same number of data in each class. Parts of the evaluations results in this

chapter have been published in [180] and [181].

8.2 Parameters And Hyperparameters Selection

Hyperparmeters selection represent a long process of tuning parameters resulting in an optimal

model. In this thesis, most of the hyperparameters for the baseline models in terms of kernel size,

padding and strides is derived from previous literature such as [256]. We mostly focus on tuning

optimisers, learning rate and dropout rates. Model training is repeated using various parameters

in order to find the optimal hyperparameters. Various parameters such as number of neurons

in layers, activation functions, number of epochs or learning rate have been experimented. We

adopt a grid search method using Keras.

8.2.1 Multisensory baseline model

For the Multisensory baseline model described in Chapter 6.6.3 we experiment with different

configurations of the network. For the MLP fusion, we have made a hyper parameter search for the

number of fully connected layers (2-3), learning rate (0.01-0.0001). We have also experimented

with both SGD and Adam optimisers. The final parameters used for the model are are 3 fully

connected layers, a learning rate of 0.001 and using SGD optimiser.

8.2.2 GCN model

We start by experimenting on the original parameters and architecture proposed by Kipf et al

[145]. We then tune the parameters and architecture for neural synchrony data. We train the

network initially for 200 than increased for 500 epochs due to loss not converging. We tune

hyperparameters such as dropout (.25 - 0.5) , learning rate (0.1- 0.0001), hidden layer units

(64-124) and weight-decay to 0.0005. The final values of the different values are shown in Table

8.1.
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Table 8.1: GCN network parameters

Parameter Value
Loss function Adam
Learning rate 0.0001
number of layers 3
number of neurons in hidden layers 64
number of epochs 500
Dropout 0.5
weight-decay 0.0005

8.2.3 SNN models

The parameters used for SNN model are detailed in Chapter 6. We have used the parameters

presented in the original work [65]

8.3 Accuracy of Multisensory Emotion Recognition Models

This section reports the results of experimental evaluation of the three proposed multisensory

integration models; convergence, enhancement and synchrony. It first compares the proposed

models’ performance to state-of-the-art techniques. We choose state-of-the-art methods that have

used the same datasets. This section then analyses and discusses the evaluations results.

Table 8.2 presents evaluation results for the three proposed models compared to the state-

of-the-art on RAVDESS dataset. Table ?? presents the experimental setups of the experiments

compared in 8.2. There exists various experimental setup in terms of model validation in the

literature [143] such as n-fold cross validation, repeated cross-validation, bootstrap, holdout or

repeated holdout . In this thesis we chose repeated holdout method to improve the reliability of

the holdout estimate. We randomly split 80% and 20% for SNN based methods and 60% train,

20% validation and 20% testing for CNN based methods. For state-of-the-art methods Gibilisco

et al [89] and Ghaleb et al [86] use a 10-fold cross-validation.

All reported accuracy are an average of the trials. The overall accuracy is 81.3%, 83.6%

and 98.3% for the convergence, enhancement and synchrony models respectively. All these

integration models have outperformed the state-of-the-art techniques. The best performing one is

from Gibilisco et al. [89] with an overall accuracy of 80.2%. They have used facial landmarks
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for extracting facial features, Fast Fourier Transform FFT for audio features. They have added

natural language features. After extracting all modalities features they have used Random Forest

for the classification of emotions on RAVDESS dataset. They have compared Random Forest

classifier with simple MLP classifiers.

Among the three integration models, the synchrony model performs the best. Synchrony

exploits both unsupervised learning to model neural synchrony and relationship between different

neurons group and semi-supervised learning using GCN to classify multisensory emotions.

Table 8.2: Comparison of multisensory models to state-of-the-art for RAVDESS dataset

Model Visual Feature Audio Fea-
ture

Experimental
Setup

Fusion Accuracy
(%)

Synchrony LoG+SNN MFCC+SNN Repeated
holdout
80/20

Synchrony with
GCN

98.3

Enhancement LoG MFCC Repeated
holdout
80/20

Cross-modal en-
hancement

83.6

Convergence LoG MFCC Repeated
holdout
80/20

Convergence 81.3

CNN Raw images MFCC Repeated
holdout
80/20

Features features 81.0

Gibilisco et al.
[89]

Facial Landmarks FFT 10-fold
Cross-
validation

Random Forest 80.2

Ghaleb et al. [86] Deep Metric
Learning

Deep
MEtric
Learning

10-fold
Cross-
validation

AV-Gating
Paradigm

67.7

Beard et al. 2018
[22]

Openface COVAREP N/A LSTM+Global
Conceptualised
Attention

58.3

Dedeoglu et al
[61]

CNN CNN N/A late fusion DNN 87.3

Table 8.3 provides a comparison of the performance of the three proposed models and some

state-of-the-art on the eNTERFACE’05 dataset. The proposed models, convergence, enhance-

ment and synchrony experimental setup are described in Chapter 6. Previous work experiments

have used different experimental setup. Similar to the RAVDESS dataset, the integration models
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perform well achieving an overall accuracy of 96.8%, 86.3% and 80.0% for synchrony, enhance-

ment and convergence respectively. The best performing state-of-the-art technique is from Zhang

et al. [312] with the overall accuracy of 85.8% respectively. DBN fusion technique proposed by

Zhang et al. [312] outperforms the convergence model by 5.5% with 85.8%. The DBN model

enables features learning in a multisensory way and quickly translates the non-linear relationship

between both modalities. However, the input data is segmented into several discrete temporal

interval. Thus, there is the probability of missing information on continuous emotion information.

Noroozi et al. [204] outperforms the three proposed models with an accuracy of 98.7%.

However, the visual features used consist of reduced frames in each video input and a set of facial

geometrical features. Video inputs are summarised through key representative frames. After

features extraction, they use three different classifiers for each feature type, one for facial features,

the second for the representative frames and the third for MFCCs features. They then fuse the

confidence score of each classifier. They report a very high accuracy, as they evaluate only on

representative frames, which have summarised visual frame features and result in much fewer

frames. This frames reduction could lead to missing critical information from the interaction of

audio and visual modalities.

The proposed models: convergence, enhancement and synchrony make use of the whole

visual and audio sequence in order to capture the whole dynamics. The proposed synchrony

model extracts information from both modalities and learning happens simultaneously between

audio and visual inputs. Each modality influences the other during the learning process using

connections between them. SNN enables capturing of multisensory learning through connections

between audio and visual neuron groups. GCN helps to model and learn synchrony patterns of

neuron groups and enable multisensory emotion recognition across them. As a result of this

strength, the synchrony model outperforms the DBN approach by 10.85%. Figure 8.1 presents

the comparison on individual classes. The DBN approach achieves a lower accuracy of 80% on

three classes: ‘sadness’, ‘fear’, and ‘surprise’, while neural synchrony has achieved a consistently

high accuracy of ≥90% on all the classes.

In summary, compared to the other two presented models (convergence and enhancement),

integration through neural synchrony outperforms convergence by 16.3% enhancement by 14%

for RAVDESS dataset. For overall accuracy tasks, the synchrony model is the best performing
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Table 8.3: Comparison of multisensory models to state-of-the-art for eNTERFACE’05 dataset

Model Visual Feature Audio Feature Experimental setup Fusion Accuracy (%)
Synchrony LoG+SNN MFCC+SNN Repeated

holdout
Synchrony
with GCN

96.8

EnhancementLoG MFCC Repeated
holdout

Cross-
modal
enhance-
ment SNN

86.3

Convergence LoG MFCC Repeated
holdout

Convergence
(SNN)

80.1

CNN Raw
im-
ages

MFCC Repeated
holdout

Features
fusions
(MLP)

79.0

Zhang et al.
[312]

3DCNN LOSO and
LOGO

DBN 85.8

Fonnegra et
al. [76]

CNN RNN 5-fold MLP 81.8

Di Nardo et
al. [64]

CNN CNN 10-fold
cross-
validation

3D Pyramid
Neural Net-
work

71.4

Wang et al.
[294]

CNN MFCC data split-
ting

Decision
level

83.0

Noroozi et
al. [204]

AUC MFCC 10-fold
cross-
validation

Random
Forest Late

98.7

Ma et al
[174]

CNN LSTM 5-fold autoencoder 85.4

Noor et al
[203]

VCCR
facial
re-
gions

MFCC+PLPC Holdout
80/20

Early
fusion
KNN

96.6
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Figure 8.1: Comparison of accuracy by class type between state-of-the-art and neural synchrony
on eNTERFACE’05

proposed model in this thesis. It also outperforms all presented state-of-the-art techniques.

Tables 8.6 and 8.7 present the confusion matrices of both datasets. We can observe a balanced

accuracy for all classes with a lowest accuracy of 92.9% for surprise class on RAVDESS dataset

and 92% for sad class on eNTERFACE’05 dataset.

8.3.1 Ablation Analysis

We have run ablation analysis on the unisensory and multisensory models. Because the con-

vergence and enhancement models are unsupervised learning while the synchrony model is

semi-supervised, we separate their results.

Table 8.8 shows that convergence and enhancement models both outperform unisensory

models. Audio and visual-only models are implemented using the same convolution parameters

as the convergence, and enhancement models with 60 features and a size of window and stride of

10. On RAVDESS dataset, the convergence outperforms unisensory model by 2.75% and 5.01%

for audio and visual modalities respectively. Whereas, the enhancement model outperforms by

5.15% and 7.47% for audio and video, respectively. The same pattern can be noticed when using

eNTEFFACE’05 dataset, where both multisensory models outperform audio and visual-only
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Angry 90.0 5.0 0.0 0.0 5.0 0.0
Disgusted 6.1 84.8 0.0 0.0 9.1 0.0

Fearful 0.0 6.2 87.5 0.0 6.2 0.0
Happy 0.0 0.0 5.9 82.4 11.8 0.0

Sad 0.0 0.0 0.0 0.0 100.0 0.0
Surprised 15.2 9.1 12.1 3.0 24.2 36.4

Table 8.4: Confusion matrix of SNN audio only on RAVDESS datast
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Angry 80.0 5.0 5.0 5.0 5.0 0.0
Disgusted 0.0 84.8 3.0 0.0 6.1 6.1

Fearful 0.0 0.0 93.8 0.0 6.2 0.0
Happy 5.9 5.9 0. 0 82.4 5.9 0.0

Sad 0.0 0.0 5.6 0.0 94.4 0.0
Surprised 3.0 9.1 12.1 3.0 6.1 66.7

Table 8.5: Confusion matrix of enhancement model on RAVDESS dataset

models. Convergence model outperforms the unisensory models by 9.8% and 4.8% for video

and audio modalities. Enhancement model also outperforms unisensory models by 16% and 11%

for visual and audio modalities, respectively.

Confusion matrices in Tables 8.4 and 8.5 show the difference between the recognition with

SNN audio-only and cross-modal enhancement model. Although there is an enhancement of

the overall accuracy, confusion matrices show different patterns depending on emotion classes.

The accuracy on ’surprise’ is at 36.4% using SNN with audio alone, and increases to 66.7%

using the visual information enhancement. However ’sad’ class accuracy decreases from 100%
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Angry 100.0 0.0 0.0 0.0 0.0 0.0
Disgusted 0.0 93.1 3.4 0.0 0.0 3.4

Fearful 0.0 0.0 95.5 0.0 0.0 4.5
Happy 0.0 0.0 0.0 100.0 0.0 0.0

Sad 0.0 0.0 0.0 0.0 100.0 0.0
Surprised 7.1 0.0 0.0 0.0 0.0 92.9

Table 8.6: Confusion matrix of synchrony model on RAVDESS datast
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Angry 94.7 0.0 2.6 0.0 0.0 2.6
Disgusted 0.0 95.5 2.3 0.0 2.3 0.0

Fearful 0.0 0.0 100.0 0.0 0.0 0.0
Happy 0.0 0.0 0. 0 100.0 0.0 0.0

Sad 0.0 0.0 0.0 0.0 92.0 8.0
Surprised 0.0 0.0 0.0 0.0 0.0 100.0

Table 8.7: Confusion matrix of synchrony model on eNTERFACE’05

accuracy from SNN with audio-only to 94.4% with visual cross-modal enhancement. On the

other hand, ’happiness’ and ’disgust’ do not change their accuracy. The highest increase noticed

in the ’surprise’ emotion class is a result from a higher information in the visual modality and

can translate the inverse-effectiveness [288] and early cross-modal enhancement of multisensory

integration. The labels ’angry’ and ’sad’ experiencing a drop in accuracy in multisensory modal

compared to the unisensory model, can be due to the visual modality bad effect, also translating

the inverse-effectivness principle. When the auditory signal is high, it does not benefit from the

multisensory signal if the visual signal is low.

Table 8.9 compares synchrony model to unisensory results with the same datasets. Unisensory

models are trained and run for both RAVDESS and eNTERFACE’05 datasets with the same

parameters and architecture as in 6.7.1. Using the same convolutional window and number of

features as in multisensory integration through synchrony, and have run two separate SNNs for

audio and visual data that is 40 for window size and 20 for number of features.

The accuracy gain of neural synchrony model is over 50% compared to unisensory models.

This significant improvement in accuracy demonstrates the advantage of modelling and learning
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connections between neuron groups in multisensory emotion recognition. Although unisensory

models perform way better with smaller convolution window sizes and higher number of features,

we have compared with the same number of features and window and stride sizes as integration

through neural synchrony with number of features of 40 and window size of 20.

Table 8.8: Comparison of convergence and enhancement models to unisensory models for
RAVDESS and eNTERFACE’05

Modality Feature extraction eNTERFACE’05 RAVDESS (%)
Video LoG 70.3 76.1
Audio MFCCs 75.3 78.5
Convergence LoG,MFCCs, SNN 80.1 81.3
Enhancement LoG,MFCCs, SNN 86.3 83.6

Table 8.9: Comparison of neural synchrony model to unimodal techniques

Modality Feature extraction eNTERFACE’05 RAVDESS (%)
Video LoG 65.3 57.5
Audio MFCCs 43.5 42.6
Synchrony LoG,MFCCs, SNN 96.8 98.3

8.4 Cross-corpus Generalisation Results

This section evaluates cross-corpus generalisation capacity for the three proposed multisensory

models: convergence, enhancement and synchrony. The proposed models’ overall accuracy is

compared to a state-of-the-art baseline; that is, setting up CNNs for extracting features on both

auditory and visual modalities and concatenating these features for classification as detailed in

Chapter 6. In the first set of experiments, models are trained using RAVDESS dataset and tested

on eNTERFACE’05 dataset. These experiments aim to assess the ability to generalise learned

features in the learning phase to new and never seen before data with a different distribution.

First, all models are trained using RAVDESS datasets. The dataset is divided into 60% train, 20%

validation and 20% testing. Results from the testing phase are recorded. In the second phase, all

models are tested with eNTERFACE’05 dataset.

Table 8.14 shows results for multisensory models trained on RAVDESS dataset and tested

with eNTERFACE’05. Generalisation capacity for each model is compared with the baseline
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Angry 21.9 4.2 9.3 7.9 21.4 35.3
Disgusted 14.1 15.3 10.9 21.0 12.1 26.6

Fearful 8.6 10.1 28.1 13.5 8.6 31.1
Happy 11.2 9.0 25.6 23.7 8.7 21.8

Sad 10.2 10.6 16.1 25.2 14.2 23.7
Surprised 12.1 7.3 12.8 17.6 16.6 33.6

Table 8.10: Confusion matrix for CNN baseline trained on RAVDESS and tested on eNTER-
FACE’05
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Angry 69.8 0.0 4.6 7.0 11.6 7.0
Disgusted 9.5 42.9 19.0 7.1 16.7 4.8

Fearful 2.4 0.0 59.5 11.9 23.8 2.4
Happy 4.9 0.0 2.4 68.3 22.0 2.4

Sad 7.1 2.4 2.4 0.0 85.7 2.4
Surprised 2.5 2.4 7.3 22.0 14.6 51.2

Table 8.11: Confusion matrix for convergence trained on RAVDESS and tested on eNTER-
FACE’05
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Angry 83.7 0.0 4.7 4.7 4.7 2.2
Disgusted 42.9 26.2 4.8 9.5 11.9 4.7

Fearful 33.3 0.0 40.5 4.8 21.4 0.0
Happy 22.0 0.0 2.4 58.5 14.6 2.5

Sad 26.2 0.0 2.4 7.1 64.3 0.0
Surprised 46.3 0.0 4.9 17.0 9.8 22.0

Table 8.12: Confusion matrix for enhancement trained on RAVDESS and tested on eNTER-
FACE’05
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Angry 100.0 0.0 0. 0.0 0.0 0.0
Disgusted 0.0 100.0 0.0 0.0 0.0 0.0

Fearful 0.0 0.0 42.9 0.0 0.0 57.1
Happy 0.0 0.0 0.0 60.0 0.0 40.0

Sad 0.0 0.0 0.0 0.0 77.8 22.2
Surprised 0.0 0.0 0.0 0.0 0.0 100.0

Table 8.13: Confusion matrix for generalisation for synchrony trained on RAVDESS and tested
on eNTERFACE’05
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Table 8.14: Generalisation investigation on multisensory models trained on RAVDESS and tested
on eNTERFACE’05

Modality RAVDESS(%) eNTERFACE (%)
CNN (Baseline) 81.0 22.6
Convergence 81.3 62.7
Ehancement 83.3 49.2
Synchrony 98.6 80.0

model. For overall evaluation, the synchrony model outperforms all other models with an

overall accuracy of 98.6%. Convergence model performs worse among the three proposed

model with 81.1%, nearly similar to the baseline network performance with 81.0% overall

accuracy. Having the constant cross-talk in the enhancement and synchrony models enable a

better performance compared to the classical convergence or the CNN baseline with features

concatenation. Synchrony model exhibits the best performance due to the exploitation of the

graph convolution network capacity.

To analyse generalisation capacity, models are tested with eNTERFACE’05. Synchrony

model performs best with an overall accuracy of 80.0%. Integration through convergence and

cross-modal enhancement performed 62.7% and 49.2% respectively. CNN, with only 22.6%

exhibits the worst generalisation capacity. The baseline model is unable to generalise learnt

features to a completely different dataset. Generalisation results present a similar pattern to the

findings in unisensory modalities as detailed in Chapter 7.

Figures 8.10, 8.11, 8.12 and 8.13 show confusion matrices for the four models trained with

RAVDESS and tested on eNTERFACE’05. The matrices show individual class performances.

We notice that most balanced performances in individual emotion are exhibited in enhancement

and synchrony models. The best-classified emotion for convergence model is ‘sad’ with 85.7%,

and the worst one is ‘disgusted’ with 42.9%. The best-classified emotion synchrony are ‘angry’,

‘disgusted’ and ‘surprised’ with 100%. The best performing emotion for CNN is ‘disgusted’

with 33.9%. Synchrony model achieves the best classification results in individual emotion

classes from the four models with 100% for three emotions. The ’angry’ class has the most false

positives in the enhancement models, whereas ’surprised’ emotion has the most false positive in

synchrony.

In the second set of experiments, all models are trained using eNTERFACE’05 and tested

150



using RAVDESS datasets. Table 8.15 shows results of generalisation evaluation on multisensory

models trained on eNTERFACE’05 and tested on RAVDESS. Similar to results presented in

Table 8.14, the results of the models trained with eNTERFACE’05 and tested on RAVDESS

show that synchrony model performs well and has the highest generalisation accuracy of 77.8%.

Training the models with eNTERFACE’05 and test them on RAVDESS leads to better results

for the convergence model with 77.37% compared to 44.85% when the model is trained using

RAVDESS and tested with eNTERFACE’05. We notice the same pattern for enhancement.

However, results for synchrony dropped by 2.2%.

The synchrony model performs very well in generalisation tasks compared to the other

presented models. Results are in line with the ones presented for the overall accuracy model

evaluation. Exploiting the constant cross-talk, temporal synchrony and semantic similarity

enables better feature learning.

The bio-inspired models presented in this thesis show a better generalisation capacity than

the baseline features concatenation model using CNN.

Table 8.15: Generalisation investigation on multisensory models trained on eNTERFACE’05 and
tested on RAVDESS

Modality eNTERFACE’05(%) RAVDESS (%)
CNN (Baseline) 79.0 20.0
Convergence 80.1 77.3
Enhancement 86.3 65.7
Synchrony 96.8 77.8

Figure 8.17, 8.18,8.19, and 8.16 show confusion matrices for generalisation evaluation for

models trained with eNTERFACE’05 and tested with RAVDESS. For the CNN baseline model,

the highest recognition rate is for ’surprised’ class label with 33.2%, and the lowest classified

class is ‘disgusted’ with only 13.3%. In contrast, the proposed models identified most class

accurately with most of the classes with accuracy over 70%, with the expeption to ‘surprised’

for convergence and convrgence with 51.9%, and 19.5% and ’disgusted’ in enhancement and

synchrony with 42.9% and 48.5% respectively. Synchrony model is the best performing model

for generalisation tasks with a balanced accuracy through the six class labels. All emotion classes

are identified with over 75.0% accuracy except for ’disgusted’ class label with only 48.5%. in

cross-corpus generalisation tasks SNN models outperformed the baseline CNN consistently, this
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is due to their ability to generalise learnt features. Whereas CNN perform badly if faced by

different data distribution and data setting such as the background or the presence of facial hair

or glasses as in eNTERFACE’05 dataset.

8.5 Noise Robustness Results

This section describes evaluation results on noise robustness for multisensory integration models

proposed in this thesis. First, it describes results for the application of noise on visual data. Then

outlines results for noise applied to audio data.

Results in this section are independent of the unisensory experiments results. SNN models

have been implemented with different parameters in terms of convolution window size and

number of features as detailed in Chapter 6. Less number of features and bigger convolution and

size windows are used for computational speed efficiency.

This section evaluates the robustness of multisensory models described in the Chapter 5;

that is, convergence, enhancement and synchrony. It compares the proposed model to the CNN

baseline, similar to generalisation experiments.

8.5.1 Auditory Noise Evaluation

Table 8.20 shows results for the evaluation of the proposed models when applying three types of

audio noise (brown, pink and white), similar to the evaluation of unisensory audio models for

SER on RAVDESS dataset. Performance accuracy decrease for all models when applying audio

noise to the test dataset. The baseline CNN model experienced the worst drop in accuracy when

applying audio noise with ’white’ noise experiencing the worst accuracy and dropping to 35.0%.

The other models followed a different pattern and had their lowest accuracy when applying ‘pink’

noise. However, all the presented bio-inspired models perform well when presented with audio

noise, experiencing a low drop of accuracy with accuracy over 60% for the three models. It

suggests that the presented models are robust to noise and can compensate with the non-noisy

modality.

The decrease of accuracy using noise in auditory data is in line with findings in [300] for all

tested models. Results are in line with the unisensory experiments on SNN where applying pink
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Angry 16.8 8.8 20.5 16.7 8.4 28.8
Disgusted 12.5 23.0 12.9 15.3 14.9 21.4

Fearful 15.7 16.5 26.6 10.5 16.1 14.6
Happy 13.7 10.4 28.9 26.5 8.5 11.8

Sad 10.2 22.3 15.7 21.2 11.3 19.3
Surprised 11.0 20.1 19.1 13.1 8.1 28.6

Table 8.16: Confusion matrix for generalisation in CNN baseline model trained with eNTER-
FACE’05 and tested on RAVDESS
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Angry 71.4 19.0 0.00 0.0 4.8 4.8
Disgusted 3.0 83.9 7.0 0.0 6.1 0.0

Fearful 0.0 0.0 80.0 0.0 20.0 0.0
Happy 3.9 0.0 0.0 70.6 23.5 2.0

Sad 0.0 0.0 0.0 20.0 72.0 8.0
Surprised 0.0 26.2 0.0 0.0 21.9 51.9

Table 8.17: Confusion matrix for generalisation in convergence model trained with eNTER-
FACE’05 and tested on RAVDESS
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Angry 88.4 0.0 4.7 0.0 4.7 2.2
Disgusted 33.3 42.9 2.4 2.4 19.0 0.0

Fearful 14.3 0.0 71.4 2.4 11.9 0.0
Happy 12.2 0.0 2.4 80.5 4.9 0.0

Sad 9.5 0.0 0.0 0.0 90.5 0.0
Surprised 34.1 0.0 9.8 2.4 34.2 19.5

Table 8.18: Confusion matrix for generalisation in enhancement model trained with eNTER-
FACE’05 and tested on RAVDESS
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Angry 81.0 0.0 0.0 0.0 4.7 14.3
Disgusted 0.0 48.5 0.0 0.0 3.0 48.5

Fearful 0.0 0.0 81.2 0.0 0.0 18.8
Happy 0.0 0.0 0.0 76.5 5.9 17.6

Sad 0.0 0.0 0.0 0.0 83.3 16.7
Surprised 0.0 0.0 0.0 0.0 3.1 96.9

Table 8.19: Confusion matrix for generalisation model in synchrony trained with eNTERFACE’05
and tested on RAVDESS

153



Table 8.20: Audio noise evaluation on RAVDESS

Model No noise(%) White (%) Pink (%) Brown (%)
CNN 81.0 35.0 43.0 46.0
Convergence 81.3 76.6 72.5 78.1
Enhancement 83.6 77.3 72.3 76.6
Synchrony 98.3 67.0 63.4 65.2

Table 8.21: Audio noise evaluation on eNTERFACE’05

Model No noise White (%) Pink (%) Brown (%)
CNN 79.0 21.0 21.0 21.0
Convergence 80.1 71.3 70.3 71.3
Enhancement 86.3 77.3 71.7 72.9
Synchrony 96.8 70.2 50.9 77.9

noise experience the lowest accuracy.

Enhancement and convergence models experience the best accuracy using the three applied

audio noise. Although the synchrony model exhibits the best overall accuracy for the model when

tested without noise, its accuracy is lower when applying audio noise. Evaluating synchrony

model on noise is challenging due to the nature of its implementation. The model is based on

graph and an adjacency matrix. Testing on noisy data is computationally costly as a new graph

architecture is created for each new type of noise dataset. Creating a new graph when adding new

subgraphs or nodes is due to the limitation of graph network with spectral learning, where it is

needed to reload the whole graph when adding new subgraphs. The lower accuracy of synchrony

compared to convergence and enhancement suggests that for the synchrony model, applying

noise on one modality affects both modalities due to similar weights allocated given to both

modalities.

To investigate individual emotion labels, ’brown’ noise is chosen as a sample to analyse the

effect of audio noise on individual emotions. Brown noise is selected as it represents the deepest

audio noise applied. Brown noise represent a deepest version of the pink noise. The brown noise

have all energy concentrated in low frequency [255].

Confusion matrices A.1, A.2, A.3 and A.4 show a sample of individual class accuracy

with application of brown noise on RAVDESS dataset. The best performing emotion label in

the convergence model is ‘happy’ with 88.2%. In contrast, the best performing label class in
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synchrony and early enhancement models is ‘surprised’ with 96.9% and 100% for enhancement

and synchrony respectively. ‘Surprise’ exhibits the highest false positive values for synchrony and

enhancement models, whereas the class ‘sad’ has the highest false positive for the convergence

model.

Table 8.21 shows the performance of the proposed models compared to the baseline when

applying the three audio noise (brown, white and pink) on eNTERFACE’05. The lowest perform-

ing model is the baseline CNN model with 21.0% for all applied audio noise. The enhancement

model performs the best under white noise with 77.3%. Although the three models performs

comparably for the three noise levels, synchrony has the lowest accuracy for pink with 50.9%. It

also exhibits the highest drop in accuracy.

Confusion matrices A.6, A.7, A.8 and A.5 show a sample for individual class accuracy for

eNTERFACE’05 using ’pink’ noise. Similar to the ’brown’ noise, ’pink’ noise resulted in very

low accuracy in all labels for CNN model. The synchrony model failed to classify data with

emotion ’surprised’. Whereas the lowest performing emotion for enhancement is ’sad’ with

only 48.0% positively classified samples in this emotion. The most balanced model in terms

of individual emotion classification is the convergence where the lowest classified emotion is

‘angry’ with 57.1%.

8.5.2 Visual Noise Evaluation

Table 8.22 presents the results for the three proposed bio-inspired models, evaluating their

robustness to visual noise. The experiments applied four degrees of noises probabilities from 0.1

to 0.8. The choice of noise levels follows the results of unisensory noise experiments in Chapter

7 where noise is applied from 0.1 to 0.8. Results do not change much from 0.3 to 0.5 therefore a

higher level of noise is chosen to demonstrate and evaluate the robustness to visual noise.

Similarly to the experiments on audio noise, the baseline model CNN has the lowest accuracy

for all degrees of noise with the lowest accuracy for the noise probability of 0.8, with only 22%.

The three proposed models have a lower drop in accuracy with more stable accuracy with all

noise levels. Enhancement model performs the best with only an insignificant drop for the highest

noise level 0.8. Synchrony has the lowest accuracy when applying 0.8 with 66.5%.

The enhancement model is not as much affected by visual noise as much as the other models
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with accuracy remaining stable for the five level of noise from 83.6% to 83.0%. This is due to the

architecture type of the model and type of connections between the auditory and visual neurons

group. Connection from visual to auditory are set at an early level. The noise applied on visual

modality alone did not affect the overall accuracy and the network, as the classification decision

relied mainly on the auditory part.

Integration through neural synchrony has the best performance compared to all presented

models. However the accuracy dropped to 66.46% when applying 0.8 noise probability. This

accuracy is lower than the two other models with cross-modal enhancement model performing

the best for 0.8 noise probability. Neural synchrony model is more sensitive to higher noise due

to the fact that it is based on both modalities for and relies on temporal congruence between

modalities.

For both enhancement and convergence models the accuracy dropped only when a high noise

level is applied with a probability of 0.8%. The best performing model for the highest noise

is the enhancement model. The results mean that using early cross-modal enhancement with

noisy visual data is less affected by the inverse effectiveness principle of multisensory integration

compared to the other models, which is in line with finding in neuroscience [288].

All the proposed models, convergence, enhancement and synchrony demonstrate a consistent

higher accuracy with high visual noise level. The high accuracy of the proposed model results

from the nature of feature extraction step and the overall model architecture. Using Laplacian of

Gaussian (LoG) enhances the input an edges detection even in the presence of high noise. The

convolution layers used in SNN enhances features learning.

The highest noise probability of 0.8% is chosen to analyse individual labels accuracy for

RAVDESS dataset and confusion matrices are represented in Figure A.13,A.16, A.14, and A.15.

Similar to audio noise, neural synchrony model exhibits the same pattern, where the highest

false positive are for ’surprise’ class. Whereas, ’sad’ class is the highest false positive for early

cross-modal and convergence models. Overall enhancement model exhibits the best accuracy for

individual class labels.

Table 8.23 reports results for applying visual noise to the proposed models compared to

the CNN baseline using eNTERFACE’05 dataset. We can notice the same pattern as for the

RAVDESS results, with the baseline have the worst accuracy for all noise levels compared to
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the proposed models. The most balanced and highest accuracy model is the enhancement model

with accuracy ranging from 69.3% to 77.5% for noises from 0.1 to 0.8.

Confusion matrices in Figure 8.24, 8.25, 8.26 and 8.27 describe individual labels performance

for the models tested on eNTERFACE’05 dataset. Following the same pattern as for RAVDESS

dataset, the enhancement model show the best performances. Recognition rates for individual

emotions is the most balanced compared to the other models. The best performing emotion is

’sad’ with 78.6%, and the lowest performing is ’surprised’ with 22.0%. For the convergence

model, classes are also balanced with the highest classified emotion being ‘sad’ with 85.7% and

the lowest emotion classification being ‘surprised’ with 51.2%, following the same pattern for

the enhancement model. Similar to the results on RAVDESS, the model with less balanced label

accuracy is the synchrony model with the most false positive for ’happy’ emotion class.

Table 8.22: Visual salt and pepper noise evaluation of multisensory models on RAVDESS dataset

Model 0 0.1 0.2 0.3 0.4 0.5 0.8
Synchrony 98.3 98.2 87.2 87.2 87.2 87.2 66.5
Enhancement 83.6 83.6 83.2 83.2 83.2 83.2 83.0
Convergence 81.3 81.0 81.0 81.3 81.3 81.3 77.4
CNN (Baseline) 81.0 65.0 63.0 35.0 35.0 35.0 22.0

Table 8.23: Visual salt and pepper noise evaluation of multisensory models on eNTERACE’05
dataset

Model 0 0.1 0.2 0.3 0.4 0.5 0.8
Synchrony 96.8 63.1 63.0 62.1 62.0 62.0 60.0
Enhancement 86.3 77.5 70.5 70.0 70.0 70.0 69.3
Convergence 83.3 66.5 62.5 62.5 62.5 62.5 62.3
CNN (Baseline) 79.0 42.0 35.0 34.0 32.0 32.0 27.0

8.6 Summary

This chapter has presented evaluation experiments of the three proposed bio-inspired multisensory

models: convergence, enhancement and synchrony. The three models are evaluated using third

party datasets eNTERFACE’05 and RAVDESS. Results are compared to state-of-the-art methods

on the same datasets.
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Angry 14.3 8.0 18.6 18.0 12.1 18.6
Disgusted 7.5 28.4 13.5 24.1 18.2 20.8

Fearful 12.3 10.2 41.5 14.7 12.1 18.6
Happy 8.7 13.9 14.5 28.1 14.4 18.6

Sad 15.5 11.7 14.8 18.0 20.8 13.3
Surprised 19.4 15.7 9.7 14.7 8.7 26.1

Table 8.24: Confusion matrix CNN baseline with 0.8 visual noise on eNTERFACE’05
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Angry 69.8 0.0 4.7 7.0 11.6 7.0
Disgusted 9.5 42.9 19.0 7.1 16.7 4.8

Fearful 2.4 0.0 59.5 11.9 23.8 2.4
Happy 4.9 0.0 2.4 68.3 22.0 2.4

Sad 7.1 2.4 2.4 0.0 85.7 2.4
Surprised 2.4 2.4 7.3 22.0 14.6 51.2

Table 8.25: Confusion matrix convergence with 0.8 visual noise on eNTERFACE’05
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Angry 74.4 0.0 0.0 11.6 11.6 2.3
Disgusted 26.2 40.5 2.4 14.3 16.7 0.0

Fearful 14.3 0.0 50.0 4.8 31.0 0.0
Happy 9.8 0.0 0.0 68.3 22.0 0.0

Sad 14.3 0.0 2.4 4.8 78.6 0.0
Surprised 29.3 0.0 2.4 26.8 19.5 22.0

Table 8.26: Confusion matrix enhancement with 0.8 visual noise on eNTERFACE’05
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Angry 81.5 0.0 0.0 16.7 0.0 1.9
Disgusted 0.0 79.3 0.0 20.7 0.0 0.0

Fearful 0.0 3.9 66.7 27.5 0.0 2.0
Happy 0.0 0.0 0.0 90.0 10.0 0.0

Sad 3.7 0.0 0.0 92.6 3.7 0.0
Surprised 0.0 0.0 0.0 100.0 0.0 0.0

Table 8.27: Confusion matrix synchrony with 0.8 visual noise on eNTERFACE’05
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Evaluations reveal that not only the proposed models’ performances are comparable to

state-of-the-art methods, they also exhibit an excellent generalisation capacity and robustness to

noise. Each model is analysed in terms of performance and are compared to state-of-the-art and

unisensory modalities.

The evaluation also demonstrates that modelling constant cross-modal interaction between

different modalities using neural synchrony helps address challenges faced by current data

fusion techniques such as late or features based fusion. Besides, cross-modal enhancement

model architecture is more robust to visual and auditory noise to a simple CNN model. Having

modalities constanting interacting and receiving feedback during training enables a more precise

multisensory features representation, thus a better evaluation of the multisensory emotional

content.
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Chapter 9

Conclusions

The research work presented in this thesis represents an interdisciplinary project aiming at design-

ing novel bio-inspired architectures and models for multisensory integration with applications

in audio-visual social signals of emotions recognition. Multisensory integration of emotions is

an essential area of research a represents a very challenging task due to the nature of emotions,

being essentially multisensory. As discussed in Chapter 2, the majority of existing methods in

the literature focus on applying fusion methods derived from engineering with the most popular

methods being early, late or deep learning fusion techniques. This thesis is dedicated to exploring

the use of bio-inspired models for emotion recognition and proposing novel computational

models for multisensory integration based on different pathways of multisensory integration in

the brain. The evaluation of the proposed models not only shows higher overall accuracy for

both unisensory and multisensory emotion recognition tasks but also demonstrates excellent

generalisation capacity and robustness to noise compared to state-of-the-art methods. Evaluation

also shows that without the recourse to data augmentation, bio-inspired methods implemented

through SNNs with unsupervised learning are comparable and even superior to state-of-the-art

methods. The work presented in this thesis is divided into two main parts:

1) Explore the use of bio-inspired models in unisensory emotion recognition with applications

for audio and visual modalities.

2) Design and implement three multisensory models based on three different pathways of

multisensory integration in the brain.
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9.1 Research Summary and Contributions

The research in this thesis reveals that by adopting bio-inspired models with unsupervised learn-

ing, we can achieve more accurate and precise multisensory integration. This thesis evaluates

the proposed models on state-of-the-art datasets for both audio and visual data, representing

continuous facials expressions and non-verbal speech features. Translating cross-talk between

modalities facilitates the interpretation of multisensory integration, thus producing better accu-

racy, generalisation and robustness to noise.

9.1.1 Research Question 1 Contribution – Unisensory Emotion

Recognition

"Are bio-inspired architecture effective for unisensory social signals of emotions recognition

tasks? "

Chapters 4 and 7 aim at addressing the first research question. They describe the proposed

models on the application of bio-inspired architectures in unisensory emotion recognition.

Models are implemented and simulated using SNNs. Evaluations confirmed that the application

of such models in facial expression recognition and speech emotion recognition tasks increases

the overall accuracy. Furthermore, applying bio-inspired unsupervised learning provides a new

insight on emotion recognition tasks. Experiments results also have presented promising accuracy

which is comparable and often higher than most state-of-the-art techniques. With unsupervised

learning, SNN models have achieved comparable accuracy to some of the most popular methods

such as HOG features with SVM or CNN in facial expression recognition. SNN also proves useful

for speech emotion recognition tasks. They can successfully translate the temporal dimension in

audio signal processing.

This thesis has demonstrated that the exploration of different types of classifiers and more

biologically inspired architectures can be beneficial for emotion recognition tasks. Providing an

unsupervised STDP learning proves to be useful for features learning, with the reduced reliance

on labelled training data and vast datasets or data augmentation.
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9.1.2 Research Question 2 Contribution – Multisensory Emotion

Recognition

"Does applying bio-inspired models in multisensory integration increase the efficiency of multi-

sensory recognition systems?"

Chapters 5 and 8 aim at addressing and answering the second research question. The chapters

propose novel computational models for multisensory integration with applications in multisen-

sory audio-visual emotion recognition. It details three main models inspired by three pathways

of multisensory integration in the brain for audio-visual data.

The three multisensory integration models are presented as follows:

Multisensory Integration Through Convergence

The first model in this thesis represents the most classical view on multisensory integration,

which is integration by convergence in higher-order areas, using multisensory neurons. The

model is implemented using SNN with three distinct neuronal groups, two representing each

modality and a third group representing the multisensory area. Experimental evaluations on two

third-party datasets confirmed that applying bio-inspired technologies with unsupervised learning

is more effective than most state-of-the-art results from the most popular fusion techniques such

as early or decision level.

Multisensory through Cross-modal Enhancement

The second proposed model is inspired by multisensory integration at early sensory areas in

the brain. In this model one modality – auditory is preceded, and enhancement by another modal-

ity – visual. Using early cross-modal enhancement provides us with more accurate recognition

compared state-of-the-art supervised learning techniques. Results show that using SNNs using

early cross-modal enhancement either is equivalent or surpasses most state-of-the-art results

for the same datasets in both implementations. Exploiting early cross-modal enhancement by

using one modality to enhance and complement the other also proves more effective than the

first proposed convergence model.

Multisensory Through Neural Synchrony

The third proposed model consist of using temporal and semantic coherence and synchrony

between different sensory areas to drive multisensory integration. Exploiting SNN with STDP

learning, temporal neural synchrony and the effectiveness of GCNs enables better feature
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representation and multisensory interactions modelling. More specifically,

• SNN with STDP unsupervised learning enables feature learning and cross-talk between

both modalities;

• Computing with neural synchrony with spike timing and stimuli enables integration of

audio and visual data;

• GCN has demonstrated as a viable choice for modelling neuron activities and their interac-

tions to facilitate learning complex patterns.

The third approach successfully translates the synchronous relation between audio and visual

signals by using SNN representation of multisensory interaction. Using SNN to represent

multisensory data can also alleviate the heterogeneity challenge of multisensory data. This is

achieved by unifying all modalities features into a uniform input type – Poisson spike trains.

In addition, representing data in graph addresses the fusion challenge by enabling data fusion

while keeping the temporal and spatial relationship. Integration through neural synchrony can be

particularly useful for robust in-the-wild emotion recognition, where there exists incongruous

information between facial expression and vocal signals, or uncertainty in either of the modalities.

9.1.3 Research Question 3 Contribution – Generalisation

"Do bio-inspired models present better generalisation capacity compared to state-of-the-art? "

This thesis investigate generalisation capacity of the proposed bio-inspired models. Evaluation

experiments are applied for both unisensory and multisensory models. First, unisensory SER and

FER models are trained and evaluated using two distinct datasets with different data distribution.

The bio-inspired models have achieved consistently better accuracy compared to the state-of-

the-art techniques such as SVM with HOG features and CNN networks for FER tasks. They

have also been compared to state-of-the art models for SER tasks such as SVM and CNN. The

evaluation results show that bio-inspired models using SNNs have better generalisation capability

for unisensory models for both FER and SER tasks. The models learning enables to learn features

that can be generalised through never seen data.
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The second part of experimental evaluations consist of investigating generalisation capacity

for the proposed multisensory models. Convergence, enhancement and synchrony models are

trained with one dataset and tested with a different one. Although performances drop when

facing new data, the proposed models in this thesis have constantly achieved a stable accuracy

that is constantly higher than the baseline model. Results confirm generalisation capacity of

the three proposed models, with synchrony model performing the best for generalisation tasks.

They also demonstrate that exploiting constant cross-talk between modalities is beneficial in

multisensory integration with results demonstrated in enhancement and synchrony models.

9.1.4 Research Question 4 Contribution – Robustness to Noise

"Are bio-inspired architectures robust to signal noise?

This thesis also investigate the robustness to audio and visual noise in the proposed models.

First, experiments evaluate the robustness to noise in unisensory models. SNN has demonstrated

robustness to noise degradation with different noise densities, compared to state-of-the-art

techniques such as SVM and CNN.

The second part of evaluations concerns the proposed multisensory models. All the proposed

models, convergence, enhancement and synchrony, are evaluated and compared to state-of-the-art

baseline model CNN under various audio and visual noise densities and types. The proposed

models perform constantly better than the baseline with both audio and visual noise applications.

Amongst the three proposed models, the enhancement model performs consistently better than

the convergence and synchrony models for both visual and auditory noise. The enhancement

model exploits early enhancement from visual data when applying audio noise. It is also less

affected by visual noise than the other models. Evaluation results show that the proposed models

can be successfully exploited in noisy environments.

9.2 Limitations

Despite the significant potential of applying bio-inspired architectures in both unisensory and

multisensory, there exist some limitations in the implementations of such models. The main

challenge is the computational cost, which are reflected in the following aspects.

165



1. SNN parameters

Processing large datasets of audio-visual data presents some challenges in terms of com-

putational efficiency. Parameters chosen for convolution window, stride and number of

features are reduced due to computational cost. Having higher number of features and

smaller window and stride size results in better accuracy results.

2. Unisensory emotion recognition model

Unisensory models for both visual and auditory data is implemented using SNNs. Lim-

itations have been encountered in processing audio data. Due to computational power

limitations, audio data processing using temporal segments is limited.

3. Multisensory models

The implementation of multisensory integration models proposed in this thesis face few

limitations mainly linked in computational power. Early cross-modal enhancement model

faces few limitations in the translation of temporal interaction between modalities. A more

useful addition includes a temporal delay between different temporal segments. In the third

proposed model, integration through neural synchrony, limitations have been encountered

in the choice of spectral graph for graph learning. Although choosing spectral models with

semi-supervised learning proved very beneficial in terms of overall accuracy, introducing

new nodes and new subgraph requires to reload the whole graph. This operation is very

computationally costly.

9.3 Future Work

The main motivation behind this research work is to explore novel methods for multisensory

integration in general. The work presented in this thesis can be expanded in various forms as

follows:

• Apply multisensory integration models to different types of data Application of the

multisensory models presented in this thesis can be extended to include data from different

modalities such as sensors data with general multisensory integration.

166



• Include additional modalities such as body language Another addition to the evaluation

of the models with audio -visual data. Other modalities can be included such as body

gesture or verbal speech information.

• Extend the application to more complex and subtle emotions The models included

in this thesis may be suitable for more subtle emotions as they translate the constant

cross-talk between modalities. The third model which consist of multisensory integration

through neural synchrony is particularly useful for subtle emotion as it translate continuous

emotions and cross-modal talks.

• Explore the behaviour of the proposed models on cross-corpus experiments with

different emotional state representation The proposed models can be evaluated with

different representation of emotional states such as using different emotion models. The

models can be enhanced to include emotions intensity dimensions in addition to emotions

categories.

• Explore the behaviour of the proposed models on cross-subject experiments The

models performance and robustness can be evaluated cross-subject by using Leave One

Subject Out (LOSO) technique. This can assess their performance for applications such as

assistive technologies.

• Explore the combination of the three models The combination of the three models

can translate the whole multisensory integration process in the brain. This operation is

particularly useful for multisensory integration of various sensory modalities as opposed

to bimodal integration.

• Include attention mechanism Attention module can be added to the main multisensory

integration model to regulate the attention between modalities. It can also be used to add

context for multisensory emotion recognition.

• Extend the models to achieve recognition of different emotions representations This

can be achieved by introducing the use of hybrid emotion models such as Plutchik.
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Finally, the research described in this thesis can help create systems such as sensory substi-

tutions that can be particularly beneficial for applications in emotion recognition impairment.

Applications can include assistive technologies for autism, dementia or schizophrenia.
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Appendix A

Confusion Matrices For Multisensory

Experiments

A.1 Audio Noise Experiments

169



Predicted

A
ng

ry

D
is

gu
st

ed

Fe
ar

fu
l

H
ap

py

Sa
d

Su
rp

ri
se

d

A
ct

ua
l

Angry 34.0 11.2 12.6 8.8 14.0 19.5
Disgusted 4.4 39.1 14.5 13.7 12.5 15.7

Fearful 4.9 13.1 40.8 14.2 8.2 18.7
Happy 4.7 7.1 22.3 39.8 12.3 13.7

Sad 8.8 10.9 9.9 21.9 34.7 13.9
Surprised 6.4 6.7 11.3 11.3 16.3 48.1

Table A.1: Confusion matrix for CNN baseline with brown audio noise on RAVDESS dataset
Predicted

A
ng

ry

D
is

gu
st

ed

Fe
ar

fu
l

H
ap

py

Sa
d

Su
rp

ri
se

d

A
ct

ua
l

Angry 85.7 0.0 0.0 0.0 9.5 4.8
Disgusted 0.0 81.8 0.0 0.0 12.1 6.1

Fearful 0.0 6.3 81.2 0.0 0.0 12.5
Happy 0.0 0.0 0.0 88.2 11.8 0.0

Sad 0.0 11.1 0.0 0.0 83.3 5.6
Surprised 0.0 3.1 3.2 0.0 12.5 81.2

Table A.2: Confusion matrix for convergence with brown audio noise on RAVDESS dataset
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Angry 81.0 0.0 0.0 0.0 4.8 14.2
Disgusted 0.0 48.5 0.0 0.0 3.0 48.5

Fearful 0.0 0.0 81.2 0.0 0.0 18.8
Happy 0.0 0.0 0.0 76.5 5.9 17.6

Sad 0.0 0.0 0.0 0.0 83.3 16.7
Surprised 0.0 0.0 0.0 0.0 3.1 96.9

Table A.3: Confusion matrix for enhancement with brown audio noise on RAVDESS dataset
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Angry 86.4 0.0 0.0 0.0 0.0 13.6
Disgusted 0.0 74.1 3.7 0.0 0.0 22.2

Fearful 0.0 0.0 85.0 0.0 0.0 15.0
Happy 0.0 0.0 0.0 55.6 0.0 44.4

Sad 0.0 0.0 0.0 0.0 0.0 100
Surprised 0.0 0.0 0.0 0.0 0.0 100

Table A.4: Confusion matrix for synchrony with brown audio noise on RAVDESS dataset
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Angry 20.5 3.7 6.0 8.4 26.0 35.3
Disgusted 15.3 9.7 14.5 19.4 14.1 27.0

Fearful 9.7 11.6 13.1 13.9 14.6 37.1
Happy 12.8 9.0 16.1 21.3 16.1 24.6

Sad 13.5 6.6 19.0 16.4 20.8 23.7
Surprised 10.6 7.4 15.2 15.9 12.7 38.2

Table A.5: Confusion matrix for CNN baseline with pink audio noise on eNTERFACE’05
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Angry 57.1 23.8 0.0 0.0 9.5 9.6
Disgusted 0.0 97.0 0.0 0.0 3.0 0.0

Fearful 0.0 0.0 87.5 0.0 12.5 0.0
Happy 0.0 5.9 5.8 64.7 11.8 11.8

Sad 0.0 5.6 0.0 0.0 94.4 0.0
Surprised 0.0 12.5 0.0 0.0 25.0 62.5

Table A.6: Confusion matrix for convergence with pink audio noise on eNTERFACE’05
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Angry 72.1 2.3 0.0 14.0 9.3 2.3
Disgusted 9.5 76.2 0.0 11.9 2.4 0.0

Fearful 7.1 0.0 52.4 14.3 26.2 0.0
Happy 2.4 0.0 0.0 92.7 4.9 0.0

Sad 0.0 0.0 0.0 7.1 90.5 2.4
Surprised 14.6 0.0 0.0 19.5 19.5 46.4

Table A.7: Confusion matrix for enhancement with pink audio noise on eNTERFACE’05
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Angry 88.4 0.0 0.0 4.6 7.0 0.0
Disgusted 0.0 87.8 0.0 7.3 4.9 0.0

Fearful 0.0 18.2 27.3 31.8 22.7 0.0
Happy 0.0 34.2 0.0 26.8 39.0 0.0

Sad 0.0 24.0 0.0 32.0 44.0 0.0
Surprised 0.0 50.0 0.0 50.0 0.0 0.0

Table A.8: Confusion matrix for synchrony with pink audio noise on eNTERFACE’05
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A.2 Visual noise experiments
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Angry 39.3 4.3 16.1 15.8 7.8 16.7
Disgusted 7.5 38.9 11.3 10.0 14.4 17.9

Fearful 8.3 6.5 50.4 12.2 7.1 15.5
Happy 6.0 13.9 12.9 42.6 13.6 11.0

Sad 11.9 6.8 12.3 16.0 38.3 14.7
Surprised 15.1 13.7 11.9 10.4 5.7 43.2

Table A.9: Confusion matrix for CNN baseline with 0.1 visual noise on eNTERFACE’05
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Angry 76.7 0.0 7.0 2.3 11.6 2.3
Disgusted 9.5 57.1 7.1 2.4 23.8 0.0

Fearful 14.3 0.0 76.2 0.0 9.5 0.0
Happy 4.9 0.0 7.3 75.6 12.2 0.0

Sad 4.8 0.0 2.4 0.0 92.9 0.0
Surprised 26.8 2.4 17.1 0.0 34.1 19.5

Table A.10: Confusion matrix for convergence with 0.1 visual noise on eNTERFACE’05
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Angry 76.2 19.0 0.0 0.0 0.0 4.8
Disgusted 3.0 75.8 0.0 0.0 21.2 0.0

Fearful 0.0 0.0 100.0 0.0 0.0 0.0
Happy 0.0 0.0 0.0 76.5 17.6 5.9

Sad 0.0 0.0 0.0 0.0 100.0 0.0
Surprised 3.1 0.0 0.0 3.1 34.4 59.4

Table A.11: Confusion matrix for enhancement with 0.1 visual noise on eNTERFACE’05
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Angry 52.9 0.0 0.0 0.0 0.0 47.1
Disgusted 0.0 80.6 0.0 0.0 0.0 19.4

Fearful 0.0 0.0 87.5 0.0 0.0 12.5
Happy 0.0 0.0 0.0 57.8 0.0 42.2

Sad 0.0 0.0 0.0 5.4 0.0 94.6
Surprised 0.0 0.0 0.0 0.0 0.0 100.0

Table A.12: Confusion matrix for synchrony with 0.1 visual noise on eNTERFACE’05
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Angry 10.2 17.9 17.7 18.5 17.7 18.0
Disgusted 10.2 22.8 18.3 17.1 15.0 16.6

Fearful 8.8 19.4 30.3 15.1 11.3 15.5
Happy 8.4 9.1 26.7 29.0 11.9 14.9

Sad 7.9 13.1 16.1 23.1 20.4 19.4
Surprised 4.0 12.3 10.9 15.6 19.0 38.2

Table A.13: Confusion matrix for CNN baseline with 0.8 visual noise on RAVDESS dataset
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Angry 81.0 4.8 0.0 4.7 9.5 0.0
Disgusted 0.0 75.8 3.0 0.0 21.2 0.0

Fearful 0.0 0.0 100.0 0.0 0.0 0.0
Happy 0.0 0.0 5.9 82.4 11.7 0.0

Sad 0.0 0.0 5.6 0.0 94.4 0.0
Surprised 12.5 3.1 9.4 0.0 21.9 53.1

Table A.14: Confusion matrix for convergence with 0.8 visual noise on RAVDESS dataset
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Angry 88.4 0.0 4.7 0.0 4.6 2.3
Disgusted 33.3 42.9 2.4 2.4 19.0 0.0

Fearful 14.3 0.0 71.4 2.4 11.9 0.0
Happy 12.2 0.0 2.4 80.5 4.9 0.0

Sad 9.5 0.0 0.0 0.0 90.5 0.0
Surprised 34.1 0.0 9.8 2.4 34.1 19.6

Table A.15: Confusion matrix for enhancement with 0.8 visual noise on RAVDESS dataset
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Angry 81.0 0.0 0.0 0.0 4.7 14.3
Disgusted 0.0 48.5 0.0 0.0 3.0 48.5

Fearful 0.0 0.0 81.2 0.0 0.0 18.8
Happy 0.0 0.0 0.0 76.5 5.9 17.6

Sad 0.0 0.0 0.0 0.0 83.3 16.7
Surprised 0.0 0.0 0.0 0.0 3.1 96.9

Table A.16: Confusion matrix for synchrony with 0.8 visual noise on RAVDESS dataset
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Appendix B

Experiments Repeated Holdout Trials

Results

Figure B.1: Multisensory experiments repeated holdout trials results on RAVDESS dataset
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Figure B.2: Multisensory experiments repeated holdout trials results on eNTERFACE’05 dataset

Figure B.3: FER experiments repeated holdout trials results on CK+ dataset
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Figure B.4: FER experiments repeated holdout trials results on JAFFE dataset

Figure B.5: SER experiments repeated holdout trials results on RAVDESS dataset
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Figure B.6: SER experiments repeated holdout trials results on eNTERFACE’05 dataset

178



References

[1] D. A and P. J. Pattern recognition using spiking neural netwoks with temporal encoding

and learning. In IEEE 9th International Conference on Intelligent Systems and Control

(ISCO), pages 1–5, Jan 2015. https://doi.org/10.1109/ISCO.2015.7282233.

[2] L. F. Abbott and P. Dayan. The effect of correlated variability on the accuracy of a

population code. Neural computation, 11(1):91–101, 1999.

[3] M. Abeles. Local cortical circuits: An electrophysiological study, volume 6. Springer

Science & Business Media, 2012.

[4] T. Ahonen, A. Hadid, and M. Pietikäinen. Face Recognition with Local Binary Patterns,

pages 469–481. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. https://doi.org/10.

1007/978-3-540-24670-1_36.

[5] M. M. R. Al-Yasari and N. A. S. Al-Jamali. Modified training algorithm for spiking neural

network and its application in wireless sensor network. Energy, 5(10), 2018.

[6] O. Al Zoubi, A. Mayeli, M. Awad, and H. Refai. Hierarchical fusion evolving spiking

neural network for adaptive learning. In 2018 IEEE 17th International Conference on

Cognitive Informatics & Cognitive Computing (ICCI* CC), pages 86–91. IEEE, 2018.

[7] S. Albanie, A. Nagrani, A. Vedaldi, and A. Zisserman. Emotion recognition in speech

using cross-modal transfer in the wild. In Proceedings of the 26th ACM international

conference on Multimedia, pages 292–301. ACM, 2018.

[8] H. Alshamsi, V. Kepuska, H. Alshamsi, and H. Meng. Automated facial expression and

speech emotion recognition app development on smart phones using cloud computing. In

179

https://doi.org/10.1109/ISCO.2015.7282233
https://doi.org/10.1007/978-3-540-24670-1_36
https://doi.org/10.1007/978-3-540-24670-1_36


2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication

Conference (IEMCON), pages 730–738. IEEE, 2018.

[9] M. R. Amer, T. Shields, B. Siddiquie, A. Tamrakar, A. Divakaran, and S. Chai. Deep

multimodal fusion: A hybrid approach. International Journal of Computer Vision, 20 Feb

2017. https://doi.org/10.1007/s11263-017-0997-7.

[10] M. R. Amer, T. Shields, B. Siddiquie, A. Tamrakar, A. Divakaran, and S. Chai. Deep

multimodal fusion: A hybrid approach. International Journal of Computer Vision, 126(2-

4):440–456, 2018.

[11] C.-N. Anagnostopoulos, T. Iliou, and I. Giannoukos. Features and classifiers for emotion

recognition from speech: a survey from 2000 to 2011. Artificial Intelligence Review,

43(2):155–177, 01 Feb" 2015. https://doi.org/10.1007/s10462-012-9368-5.

[12] B. Antje, G. M, J. Matthias, Wieser, and W. A. Georg. Emotional pictures and sounds: a

review of multimodal interactions of emotion cues in multiple domains. Front Psychol,

2014.

[13] L. H. Arnal, B. Morillon, C. A. Kell, and A.-L. Giraud. Dual neural routing of visual

facilitation in speech processing. Journal of Neuroscience, 29(43):13445–13453, 2009.

[14] H. Atilgan, S. M. Town, K. C. Wood, G. P. Jones, R. K. Maddox, A. K. Lee, and J. K.

Bizley. Integration of visual information in auditory cortex promotes auditory scene

analysis through multisensory binding. Neuron, 97(3):640–655, 2018.

[15] P. K. Atrey, M. A. Hossain, A. El Saddik, and M. S. Kankanhalli. Multimodal fusion

for multimedia analysis: a survey. Multimedia Systems, 16(6):345–379, 2010. https:

//doi.org/10.1007/s00530-010-0182-0.

[16] A. M. Badshah, J. Ahmad, N. Rahim, and S. W. Baik. Speech emotion recognition from

spectrograms with deep convolutional neural network. In 2017 international conference

on platform technology and service (PlatCon), pages 1–5. IEEE, 2017.

[17] K. Bahreini, R. Nadolski, and W. Westera. Data fusion for real-time multimodal emotion

recognition through webcams and microphones in e-learning. International Journal of

180

https://doi.org/10.1007/s11263-017-0997-7
https://doi.org/10.1007/s10462-012-9368-5
https://doi.org/10.1007/s00530-010-0182-0
https://doi.org/10.1007/s00530-010-0182-0


Human Computer Interaction, 32(5):415–430, 2016. https://doi.org/10.1080/10447318.

2016.1159799.

[18] M. Balconi and A. Carrera. Cross-modal integration of emotional face and voice in

congruous and incongruous pairs: the p2 erp effect. Journal of Cognitive Psychology,

23(1):132–139, 2011.

[19] T. Baltrušaitis, C. Ahuja, and L.-P. Morency. Multimodal machine learning: A survey and

taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2):423–

443, 2018.

[20] A. Barutchu, C. Spence, and G. W. Humphreys. Multisensory enhancement elicited by

unconscious visual stimuli. Experimental Brain Research, 236(2):409–417, 01 Feb 2018.

https://doi.org/10.1007/s00221-017-5140-z.

[21] A. Barutchu, C. Spence, and G. W. Humphreys. Multisensory enhancement elicited by

unconscious visual stimuli. Experimental brain research, 236(2):409–417, 2018.

[22] R. e. a. Beard. Multi-modal sequence fusion via recursive attention for emotion recognition.

In Proceedings of the 22nd Conference on Computational Natural Language Learning,

pages 251–259, 2018.

[23] M. S. Beauchamp. Using multisensory integration to understand the human auditory

cortex. In Multisensory Processes, pages 161–176. Springer, 2019.

[24] E. M. Benssassi, J.-C. Gomez, L. E. Boyd, G. R. Hayes, and J. Ye. Wearable assis-

tive technologies for autism: opportunities and challenges. IEEE Pervasive Computing,

17(2):11–21, 2018.

[25] L. E. Bernstein, E. T. Auer Jr, M. Wagner, and C. W. Ponton. Spatiotemporal dynamics of

audiovisual speech processing. Neuroimage, 39(1):423–435, 2008.

[26] D. Bhandari, S. Paul, and A. Narayan. Multimodal data fusion and prediction of emo-

tional dimensions using deep neural network. In Computational Intelligence: Theories,

Applications and Future Directions-Volume II, pages 215–228. Springer, 2019.

181

https://doi.org/10.1080/10447318.2016.1159799
https://doi.org/10.1080/10447318.2016.1159799
https://doi.org/10.1007/s00221-017-5140-z


[27] Z. Bing, C. Meschede, K. Huang, G. Chen, F. Rohrbein, M. Akl, and A. Knoll. End to end

learning of spiking neural network based on R-STDP for a lane keeping vehicle. In 2018

IEEE International Conference on Robotics and Automation (ICRA), pages 1–8. IEEE,

2018.

[28] J. D. Birdwell, M. E. Dean, M. G. Drouhard, and C. D. Schuman. Method and apparatus

for constructing a neuroscience-inspired artificial neural network with visualization of

neural pathways, Jan. 18 2018. US Patent App. 15/689,925.

[29] S. M. Bohte, H. La Poutré, and J. N. Kok. Unsupervised clustering with spiking neurons

by sparse temporal coding and multilayer rbf networks. IEEE Transactions on neural

networks, 13(2):426–435, 2002.

[30] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and D. Hassabis.

Reinforcement learning, fast and slow. Trends in cognitive sciences, 2019.

[31] J. Bower and D. Beeman. The book of genesis. 1998. Telos, 1998.

[32] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[33] A. B. Brandwein, J. J. Foxe, J. S. Butler, H.-P. Frey, J. C. Bates, L. H. Shulman, and

S. Molholm. Neurophysiological indices of atypical auditory processing and multisensory

integration are associated with symptom severity in autism. Journal of autism and

developmental disorders, 45(1):230–244, 2015.

[34] R. Brette. Computing with neural synchrony. PLoS computational biology, 8(6):e1002561,

2012.

[35] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected

networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[36] C. A. Buscicchio, P. Górecki, and L. Caponetti. Speech emotion recognition using

spiking neural networks. In F. Esposito, Z. W. Raś, D. Malerba, and G. Semeraro, editors,
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