
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Multiple drone classification using
millimeter-wave CW radar micro-
Doppler data

Rahman, Samiur, Robertson, Duncan

Samiur Rahman, Duncan A. Robertson, "Multiple drone classification using
millimeter-wave CW radar micro-Doppler data," Proc. SPIE 11408, Radar
Sensor Technology XXIV, 1140809 (23 April 2020); doi: 10.1117/12.2558435

Event: SPIE Defense + Commercial Sensing, 2020, Online Only

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Jun 2020  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/326509452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 
 

 

 

 

Multiple drone type classification using millimetre-wave CW radar 

micro-Doppler data 
 

Samiur Rahmana, Duncan A. Robertsona 
a University of St Andrews, SUPA School of Physics & Astronomy, St Andrews, Fife KY16 9SS, 

Scotland 

ABSTRACT   

This paper investigates the prospect of classifying different types of rotary wing drones using radar. The proposed method 

is based on the hypothesis that the rotor blades of different sizes and shapes will exhibit distinct Doppler features. When 

sampled unambiguously, these features can be properly extracted and then can be used for classification. We investigate 

various continuous wave (CW) spectrogram features of different drones obtained with a low phase noise, coherent radar 

operating at 94 GHz. Two quadcopters of different sizes (DJI Phantom Standard 3 and Joyance JT5L-404) and a hexacopter 

(DJI S900) have been used during the experimental trial for data collection. For classification training, we first show the 

limitation of the feature extraction based method. We then propose a convolutional neural network (CNN) based approach 

in which the classification training is done by using micro-Doppler spectrogram images. We have created an extensive 

dataset of spectrogram images for classification training, which have been fed to the existing GoogLeNet model. The 

trained model then has been tested with unseen and unlabelled data for performance verification. Validation accuracy of 

above 99% is achieved along with very accurate testing results, demonstrating the potential of using neural networks for 

multiple drone classification. 

Keywords: Micro-Doppler, Radar, CW, millimeter-wave, classification, drones, deep learning, neural network, 

GoogLeNet 

1. INTRODUCTION  

Micro-Doppler is an intrinsic feature of the radar signature of commercially available rotary wing drones. The propeller 

blade rotations produce distinctive micro-Doppler signatures in their radar signal returns1,2. A surveillance radar system 

can use this characteristic to identify the drones. A plethora of research work have been reported in recent years regarding 

the use of this feature to classify a drone, as well as for discriminating it from a confuser (i.e. bird)3,4,5,6. Beyond classifying 

the target as a drone, the next logical question is to identify the drone type. In principle, discrimination between different 

models of drones is possible since different targets will produce different micro-Doppler signatures unique to their micro-

motion properties. In practice, this is a complicated challenge when using a radar sensor in a dynamic target scenario. 

Commercial drones are targets with low radar cross section (RCS) compared to other airborne targets like planes or 

helicopters. Also, it is more difficult to do micro-Doppler based discrimination between two different types of drones than 

to distinguish between a drone and a bird. 

Few preliminary works have been reported to address this problem using deep learning methods. In7, the concept of using 

a convolutional neural network (CNN) for classifying types of drones at different altitudes was demonstrated. In that work, 

spectrograms and corresponding cadence velocity diagrams (CVD) obtained from Ku-band radar were combined to form 

merged Doppler images as the dataset used to train the CNN. A widely used CNN structure, GoogLeNet8, was used for 

training, showing more than 90% accuracy. In9, a modified version of CNN, named fully-convolutional network, was used 

to classify between three different models of drones using simulated micro-Doppler data. Another CNN based multiple 

drone classification method was reported in10, again using simulated data, showing 93% classification accuracy. 

In this paper, we have attempted to classify two quadcopters of different sizes and one hexacopter, using experimentally 

obtained micro-Doppler spectrogram images as the dataset. CNNs typically used to classify optical images so using radar 

spectrograms, which are not optical images and use false color scales, requires some caution. Our conjecture is that a high 

fidelity spectrogram detailing the distinct shapes of the propeller signatures will significantly improve the image based 

neural network training accuracy. Hence, ee have used millimeter-wave radar data, obtained at 94 GHz, for better micro-

Doppler sensitivity11. A millimeter-wave radar has the advantage of higher Doppler sensitivity by producing spectrograms 

with better resolution in a shorter time. A CW spectrogram plot from a millimetre-wave radar without Doppler ambiguity 
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produces high quality radar signatures of the drone propeller blades. We have created a dataset of 1950 CW spectrogram 

images in total of three types of drone for training, where all the images are obtained from experimental flight trials. The 

classification training outcomes are discussed in this paper along with testing accuracy results. Also, a brief comparison 

between the CNN based classification method and feature extraction based method is made, showing the advantage of 

using CNN. It should be noted that all the radar data used here are obtained in staring mode for the simplicity of the 

experimental setup.  

2. CNN TRAINING WITH MICRO-DOPPLER SPECTROGRAM IMAGES 

CNN is a supervised learning method based on multilayer perceptron (MLP)12. The training is done by using filters of 

various sizes to learn different features of an image. The low-level features correspond to basic shapes (lines, curves etc.), 

whereas the high-level features are more specific to the classifying objects (drone propeller rotation, bird wing flap etc.). 

Low-level features are prevalent in every image so we have selected a well developed and tested network, GoogLeNet, in 

this study. Using a pre-trained network has the advantage of providing a robust foundation for feature learning.  

 

2.1 GoogLeNet 

GoogLeNet is a very well developed network that pioneered the use of different sizes of convolutional layer filters in 

parallel, known as the inception module8, which considerably improves the training performance. This is because instead 

of randomly selecting the filter sizes for optimization, all the different combinations are used in GoogLeNet. This increases 

the computational complexity, hence GoogLeNet also uses 1x1 convolution for dimension reduction. 

GoogLeNet consists of 144 layers in total in which every single element in an inception module is regarded as a separate 

layer. In this study, we have frozen the first 10 layers to use it as a pre-trained network. These layers correspond to the 

low-level generic features, hence we want those to remain the same. The final two layers are changed according to the 

number of classes for our purpose. The layer named ‘loss3-classifier’ is changed to a fully connected layer with three 

classes. The last layer (‘output’) is changed according to the class labels.   

2.2 Training dataset 

The training dataset has been created by separately acquiring radar data of three different drones, shown in Fig. 1. These 

are used as the three classes for the CNN training and their relevant details are as follows- 

• DJI Phantom Standard 3 (quadcopter, weight 1.216 kg, width 35 cm, blade length 13 cm) 

• DJI S900 (hexacopter, weight 3.3 kg, width 90 cm, blade length 16 cm) 

• Joyance JT5L-404 (quadcopter, weight 7 kg, width 85 cm, blade length 27 cm) 

The different profiles and sizes of the propeller blades and different structures of the motor bodies contribute to different 

micro-Doppler features in the spectrograms which can be observed in Fig. 2.  

 

       

(a)                                                          (b)                                                          (c) 

Figure 1. Drones used for classification training, a) DJI Phantom Standard 3, b) DJI S900, c) Joyance JT5L-404 

Proc. of SPIE Vol. 11408  1140809-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

  

(a)                                                                                          (b) 

 

                                             (c) 

Figure 2. Example CW spectrograms of the three drones at ~ 30-50 m range, a) Phantom, b) S900, c) Joyance                                               

Fig. 2 also reveals that the Doppler frequency values are quite similar for all three drones. The maximum Doppler of the      

Phantom is slightly lower than the other two, but not significant enough to use this as a classification feature. The same is 

true for the periodicity information which illustrates the fact that even though the Doppler features are clearly visible from 

the spectrogram and are very useful to discriminate a drone from other targets, they are not useful for distinguishing among 

drone types. On the other hand, as the blade flash patterns are visibly quite distinct, an image-based classification technique 

will potentially be a better solution. As it is very hard to quantify these more subtle differences in shapes, a neural network 

will be able to learn them and ultimately will have the ability to assign them to a particular class, eliminating the 

requirement for feature value calculation. This also shows that unambiguous Doppler measurements are required for the 

neural network to work. As there is a hardware constraint to operate an FMCW radar with sufficiently high Doppler 

sampling rate we have chosen to collect fully sampled CW Doppler data. Fig. 2 also justifies the use of highly Doppler 

sensitive millimeter-wave radar as the quality of the micro-Doppler signatures are far higher fidelity than those obtained 

by lower frequency systems as reported elsewhere. In the context of designing a radar to detect, track and classify drones, 

it may be necessary to combine FMCW data, for ranging and tracking, with CW data, for classification. 

One of the main criteria for a robust neural network model is to have a diverse dataset. Simply having a large number of 

images for each class will not result in a high-fidelity classification model. For instance, a large dataset of a specific drone 

can be created from a single radar measurement where the drone hovers in a fixed spot for a certain period. The 

classification training may generate very high accuracy in this situation but the model will severely underperform in a 

dynamic scenario, which is to be expected in a practical situation. To generate diversity in the dataset, data has been taken 

at different ranges (15-60 m) and with different aspect angles (~ 5-12.5°), mostly with the drones hovering but also with 

them flying normally.. Various values regarding the parameters used for the radar data collection and the subsequent signal 

processing are provided in Table 1.   
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Table 1. Radar system and signal processing parameters 

Operating frequency 94 GHz 

Operating mode CW, staring 

Antenna beamwidth Fan beam, 0.9o azimuth, 3o elevation 

Polarization Circular polarization (CP) 

Sampling rate 100 kHz, 200 kHz 

Maximum unambiguous velocity 80 ms-1, 160 ms-1 

Spectrogram image length 40.1 ms 

Short Time Fourier Transform (STFT) length 512 samples 

STFT window Gaussian, width factor 16 

STFT overlap 95% 

 

The radar system used here is a very low phase noise 94 GHz radar, named T-22013. During experimental trials, the drones 

were not always entirely within the beam, which produced spectrograms with lower signal strength. We have intentionally 

included quite a lot of such images in the dataset to ensure more generalized learning of the network, hence reducing the 

chance for overfitting of the model. We had multiple trials spanning several days and  to maximize diversity, we have 

selected data evenly from multiple datasets instead of choosing heavily from a single measurement to yield a dataset of 

around 20,000 images. All the spectrograms have been produced in MATLAB® using the ‘jet 256’ colour scale, after being 

pre-processed for Doppler alignment. Eventually, we have selected 650 spectrogram images for each class, 1950 images 

in total, for training. Fig. 3 shows some example images from our dataset. The variation in the images can be easily 

observed which have occurred due to the differences in range, aspect angle and target position relative to the antenna beam. 

It can be seen that along with images with strong signal return, images where the micro-Doppler signals are barely visible 

are also chosen to prevent the model from memorizing.  

3. TRAINING RESULTS 

The training has been performed in MATLAB (version 2019b) by using a core i7-9700 CPU at 3.00 GHz and with 16 GB 

RAM. The GoogLeNet training is done by selecting 80% data for training and 20% data for validation, with a batch size 

of 50 images. We have also trained the datasets with 70-30% and 90-10% splits  but the 80-20% split produced the best 

result in terms of validation accuracy. The validation data is used during training after every epoch where one epoch 

corresponds to all the iterations of all the batches, both forward and backward, once. This helps to adjust the training 

parameters as any large differences between the training and validation accuracy indicate overfitting. Overfitting is one of 

the major issues in neural network based classification models where the model has not learned the features 

comprehensively; instead it has remembered lots of features which are noise. Hence, special care has been taken to 

minimize this problem as much as possible. Usually for a very large dataset (e.g. GoogLeNet training with ~ 1 million 

images), a bigger portion of validation data is useful to test and resolve overfitting. For a small dataset, most of the data 

needs to be used for training, otherwise the model will not learn properly. Our dataset does not fall into either of these 

categories, it is a medium sized database so an 80-20% split is a good trade-off. The classification code has been instructed 

to randomly make this split, again to ensure maximum variation. One of the main parameters that affects overfitting is the 

learning rate. Very large values of learning rate often tends to underfitting, where the model has not learned the basic 

features properly. Meanwhile, a very small learning rate leads to overfitting. We have trained the model with five different 

learning rates (0.01, 0.005, 0.002, 0.001, 0.0001) to find the optimum accuracy. We found that training with a learning rate 

of 0.001 gives the best results. The lower values were quite underfitted whereas the learning rate of 0.0001 showed both 

the training and validation accuracy values to be 100%, indicating heavy overfitting. Fig. 4 shows the results of the training, 

where the achieved validation accuracy is 99.74%. A total number of four epochs have been used during training done by 

carefully monitoring when the training accuracy plot reaches a plateau. Once that the plateau is reached, running more 

epochs will make the network prone to more overfitting.  

Proc. of SPIE Vol. 11408  1140809-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

                   

                                                                                            (a) 

                   

                                                                                            (b) 

                   

                                                                                            (c) 

Figure 3. Example images from the training dataset, a) Phantom, b) S900, c) Joyance 

 

 

Figure 4. GoogLeNet training and validation accuracy plot (left) and corresponding loss function plot (right) for the 3-class training 
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                                                                                                 (a) 

    

                                                                                                 (b) 

     

                                                                                                 (c) 

Figure 5. Example results of the drone type classification using unseen test data where the label on top of each image is the target 

classified by the network and the number below is the confidence level with maximum value of 1, a) Phantom spectrogram images, b) 

S900 spectrogram images, c) Joyance spectrogram images 

We have selected 75 spectrogram images for each class, hence 225 in total, as the test dataset. These images are not part 

of the training dataset and so are entirely unseen by the classification model. We have then applied the model to classify 

all these images to verify the performance. As shown in Fig. 5, the process classifies the image, labels it according to the 

maximum score among the three classes, then provides that score under the classified label. The results are very 

encouraging. The model has accurately predicted all the 75 spectrogram images of the S900 and all 75 images of the 

Joyance. Examples are shown in Fig. 5 - note there are few images where there is very little micro-Doppler signature  yet 

those are still correctly classified for both the S900 and Joyance. Among the 75 Phantom images, 9 have been classified 

incorrectly as either S900 or Joyance. In all those 9 cases, the images were of very low quality in terms of Doppler 

signatures, as can be seen in the last image of Fig. 5 (a). Here, the model has wrongly classified the Phantom as Joyance 

with 36% confidence. This means that when the model is used on an image which is essentially clutter, most of the time it 

gets classified as S900 or Joyance, not Phantom, showing that the training data was still lacking sufficient diversity in 

terms of low-fidelity Phantom images. Also, it should be accepted that any purely micro-Doppler based classification 

algorithm is always going to struggle when the radar has acquired negligible Doppler information due to the target not 

being properly within the beam. 

We have also compared the CNN based training performance with a feature extraction based algorithm which we had 

proposed in our earlier work14. That method showed very promising results in accurately identifying a drone from a  
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Figure 6. Confusion matrices after training by using the feature extraction method14,  for SVM (left) and linear discriminant (right), 

showing poorer performance compared to the CNN model 

confuser like a bird but was not able to discriminate between different drone types at all. The previous study was done 

using FMCW data which did not fully sample the propeller micro-Doppler, so that weakness was expected. 

 Here, we have tested the method using our CW datasets. Different Doppler feature values were obtained from the CW 

spectrogram plots of the three drones. We have then applied two commonly used classifiers, linear discriminant and support 

vector machine (SVM), for training. In both cases, the classification accuracy was 75%, much worse performance than the 

CNN based training – Fig. 6. Also, it is worth mentioning that the CNN based classification is going to be much faster in 

a real-time operation. This is because the step for calculating various feature values is eliminated in the case of CNN. In 

both cases the time required for spectrogram generation is going to be the same, but after that CNN only converts the 

spectrogram into an RGB image and then the trained model classifies the target. The RGB image conversion takes ~ 0.05 

seconds and then GoogLeNet takes about 0.4 seconds to classify the image. Conversely, feature extraction can take about 

a second before the values are fed to the model for final classification. If one uses a more computationally heavy feature 

extraction method like singular value decomposition (SVD) or calculates more feature values, the classification time can 

increase further.  

4. CONCLUSION AND FUTURE WORKS 

The main objective of this study was to prove the concept of using CNN to classify multiple drone types in a realistic 

scenario. Three different drones have been used in this study as target classes. Millimeter-wave CW radar data has been 

used to generate micro-Doppler spectrogram images for the corresponding drones. This has enabled the production of high 

quality images for training. A large dataset was then created which was used to train GoogLeNet. Over 99% validation 

accuracy has been achieved. The validation of the method is then demonstrated by feeding images unknown to the model, 

showing 100% classification accuracy in the case of S900 and Joyance drones and 88% accuracy in the case of a Phantom 

drone. These are very promising results illustrating that a large and diverse experimental radar dataset can not only be used 

for classifying drones from other targets, but for classifying different models of drones as well. The advantage of the 

proposed method over a feature extraction based method is also discussed. It should be emphasized that there are still a lot 

of opportunities to upgrade the proposed method. The inaccurate classification of the low-quality Phantom images 

definitely suggests the necessity of further improvement. The more diverse the dataset is, the more robust it will be for 

general purpose use. In this study, only a single radar system has been used with a fixed polarisation for data collection. 

More variation in the dataset can be achieved by utilizing radar systems with different operating frequencies, polarisation, 

antenna beamwidth, sampling rate etc. Also, even though the dataset used here is obtained from various ranges and aspect 

angles, that variation can be made larger. Data taken at different places will also create changes in the surrounding clutter. 

Variation in signal processing can also be attained, but careful consideration should be taken while doing so. It should be 

kept in mind that, fundamentally, radar spectrograms are not optical images, so changing parameters like noise floor 
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threshold, STFT length and color scale will alter the spectrograms significantly and may affect the CNN based 

classification process. When developing a CNN based model, careful decisions should be made regarding the extent of the 

versatility of the model being used in practice. 
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