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Abstract
Groundwater provides a vital source of drinking water for rural communities in many parts of
Africa, particularly in the dry season when there are few safe alternative sources. This paper
summarises results from a study (n= 428) assessing dry season water quality, both microbiological
and inorganic chemistry, in handpump equipped boreholes (HPBs) across the Ethiopia Highlands
(n= 142), Malawi (n= 162) and Uganda (n= 124) using a stratified, randomised sampling
design. This study seeks to examine general water quality by randomly sampling rural groundwater
supplies across larger areas with different geology and climate. The majority, 72%, of HPBs
surveyed provide good quality dry season drinking water as defined by WHO drinking water
quality criteria. Within this overall picture, the most notable constraints were from thermotolerant
coliforms (TTCs), which exceeded the WHO drinking water guideline of zero colony forming units
(cfu/100 ml) in 21% of sites (range 0–626 cfu/100 ml). TTC contamination was found to have a
significant and positive correlation with annual average rainfall (ρ= 0.2, p= 0.00003). Across all
three countries, WHO health based chemical drinking water quality values were exceeded at 9% of
sites and were found for manganese (4%), fluoride (2.6%) and nitrate (2.5%); arsenic
concentrations were below the guideline value of 10 µg l−1 (range < 0.5–7 µg l−1). The high
percentage of Mn exceedances (14%± 5.2% >400 µg l−1) found in drinking water sources in
Uganda challenges the decision by WHO not to formalise a health-based guideline for Mn. While
the overall level of microbiological contamination from HPBs is low, results from this study
strongly suggest that at a national and regional level, microbiological contamination rather than
chemical contamination will provide a greater barrier to achieving targets set for improved
drinking water quality under the UN-SDG 6. Efforts should be made to ensure that boreholes are
properly sited and constructed effectively to reduce pathogen contamination.
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1. Introduction

Groundwater is the major source of drinking water
in Africa (Foster et al 2008, Pavelic et al 2012, Gaye
and Tindimugaya 2019) and use of groundwater for
drinking water is increasing due to population and
economic growth (Vörösmarty et al 2005, United
Nations Department of Economic and Social Affairs
Population Division 2019) and the search for cli-
mate resilient water supplies (Howard et al 2016).
Boreholes equipped with handpumps (HPBs) are the
main method by which people access groundwater in
rural areas (JMP 2019). Household supplies of water
come from awide range of different sources including
HPBs, shallow hand-dug wells, springs, ephemeral
rivers, harvested rainfall and piped water supplies,
depending on local/seasonal availability, hydrogeolo-
gical conditions and the level of investment in water
infrastructure (UNICEF andWHO2015). Compared
to surface water sources or shallow hand-dug wells,
HPBs usually tap deeper aquifers that are more resi-
lient to inter-annual climate variability (Chilton and
Foster 1995, Macdonald et al 2009, Lapworth et al
2013, Taylor et al 2013). For many rural communit-
ies in Africa, HPBs are an integral part of household
drinking water supply and are often the only source in
the dry season, or longer periods of drought (Calow
et al 2010, Macdonald et al 2019).

Understanding the quantity and accessibility of
groundwater available for rural community supplies
in Africa has been the primary focus of regional
research to date (e.g. Macdonald et al 2012; Bonsor
et al 2018, Cuthbert et al 2019). In contrast, the qual-
ity (both chemical and microbiological) of ground-
water resources in Africa has tended to focus on areas
with known natural water quality problems such as
arsenic and fluoride (Reimann et al 2003, Edmunds
and Smedley 2005, 2013, Rango et al 2013), con-
tamination from mining (Smedley 1996, Von Der
Heyden and New 2004) or urbanisation (Lapworth
et al 2017a). Regional groundwater quality informa-
tion is nevertheless essential for assessing the availab-
ility of safe drinking water across Africa (Bartram and
Cairncross 2010, Hunter et al 2010, Parker et al 2010).
HPBs are often reported to have better water quality
compared to other groundwater sources (Parker et al
2010, Sorensen et al 2015a). However, the baseline
water quality of HPBs sources in Africa remains
understudied compared to other continents glob-
ally. Africa wide meta-analyses of groundwater qual-
ity have been undertaken for selected water qual-
ity parameters, including nitrate (Ouedraogo and
Vanclooster 2016), fluoride (Kut et al 2016), arsenic
(Ahouĺe et al 2015) and faecal contamination (Bain
et al 2014). These meta-studies have highlighted that
the majority of published studies on groundwater
quality in Africa have (i) limited geographical and
geological scope, (ii) studies rarely consider paired
observations of microbiological and chemical water

quality, and (iii) results are often reported from a
mixture of different groundwater source types (e.g.
Smedley 1996, Reimann et al 2003, Parker et al 2010,
Sorensen et al 2015b, Bretzler et al 2017).

Groundwater sources in Africa are commonly
used for drinking water and cooking with no (or very
limited) treatment and as such understanding the raw
chemical andmicrobiological quality of these sources
remains a key priority from a human health perspect-
ive (Bain et al 2014). HPBs are a critical compon-
ent of ‘improved’ drinking water sources (JMP 2018).
Therefore, characterising HPB drinking water qual-
ity is required to ensure the provision of safe drink-
ing water in this region and contribute to assessing
progress towards the UN Sustainable Development
Goal (SDG) 6 (UN 2015). This type of informa-
tion underpins future investment in HPB, and other
improved infrastructure on the JointMonitoring Pro-
gramme (JMP) drinking water service ladder (JMP
2018), as well as aesthetic considerations, water
treatment options and management of this finite
freshwater resource.

The objective of this paper is to investigate the
drinking water quality from HPBs in sub-Saharan
Africa, specifically in eastern and southern Africa,
using paired microbiological and chemical water
quality data. A large subsample of rural HPBs from
three countries (Ethiopia, Malawi and Uganda) were
included in this study, which represent many of the
major hydrogeological/climate settings found in pop-
ulated Africa. As far as the authors are aware, this
is the largest multi-country water quality survey of
HPBs undertaken in Africa. Drinking water qual-
ity is compared against World Health Organisation
(WHO) criteria to assess current performance against
SDG6 (UN 2015) drinking water targets. This study
aims to (i) quantify the key health-based water qual-
ity exceedances that may affect HPB users; (ii) assess
the relative proportion of water quality exceedances
from microbiological and inorganic chemical para-
meters; and (iii) investigate the relationship between
HPB water quality and aquifer type, the length of the
dry season and annual average rainfall.

2. Methods

2.1. Experimental design and study area
The three countries, Ethiopia, Malawi and Uganda,
were chosen because they cover a range of the geo-
logical and climatic conditions found in Africa and
also rely on HPBs for much of their rural water sup-
ply (JMP 2018). Both climate and geology may have
an impact on the water quality of HPBs, i.e. the geo-
chemistry of groundwater and likelihood of micro-
biological contamination. Using a stratified random-
ised approach, we anticipate that the results from
this study are not constrained or unduly influenced
by localised conditions or anomalies, for example
natural variations in geology or localised climate
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anomalies. The planning for this study was under-
taken through detailed consultation with national
ministries and district level water officers to obtain
the most comprehensive record of HPBs at the dis-
trict and community level. Sampling was undertaken
by a two-stage stratified random design. The primary
sample units, which were stratified, were Woredas in
Ethiopia and Districts in Malawi and Uganda. These
primary units were determined largely by accessibil-
ity, but some primary units that were known to have
very few HPBs were excluded. In Ethiopia the strati-
fication was based on a combination of aquifer class
(fractured igneous or porous igneous). The Wore-
das in each of these categories were then divided
into poverty classes (‘better off ’ or ‘poorer’). In
Malawi and Uganda the stratification was by poverty
class (again, ‘better off ’ or ‘poorer’). Random selec-
tion of primary units within the strata was done
without replacement using the Rao–Hartley–Cohran
(RHC) sampling procedure (Cochran 1977). Within
the selected districts or woredas, communities were
then selected by simple random sampling and from
each one a HPB was selected for examination.

Figure 1 shows the location of the HPB sur-
vey sites as well as the geology and climate of the
study area. HPB sample sites were collected from
four key aquifer types found in Africa (Macdonald
et al 2012): crystalline basement, consolidated sedi-
ments, unconsolidated sediments, and volcanic rocks
(both fractured and porous igneous rocks). Note
that the known high fluoride areas of the rift val-
ley in Ethiopia were not sampled, partly due to the
low coverage of rural water supply handpumps in
this area compared to other areas. Sites also encom-
passed a range of climates, spanning regions with zero
dry months/years through to dry seasons of up to
6months/years. Sampling was undertaken during dry
periods to facilitate access to remote field areas. As a
one-off survey, this also minimises seasonal impacts
onwater quality and characteriseswater quality under
conditions when there are few alternative sources of
drinking water. Annual average rainfall data (1901–
2012) for each location was obtained from (Jones and
Harris 2013).

2.2. HPB sampling and groundwater analysis
HPBs were purged, by a minimum of three bore-
hole volumes, prior to sampling to obtain a rep-
resentative groundwater sample from the aquifer.
Field measurements of pH and specific electrical
conductivity (SEC) were made and stable readings
obtained prior to sampling. In-situ field measure-
ments of turbidity and alkalinity were also under-
taken. Two samples for dissolved inorganic chemistry,
one for anions and one for cations, were filtered in
the field (<0.45 micron) and stored in air-tight Nal-
gene bottles. Anion sample bottles were filled to the
top to exclude air. Major anions were analysed by ion
chromatography, samples for major cation and trace

Figure 1. Study areas: (a) location map showing HPB
sampling sites in Ethiopia, Uganda and Malawi, (b)
simplified aquifer geology based in (Macdonald et al 2012),
(c) long-term annual average rainfall (mm) based on data
(1951–2000) derived from CRU TS 3.21, University of East
Angila.

element analysis by ICP-OES and ICP-MS were pre-
served using analysis grade nitric acid (1%v/v) (e.g.
Lapworth et al 2013). Inorganic chemical analysis
was undertaken by CSIRO Land and Water Analyt-
ical Services, Adelaide, South Australia using accred-
ited analytical methods. Total dissolved solids (TDS)
was calculated by summing the major anion and
cations. Field blank samples were collected using the
same procedure. Samples were stored in a cool box
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in the field and then transferred to a field refriger-
ator the same day for storage during fieldwork prior
to analysis.

We assess microbiological water quality using
thermotolerant coliforms (TTCs), an indicator of
faecal contamination (see Sorensen et al 2015a). HPB
samples were collected in the field using sterilised
250ml sample bottles and processed using aDelagua®

incubator in the field within 7 h of sampling. Samples
were stored in a cool box in the field prior to pro-
cessing. TTCswere isolated and enumerated using the
membrane filtration method and Membrane Lauryl
Sulphate Broth (MLSB. Oxoid Ltd) as the selective
medium. Processed samples were incubated at 44◦C
for between 18–24 h prior to counting of colony
forming units (cfu). Typically, 100 ml of sample was
filtered through 0.45 micron nitrocellulose mem-
brane giving a detection limit of 1 cfu/100 ml. We
examined incubation plates within 15min after being
removed from the incubator. All cream to yellow
colonies with a diameter greater than 1mmwere con-
sidered to be TTCs and were counted. We carried out
daily blanks and repeat samples for TTCs to check
for cross-contamination and quantify precision. A
few over-range TTC samples that were ‘too numer-
ous to count’ were diluted and incubated within 24 h.
A comprehensive water quality screening for TTCs
and 13 potentially hazardous inorganic parameters
(F, NO3, B, Se, Cr, Mn, Ni, Cu, As, Mo, Cd, Sb, and
Pb) was undertaken in all HPBs.

2.3. Statistical analysis
The estimation of national mean values for the vari-
ables of interest, or for indicator variables which
exceeded WHO health-based thresholds, was based
on the two-stage cluster sample design described
above. Stratum means and variances were combined
to give an estimate of themean at a national scale, and
an associated error, based on stratum relative areas
(see Cochran 1977 for a full account of how this is
done for RHC stratified random two-stage sampling).
In the first instance the stratum relative areas were
computed from the number of water points in each
stratum. This is the most straight-forward estimate,
but it relates only to the original sample domain, i.e.
to the set of Woredas or districts in each country
deemed to be available for sampling. An alternative
estimate was computed in each country (up-scaled
country estimate), based on the estimated relative
areas of the strata at a national scale (igneous aquifer
types only in Ethiopia). This requires the assumption
that the stratum mean for the sample domain is an
unbiased estimate of the equivalent stratum mean at
a national scale. The relative areas of the strata at the
national scale were computed from information on
shallow well numbers in Ethiopia, numbers of vil-
lages in Uganda, and numbers of rural enumeration
areas from the Third Integrated Household Survey of
Malawi (NSO 2012).

Box-plots used in the paper were generated using
the ‘cenboxplot’ function from the NADA package
in the open source software R v. 3.6.1 (R Core Team
2019). Percentiles in the grey area are estimated using
regression on order statistics (ROS), box whiskers
extend to 1.5 × interquartile range, and outliers are
shown as small circles. Where insufficient data were
available to generate a box-plot, dot-plots were used
instead. Spearman’s rank correlation coefficient and
p values where stated were calculated using R.

3. Results

3.1. Health based water quality status of HPBs
The proportion of sites that exceed WHO health
based chemical and microbiological guideline val-
ues (WHO 2017), as well as TDS (which has an
aesthetic threshold) for both country sampling
domains and up-scaled country estimates are
summarised in figure 2. A summary of the res-
ults and exceedances (and standard errors) of
WHO criteria for all water quality parameters
investigated are presented in the supplement-
ary information (table S1 is available online at
“(stacks.iop.org/ERL/15/064020/mmedia)”). Over-
all, WHO health based chemical drinking water qual-
ity values were exceeded at 9% of sites and were only
found for manganese (4%), fluoride (2.6%) and
nitrate (2.5%). Rates of TTC detections above the
WHO drinking water guideline value of zero cfu vary
considerably between countries (range 13%–24%).
However, they are higher than the rates for chem-
ical exceedances of WHO drinking water guidelines
(range 0%–14%) in all three countries (figure 2).

Health based chemical drinking water
exceedances were only found for manganese, flu-
oride and nitrate (figure 2); arsenic was not detec-
ted above the WHO guideline value of 10 µg l−1.
For sampling domain estimates, fluoride accoun-
ted for the largest proportion of chemical drink-
ing water exceedances (>1.5 mg l−1) in Malawi
(6.6%± 2.8%). Manganese (>400 µg l−1) accounted
for the largest proportion in Uganda (13.8%± 5.2%)
and nitrate (>50 mg l−1 NO3) the largest proportion
also in Uganda (4.6% ± 3.2%). TDS was found to
be >1000 mg l−1 at 8.1% ± 2.6% of sites in Malawi
and 1% ± 0.6% and 1% ± 1% in Highland Ethiopia
and Uganda, respectively. Overall, sampling domain
estimates were comparable with up-scaled country
estimates, within error, for each survey country.
Sampling domain based exceedance estimates for
Ethiopia were the highest (23.6% ± 6.5%) of any
country, and were significantly higher than those
from Malawi (13% ± 3%). However, they were
within the standard error for Uganda. Malawi was
found to have significantly higher fluoride and TDS
exceedances compared to the other countries for
both sampling domain and up-scaled country estim-
ates. However, the national estimate for Ethiopia was
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Figure 2. Summary exceedance of WHO drinking water criteria from HPB. (a) Comparison of exceedances based on sampling
domain, (b) comparison of exceedances based on up-scaled country estimates. Health based thresholds for TTCs, F, Mn, NO3, as
well as TDS based on a taste acceptability thresholds of 1000 mg l−1 (WHO 2017).

based on data from Highland regions and specifically
excluded the rift aquifer system. Uganda had signi-
ficantly higher exceedance rates for manganese com-
pared to Ethiopia andMalawi. Exceedances for nitrate
were not significantly different for the three coun-
tries used in this study, for both sampling domain
and up-scaled country estimates. In addition, zinc
exceedances (on aesthetic grounds, i.e. >3000 µg l−1)
were significantly lower (zero) for Malawi compared
to the other countries (table S1), high Zn concentra-
tions (>1000 µg l−1) were only observed in sites that
use IndiaMark II pumps, this is due to a combination
of the corrosive nature (pH< 6.5) of some groundwa-
ters in this study and galvanised pump components
used in this pump model (figures S1 and S3).

Figure 3 shows mean and standard error plots
for each country, estimated using sampling domain,
for water quality parameters which exceed the WHO
health based drinking water criteria (TTC, F, NO3

and Mn) as well as TDS where aesthetic criteria
are exceeded. With the exception of TTCs and Mn,
mean estimates were all below WHO health and aes-
thetic guideline values. The differences in water qual-
ity issues, which dominate in each of the three coun-
tries are apparent in figure 3. Mean TTC values are
higher for Highland Ethiopia (15 ± 3 cfu/100 ml)
compared to Uganda (6.3 ± 6.5 cfu/100 ml) and
Malawi (0.2 ± 0.4 cfu/100 ml). However, mean val-
ues are only significantly different between Ethiopia
Highlands andMalawi due to the high standard error
in the Uganda estimates (figure 3(a)). Mean fluoride
concentrations are below 0.5 mg l−1 (500 µg l−1) in
all three countries and were comparable for Ethiopia

(402 ± 89 µg l−1) and Malawi (336 ± 87 µg l−1),
and significantly lower for Uganda (116 ± 16 µg
l−1). Mean nitrate concentrations were comparable
for all three countries, and were below 15 mg l−1

NO3. Mean manganese concentrations in Uganda
were significantly higher compared to Highland
Ethiopia and Malawi (figure 3(b)). In Uganda, mean
concentrations (150 ± 39 µg l−1) were below the
current health-based WHO value of 400 µg l−1,
but significantly above the aesthetic threshold of
100 µg l−1 (WHO 2017). Mean TDS concentrations
were <500 mg l−1 in all three countries and were
found to be significantly different in each country.
Mean TDS concentrations were highest for Malawi
(428 ± 45 mg l−1) and almost twice the mean con-
centrations for Uganda (266 ± 23 mg l−1); Malawi
also had the highest outlier values and exceeded taste-
aesthetic criteria of 1000 mg l−1.

3.2. Variations in water quality with the number of
dry months, annual average rainfall and aquifer
type
Figure 4 summarises, as box-and-whisker plots and
cross-plots, the variation in health based water qual-
ity parameters with the number of dry months, aver-
age annual rainfall and aquifer type. There are no
obvious visible associations between the number of
dry months and either microbiological or inorganic
water quality or the number of sites that exceedWHO
drinking water thresholds.

Lownumbers of high (outlier) values for TTC and
other inorganic health basedwater quality parameters
are distributed across the range of climate settings
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Figure 3. Distributions for key water quality parameters estimated for sampling domains. Mean and standard error for (a) TTC
(cfu/100 ml) and nitrate (mg l−1), (b) fluoride (µg l−1), manganese (µg l−1), and TDS (mg l−1).

used in this study (figures 4(a)–(e)). There are,
however, significantly higher TTCs (figure 4(f)) at
locations with higher annual average rainfall totals
(ρ = 0.2, p = 0.00003, Spearman’s rank correla-
tion), the relationship is particularly clear for sites
where annual rainfall exceeds 1000 mm a−1, but
no significant correlation for the other health based
water quality indicators in relation to average rainfall
totals were found (figures 4(g)–(j)). TTC exceedances
are observed in all aquifer types, with overall lower
counts found in unconsolidated sediments compared
to the other aquifer types (figure 4(k)). Median F
concentrations are comparable and below 0.5 mg l−1

for all aquifer types, whilst most of the outliers,
which exceed the WHO threshold of 1.5 mg l−1 are
from basement and unconsolidated sediments (fig-
ure 4(l)). Highest median nitrate concentrations are
found in fractured igneous aquifers and are higher
than those from porous igneous and unconsolid-
ated sediments. However, outliers >50 mg l−1 are

found in all aquifer types except unconsolidated sed-
iments. Unconsolidated sediments have the highest
TDS concentrations, withmedian values >500mg l−1

(figure 4(o)).
Figure 5 shows cross-plots of TTCs vs TDS for all

three countries. It is apparent that in all three coun-
tries the highest TTC detections are found in samples
with typically low TDS, and low values for TTCs were
found in samples with higher TDS.

4. Discussion

This study shows that the water quality in the major-
ity of HPBs included in this survey is of acceptable
drinkingwater quality based onWHOcriteria.Health
based exceedances were only found for TTCs, F, Mn
and NO3 and rates for exceedances for individual
inorganic parameters were <10% across all three
countries. This contrasts with the more widely repor-
ted issue of high groundwater nitrate concentrations
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Figure 4. Box-plots of health based water quality parameters with exceedances grouped by number of dry months and aquifer
type (hydrogeology classifications): Basement, consolidated sediments (Cons. Sed.), fractured igneous (Frac, Ign.), porous
igneous (Por. Ign.), unconsolidated sediments (Uncons. Sed.). Dashed line shows WHO guideline value (health-based value, or
aesthetic in the case of TDS) . Spearman’s rank correlation coefficient and p value shown for results in plot f.

Figure 5. Cross-plot of TTCs vs TDS: (a) Ethiopia Highlands, (b) Uganda, (c) Malawi.

elsewhere globally due to leaching of anthropogenic
N sources (USGS 1999, Shand and Edmunds 2008,
Gu et al 2013, Ascott et al 2017, Padilla et al 2018).
The majority of groundwaters with F concentrations
>1.5 mg l−1 (9 out of 11 sites in this study) were
found in Malawi, the other two sites were from the

Ethiopian Highlands where the concentrations were
below 4mg l−1 for all but one sample. High F ground-
water’s are well documented in both countries and
have been linked to hydrothermal sources (Bath 1980,
Reimann et al 2003, Rivett et al 2019). They are also
found in high concentrations in other parts of the East

7



Environ. Res. Lett. 15 (2020) 064020 D J Lapworth et al

African Rift system (Malago et al 2017). Arsenic was
not found above the WHO limit of 10 µg l−1 in any
HPB in this study, even though As has been repor-
ted to be an issue in some other parts of Africa (e.g.
Smedley 1996, Smedley et al 2007, Ahouĺe et al 2015),
including in some of the countries that were surveyed
as part of this study (e.g. Bamuwamye et al 2017).
This perhaps reflects the more purposeful nature of
sampling designs in many published studies (i.e. tar-
geting likely As hot-spots), which contrasts with the
randomised design that was used in this study. How-
ever, overall the evidence from this study shows that
As contamination is not likely to be awidespread issue
across this region and is more likely associated with
particular geological settings, for example F and As
hot-spots in the Rift Valley (e.g. Rango et al 2017).

For a small but significant proportion of sites,
manganese was found to exceed the WHO health
based drinking water criterion of 400 µg l−1 in all
three countries (figure 2). Highest manganese con-
centrations were found in Uganda, up to 1550 µg
l−1 (95th percentile of 566 mg l−1, table S1) and
these high concentrations are consistent with previ-
ous studies in Uganda and Malawi (e.g. Bath 1980,
Taylor and Howard 1994). In this study, mean up-
scaled country estimates were 34 ± 12 µg l−1, 48 ±
7 µg l−1 and 150 ± 39 µg l−1 for Ethiopia, Malawi
and Uganda, respectively; all considerably lower than
the WHO health based guideline value of 400 µg l−1.
Manganese exceedance was significantly higher for
Uganda (13.8% ± 5.2%) compared to 2.1% ± 1.1%
and 1.5%± 1.4% forMalawi and the EthiopianHigh-
lands, respectively. Elevated manganese has often
been reported as a co-contaminant with high arsenic
(Mitchell et al 2011), and is often linked to redu-
cing and low pH conditions (e.g. Homoncik et al
2010). However, no association between high Mn
and high As or Fe or low pH was found in
this study (figure S1), in contrast to other studies
globally (Edmunds and Smedley 1996, Buschmann
et al 2007). For communities reliant on groundwa-
ter sources with values approaching or exceeding
400 µg l−1, the findings from this study challenge the
decision byWHO(2017) that a formal drinkingwater
guideline value for Mn (400 µg l−1) is not required.
Since water is aesthetically poor at 100 µg l−1, and
the mean concentrations in Uganda were found to
be significantly higher than this aesthetic threshold
(150 ± 39 µg l−1) and were being used as drink-
ing water sources, some review of the guideline is
required. Other studies in Ghana (Rossiter et al 2010)
and elsewhere globally (e.g. Homoncik et al 2010)
have also shown a high proportion (11% and 9%,
respectively) of rural drinking water supplies above
400 µg l−1.

Occurrences of dry season microbiological con-
tamination were found to be low for HPBs. Over-
all, 79% of HPBs were free from TTCs, and <10% of
sites are classified as medium (10 to <100 cfu/100ml)

or high (100 to <1000 cfu/100 ml) risk, based on
WHO classifications. Although the exceedances were
low overall, HPBs were more than twice as likely
to fail based on microbiological contamination (i.e.
TTCs > 0 cfu) compared to inorganic (WHO) water
quality criteria (figure 2). The occurrence of TTCs
in HPBs varied considerably between country, with
detection rates (>0 cfu/100 mL) in the Ethiopian
Highlands (23.6% ± 6.5%) almost twice as high
as Malawi (13% ± 3%). These results are in stark
contrast to a recent survey by the Central Statist-
ical Agency in Ethiopia that showed 85% of bore-
holes surveyed had TTCs > 0 cfu/100 ml (CSAE
2017), which may be due to differences in sampling
methodology. (Parker et al 2010) found higher, but
comparable, TTC detection rates (30%, compared to
18.4% ± 4.6% for this study) for HPBs as part of a
large study in Uganda. The higher rates may be due to
the fact that sampling by Parker et al 2010)was under-
taken inMay–July, which included the end of the long
rainfall season in Uganda, rather than between June–
August (the driest part of the year), which was the
case in this study. However, it is also possible that the
differences in sampling design account for the differ-
ences in rates of faecal indicators detected in HPBs
in Uganda.

No significant relationship between TTC and/or
inorganic health based water quality in HPBs and the
length of dry season (range 0–6 months) was found
in this study (figure 4). However, the highest TTCs
were found for locations with highest total annual
rainfall (figure 4(f)). The HPBs in this study typic-
ally draw water from <20 mbgl, and the relatively
high (i.e. >30 years) mean residence times of HPBs
(Lapworth et al 2013) in Africa and the degree of
protection provided by HPBs to surface contamin-
ation are such that microbiological contamination
levels are expected to be low compared to alternat-
ive groundwater sources. However, given that highest
TTCs were observed in locations with highest total
annual rainfall suggests that there may be a higher
risk of contamination from TTCs under wetter con-
ditions at selected sites, combined with the presence
of a proximal source of contamination such as a pit
latrine, or a faulty borehole sanitary seal (e.g. Back
et al 2018). The reasons for this are uncertain, but
could be linked to more intense rainfall and/or flood-
ing underwetter conditions (Bridgman et al 1995,Wu
et al 2016) and the activation of rapid recharge path-
ways and/or shallower groundwater tables under wet-
ter climate conditions (Gotkowitz et al 2016, Cuth-
bert et al 2019). It has been previously suggested that
under wetter climatic conditions, microbiological
contamination may be higher (Gotkowitz et al 2016),
and with higher contamination during the wet sea-
son (e.g. Sorensen et al 2015a, 2015b). However, the
effects are highly uncertain (Macdonald et al 2009).
While this study provides evidence to support the
proposition that there may be a link between wetter
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climate and microbiological contamination in HPBs,
further studies are required to better understand this
relationship.

Sites with low TDS have the most TTC con-
tamination (figure 5). This supports the hypothesis
that higher TTC contamination is related to sites
with a higher proportion of rapid modern recharge,
and hence lower TDS due to more limited water-
rock interaction. This finding was consistent across
all three countries, which adds weight to the notion
that this TTC contamination relates to rapid recharge
pathways. In more arid regions it is also possible
that evaporative enrichment during recharge, con-
tributes to higher dissolved constituents and TDS in
the unsaturated zone (Scanlon et al 2006, Green et al
2011, Gurdak et al 2012, Kløve et al 2014). The loc-
ations included in this study were not particularly
arid, so this association between climate and TDSwas
not observed (figure 4). Equally, land use in the rural
study areas was rain fed agriculture, where groundwa-
ter recharge is likely to be dominated by diffuse pro-
cesses (Lapworth et al 2013). Therefore, the effects of
evaporative enrichment from irrigation return flows
would be limited (Foster et al 2018). Improved con-
struction and maintenance of water points is critical
but can be very challenging to monitor and under-
take in this region, despite the more obvious benefits
to HPB functionality to help reduce TTC contamina-
tion within HPBs.

No exceedances in health-based water quality
were observed to be strongly associated with a par-
ticular aquifer type. Low level exceedances for TTCs,
F, NO3, Mn and TDS were found for all the major
aquifer types including those classed as basement,
igneous and sedimentary (figure 4). HPBs in con-
solidated sediments and fractured igneous aquifers
had no F concentrations exceeding the WHO of
1.5 mg l−1. However, a small number of exceedances
were found in basement, porous igneous and uncon-
solidated sedimentary aquifers. In this study the
higher median TDS values observed in unconsolid-
ated sediments were largely accounted for by sites
in the Lower Shire Valley in southern Malawi (see
figure S2), which are likely linked to low hydraulic
gradients and therefore higher residence times allow-
ing mineral dissolution as well as evaporative enrich-
ment in groundwater due to the combination of shal-
low groundwater tables and high surface temperat-
ures (Bath 1980, Monjerezi et al 2011, Rivett et al
2019). Similarly, elevated TDS groundwaters have
been reported in Namibia due to mineral dissolution
processes (Li et al 2018).

A limitation of this study is the fact that uranium,
a potential contaminant of concern (Brugge and
Oldmixon 2005) was not quantified. Naturally high
uranium concentrations have been found in both
basement and sedimentary settings globally (e.g.
Hess et al 1985, Smedley et al 2006, Lapworth et al
2017b, Coyte et al 2018). Several studies in Africa

have found naturally occurring high uranium con-
centrations (Vogel et al 1999, Silliman et al 2007,
van Wyk and Coetzee 2008), and further work
on the distribution of U in groundwater in Africa
is required.

5. Conclusions and future perspectives

This study provides an assessment of the baseline
drinking water quality from rural HPBs in Sub-
SaharanAfrica across a range of different climates and
aquifer geology. The results from this study across
three countries in Africa show that the majority of
drinking water from rural HPBs is found to be of
good quality, based on health-based criteria, and cer-
tainly better quality than most alternative sources
available in rural Africa which confirms earlier smal-
ler scale assessments (Parker et al 2010, Pritchard et al
2016, Macdonald et al 2019). There are no strong
links between either dry season length, aquifer geo-
logy and water quality based on an assessment of
results using 14 parameters with health-based drink-
ing water criteria. Significantly, faecal contamination,
assessed using TTC indicators, was found to be the
greater barrier to achieving good quality drinking
water status under SDG 6 compared to inorganic
chemical criteria, and affected 21% of HPBs sur-
veyed overall, with considerable variability between
countries (13%–24%). The highest TTC counts were
found at sites with the highest total annual rain-
fall, supporting the idea that there may be a link
between climate and increased contamination from
faecal sources even in improved sources such asHPBs.
High TTCs in low TDS waters also suggest that more
attention should be given to the quality of HPB con-
struction, and local land-use, to reduce contamina-
tion through rapid transit routes to the aquifer and
the production zone of the HPB. The only inor-
ganic health based water quality parameters found to
exceed WHO guideline values were manganese, flu-
oride, and nitrate. The significantly higher number
of excedances in Uganda (13.8% ± 5.2%), all used
for drinking water supply, with Mn > 400 µg l−1,
and the mean Mn concentration of 150 µg l−1, chal-
lenges the current proposition that water >100 µg l−1

is not used for drinking water due to aesthetic con-
straints, and highlights the need for a health-based
formal guideline value for Mn. This study, carried
out in 3 countries in Sub-Saharan Africa, shows that
water quality challenges for meeting SDG 6 drink-
ing water targets using rural HPBs do occur, but are
constrained to a minority of sites and could be fur-
ther reduced by better HPB construction and main-
tenance. In most cases HPBs are a source of drink-
ing water of good status during the dry season, when
there are limited options for alternative sources. Fur-
ther work is needed to extend this type of assessment
in terms of geographical coverage as well assessing
other water quality parameters not included in this
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study (e.g. uranium). Although considerable effort is
required to plan randomised studies effectively, given
the significant cost of undertaking an assessment of
equivalent scale, using a randomised approach will
generate a more robust evidence base with which to
assess drinking water quality status in HPBs in Africa.
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