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Abstract
Deployments of Bayesian Optimization (BO) for functions with stochastic evaluations, such as
parameter tuning via cross validation and simulation optimization, typically optimize an average of
a fixed set of noisy realizations of the objective function. However, disregarding the true objective
function in this manner finds a high-precision optimum of the wrong function. To solve this
problem, we propose Bayesian Optimization by Sampling Hierarchically (BOSH), a novel BO
routine pairing a hierarchical Gaussian process with an information-theoretic framework to generate
a growing pool of realizations as the optimization progresses. We demonstrate that BOSH provides
more efficient and higher-precision optimization than standard BO across synthetic benchmarks,
simulation optimization, reinforcement learning and hyper-parameter tuning tasks.

1. Introduction

Bayesian Optimization (BO) (Mockus, 2012) is a well-studied global optimization routine for finding
the optimizer x∗ of a ‘smooth’ but expensive-to-evaluate function g across a compact domainX ⊂ Rd.
BO is particularly popular for problems where we have access to only noisy evaluations of g and has
had many successful applications optimizing high-cost stochastic functions, including fine-tuning
machine learning (ML) models (Snoek et al., 2012), optimizing simulations in operational research
(Kleijnen, 2009), and designing experiments in the physical sciences (Frazier and Wang, 2016).

For many stochastic optimization tasks, it is commonplace to disregard the original objective
function g and instead optimize the average of a collection of K specific realizations fs. Common
examples include theK data partitions used to estimate ML model performance throughK-fold Cross
Validation (CV) (Kohavi, 1995) or considering K fixed initial conditions to create sample average
approximations for simulation optimization and reinforcement learning (Kleywegt et al., 2002). This
small collection of realization indexed by S = {s1, ..sK} is typically randomly initialized, but then
fixed for the remainder of the optimization. We henceforth refer to S as an evaluation strategy, with
its optimization seeking x∗S = argmaxx∈X g̃S(x), where g̃S(x) = 1

K

∑K
i=1 fsi(x).

Evaluations of g̃S(x) enjoy a substantial reduction in variance compared to a single stochastic
evaluation of the true objective function g(x). However, there is no guarantee that x∗S ≈ x∗, as x∗S
is a function of the randomly selected S. In fact, estimators of this form are well-studied in the
robust statistics literature (Hampel et al., 2011), where it is known that the expected suboptimality
ES [g(x∗) − g(x∗S)] is a positive quantity decaying as O( 1

K ). Regardless of the sophistication of
our optimization routine, if K is set too low we cannot optimize g to an arbitrary precision level
by optimizing g̃S . In contrast, as each individual evaluation of g̃S costs K times that of evaluating
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Figure 1: Tuning an SVM hyper-parameter on IMDB data using BOSH. Evaluations across three
train-test splits (blue) are aggregated to predict the true accuracy (green) and the likely behavior
of a new train-test split (right-most panel). The utility of making a new evaluation on each of the
considered splits (red) is lower around locations already evaluated on another train-test split.

g, setting K too large wastes computational resources on unnecessarily expensive evaluations.
Therefore, as demonstrated for hyper-parameter tuning (Moss et al., 2018), model selection (Moss
et al., 2019) and simulation optimization (Kim et al., 2015), the efficiency and effectiveness of a
fixed evaluation strategy crucially depends on the choice of K.

To avoid the need for fixed evaluation strategies, we propose BOSH (Bayesian Optimization
by Sampling Hierarchically), the first BO routine that maintains and grows a pool of realizations
as the optimization progresses. A Hierarchical Gaussian Process (HGP) (Hensman et al., 2013) is
used to quantify uncertainty in our current evaluation strategy by modeling different realizations as
separate perturbations of the latent ‘true’ object function (Figure 1). A novel information-theoretic
framework then uses the HGP’s predictions to balance the utility of making further evaluations in the
current pool {fs}s∈S against the benefit of considering a new realization fs∗ .

2. Related Work

Using low-cost approximations to speed up optimization is well-studied. Multi-task (Swersky
et al., 2013; Poloczek et al., 2017, MT) and multi-fidelity (Kandasamy et al., 2016; Lam et al.,
2015; McLeod et al., 2017; Wu and Frazier, 2018; Takeno et al., 2019, MF) BO provides efficient
optimization for problems where low-cost alternative functions hold some relationship with the true
objective function. A popular application is hyper-parameter tuning (Klein et al., 2017; Kandasamy
et al., 2017; Falkner et al., 2018), where dataset size is controlled to provide fast but rough tuning.
The closest MT framework to BOSH is FASTCV (Swersky et al., 2013), which speeds up hyper-
parameter tuning under fixed evaluation strategies by choosing to evaluate individual K train-
test splits making up K-fold CV. However, FASTCV’s coregionalisation kernel cannot predict
performance on previously unobserved splits or support an adaptive evaluation strategy. To guarantee
high-precision optimization, a large choice of K must be chosen a-priori, incurring substantial
initialization costs and slower optimization. Furthermore, these approaches are unable to recommend
batches of points, and it is unclear how to apply existing batch heuristics, for example González et al.
(2016), to MF or MT frameworks.

Parallel work of Pearce et al. (2019) from the operational research literature address a similar
problem but in a different way; reducing simulation stochasticity by exploiting common random
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numbers. Similarly to BOSH, performance is measured according to individual random samples.
However, their model is complex and challenging to fit, and their search strategy incurs a computa-
tional overhead that grows exponentially with the dimensions of the search space. In contrast, our
framework makes principled decisions with a linearly scaling cost and is able to recommend batches.

3. BOSH

The key difference between BOSH and existing BO is that instead of only modeling g̃S for a fixed
evaluation strategy S, BOSH separately models individual realizations fs. By assuming that each
fs is some perturbation of the true objective function g (see Fig. 1), we can fit a hierarchical model
that learns the correlations between g and each fs. Knowledge of this correlation structure provides
information about the likely behavior of a yet unobserved realization fs∗ . Therefore, BOSH can make
principled decisions about which realization to use for the next evaluation from the set of candidate
realizations {fs}s∈S∗ , where S∗ = S ∪ {s∗} — either a realization from the current evaluation
strategy S or generating a new realization fs∗ (to be absorbed into S for subsequent optimization
steps). This allows BOSH to target g directly, instead of targeting just g̃S .

Like most BO frameworks, BOSH has two key components: a Gaussian Process (GP) (Ras-
mussen, 2004) surrogate model predicting the values of not-yet-evaluated points, and an acquisition
function using these predictions to efficiently explore the search space. For BOSH, we require an
acquisition function α estimating the utility of evaluating any x ∈ X on any realization fs for s ∈ S∗.
After collecting n (potentially noisy) evaluations, BOSH evaluates locations on realizations that score
highly according to the acquisition function, repeating until the optimization budget is exhausted.

3.1 The BOSH Surrogate Model

A natural framework for modeling function realizations as perturbations of a true objective function
is a Hierarchical Gaussian Process (HGP) (Hensman et al., 2013), where the true objective function
is modeled as a GP with an ‘upper’ kernel kg, and the deviations to all the individual realizations fs
modeled by another GP with a ‘lower’ kernel kf . As is common in BO, we use Matérn 5/2 kernels
(Matérn, 1960). The HGP structure is equivalently understood as each fs being a conditionally
independent GPs with shared mean function g, i.e.

yi = fsi(xi) + εi for fs ∼ GP(g, kf ) where g ∼ GP(0, kg),

for εi
i.i.d∼ N (0, σ2). This induces a prior covariance structure of

Cov(fs(x), fs′(x′))) = kg(x, x′) + Is=s′kf (x, x′) and Cov(fs(x), g(x′)) = kg(x, x′),

where I is an indicator function. Samples from this prior are provided in Fig. 2. Crucially, given
observations Dn = {(xi, si, yi)}ni=1, the HGP provides a bi-variate Gaussian joint distribution for
(ys(x), g(x)) |Dn, the quantities required to evaluate our acquisition function (see below). Prediction
cost is equivalent to a standard GP, with the nth BO step dominated by an O(n3) matrix inversion.

3.2 The BOSH Acquisition Function

We base our acquisition function on the max-value entropy search of Wang and Jegelka (2017),
which seeks to reduce uncertainty in the optimal value g∗ = g(x∗). As is common in the BO
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Figure 2: (left) and (middle) show samples from HGPs with different lower kernels, demonstrating a
capacity for modeling real scenarios like the performance estiamted by train-test splits when tuning
regularization of a logistic regression sentiment classifier of IMDB movie reviews (right). Purple
lines show sampled fs(x) and the true objective g(x) is plotted in black (as calculated on a large
independent test set). The histogram of chosen regularization (performance curve maxima) shows
many splits choosing highly suboptimal regularization (−4% accuracy).

literature (Hennig and Schuler, 2012; Hernández-Lobato et al., 2014), we measure uncertainty in
terms of the differential entropy of our current belief about the maximum value, given by H(g∗) =
−Eg∼pg∗ (log pg∗(g)), where pg∗ is the probability density function of g∗|Dn according to our HGP.
The reduction in entropy of g∗ provided by a batch of B evaluations {ysj (xj)}Bj=1 is measured as
their mutual information I , defined as

I(g∗; {ysj (xj)}Bj=1|Dn) := H({ysj (xj)}Bj=1|Dn)− Eg∗|Dn

[
H({ysj (xj)}Bj=1|g∗, Dn)

]
. (1)

Defining zi = (xi, si), principled batch BO corresponds to selecting {zi}Bi=1 to maximize (1).
Unfortunately, neither g∗|Dn nor the differential entropy of ys(x|g∗, Dn) have closed-form

expressions. Therefore, to implement information-theoretic BO, the second term of (1) must be
approximated. The MUMBO (MUlti-task Max-value Bayesian Optimization) acquisition function
(Moss et al., 2020) provides one such approximation when B = 1, requiring only simple single-
dimensional numerical integrations regardless of the dimensions of the search space. To extend
MUMBO beyond B > 1, we make an additional approximation through a well-known information-
theoretic inequality — that the joint differential entropy of a collection of random variables is
upper-bounded by the individual entropies. BOSH’s acquisition function is the resulting lower bound,
expressed in terms of the MUMBO acquisition function as

αBOSH
n ({zj}Bj=1) =

1

2
log
(
|Cn({zj}Bj=1)|

)
+

B∑
j=1

αMUMBO
n (zj), (2)

where Cn is the HGP’s predictive correlation matrix between each of the B batch elements. The first
term of (2) encourages diversity (achieving high values for batches with low posterior correlation)
whereas the second term encourages evaluations in areas providing large amounts of information
about g∗ |Dn. As the B × d-dimensional maximization of (2) posed too great a computational
challenge, we greedily construct batches with B separate sequential decisions, each performed with
the DIRECT maximizer (Jones, 2009). An extended publication (currently in submission) explores
the relationship between (2) and determinantal point processes (e.g. Kulesza et al., 2012).
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4. Experiments

All our experiments show that fixed evaluation strategies can provide either precise or efficient
optimization of stochastic objective functions, whereas BOSH achieves both. We compare BOSH
against standard BO using two popular acquisition functions: expected improvement (EI) (Mockus
et al., 1978) and max-value entropy search (MES) (Wang and Jegelka, 2017). We also consider
FASTCV (Swersky et al., 2013), and, for our hyper-parameter tuning tasks, FABOLAS (Klein et al.,
2017). Code built upon the Emukit Python package (Paleyes et al., 2019) is provided, alongside
additional experimental details, at redacted for review. For a fair reflection of parallel computing
resources, evaluations of whole batches (or evaluation strategy) are recorded as a single BO step. We
compare the performance of BOSH producing batches of size B against the performance of standard
BO using evaluation strategies of K = B fixed realizations as well as B realizations re-sampled at
each BO step. We plot the mean suboptimality and one standard error across 100 repetitions.

BOSH’s ability to evaluate diverse batches of points in parallel instead of single locations across
a whole evaluation strategy provides a natural advantage over standard BO, particularly in the early
stages of optimization. Therefore, to explicitly disentangle the benefits of BOSH’s adaptive evaluation
strategy from its ability to recommend batches, we also consider standard BO recommending batches
across an evaluation strategy consisting of a single fixed realization. We present the performance
of batch BO choosing B evaluations across a single fixed realization, considering both the popular
locally penalized (LP) EI (González et al., 2016) as well as our proposed batch approximation applied
to a MES acquisition function (instead of MUMBO). Note that FASTCV and FABOLAS do not
support batches. We do not consider simultaneously deploying both batch BO and full evaluation
strategies, as this is beyond the resources of most ML researchers.

For GP initialization, we randomly sample one more evaluation than kernel parameters (to
guarantee identifiability). For standard BO, this corresponds to d+3 evaluations of the chosen
evaluation strategy (i.e K*(d+3) individual evaluations). For BOSH, rather than using separate
lower and upper kernels for our HGP, we found that sharing length-scales between each kernel
greatly improved the stability of the HGP and allowed reliable initialization after just d+5 evaluations
across an initial pair of realizations. Reliable initialization of FASTCV’s K*K correlation matrix
entries (of which its performance was sensitive) required at least d+3 evaluations for each of its K
realizations. Therefore, as well as providing improved efficiency and precision once optimization
begins, BOSH’s ability to model only as many individual realizations as required allows significantly
lower initialization costs.

Synthetic Objective (d=1). First, we simulate data directly from an HGP (Figure 3) and seek
to find the maximum of g(x) (as plotted in Figure 2) by querying only the perturbed curves fs. We
consider two different lower kernels, one with a smaller variance ( V ) causing low between-realization
variability, and another with a larger variance causing high between-realization variability.

Reinforcement Learning (d=7). BOSH can fine-tune the 7 parameters directing a lunar lander
module to its landing zone ( provided by OpenAI Gym https://gym.openai.com/envs/LunarLander-
v2/ ). A particular configuration is tested by running a single (orB) randomly generated scenarios. We
seek to outperform OpenAI’s hard-coded controller (denoted PID ) according to ‘true’ performance
over a set of 100 specific initial conditions, using as few simulation runs as possible (Figure 4).

Hyper-parameter Tuning (d=2). BOSH can also be used to tune the hyper-parameters of ML
models, e.g. the two hyper-parameters of an SVM classifying IMDB movie review sentiment (Figure
5). During tuning, BOSH uses a pool of train-test splits and standard BO uses fixed evaluation
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Figure 3: Maximizing the upper functions of two HGPs
with differing lower kernel variances (V ) across a range
of evaluation strategy sizes (B). BOSH’s optimization
is more efficient (precise) than BO on large (small)
evaluation strategies

Figure 4: Maximizing Lunar Lander
performance with B=1,5,10 (upper,
left, right). BOSH adaptively consid-
ers up to 15 realizations and can match
the performance of the PID controller.

Figure 5: Minimizing SVM error for IMDB movie review
classification with B=1,5,10 (upper, left, right). BOSH con-
siders up to four realizations to provide higher-precision
tuning than standard BO. When parallel resources are avail-
able, BOSH provides faster tuning than BO under CV and
more precise tuning than batch BO.

Figure 6: Allocating warehouses
to cope with demand for B=1,5
(upper, lower). Although standard
BO provides fast rough optimiza-
tion, only BOSH achieves high-
precision optimization.

strategies of single train-test splits or K-fold CV. True performance is calculated retrospectively on a
large held-out test set. Although finding a reasonable configuration after a very small optimization
budget, FABOLAS’s reliance on low-fidelity estimates prevents precise optimization.

Simulation Optimization (d=4). Our final experiment (Figure 6) considers a simulation op-
timization problem from the set of benchmarks of http://simopt.org/. We wish to decide (x, y)
locations of two warehousing facilities. Orders arise according to a pre-specified non-homogeneous
Poisson process and each order is served by one of the ten trucks belonging to the closest warehouse
(or queued if all trucks are busy). The goal is to maximize the proportion ρ of orders delivered within
60 minutes. Base estimate of ρ comes from simulating demand for a single day according to a single
random seed. We can calculate more reliable estimates by simulating demand for B independent
days and we retrospectively estimate the true ρ with an expensive but reliable 100 day simulation.
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Rémi Lam, Douglas L Allaire, and Karen E Willcox. Multifidelity optimization using statistical surrogate
modeling for non-hierarchical information sources. In Structures, Structural Dynamics, and Materials
Conference, 2015.

Bertil Matérn. Spatial variation, volume 36 of. Lecture Notes in Statistics, 1960.

7



Mark McLeod, Michael A Osborne, and Stephen J Roberts. Practical Bayesian optimization for variable cost
objectives. arXiv preprint arXiv:1703.04335, 2017.

Jonas Mockus. Bayesian approach to global optimization: theory and applications, volume 37. Springer
Science & Business Media, 2012.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian methods for seeking the
extremum. Towards global optimization, 2(117-129):2, 1978.

Henry B. Moss, David S. Leslie, and Paul Rayson. Using J-K-fold cross validation to reduce variance when
tuning nlp models. In International Conference on Computational Linguistics, 2018.

Henry B. Moss, Andrew Moore, David L. Leslie, and Paul Rayson. FIESTA: Fast IdEntification of State-
of-The-Art models using adaptive bandit algorithms. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

Henry B. Moss, David S. Leslie, and Paul Rayson. MUMBO: Multi-task Max-value Bayesian Optimization.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2020.

Andrei Paleyes, Mark Pullin, Maren Mahsereci, Neil Lawrence, and Javier Gonzlez. Emulation of physical
processes with emukit. In Second Workshop on Machine Learning and the Physical Sciences, NeurIPS,
2019.

Michael Pearce, Matthias Poloczek, and Juergen Branke. Bayesian optimization allowing for common random
numbers. arXiv preprint arXiv:1910.09259, 2019.

Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source optimization. In Neural
Information Processing Systems, 2017.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced Lectures on Machine Learning,
pages 63–71. Springer, 2004.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine learning
algorithms. In Neural Information Processing Systems, 2012.

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task Bayesian optimization. In Neural Information
Processing Systems, 2013.

Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga, Ichiro Takeuchi, and
Masayuki Karasuyama. Multi-fidelity bayesian optimization with max-value entropy search. arXiv preprint
arXiv:1901.08275, 2019.

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In International
Conference in Machine Learning, 2017.

Jian Wu and Peter I Frazier. Continuous-fidelity bayesian optimization with knowledge gradient. 2018.

8


	1 Introduction
	2 Related Work
	3 BOSH
	3.1 The BOSH Surrogate Model
	3.2 The BOSH Acquisition Function

	4 Experiments

