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Abstract

Touchless gestures are used for input when touch is unsuitable or unavailable, such as when
interacting with displays that are remote, large, public, or when touch is prohibited for hygienic
reasons. Traditionally user input is spatially or semantically mapped to system output, however,
in the context of touchless gestures these interaction principles suffer from several disadvantages
including memorability, fatigue, and ill-defined mappings. This thesis investigates motion cor-
relation as the third interaction principle for touchless gestures, which maps user input to system
output based on spatiotemporal matching of reproducible motion. We demonstrate the versatility
of motion correlation by using movement as the primary sensing principle, relaxing the restric-
tions on how a user provides input. Using TraceMatch, a novel computer vision-based system,
we show how users can provide effective input through investigation of input performance with
different parts of the body, and how users can switch modes of input spontaneously in realistic
application scenarios. Secondly, spontaneous spatial coupling shows how motion correlation
can bootstrap spatial input, allowing any body movement, or movement of tangible objects, to
be appropriated for ad hoc touchless pointing on a per interaction basis. We operationalise the
concept in MatchPoint, and demonstrate the unique capabilities through an exploration of the
design space with application examples. Finally, we explore how users synchronise with mov-
ing targets in the context of motion correlation, revealing how simple harmonic motion leads to
better synchronisation. Using the insights gained we explore the robustness of algorithms used
for motion correlation, showing how it is possible to successfully detect a user’s intent to interact
whilst suppressing accidental activations from common spatial and semantic gestures. Finally,
we look across our work to distil guidelines for interface design, and further considerations of
how motion correlation can be used, both in general and for touchless gestures.
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1
Introduction

One of the most common forms of human expression are gestures - intentional movements of
the limbs or body used to communicate a message. They are a natural form of expression and
human communication which we use in everyday life. For the purpose of interaction, touchless
gestures are body movements which are used to provide input without direct manipulation of
an input device, and may be sensed remotely or using body-worn sensors. Touchless gestures
can come in many shapes and forms - from a simple pose of the hand, to distinct movements of
the head. Information from a gesture can be encoded in the movement or pose of a body part
(e.g. a closed fist in the case of a hand). Poses may occur statically at a single point in time,
or dynamically as it varies over time at either a fixed spatial position or over a motion path. In
the field of human computer interaction, the use of touchless gestures to express input has been
studied for decades [138].

By utilising motor skills developed from an early age, and our innate awareness of body move-
ment, gestures have the potential to create interfaces with increased learnability and general
ease-of-use [115]. They are compelling for interaction for a number of reasons when touch is
not available. Their “come as you are” nature does not require users to seek out external de-
vices, allowing for spontaneous in-situ interaction that is always available and can be invoked
from multiple positions. Multiple users can have simultaneous control for relaxed, intuitive in-
teraction in a lean-back manner. They can be used for remote interaction at a distance with
out-of-reach displays, or with medium to large displays where both viewing and interacting with
the display is not possible at close range. All of this can be achieved whilst maintaining sterility
and can be executed in an eyes-free manner due to proprioception, our own awareness of how
our body is positioned and moves.

Traditionally, when mapping user input to system output there are two dominant paradigms for
touchless gestures: semantic and spatial [73]. Semantically mapped gestures involve the recog-
nition of a pre-defined set of gestures which are mapped to specific commands in an interface.
In contrast, spatially mapped interactions are conventionally based on a rigid configuration of a
display coupled with a pointing device. This is often operationalised in a graphical user interface
(GUI) such as the familiar desktop paradigm of point-and-select. Sometimes, these paradigms
are combined in an interface, such as when semantically mapped gestures are used to initiate
the pointing or manipulation mechanism, or to confirm selection. However, touchless gestures
suffer from a number of core usability problems identified by the human computer interaction
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1. Introduction

Figure 1.1: Three main metaphors for touchless gestures. Left: Library-based uses a pre-defined
set of gestures mapped to input commands, often requiring users to remember which gesture corre-
sponds to which command. Centre: Cursor-based metaphor uses pointing and the familiar cursor
paradigm for selection, but can cause fatigue known as “gorilla arm”. Right: Motion correlation
uses corresponding motions to determine a user’s intent to interact, with selection occurring when
the user synchronises their motion with an on-screen widget.

community [19] – from context-dependent issues such as embarrassment [4] or ill-informed ges-
ture mappings [188], to more general usability issues such as fatigue [101] or the midas touch
(a.k.a. “live mic”) problem [286].

1.1 Motion Correlation

In this thesis, we investigate a third interaction paradigm for touchless gestures which draws
upon our innate human ability to mimic and synchronise with external stimuli – motion cor-
relation. In contrast to spatial and semantic input, motion correlation relies on spatiotemporal
matching of objects available for interaction and the user’s motion, see Figure 1.1. The core prin-
ciple of motion correlation is that objects available for interaction are revealed through distinct
motions, and a user’s intent to interact is inferred through movement which corresponds to the
desired object. Velloso et al. define the principle of motion correlation by three properties [268]:

1. Motions are displayed to the user which represent actions;

2. A user signals their intent to interact by following the motion which corresponds to the
desired action;

3. The system compares its output (the displayed motions) with its input (the user’s move-
ment) to determine selection.

Mimicking motion on the interface was first suggested as a strategy for selection by Williamson
and Murray-Smith in their pioneering work on “Pointing without a Pointer” [289]. Their work
was grounded in the notion of continuous interaction, in which the exchange of information
between a user and a computing system is continuous at a relatively high resolution, in contrast
to the exchange of discrete messages [60]. Using this principle, the interfaces they created
consisted of agents which moved in unique ways, and the system determined selection of an
agent by looking for user responses which correlated with the movement of the agents. Fekete
et al. built upon this by developing Motion-pointing, which adopted the technique for selection
in a traditional graphical user interface by using a mouse to match elliptical trajectories [73].
These works provide the foundation of motion correlation as a viable alternative to spatial and
semantic input techniques.
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Later work on smooth pursuit eye movements demonstrated how motion correlation is suitable
for application in a wide variety of contexts, from smart watches to public displays [273, 69].
Motion correlation in the context of eye tracking offers unique advantages because spatial and
semantic mapping of gaze as input is much more problematic than other modalities due to the
physiological nature of eye movements, and the inherent sensing issues of eye trackers. These
works also demonstrated how motion correlation can be used in holistic interface designs, and
have since inspired the use of other input modalities, such as touchless gestures [40].

1.2 Research Questions

The overarching goal of this thesis is to position motion correlation as the third fundamental in-
teraction paradigm for touchless gestures. To achieve this, we aim to advance the understanding
of the design space and provide a clear foundation to build upon by understanding the underly-
ing mechanisms of how we match against motion. With this in mind, we ask four fundamental
questions of motion correlation in the context of touchless gestures:

RQ1: Can movement be used as the primary sensing principle for interaction? The concept of
motion correlation has been used for different input modalities, from a mouse [73], to gaze [273],
to hand movements [40]. However, the underlying concept of motion correlation requires move-
ment, which can be generated from many sources. In particular, we investigate:

• RQ1.1: Is it feasible to harness movement as the primary sensing principle using motion
correlation to allow users to provide input more flexibly? With advances in computer
vision, detection of motion using optical flow is readily available. We therefore investigate
the practicality of how generic motion can be used as input.

• RQ1.2: How effective are users at providing input using different body parts, or when
holding objects, to generate the required motion? Users can express their intent to interact
with different body movements, or whilst using objects. Understanding how adept users
are at providing input under different conditions can help inform interface design.

• RQ1.3: How do users provide input spontaneously when given the opportunity to interact
with different body parts and objects? The flexibility of how to provide input is only useful
if users take advantage of it. This question looks to address how users interact when given
the flexibility to provide input using any means necessary.

RQ2: How can motion correlation be used to bootstrap spatial pointing? Previous work has
focussed on motion correlation for discrete selection of objects, however many interactions in
the real-world require more precise input control. We explore how motion correlation can be
extended to better support a wider range of input for interaction with touchless gestures, with a
particular focus on spatial gestures. Subsequently, we investigate:

• RQ2.1: Can the control-display gain for spatial interaction be derived from motion cor-
relation? The matching of motions has application beyond selection, such as for pair-
ing [168], and calibration [199] of input devices. For spatial interactions, mapping user
input to output is non-trivial, and we explore whether motion correlation presents a unique
opportunity to do this on a per-interaction basis.

• RQ2.2: What unique capabilities arise from combining motion correlation with spatial
coupling? Motion correlation has distinct advantages compared with spatial input, and
vice versa, which we discuss in chapter 2. By combining these two interaction princi-
ples, we investigate if we can leverage both of their advantages for unique interaction
techniques.
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• RQ2.3: What are the usability implications of dynamically setting the control display
gain? Using motion correlation for dynamically assigning control-display gains has po-
tential ramifications on the user’s ability to consistently provide input accurately. We
therefore investigate how precisely and accurately users can provide input when motion
correlation is combined with spatial interaction.

RQ3: How do users reproduce trajectories in the context of motion correlation? Our ability to
synchronise with external stimuli is dependent on a number of physiological subsystems working
in coordination. There is little known about how users actually synchronise with target motion in
the context of motion correlation as a selection technique. To establish a deeper understanding,
we address the following sub-questions:

• RQ3.1: How can we extract the ground truth of how well users follow a target, indepen-
dent of any particular detection mechanism intended for interaction? In the context of
motion correlation, the underlying assumption of how well we can synchronise has been
based on intuition, or has been inferred through detection rates of sensing techniques.
To assess how well people follow motion, one must look at user ability independent of
detection algorithms.

• RQ3.2: How much do users lead or lag a target when synchronising with different shapes,
and across different input methods? Unlike other input modalities, a user’s ability to
synchronise with touchless gestures is based on sensorimotor synchronisation. A deeper
understanding of how users follow targets can be used to inform algorithm and interface
design.

• RQ3.3: Can simple harmonic movement better help users synchronise with target move-
ment? Designing motions that users are more easily able to follow is currently under-
explored. We investigate whether using simple harmonic motion for target movement
helps users synchronise with external stimuli.

RQ4: How robustly can we detect users matching motions? The success of an input technique
can be decided on its ability to accurately detect user intentions, and reject accidental activations.
This is dependent on both the user’s ability to provide accurate input to the system, and the
system’s ability to accurately detect said input. We look towards optimising the detection process
by answering two sub-questions:

• RQ4.1: Which algorithms are appropriate for detecting motion correlation? Motion cor-
relation can be viewed as a trajectory matching problem, where the trajectory of the user
is matched against the trajectory of the target’s motion. There is well-established work
beyond the HCI literature that looks at matching and indexing spatiotemporal trajectories
(e.g. [282]), and which can be applied for detection in the context of motion correlation.

• RQ4.2: What are the best parameterisations for achieving optimal performance across
different types of input? Algorithms have multiple parameterisations that can influence
the detection rate across different target conditions, and with different methods of input.
The context in which motion correlation is used will also result in different considerations
for whether to optimise selection time, or robustness to false activations as a priority.

1.3 Methodology

In order to answer the proposed research questions we iteratively design, develop and evaluate
systems and algorithms. Where appropriate, we use real-world examples to explore the design
space, and ground our work with empirical data gained from data collections.
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We begin with RQ1, investigating how motion can be used as the primary sensing input. We use
a build methodology to develop and build TraceMatch – a system which uses computer vision
techniques to accept generic motion as input. Based on a data collection of participants matching
motion, we empirically test how robust the system is at detecting and matching user movement,
and how robust it is to rejecting accidental selections. We extract preliminary user performance
metrics to gain initial insights, which help us to formulate and refine our approach in the next
phase – the user evaluation.

To evaluate how well users match motion in an interactive setting, we conduct a user study with
TraceMatch using a mixed-methods approach. As touchless gestures have many applications,
we ground our user study on the perennial problem of remote control to assess the system in
context. We collect quantitative performance data of users using the system to gain insights
into user performance, whilst collecting qualitative preference data with different types of input
using an abstract task. We then investigate the system in a pseudo real-world setting designed to
allow laid-back, spontaneous interactions in a real-world context. These were used to investigate
participant’s spontaneous choices for interaction, and to explore whether the technique could be
extended to multi-level input.

Identification of research gaps in the previous study informed the methodology for the investi-
gation into how expressive motion correlation can be (RQ2). We introduce spontaneous spatial
coupling – an input technique which combines motion correlation with cursor-based interaction
to support continuous interaction. This allows users to create and bind to pointers on-demand
using any part of their body, with motion correlation as the underpinning interaction princi-
ple. We first discuss the underlying principles of the technique, and design considerations. In
order to study this technique, we operationalise it by developing MatchPoint – a system which
builds upon TraceMatch. We use MatchPoint to explore the design space surrounding the unique
opportunities afforded by spontaneous spatial coupling. We ground our exploration with real-
world application examples. We then evaluate how adept users are with the interaction technique
by performing a lab-based user study on multi-directional pointing performance using the ISO
9241-9 standard.

Finally, we conduct a data collection to gain deeper insights into how users match against dif-
ferent motions using different types of input (RQ3). Analysis is performed using offline post-
processing techniques to extract the ground truth and provide insight into how quickly users
start to gesture, how well they can maintain synchrony with the moving targets, and how large
their movements are. We use this analysis to inform algorithm design into the detection of
matching gestures (RQ4). We draw on literature in sensorimotor synchronisation to inform our
study design and analysis, and test algorithms from both the motion correlation and time-series
comparison literature.

1.4 Contributions

This thesis advances the understanding of motion correlation by demonstrating what the cou-
pling of motion can support in the context of interaction using clear principles. In particular, we
make the following contributions:

• Demonstration of motion as a sensing principle which allows users to provide in-
put flexibly (RQ1): We provide TraceMatch as a systems contribution to harness the
universality of motion using computer vision techniques with a general purpose webcam
(RQ1.1). TraceMatch is an input method which abstracts from body part segmentation,
and relaxes the restrictions about how a user must provide input, and in what position they
must be to interact with the system. We also validate TraceMatch, showing that users are
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effective at selecting input by synchronising with displayed motion using different types
of movement. We provide deeper insights into how different ways of performing match-
ing motion (with head, hand, or while holding objects) affect performance (RQ1.2), and
into preferences and spontaneous choices of different body movements for input (RQ1.3).
Finally, we explore ways in which the technique can be extended from binary selection to
multi-level input displayed within one orbiting widget.

• Demonstration that motion correlation is more than just a selection principle (RQ2):
We introduce spontaneous spatial coupling – a formalisation of how motion correlation
can bootstrap cursor-based interaction for more expressive interaction (RQ2). Rather than
relying on rigid one-to-one mapping of user input to pointer, we leverage the properties
of motion to go beyond just discrete selection. In the context of touchless gestures we
show how motion correlation bootstraps spatial input by selecting the functionality of
the pointing instance, whilst implicitly determining the control-display gain and appro-
priate mapping for the spatial input phase (RQ2.1). We contribute MatchPoint, a system
which operationalises this concept using computer vision techniques. Using MatchPoint
we explore the design space that emerges from looking beyond motion correlation for just
discrete selection, and demonstrate unique opportunities using practical examples, includ-
ing multiple, simultaneous pointing instances and creation of ad-hoc tangible interfaces
(RQ2.2). Finally, we provide insights into how users can use the technique with different
methods of input using a multi-directional pointing performance using the ISO 9241-9
standard (RQ2.3).

• Deeper insights into how users match moving targets (RQ3): We provide an in-depth
look at how users match against moving targets in the context of motion correlation using
body movements. We develop techniques for extracting the ground truth of user’s syn-
chronicity against circular and line-based targets (RQ3.1). Using empirical data gained
from a data collection with participants, we investigate how closely they can synchro-
nise with targets across different conditions (RQ3.2), and look into which type of move-
ment they deem more favourable to inform interface design. Informed by prior work on
hand movements for reciprocal pointing tasks [94], we design movement based on simple
harmonic motion and demonstrate how this helps users to be more closely synchronised
(RQ3.3).

• Demonstration of the robustness of motion correlation (RQ4): By viewing motion cor-
relation as a trajectory matching problem, we provide an in-depth evaluation of similarity-
based algorithms which shows that motion correlation is a robust technique that can have
very high detection rates (≈100%) with zero detections as a result of accidental user move-
ment (RQ4.1). We provide parameters and thresholds for motion correlation practitioners
(RQ4.2).

• Guidelines for the creation of motion correlation interfaces with touchless gestures:
From the insights gained across the studies, we distil guidelines to inform interface de-
sign, covering which shapes and speeds to use in which contexts, how many simultaneous
targets could be presented, and where best to position them on the interface.

1.5 Thesis Structure

The thesis is structured as follows:

Chapter 2 begins by discussing touchless gestures as “natural” interaction methods, and the
different ways in which users can provide input. We then classify touchless gestures into two
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distinct categories: semantic and spatial, and discuss the advantages and disadvantages of both.
We use this to position motion correlation as a third interaction principle for touchless gestures
and discuss the underlying theories from the sensorimotor synchronisation literature that reveal
how adept we are at following motions. We then explore existing works that use motion corre-
lation as an input principle. Techniques for sensing touchless gestures, and traditional gesture
recognition pipelines are discussed to inform and contrast our design choices of creating a sys-
tem that abstracts from body part segmentation. Finally, we discuss the application areas in
which touchless gestures have been explored, to motivate and provide greater context as to the
importance of touchless gestures as an input technique.

Chapter 3 introduces TraceMatch. We discuss the design and implementation of the system,
and the data collection process which was used to inform parameter choice. We then investigate
TraceMatch in more depth with a comprehensive user study. We validate the real-time perfor-
mance by showing that users are effective at selecting input by synchronising with displayed
motion using different types of movement, and provide insight into how different ways of per-
forming matching motion (with head, hand, or while holding objects) affect performance. We
explore preferences and spontaneous choices of different body movements for input, and ways in
which the technique can be extended from binary selection to multi-level input displayed within
one orbiting widget.

Chapter 4 introduces the concept of spontaneous spatial coupling and discusses the properties
which define it. We operationalise this with MatchPoint - a computer vision-based system that
builds upon TraceMatch to demonstrate the concept of spontaneous spatial coupling. We then
explore the design space using real-world examples, and finally evaluate how adept users are
at pointing using different body parts, or when holding an object, with dynamically adjusted
control-display gains.

Chapter 5 takes a closer look at the underlying mechanisms of how users synchronise with mo-
tion using body movements. Using empirical data, we explore how adept users are at matching
against on-screen targets, and investigate how harmonic motion can be used to help users syn-
chronise with targets. We then perform an extensive parameter search on a number of algorithms
to determine optimum parameters for different motion trajectories, and to assess the robustness
of motion correlation against accidental activation.

Chapter 6 discusses motion correlation as the third input paradigm based on our findings. We
then introduce design guidelines for touchless motion correlation interfaces that we refine across
the work conducted throughout this thesis. We also discuss future considerations for motion
correlation interfaces based on our insights, and limitations of our work.

Finally, Chapter 7 concludes the thesis.
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2
Related Work

In this thesis we explore the use of motion correlation as a novel selection principle for touchless
input using body movements. Touchless input forms part of a new computing era - that of the
“natural” user interface (NUI). We begin by looking at the NUI, what it is defined by, and posi-
tion touchless gestures within this emerging paradigm. We then take a deeper look at touchless
input using body movements, ranging from hand to whole body input, through the lens of the
two dominant conceptual models used. We discuss previous work on motion correlation, from
its roots in perceptual control theory, to the processes involved in how we follow motion, and
how it has been used in the HCI literature for selection and pairing. Following this, we look at
sensing techniques for touchless input, and discuss how these are dominated by detection and/or
segmentation of specific body parts and often require complex recognition algorithms. Finally,
we look at application areas which touchless gestures have found application.

2.1 Touchless Gestures as “Natural” Input

In 1973 Xerox PARC introduced the Xerox Alto, an experimental workstation with the first
operating system to use a graphical user interface (GUI), and which demonstrated the windows,
icons, menus and point (WIMP) metaphor [262]. Inspired by Ivan Sutherland’s SketchPad [259]
and Douglas Englebart’s On-Line System (NLS) [68], this represented a huge paradigm shift
from the keyboard-based command line interface (CLI) that came before, and ushered in the era
of personal computing. The GUI was created to simplify how we interact with a computer and
make computing more accessible. In contrast to the CLI metaphor of remembering and recalling
specific commands, the GUI relies on recognition of desired commands – fundamentally making
all available actions visible and highly discoverable to the user.

The GUI was designed, and optimised, for a specific configuration of input and output devices
– a mouse and keyboard combined with a desktop monitor. Today’s input/output (I/O) sens-
ing landscape is much more rich and diverse. Due to decades of research, and technological
advances, there are now an abundance of devices capable of sensing user input in a variety of
different forms. Speech [153], eye gaze [244], multi-touch [106], and body movements [5] can
all be utilised for interaction, either in isolation or as complementary input modalities in a multi-
modal fashion [50, 263, 145]. As computing has become a ubiquitous entity that is embedded
in our environment, it has necessitated that output and feedback extend beyond just a desktop
display. Outputs may come in many different forms that encompass our many senses beyond
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just vision, from auditory [85, 33] to haptic [143], and even olfactory [129]. Even the basic
premise of visual output is no longer limited to the desktop or television, as displays come in
a variety of form factors, from small smart watches to large public displays. The GUI can not
be shoehorned as the de facto standard for this vast landscape of I/O capabilities. The interface
must be tailored to the I/O – enter the “natural” user interface (NUI).

The goal of interface design is to minimise cognitive and physical load on the user, enable
seamless and effortless interaction, and in effect make the interface invisible. The term “natural”,
as used in the context of natural user interfaces, refers to the way in which a user experiences a
system [286]. These experiences are at different levels of conscious control during interaction
depending on a user’s familiarity and experience with a device or system. Fitts and Posner
developed a prominent model about how we acquire psychomotor skills which consists of three
stages: cognitive, associative, and autonomous [75]. In the cognitive stage users must problem
solve, as they have no routines or rules available to solve the problem at hand. This requires
cognitive effort, and in the context of interaction the user’s attention is not on the task that the
interface enables, but rather the interface itself. In the associative stage the user will focus on the
how of the interaction as opposed to the what - many tasks require years or decades to master.
In the autonomous stage, automated routines are carried out which require minimum cognitive
load. NUIs do not offer a silver bullet for interaction design resulting in skilled users from the
offset, but the goal is to instead exploit our innate ability to transfer skills and knowledge from
our interactions in the real-world to accelerate the transition from problem-solving to skilled
interaction.

Our use of gestures using body movements for human-to-human communication have been ex-
tensively studied. We spontaneously gesture in as much as up to 80 to 90% of the words we
speak [170], and research suggests children (under the age of 2) use gestures independently of
spoken language to compensate for their inability to talk, such as when we point at objects that
we have do not know the name of [198, 113]. As we, and our verbal communication skills,
mature we produce new types of gestures that accompany our speech - iconic and beat ges-
tures [166]. Iconic gestures are used to depict some aspect of an entity (an action, person,
or object), whereas beat gestures are hand and arm movements which emphasize or mark the
structure of our spoken communications [170]. In the absence of spoken language, our primary
communication channel is through the use of sign language, distinctive articulations of the hands
that convey semantic meaning and that have evolved from iconic gestures [43]. Gesturing is uni-
versal, and the ability to sense body movement has resulted in a plethora of HCI research on
how we can use them for input.

2.1.1 Touchless Gesture Input Principles

One of the earliest work on using gestures for interaction, Bolt’s seminal "Put-that-there", lever-
aged the deictic nature of gestures and demonstrated how pointing could be used to contextualise
speech for interaction [29]. Speech was used to identify the action (“put”), and pointing with
the hand was used to identify the object of interest (“that”), and the spatial location to which it
should be moved to (“there”). The combination of speech and gestures has been studied exten-
sively based on its integral part of our use of language [171]. Gestures can also be used in a uni-
modal fashion, without the need for speech or other modalities. Numerous categorisations have
emerged to describe the highly variable physical characteristics of hand gestures [207, 128, 5],
inspired by previous work on conversational behaviour [130, 170]. Karam and schraefel cate-
gorise hand gestures into five distinct gesture styles as used from an HCI perspective [128]:

• Deictic/Pointing: Used to indicate the spatial position or identity of an entity.
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• Manipulative: A tight relationship exists between the gesturing body part and entity
being manipulated (e.g. dragging a volume slider).

• Semaphoric: Communicative gestures that utilise a dictionary of static or dynamic ges-
tures which are mapped to specific functions.

• Gesticulative: Used in combination with conversational speech, they rely on the analysis
of body motion in the context of the user’s speech. Aigner et al. further differentiate
gesticulative gestures into iconic and pantomimic, but do so on the basis that they can be
articulated in a uni-modal fashion, i.e. without the need for speech [5]:

– Iconic: Used to depict information about an entity, such as its size, shape, or motion
path.

– Pantomimic: A sequence of multiple gestures whereby an actor imitates the use of
an object.

• Language: Sign language gestures are grammatically and lexically complete and are used
for communication-based interaction, akin to detecting a sequence of words to form a
sentence.

With the exception of language-based gestures, these gesture styles are also applicable to other
parts of the body. In this thesis, we are not concerned with language-based gestures nor those
that require additional modalities. Language-based gestures are built upon complete lexicons
and research in this area follows a similar trend to that of conversational agents in that a user
communicates with a system. We instead focus on selecting one of a fixed number of options.

The remaining gesture styles operate on the basis of either semantically or spatially mapping the
user’s input to the output space [73]. Analogous to the CLI metaphor, semaphoric gestures are
semantically mapped to a set of corresponding actions, although the gestures themselves may
occur spatially in motor space. Manipulative and pointing gestures involve a spatial mapping,
and usually a logical abstraction of the user’s attention in the form of a cursor. A property shared
by the WIMP metaphor which relies heavily on spatial mapping of input. Multiple styles may be
employed concurrently when these gesture styles are operationalised in a system, such as when
a semantic gesture is used as an activation gesture for a cursor-based interface (e.g. Kinect’s
wave-to-start 1). Carter et al. discuss these fundamental selection principles in the context of the
dominant selection technique employed in a system [40]: cursor-based for spatially dominated
selection, and library-based for semantically dominated. In the following subsections we discuss
these principles and their applicability to touchless bodily interaction in more depth.

2.2 Semantic gestures

Systems that rely on semantic gestures for selection require a pre-defined set of gestures that
are mapped to specific commands in the interface. Semantic gestures often involve dynamic
movements of the body part performing the gesture, ranging from simple side-to-side motion,
such as waving with the hand or shaking the head, to more complex motion trajectories such
as the tracing of alphanumeric symbols. Static poses of the hand can also be used as seman-
tic input, for example joining the thumb and forefinger to form the “okay” symbol. Semantic
gestures have the potential for highly expressive input, by specifying not only the command but
its parameters as well [15]. There is no requirement for direct spatial mapping between input
and output spaces because gestures are mapped semantically. This means semantic gestures can

1Kinect Gestures | Wave to Kinect: https://support.xbox.com/en-GB/xbox-360/accessories/body-

controller Accessed 23/11/19
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be invoked from multiple locations, independent of orientation, and can be used as input to a
wide range of devices, from smart-home applications with limited-display devices [84], to large
wall-sized public displays [3]. Due to proprioception, there is no requirement for visual feed-
back and they do not require screen real-estate, thus reducing visual clutter. Semantic gestures
can be used in an eyes-free manner with feedback from either auditory [288] or mid-air haptic
channels [151]. This is especially useful in the automotive industry, where reducing driver dis-
traction is a primary concern [61, 218]. This also makes them suitable as an accessible means
of input for people who have vision impairment [127]. However, semantic gestures have widely
discussed usability issues [189], including questions of how gestures are revealed, discovered
and learned [15, 279, 3].

2.2.1 Midas Touch

A semantic gesture consists of three distinct stages: (1) registration signals the user’s intent to
interact and the beginning of the gesture, (2) continuation contains the information conveyed
by the gesture, and (3) termination signals the end of the gesture. In touch-based gestures the
registration and termination stages may be as trivial as touching the screen and releasing the
finger. For mid-air gestures this is not as apparent and there may not be an explicit delimiter that
marks the start and end of a gesture – also referred to as the “gesture spotting” problem [297].
The lack of clear delineation leads to the Midas touch problem, named after King Midas in Greek
mythology, for whom everything he touched turned into gold. In the context of interaction this
refers to false activations whereby the system incorrectly interprets a user’s actions as intent
to interact with the system [133]. A mid-air gesture recogniser may constantly be looking for
input from the user, and any inadvertent movement could be misclassified as an intended gesture
towards the system.

Several techniques have been proposed in the literature to reduce the Midas touch effect. Alter-
native modalities can be used in a complementary fashion, as either a selection mechanism such
as in Bolt’s “Put-that-there” in which speech was used as the trigger to identify objects or spatial
locations [29]. Other modalities can also be used to infer a user’s intent to interact based on user
engagement [236]. Activation gestures are those which one would not expect the user to perform
accidentally and are thus reserved to signify the start of an interaction [133, 103, 279]. Upon
activation, the sensing device looks for user input until a continuation or a closure gesture has
been detected [89], or until the user leaves the sensor area. Activation gestures must be carefully
designed, as they too are subject to the Midas touch problem [191]. Active zones are another
approach in which specific input zones are defined with respect to the sensing device. Only
when the gesturing body-part is within the pre-defined bounds of the active zone are gestures
registered [15, 137]. Conveying the bounds of the active zone to the user may be troublesome,
and such an approach removes the flexibility of mid-air gesture systems to provide input from
multiple locations. All of the aforementioned solutions may help alleviate the Midas Touch
problem, but they do not remove it and there is also the need to reveal these initial registration
gestures to users [279].

2.2.2 Gesture Mapping

The ultimate goal of gesture set design is to maximise the ease-of-use and memorability of
the mappings between user input and system output from a user perspective, whilst also max-
imising recognition accuracy from a technological perspective. Our own conceptual mappings
of gestures are dependent on a number of factors. Semantic gestures in particular depend on
habit, background, and culture [163]. A benign gesture used commonly in one culture may
have significantly different meaning in another. The previous example of the “okay” symbol has
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significantly different meanings if used in the United Kingdom (okay), Japan (money), France
(zero), or Brazil (an obscene gesture). The advantages often touted regarding gestures - their
naturalness, intuitiveness, ease-of-learning - are heavily dependent on the gesture mapping be-
tween input action and system command. Wobbrock et al. investigated what “natural” interac-
tion looked like in terms of multi-touch input gestures [294]. Their work revealed that despite
agreement for physical manipulation tasks, such as moving an object or changing its position,
there does not exist a universally agreed upon set of gestures. This has also been found to be
the case for mid-air hand gestures [266]. For interaction there are many abstract tasks for which
there may be no innate mapping that draws consensus. There are three methods that have been
proposed for the design of gestures: pre-designed, user-elicited and user-defined gesture sets.

Pre-designed gestures sets are those created by a designer, or set of designers, according to a
design process. Knowledge of the underlying recogniser technology and specific application
requirements can be used to create mappings that are easy-to-remember, perform, and guess-
able [293]. For example, two gestures that are conceptually very different to a user may be very
similar to a recogniser. User elicited design involves participatory design [294]. A subset of
users generate gestures which are compiled at design-time into an agreed upon gesture set [251].
Designers are still an integral part of this process, as they must ensure that identical gestures are
not assigned to the same input action. Morris et al. found that gesture sets created by larger
groups of people were preferred to those created by individual designers (in this case the authors
of the paper) [178]. Interestingly, they also noted that the HCI researchers’ gesture sets contained
more complex gestures, from both a physical and conceptual perspective. User-defined gesture
sets are created by the users without oversight from a designer. Nacenta et al. demonstrated how
user-defined gestures can offer greater customisability and ease-of-use for participants compared
with pre-designed gesture sets, resulting in greater memorability [183]. However, this comes at
a cost to collaborative awareness and transferability, because user-defined gestures are applica-
tion and user-specific. In all three methodologies, memorability is still an issue for users, which
leads us to the next issue with semantic gestures.

2.2.3 Recall vs Recognition

Once a library of gestures has been established for use, users must discover and learn which
gesture corresponds to which system action or command, and at a later date recall these same
mappings. The majority of interfaces that utilise semantic gestures rely on recall of the gesture
set, violating Nielsen’s heuristic of recognition instead of recall [187]. It was this same premise
of “see and point versus learn and remember” that helped propel the GUI to prominence by
catering to novice users [241]. Kurtenbach et al. describe three similar principles to support
learning of gestures: revelation, guidance, and rehearsal [139]. It is the system’s responsibility
to reveal its commands and how to invoke them. The problem of recall becomes more apparent
for transient interactions with public displays, where users may not even be aware of the input
modality that is required to trigger an interaction, i.e. they may not be aware the system accepts
gesture as input.

Feedback and feedforward techniques can be used to facilitate learning of complex gesture sets
for mid-air interactions. Feedforward techniques reveal the available commands to the user and
how to perform them prior to the user executing the gesture. Crib sheets are a feedforward
technique that can be displayed on-demand to show the available gestures and what actions they
correspond to [139]. Kurtenbach et al. demonstrated how these can be combined with contextual
animations to help users learn new gestures. However, they require the user to divide their at-
tention between the gesture being performed and the shown example. Feedback can be provided
to users either in the continuation phase [14, 80] or after a gesture has been completed [32] and
provide information to the user regarding the current recognition state of the system. Feedback
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techniques not only help facilitate the learning of gesture sets, but have the added advantage of
providing users with visibility of the system status. We refer readers to [55] for an exhaustive
description of gesture guiding systems.

Techniques that combine both feedforward and feedback have also been around for decades
in the form of pie menus [37] and marking menus [139]. In mouse and touch-based interfaces,
marking menus are revealed by waiting during gesture registration (inferred through mouse click
or touch down) until the system displays the available gestures [139]. Bau and Mackay extended
marking menus to more complex gesture sets with the concept of dynamic guides, which con-
tinuously update feedforward and feedback during the gesture continuation phase [14]. Shad-
owGuides and Aperge extended this technique to the more complex multi-touch and chord ges-
ture problems [80, 88]. Delamare et al. extended the dynamic guides technique to mid-air
gestures in 3D using a mouse for gesture registration [56]. The aforementioned techniques are
dependent on the wait (dwell) during the gesture registration phase, and thus are not always ap-
plicable to mid-air gestures due to the difficulty in establishing gesture registration as discussed
earlier.

In the context of gesture recall, too much guidance when learning a gesture can hinder later
recall. Anderson and Bischof compared four types of guide for 2D gestures and measured
the associated learning of gesture sets using a transfer and retention paradigm, common to the
motor learning literature [7]. They tested a crib sheet, a static guide, a dynamic guide based on
OctoPocus [14], and a novel adaptive guide. Retention tests to assess consolidation of motor
skills were performed without any guide feedback, in addition to transfer tests performed with
the non-dominant hand to see how well the learnt gestures were generalisable. Both sets of tests
were conducted at 15 minutes and 24 hours after the initial training phase. They found that
guides with higher guidance given during the training phase showed high performance benefits
whilst the user used the guide, but at the expense of lower learning and retention effects. This
can be explained by the guidance hypothesis, which states that a user may become overly reliant
on the guidance given during the training phase which in turn hinders learning of the underlying
process [233].

There has been limited work in revealing and learning mid-air gestures. Sodhi et al. projected
visualizations on to the hands of users as guidance in LightGuide [247]. They found that par-
ticipants were more accurate compared with video guidance using a 3D model of the hand.
However, LightGuide requires users to divide visual attention between the gesturing hand and
display, and the practicality of projecting visualisations on users is questionable. In StrikeAPose,
Walter et al. used a teapot gesture as an activation gesture and investigated revelation techniques
for public displays [279]. Three techniques were used: spatial division akin to showing a crib
sheet, temporal division whereby content was disrupted to show the registration gesture, and
integration in which the registration gesture was integrated into the content being shown on the
public display. They found spatial division outperformed the others, however this focussed on
the revelation of an initial activation gesture and not a whole gesture set. In contrast, Gestu-Wan
explored the discoverability of a whole gesture set for public displays [225]. Gestures were
manually subdivided into intermediate postures and structured hierarchically in a tree. Based on
a user’s given state in a gesture (i.e. posture) the system displays available commands and the
respective posture required to transition. Gupta et al. investigated how haptics could be incor-
porated into the learning process for finger tap gestures and command shortcuts [98]. Combined
with visual stimuli, they demonstrated that haptic learning is comparable with visual learning af-
ter thirty minutes which shows promise for learning gesture sets for systems with limited display
capabilities.
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2.3 Spatial gestures

Spatial gestures map the user’s input to the device’s output in the spatial domain, and include
pointing and manipulative gestures. Pointing is a fundamental interaction principle that draws
on human spatial abilities and skills. The principle is at the core of graphical user interfaces
on our desktops, tablets and smartphones, but naturally extends to touchless interaction with
displays that are remote, shared, large, public, ambient or used in settings that prohibit touch
for hygienic reasons [29, 67, 27, 276, 265, 191]. The use of pointing in interfaces is often
mediated using a logical abstraction of the user’s attention, most commonly in the form of a
cursor (a.k.a. a pointer). A static configuration of icons and or menus represents actions available
to a user, which are selected using a point-and-select metaphor. This metaphor is at the heart
of the WIMP paradigm that underpins the GUI. However, many other aspects of the GUI are
optimised for the pairing of mouse and keyboard, and do not extend into the realm of touchless
interaction. When we point with our hands for example, we do so with coarse accuracy and
low precision due to inherent human limitations, such as hand jitter [182]. The mouse on the
other hand has been refined as the ultimate pointing device with decades of research. Spatial
gestures also include manipulative gestures which control an entity by applying a tight coupling
between the actual movement of the gesturing body-part and the entity being manipulated [207].
These can be achieved using one hand to grip and manipulate the object with the thumb and
forefinger [190, 237], or they may build upon their touch-based counterparts by using bimanual
input [105]. Researchers have also posited unique metaphors for 3D manipulation, such as
virtual objects that have been skewered with a bimanual handle bar [248].

Related work generally assumes use of the hands for pointing (e.g., [276, 242, 12, 122, 40]),
and the non-dominant hand has been shown to have comparative performance relative to the
dominant hand for pointing tasks [121]. Work in other areas has shown that humans are equally
natural at pointing with other parts of their body (literally, from head [159, 22, 132] to toe [270]).
Although pointing with the hands often outperforms pointing with other body parts, the head has
also been shown to be an accurate and efficient way of providing input by pointing [24, 148].
There are compelling advantages of using alternate body parts for pointing and interaction, such
as accessibility devices [117] or when the hands are otherwise busy with other tasks. Fitzmaurice
et al. demonstrated how physical tokens can be tightly coupled with virtual objects for manip-
ulation or expressing actions [77], based on prior work employing real-world props as handles
for spatial controls [104]. There has also been prior work that investigates how physical objects
can be coupled with virtual entities in an ad-hoc manner [92, 274, 28].

2.3.1 Gesture Mapping

Spatial gestures suffer from similar usability issues to semantic gestures, including the Midas
touch problem (see Section 2.2.1), and how to map the user’s input to the system’s output. Con-
ventional user interfaces support pointing by tightly coupling a pointing device with a display
surface, or by integrating pointing and display. Mapping the user’s movement to the display is a
challenge for touchless pointing, as the user’s input space is not straightforward to discover. The
user’s movements can be mapped to the display in an absolute manner, whereby movement of
the user’s input results in a fixed translation of the on-screen cursor [276]. Ray-casting methods
can also be used to map input to output spaces. An invisible ray is cast from the input device or
body part and the point at which it intersects the display dictates the position of the cursor. Ray-
casting is much more complex because it requires the sensor to have absolute knowledge about
the user’s position and the display in 3D space. There are also different methods for casting the
ray itself.

For hand-based interaction, the ray can be cast from one or multiple fingers [276, 193, 162].
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Bimanual ray-casting can also be used to leverage inter-hand coordination which can mimic
multi-touch gestures [12], or be used for selecting objects in a 3D space based on their inter-
section [296]. Two points are required for directional ray-casting, one of which is commonly
located at the end of the index fingertip, however researchers have explored alternate origins for
the ray including the eye, head, centre of the body, or forearm [120, 12, 11, 167]. For head-based
pointing, the ray is usually cast from the centre of the head, however it could also be cast from
the position of the eyes, and due to limitation in eye tracking technology the ray cast from the
head is sometimes used as a proxy for the gaze position [24, 202].

In general, we point in coarse directions and an alternative to absolute positioning techniques
are relative pointing, most commonly found in the mouse and desktop scenario. Movement of
the on-screen cursor is dictated by the velocity or acceleration of user input [276, 280]. How-
ever, relative pointing requires a clutch movement in order to disengage the pointer and reposi-
tion. This can be complicated in touchless bodily interactions, and alternative modalities, active
zones, or semantic gestures can be used to engage the clutching mechanism in a similar fash-
ion to activation gestures. Relative pointing can be advantageous because fast movements are
translated to coarse-grained displacements on the screen, whereas slow and methodical move-
ments translate to the fine-grained movements required to accurately select smaller targets. Both
absolute and relative pointing techniques can be combined to leverage the advantages of both.
Vogel and Balakrishnan suggest a hybrid approach, which allows users to switch modes between
either absolute or relative pointing depending on whether coarse- or fine-grained selection is re-
quired [276]. Prolonged usage and ill-conceived mapping combined with hand-based pointing
can exacerbate known fatigue issues [97, 101].

2.3.2 Gorilla Arm

One of the unfortunate side effects of mid-air pointing with the hand is muscle fatigue – com-
monly referred to as the “gorilla arm” effect [97, 101]. Interfaces that rely upon pointing and
manipulation tasks are likely to require prolonged periods of interaction in which the arm is in
a raised position. Intense muscle tension over prolonged periods from a result of maintaining
a static pose, or the effort to move the hand through a trajectory, can harden arteries and re-
strict blood-flow. Hincapie-Ramos et al. propose the consumed endurance metric to quantify
the fatigue experienced during mid-air interactions [101]. They suggest that relative movements
should be used to enable users to perform gestures in areas of least effort. Microsoft released
a set of human interface guidelines for the Kinect which detailed numerous ways to reduce the
gorilla arm effect [175]. These include enabling users to freely switch between hands, avoiding
long interactions that require the user to keep their hands raised, and avoidance of fine-grained
targeting in the vertical axis. Jude et al. showed that accuracy can be maintained when point-
ing on small displays if the user is able define their input space during a calibration phase [122].
Other work suggests allowing interaction from a rested position, e.g. a table, to limit fatigue [97].
Many of the constraints that sensing devices place on users in order to detect gestures or to re-
duce the Midas Touch problem can exacerbate gorilla arm fatigue issues, e.g. specific postures
or hand positions relative to the body.

2.4 Motion Correlation

So far we have discussed spatial and semantic gestures which map user input to system output
in the spatial domain or through semantic meaning. Building upon our natural ability to mimic
external motion, motion correlation represents a third input principle for selection, defined by
three properties [268]:
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1. Motions displayed on an interface represent actions that are selectable by the user;

2. A user mimics the desired action’s movement in order to signify their intent to interact;

3. Selection is determined by the coincidence between the user and the object’s movements

The principle behind such techniques has been referred to by several names including rhythmic
path mimicry [40], periodical motion coincidence [73], and feedback-based active selection
[287], but is essentially the same across them: each selectable target on the interface presents
a distinct movement and the user selects the desired target by matching (e.g. PathSync [40]) or
counteracting (e.g. Eggheads [287]) the corresponding movement.

Motion is the change in position of an object over time. When determining if two signals match
each other we can consider their spatial properties (e.g. position, trajectory), temporal properties
(e.g. frequency, velocity), or a combination of both – their spatiotemporal properties. In this
thesis, we focus on spatiotemporal motion correlation, which utilises information in both the
spatial and temporal domains for inferring user intent. More specifically we are concerned with
the spatiotemporal coincidence between both input and output signals. A match is detected
based on the principle that spatial and temporal properties of both input and output are aligned
according to some similarity measure. We use the term correlation, not in the statistical sense,
but in the relationship between input and output. It is important that output motion is temporally
synchronised with user motion, in contrast to spatial gestures in which movement at the output
is in response to the user.

2.4.1 Temporal Coincidence and Spatiotemporal Properties of Gestures

When considering only the temporal properties we discard any information about the spatial
aspects of the motion and can consider discrete inputs such as pushing a button. Previous work
has looked at the temporal coincidence between input and output signals without considering
the spatial aspect. Switch scanning displays items for selection in a grid, with an indicator that
constantly changes which item is highlighted [246]. In order to select an item, the user must time
their input action (e.g. pressing a button) to coincide with their preferred item being highlighted.
Switch scanning is a standard accessibility technique for when accurate and aiming is problem-
atic, e.g. due to a physical disability. This same technique was adopted in Rhythmic Menus, in
which items are periodically highlighted in a drop-down menu upon depression of the mouse
button, and the highlighted item is selected upon release of the mouse button [164]. Resonant
Bits explores temporal correlation in terms of resonance and how a system’s continuous feed-
back can guide the user’s rhythmic input [21]. Selection occurs by rocking the phone in time to
displayed pendulums. When the phone is rocked at the same frequency as one of the displayed
pendulums, the pendulum’s amplitude is increased until selection. All of these techniques rely
on synchronising with the interface in the temporal domain. Of note are other techniques which
use rhythmic input but do not rely on temporal coincidence between input and output, e.g. [87].

Malacria et al. recognised the potential for using the spatiotemporal properties of a gesture for
interaction with their Cyclostar techniques, two novel techniques which leverage spatiotempo-
ral properties of the gesture [158]. Cyclopan involves oscillatory motion of a gesture in which
the orientation, amplitude, frequency of the oscillatory motion are mapped to the pan direction,
distance, and gain respectively. In CycloZoom+, they utilise the spatiotemporal properties of a
circular gesture. The direction, frequency, radius, and centre of the circular gesture is mapped
to the zooming direction, speed, accuracy, and focus of the zooming interaction. Unlike the
Cyclostar techniques in which individual spatiotemporal properties are mapped to specific ac-
tions, motion correlation techniques rely on the coincidence of all spatiotemporal properties of
both input and output signal, enabling for greater flexibility in mappings at the cost of reduced
resolution.
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2.4.2 Motion Perception and Motor Behaviour

We have an innate ability to perceive and synchronise with externally generated rhythm and
motion, which has been studied extensively in the psychological and human movement science
literature. Let us consider the process of mimicking the movement of a visually moving target
with our hand. In the first instance we lock on to the target with our eyes by performing a sac-
cadic eye movement – a rapid eye movement from one target to another. This saccade precedes
the pointing movement of the hand [205], and gaze is maintained on the target until the pointing
is completed [184]. Once locked onto the moving target, our eyes perform a specific type of eye
movement known as smooth pursuits – a type of eye movement that is very difficult to replicate
without external stimuli to follow [136]. Importantly, selective attention is required to maintain
our gaze on the target in the presence of conflicting stimuli [13].

The coordination of one’s movements with an external rhythmic event is known as sensorimotor
synchronisation [213]. This is a phenomenon that is most apparent when we listen or dance
to music and synchronise our body movements with the rhythm. Although we are more pro-
ficient at synchronising discrete body movements (e.g. foot tapping) with audio cues (e.g. a
metronome) , we can also synchronise to visual stimuli that exhibits rhythm, such as a flashing
light [215]. In the sensorimotor literature, the most commonly studied type of synchronisation is
discrete body movement, such as finger tapping, however others have studied continuous motion
such as drawing continuous circles in time to a metronome [299]. Different underlying processes
have been implicated in the control of rhythmic movements depending on whether a discrete or
continuous movement is used. Discrete movements use significant points in time as a reference
with which to synchronise, known as event-based timing. In contrast, continuous movements
such as drawing circles have no salient visual or kinaesthetic event which can be used as a refer-
ence point in which to synchronise against. For synchronisation using continuous movements it
is believed that we use an emergent timing process whereby movement starts out of synchrony,
but due to proprioception the error is reduced by changing the non-temporal properties of the
movement, e.g. stiffness of the arm which changes the size of the drawn circle which inherently
changes the timing [299].

A flashing light demonstrates only temporal variation of the visual stimulus. When synchronis-
ing with visual stimuli, it has been reported that we are better at coordinating when the target
is presented in a continuous rather than discrete manner, and also when spatial information is
provided in addition to temporal [36, 108]. When synchronising with visual targets that exhibit
spatiotemporal properties (i.e. varying in both time and space domains), we are much more
adept at following targets in-phase (i.e. body part and target move in the same direction) than
we are at anti-phase tracking (i.e. body part and target move in opposite directions) [222, 42].
This is to such an extent, that when asked to track a target anti-phase with increasing frequency,
participants will abruptly shift to in-phase tracking at a certain frequency [197, 292]. Inter-
esting insights that can be gained also include the phenomena of anchoring during rhythmic
movements. Originally formulated by Beek when investigating ball juggling, anchor points are
thought to be critical points during cyclical movements that are used to time and stabilise move-
ment cycles [17]. Both gaze and musculoskeletal factors are thought to influence the locations
and properties of anchor points. When synchronising our body movements with low frequency
in-phase oscillations we follow the target with smooth pursuit eye movements, however at higher
frequencies users will fixate on an end point – a form of visuo-motor anchoring [222]. The end-
point at which the user gazes will exhibit reduced spatial variability in the movements. Muscu-
loskeletal factors, such as wrist pose, contribute to the anchoring phenomenon by affecting not
only spatial variability, but also the timing of the synchronisation [221].

Our ability to mimic and synchronise with external motion is grounded in our innate sensorimo-
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tor capabilities, with evidence of mirror neurons and motor resonance behaviours, where sensory
and motor neuron regions fire simultaneously during imitation of movements [219, 141]. Our
movements themselves are naturally cyclic and harmonic, and repeated cyclic movements are
mechanically efficient [94]. It is therefore compelling to use the principles of rhythmic motion
and synchronicity as a means of providing input. We now look to how this innate capability has
been used as input in user interface design using a wide range of input devices.

2.4.3 Perceptual Control Theory

The first researchers to utilise the principle of motion correlation for interaction were Williamson
and Murray-Smith. In pointing without a pointer, they showed that selection of one object among
many could be achieved without using a logical abstraction of the user’s attention, i.e. the
cursor/pointer [289]. Their motivation for selection without a pointer was driven by interaction
where an input device may not lend itself for pointing (e.g. accelerometers) or where an output
cannot provide the necessary visual feedback. In the traditional point-and-select method, the
user explicitly defines their attention with the position of the cursor, and confirms their intent
to select an object with a selection mechanism, e.g. mouse click. Instead, Williamson and
Murray-Smith developed a technique which estimates user intention based on perceptual control
theory [204]. This was achieved by introducing “disturbances” to variables under the user’s
control, and based on observations of the user’s corrections in response to the disturbances it
is possible to infer their intention. This was operationalised in applications in which smooth
pseudo-random movement was injected into objects for selection. To select an object, the user
stabilises the movement of the desired object though movement of the input device, which in
turn applies the same control action to all other objects simultaneously. Although not entirely
like the rest of the work presented here, this demonstrated the fundamental principle behind
motion correlation as a selection technique – the system looks for correlation between the user’s
input and the system’s output, in this case the disturbances. The technique demonstrates how a
user can select one object from many without the need for a cursor, and thus without needing to
split their attention between a cursor and a target.

2.4.4 Selection in Graphical User Interfaces

Fekete et al. built upon the principle of using spatio-temporal coincidence of input and output
signals for selection in motion-pointing [73]. In contrast to Williamson and Murray-Smith’s ap-
proach of selection through stabilisation of pseudo-random disturbances, Fekete et al. introduced
the concept of imitation of a rhythmic movement as a selection principle. They operationalise
this selection principle using cyclic motions on elliptical trajectories and contextualise it for se-
lection by a mouse in a graphical user interface. In the same vein as “Pointing without a Pointer”
motion-pointing provides more visibility of the available commands at the cost of increased vi-
sual load, whilst relying on the user’s proprioceptive feedback for synchronisation and error
correction instead of visual feedback from a cursor. Gestures are expressive and can be used to
specify both a command and its parameters (e.g. the object to which the command should be
executed on). Motion-pointing demonstrated how different properties of the same gesture can
be used to differentiate different commands, by varying the phase, speed, or eccentricity, of a
moving target along an ellipse. They discovered distinct phases during the matching process.
The initial phase (1 - 1.5 seconds) involves the user observing and initiating the synchronisation,
this was followed by the coupling phase (1-2 seconds) in which the user is in synchrony with
the displayed motion, and finally a third phase in which synchronisation was lost and in some
cases recovered, but not always. As motion matching was not 100% accurate they include an
additional discrimination phase using a dynamic pie menu based on the four closest matching
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motions. This highlights a fundamental challenge of motion-matching – designing motions that
are distinct enough for detection.

2.4.5 Smooth Pursuit Eye Movements

Eye tracking is a compelling input modality because our gaze is naturally drawn to objects of
interest that we may wish to interact with. Previous work explored using gaze as spatial or
semantic input in a similar way to traditional input techniques. In the spatial domain, gaze has
been investigated as a replacement for the mouse cursor [114, 78], and gaze gestures have been
proposed for semantic mapping [64]. However, detecting and utilising gaze for interaction poses
a number of significant challenges. For spatial mapping, a user’s gaze must be calibrated to the
display coordinates which often requires an explicit calibration stage. Accurately detecting eye
movements is a non-trivial task, confounded by external factors such as lighting or even make-
up. Confirming a selected object is often performed using dwell, however this requires users to
fixate their gaze on a target longer than necessary [211]. There is also the same Midas touch
issue that pervades input techniques based on body input, with limited means of disengaging
gaze as input.

Vidal et al. leveraged the smooth pursuit eye movement for interaction in their seminal Pur-
suits technique [273]. By correlating the eye movements with on-screen targets for selection
users are able to spontaneously use eye trackers for interaction. Unlike previous work which
requires users to actively synchronise with the displayed motions using mouse movements, Pur-
suits leverages our innate ability to lock-on and follow moving targets with our eyes. Vidal et al.
go beyond variations of elliptical trajectories to demonstrate how motions can be integrated into
more natural trajectories based on naïve physics, e.g. following the motion of fish swimming or
flies flying. These can not only be used for explicit interaction such as purposefully following
an object for selection, but also for implicit interaction such as revealing which object a user
is looking at. Pursuits presents a major advantage over previous gaze techniques which require
accurate mapping between input and output space.

The scale-independence of the Pursuits approach was highlighted in Esteves et al.’s Orbits work
which used the Pursuits selection technique and applied it to smart-watches. Like Fekete et al.’s
oscillatory elliptical movements, Orbits consist of targets that orbit in a circular trajectory that
act as explicit controls for selection. Esteves et al. investigated how robust the technique was
against false positives and how user’s coped with selecting one target amongst many in dense
arrangements. In a first study using a remote eye tracker and laptop display they found that an
angular frequency of 120o/s combined with the largest trajectory size (2.36o of visual angle)
produced the highest recognition rate compared with angular frequencies of 60o/s and 240o/s.
They also found a significant effect of size on recognition rate, however their smallest orbit
(0.55o of visual angle) is approaching the manufacturer’s reported gaze estimation error of 0.4o.
In a follow-up study using a wearable eye tracker and smart watch, they found that the same
angular frequency of 120o/s achieved the highest recognition rates compared with 180o/s and
240o/s. They also investigated how many circular targets could be displayed simultaneously,
and discovered that users were able to accurately select a target from up to eight targets. Beyond
eight targets recognition rate dropped off due to inadvertent selections of incorrect targets.

These works have inspired a number of follow-up papers in the eye tracking community. Am-
biGaze demonstrated that the technique could be used with motion generated by mechanical
means in a distributed manner [271], text pursuits showed the use in public displays [131], and
Dhuliawala et al. demonstrated that electrooculography-based (EOG) glasses can be used with
the Pursuits technique, in spite of the fact EOG is unsuitable for gaze pointing [59].
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2.4.6 Touchlesss Gestures

Motion correlation with body movements presents unique challenges compared with smooth-
pursuit eye movements. We must consider how well users can synchronise their body move-
ments with external stimuli, including any errors introduced as a result of poor sensorimotor
synchronisation. To date, two pieces of work have investigated motion correlation with touch-
less gestures using hand movements. Carter et al. developed PathSync independently of, but
at the same time as Freeman et al. developed Do That, There. Both interaction techniques are
based on the premise of motion correlation using mid-air hand gestures, however they are aimed
at different and unique problems.

Do That, There is primarily aimed at addressing in-air gesture systems using a multimodal
feedback approach. Freeman et al. discuss the concept of using motion correlation for users
to direct input at specific input devices. The “Do That” element of the interaction technique
uses light animations to convey the required motion and tempo of the rhythm in which users
must synchronise with. They investigated the effect of including audio and haptic feedback of
when the user successfully matched their movements with the visual motion, and also the effect
of different hand movements, including:- side-to-side, up-and-down, forwards-and-backwards,
and both clockwise and anti-clockwise circular movements. The “There” element provided
feedback to users that they were in the gesture sensor’s sweet spot and could provide gestural
input to the system. For the “Do That” element they investigated the five different gesture types
using four different time intervals (the time to complete one cycle): 500, 700, 900, and 1100 ms.
The paper concludes with four distinct guidelines. Pertinent to this thesis, were the suggestions
to use line-based movements (i.e. vertical/horizontal) when possible, as opposed to 2D shapes,
and that gesture intervals should be at least 700 ms for line-based movements, and 900 ms for
circular gestures. In addition, they suggest that interactive light should be used to show where a
user should gesture (i.e. display the motion visually), and that uses should be provided feedback
about their movements.

It is important to note how time interval is defined for these gestures. In the case of the circle, it
is defined as being the time required to complete one full oscillation. In the case of line-based
movements, it is the time taken until stopping the movement (i.e. the interval for the hand to
return to its original position is twice this). Freeman et al. found that the higher time intervals
(i.e. slower gestures) resulted in higher success rates for all movement types, with side-to-side
and up-and-down achieving the highest success rates. At the 1100ms interval side-to-side and
up-and-down achieved 100% success rates, closely followed by the clockwise (98%) and anti-
clockwise (97%) circular movements. The circular movements were also found to be slower
for matching than other movements, with side-to-side found to be significantly quicker than
all other movements. The intervals selected for this experiment are much lower than previous
works [273, 69]. In “Do That, There” interval times were selected based on previously reported
rate limits of sensorimotor synchronisation by Repp [214] and van der Wel et al. [264]. However,
it is worth noting that [214] is concerned with finger tapping to an auditory or visual event,
and [264] involves the movement of a dowel from side-to-side in time with a metronome.

At the same time, Carter et al. implemented PathSync based on the motion correlation con-
cept for mid-air hand gestures enabling multi-user touchless and cursor-less interaction with
public screens [40]. PathSync investigated the use of motion correlation as a discrete selection
technique, demonstrating the discoverability, intuitiveness and multi-user capacity of motion-
matching for hand-based gestures. They examined how adept users are at matching different
shapes using closed-loop shapes that vary in two dimensions (i.e. x and y axes), and found
that the square and diamond shapes has higher success rates than the circle and rounded square
shapes. The authors suggest that this could be due to the corners of the square acting as salient
points for synchronisation, but no in-depth investigation was conducted. In a second follow-up
study, forty participants evaluated PathSync against the Press-to-select (PtS) method. The PtS
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method is commonly used for commercial gestural systems (e.g. the Xbox One Kinect ges-
ture interface) and involves mapping the user’s hand to an on-screen cursor (1:1). Selection
is achieved by extending the hand towards the screen in a “pressing” motion. The study in-
vestigated selection of one object amongst many, and found no significant differences between
error rate or time-to-select. Participants’ subjective opinions were also evenly split between the
techniques regarding ease-of-use, perceived speed, and frustration. In a third study, a simple
quiz game was deployed on two public displays over a 4-week period. Over this period 1065
sessions were recorded of users interacting with the system, demonstrating its discoverability,
intuitiveness and robustness.

Since the start of this thesis, several other approaches have been developed, some of which
inspired by the work featured here. Touchless gestures are not limited to large movements of
the arms, and a more discreet form of input are small movements of the hand known as micro-
gestures. In Rhythmic Micro-gestures Freeman et al. investigated how well users could perform
small micro-movements using the concept of motion correlation [82]. Using four micro-gestures
that could be robustly sensed by a Leap motion they found that rhythmic micro-gestures could be
performed with simple non-visual feedback by using audio cues, demonstrating that the concept
of motion correlation can be applied to eyes-free interaction mobile scenarios. SynchroWatch
demonstrates temporal-based motion correlation due to sensing constraints using a thumb-worn
ring equipped with magnet to synchronise with on-screen targets by tapping their thumb against
the index finger [216]. The principle of spatiotemporal motion correlation could be adapted
using spatiotemporal finger-based ring gestures, e.g. [301]. Whereas, SynchroWatch used a
magnet located in a ring to sense finger input from a smartwatch, WaveTrace used the in-built
inertial measurement unit (IMU) for detection of larger macro-movements of the arm [272]. By
comparing the pitch, yaw, and roll of the user’s wrist movements to on-screen circular targets,
WaveTrace demonstrated that the relative positioning of the IMU is sufficient for the matching
process. The same concept of using the IMU was also applied to a head-mounted displays in
order to detect head movements in an augmented reality application [70].

2.4.7 Beyond Selection

So far, we have discussed the use of motion correlation as a tool for selection, yet correlation of
two motions can be used for either implicit interaction, such as calibration, or explicit interaction
beyond selection using the parametric properties of motion. Previous work has demonstrated
that matching movements in the spatiotemporal domain yields additional information that can
be leveraged for implicit calibration of a user to an output device. For gaze interaction, one of
the unique properties of the Pursuits approach is that matching of input and output movements is
dependent upon relative movement. This removes one of the biggest barriers to interaction with
gaze – the requirement for calibration. In Pursuit Calibration, Pfeuffer et al. demonstrated that
not only can the Pursuits technique be used without calibration, but it can also be used for the
calibration process itself [199]. When a match is detected one assumes that the user was looking
at the motion generated, therefore any matches detected can be used to map the user’s gaze to
the display’s coordinate space. Once calibration has taken place, users can interact using gaze
pointing. Three applications demonstrated that calibration could be performed either explicitly,
combined with interaction, or performed implicitly without the user’s knowledge.

So far we have discussed synchronisation between the spatiotemporal properties of the output
display and user’s input. Previous works have also investigated how the synchronisation of
motion between multiple input devices, or between a user and an input device. By utilising
the parametric properties of movement, correlating two motions can be used for authentication,
device pairing, and extraction of user-device relationships.
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Pairing and Authentication

Many pairing techniques are based on one device presenting a secret that the user has to input
on the other. Patel et al. presented a variant where the user’s phone prompts a terminal to dis-
play a gesture, which the user has to reproduce with their phone in hand to authenticate it for
pairing [196]. Smart-Its Friends and Shake Well Before Use both utilise the motion correspon-
dence between two devices that are shaken together for device-pairing [107, 168]. The latter
extends the principle by utilising the properties of the motion whilst being shaken for generating
authenticated secret cryptographic keys. They demonstrate that the activity of shaking is vigor-
ous enough to not cause false positives, whilst also variable enough to cause different entropy
patterns required for generating secure cryptographic keys. Hinckley demonstrated that tablets
can be paired by synchronising their accelerometer data over a wireless network to detect when
they are bumped together [102]. When they are bumped together, the devices exhibit similar
sensor patterns, but with spikes in the opposite direction. Once paired, tablets can then be tiled
together to create a temporary larger display. More recently, Tap-to-Pair demonstrated that tap-
ping on a device’s wireless antenna drops the signal strength enough to be used as a pairing
mechanism [302]. A device to be paired advertises a distinct blinking pattern, and a secondary
device becomes paired upon detection of a user mimicking this blinking pattern by tapping on
the antenna, demonstrating the capability of using one-dimensional data for the matching pro-
cess.

User Identification

Identifying whom is interacting with a display can be problematic in multi-user interactive en-
vironments. Researchers have shown that identification of a user or specific body part can be
inferred by correlating a user’s input action from the system’s perspective (e.g. touch event)
with a user’s input action recorded from a different perspective (e.g. an internal sensor or wear-
able device). Schmidt et al. demonstrated this concept for cross-device interaction between
mobile phones and interactive surfaces, correlating the phone’s on-board IMU with a touch
event on a surface to facilitate data transfer, user-identified input and authentication on shared
surfaces [230, 232]. Other work has used the fusion of internal device sensors and visual fea-
tures to identify which devices belong to which users. ShakeID used the correlation between a
phone’s accelerometer sensor data and the user’s skeletal model acquired from a depth camera in
order to identify which phone belonged to which user [223]. CrossMotion demonstrated a more
generic sensing approach by tracking movement on a per-pixel basis using dense optical flow
and correlating the movement seen in the camera with the device’s IMU [291]. In both cases,
this demonstrated the additional contextual information that can be gathered by correlating user
movements with system inputs. Webb et al. go beyond identifying users to identifying which
body parts are used to interact with an interactive surface based on Guiard-abiding bimanual
touch [283]. By using wearables, such as a wrist-band or a ring, the system identifies which
hand is interacting with the display, providing the contextual information to create interactions
that leverage the complementary nature of hands when performing bimanual interaction [93].
In all of these cases, the correlation between multiple perspectives of the user’s inputs provides
rich information to augment the interaction and provide additional capabilities.

2.5 Touchless Sensing Techniques

Whether detecting intricate hand movements or whole body poses, sensing human body move-
ments is a non-trivial task. The sensing techniques used are largely dependent on the type of
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gesture to be sensed and consist mainly of two stages: detection, and tracking (spatial) or recog-
nition (semantic). In the first stage, the body part(s) are detected and segmented to isolate the
gesture-relevant data. Then, for pointing gestures the desired body part must be tracked over
multiple frames to generate a time series of the body part in question which can be spatially
mapped to the on-screen control. If the detection stage of the algorithm is robust and quick
enough, then it may be used on a frame-by-frame basis, however it is quite common to use a
more sophisticated detection algorithm followed by a lightweight tracking algorithm that utilises
a priori information. On the other hand, detecting semantic gestures involves extracting informa-
tion about which gesture the user is performing based on the characteristics of the detected body
part(s) (e.g. pose, trajectory), which must be subsequently classified based on the pre-defined
mappings between gestures and commands.

In order to sense the users body movements in the detection phase there are two main ap-
proaches: contact-based and remote sensing. Contact-based sensing requires a physical inter-
face between the user and sensing device, and include technologies which use sensors attached
to the body, such as gloves, body-suits, or a smart watch. Contact-based approaches are often
considered more accurate but can be uncomfortable for prolonged periods and may necessitate
installation and coupling with external devices which can reduce spontaneity of interactions. In
contrast, remote sensing techniques detect and analyse body movement with no physical inter-
mediary between the user and input device. Camera-based technologies using visible or infrared
light are amongst the most prolific of these technologies and use computer vision algorithms
to detect, segment and recognise user movements. Remote sensing approaches allow for more
spontaneous interactions, but can suffer from the occlusion problem, whereby the gesturing
body-part may be hidden from view.

2.5.1 Contact-based Techniques

Some of the initial pioneering work on touchless interaction using the hands was realised using
instrumented gloves. As early as 1977, Sandin, DeFanti and Sayre created a wired data glove
that utilised photo cells to detect and measure finger flexion [256]. In 1987, Zimmerman et al.
developed the DataGlove, which at the time far exceeded camera-based technology and provided
real-time monitoring of the hand with six degrees of freedom [306]. Commercialisation of the
DataGlove led to numerous research institutions acquiring the technology and pushing the field
of gesture recognition forward. Baudel and Beaudouin-Lafon’s seminal Charade system used the
DataGlove to combine spatial and semantic gestures, achieving recognition rates of up to 98%
for trained users (70-80% for untrained users) [15]. Whereas contact-based gloves offer the
most complete representation of the human hand, they are expensive and not suited for casual
interactions. They require complex calibration and setup procedures and are limited to sensing
the hand movements of the user wearing the gloves.

Saponas et al. demonstrated that electromyography (EMG) can be used to classify different
gestures by sensing muscular activity in the forearm [228]. Similarly, Dementyev and Paradiso
used force sensitive resistors to detect subtle tendon movements in the wrist, also highlighting
that additional information from an accelerometer improved classification results [57]. Inertial
measurement units consisting of accelerometers, gyroscopes and magnetometers can be found
in a number of commercially available devices. Researchers have investigated how these in-built
sensors can be used for gesture detection in devices including the Wii remote [6, 149, 229] and
smartwatch [203, 23, 285, 258]. These sensors are also used to detect head movements in head-
mounted displays for both augmented and virtual reality environments, and eyewear devices
such as Google Glass [176, 300, 47, 71, 116].
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2.5.2 Remote Sensing Techniques

Camera-based technologies sense user movement at a distance using computer vision tech-
niques. A single device has the capability to sense multiple users and is not just limited to sensing
a specific body part. Krueger’s VideoPlace was one of the first works to use real-time image pro-
cessing to create a silhouette of the user, demonstrating the potential of camera-based approaches
for gestural interaction [138]. There are two broad categories of approaches in the computer vi-
sion field for detecting the user for gesture recognition: model-based and appearance-based [86].

Model-Based

In the model-based approach the aim is to recover the pose of the user, or of a specific body
part such as the hand, based on knowledge of it’s structure. This effectively bridges the gap be-
tween computer vision approaches and glove-based approaches by recovering the full kinematic
structure of the user’s hand or whole body. The introduction of depth sensors has advanced the
development of 3D-model based approaches by leveraging the additional depth data. Both the
Microsoft Kinect and the Leap Motion recover 3D-models of the user’s body and hands respec-
tively, and have resulted in popular commercial offerings as consumer devices. Developments
in the 3D-model based approaches can also be attributed to developments in the field of machine
learning and artificial intelligence. Shotton et al.’s machine learning based approach was one
of the first to accurately extract skeletal representation of users using the Kinect, trained using
900,000 images [243].

Despite the advantages of the extra depth dimension, it is relatively uncommon to find depth
sensors in the wild. In contrast, 2D cameras are inexpensive and abundant in commercial devices
such as mobile phones and laptops. Machine learning has evolved, with deep learning paving
the way for recovery of skeletal information from web cameras [284, 245, 39, 38]. However,
machine learning depends on high quality training data for the models, even more so in the case
of deep learning where very large training sets are required. The size of the training data is
also important for the generalisability of the models, so that they can detect or recognise a wide
range of objects under varying conditions. Another downside at the current state-of-the-art are
that these techniques are computationally expensive and require high-end graphics processing
units to achieve real-time performance.

Appearance-Based

Appearance-based approaches represent users in terms of colour, shape, or the motion of their
movements without an explicit underlying model. Gestures are inferred through the analy-
sis of these features as they appear in images without an intermediate modelling stage of the
user. Colour-based approaches look for colours in the image that match the user’s skin colour,
and assume that these correspond to the areas of interest that will be used for gesture recogni-
tion [261]. However, skin colour varies across human races and external factors such as illumi-
nation changes or shadows are problematic. Some vision-based techniques use fiducial markers
to help in the detection, such as QR codes or reflective IR beacons [192]. An alternative is to
look for the shape of the body part to be matched in the scene [20]. In the case of the hands
this avoids issues with illumination and skin colour, however there may be issues detecting the
correct contour with respect to background objects and issues with occlusion and view points.

Original work using motion assumed only the user’s hand occurred in the scene of the cam-
era [83]. For gestures involving spatial motion, such as pointing or tracing of alphanumeric
symbols, it is common to segment the body part and then track it in subsequent frames. If the
detection algorithm can be run on a per-frame basis then it can be used for all frames, but if this is
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not possible then a tracking algorithm is used to track the body part from frame to frame [210].
Tracking algorithms can be split into four main categories: template-based such as discrimi-
native correlation filters [154], optimal estimation approaches such as the Kalman filter [126],
Monte Carlo based methods such as the particle filter [112], or mode-seeking algorithms such as
CamShift [298]. These approaches are highly dependent on the quality of the initial segmenta-
tion of the body part. Alternatively, an approach that has been adopted for action recognition is
to utilise the motion trajectories of users, in the form of spatiotemporal features, to classify dif-
ferent types of user action [142, 155, 281]. These approaches do not look for the user per se, but
instead classify actions based on the motions observed in the scene. Motion-based approaches
can overcome the issue of when the hand is holding an object. Whereas other techniques rely
on the hand being detected, and thus may struggle when an object is being held or if the object
occludes the hand completely from the camera.

Beyond the Visible Spectrum

Remote sensing techniques are dominated by vision-based techniques, however there are other
sensing techniques that use other parts of the electromagnetic spectrum. Most commonly the
visual and infrared wavelengths are used, however there are technologies that use wavelengths
in the gigahertz spectrum, such as WiSee which uses the Wi-Fi signal to detect gestures [206], or
extremely high frequency wavelengths such as those used by Google’s Soli sensor [147]. Wi-Fi
signals are not very accurate, and Google’s Soli sensor is a radar based approach that relies on
close proximity to the device.

2.5.3 Gesture Recognition

For semantic gestures, a gesture recogniser is used to interpret the semantic meaning of the
body part’s location, pose, or posture, irrespective of the underlying technology used for detec-
tion. Recognising gestures is non-trivial due to differences in user characteristics and behaviour
which is not fixed, is often context-dependent, evolves over time, and differs between users.
Recognition algorithms vary depending on the type of gesture to be detected (static vs dynamic)
and on the underlying detection techniques. For static gestures, input to a recogniser could in-
clude the pose, orientation, relative position, and any other additional context, whereas dynamic
gestures would also include temporal properties such as trajectory and velocity.

For static gestures, it is common to use general classifiers or template-based matching [210].
Clustering techniques are often used to classify gestures based on their input features. Common
techniques include k-means [79], k-nearest neighbour [51], mean-shift [46], or support vector
machines [53]. The selection of which algorithm may depend on the knowledge of how many
gestures (i.e. clusters) are to be detected, and the amount of training data available. Recognising
dynamic semantic gestures also requires the algorithm to take into account the temporal aspect
of the gesture. Hidden Markov Models (HMM) are one of the most popular techniques because
they contain an implicit solution to the gesture spotting problem (see Section 2.2.1). HMMs
are finite-state automata where each state can have more than one transition arc. In the context
of gesture recognition each HMM represents a gesture and the HMM with the highest forward
probably determines the most likely gesture present [210]. Artificial neural networks were one of
the first techniques to be used for gesture recognition [181], and the more recent deep learning-
based neural networks have proved highly successful in image processing tasks including gesture
recognition [195]. A single network can be trained to recognise many gestures and achieve high
accuracy given sufficient training data, however, selection of the network model can be non-
trivial and problems of over-fitting to the training data whereby the network does not accurately
classify gestures outside the training set.
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Due to the unique properties of motion correlation, gesture recognition algorithms can be much
simpler than their semantic based counterparts, because only the motion path need be consid-
ered. Williamson and Murray-Smith first used a probabilistic method based on the variance of
both the object position, and of input control combined with the object position [289]. Fekete
et al. instead viewed the matching function as a similarity-based problem between two trajec-
tories, and utilised a normalised Euclidean distance over a window of two seconds [73]. Work
on motion correlation with smooth pursuits eye movements followed suit, and the most com-
monly used algorithm was the Pearson product-moment correlation. This has the advantage of
being scale invariant as the trajectories to be matched do not need to be in the same coordinate
space [273, 69]. Pursuits used the Pearson product-moment correlation to calculate the correla-
tion between the x and y-axis independently [273]. If the lower of these correlation coefficients
is greater than a defined threshold then the trajectories are considered to be a match.

In PathSync, Carter et al. investigated the use of different shapes for matching against and dis-
covered a fundamental issue with the Pearson correlation coefficient used in earlier work [40].
When the coordinates of the user’s movement or the target remain constant (e.g. when following
a square), the standard deviation of the movement equals zero and the resultant coefficient is
thus invalid. To compensate for this, they propose to rotate the data using principal component
analysis (PCA) such that variation is maximised along both axes. They also propose two addi-
tional modifications for detection, the first is a bi-level threshold in which the required threshold
is higher for the initial activation, but to deactivate the threshold must drop below a more relaxed
threshold. The second modification was to only “select” an option if the target had been acti-
vated for more than one second (i.e. coefficient must remain above threshold for one second).
They also only perform the matching process if the hands are raised (i.e. in the active zone of
the sensor).

2.6 Application Areas

Touchless input expands interaction to where direct touch is not possible (out-of-reach), practi-
cal (hands occupied), desirable (hygiene), or safe (hazardous environments). In this thesis we
specifically consider TV control as a context for touchless interaction. TV control, and more
generally smart home interactions, provides a challenging context for interaction design where
users tend to act spontaneously and upon impulse. Research has highlighted how users desire
instant control “right now” with minimal action, and “right here” without having to go out of
their ways [134]. A study estimated that in 2010 most British households had 4 or more remote
controls in their living room [150], increasing the complexity of otherwise trivial tasks such as
changing TV channels or dimming the lights [134]. Freeman and Weissman were first to explore
the idea of controlling a television using hand gestures over 20 years ago [83], observing fatigue
issues now often referred to as “gorilla arm" [97, 101]. Due to increased connectivity and techno-
logical advances, smart TVs now offer viewers more services than ever, ranging from electronic
programming guides to in-built web browsing. More recent research on the topic has largely fo-
cussed on library-based gestural techniques [45, 111, 118] and highlighted issues with learning
and remembering of gestures and gesture-to-function mappings [266]. More generally there is
a wide range of works on universal remote control devices, including switchable [307], person-
alisable [99], spatially-aware [18, 290, 231] and smartphone-based remote controls [220, 58].

Touchless gestures have also been adopted for entertainment purposes. The Playstation Eye-
Toy was the first digital camera device created specifically for touchless gesture recognition,
however this was eclipsed by the Nintendo Wii which revolutionised gaming with its innovative
motion controls, allowing users to control an avatar in a game using only their body move-
ments. Microsoft’s response to the Wii, the Kinect, became the fastest selling gaming peripheral
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ever [212]. The Kinect leveraged depth sensing technology to remove the need for physical con-
trollers, however it failed to make a big impact in the gaming world. Beyond console gaming
the Kinect found niche applications in a number of application spaces, including virtual reality
(VR). The Kinect and other body tracking devices allow users to fully immerse and interact in
their virtual world using gestures or through body movements [41]. These techniques naturally
extend to the augmented reality and smart glass domain, allowing users to interact with virtual
objects or issue commands using free-hand gestures [144, 177, 201, 109]. In addition to hand
and body gestures, the requirement for users to wear a head-mounted display in mixed reality
environments has led to research into head gestures as input [8, 303, 70, 140].

Touchless gestures are suited to a wide range of applications beyond the home. Large displays
raise specific challenges for interaction, because even if a user is close enough to directly ma-
nipulate the interface, there will be portions of the displays that are beyond arm’s reach or out of
view [26]. In addition, some interactive tasks are more suited to be performed at a distance, such
as arranging photos on a large canvas or navigating a large document [276]. Touchless input
enables multiple users to provide input seamlessly without having to acquire remote controls,
suitable when multiple users collaborate. Another application domain with multiple users are
public displays which are increasingly becoming interactive, and face similar challenges to large
displays. They may be out-of-reach of users due to either logistical or security reasons, and it
may be desirable for interaction to avoid direct touch for hygienic reasons [279]. Interaction
with public displays may be transient, thus the primary concern of input modality lies with im-
mediate usability because it has been shown users will often give up if they do not immediately
success in interacting [160].

Building on hygienic issues, touchless input has also been investigated for use in domains that
require strict adherence to hygiene protocols, such as surgery operating rooms (see Mewes et
al. for a literature review on touchless interaction in interventional radiology and surgery [174]).
Operating rooms present challenging conditions from a human-computer interaction perspective
due to limited space, tight time constraints, and the need to maintain asepsis. Mice and keyboards
are a breeding ground for bacteria and are a common method of spreading infections in intensive
care units [234]. Sterile covers can be used to facilitate use of direct interaction devices (e.g.
mouse, touchscreen), however these can not be used in-situ at the surgical site and it is common
to delegate interaction tasks to other members of the surgical team [172, 119]. Since Graetzel et
al.’s early work on mimicking standard mouse functions using hand gestures [91], more bespoke
gesture-based systems have been proposed in the surgical domain using both hand and head as
input, e.g. [277, 253, 260, 65, 191].

Touchless gestures also have implications for improving safety in the automotive industry. Read-
ing and interacting with infotainment screens and satellite navigation systems contributes to
driver distraction, which is one of the biggest causes of accidents on the road [257, 1]. Touch-
less gestures have the potential to improve safety by reducing visual demand and cognitive
workload by enabling eyes-free input [123, 165, 239, 100]. Beyond the research domain, a basic
vocabulary of touchless gestures can be found in BMW’s luxurious 7 series range of cars [173].

2.7 Conclusion

In this section we have discussed touchless bodily interaction as natural input to computing sys-
tems for a number of applications. We have discussed existing gestural techniques and their
limitations relating to the Midas touch, gesture mapping, discoverability, and memorability. The
use of motion correlation addresses these issues: rather than the user learning discrete gestures
they are interactively guided to synchronise with a displayed motion. Previous work has shown
key insights about motion correlation which make it a compelling candidate for touchless ges-
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tures and demonstrates how it alleviates some of the limitations of existing touchless gesture
models:

• Generic interaction principle. Motion correlation is not tied to any particular input method
or application. At the core of motion correlation is motion – a universal property which
can be generated and expressed using any part of the body, from small eye movements [273,
69, 271], to larger hand movements [287, 73, 40, 81], previous work has shown they are
all adept at providing matching motion to a target stimuli. In Chapter 3 we demonstrate
how motion can be used as the primary sensing input to enable flexible input.

• Enabling interaction with input devices not suited for pointing. Motion correlation re-
quires the sensing of motion and can be used for devices which may not be suitable for
pointing [289], or in cases where a user is not in a comfortable position to point. The
TraceMatch system introduced in Chapter 3 demonstrates how any type of movement can
be used for posture-agnostic input, irrespective of whether or not the user is in a suitable
position for pointing.

• Does not require a tight coupling between input and output devices. Only relative posi-
tions of target and user movement are required to determine if a match exists [69]. De-
termining a match does not rely on absolute mappings or prior calibration between input
and output devices [273]. In Chapter 4, we show how the lack of tight coupling can be
leveraged for defining spatial input on a per-interaction basis.

• High discoverability and self-revealing. All possible actions that are available to the user
are revealed through the motions displayed on screen, resulting in highly discoverable
interfaces, and removing the need to learn or recall pre-defined gestures [40].

• Re-use of the same gesture shape. Motion correlation relies on both spatial and temporal
properties of the gesture, therefore the same shape can be re-used by varying the properties
of the target’s motion, including the speed, phase, and direction of the motion [73]. As
user’s are guided through the process, these properties become a distinct property of the
motion space meaning a simplified gesture vocabulary can be used for an interface. In
Chapter 5 we investigate four simple shapes for use with motion correlation. Such a
limited gesture set is enabled by the ability to re-use the same shape.

• High density targets. For motion correlation, a minimum amount of space is required for
the user to perceive the motion, however within this multiple target icons can be co-located
as long as they have unique trajectories [69]. In contrast, cursor-based interaction requires
space on a per-target basis for disambiguation due to the inaccuracies in pointing.

Previous work on motion correlation with smooth pursuit eye movements has provided insights
into the number of simultaneous targets that can be selected by users. In Chapter 3, we in-
vestigate how efficient different body parts are at selecting one target amongst many shown
simultaneously. Previous work with hand gestures for motion correlation showed a wide range
of shapes can be used to synchronise with, and offer insights into timing of gestures, which
we further explore in Chapter 5. We note the absence of any work providing interactive control
beyond discrete selection with motion correlation techniques, which we investigate in Chapter 4.
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We begin by addressing the first research question - can movement be used as the primary sens-
ing principle for interaction? At the heart of motion correlation is motion - a universal property
that can be expressed by any body part. Previous motion correlation systems have relied on
dedicated hardware for tracking of hand movements [40], eye gaze [273, 69], and movement
produced with mouse [73], or trackpad [289]. However, the use of dedicated input devices con-
strains deployment of the technique and limits the ways in which users can mimic a displayed
motion. In this Chapter, we present Tracematch, a vision-based system which uses motion as
input. The system requires only a general-purpose camera and does not assume any particular
distance or posture of the user. By leveraging the spatiotemporal properties of motion correla-
tion, we search for the motion in a scene under the basic assumption that any movement that
correlates with displayed motion must have been a result of the user. The principal motivation
for TraceMatch is to enable users to select a displayed control with minimal effort (a small cir-
cular movement) and maximum flexibility (freedom to perform the movement in ways that are
convenient in any given situation).

The principle behind the technique is shown in Figure 3.1: a control is presented to the user
as a circular widget with an orbiting target, and the user can trigger input by performing any
movement in synchrony with the displayed motion. What distinguishes TraceMatch as a remote
input technique is the use of uniform movement that is highly appropriable. The central premise
of the technique is abstraction from the different ways in which users might want to produce
input. It relies on a single form of rhythmic motion, but users can perform such movement with

Figure 3.1: TraceMatch provides a uniform means of remote control that users can appropriate
flexibly: (a) Controls are displayed as orbiting widgets; (b) Users simply mimic the motion of a
control to trigger input; (c) Users can use any part of their body for input, for example their head if
their hands are occupied; (d) Users can gesture input with a hand without having to put down any
object they might be holding.
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Figure 3.2: TraceMatch is a generic sensing technique for input by tracing: (A) A device displays
a control as moving target; (B) The user selects the control by following the displayed motion with
any part of their body; (C) A webcam serves as generic input device; (D) TraceMatch analyses the
scene video for matching motion and triggers input accordingly.

different parts of their body without needing to pick up any device or put down any objects
they might already be holding. This raises the question of how effective users are in producing
input with different parts of their body and under different conditions, and what their preferences
and spontaneous choices are. The other defining property of TraceMatch is that it uses circular
motion.

Esteves et al. introduced Orbits as a new type of widget that displays input options as small
targets orbiting the widget on a circular path [69]. Although originally designed for input by
gaze, Orbits are equally compelling for gestural interaction. It is a motion we would not expect
to be produced accidentally (thus avoiding the Midas touch effect) and that provides uniformity
across the different ways of performing movement. Their circular design gives them a consistent
button-like appearance for display, while different input options can be encoded in the direction,
phase and speed of the orbiting targets. Prior work has also provided inspiring designs of con-
trols displaying circular motion [69, 271]. However, circular motion limits variation of input,
prompting questions of how reliably users are able to select one among multiple orbiting targets
that vary in direction, phase and speed of movement, and how many targets can be presented at
the same time without degrading input performance.

TraceMatch is a generic technique that lends itself to deployment in wide-ranging contexts, for
input to any type of device that can display controls in animated form. However, our work is
specifically motivated to provide users with ‘lazy’ input options that require minimal effort for
mundane tasks, such as controlling a Smart TV or ambient lighting while lounging on a couch
(e.g. selecting one from N, where N < 10). In such a situation the user might lean on one hand
and hold a cup in their other, but they should nonetheless be able to provide input – for example
by tracing the displayed motion with their head, or with their hand without having to put the cup
down. Hence, we do not assume any specific posture of the user, or preference for producing
gestures, but capture the entire video scene and analyse it for occurrence of any motion that
matches a displayed control.

In this chapter, we address RQ1.1 (Is it feasible to harness movement as the primary sensing
principle using motion correlation to allow users to provide input more flexibly?) by presenting
the system implementation of TraceMatch, and an evaluation of how different parameters affect
the system’s sensitivity for detecting input for different target sizes and speeds while avoiding
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unintended activation. The evaluation is based on a data collection with five users, where they
followed the motion of orbiting targets in a variety of ways (with their head, dominant hand,
non-dominant hand, and while holding a pen or a cup), demonstrating the flexibility afforded by
the technique. We post-process the data collected to ensure that user behaviour was independent
of any particular detection method, however this motivates questions of how users respond to
the system in an interactive setting. To address RQ1.2 (How effective are users at providing
input using different body parts, or when holding objects, to generate the required motion?) and
RQ1.3 (How do users provide input spontaneously when given the opportunity to interact with
different body parts and objects?), we present three studies that shed light on these questions and
provide insight into user performance and preference, and support of ‘multiple choice’ tasks,
in the context of remote control of a television (see Fig. 3.2). The first study is a controlled
experiment in which we assess users’ performance for selection of one among multiple presented
Orbits with different body movements, and while holding objects. The study shows that users
are effective with the technique when using different body parts, or whilst holding objects, and
gives insight into effects of movement condition, speed of displayed motion, and number of
simultaneously presented targets on input performance. The second study engages users with
two interactive TV application prototypes with Orbits embedded for control, to gain insight into
spontaneous choice of movements in realistic application contexts. The third study explored
Orbit variants that integrate multiple targets in one widget for more expressive input, and probe
into the use of direction, colour and speed to convey and provide multiple input options in a
single Orbit.

In sum, the contributions of this chapter are:

• TraceMatch – a system which uses computer vision techniques to accept input with any
technique;

• An initial optimisation of system parameters for TraceMatch, based on maximising detec-
tion of matching motions whilst minimising accidental motion;

• A validation of TraceMatch, showing that users are effective at selecting input by syn-
chronising with displayed motion using different types of movement;

• Insight into how different ways of performing matching motion, with head, hand, or while
holding objects, affect performance, and into preferences and spontaneous choices of dif-
ferent body movements for input;

• An exploration of ways in which the technique can be extended from binary selection to
multi-level input displayed within one orbiting widget;

3.1 System Design

TraceMatch analyses a scene in two main stages (see Figures 3.3 and 3.4). The first stage in-
volves extracting motion from the scene using image processing techniques. It is ‘generous’ and
considers any motion in the scene as potential input. We do not segment the user, hands or other
body parts but track movement of any feature. For example, the user can hold an object while
they perform a hand gesture, or perform the gesture with an object. The second stage matches
the observed motion against the movement of any control displayed, using a combination of path
correlation and model-fitting. As an interactive system, the primary requirement of algorithms
for the TraceMatch system was the capability of real-time performance. Secondarily, we min-
imise computational expense where possible, and aim for a CPU-only based implementation so
that the system can be run on the widest range of devices (e.g. laptops, tablets). Where possible,
we choose algorithms that are publicly available from the OpenCV computer vision library 1,

1OpenCV: https://opencv.org/
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Figure 3.3: Processing pipeline of the TraceMatch system.

however we acknowledge that performance increases may be gained from using state-of-the-art
algorithms from the computer vision research field.

3.1.1 Image Processing

We first convert the images captured by the camera to gray scale for feature and optical flow pro-
cessing and smooth them by applying a 5×5 Gaussian kernel to reduce image noise. After pre-
processing, we use the FAST corner feature detector to find points of interest in the scene [224].
A feature is a small point of interest which exhibits variation in two dimensions, such as a corner
of a real-world object or a small patch of texture. For the proposed system the users may not
always be in the same position therefore it is important that the feature detector is capable of
detecting real-world spatial features from different camera perspectives, e.g. if we detect the
arm of a user in one position we would expect to detect it in another. FAST is a fast, repeatable
corner feature detector that exhibits little loss of efficiency and was designed for use in real-time
video applications. FAST uses machine learning to classify whether an image patch is a corner
or not before applying non-maximal suppression to further remove non-corners. FAST is not
immune to high levels of noise and is also dependent on a threshold, which can be set to balance
number of features detected in a scene versus processing time. There must be a balance struck
between the number of features and the processing time, as the goal is for the system to run in
real-time whist extracting sufficient features to match any potential motions from the user. We
use a threshold of 20 for the difference between intensity of the central pixel and pixels of a
circle around the centre.

In addition to FAST, we also considered other feature detectors from the OpenCV library, includ-
ing SIFT, SURF, ORB, Good Features to Track, Kaze, and Brisk. Despite their accuracy, SIFT
and SURF are patented algorithms which were too computationally expensive for our purpose.
Initial testing demonstrated FAST to be optimal in terms of the number of features generated,
their accuracy and the computational cost to do so. This was not formally tested, and it may be
possible that other detectors work better under different conditions (e.g. in specific environments
or with specific textures).

For each feature point we must track its position over a window of frames, W , and keep a
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Figure 3.4: The stages of TraceMatch for matching the motion of an Orbit using a mobile phone.
Left: Features (blue) are detected using the FAST feature detector. Centre: Moving features (green)
are compared with the motion of an Orbit using the Pearson correlation. Right: The first feature to
be matched is shown with its trajectory (green) and a fitted circle (red) found using RANSAC with
inlier thresholds (blue).

history of its previous positions. In a visual scene the optical flow is the apparent motion of
objects caused by an object’s, i.e. the user, movement relative to the observer, i.e. the camera.
Reapplying the FAST feature detector may detect the same features once they have moved,
however it is unable to relate the newly detected features to the previously detected. There are
two main types of optical flow algorithms - sparse optical flow, e.g. Lucas-Kanade [152] and
dense optical flow, e.g. Farneback [72]. Dense optical flow techniques calculate the optical flow
for each pixel, whereas sparse optical flow only calculates the optical flow for a subset of the
pixels, e.g. detected features. For TraceMatch we use sparse optical flow because it is faster and
more computationally efficient than the more accurate dense optical flow algorithm. We use the
iterative pyramidal implementation [31] of the Lucas-Kanade optical flow method [152] to track
features across image frames using a maximum of 3 pyramid levels and optical flow window
size of 51× 51. The Lucas-Kanade tracker is used to find a feature in all subsequent frames
until it is not found, either because the feature is no longer in the scene or due to an error. We
also continue to apply the FAST feature detector to every frame, in case an object we want to
track enters the scene. Duplicate features may be present due to multiple detections of the FAST
feature detector, therefore we discard new features if they fall within a 20×20px area of another
existing feature.

After optical flow has been performed there may be hundreds of features points for a scene,
however many of these points may relate to stationary objects. In order to reduce downstream
processing we record the average displacement of each feature point. Only those features that
have a minimum average displacement of 0.5px and have been tracked for at least W frames are
passed to the motion matching algorithms to detect if the motion matches with that of the rotary
widget(s).

3.1.2 Motion Matching

The first step of the motion matching process is to assess the similarity between the candi-
date features and each orbiting target using the Pearson product-moment correlation coefficient
(PCC). The PCC is calculated using the trajectories of the feature and rotary widget over a win-
dow of size W for the x axis, corrx, and y axis, corry, separately. The Pearson product-moment
correlation coefficient returns a value between −1 and 1. A positive value indicates a positive
correlation, a negative value indicates a negative correlation, and the magnitude indicates the
strength of the correlation. The Pearson correlation coefficient, rxy, is defined as:

rp(A,B) =
∑

n
i=1(ai− ā)(bi− b̄)√

∑
n
i=1(ai− ā)2

√
∑

n
i=1(bi− b̄)2

(3.1)
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Where a and b are one-dimensional time-series of length n with paired values, ā is the mean
value of a, and b̄ is the mean value of b. If the minimum of the horizontal and vertical, coeffi-
cients are above a minimum threshold, thcorr, then the feature is classed as a potential match and
is passed to the next stage of the system.

Related work relied solely on PCC for motion matching [40, 69, 273], however the PCC is
calculated independently for each axis which means that the circular motion of a control can
be matched by elliptical and, in the extreme, up-and-down or side-to-side movement. If corrx

and corry are greater than a minimum threshold, thcorr, the feature’s trajectory is fitted to a
circle using a simple version of Random Sampling Consensus (RANSAC) to further refine the
matching [74]. The centre of a circle can be found using only three points which are chosen
randomly from the feature’s trajectory (i.e. from the W points tracked within a window). Given
three points, A, B, and C, the centre of the circle can be found by finding the intersection of
the two lines perpendicular to, and passing through the midpoints of, the lines AB and BC. The
centre of the circle, c, can then be found as follows:

cx =
mABmBC(Ay−Cy)+mBC(Ax +Bx)−mAB(Bx +Cx)

2(mBC−mAB)
(3.2)

cy =−
1

mAB

(
cx−

Ax +Bx

2

)
+

Ay +By

2
(3.3)

where mAB is the gradient of AB and mBC is the gradient of BC. The radius of the circle, r, is
then calculated by taking the average Euclidean distance of points A, B and C to the centre of
the circle. The Euclidean distance to the centre of the circle is calculated for each point in the
window to assess if the feature’s trajectory is circular. A data point is classed as an inlier if:

(1− thin)r < di < (1+ thin)r (3.4)

where di is the Euclidean distance from the data point to the centre of the circle, and thin is the
inlier threshold which should satisfy 0 < thin < 1. If at least 98% of the points on the feature’s
trajectory are classed as inliers, the trajectory is classed as circular. For smaller window sizes
the 98% threshold will not affect the result as effectively 100% will be required, however for
larger window sizes we allow for some anomalous data points (upto 2%). If there are insufficient
inliers another three points are randomly selected and another circle is fitted. This continues until
sufficient inliers are found or 20 iterations have elapsed.

Once we have ascertained that the data points from the image feature’s window form a circle
we need to assess if the arc length of the image feature’s trajectory matches that of the rotary
widget, i.e. if the rotary widget has completed half a circle then the image feature should have
also. When calculating the arc length of the rotary widget from a practical perspective it is
important to consider the frames per second (fps) of the camera. The arc length is a function of
the speed of the rotary widget, the size of the window and the fps of the system. If the rotary
widget has a frequency of f Hz, the camera is capturing images at N fps with a window of W
then then arc length of the rotary widget, aRW , is defined as:

aRW =
W
f N

(3.5)

We compare the arc length of the image feature’s trajectory, aF , with the arc length of the rotary
widget’s trajectory, aRC, where aF is defined by:

aF =
W−1

∑
i=1

abs(θi−θi+1).r (3.6)
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where θi is the angle between the ith data point and the centre of the circle. The motions of the
feature and the rotary widget are matched if aF falls in the range aRC±0.1.

3.2 Parameter Optimisation

The first study we conducted was used to optimise the system parameters, and provide initial
insights into the effectiveness of TraceMatch as an input technique. Our objective was to opti-
mise the system’s sensitivity and its robustness to accidental motion matching. Our method was
to collect data from users following an orbiting target under different conditions (true positive
dataset), as well as a data set representing viewing and browsing activity without intent to trigger
any target (false positive dataset). The recordings are then post-processed with different param-
eter combinations to measure how many times the algorithm determined a successful match for
both true and false positive datasets.

3.2.1 Participants

Five participants (3M/2F) aged between 23 and 32 years (mean=26.6) were selected to take part
in the study. Four participants were right-handed, one was was left-handed, and none of the
users had previous experience with the system. We chose five participants to limit the amount
of post-processing required. A larger participant number may have provided more generalis-
able parameters, however our aim was to acquire indicative parameters of the system for later
analyses with a larger number of participants.

3.2.2 Apparatus

The study setup was designed to represent a living room scenario, with a 55" Smart TV and
a couch placed 2.23m from the TV (based on a TV size to viewing distance calculator). An
unmodified, off-the-shelf Logitech C920 web camera was mounted on the top of the TV. The
Logitech C920 is capable of capturing 1080p (1920× 1080) at 30fps, however we took a 640
x 480 region of interest in the centre of the image to control that only movement related to the
simulated application setting was captured. As the data collection took place in a busy lab, a
white screen was placed behind the couch to occlude the experiment.

3.2.3 Procedure

The data collection consists of two main parts: one for assessing how well the system can match
a user’s motion to the target’s, and the other to assess how well the system rejects accidental
motion. We then post-process the recordings and vary the parameters of the detection algorithm.
We select the window size, W , according to the desired arc length. The system parameters were
varied as follows:

• PCC threshold (thcorr) The threshold of the minimum value for the horizontal PCC,
corrx, and vertical PCC, corry. The lower the value the more features are passed to the
circle fitting stage of the system. [0.86, 0.89, 0.92, 0.95, 0.98]

• Inlier threshold (thin) The threshold which determines whether a data point is classed as
an inlier or an outlier. The lower the value the closer the motion must be to a circle for it
to be counted as a match. [0.05, 0.10, 0.15, 0.20]

• Arc length (a) The arc length of the rotary widget that must be matched, i.e. 0.5 indicates
the user must follow the rotary widget for half a rotation. [0.5, 0.75, 1.0]

35



3. TraceMatch: Providing Input with Any Motion

Target Following

In order to assess the sensitivity of the system, users were tasked with following an orbiting
widget displayed in the centre of the TV screen with five different methods of input: head,
dominant hand, non-dominant hand, with a pen in hand, and with a cup half filled with water in
the hand. The pen and cup were chosen as common objects that a user might hold in an everyday
situation. We use two blocks of testing to form a balanced Latin Square in order to minimize
carrying over effects among conditions.

In order to evaluate the system we varied the direction, size and orbital period of the orbiting
widgets. Based on prior work [81] we use a minimum orbital period of 1 s, and we also look
at slower moving targets as used in [40]. In principle, the size of the displayed target need
not influence the size of movement the user performs. Previous work has illustrated that the
position of the target on the screen may influence the position performs their movement [40].
We vary the size of the target to validate it does not have an effect on the system’s ability to
detect a match. As a reference, the Kinect for Windows human interface guide recommends a
minimum size of 220 pixels for push-to-select buttons (i.e. buttons selected using cursor-based
interaction) [175]. In total there were 24 different orbiting widgets presented to the user for each
movement condition:

• Orbital period (t) The time taken to complete one cycle of the orbiting widget. [1, 2, 4 s]

• Radius (r) The radius of the motion of the orbiting target. [25, 50, 100, 450px]

• Direction (D) The direction of the orbiting target. [clockwise, anti-clockwise]

Participants were presented with all variations of orbiting widgets in a random order. They
were instructed to use whichever motion felt natural for a given movement condition, i.e. the
way in which they held the cup or pen, and that it was not necessary to mimic the size of the
rotary widget. For each variation the user is presented with a single widget at the centre of the
screen, showing the orbit as a circle and the target as a ‘dot’ moving around the circle. Before
the widget appeared, a 3 second countdown is shown to allow the user to rest. The widget
is then presented for 7 seconds whilst the user attempts to mimic its motion with the selected
movement condition. This is then repeated for all widget variations and movement conditions.
A true positive is recorded when the participant successfully mimics the motion (orbital period,
direction, and phase) of the orbiting target, and a false negative otherwise. These were then used
to measure the sensitivity of the system.

TV Watching/Internet Browsing

In between the widget acquisition blocks participants were tasked with watching TV or browsing
the internet for ten minutes, to record cases where the widget should not be activated. Partici-
pants were free to choose either activity, and in addition also casually engaged in conversation
with the researcher to elicit further physical movement. This resulted in fifty minutes of record-
ings in which the participants were not explicitly trying to trace a control. This data set was used
to assess the system’s robustness to false positives (FP): when the participant inadvertently pro-
duces a movement that would match an orbiting target. When the recordings were processed, 16
orbiting targets (8 clockwise, 8 anti-clockwise) were simulated with their phases spaced equally
by π

4 radians to detect any accidental matching.
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3.2.4 Results

Two parameters sets were chosen for each orbital period based on their sensitivity and false
positives (see Table 3.1). Strict parameters correspond to those that exhibited the highest sen-
sitivity when aggregating all sizes, users, and movement conditions of the respective orbital
period whilst having zero false positives. Relaxed parameters are those with the highest sensi-
tivity when aggregating all sizes, users, and movement conditions of the relevant orbital period
that produced less than 10 false positives over the 50 minute recording of background activity.

Figure 3.5 shows sensitivity results for different target sizes and frequencies. We observed the
highest sensitivity for rotary widgets with an orbital period of 4 s, and low sensitivity for ‘fast’
targets with an orbital period of 1 s. Widgets with an orbital period of 2 s show a greater standard
deviation across users, and for this orbital period we also observed that relaxation of parameters
resulted in a more significant increase in sensitivity. Note we found a striking difference in
optimal parameters for strict versus relaxed conditions specifically for the 2 s orbital period
case. We also observed that both orbital periods of 2 and 4 s yield the same strict parameters
aside from arc length. This may be due to the extra length required to suppress false positive
activations if we view it from a shape matching perspective (i.e. more complex shapes will be
harder to match).

Size effects were not as pronounced as differences in orbital periods. For widgets exhibiting
slower movement (4 s) sensitivity increased with size. This effect did not show as clearly for
smaller orbital periods. As the size increases it may be easier to discriminate the position of the
target, but at a given orbital period it also implies a higher velocity of the target. The former can
explain the performance increase with size for ‘slow’ targets (4 s), and the latter the performance
decrease we observed for ‘fast’ targets (1 s).

Table 3.2 gives insight into performance observed for different users and movement conditions.
We observed that for any user there was at least one condition for which we observed high
sensitivity (0.88 or better with strict parameters, 0.94 or better with relaxed parameters). Note the
differences observed, for instance between users 001 (performing well with all conditions except
head movement) and 005 (highest performance with head movement). For every condition we
also observed at least one user achieving high sensitivity (0.94 or better with strict parameters,
and 1.00 with relaxed parameters). Interestingly, we observed the highest sensitivity across all
users for movement with the cup in hand, and the worst with the pen in hand – this surprised us
as we thought of a cup as a distractor, and a pen as natural for tracing. However, a cup provides
more distinctive features for tracking than a pen.

Orbital period (s) Type thcorr thin a W FP

1
Strict 0.86 0.10 0.75 23 0
Relax 0.86 0.15 0.75 23 4

2
Strict 0.95 0.20 0.75 45 0
Relax 0.86 0.05 0.5 30 6

4
Strict 0.95 0.20 0.5 60 0
Relax 0.92 0.15 0.5 60 6

Table 3.1: Parameter sets used for testing. Strict sets required no false positives (FP), relaxed sets
had to have less than 10 FP.
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Figure 3.5: Sensitivity plotted against size for orbital periods of 4 s (green), 2 s (orange), and 1 s
(red) for aggregated movement conditions and users. Strict parameter sets are shown with solid
lines, relaxed parameters sets are shown with dashed lines. Standard deviation across users for
strict parameter sets are shown with error bars.

Movement Condition

User Params Head DH NH Pen Cup

001
Strict 0.19 1.00 0.94 1.00 1.00
Relax 0.19 1.00 1.00 1.00 1.00

002
Strict 0.56 0.94 0.81 0.63 0.94
Relax 0.56 0.94 0.88 0.69 1.00

003
Strict 1.00 0.81 0.81 0.56 0.88
Relax 1.00 0.81 0.75 0.63 0.94

004
Strict 0.88 1.00 0.44 0.44 1.00
Relax 0.81 1.00 0.44 0.44 1.00

005
Strict 0.88 0.50 0.69 0.50 0.69
Relax 0.94 0.56 0.69 0.50 0.75

All
Strict 0.70 0.83 0.73 0.63 0.89
Relax 0.70 0.87 0.75 0.65 0.94

Table 3.2: Sensitivity for different movement conditions when following a rotary widget with an
orbital period of 4 s for aggregated sizes.
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3.2.5 Discussion

Our study of TraceMatch demonstrates that the method is effective in matching a user’s motion
with different sizes of an orbiting target using an unmodified webcam. We observed high sensi-
tivity for different movement conditions, highlighting the system’s ability to abstract the motion
matching technique from any particular body part. This gives the users flexibility to provide
input how they choose and enables seamless interaction during other activities where the user,
for instance, may be holding an object.

The results indicate that movement conditions can affect tracking performance but also show
individual differences prompting further investigation of user preference and ability in motion
following with different parts of their body. Our evaluation was focussed on the performance
of the vision-based sensing system and provides insight on parameter choices for the design of
interactive applications. We observed a low success rate for targets with the fastest speed. This
could be due to either user limitations in following the moving target, or technical limitations
of detecting such quick user motions. In our study, we limited tracing to a single visible target
for data collection, but for applications selection from among a number of targets is important,
prompting further work on how the technique scales. As our study was designed to facilitate
parameter exploration, users did not have any feedback on how well their movement matched a
target. We would expect that feedback will positively affect input performance.

3.3 Task Success with Different Body Movements

To study how effective users are in producing input with different parts of their body under
different conditions (RQ1.2), we undertook a separate user study in which participants used the
TraceMatch system for and interactive tasks. Users performed a series of trials which required
them to follow the motion of a randomly selected target Orbit from multiple presented Orbits.
During the study, we measured the task success rate whilst varying the motion of the displayed
Orbits with respect to their SIZE, i.e. the radius of the Orbit (25 and 50px), ORBITAL SPEED

(2 and 4 seconds per cycle), DIRECTION (clockwise and anti-clockwise), and the NUMBER OF

ORBITS (2, 4, 6, 8, and 4 plus 4) displayed simultaneously.

We maximised the phase difference between Orbits by 360◦/n, where n is the number of Or-
bits displayed simultaneously in the same direction. The “4 plus 4” variable consisted of four
Orbits rotating clockwise, and four anti-clockwise, displayed simultaneously with a 90◦ phase
difference. This was included to investigate if the number of Orbits displayed simultaneously
affected the participants’ performance. We expected this combination to have similar results to
when four Orbits of one direction were displayed.

The TYPE OF MOVEMENT (head, dominant hand, non-dominant hand, mobile phone-in-hand
and cup-in-hand) participants used to match the motion of the Orbits was also varied. We used
the cup and mobile phone as everyday objects that users would likely use for multi-tasking
whilst interacting with the system in a real-life setting, e.g. drinking or sending a message. In
the previous data collection we used a pen, however we observed participants performing much
smaller movements (e.g. tracing with the tip) which could lead to detection issues. We therefore
swapped the pen with a mobile phone, another everyday object people would likely have in
hand. The cup was half filled with water to simulate the participants holding a drink, and the
experimenter’s Samsung Galaxy S5 was used in the event a participant did not have a mobile
phone. In total, this resulted in 2×2×2×5×5= 200 trials per participant, and 20×200= 4000
trials for the study.
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Figure 3.6: Configurations for the number of Orbits: (a) two, (b) four, (c) six, (d) eight, and (e) four
plus four. Orbits shown rotating clockwise, with the exception of (e) where Orbits rotate in both
directions.

3.3.1 Participants and Apparatus

Twenty participants (10M/10F) aged between 21 and 54 years (mean=29.4, sd=8.21) were se-
lected to take part in the studies. Eighteen participants were right-handed and two were left-
handed. None of the users had previous experience with, or knowledge of, the TraceMatch
system. All three studies were undertaken sequentially by participants in one sitting, and took
approximately one hour to complete per participant. Participants were compensated with £10.

The studies took place in a lab designed to represent a living room scenario. A 55" Smart TV
(1920x1080) was used as the display, with a couch placed 2.23m from the TV (based on a TV
size to viewing distance calculator). An unmodified, off-the-shelf web camera was mounted on
top of the TV. The camera captured a 640×480 region of interest in the centre of a 1920×1080
image to control that only movement related to the simulated application setting was captured.

3.3.2 Procedure

Upon arrival, participants signed a consent form and completed a demographics questionnaire.
They were then presented with a basic overview of TraceMatch, which did not include any
technical detail. Participants were instructed to find a comfortable position anywhere on the
couch. Participants were not given instructions on how to perform the type of movements, but
were told that the size of their movement did not have to correlate with the size of the Orbits.
Following the introduction, participants took part in a practice session which involved all the
variables, excluding number of Orbits, used for the trials. Participants spent, on average, less
than four minutes during the practice session.

For each trial, a number of Orbits were presented simultaneously to the participants (see Fig. 3.6),
with a target Orbit highlighted in blue. If the participant successfully matched the motion of the
target Orbit it turned green and the next trial was presented. If the participant activated an Orbit
other than the target, the Orbit they activated flashed red and the trial was unsuccessful. The
task was not completed until the participant successfully matched the motion of an Orbit, or ten
seconds elapsed. A three second countdown preceded each trial.

A balanced Latin Square design was used to counter balance the different types of movement
and minimize carry over effects. A 5×5 Latin square and its mirror image were used, resulting
in multiples of 10 participants required for counterbalancing the type of movement. Participants
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completed trials in ten blocks, one block for each combination of speed and type of movement.
Ten participants, counterbalanced for type of movement, performed the trials with slow Orbits
(4 seconds per cycle) followed by fast Orbits (2 seconds per cycle), the other ten, also counter-
balanced for type of movement, performed the opposite. For a given speed, participants used all
types of movement before changing speeds.

For each block, participants were presented with each number of Orbits in order (i.e. 2, 4, 6,
8, then 4 plus 4), for large Orbits (50px) first and then with small Orbits (25px). All Orbits
presented to participants rotated in the same direction when displayed on the screen, with the
exception of the 4 plus 4 variable. Participants were shown both clockwise and anti-clockwise
directions for each size, the order of which was determined randomly. The 4 plus 4 configuration
was displayed twice per size, the first with the target Orbit rotating in one direction, the next with
it rotating in the other direction. The ordering of the rotation of direction for the target Orbit was
randomised.

After each block, participants completed a questionnaire consisting of six 5-point Likert items:

• I felt comfortable following the targets

• I felt confident following the targets

• I found it easy to synchronise with the position of the targets

• I found it easy to follow the movement of the targets

• It was not physically demanding

• It was not mentally demanding

After all of the trials were completed, participants were verbally asked about their preferred type
of movement and speed.

3.3.3 Results

We used a four-way repeated measures ANOVA, Greenhouse-Geiser-corrected in the cases
where Mauchly’s test indicated a violation of sphericity and with Bonferroni-corrected post-hoc
tests where applicable, to test for the effects of the type of movement, speed, size, and number
of Orbits, averaged over direction (clockwise and anti-clockwise), on the task success rate. The
task success rate is the number of times the participants correctly selected the target Orbit, di-
vided by the total number of trials. A trial was deemed unsuccessful if the participant did not
activate an Orbit within 10 seconds, or if an Orbit other than the target was activated. Figure 3.7
shows the task success rate for each type of movement across all variables after averaging for
size and direction.

We found significant main effects for speed (F1,19 = 7.72, p = .012), and number of Orbits
(F4,76 = 103.01, p < .001). There were no significant main effects for size (F1,19 = 2.935, p =
.103), or type of movement (F2.57,48.79 = 2.92, p = .051). In general, participants performed
significantly better with the slow speed (85%) compared with the fast speed (76%). As we
expected, participants performed significantly worse when selecting the target from 8 Orbits
(57%) compared with all others, at p < .001. We also observed a significant difference when
participants selected a target from 6 Orbits (76%) compared with all others at p < .001. There
were no further significant differences when selecting a target from 2 (92%), 4 (88%) or 4 plus
4 (88%) Orbits.

We observed significant two-way interactions for type of movement x speed (F4,76 = 8.77, p <
.001), type of movement x number of Orbits (F7.50,142.51 = 2.56, p = .014), and speed x number
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Figure 3.7: Task success rate for each type of movement when following slow (blue), and fast (green)
Orbits, averaged for size and direction, plotted against each level of the number of Orbits variable.
Standard error is shown with error bars.
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of Orbits (F2.74,52.12 = 3.04, p = .041). There were no other significant interactions. We further
investigate the simple main effects for the types of movement, proceeded by simple main effects
for both speeds and all number of Orbits.

Type of Movement

We found no significant simple main effect for slow movements, when averaging over size
and number of Orbits, between the head (88%), dominant hand (84%), non-dominant hand
(84%), phone-in-hand (86%), and cup-in-hand (84%), (F2.26,42.97 = 0.85, p = .45). However, for
fast movements there was a significant simple main effect for types of movement (F2.26,42.97 =
6.52, p = .002). Participants performed significantly worse with the fast head movement (59%)
compared with the fast dominant hand (80%), and fast non-dominant hand (83%) movements,
at p = .04 and p = .021 respectively. We found no significant differences between the fast head
movement and the fast phone-in-hand (78%) or fast cup-in-hand movements (77%).

Head

For the head movement, we found significant simple main effects for speed (F1,19 = 15.31, p =
.001), and number of Orbits (F4,76 = 14.97, p < .001). Participants performed significantly bet-
ter with the slow head movement (88%) compared with the fast (59%). Participants were sig-
nificantly worse when using the head movement (averaged over speed) to select a target from
8 Orbits (56%) compared with 2 (81%), 4 (74%), 6 (76%), or 4 plus 4 Orbits (81%), at the
p < .005 level.

Dominant Hand

For the dominant hand movement, we found a significant simple main effect for the number of
Orbits (F2.89,58.84 = 27.40, p < .001), but no simple main effect for speed. The task success rate
was significantly lower when participants selected a target from 6 Orbits (79%) compared with
2 Orbits (94%), at p = .013, but was significantly higher compared with selecting a target from
8 Orbits (57%), at p = .006. We also observed that the task success rate was significantly lower
when selecting a target from 8 Orbits compared to all others, including 4 (90%) and 4 plus 4
Orbits (88%), at p < .01.

Non-dominant Hand

For the non-dominant hand movement, we found a significant simple main effect for the number
of Orbits (F2.55,48.44 = 25.52, p< .001), but no significant simple main effect for speed. Selecting
a target from 6 Orbits (77%) resulted in a significantly lower task success rate compared with 2
Orbits (94%), and 4 Orbits (97%), at p = .011 and p = .001 respectively. The task success rate
for selecting a target from 8 Orbits (59%) was significantly lower than 2, 4, and 4 plus 4 (89%)
Orbits at p < .001. There was no significant difference between 6 and 8 Orbits.

Mobile Phone-in-hand

For the mobile phone-in-hand movement, we found significant simple main effects for both
speed (F1,19 = 5.84, p = .026), and number of Orbits (F4,76 = 18.11, p < .001). Selecting a slow
moving target resulted in a significantly higher task success rate (86%) compared with selecting
a fast moving target (78%). Selecting a target from 6 Orbits (74%) resulted in a significantly
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lower task success rate compared with 2 (93%), 4 (86%), and 4 plus 4 Orbits (93%), at p = .005,
p = .044, and p = .002 respectively. We also found a significantly lower task success rate when
participants selected a target from 8 Orbits (63%) compared with 2, 4, and 4 plus 4 Orbits at
p < 0.005. There was no significant difference between selecting a target 6 or 8 Orbits.

Cup-in-hand

For the cup-in-hand movement, we found a significant simple main effect for the number of
Orbits (F4,76 = 42.91, p < .001), but no significant simple main effect for speed. Selecting a
target from 8 Orbits (50%) resulted in a significantly lower task success rate compared with all
others for p < .001. In addition, the task success rate as a result of selecting a target from 6
Orbits (76%) was significantly lower compared to 2 Orbits (96%) at p = .003, and both 4 Orbits
(91%) and 4 plus 4 Orbits (90%) at p = .13.

Speed x Number of Orbits

For the slow speed, there was a significant simple main effect for number of Orbits when av-
eraging types of movement and size (F2.31,43.96 = 69.33, p < .001). The task success rate was
significantly lower for 8 Orbits (62%) compared with all others at p < .001, and for 6 Orbits
(80%) and all others at p < .001. There were no other significant differences between selecting
a target from 2 (93%), 4 (94%), and 4 plus 4 (95%) Orbits.

There was also a significant simple main effect for number of Orbits for the fast speed (F4,76 =
55.27, p < .001). Post-hoc tests revealed a significant difference between 8 Orbits (52%) and
all others at p < .001. The task success rate was also significant lower when selecting a target
from 6 Orbits (72%) compared with selecting a target from 2 (90%), 4 (82%), or 4 plus 4 Orbits
(81%), at p = .001, p = .002, and p = .019 respectively.

When taking all sizes and types of movement into account, there was a significant simple main
effect for speed when selecting a target from 4 Orbits, (F1,19 = 11.95, p = .003). Slow moving
targets (94%) resulted in a significantly higher task success rate compared with fast moving
targets (82%). Slower moving targets (95%) also resulted in a significantly higher task success
rate than the faster moving targets (81%) when selecting a target from 4 plus 4 Orbits, (F1,19 =
18.48, p < .001). There were no significant simple main effects for speed for 2, 6, or 8 Orbits.

3.3.4 Activation Time

Figure 3.8 shows the activation times for successful trials. Average activation times across all
users are reported in brackets. The minimum time for activation of the slow and fast Orbits was
2 and 1 seconds respectively. For fast movements, it takes the head movements (4.1s) longer
to acquire than the dominant hand (3.3s), non-dominant hand (3.2s), phone (3.5s) and the cup
(3.2s). As figure 3.8 illustrates, there were participants who achieved activation times with the
head matching those of the other movement conditions. For slow movements, the head (4.1s)
was once again slower than the dominant hand (3.6s), non-dominant hand (3.6s), phone (3.5s)
and cup (3.5s). The spread of activation times for the slow head movement is less than the faster
Orbit, but still larger than those of the other movement conditions for the slow speed. Based on
the activation time, we also calculate the average information transfer rate using the generalised
form of Shannon’s formula [96], see Table 3.3.
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Figure 3.8: Box plots showing average activation time of participants for fast Orbits (left) and slow
Orbits (right).

Table 3.3: Average information transfer rate (bits/s) based on Shannon’s generalised formula (stan-
dard deviation in brackets).

Number of Orbits

Input Type Speed 2 4 6 8 4+4

Head
2 0.47 (0.08) 0.5 (0.09) 0.74 (0.19) 0.82 (0.2) 0.56 (0.15)
4 0.47 (0.0) 0.7 (0.06) 0.85 (0.11) 0.86 (0.16) 0.75 (0.07)

Dom.
2 0.57 (0.03) 0.74 (0.12) 0.96 (0.18) 0.99 (0.26) 0.77 (0.15)
4 0.54 (0.04) 0.74 (0.09) 0.81 (0.15) 0.96 (0.14) 0.72 (0.11)

Non.
2 0.61 (0.04) 0.83 (0.16) 0.95 (0.24) 0.98 (0.26) 0.77 (0.19)
4 0.53 (0.01) 0.77 (0.08) 0.83 (0.17) 0.93 (0.21) 0.78 (0.12)

Phone
2 0.5 (0.06) 0.71 (0.12) 0.83 (0.11) 1.06 (0.28) 0.72 (0.09)
4 0.56 (0.05) 0.73 (0.09) 0.85 (0.18) 1.05 (0.2) 0.79 (0.11)

Cup
2 0.61 (0.07) 0.77 (0.07) 0.96 (0.22) 1.08 (0.33) 0.74 (0.09)
4 0.53 (0.02) 0.76 (0.08) 0.91 (0.17) 0.93 (0.16) 0.79 (0.11)
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Figure 3.9: Stacked bar charts showing responses to the Likert items for different types of move-
ment and speed.

3.3.5 User Preferences

The most preferred type of movement was the dominant hand (12), followed by the head (3) and
phone-in-hand (3), and finally the cup-in-hand (2). No participant selected the non-dominant
hand as their favourite type of movement to use. Ten participants preferred the faster targets,
and ten participants preferred the slower. Six participants preferred the faster targets with the
dominant hand movement, whereas the other six preferred the slower targets. All of the partic-
ipants who selected the head movement preferred the slower targets, and all of the participants
who selected the cup-in-hand preferred the faster targets. One participant preferred the slow
targets with the phone-in-hand movement, with the remaining two preferring the faster targets.

3.3.6 Likert Item Responses

We performed a Friedman test on each Likert item to investigate participants’ responses for
the types of movement and speeds, see Fig. 3.9. Pairwise comparisons were performed with a
Bonferroni correction for multiple comparisons.

Participant responses to the comfort Likert item were significantly different across the movement
speed combinations, χ2(9) = 41.15, p < .0005. Responses for the fast head movement (Mdn =
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3) were significantly lower than both slow phone-in-hand (Mdn = 5) and fast dominant hand
movements (Mdn = 5), at p = .041 and p = .028 respectively.

There was a significant difference in responses when participants were asked how easy it was
to synchronise with the target, χ2(9) = 28.92, p = .001. Participants felt it was significantly
harder to synchronise with the target using the fast head movement (Mdn = 3), compared with
both slow dominant hand movement (Mdn = 5) and fast dominant hand movements (Mdn = 5),
at p = .021 and p = .008 respectively.

When participants were asked how easy it was to follow the target, responses were significantly
different based on speed and movement condition, χ2(9) = 34.18, p < .0005. Participants felt
it was significantly harder to follow the target with the fast head movement compared with both
slow (Mdn. = 5) and fast (Mdn. 4.5) cup-in-hand movements, at p = .023 and p = .014, and
compared with both slow (Mdn = 5) and fast (Mdn = 4.5) dominant hand movements, at p =
.012 and p = .014 respectively. The fast head movement (Mdn = 3) also received significantly
worse responses compared with the slow non-dominant hand (Mdn = 5), and slow phone-in-hand
movement (Mdn = 5), at p = .031 and p = .028.

There was a significant difference when participants were asked about the physical demand
of using the movement and speed combinations to select a target, χ2(9) = 32.74, p < .0005.
Participants reported significantly more physical demand for the fast head movement (Mdn = 3)
compared with the fast dominant hand movement (Mdn = 5) at p = .049.

Although there were significant differences between responses to the confidence and mental
demand Likert items, χ2(9) = 30.31, p< .0005 and χ2(9) = 32.55, p< .0005 respectively, post-
hoc tests revealed no significant differences between speed and movement combinations after
accounting for multiple comparisons.

3.3.7 Discussion

The results show that holding an object does not significantly affect the task success rate,
nor does using the non-dominant hand – unlike other tasks such as writing in which the non-
dominant hand performs significantly worse. This highlights the ability to abstract from specific
body parts, and provides users with various means by which to successfully interact with the
system in the event their preferred method of input can not be used (e.g. when performing other
tasks). The lack of difference between hands could also suggest the algorithms do not pick up
on the fine motor control of the user – is the task success rate linked to user behaviour or al-
gorithm’s ability to detect? We investigate whether this is the case in more depth in section 5,
which would suggest it is due to user behaviour.

Interestingly, we observed that using the head achieved the highest task success rate for slow
movements, but the lowest task success rate for fast movements. Many users reported that the
fast head movement was "uncomfortable" and felt "unnatural". The low task success rate can
be, in part, explained by the way some users performed this movement. The experimenter noted
that during the trials, the output of the system (not seen by participants) was reporting that the
participants’ fast head movements were passing the Pearson threshold, however no activation
occurred. This infers that the participants were following the motion of the target, however their
movements were not circular enough to pass the circle fitting stage of the matching process, i.e.
the movements were elliptical. This is further exaggerated because fast Orbits require more con-
strictive parameters, compared with slow Orbits, to avoid accidental matching with background
movements.

The task success rate across all sizes and number of Orbits when taking into account participants’
preference for type of movement and speed is 87%. This rises again to 97% for participants’
preferred type of movement and speed across both sizes if we only consider selecting a target

47



3. TraceMatch: Providing Input with Any Motion

from 2, 4, and 4 plus 4 Orbits (99% for 2, 96% for 4 and 95% for 4 plus 4). This demonstrates
that, despite TraceMatch’s generic approach, users can successfully interact with the system
using their preferred type of movement.

We observed individual differences between participants depending on the type of movement
used. The participant with the best overall task success rate across all variables had a task success
rate of 90%, whereas the worst had a task success rate of 67%. However, for the participant with
the lowest overall task success rate, the task success rate for their preferred movement and speed
was 85% across all variables (100% excluding when they selected a target from 6 and 8 Orbits).
This is an example of when a participant had a much lower task success rate for other types of
movement and speed combinations, as can be seen by the low average, yet there was at least one
type of movement for which they achieved a very high task success rate.

According to the responses to the Likert items, there were no significant differences found other
than for the fast head movement. This validates the idea of abstracting from body part segmen-
tation and providing the user with a choice of how to interact with the system or, in the event the
user is performing another task, allowing the user to continue interacting with the system whilst
holding an object. The different preferences we observed for the speed of the Orbits could eas-
ily be implemented using a "settings" option, allowing users to tailor the system based on their
personal preferences.

When discussing their favourite type of movement, one participant thought that their preference
would depend on whether or not they were in a social situation. The participant preferred the
slow head movement due to the “low-effort” involved, however, they stated that in a social
situation they would rather use the hand gesture. This is because they would only need to glance
at the Orbit to be able to follow the target, thus allowing them to control the system whilst
maintaining their interaction in the social situation. This is another advantage of abstracting
from the use of specific body parts, allowing users to interact in different ways depending on the
situation.

The activation time in TraceMatch consists of the time taken for the user to locate the control
they wish to activate, to position their desired movement condition (e.g. raise their hand), to
start synchronisation with the Orbit, and to maintain synchronisation for the required amount of
time (i.e. half an Orbit). Before starting the synchronisation, users may wait and choose to start
the movement at a salient point, e.g. when the target is at the top of the Orbit. Interestingly, one
would expect the slower times to be around one second slower for the slow Orbits due to the extra
time required to synchronise with half an Orbit, 1s and 2s for fast and slow Orbits respectively.
However, we observed a difference of less than half a second, suggesting that the slower Orbits
are easier to synchronise with than the faster Orbits, as all other factors that contribute to the
acquisition time remain the same (e.g. finding the target and positioning the body part ready for
interaction).

3.4 Choice of Movement for Interaction

To investigate RQ1.3, we studied how participants interacted spontaneously with the system
using real-world applications, an Interactive Story and a Formula 1 Multi-screen application.
We used the same participants and apparatus as the previous study. Participants were free to use
any type of movement to interact with the prototypes. Participants were instructed to inform the
experimenter in the event of an incorrect activation, i.e. the wrong Orbit is activated when trying
to activate an Orbit, or a false activation, i.e. an Orbit is activated when not trying to activate an
Orbit. The Orbits used for the prototypes had a radius of 50px and speed of 3 seconds per cycle.
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3.4.1 Interactive Story

The aim of the first prototype was to assess how users interact with the system given an appli-
cation in which the participant has minimal interaction. For this, we used an interactive video
series about knife crime filmed from a teenager’s point of view [16]. Participants are shown a
film, during which they are offered a series of choices throughout which influence the outcome.
In order to choose which route to pick users are presented with a textual description and associ-
ated Orbit to select an action, see Figure 3.10. Two additional Orbits were added to restart the
story from the beginning, or replay the last video section. Participants were instructed to choose
whichever actions they preferred, and that their choices were not being recorded. At the end of
the story, participants were presented with four 5-point Likert items:

• I felt comfortable following the targets
• I felt confident following the targets
• It was not physically demanding
• It was not mentally demanding

3.4.2 Formula 1 Multi-screen Application

The second prototype was a Formula 1 Multi-screen application, see Figure 3.10. The aim of this
prototype was to present an application to users with a large number of Orbits (8) displayed si-
multaneously on the screen. The interface allowed participants to choose between four different
camera angles, a timing screen and the track layout. Controls for muting the sound and enlarging
the main window were also included. Participants were instructed to select each Orbit at least
once in any order and to watch the videos if they desired. Once the participant had finished in-
teracting with the prototype, they completed the same Likert items used for the Interactive Story
prototype.

3.4.3 Results

The task success rate for the Interactive Story application was 100%, out of 70 activations,
see Table 3.4. The most commonly used type of movement for activating the controls was
the dominant hand, which was used for 70% of the activations. The cup was the only type of
movement that was not used by any of the participants. Four participants used more than one
type of input throughout the duration of the interactive story.

Figure 3.10: Prototypes for the second study. Left: Interface for the Interactive Story prototype
with Orbits for selecting an action (left of the screen), and for restarting the story from the begin-
ning or replaying the last section (right of the screen). Right: Interface for the Formula 1 Multi-
screen prototype with Orbits for changing the main display (left), muting the volume (second from
right), and enlarging the display to full-screen mode (right).
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Table 3.4: Results for the second study, showing the different types of movement used to activate
the Orbits and the overall task success rate.

Interactive
Story

Formula 1
Multi-Screen

N
um

be
ro
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ac

tiv
at
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ns

Head 5 (7%) 18 (6%)
Dom. hand 49 (70%) 223 (76%)
Non. hand 6 (9%) 22 (8%)

Phone 10 (14%) 28 (10%)
Cup 0 (0%) 0 (0%)
Foot 0 (0%) 2 (1%)

Total activations 70 293
Incorrect activations 0 8

False activations 0 0
Task success rate 100% 97%

According to responses from the Likert items, most participants felt comfortable (Mdn = 4.5)
and confident (Mdn = 5) with the interactive story. Participants did not report any physical (Mdn
= 5) or mental demand (Mdn = 5) with a bottom-two-box score of 0% for all Likert items relating
to the interactive story.

When faced with multiple Orbits simultaneously during the Formula 1 multi-screen application,
participants achieved a task success rate of 97% out of 293 activations. Three participants en-
countered one incorrect activation, and two participants encountered two incorrect activations.
During the Formula 1 multi-screen prototype, participants used a wide variety of movements,
including a participant who successfully activated an Orbit with their foot. The most frequently
used type of movement was, again, the dominant hand which was used for 76% of all activations.

For the Formula 1 multi-screen, the majority of participants did not report any physical (Mdn =
5) or mental (Mdn = 5) demand, and reported that they felt comfortable (Mdn = 5) and confi-
dent (Mdn = 5). One participant disagreed that they felt comfortable, and thought the Formula
1 multi-screen application was mentally (2) and physically demanding (2). The participant re-
ported that it was much harder to follow targets with a video in the middle of the Orbit (for the
Orbits which previewed video content). We observed nine participants using multiple types of
input when interacting with the Formula 1 Multi-screen prototype.

The type of movement predominantly used to interact with the prototypes was not the preferred
type of movement of the participant in all cases. Two of the participants who preferred the
cup object used their dominant hand to interact with the prototypes, with the third choosing to
use their smartphone. Only one out of the three participants who preferred the head movement
used their head to activate the Orbits for the majority of the time, the remaining two used their
dominant hands for the majority of the time when interacting with the prototypes. One of the
participants who preferred the phone-in-hand movement predominantly used their non-dominant
hand to activate the Orbits during the prototypes.

3.4.4 Discussion

When users were given the freedom to interact with the system in a more natural setting, we
observed that not all participants used their preferred type of movement reported during the first
study. In the case of the head movement, this could be due to the increased speed (3 second per
cycle) used for the prototypes, because all those who preferred the head movement also preferred
the slower moving targets (4 seconds per cycle).

With the exception of one participant, those who preferred objects did not actively seek out
their preferred objects to interact with the system, instead choosing to perform the movements
without an object or with a different object. This demonstrates the flexibility when it comes to
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choice of how to provide input and shows that users, although reportedly preferring one type of
movement, can easily adapt to different types of movement.

One participant used the head movement, their preferred movement, during the interactive story,
however switched to the dominant hand when interacting with the Formula 1 multi-screen appli-
cation. We also saw similar behaviour with participants switching from their non-dominant hand
in the interactive story, to their dominant hand in the Formula 1 multi-screen application. The
story application is much more relaxed and requires less input than the multi-screen application,
which could suggest that users change their type of movement depending on the context.

We observed four participants using different hands depending on the location of the Orbit they
were trying to activate. When questioned about this, participants reported that they instinctively
changed which hand they used based on the location of the Orbit on the screen. We also observed
one participant who used their foot to activate the multi-screen prototype, in an explorative
manner.

3.5 Multi-Level Input

To gain insight into how multiple targets on a single Orbit can be used for more expressive input
we used two prototypes, a Video Control and an Information Popup application. We can display
information with the Orbits themselves, e.g. through the use of background icons, but our aim
here is to investigate whether additional information can be conveyed through the movement
and colour of multiple targets orbiting around a single Orbit without the participants having
prior knowledge of the functionality of the different targets. We used the same participants and
apparatus as the previous study.

3.5.1 Video Control

The aim of the Video Control prototype was to simultaneously present Orbits with different sizes
and speeds to the participants. For this, we designed a video controller which allowed the user
to play, pause, skip forwards or skip backwards, see Figure 3.11. We chose skipping forwards
and backwards to provide a non-continuous method of control, as opposed to rewinding or fast
forwarding.

For skipping forwards, three clockwise Orbits were used with different speeds and sizes. The
small, medium and large Orbits rotated with speeds of 4, 3, and 2 seconds per cycle respectively.
The larger, faster Orbit skipped the video forward by 30 seconds, the medium sized Orbit by 15
seconds, and the smaller, slower Orbit by 5 seconds. For skipping backwards the Orbits operated
the same way but rotated anticlockwise. The participants were not told about the functionality of
the Orbits prior to their interaction with the prototype, however the number of seconds skipped
was displayed in the middle of the Orbit when the control was activated, i.e. "5s" is displayed if
the small, slow Orbit is activated.

Participants were asked to interact with the Video Control for two minutes. They were then
verbally asked if they had understood the functionality of the Orbits for skipping forwards and
backwards (i.e. the quicker the speed and larger the size the greater amount the video was
skipped) when they first saw the controls, and after they had finished with the prototype. They
were then verbally asked whether they thought the functionality of the different sizes and speeds
made sense.
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Figure 3.11: Prototypes for the third study. Left: Interface for the video control prototype with
Orbits for skipping backwards (left), skipping forward (right), play/pause (middle) and for hiding
the controls (top-right). Right: Interface for the information popup with Orbits for opening the
popup (left) and closing the popup (top-right). The Orbit used to open the popup is shown for
illustration and would not be visible at the same time.

3.5.2 Information Popup

The final prototype was used to test whether the colour of the targets could be used for selection
or rejection of a popup. This was achieved using a prototype that allowed the participant to
view additional information on a subject at four key points during a video, see Figure 3.11. The
Orbits used for the Information Popup application had a radius of 50px and speed of 3 seconds
per cycle.

For each key point, an Orbit with a red and a green target was displayed. If the participant
selected the green target, the additional information would appear. If the participant selected the
red target, the Orbit disappeared. We also varied how the red and green target orbited to find
out which participants preferred. In two out of the four cases, the targets rotated clockwise with
an offset of 180◦. In the remaining two cases, the green target rotated clockwise and the red
target rotated anti-clockwise. The order in which the participants were shown the targets was
counterbalanced.

Following the video, participants were asked whether they had understood the functionality of
the red and green targets when they first appeared, or at the end of the video. They were then
asked which method of target rotation they preferred, i.e. same direction or opposite direction,
and why.

3.5.3 Results

The video control prototype suffered the most incorrect activations (36), only three participants
had no incorrect activations, resulting in a task success rate of 92% out of 425 activations,
see Table 3.5. We observed four participants using more than one type of input to activate
the controls, with the dominant hand being the most predominantly used type of movement
accounting for 76% of all activations.

Ten participants reported that they understood the functionality of the video controls when they
appeared, whereas seven did not understand the functionality until they activated the Orbits.
Three participants did not understand the functionality of the controls, even after interacting
with the prototype. The three participants who did not understand the functionality reported that
they thought the different speed and sizes of Orbits were available to allow the user to choose
whichever they prefer. Of the participants that understood the functionality, nine reported that
they understood it because of the speed of the Orbits (i.e. the quicker the speed, the larger the
effect) and six reported that it was because of the size (i.e. the bigger the size, the larger the
effect). Two participants reported that the combination of speed and size led them to understand
the functionality.
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Table 3.5: Results for the third study, showing the types of movement used to activate the Orbits
and the overall task success rate.

Video
Control

Information
Popup

N
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Head 30 (7%) 14 (10%)
Dom. hand 325 (76%) 95 (70%)
Non. hand 30 (7%) 5 (4%)

Phone 36 (8%) 18 (13%)
Cup 4 (1%) 2 (1%)
Foot 0 (0%) 2 (1%)

Total Activations 425 136
Incorrect activations 36 0

False activations 0 0
Task success rate 92% 100%

Users achieved a task success rate of 100% out of 136 activations when interacting with the
Information Popup prototype. The most frequently used type of movement was the dominant
hand, accounting for 70% of all activations. Five users activated the Orbits with more than
one type of input, including one participant who used their foot to activate an Orbit (a different
participant to the one who used the foot in the second study).

Fifteen participants reported that they understood the concept of the green and red targets to
open or close the information popup. The remaining five reported that they did not understand
the concept until they had activated one of the targets. Sixteen participants preferred it when
the red and green targets rotated in opposite ways, reporting that it required less effort to trigger
the correct target because there was no chance of getting it wrong. Three participants preferred
it when the red and green target rotated in the same direction because it was more aesthetically
pleasing. One participant had no preference, reporting that it was more aesthetically pleasing
for the same way but at the same time it was easy to select a target when they rotated in opposite
directions.

3.5.4 Discussion

We have demonstrated that multiple input options can be expressed using multiple targets for
the Orbits. This enables multiple targets to be located around a single Orbit which reduces the
screen space required for the interface, and provides greater flexibility for designers.

It is interesting to note that the participants understanding of the video control functionality was
predominantly due to either the size or the speed, but rarely both. This suggests that using a
combination of size and speed is advantageous, because perception of the functionality of the
different properties of the Orbits are not consistent across users. One participant noted that there
could be an issue for the colour-blind with the red and green targets used in the information
popup application, however they suggested simple tick and cross icons could also be used to
convey the same information.

The ability to have multiple speeds of Orbits display simultaneously is desirable because it
potentially allows for a greater number of Orbits to be displayed on the screen at any given
moment. However, we noted that during the video control prototype a relatively large number
of incorrect activations was a result of the users triggering a faster target that was in the process
of overlapping a slower target, or vice versa. Whereas this might not be an ideal solution for
increasing the number of controls, the task success rate remained above 90%.
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3.6 Discussion

In this chapter, we have introduced and evaluated TraceMatch, a novel touchless interaction
technique which abstracts from any specific body part. We have demonstrated that participants
were able to select a target from eight Orbits (four in both directions) with an average task suc-
cess rate of 88% across all sizes, speeds, and types of movement during a controlled experiment.
The flexibility to successfully interact with a wide variety of different movement types is ad-
vantageous as we observed that participants had different preferences for their preferred type of
movement. When users were provided the freedom to interact with TraceMatch in a naturalistic
application context, users achieved a task success rate of >97% using standard Orbits with a
variety of different movements, and >92% with Orbits using targets with different speeds and
sizes displayed simultaneously.

We have studied TraceMatch in the context of Interactive TV, however the interaction approach
can be used for a wide variety of devices, requiring only a webcam and a method for displaying
the Orbits (not just limited to screens). We have shown that the size of the Orbits has no signif-
icant effect on task success rate, and that the colour, speed, and size of the targets of an Orbit
can be used to convey additional information regarding its functionality for use with multi-level
input. This affords designers the flexibility to design interfaces to constraints, and has wider
implications, especially on smaller devices.

The intuitiveness and high discoverability of TraceMatch enables the technique to be extended
into spontaneous interaction environments, such as public displays. Our studies have focussed
on single users in the camera’s field of view, however the generic nature of TraceMatch enables
multi-user applications. TraceMatch’s ability to abstract from a specific body part enables users
to use any type of object. Specific applications, such as interactive games, could be developed
for children in which their favourite toys, or objects relating to the game, could be used as input
control. It also has the potential as an interaction technique for users for which conventional
gestural input is not suitable, e.g. amputees.

Lastly, we identify four limitations in our studies. Movement correlation techniques, in gen-
eral, are not ideally suited for continuous controls, e.g. changing volume, because they require
the user to continuously follow the target for prolonged periods. For this reason, we opted for
skipping forward and backwards rather than fast-forwarding and rewinding in the Video Con-
trol prototype. However, it is not intended that the TraceMatch control replaces existing input
controls for television, i.e. the remote control, rather it compliments existing input methods by
offering a method of low-effort gestural control for simple mundane tasks.

The second limitation is that we only consider circular motion. The extra stage of fitting a circle
to the user’s motion is required to reduce the chance of false activations as a result of detecting
motion indiscriminately. TraceMatch can be extended to non-circular motion in the case of
periodic Orbits by either replacing the circle fitting stage with the required shape or by using
more sophisticated matching algorithms. Thirdly, the user performance results are inherently
dependent on the algorithm chosen, and don’t necessarily reflect participants’ ability to follow
the motion. Rather, they reflect the algorithms ability to detect the motion that users generate.
Finally, the false positive dataset we collected represents the cases of watching TV or browsing
the internet to gain indicative parameters for the system. However, there are many different types
of motions users may perform which may result in an accidental activation, and these may vary
depending on different contexts and or environments (e.g. large crowds). In section 5 we gather
a more extensive false positive dataset consisting of semantic and spatial gestures, eliciting user
movement more deliberately.
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3.7 Conclusion

The aim of this chapter was to address whether movement could be used as the primary sensing
principle for interaction (RQ1). We have demonstrated the feasibility of how movement can be
used as the primary sensing principle, and how versatile motion correlation is, with TraceMatch
(RQ1.1). TraceMatch demonstrates how we can abstract from specific body parts to provide
users with greater flexibility to provide input by whatever means necessary. TraceMatch is a
versatile technique that supports input by tracing of animated controls and requires only a single
general purpose camera. It is able to detect motion as input that users can produce with little
effort and in flexible ways – with their head, hand, or while holding an object. The technique
lends itself to interaction with any form of device that is able to display controls in animated
form.

Building upon this, we demonstrated how effective users are at providing input using different
body parts, or when holding objects, through an experimental evaluation of how users interact
with the TraceMatch system (RQ1.2). Our studies have shown that users are adept at providing
input across body parts, and whilst holding objects, and has provided insights into how users may
make spontaneous choices in the context of Smart TV applications (RQ1.3). Our results show
that motion correlation with TraceMatch is optimal in terms of accuracy and selection time when
selecting from up to 8 simultaneous objects. Users do not necessarily use their preferred type of
input for interaction, as it will be based on context and in some cases the position of the Orbits
on the screen. Across all our studies the main task was to interact with the system. One would
expect the flexibility afforded by the system to be fully utilised when interaction is a secondary
task. TraceMatch offers key advantages for low-effort interaction when performing mundane
tasks, and has the ability to act as an input to a world of many devices. However, interaction
extends beyond simple selection tasks which we have investigated in this chapter, and many
tasks require more expressive control than is afforded by motion correlation in isolation. We
explore how this can be addressed in the next chapter.
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If the principle of motion correlation is to be used as an input to a world of many devices, we
must consider how it can be used to support more complex interactions beyond simple selection
tasks. In the last chapter, we saw how motion correlation is limited in its ability to provide
continuous input control. Changing a value, such as the playtime in Chapter 3.5, can be achieved
with a user continuously following a target, and the system incrementing/decrementing the value
whilst synchronisation is maintained. However, this is subject to under/overshooting the desired
value, and any corrective action would require re-synchronisation with another moving target,
making it less than ideal. To overcome this limitation, we investigate how motion correlation
can be used to bootstrap spatial pointing (RQ2).

We introduce spontaneous spatial coupling, a hybrid technique of motion correlation and point-
ing that allows users to temporarily acquire a pointer, as illustrated in Figure 4.1. The interaction
is initiated using controls which are presented to the user as moving targets that are differentiable
by their movement. To activate a control the user matches its motion using any movement they
can generate (e.g. a body part or an object they move). Upon synchronisation with a displayed
target, a spatial coupling is created between the user’s input and the control, with the estab-
lished coordinate frame based on the preceding motion correlation phase. The spatial coupling
is temporary for the purpose of a particular interaction.

Pointers can be acquired on-demand, using any type of movement captured by the input device,

Figure 4.1: Spontaneous spatial coupling is a hybrid technique of motion-matching and pointing.
Controls in the form of moving targets are presented to the user (A). When the user synchronises
their movement with a target (B), a spatial coupling is created between the user’s input (C) and the
control (D). The technique enables ad hoc appropriation of any part of their body, or any object
they hold, as a pointing device.
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to be used for manipulation of individual controls or entire interfaces. Pointing has mostly been
studied with applications that involve sustained interaction. In contrast, spontaneous spatial
coupling is geared toward use in contexts where users interact on impulse, where interactions
are short, or where interactions occur on the side of other activity. Such forms of interaction are
becoming more typical as we engage with increasing numbers of devices in our environments,
highlighting a need for users to have instant control “right here, right now” [134]. Spontaneous
spatial coupling addresses this need with a low-effort method for instant, yet expressive control.
Users can decouple from a pointer whenever they choose, providing the flexibility to change
input in the case of fatigue, or for situational or contextual reasons. Everyday objects can be
coupled to controls and left in place for prolonged periods, providing the opportunity to create
unique tangible user interfaces. Multiple pointers can be instantiated, to support single users
for bi-manual, multi-modal and multi-point interaction, and multiple users for simultaneous
engagement and collaboration.

We operationalise this technique with MatchPoint, a computer vision-based implementation of
spontaneous spatial coupling which builds upon TraceMatch. Matchpoint is highly deployable
as it requires only a webcam as minimal hardware, and enables users to interact flexibly with
minimal constraints on their pose and ways of providing input. The system is based on display of
controls with orbiting targets, and accepts any form of movement in its field of view as matching
input. We demonstrate how the initial motion correlation phase establishes a coordinate frame
for spatial interaction, including the setting of the control-display gain (RQ2.1). MatchPoint can
detect and track multiple pointing instances in parallel. Due to its generic approach to motion
detection, the system does not require any calibration or training. As the system requires only a
webcam, it can be deployed in many application domains, including on large displays, tablets,
laptops, and smartphones.

We explore the unique design space created by spontaneous spatial coupling using practical ex-
amples built for MatchPoint (RQ2.2). We show how spontaneous spatial coupling can be used
to create spontaneous pointing instances with any part of the body for interaction with the tradi-
tional cursor-based paradigm. We also show how multiple pointers can be created and decoupled
using practical examples, either across users or with different inputs, and then used in parallel.
These can be used to manipulate underlying controls with varying degrees of coupling, from un-
related pointers which can manipulate different objects, to tightly coupled pointers which allow
for more complex interactions based on the spatial relationship between the two. Finally, we
explore the unique affordances imbued when physical objects are used for the coupling process,
resulting in ad-hoc tangible interfaces.

Finally, the notion of deriving the control-display gain from the initial motion correlation phase
raises questions of how successfully users can point in the spatial stage (RQ2.3). We conduct an
experiment based on the ISO 9241-9 multi-directional pointing task to investigate how success-
fully users can point across different body parts, or while holding an object, using MatchPoint.
Previous literature suggests the hands are much more adept at pointing than the head, however
we are also interested in the ability to point with objects-in-hand, to account for the flexibility
afforded by accepting generic motion as input. We reflect on our results using previously re-
ported metrics for the same ISO test, which illustrate that pointing at a distance with MatchPoint
is as accurate as similar computer-vision based techniques.

Our aim in this work is to define spontaneous spatial coupling as a new interaction technique
and to explore the opportunities it affords. We advance theoretical and practical understanding
of the technique through the following contributions:

• Definition of the properties that define spontaneous spatial coupling.
• MatchPoint, a webcam-based implementation of spontaneous spatial coupling which uses

generic computer vision processing to accept any form of input.
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• An exploration of the design space with practical examples, built for MatchPoint, which
demonstrate the versatility of spontaneous spatial coupling for different interaction tech-
niques.

• Evaluation of MatchPoint as an input device for pointing using the ISO 9241-9 multi-
directional pointing task.

4.1 Spontaneous Spatial Coupling

The interaction principle behind spontaneous spatial coupling is defined by five properties:

1. Distinct motions displayed to the user represent controls available for interaction;
2. A user’s intent to interact with a control is expressed through movement corresponding to

the control’s motion;
3. The selection of a control is determined by the correlation between the system’s output

and the user’s input;
4. Upon selection a spatial coupling is created between the user and the underlying function-

ality of the control;
5. The user is able to decouple from the control at will.

The interaction involves a phase of motion-matching followed by pointer control. The matching
phase can be based on any shape of motion, and method for determining a correlation. Consid-
erations for the design include how distinctive the motion is (to accidental matches), how easily
and efficiently users can match it, and how reliably and robustly it can be detected.

Any type of input that produces motion can be used for both the matching phase and subsequent
input, contrasting existing systems that are optimised for specific modalities such as tracking of
hand gestures [200], head pose [252], or feet [267]. Prior work has also demonstrated sponta-
neous coupling of smartphones for pointing on public displays [10, 30], contrasting our work
where users do not require any device. The matching phase results in a specific spatial coupling
between the user and the control’s underlying functionality. The coupling can be interpreted as
a pointing device for which a cursor is instantiated, or as a device for describing gestural input.
The output device needs to be able to present motion to facilitate the coupling, but once the
user is coupled other types of feedback can be used for interaction (e.g. audio feedback when
controlling the volume of a radio).

In the following, we discuss system design considerations to take into account when designing
controls for spontaneous spatial coupling.

Control-Display Gain: The CD gain of the pointer can be set according to the size of the user’s
movement in the motion-matching phase. This approach assumes the user’s movement range
during the motion-matching phase is indicative of the movement range used when spatially
coupled with a control. This may not always hold true and one might want to define the CD
gain to increase the allowed range of movements, for example when manipulating objects on
very-large displays.

Transfer Function: Absolute control maps provide a fixed gain so that the user’s movement is
directly mapped to the on-screen controls. To allow for greater precision, relative control maps,
such as pointer-acceleration-based transfer functions, can be used in conjunction with techniques
such as semantic pointing [27]. A drawback of relative control maps is the need for the input
device to provide the ability to clutch, temporarily disabling the gesture, in order to allow the
user to reposition themselves.

Pointer Starting Position: The user is in motion at the point of synchronisation with a moving
target. If the system switched immediately into pointing mode, the pointer would move in
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Figure 4.2: Initialisation of the MatchPoint tracker once a user is in synchrony with an Orbit. Left:
One matched feature point showing its trajectory (green) with fitted circle (red and blue). Centre:
The result after connected-component labelling of candidate pixels that matched the motion of the
feature point (green), calculated using dense optical flow. Right: The region of interest of the object
to be tracked (green).

continuation of the motion described for matching. For tasks such as parameter control or spatial
selection, the user may wish to start the interaction from a well-defined position (e.g. the option
currently selected). To allow this, the system can indicate when the match is detected, wait for
the user to stop their matching motion, and enable pointing only after the matched input has
become stationary. This may not always be required, for example when the pointer is used to
represent an on-screen cursor using an absolute control mapping.

Pointer Termination: A range of mechanisms are possible for decoupling from a control. A
pointer could terminate after completion of a single task for which it was instantiated, or after a
pre-set time of inactivity. It is also possible to have the user explicitly trigger pointer termination,
for instance using dwell or goal-crossing techniques [2]. If only one of the axes is used for input,
users can use the other to signal task completion. If the coupling is used for gestural input, a
specific gesture can be included for decoupling. Other than such generic techniques, specific
implementations might afford device dependent decoupling mechanisms (e.g. using the depth
axis of a depth sensor).

System Visibility: Moving targets are displayed to the user for acquisition and selection. The
dynamic nature of the controls may be visibly distracting if the user is focussing on the display
and has no intention of interacting with the system for prolonged periods of time. To overcome
this the moving targets can be hidden from the user by assigning a specific control to hide the
targets, or after a period of time with no input from the user. To display the moving targets,
generic gestures can be used, e.g. moving an input in a full circle. There may be no need to hide
the moving targets for applications where the user’s main focus is not on the display.

4.2 MatchPoint

MatchPoint is a webcam-based implementation of spontaneous spatial coupling that accepts
any type of movement as input. The system consists of two main processing pipelines (see
Figure 4.3): the motion matching pipeline which allows the user to select a control and acquire
a pointer; and the tracking pipeline which allows the user to manipulate the pointer by providing
a spatial coupling between the user’s input and the control. Instances of the tracking pipeline
can run in parallel with the motion-matching pipeline to allow a single user to acquire multiple
pointers, or for multiple users to acquire a pointer.

4.2.1 Motion-Matching

For motion-matching we use the TraceMatch processing pipeline, introduced in the previous
chapter. TraceMatch uses Orbits, introduced by Esteves et al. [69], as input controls which
consist of an orbiting target around a circular widget, a motion that is not likely to be reproduced
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Figure 4.3: Processing pipeline of the MatchPoint system, which builds upon the TraceMatch sys-
tem (in grey).
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accidentally by the user. FAST feature points [224] are detected and tracked using the pyramidal
Lucas-Kanade optical flow algorithm [152, 31]. Each feature point that exhibits a minimum
amount of movement is compared to all of the Orbis currently displayed to the user. A match
is confirmed if the minimum Pearson correlation coefficient between either the x or y axis of a
feature point and an Orbit is above a minimum threshold, and if the feature’s trajectory can be
successfully fitted to a circle with the appropriate arc length using RANSAC.

Control-Display Gain

During the matching phase we also calculate the control-display (CD) gain. The output of the
matching process returns a fitted circle for each matched feature point which indicates the ideal
trajectory of the user’s movement when matching the control (i.e. without any noise). We use
this as an indication of the range of movement for which the user is comfortable using, as it takes
into account the input used and distance from the camera, e.g. a head movement may result in
a much smaller radius than a hand movement. The CD gain, CDgain, is calculated by taking the
reciprocal of the average radii, r, of the fitted circles from the matched feature points:

CDgain =

(
N

∑
i=1

ri/N

)−1

(4.1)

The CD gain is then multiplied by the appropriate distance depending on the context. Three
ways which to calculate the appropriate multiplication factor are the size of the screen, size of
the widget presented for the motion correlation phase, or size of the spatial control. Using the
size of the screen ensures that the whole screen can be reached within a comfortable range,
for example when using a screen cursor. Alternatively, one could use the size of the motion
presented on the screen to calculate the gain, so that it forms a 1:1 mapping from the user’s
perspective. Using the size of the spatial control element (e.g. sliders, carousels) can be used to
maximise the accuracy of the precision of the user’s movement whilst in a comfortable range.

4.2.2 Spatial Coupling

To provide the spatial coupling between the user and the control we first initialise a region of
interest (ROI) in the frame relating to the input, before tracking it in subsequent frames using
a modified version of the Median Flow tracker [124]. We further process the output to remove
pointer jitter introduced by image noise.

Tracker Initialisation

The output of the matching process is one or more feature points, however we ideally want
to track as much of the body part, or object, which activated the control in order to improve
downstream tracking performance. To do this we calculate the dense optical flow of the scene
and compare the matched feature points’ trajectories with the dense optical flow information, see
Figure 4.2. First, we calculate the trajectories for all n matched feature points, A = {a1, . . . ,an},
between frames t and t−1 using their respective x and y coordinates, where the match occurred
at frame t:

ai =
(
xt−1

i − xt
i,y

t−1
i − yt

i
)

for i = 1, . . . ,n (4.2)
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We then calculate the Euclidean distance of each trajectory, D = {‖a1‖, . . . ,‖an‖}, and the aver-
age angle of the trajectories, θ̄ , using the trajectories’ average unit vector, ā:

ā =
1
n

n

∑
i=1

âi (4.3)

Where θ̄ = ∠ā. Using the Farnebäck algorithm [72] we calculate the dense optical flow of the
scene, F = {f1, . . . , fN}, between frames t and t−1 for all N pixels, P = {p1, . . . ,pN} where:

pt
i = (xi,yi) for i = 1, . . . ,N (4.4)

pt−1
i = (xi +∆xi,yi +∆yi) for i = 1, . . . ,N (4.5)

fi = (∆xi,∆yi) for i = 1, . . . ,N (4.6)

We then identify pixels that matched the motion of the matched feature point(s) by assessing
whether the ith pixel satisfies the following equations:

(1− thd)min{D}< ‖fi‖< (1+ thd)max{D} (4.7)

θ̄ − thθ < ∠fi < θ̄ + thθ (4.8)

Where ‖fi‖ is the magnitude of the dense flow at pixel i, ∠fi is the angle of the dense flow at
pixel i, thd is a distance threshold between 0 and 1, and thθ is an angle threshold measured in
radians. For this implementation we use values of 0.25 and π/8 for thd and thθ respectively. This
produces a mask of candidate pixels which is further processed to remove candidates resulting
from image noise or background movement.

Finally, we use connected-component labelling to find candidate groups from the candidate pix-
els. We seed the connected-component labelling with 10px× 10px areas around the matched
feature points because errors can be introduced in the tracking of individual feature points dur-
ing the motion-matching phase, i.e. a feature point is offset from the body part/object. We then
fit a rotated rectangle around all the candidate groups connected to the matched feature point(s),
resulting in the initial ROI for the tracker which will be tracked in subsequent frames. In the
event there are no candidate groups, we initialise a minimum rectangular ROI (30px×30px)
around the matched feature points.

Tracking

The body part or object to be tracked may not exhibit smooth movements. The tracking should
cope with unpredictable movements and changes in perspective of the body part/object relative to
the camera. We experimented using different trackers, including Median Flow [124], KCF [52],
MIL [9], TLD [125], and OLB [90]. Preliminary testing indicated that none were suitable for
this application so we instead use a modified version of Median Flow to track a rotated rectangle.

The first modification we made was the selection of points to track at each iteration using Median
Flow. Kalal et al. recommend using a grid of equidistant points or the use of a feature detector,
such as FAST [124]. However, the body part or object that we wish to track may not fill the
whole of the ROI, so instead we use a grid spacing based on central polygonal numbers (aka.
the Lazy Caterer’s sequence) to reduce the chance of the tracker getting stuck on background
objects.

The second modification was to introduce a “recalibration” phase for the tracker, which accounts
for changes in the size and perspective of the body part/object that is being tracked, whilst
ensuring that the ROI covers as little as the background as possible. For recalibration we follow
the same steps for initialising the ROI, however instead of using the matched feature point’s
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trajectory in Eq. 1 and 2 we use the trajectory of the ROI calculated using its centre, and instead
of the matched feature points acting as the seeds to the connected-component labelling we use
the centre of the ROI. As we have knowledge of the previous ROI we focus the search to a
rectangular area around the centre of the ROI prior to calibration with width, 2×W , and height,
2×H, where W and H are the width and height of the ROI prior to recalibration. We remove the
scaling of the ROI provided by the original Median Flow algorithm as this is performed during
the recalibration phase.

The recalibration phase relies on the movement of the ROI, therefore we only perform the tracker
recalibration when the magnitude of the ROI’s trajectory is above a threshold, thROI , and at most
every trecalib seconds to limit processing time. For our implementation we set thROI to 2 pixels,
and trecalib to 500ms. The centre of the ROI is used as the reference point of the tracker (i.e.
the point which updates the on-screen control). When we recalibrate the ROI, the centre may
change which would cause a jump in the cursor from the perspective of the user. To avoid this we
record the offset caused by the recalibration of the ROI and apply this to the output in subsequent
frames so that the recalibration is unnoticeable to the user.

Reducing Pointer Jitter

Cameras are subject to image noise that affect tracker performance and result in unwanted move-
ment of the pointer at the interface. This may be exacerbated by environmental factors, such as
lighting, and the distance and input method of the user. For example, for smaller movements
(e.g. head movements), there will be a lower signal-to-noise ratio and the jitter may be more ap-
parent. Likewise, larger distances from the sensing device will reduce the signal-to-noise ratio.
To reduce the effects of noise we take the average position of the ROI using a dynamic moving
window when the Euclidean distance between the centre of the tracker from the previous frame
to the current frame, dt , is less than dMIN pixels. The size of the moving window, NB is calculated
as:

NB = NMAX −b
dt ×NMAX

dMIN
c (4.9)

Where NMAX is the maximum size of the moving window in frames, MatchPoint uses 10 frames.
The moving window introduces input lag, therefore the value of NMAX should be carefully con-
sidered based upon the frame rate of the camera. The value of dMIN will vary depending on the
quality of the camera, for our implementation this is set to 2.5 pixels using a Logitech C920
webcam.

4.3 Design Space

In the following we explore interaction techniques and applications that can be supported with
spontaneous spatial coupling. We consider five cases:

• Single pointer→Multiple functionality – one pointer provides all the functionality in the
interface;

• Multiple pointers→Multiple functionality – each pointer provides a different functional-
ity;

• Multiple pointers→ Single functionality – multiple pointers provide the same functional-
ity;

• Parallel pointers – multiple pointers used in parallel;
• Tangible interfaces – creating temporary tangible interfaces using everyday objects.
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The first case is the conventional case of “pointing as we know it". For all other cases, we
present novel techniques and application demonstrators implemented with MatchPoint. All of
the examples are applicable to both single and multiple users, as controls can be matched and
spatially coupled in a non-exclusive manner.

4.3.1 Single Pointer→Multiple Functionality

Conventionally, touchless pointers use one pointer to control many on-screen input controls.
This technique can be used with spontaneous spatial coupling, allowing users to decide how to
provide input, and in the event of fatigue to desist pointing and resume with another type of
input. If only one pointer is required, it is also possible to replace the motion-matching stage
with a generic motion gesture, as there is no need to differentiate between different controls.

4.3.2 Multiple Pointers→Multiple Functionality

Multiple pointers can be used to provide different functionality. Users can acquire different
pointers depending on the interaction to be performed, removing the need for a user to navigate
through an interface using a single pointer. This also allows the CD gain to be mapped according
to the size of a control, as opposed to size of the display. To demonstrate this concept, we
developed two applications for different scenarios: a TV remote control for the living room, and
a video player for use when engaged in other physical activity (e.g., in the kitchen).

TV Remote Control

Conventionally, a TV remote control is shared, and it must be passed from person to person. Ges-
ture control for TV has been investigated in prior research, driven by users’ desire to have instant
control [134], but this has primarily focussed on library-based gestural techniques [45, 111, 118].
The level of interaction with TVs is increasing with the integration of “smart” features, while
users primarily focus on the content displayed, or may watch it in the background whilst per-
forming other tasks with minimal interaction. This provides an exemplar application space for
MatchPoint.

The TV remote control application features controls for changing the channel up and down,
muting the volume, changing the volume, selecting a channel from a list, and showing a TV
guide (Fig. 4.4). Changing the channel up and down, and muting the volume, are binary choices
and do not require spatial coupling, therefore these are implemented as motion-matching only
controls.

Upon selecting the volume control, a one-directional slider is presented to the user (Fig. 4.5, left).
The control waits until the user’s input is stationary prior to displaying the control, allowing the
user to change the volume relative to the current volume of the TV. Movement in the y-direction
sets the volume level, and movement in the x-direction either cancels the control (when user
moves left), or confirms the new volume level (when user moves right).

The channel selection control displays a one-directional carousel control (Fig. 4.5, right). This
also waits for the user’s input to be stationary prior to activating to ensure the user starts search-
ing the channels from their currently selected channel. Movement in the x-direction scrolls
through the channels, dwelling on a channel displays the programme details, and movement in
the y-direction either cancels the control (down) or changes the channel to the current selection
(up).

For the TV guide the user is presented with a cursor for navigation (Fig. 4.6). Dwelling on a
programme displays the details in the upper-most box, which can be selected to present the user
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Figure 4.4: TV remote control prototype, showing Orbits for: channel up and down (left), TV guide
and channel select (middle), and mute toggle and volume control (right).

with a number of options depending on the programme, including watch now, set a reminder,
start a recording, or close the TV guide. The user can also close the guide by dwelling at the
edge of the interface.

Video Player

Building upon the TV context we developed a video player application. Video guides for practi-
cal tasks, such as cooking or car maintenance, are popular on platforms such as YouTube. Users
will often watch the videos in-situ on a portable device, such as a laptop, tablet or mobile phone,
whilst performing a task. Interactions with the video guide will be relatively sparse, such as
pausing and rewinding, as the user is primarily focussed on performing the actions demonstrated
in the video guide. Spontaneous spatial coupling allows the user to perform other tasks whilst
interacting with the video player, e.g. using cooking utensils in the kitchen whilst cooking.

The video player features controls that allows the user to play or pause, change the playback,
navigate to a specific time, and mute or change the volume (Fig. 4.7). The controls for play/pause
and muting the volume are binary choices, therefore we use motion-matching only controls.

The video playback control allows the user to trigger playback of the video through movement
in the x-direction, while movement in the y-direction exits the control (Fig. 4.8). Upon activa-

Figure 4.5: Volume slider which can be controlled with movements in the y-axis (left), and channel
selection control showing the programme details and slider to indicate the position of the user’s
movements in the x-axis which controls the carousel (right).
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Figure 4.6: TV remote control prototype, showing the TV guide.

tion the control waits for the user’s input to become stationary, ensuring that the play button is
selected when the interaction starts.

The control allowing users to navigate to a specific time in the video uses movement in the x-
direction to select the time, and movement in the y-direction to either confirm the selection (by
moving up) or cancel the control (by moving down). Upon activation the user must pause their
motion briefly so that search can resume from the current time in the video.

4.3.3 Multiple Pointers→ Single Functionality

In the above examples multiple users can interact with the controls, but only one can interact
with a specific control at any given time (e.g. two people can’t change the volume at the same
time). In some instances, it may be desirable for multiple users to acquire a pointer with the
same functionality, for example to contextualize their discussions [191].

Whiteboard Pointing Prototype

A scenario in which this would be beneficial is a meeting room where users are remote from the
display but would like to indicate a position on the screen. For this we designed a “whiteboard”
pointing prototype featuring a control to allow users to acquire a cursor (Figs. 4.9 and 4.10).
Upon selection, users acquire a cursor with a unique colour to allow multiple people to control
a pointer and provide input to a shared space as and when required.

4.3.4 Parallel Pointers

Users can acquire multiple pointers at the same time. The functionality of the pointers used in
parallel may be:

• Unrelated – control of one pointer does not affect the other(s)
• Loosely coupled – the pointers affect the same object, but can be used individually
• Tightly coupled – interaction results from the relationship between the pointers
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Figure 4.7: Video control prototype showing Orbits for: play/pause (left), video progress bar and
playback (middle), and volume control (right).

Figure 4.8: Playback control for the video control prototype where movements in the x-direction
select different playback options.

Figure 4.9: White board pointing prototype demonstrating multiple cursors (green, red, and blue).
Dotted lines and rectangles represent the input and user controlling the cursor. The Orbit (pink)
shows the colour of the next cursor to be generated.
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Figure 4.10: Interface of the white board pointing prototype demonstrating multiple cursors (yel-
low and blue) which allow users to highlight different parts of the display. The Orbit (green) shows
the colour of the next cursor to be generated.

For unrelated and loosely coupled pointers, parallel usage allows users to complete tasks in less
time, or to manipulate one control based on the state of another. Tightly coupled pointers offer
more complex interactions by using the pointers’ spatial relationship with each other, however
they must be used at the same time and can not be used individually.

Object Manipulation Prototype

To demonstrate loosely and tightly coupled parallel pointing, we created two prototypes for
object manipulation (Fig. 4.11). The first is a multi-modal prototype designed to be used with
any type of input. It consists of two loosely coupled input controls: one to pan the object, and the
other to zoom. The pan control uses the x and y directions of the user’s first input to position the
object. The zoom control uses movement in the y-direction of the user’s second input to zoom in
or out, using an acceleration-based transfer function to control the level of zoom. Movement in
the x-direction is used to enable clutching (by moving to the left) or exits the control (by moving
to the right).

The second prototype demonstrates bi-manual input, designed specifically for the hands using
two tightly-coupled controls. Object manipulation is supported in a way that is familiar from
touch-screens: the distance between the hands determines the zoom, the centre point between
the hands determines the pan position, and the positions of the hands relative to each other
determines the rotation.

The bi-manual prototype requires both controls to be activated in order to enable the parallel
pointing interaction. However, it provides the user with three functions (pan, zoom and rotate)
using only two pointers, contrasting the multi-modal approach which only provides two func-
tions (pan and zoom). Note that the system does not identify body parts, and that it would be
possible for users to acquire the controls with other than the intended hands. To avoid this, an
interface should convey to the user if a specific type of input is required (e.g. showing icons of
the hands).
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Figure 4.11: Two prototypes for parallel pointing. Multi-modal pan and zoom (left): one input
controls the pan (the head), the other controls the zoom (the hand). Bi-manual pointing (right): the
centre point between the hands determines the pan position, the distance determines the zoom, and
the angle determines the rotation.

(a) (b)

Figure 4.12: Interfaces designed to demonstrate the parallel pointing manipulation of an image: (a)
a multi-modal technique whereby each orbit corresponds to a specific command for loosely coupled
input, and (b) a bi-manual technique whereby the orbits are used for tightly coupled control.
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Figure 4.13: A tangible interface created with MatchPoint. The cup controls the playlist, the toy
figure controls the playback, and the toy car controls the volume. Moving the objects left and right
changes the value of the respective control.

4.3.5 Tangible Interfaces

Other than creating a coupling with a part of their body, users can also move a tangible object
in synchrony with a displayed motion. The result is a spatial coupling between tangible object
and control. The use of objects in this way presents a distinct case, as they become tangible
intermediaries between user and control. This has interesting affordances, as a user can leave
an object stationary in between interactions, with a persistent coupling. Objects can also afford
specific manipulations depending on their shape and weight, for example nudging, rolling and
tilting.

Graspable Music Player

To demonstrate this concept we developed a tangible music player interface (Fig. 4.13). Three
controls are displayed to the user allowing them to change the playlist, volume, or the playback.
Once the user couples a physical object to a control the system waits for the user to position
the object into its starting position. The control is not fully activated until the object remains
stationary for an extended period of time (e.g. 4 seconds). All input controls in this example
utilise movement in the x-axis to manipulate the respective control, e.g. moving the toy car left
lowers the volume, moving it right increases the volume. The objects remain paired with the
controls until they are removed from the camera’s field of view.

4.3.6 Summary

We have demonstrated different configurations of spontaneous spatial coupling, with applica-
tion prototypes grounded in real-world applications that showcase multiple pointers being used
in parallel, multiple users concurrently pointing, and the unique affordances of using tangible
objects for spontaneous spatial coupling. The exploration of interaction techniques shows how
spontaneous spatial coupling allows the user to define an interaction space on a per-interaction
basis. The use of motion correlation to define the CD gain presents interesting design choices,
and in the prototypes presented we based the CD gain on individual controls so that users could
interact within a comfortable range of movement. This was motivated by the use of the head
as input during development which, in contrast to the hands, has limited range of movement.
By limiting input in the spatial domain to that used in the motion correlation phase, we ensure
users are within a comfortable range. Depending on the context, designers may decide to adapt
the CD gain to the screen or as a 1:1 mapping as discussed previously. Whereas the presented
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techniques and prototypes demonstrate what is possible with spontaneous spatial coupling, the
use of dynamic CD gain motivates an exploration of how it affects user input.

4.4 Multi-Directional Pointing Task Evaluation

The ability to dynamically adjust the control-display gain of the pointing phase based on the
size of the movement during the motion correlation phase enables seamless pointing between
inputs without the system requiring any knowledge of the body parts providing input. In order to
assess how successfully users adapt to the CD gain being dynamically set based on the motion
correlation phase we conducted a two-directional Fitt’s Law study, based on the ISO 9241-
9 standard, to understand the performance of MatchPoint as an input device for pointing and
to provide insights into pointing performance with different body parts, and whilst holding an
object. The CD gain is calculated using the technique proposed in section 4.2.1, with the size of
the Fitts’ circle being used as the range of movement. We compare three movement conditions
(head, hand and cup-in-hand) to investigate their throughput and other pointing characteristics
in a simulated living room environment. We chose a simulated living room environment to test
how the system performed when the user was at a larger distance (>2m) from the input device.

4.4.1 Task

Ten circular targets of diameter W were displayed in a circular configuration with a radius of
A/2. In order to avoid possible confounds we used Guiard’s Form x Scale design [95], with three
levels of W (50px, 100px, 200px) and one level of A (900px), resulting in three unique index of
difficulty (ID) values of 4.24, 3.32, and 2.46 respectively. When calculating the throughput we
use the effective index of difficulty, IDe, by measuring the effective values of A and W , which
take into consideration the speed/accuracy trade-offs participants make when completing the
task:

IDe = log2(Ae/We +1) (4.10)

Where Ae is the average movement distance observed [249], and We is the standard deviation of
endpoints, defined as:

We = 4.133×SDx,y (4.11)

Where, SDx,y is the bivariate endpoint deviation, defined as [295]:

SDx,y =

√√√√√ N
∑

i=1

(√
(xi− x̄)2 +(yi− ȳ)2

)2

N−1
(4.12)

Dwell was used as the selection process, with a dwell time of 240ms to simulate the time taken
to press a button [227]. We also measure the number of target re-entries, as defined by MacKen-
zie et al. [156].

4.4.2 Participants and Apparatus

We recruited 12 participants to undertake the study (mean = 28.1, SD = 3.9). Six participants
were female, and one was left-handed. None of the participants had used the MatchPoint system
prior to the study.

The study was conducted in a simulated living room environment, using a Samsung 55" Smart
TV (1920 x 1080) as the display. An unmodified off-the shelf webcam was used as the input
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device to the MatchPoint system and captured a 640 x 480 region of interest from a 1920 x 1080
frame. The region of interest was used to ensure that only movement relating to the study was
captured by the webcam. Participants were seated on a couch 2.23m from the TV (based on a
TV size to viewing distance calculator). For the cup-in-hand input participants were asked to
hold a cup half-filled with water to simulate holding a drink.

4.4.3 Procedure

At the beginning of the study participants completed a demographics questionnaire and were
introduced to the MatchPoint system. They were instructed to relax and work comfortably
whilst performing the tasks as quickly and as accurately as possible. No instructions were given
regarding how to hold the cup or position the hand when matching and pointing.

For each movement condition, participants undertook three sets (one for each ID), where a set
consisted of five blocks of 10 target selections. The first block was used as a warm-up, with the
remaining four being used for data collection. At the start of each block the users acquired a cur-
sor by matching the motion of an Orbit with the specified body part or object. Participants were
instructed to let the researcher know if they required a break in between blocks due to fatigue.
A Latin square design was used to counterbalance for movement conditions, and the order in
which the IDs were presented and the starting position of the first target were randomised. The
movement time was only measured after the first target was selected. The study ended with a
brief verbal discussion to gain feedback on the system.

Excluding the warm-up blocks the study involved 12 participants× 3 movement conditions× 3
IDs × 4 blocks × 10 trials per block = 4320 trials.

4.4.4 Results

Movement times, shown in Figure 4.14, were analysed using a one-way repeated measures
ANOVA to determine whether any statistically significant differences existed for the different
movement conditions. The data was normally distributed, as assessed by boxplot and Shapiro-
Wilk test, p > .05, and the assumption of sphericity was not violated, as assessed by Mauchly’s
test of sphericity, χ2(2) = 3.903, p = .142. The test revealed a significant difference between
movement times (F2,22 = 73.166, p < .001). Post-hoc pairwise comparisons with Bonferroni
corrections revealed the movement time of the head (3.12s) was significantly higher compared
to both the hand (2.37s) and cup (2.54s), at p < .001. There was also a significant difference
between the movement time of the hand and cup, at p = .035.

The grand throughputs for each movement condition were calculated using the mean of means
approach [249]. A one-way repeated measures ANOVA was used to determine whether there
were statistically significant differences between throughputs for different movement condi-
tions. The data was normally distributed, as assessed by boxplot and Shapiro-Wilk test, p > .05,
and the assumption of sphericity was not violated, as assessed by Mauchly’s test of sphericity,
χ2(2) = 1.856, p = .395. A significant difference between movement conditions was revealed
(F2,22 = 54.617, p < .001). Post-hoc pairwise comparisons with Bonferroni corrections showed
that the throughput of the head (1.03 bits/s) was significantly lower compared with both the hand
(1.35 bits/s) and cup (1.25 bits/s), at p < .001. There was not a statistically significant difference
between the throughputs of the hand and the cup, at p = .059. Using linear regression, we then
developed Fitts’ Law models of the form:

MTinput = a+b · IDe (4.13)
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Figure 4.14: Movement times for each target size and movement condition.

Figure 4.15: Target re-entries for each target size and movement condition.

Where, MTinput is the predicted movement time for a movement condition, measured in seconds.
The parameters for a and b, and the R-squared model fit values are given in Table 4.1.

We were interested to see whether a statistically significant difference existed between target
re-entries for different movement conditions and target sizes (Fig. 4.15). For this, we used a
two-way repeated measures ANOVA. The data was normally distributed, as assessed by boxplot
and Shapiro-Wilk test (p > .05), and in all cases the assumption of sphericity was not violated,
as assessed by Mauchly’s test of sphericity (p > .05). We discovered significant main effects for
movement conditions (F2,22 = 24.836, p < .001), size (F2,22 = 44.341, p < .001), and a signifi-
cant interaction for movement condition× size, (F4,44 = 11.472, p < .001). We further analysed
the main effects using Bonferroni corrected pairwise comparison of means.

For the main effect of movement condition, we observed that the head had a significantly higher
number of target re-entries (0.541) compared with both the hand (0.299) and cup (0.304), p <
.001. There was no statistical significant difference between the hand and the object, p = 1.0.
The main effect for size showed that smaller targets (0.649) resulted in a higher number of target
re-entries compared with medium targets (0.323), which in-turn resulted in a higher number of
target re-entries compared with larger targets (0.172). In all cases the results were statistically
significant at p < .005.
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Input a b R2 TP (bits/s)
Head -1.000 1.345 0.766 1.03
Hand 0.417 0.624 0.556 1.35
Cup -0.118 0.857 0.795 1.25

Table 4.1: Fitts’ Law parameters, model fits, and throughput (TP) for each movement condition.

To analyse the movement condition × size interaction, we performed a one-way repeated mea-
sures ANOVA for each size to assess which movement conditions, if any, caused a signifi-
cant difference to target re-entries. For all sizes, Mauchly’s test of sphericity was not violated.
There was no significant difference between movement conditions for the large size, however
there were significant differences for both the medium (F2,22 = 5.513, p < .011) and small sizes
(F2,22 = 22.546, p < .001). Post-hoc Bonferroni corrected pairwise comparisons revealed the
head had a significantly higher number of target re-entries compared with the cup for medium
target sizes, at (p = .011), and both the hand and cup for small target sizes, at (p < .005). No
false motion-matching activations occurred during the study.

4.4.5 Study Discussion

The larger throughput and number of target re-entries for the head may be a result of both user
and system performance. The head is used much less frequently for everyday pointing tasks
compared with the hand, and the smaller range of movement at a distance of over 2m from
the camera equates to fractional changes per pixel between frames. The moving window used to
reduce cursor jitter for very small movements introduces a time lag which could have affected the
user’s fine-grain pointing performance. In future work, this could be alleviated using augmented
cursors, which have been shown to improve target acquisition of smaller targets for gestural
interaction [62].

Table 4.2 details prior work which used the ISO 9241-9 multi-directional pointing task to exam-
ine the throughput of input devices for head and hand gestures. A direct comparison of devices
cannot be made due to the variability of participants, distances to the input device, measurement
of endpoint deviation, selection of IDs, and difference in selection techniques. However, it ap-
pears that MatchPoint has a similar throughput to the first version of the Microsoft Kinect when
used at larger distances. This would suggest that the dynamic setting of control-display gain had
little impact on user performance when pointing. It is also important to note that we used a dwell
time of 240ms to simulate the time taken to press a button. This may be suitable for some tasks,
but for others a larger dwell time may be needed to reduce false detections when a user hovers
over a control.

We observe very low R2 values for the Fitts’ law models, see Figure 4.16. Based on prior
research one would assume the physiological nature of the hand and arm movements of the
users follow Fitts’ law, and we therefore look to technological reasons for the low values. The
original reasoning behind the introduction of effective index of difficulty was to account for the
speed-accuracy trade-off, and assumed that users who were less accurate were performing the

Figure 4.16: Line graphs of movement time versus effective index of difficulty for (a) head, (b)
hand, and (c) cup.
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Distance
to Device

Study
Movement
Condition

Input Device
TP

(bits/s)

<1m

[35] Hand Leap Motion 2.8
[48] Hand MS Kinect v1 1.42
[117] Head Head-mounted marker 1.61
[200] Hand MS Kinect v1 2.1
[278] Head Optical IR markers 1.40

>1m

[24] Head MS Kinect v2 2.3
[24] Hand MS Kinect v2 2.45
[148] Head MS Kinect v1 0.75

MatchPoint Head Webcam 1.03
[235] Hand MS Kinect v1 1.19-1.38*

MatchPoint Hand Webcam 1.35

Unknown
[135] Hand Wii Remote 2.97
[227] Hand MS Kinect v1 0.5-2.0**
[235] Hand Swiss Ranger 4000 0.75-1.57*

Table 4.2: Touchless input devices used in previous studies that used the ISO 9241-9 multi-
directional pointing task to assess throughput (TP) for hand and head gestures. * indicates a range
of throughputs due to different selection techniques. ** indicates estimated throughput.

movements more quickly [249]. With MatchPoint, this may not be the case. We observed a
relatively large number of target re-entries across the inputs (especially in the case of the head),
which in combination with the dwell time used could affect the movement time. Figure 4.16
shows more variability for the higher index of difficulties. This may have been due to users
struggling more with fine-grained movement, in which the technique is more prone to jitter.
Although a moving average filter was used to suppress the jitter, it inherently introduces lag, and
therefore users have either jitter or lag to contend with – both of which could contribute to the
lower goodness of fits.

4.5 Discussion

Spontaneous spatial coupling can support wide-ranging applications by enabling flexible touch-
less input over a distance. At the core of the concept is the motion-matching phase – it empowers
users to simultaneously select the function they wish to control, and the input to use (implicit
in their action). The selections made by the user, and additional contextual information such as
scale and range of motion observed in the matching process, in turn enable input to be uniquely
tailored to the context. As shown, this encompasses tracking of the specific input of choice as a
pointing device, calibration of the control display gain based on context, and the possibility to
map input in a task-specific manner to parameters of the selected function.

The dynamic appropriation of “anything the user can move” as a pointing device presents a
new design opportunity, inviting exploration of mappings that might not be general purpose but
fitting for specific contexts. Our design space exploration shows the concept extends to spatial
coupling of multiple controls at a time, by one or multiple users, with body parts and/or objects.
This opens up a compelling design space, for which we have provided an initial framing and
demonstrated a range of novel techniques.

MatchPoint provides a highly deployable implementation of spontaneous spatial coupling. The
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system requires only an off-the-shelf RGB camera, and uses low-cost computer vision tech-
niques that are able to track input without the need for recognition of objects or body parts.
Other sensing modalities could be considered for spatial coupling, for example depth sensors to
extend motion-matching and pointing into 3D, or inertial measurement units, to leverage sensors
that are widely deployed in mobile and wearable devices.

MatchPoint’s ability to accept any form of input is compelling as it enables users to choose a
form of input that is convenient in a given context. As shown, users perform well with Match-
Point for pointing over a distance, but the way in which a user provides input can affect per-
formance – raising the question of when to design for flexible choice versus specific types of
input. Based on its ability to accept any form of input, MatchPoint could also be deployed as an
accessibility device, to provide users who can not operate a conventional mouse with a flexible
alternative.

The motion-matching phase in MatchPoint is based on circular motion, adopted for the purpose
as it provides uniformity to acquisition of controls. However, the system could be extended to
support matching with any shape of motion by using a generic model fitting approach. Matching
against any type of motion could provide designers with additional opportunities, for example
selection of graphical objects for manipulation by tracing their outline, or use of polygonal
motion paths as corners could help users synchronise.

There are several limitations in the current implementation of MatchPoint. The tracker used for
spatial coupling does not handle occlusion, and simultaneous motion could result in tracking
errors when feature points are detected for body parts connected to the user’s desired input (e.g.
tracking of the elbow when using the hand). If multiple people perform the exact same motion
at the same time the system might also attempt to track their combined movements. The system
may also attempt to track the hand when it is removed from a physical object when creating
tangible interfaces. These limitations could be overcome by incorporating object recognition and
segmentation of body parts, which would also open up the possibility for designers to present
different interfaces for a control depending on which input is being used.

4.6 Conclusion

In this chapter we have demonstrated how expressive motion correlation can be for interaction
when combined with spatial input (RQ2). Spontaneous spatial coupling is a powerful concept
for touchless input as it empowers users to dynamically appropriate any part of their body, or
object they hold, as a pointing device. The concept leverages motion-matching as an intuitive
method for users to select a control while implicitly creating a spatial coupling that is tailored
to the context, supporting the acquistion of a pointer as and when needed (RQ2.1). The concept
also opens up an entirely new design space for interactions that leverage spontaneous coupling of
multiple controls at a time, by one or multiple users, with different body parts, or with objects as
tangible intermediaries (RQ2.2). MatchPoint is a systems contribution that provides a complete
implementation of spontaneous spatial coupling. The system lends itself to wide deployment as
it only requires an off-the-shelf camera and computer vision for detection, matching and tracking
of motion input. The system is able to take input of any form, and adapts the control display
gain to provide users with a comfortable input range. We demonstrate that users are adept at
providing input with different body parts, and whilst holding an object, and that the throughput
of MatchPoint using only a webcam is similar to that of the Microsoft Kinect v1 (RQ2.3).
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Chapter 3 demonstrated the versatility of motion correlation when movement is used as the sens-
ing principle, and Chapter 4 showed how motion correlation can be used to establish co-ordinate
frames on a per-interaction basis which enables unique opportunities for interaction. However,
one of the primary factors of whether a technology is adopted include user experience and users’
expectation of sensing robustness, which we address in this chapter. In general, gesture detec-
tion and recognition using computer vision techniques is non-trivial with confounding factors
such as lighting, scale, occlusion, etc. Users expect 100% accuracy and are adept at detecting
events that do not align with their expectations. Another important consideration when design-
ing an input method for touchless gestures is understanding its robustness to the Midas touch
problem. Ideally a system should detect a user’s intent to interact, whilst rejecting accidental
activation. Motion correlation has the potential to reduce the Midas touch problem associated
with touchless gestures because detection is based on both spatial and temporal properties of the
user’s movement. The predominant technique used in the motion correlation literature, and in
this thesis, relies on variations of the Pearson product-moment correlation. This positions the
detection problem as one of matching two trajectories, where there has been a plethora of work
in other communities based on time series classification [238], and trajectory mining [282, 304].
This raises the question of whether or not the Pearson product-moment correlation coefficient is
the best detection algorithm for motion correlation.

Figure 5.1: In this chapter, we evaluate how well users synchronise with external stimuli in the
context of motion correlation under different conditions. Movement is presented on displays using
four different shapes (circle, square, horizontal and vertical lines), and both (a) linear and (b)
simple harmonic motion. Users are tasked with following the movement with four inputs (head,
dominant hand, non-dominant hand, and cup-in-hand). After extracting the ground truth of the
user’s movements, we analyse how well they are able to synchronise to inform both interface and
algorithm design.
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To select the most appropriate algorithms from the literature, and to better design new algo-
rithms, we look towards an understanding of how users synchronise with target movement. This
is currently lacking in the context of motion correlation using body movements. Sensorimo-
tor synchronisation literature has studied how we synchronise with external stimuli, however
work most closely related to the context of motion correlation is not directly applicable because
they have focussed on one-dimensional movement of the hand (e.g. [36]), use visual feedback
of the user’s position (e.g. [222, 42, 250]), or use two-dimensional movement synchronised to
discrete stimuli such as a metronome (e.g. [255]). Work on motion correlation interfaces also
provides potential insights of how well we can synchronise. PathSync found higher recognition
rates when users synchronised with squares, hypothesising that the corners provided saliency
and increased user’s ability to synchronise [40]. Freeman et al. found that users preferred,
and had higher success rates with, one-dimensional target movements in comparison to circu-
lar movements [80]. In Chapter 3, we showed that users struggled synchronising with the fast
head movement, and overall found higher success rates with slower moving targets. However
all of these insights are based on an inference that detection rates equate to user’s ability to syn-
chronise with a moving target. They fail to take into account any deficiencies in the detection
process – either user (e.g. poor synchronisation) or sensor (e.g. input lag) induced. This raises
the fundamental question of how well can users synchronise with moving targets as measured in
the context of motion correlation (RQ3).

The underlying detection process can only be as good as users’ ability to synchronise with
the motion. So far, we have presented targets to users as circular orbits which move with a
uniform speed. Previous work has also investigated how the hands can match targets moving
with constant velocity for squares, diamonds, and one-dimensional lines [40, 81]. This motivates
an investigation into both how well these shapes can be matched using other inputs, but also if
we can better design target movement for body movements (RQ3.3). It has been shown that
hand movements exhibit simple harmonic motion when performing simple reciprocal pointing
tasks [94]. After all, when we move our body we must accelerate and decelerate a mass. Based
on this knowledge, we posit that by presenting target movement as simple harmonic movement
we can leverage the kinematic properties of how we move our bodies to help users synchronise
more accurately with targets.

In order to answer these questions we follow a data-driven approach where we first collect data
on eight users, see figure 5.1. Algorithms should be sensitive enough to detect when a user
synchronises with a moving target, but specific enough as to not detect movement that does not
correspond to a moving target. We therefore gather two datasets, one on users matching target
motions which forms our true positive dataset, the second we collect on users performing body
movements in the form of spatial and semantic gestures which we use as a false positive dataset.
The goal of a detection algorithm is to maximise the detections in the true positive dataset,
whilst minimising detections for the false positive dataset. After collecting the data, we first
analyse user behaviour to gain insights on how well they can synchronise against the moving
targets under different conditions (RQ3.1). To inform algorithm design, we extract the temporal
difference between the user’s gesture and the corresponding position in the target trajectory to
see how users lead or lag the target and how this evolves over time hl(RQ3.2). We also extract
additional information on user behaviour to inform interface design, including the size of the
gesture, and time taken to start. We use insights gained to select and evaluate eight algorithms
from both the motion correlation and time series comparison literature, and perform an extensive
search of the parameter space (RQ4).

Our aim in this work is to provide a foundation for understanding motion correlation at a deeper
level, to help inform both algorithm and interface design. We advance theoretical and practical
understanding of motion correlation through the following contributions:

• A deeper understanding of how users synchronise with moving targets in the context of

78



5. In-depth Analysis of Motion Correlation with Body Movements

motion correlation across different target conditions to inform both interface and algo-
rithm design;

• A demonstration of how simple harmonic motion can be used to support users synchronise
with target movement by leveraging the kinematic properties of how our bodies move;

• An extensive parameter search of eight algorithms, demonstrating the robustness of mo-
tion correlation as a technique and providing parameters for practitioners.

5.1 Data Collection

To better understand how users follow a moving visual target with body movement, and to
collect data for algorithm evaluation, we collected data of participants mimicking the motion of
a moving target with varying properties:

• SHAPE: circle, square*, vertical line*, horizontal line*;
• TYPE of movement: linear, harmonic*
• SPEED (Time per cycle): 2s, 4s
• DIRECTION: clockwise, anti-clockwise

Note, only shapes marked with * use the harmonic type of motion, and for the circle we use uni-
form circular motion. The movement of a target moving with simple harmonic motion oscillates
sinusoidally, and is defined by:

x = x0 cos(ωt +ϕ) (5.1)

Where x0 and ϕ are constants, and ω is the angular frequency of the oscillations. We investigate
users’ ability to synchronise with moving targets using four MOVEMENT CONDITIONS (head,
dominant hand, non-dominant hand, and a cup). We also capture users performing a number
of common semantic and spatial gestures that may be used during everyday life, see Table 5.1.
These form a false positive dataset with which we assess how robust motion correlation is against
movements not intended for interaction. Gaining an ecologically valid false positive dataset
that covers the wide variety of accidental movement one would expect to find in real-world
applications is non-trivial due to amount of data required and ethical concerns surrounding in-
the-wild data capture. By acquiring data on semantic and spatial gestures we gather common
movements which could cause false activations, and against which we evaluate the robustness
of motion correlation.

5.1.1 Participants and Apparatus

Eight participants (5M/3F) aged between 21 and 40 years (mean= 27.9, s.d.= 6.25) were selected
to take part in the study. All of the participants were right-handed. Four participants had no

Table 5.1: List of communicative gestures used to detect robustness of algorithms to false positives
from accidental movement

Input Communicative Gesture

Head Nod; Shake; Look at objects
Hands Thumbs up; Thumbs down; Unsure; Okay symbol; Stop; Go

away; Hurry up; Finger wave; Hand wave; Rub together
Body Shrug shoulders; Stand and sit; Get comfortable; Walk around;

Pick up objects; Point at objects
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experience with motion correlation input techniques, one had experienced gaze-based smooth
pursuit motion correlation, one had experienced body-based motion correlation, and two had
experienced both gaze- and body-based motion correlation techniques.

The data collection took place in a lab with a 55" Samsung Smart TV (1920×1080) and a couch
placed 2.23 m from the TV (based on a TV size to viewing distance calculator). An unmodified,
off-the-shelf Logitech C920 web camera was mounted on top of the TV. The camera captured
a 960× 720 region of interest within a 1920× 1080 image at 30 frames per seconds to control
that only movement related to the study was captured. Participants were seated on the couch.
We extract body movement using a combination of a web camera and skeletal extraction using
OpenPose [284, 245, 39, 38], rather than a Kinect because preliminary testing revealed this
approach was more stable – in particular when the arm was perpendicular to the camera.

5.1.2 Procedure

After filling out demographics information and signing a consent form participants were seated
comfortably in the middle of the couch facing the TV. They were then instructed to perform a
series of semantic and spatial gestures aimed towards the experimenter sat off camera, the order
of which was chosen randomly and verbally communicated to the participant, see Table 5.1.
They were told they were free to perform the gesture as they wished as the primary goal was to
elicit movement. If they did not understand what the gesture meant the experimenter verbally
described the context in which the gesture would be used, e.g. stop – “if you were to non-
verbally indicate to someone to stop what they were doing”. The participants were recorded for
the duration of the gestures (including time in between).

Following this, participants performed four blocks of following target motion, one for each
movement condition. The order of movement condition was counter-balanced using a Latin
square and the remaining factors were randomised. The cup was half-filled with water to sim-
ulate someone holding a drink. Each condition was performed two times. There is no notion
of clockwise and anti-clockwise for one-dimensional shapes (vertical and horizontal), however
we include these as dummy conditions which effectively increases the repetitions to four for
these shapes. Participants were instructed to perform all movements using a comfortable range
of movement. They were instructed to perform hand movements from the elbow, as opposed to
the wrist or finger, to improve automatic detection of hand movements. They were instructed to
rest their hands between trials, and that they could change the posture of their hand between, but
not within, trials. The former instruction was to make sure the participant did not get tired, but
also to ensure that each movement started from a resting position.

For each trial, the participant was instructed to follow the movement of the target as soon as
it appeared on the screen. Each movement lasted for eight seconds, with a (≈ 4 s) break in
between, and was shown on the TV with a path length (i.e. circumference in the case of the
circle) of 400 pixels for two-dimensional movements, and 200 pixels for one-dimensional. The
starting point of the motion was randomised for each trial. A recording was taken for the duration
of the eight seconds. Users completed all trials for a movement condition before moving onto
the next. After each movement condition, participants were asked for their preference on shape,
speed, and type of movement. After all trials were completed we then asked for participant
preferences again as a whole, and which movement condition they preferred to use. In total,
each participant performed 4× (4+3)×2×2×2 = 224 movements.

5.1.3 Movement Extraction

For understanding how well users synchronise with moving targets, and for evaluating algo-
rithms, we need to extract user movement from the recording. Both user and target movements
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are spatiotemporal trajectories in which each spatial position is recorded at a specific time. A
user’s trajectory τu = {P(t0),P(t1), . . . ,P(tn)} is an ordered sequence of spatiotemporal posi-
tions, P(t) =

(x(t)
y(t)

)
, representing the user’s position in the camera’s image plane at a given time

stamp. Likewise the target’s trajectory, τt , is made up of spatiotemporal position representing
the target’s position on the display. The system used for recording uses a polling mechanism.
Each time a frame is captured by the camera, the corresponding position of the target on the
display is recorded alongside it, along with the timestamp of when this was recorded.

In order to analyse user movement we extract both head and hand movements from the recorded
videos. This is performed using the OpenPose multi-person keypoint detection library [284,
245, 39, 38]. Each video was post-processed with OpenPose, extracting the body keypoints
for those trials involving hand movements, and face keypoints for head movements. For hand
movements we use a single keypoint of the wrist from the OpenPose library, as we found this
more stable than the finger-keypoint detection which constantly dropped frames. Each keypoint
has an associated confidence level from the OpenPose library (0-1). If this is above 0.4 then we
assume the joint position is accurate, if not then we linearly interpolate between valid points.
For head movements we use the facial keypoints reported from OpenPose. We select those
keypoints corresponding to the nose as these should remain relatively stable irrespective of a
user’s facial expression or speech, unlike eye or mouth features. In the event all of the features
of the nose are not found with a confidence over 0.4, then we initialise a median flow tracker
from the last known valid position to interpolate the missing frames. We chose the median flow
tracker because of its error reporting capabilities in the event the lack of features is due to the
face no longer being visible in the frame (e.g. in the case of the false positive dataset). As the
cup is a non-deformable object subject to mainly translational movements, we use a computer
vision object tracker. We manually initialise a bounding box and then track the object using a
discriminative correlation filter tracker with channel and spatial reliability (CSR-DCF) [154].

For the remainder of the analysis it is important to note that there is sensor lag involved in the
data collection system. When capturing users, there is camera input lag - a time delay between
when the photons hit the camera lens and when they are sent to the PC for processing due to
exposure of the photosensitive sensor and the on-board encoding of the image. We measured
the lag of the camera used to perform the recording at approximately 100-150 ms. There is also
input lag for the TV used to display the motion – a delay from when the PC sends the command
to display an image to when the image is actually displayed on the screen. We reduced this by
setting the TV to “game mode”, which according to the manufacturer reduces input lag to 33 ms.
In terms of synchronising user input with system output these effects cancel each other out, so
we expect the difference to be between≈70-120 ms. For the remainder of this work we perform
the analysis on the basis of detecting user motion using a webcam and the inherent input lag
involved. Results are not intended to represent millisecond measured performance metrics of
human motor synchrony. Instead, we use them to inform design of applications where we find
the same sensor limitations present.

5.2 Understanding Synchronous Body Movements

In this section, we extract ground truths of how capable users are at synchronising with mov-
ing targets. In Chapter 2.4.2, we discussed previous work in the sensorimotor synchronisation
literature which has studied our ability to synchronise with external motion. In Chapter 3, we
investigated users’ ability to synchronise using algorithms which are intended for the matching
process. Previous work in the motion correlation literature have also drawn insights of how well
we can synchronise with movement [69, 40, 81]. However, in these cases any analysis is limited
by the algorithm’s capabilities and not necessarily how the user synchronises with the motion. In
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contrast, we look at extracting the ground truth offline, independent of any particular detection
algorithm intended for real-time use.

Previous work that has studied gaze-based smooth pursuit interactions has done so using cal-
ibrated gaze to detect where the user is looking, and to compare the absolute position of the
gaze point to the target’s trajectory. Analysis has then focussed on how the detection algorithms
cope under different conditions [208, 63]. However, touchless gestures are ephemeral and do
not leave behind any record of their path. Knowing where the user is compared to the target is
non-trivial because there is no known mapping between input and output space, and the user’s
internal point of reference may change over time. Instead one must infer at what point a user is
in their gesture in both time and space.

Ultimately, the understanding of how users follow moving targets can help us better design
algorithms for detection by providing insights into how much users lead or lag a target, and
how this varies over time. It also provides insights about which movements to use for motion
correlation interfaces based on understanding users’ preferences and capabilities. In particular,
we aim to answer three fundamental questions:

• How successfully are user’s able to follow the moving target over time?
• How long does it take user’s to start synchronising with a target stimuli?
• Do the properties of the target movement affect the size of the user’s movement?

The first question is required for us to understand how much users lead or lag a target over time,
depending on different target conditions. For this we extract the user-to-target difference – the
temporal difference between where the user is in their gesture, and when the target was displayed
on the screen at the corresponding position. When aggregating the user-to-target difference
across multiple users, we need to extract the time taken to start the gesture (time-to-start) so that
signals can be temporally aligned. This is defined as the time between the start of the trial when
the user is at rest, until they start following the target, but does not necessarily involve steady-
state synchronisation with the moving target. In addition to temporally aligning signals, we use
the time-to-start to investigate how long it takes to start a gesture based on different shapes or
target speeds because it is analogous to the acquisition time of an input device (e.g. picking up a
remote control), and indicates how long it takes for a user to be in a position to affect control. To
answer the final question we extract the size of gesture in order to provide an indication of how
much effort is required to perform the gestures, measured in pixels relative to the camera. In
particular we are interested in the difference across shapes, which we use to provide additional
insight into interface design and user preferences. Specifically, we measure the length of the
user’s trajectory when completing the first cycle of the shape (i.e. one rotation in the case of the
circle).

5.2.1 Ground Truth Extraction

The first step in extracting the ground truth is to extract the start of the gesture. Once we have
extracted the start gesture for each trial, we can temporally align all the trials for comparison of
the difference between user and target movements across users and movement conditions. We
calculate the difference between target and user movements by using a moving window ellipse
fitting approach for circular shapes, and a vertex and edge extraction approach for square and
one-dimensional shapes. Prior to analysis we filter all positional data of the user with a zero-lag
third order Butterworth filter with a critical frequency of 3Hz.
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Figure 5.2: An example of the gesture start calculation for circles: (a) angular velocity of the user’s
motion with horizontal lines showing median and three median absolute deviations; (b) first four
seconds of the trajectory. Blue points indicate valid part of the trajectory, red points indicate
movement prior to the gesture.

Circle

For circular shapes we use least-squares ellipse fitting [76] over a moving window which returns
the centre, width, height and angle of the ellipse fitted to the data points. For each data point
in the user’s trajectory we can calculate the angle relative to the centre of the fitted ellipse to
infer where in the circle the user is, and compare this to the target’s motion. This is measured
in degrees, however we convert it into milliseconds to compare across the different angular
velocities of the targets. When fitting an ellipse to the user’s trajectory the window size is an
important factor which affects the centre of the ellipse and therefore inference of where the user
is relative to the target motion.

The window size of the ellipse fitting process is chosen based on the arc length of the target
movement, which takes into account the different speeds of the target’s, and hence the user’s,
movement. We calculate the angular velocity of the user’s movement for a variety of different
arc lengths, ranging from 0.5 to 1.2 in 0.025 increments. An important property of the angular
velocity is that it is independent of the size of the circle the user is tracing. For each trial, we
choose the arc length that minimises the variance of the user’s angular velocity. The goal of
this is to ensure that any variation in angular velocity, and hence relative position of the user,
is due to their movement and not the ellipse fitting process. The initial portion of the user’s
trajectory will contain motion that is not related to the user following the target, but rather to the
initial resting phase and synchronisation with the target. We therefore discount the first 3 seconds
when calculating the arc length so that only motion corresponding to the motion-matching phase
is used.

Once we have calculated the appropriate arc length to use, we calculate the starting position of
the user’s gesture. We define the starting point as the time where the user starts performing a
stable circular gesture, e.g. after the hand has moved from its resting position to start following
the circle. It is important to note that the starting point calculated is not necessarily the point
at which the user matches the movement of the target - because there may be catch-up or slow-
down behaviour to synchronise after the gesture has begun. In order to calculate the starting
point we once again look towards the user’s angular velocity, in particular outlier values which
indicate the user is not performing a stable circular movement. At the start of a gesture outliers
can be caused by either the user moving their hand in a ballistic fashion to start the gesture from
a point of rest, thus increasing their angular velocity, or due to the ellipse fitting process fitting
very large “circles” to the user’s movement as they are viewed as straight lines due to the ballistic
movement of moving the hand into a position to gesture. We calculate outliers of the angular
velocities by computing the median and median absolute deviation (MAD) [146]. The median
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Figure 5.3: An example of the peak detection process to extract corners. Green corners labelled
alphabetically are the final corners detected, with orange corners found in the peak detection re-
moved as anomalies or duplicates.

and MAD are more robust measures to outliers than using the mean and standard deviation. The
starting point of the gesture is then defined as the first data sample which is not an outlier, and
in which the proceeding 30 samples (≈ 1s) are also not outliers, see Figure 5.2.

Squares and lines

For the remaining shapes we extract vertices and edges in order to match the user’s movement
to the target’s. We begin by extracting the velocity vector, V = ∆P

∆t , of the trajectory and pass
it through a zero-lag third order low-pass Butterworth filter with a critical frequency of 2.25Hz.
The direction of the velocity vector, ∠V, indicates which way the trajectory is moving at any
given time point. For horizontal and vertical shapes, we are only interested in finding the vertices
as a result of changes in direction of the velocity vector in the respective axis (e.g. the x-axis for
horizontal movements) and so discard the other axis. We use a peak finding algorithm to find
local maxima of the differences between the directions of the velocity vectors which correspond
to candidates for the vertices of the trajectory, see Figure 5.3. We take a liberal approach to peak
detection as any false positives will be filtered out down-stream in the next stage.

For each edge, e between two vertices, vi, we calculate its length, ‖e‖, and the angle of the edge
defined as:

∠e = atan2(vy
i+1− vy

i ,v
x
i+1− vx

i ) (5.2)

Where vx
i is the x co-ordinate of the ith vertices, and vy

i is the y co-ordinate.

Using these two metrics we filter out vertices that are either anomalous or duplicates, see Fig-
ure 5.3. We define an anomalous edge as one which is smaller than 10% of the average of all the
edge lengths, and in the case of the square where the angle is 180◦±45◦ relative to the previous
edge (as we are only interested in right-angled corners). These are recursively removed until no
anomalies are found. The second data cleansing phase is to remove “duplicate” vertices, which
we define as when two consecutive edges have the same angle within ±45◦. These are also
recursively removed until no duplicates are detected.

After extracting vertices and edges for both user and target trajectories, we match the vertices
of the user’s trajectory to the corresponding vertices in the target’s trajectory. To achieve this
we iterate backwards through the edges and look to maximise the number of sequential matches
between target and user edges based on the direction of the edge. We do this in reverse order
because at the start of the movement the user is in a resting position and therefore not in sync
with the target.

To remove movement unrelated to following the target we define the start of the gesture as the
first user vertex which is mapped to a target vertex. It is important to note that the start of the
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gesture may have occurred somewhere on, or at the start of, the previous edge, however we have
no way of knowing where the user started the gesture relative to the movement of the target
without a whole edge consisting of two vertices. Thus, the first point at which we can be certain
of the user’s intention relative to the target movement is the first matching vertex.

The difference in time between each data sample in the user’s trajectory to the respective point
in the target’s trajectory determines how much the user leads or lags the target. To calculate
this, we calculate the user’s position in the edge proportional to the length of the edge, and find
the nearest corresponding point in the target’s trajectory according to the same criteria. The
difference in time stamps between these points indicates how much the user leads or lags the
target.

5.2.2 Results

In this section we look at the general trends for users synchronising with the target by analysing
how quickly they are able to achieve synchronisation, how much they lead or lag once synchro-
nisation is achieved, and how large their movements are whilst synchronising. After calculating
the time difference between the user and target at every data point in the user’s trajectory, we
calculate the time difference between the user and target in bins of 100ms for comparison across
users and the different conditions. For each 100ms we record the mean difference (negative val-
ues indicate the user is lagging) and 95% confidence interval. When aggregating the results we
removed any trials that did not have four seconds worth of synchronisation data after the start of
the gesture had been detected. This could be due to errors in the ground truth extraction process,
or in the event of the slow horizontal and vertical movements because of insufficient complete
edges to analyse. In total we removed 46 out of 1,792 trials (3.5%) - 7 square (1.4%), 24 hor-
izontal (4.7%) , and 31 vertical (6.1%). We then aggregated the data across all participants,
directions, and repetitions for analysis.

Time-to-Start Gesture

The time-to-start gesture, see Table 5.2 indicates how long it takes users to begin the gesture, and
is important for temporally aligning participants’ movements across trials in our later analyses.
For the time-to-start gestures we make statistical comparisons based on how we extract the start
of the gesture. The time-to-start gesture for the line-based movements, including the square, are
worst case scenarios based on the first vertex detected. We therefore look at the circular shape
separately. We also look at the square shape independently of the horizontal and vertical lines,
because the edge length of the line-based movements are twice that of the square, i.e. for fast
square the vertices are every 0.5s, whereas for fast lines they are every 1s.

Table 5.2: The mean time to start the gesture across all participants, measured in seconds. The
standard error is given in brackets. (H) indicates harmonic movement.

Slow Fast
Head Dom Non Cup Head Dom Non Cup

Circle 0.42 (0.05) 1.08 (0.12) 1.19 (0.11) 1.05 (0.16) 0.66 (0.09) 1.20 (0.06) 1.33 (0.10) 1.14 (0.11)
Square 0.95 (0.05) 1.14 (0.05) 1.19 (0.05) 1.14 (0.04) 0.90 (0.08) 0.94 (0.04) 1.03 (0.04) 0.99 (0.07)
Square (H) 1.06 (0.08) 1.19 (0.04) 1.10 (0.04) 1.14 (0.06) 0.86 (0.04) 1.00 (0.04) 1.00 (0.04) 1.05 (0.05)
Horizontal 1.44 (0.07) 1.30 (0.09) 1.44 (0.10) 1.56 (0.12) 0.97 (0.02) 1.09 (0.02) 1.06 (0.06) 1.17 (0.03)
Horizontal (H) 1.31 (0.06) 1.12 (0.04) 1.27 (0.06) 1.28 (0.07) 0.94 (0.04) 1.06 (0.02) 1.00 (0.05) 1.14 (0.07)
Vertical 1.35 (0.06) 1.56 (0.07) 1.66 (0.17) 1.72 (0.08) 1.00 (0.05) 1.26 (0.08) 1.38 (0.08) 1.34 (0.08)
Vertical (H) 1.44 (0.06) 1.54 (0.15) 1.72 (0.08) 1.74 (0.08) 0.94 (0.02) 1.16 (0.04) 1.08 (0.04) 1.18 (0.03)
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We compared the time-to-start the gesture for the circle with a two-way repeated measures
ANOVA (MOVEMENT CONDITION×SPEED) and Bonferonni-corrected posthoc tests. No cell
in the design violated the assumption of normality according to the Shapiro-Wilks test, and
Mauchly’s test of sphericity revealed no interaction violated the assumption of sphericity. We
found a significant main effect of MOVEMENT CONDITION (F3,21 = 27.359, p < .001) which
revealed that the head (0.54s) was significantly quicker to start the gesture than the dominant
hand (1.14s), non-dominant hand (1.26s), and the cup (1.10s) all at (p < .001), with no sig-
nificant differences between the hand-based inputs. There was also no significant main effect
of SPEED between the fast (1.08s) and slow (0.94s) movements at p = 0.055. The head is the
quickest input due to it being already ‘in position’, unlike the hands which were at rest between
trials.

For the square shaped movement we compare the time-to-start gesture using a three-way re-
peated measures ANOVA (MOVEMENT CONDITION×SPEED×TYPE), where TYPE is either
linear or harmonic, and with Bonferonni-corrected posthoc tests. No cell in the design vio-
lated the assumption of normality according to the Shapiro-Wilks test, and Mauchly’s test of
sphericity revealed no interaction violated the assumption of sphericity. We find main effects for
MOVEMENT CONDITION (F3,21 = 5.994, p = .004) and SPEED (F1,7 = 60.690, p < .001). The
head (0.94 s) was significantly quicker than the dominant hand (1.07 s) at p = 0.013, yet there
were no statistically significant differences with the non-dominant hand (1.08 s, p = 0.06) or
cup (1.08 s, p = 0.211). There were no differences between the hand-based inputs. The faster
movements (0.97 s) were significantly quicker to start than the slower movements (1.11 s) at
p < .001. It is worth noting that the difference in time-to-start for slower movements will be
affected when detecting the first vertex due to the longer edge lengths compared with the faster
movements. There could be a ≈0.25 s difference between fast and slow movements if we as-
sume the starting point at which users actually start the gesture is equally distributed across the
edge length prior to the first vertex we detect.

We compare the horizontal and vertical movements in a four-way repeated measures ANOVA
(SHAPE×MOVEMENT CONDITION×SPEED×TYPE). No cell in the design violated the as-
sumption of normality according to the Shapiro-Wilks test, and we use Greenhouse-Geisser cor-
rection when the assumption of sphericity is violated. We found main effects for MOVEMENT

CONDITION (F1.391,9.735 = 6.898, p = .019), SPEED (F1,7 = 1150.91, p < .001), SHAPE (F1,7 =
49.569, p < .001), and TYPE (F1,7 = 9.881, p = .016). There were also statistically significant
two-way interactions between MOVEMENT CONDITION×SHAPE (F3,21 = 5.72, p = .005) and
SPEED×SHAPE (F1,7 = 9.451, p = .018). Finally, we found a three-way interaction between
SPEED×SHAPE×TYPE (F1,7 = 7.157, p = .032). Both the head (1.17 s, p = .001) and dominant
hand (1.26 s, p = .002) were significantly quicker than the cup (1.40 s), with no differences be-
tween the non-dominant hand (1.33 s). Harmonic movements (1.25 s) were significantly quicker
than linear movements (1.33 s), p = .016. Horizontal movements (1.20 s) were also significantly
quicker to start than vertical movements (1.38 s) at p < .001. Similar to the square, the faster
movements (1.11 s) were significantly quicker to start than the slower movements (1.47 s) at
p < .001, but there could be a≈0.5 s difference between fast and slow movements if we assume
the starting point at which users start the movement is equally distributed across the edge length
prior to the first vertex we can detect.

Size of Gesture

We compared the size of gesture across all shapes using a three-way repeated measures ANOVA
(SHAPE×MOVEMENT CONDITION×SPEED). We combine the movement type (linear/harmonic)
with the shape to compare across all shapes including the circle. We use Bonferonni-corrected
posthoc tests for pairwise comparisons. No cell in the design violated the assumption of normal-
ity according to the Shapiro-Wilks test, and Mauchly’s test of sphericity revealed no interaction
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Figure 5.4: The size of the participants’ movements (measured in pixels) for the first cycle of the
gestures, showing that one-dimensional targets require less movement than two-dimensional de-
spite the duration of the gestures being the same.

violated the assumption of sphericity. We found main effects for SHAPE (F6,42 = 61.905, p <
.001) and MOVEMENT CONDITION (F3,21 = 92.231, p < .001), and two-way interactions for
SHAPE×MOVEMENT CONDITION (F18,126 = 8.508, p < .001). Unsurprisingly, the head (63
px) results in much less movement than the dominant hand (337 px), non-dominant hand (338
px), or cup (338 px) at p < .001. Note how all hand-based inputs are within 1 px of each other,
demonstrating consistency amongst the hand-based movements. The main effect for SHAPES

offers some interesting insights, see Figure 5.4. Both variants of the square (linear: 329 px,
harmonic: 344 px) and the circle (319 px) show users gesture significantly larger than the one-
dimensional shapes at p ≤ .019. There was no statistically significant difference between hori-
zontal movements (linear: 218 px, harmonic: 189 px) and vertical movements (linear: 226 px,
harmonic: 256 px).

Synchronising with the Target

We quantify the average and range of the aggregated user-to-target differences across all par-
ticipants. Based on visual analysis of Figures 5.5-5.8 we exclude the first half second after the
start of the gesture when calculating the aggregated user-to-target difference so as to remove
the initial synchronisation phase because users are not necessarily synchronised at the start of
the gesture. We do not calculate this for the slow circle due to the high variability between
movement conditions.

Circle: Across all movement conditions, participants lagged the fast moving circular target by
an average of 183 ms (range = 47 ms), see Figure 5.5 (a). However, Figure 5.5 (b) shows the
slow movements demonstrate much more variability than their fast counterparts, and participants
overtake the target prior to slowing down in order to sync back up. Despite requiring less time
to start the gesture with the head, there appears to be additional time required to achieve steady-
state tracking of the target (at approx. 600 ms) compared with the hand-based inputs. Also, the
head initially leads the target unlike the hands which lag. It is also interesting to note how closely
the dominant and non-dominant hands follow each other for the slow movement. In contrast, the
cup movement does not appear to overshoot the target as much yet follows a similar path from
around 2200 ms. This could be due to the added weight of the cup which makes the overshoot
less pronounced as it requires more energy to accelerate.

Square: Figure 5.6 (a) and (b) shows the starting user-to-target difference for fast movements
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Figure 5.5: Synchronisation between the user and the target for the circular shape, measured in
100ms bins. Shaded areas show the 95% confidence interval. Negative values indicate the user is
lagging the target, positive values indicate the user is leading.

Figure 5.6: Synchronisation between the user and the target for the square shape, measured in
100ms bins. Shaded areas show the 95% confidence interval. Negative values indicate the user is
lagging the target, positive values indicate the user is leading.
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Figure 5.7: Synchronisation between the user and the target for the horizontal shape, measured in
100ms bins. Shaded areas show the 95% confidence interval. Negative values indicate the user is
lagging the target, positive values indicate the user is leading.

was slightly smaller for harmonic (-316 ms) compared with linear movement (-356 ms), with
near identical total average differences between linear (-250 ms) and harmonic (-251 ms). The
head shows large variance across participants for the fast linear movement and one can see
clear oscillations that correspond to the edge length of the square (with a cycle of 0.5s). Three
participants signalled the square was particularly uncomfortable to perform with the head. Note
however, that for harmonic movement we observe very little variability across the movement
conditions.

Figure 5.6 (c) and (d) shows the difference in starting user-to-target difference was much more
pronounced at the slow speed between the types of movement, with users being much closer
to the target with harmonic movement (-236 ms) compared with linear (-441 ms). The average
user-to-target difference shows users can follow the slower target more closely than their faster
counterparts, however there was only a small difference between the different types of movement
(Linear: -159 ms, Harmonic: -125 ms). In the case of the linear movement we see oscillations
in the signal that correspond to the corners of the square (with a cycle of 1s), demonstrating the
harmonic nature of our movements. At the corners the user maximally lags the target, before
accelerating towards it to a local minima at the middle of the edge, and decelerating again until
the next corner. This is reflected in the higher range of the average user-to-target differences for
the linear (102ms) movement compared with the harmonic (63 ms). In contrast, the harmonic
movement shows little oscillation.

Horizontal and Vertical: For both horizontal and vertical movements we observe three distinct
differences between the linear and harmonic target motions that are much more pronounced
than with the square, see Figures 5.7 and 5.8. Firstly, users are much more tightly coupled
with the harmonic targets at the beginning across all movement conditions for both horizontal
(Fast linear/harmonic: -354 ms/-249ms, Slow linear/harmonic: -287ms/-77ms) and vertical (Fast
linear/harmonic: -386 ms/-247ms, Slow linear/harmonic: -357 ms/-22 ms). Secondly, based on
the average user-to-target difference users appear to be more in sync with the harmonic motions
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Figure 5.8: Synchronisation between the user and the target for the vertical shape, measured in
100ms bins. Shaded areas show the 95% confidence interval. Negative values indicate the user is
lagging the target, positive values indicate the user is leading.

than with linear. For fast horizontal movements the average difference was 71 ms (Linear: -242
ms, Harmonic: -171 ms), and the difference doubled for slow movements at 147 ms (Linear:
-139 ms, Harmonic: +8 ms). We see a similar trend for the vertical movement with an average
difference of 81 ms for fast (Linear: -256 ms, Harmonic: -175 ms) and 101 ms for slow speeds
(Linear: -127 ms, Harmonic: -21 ms). In all cases users appear to be able to synchronise more
closely with the harmonic targets. Finally, similarly to the slow square, we observe oscillations
in the signals for the linear movements types at all speeds, and for the harmonic movements at
slower speed. The oscillations for the linear movement types align with the turning points of the
lines, similar to those seen in the slow square, and are indicative of the harmonic movements
we naturally make. For the horizontal movement, we see much larger range of values for the
aggregated user-to-target differences at both fast (Linear: 114ms, Harmonic: 42ms) and slow
(Linear: 215ms, Harmonic: 109ms) speeds. The range of differences of the vertical movement
is nearly doubled for the fast linear movement (68ms) compared with harmonic (35ms), however
there is little difference between the ranges for slow movements (Linear: 176ms, Harmonic:
173ms).

5.2.3 User Preferences

When asked about their overall preference across all movement conditions all of the users pre-
ferred the faster harmonic targets using their dominant hand, except one who preferred the fast
cup movement (P2) - who stated that it “felt nice having something in my hand” and was “satisi-
fying” to perform. For shapes, five preferred the horizontal movements, two preferred the circle,
and one preferred the square. One of the main comments participants made regarding their pref-
erences for the faster movements was that if felt “more natural”, and less straining. Interestingly,
one user commented that they thought the fast movement “saved time” despite all trials lasting
eight seconds - suggesting that the perception of time taken was affected by the target speed.
People noted that harmonic motion also felt “more natural” and “fluid”. P1 noted that the har-
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monic motion felt like it gave them “mini-breaks” when doing the motion, and that this was
more pronounced during the faster movements. Participants felt that they were always “catch-
ing up” with the linear movements, and that it was tiring, whereas the harmonic motion felt “in
sync”. P3 described the harmonic motion as “dancing” with the target. Users commented that
it felt more natural to “point” with the hands compared with the head, and chose the dominant
hand because they use it more. Although most users preferred their dominant hand overall, some
noted that for prolonged usage they would prefer the head because it involved less effort.

When asked about the dominant hand, all users preferred the fast harmonic movements. The
most popular choice of shape was the circle (3), followed by the horizontal line (2) and square
(2), with one person preferring the vertical line. For the non-dominant hand all the users pre-
ferred the fast harmonic movements, although one user said the they preferred the slow speed
equally (P7). The circle was once again the most popular choice (3), followed by the horizontal
(2) and vertical (2) lines, with one person preferring the square. For cup movements, all partici-
pants preferred harmonic movements except P4, who was also the only participant to prefer the
slower movements. Three participants preferred the horizontal line, followed by the vertical line
(2) and the circle (2), and only one participant preferred the square. With the cup one partici-
pant stated that they preferred the vertical movement because it was like “drinking or cheering”,
whereas P4 stated that vertical movements were harder because they had to “lift” the object.

The head movement proved significantly different in terms of preferences. Five people preferred
the faster movement, two preferred the slower movements and one said it was dependent on the
shape (P2). P2 said that there was little difference for slow and fast for the circle and the lines,
however they preferred the slower movements for the square. Six participants preferred the
horizontal movement, with two preferring the circle. All the participants preferred the harmonic
movement with the exception of P4 who preferred the linear movement with the head. Two
participants commented that the square movement was particularly difficult to perform with the
head (P2 and P6). P6 noted that with horizontal movements it was easier to maintain gaze on
the target whilst performing horizontal movements compared with vertical, a similar sentiment
shared by P4 who stated they “lose the target” with vertical movements. This also indicates users
performing (relatively) large head movements. Interestingly, P2 and P6 had the largest average
head movement during the trial.

5.2.4 Discussion

Our analysis highlights the strengths of motion correlation as an approach which abstracts from
specific body parts and provides insights across the different movement conditions. Across all
shapes, speeds and movement types there is little to separate type of input, especially dominant
and non-dominant hands. Unlike other manual tasks in which one hand may outperform the
other, both hands are equally adept at following the motion of a target, making it a suitable
technique for spontaneous interaction with either hand.

Our findings provide interesting insights into interface design, showing movement condi-
tions are affected by targets differently. For faster speeds we observed similar user-to-target
difference between the circle and square for the fast targets, and in general, we see little differ-
ence for one dimensional line-based movements across all the movement conditions. In Chap-
ter 3.3 we observed users struggling with the fast circular movements when using the head, and
in this study we observe users struggling with the fast linear square movement with the head,
however there were no issues with the harmonic movement. The head is compelling because
it can be used in settings where the hands are either unavailable or busy with other tasks, and
it is quicker to start gesturing with compared to the hands. Thus, harmonic movements should
be used for applications in which users may be more likely to use head movements. Alter-
natively, it may be beneficial to use slower two-dimensional movements, or one-dimensional
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movements which were more generally preferred. We also note the similarity between the fast
two-dimensional square and slow one-dimensional targets, due to the same edge length. Future
work could shed light on how users match motion with faster moving one-dimensional targets.

We also observe that users prefer faster targets, but can synchronise more closely with
slower. In contrast to our findings in Chapter 3.3 where there was a 50/50 split in preferences
for slow versus fast, all participants preferred the faster movements. This could be for two rea-
sons: the first is that the sample size was smaller and therefore we did not encounter those who
preferred slower movements. Another is that the previous study was an interactive task, and thus
the performance of the algorithm may have impacted participants’ preference, i.e. slow move-
ments had a higher success rate. From the data, we observe that the faster movements provided
more stable readings across participants compared to slower movements across each shape. For
both one-dimensional shapes and the circle we see large variability which could indicate that the
movements were too slow for participants. Previous research on motor behaviour has shown that
users avoid moving slowly, and instead attempt to move closely to their preferred tempo [264].
This could explain the variability as users overtake and catch up the target due to their desire to
move more quickly, and is also reflected in participants’ preferences for faster movements.

Despite their preference for faster targets, users were more closely synchronised with slower
targets, albeit with more variability. For circle movements we observe evidence that slower
target movements result in lower times to start the gesture (although not statistically significant).
In addition, if we subtract the estimated difference between fast and slow movements for line-
based movements (based on the start movement being equally distributed along the edge prior
to the first detectable vertex) the starting times for slow movements are less than those for fast
movements. Whereas there is no physical explanation for this phenomena, it could be due to
less cognitive load in detecting the target movement and deciding how to coordinate one’s body
movement to “intercept” and catch the target.

Participants preferred one-dimensional shapes, but two-dimensional are more robust. The
one-dimensional movements are smaller than their two dimensional counterparts, which could
have contributed to them being the preferred choice because they were both cognitively and
physically easier to follow. However, there are similar properties between the fast one-dimensional
lines and the slow square. The edge length of these shapes are the same (1 s), but interestingly
users are more in sync with a slow square than the fast lines. This could be due to the 2D nature
of the square movements where it is visually easier to distinguish the corner to synchronise with.
For both one- and two-dimensional shapes users unanimously preferred harmonic movements
overall, which have shown to have distinct advantages in both user preference and users’ ability
to synchronise with the target.

Finally, the results from analysing how we are able to follow the motion of a moving tar-
get provides interesting insights to inform algorithm design. Firstly, users are never exactly
in sync with the target and may both lead or lag the target. Whereas harmonic movements
demonstrate closer synchronisation with the target, there is always an offset that must be taken
into account which varies across users. Secondly, the leading or lagging of the target varies
over time, and in the case of slow movements we see evidence of users overshooting the tar-
get and leading it, prior to dropping back. This was most apparent for circular gestures, where
evidence in the sensorimotor synchronisation literature would suggest that because the circle
lacks any perceptible events, synchronisation would be more variable and show less error cor-
rection [254]. Harmonic movements for faster targets also demonstrate much less variability
than their linear counterparts, which may provide a more stable signal when comparing user and
target trajectories. The variability is also dependent on the type of input used. Uniquely, the
head leads the target for both circular movements prior to synchronisation, whereas hand-based
movements lag the target. Work in psychology has shown that there are two dominant tech-
niques when intercepting a target, one is to catch the target from behind, whereas the other is to
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intercept from the front [179]. This has implications for algorithm design, as one must be aware
of users both leading and lagging the target in the initial movement phase which may vary when
a user achieves synchronisation.

5.3 Algorithms

Given the insights from how well users can synchronise with targets, we explore the sensitivity
and specificity of algorithms for motion correlation based on the matching of user and target
trajectories. We perform an extensive search of the parameter spaces of eight algorithms, both
from the motion correlation literature [273, 40, 269], and from the wider time-series data mining
and matching literature [282, 54].

Detecting whether a user’s motion coincides with a target’s movement involves two stages: the
first is determining a measure of similarity (or dissimilarity) between the two movements; and
the second is determining whether that similarity passes a threshold to be able to say that the
user’s movement intentionally matched the target’s. Algorithms must be sensitive enough to
detect when users are matching the motion of a moving target, whilst being robust enough to
reject accidental motions which are not intended for interaction. In the case of motion correlation
there are a number of constraints that approaches must satisfy. The first is the requirement for
the approach to be real-time. Secondly, one must match the spatiotemporal properties (shape,
speed, direction and phase) of both user and target trajectories. The matching of these properties
allows for simultaneous motions moving in the same direction at the same speed to be presented
to a user and successfully differentiated. Finally, the approach should be scale-invariant. Both
user and target trajectories should not have to be in the same coordinate space for matching.

Broadly speaking, there are two categories for comparing time-series trajectories: lock-step and
elastic [282], see Figure 5.9. Lock-step measures compare the ith data point from one trajectory
with the ith data point from another trajectory. This one-to-one rigid mapping can be sensitive
to noise and misalignments in time, however it implicitly assumes that the trajectories are tem-
porally aligned with similar speeds - an inherent assumption of motion correlation. In contrast,
elastic measures allow for one-to-many and one-to-none comparisons to find an optimum match.
This can be used to find similar trajectories with an offset (such as the case with leading/lagging),
but also in the case where the speeds of the trajectories vary over time, e.g. due to compression.

5.3.1 Lock-step Measures

Lock-step measures compare trajectories based on one-to-one mappings. They are computation-
ally simpler than elastic measures and are the only type of algorithm that have been explored

(a) (b)

Figure 5.9: Illustrations of (a) Lock-step measure showing the rigid one-to-one mapping, and (b)
Elastic measure showing one-to-many mapping against a signal that has been compressed and
shifted. Note we show them separated on the y-axis for illustration, however these would usually be
normalised.
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in the motion correlation literature. We further categorise lock-step measures into correlation-
based and distance-based metrics.

Correlation Measure

Correlation measures report the relationship between two variables as input, where +1 implies
a positive correlation, -1 implies a negative correlation, and 0 implies no correlation. Earlier
work on motion correlation techniques utilised the Pearson correlation coefficient, a measure of
the linear correlation between two axis [73, 273, 70]. The Pearson correlation coefficient, rxy, is
defined as:

rp(A,B) =
∑

n
i=1(ai− ā)(bi− b̄)√

∑
n
i=1(ai− ā)2

√
∑

n
i=1(bi− b̄)2

(5.3)

Where a and b are one-dimensional time-series of length n with paired values, ā is the mean
value of a, and b̄ is the mean value of b.

In one of the earlier works on motion correlation, Fekete et al. used the Pearson correlation
by summing the value of both axis [73], however they found this was outperformed by other
distance-based metrics. Vidal et al. introduced an alternate approach by ensuring the minimum
of the two axes Pearson correlation were above a threshold, thus ensuring that both axes were
correlated with the respective axis of the target [273]. Carter et al. identified a flaw in the al-
gorithm when comparing line-based movements, because the coefficient is ill-defined with no
movement in one of the axis [40]. They proposed to rotate the data by calculating the PCA in
order to maximise the variance in both axis prior to calculating the Pearson coefficient. In Chap-
ter 3 we identified that for body movements the Pearson correlation does not take into account
the aspect ratio of the movement as the axes are calculated independently. We demonstrated
that by incorporating a model-fitting approach we minimised false positives, however this was
limited to circles and each new shape would require a relevant model.

Whereas the Pearson’s correlation coefficient compares the linear relationship between two time
series, i.e. it looks for a proportional change, the Spearman’s rank correlation coefficient looks
at the monotonic relationship, i.e. they change together but not necessarily at a constant rate.
Although ordinal data is most commonly used as input to the Spearman correlation coefficient,
the Spearman correlation coefficient is non-parametric and, unlike the Pearson correlation coef-
ficient, does not assume the data is normally distributed. The Spearman rank correlation coeffi-
cient is calculated in the same way as the Pearson, except it uses the ranks instead:

rs(A,B) =
∑

n
i=1(R(ai)− ¯R(a))(R(bi)− ¯R(b))√

∑
n
i=1(R(ai)− ¯R(a))2

√
∑

n
i=1(R(bi)− ¯R(b))2

(5.4)

Where R(ai) is the rank of the ith value of a and ¯R(a) is the mean rank of a.

Minkowski Distance Measures

Distance-based metrics measure the similarity of two time-series based on the distances between
pairs of points. The most common distance metrics are the family of Minkowski distances,
defined between a pair of points, a and b, as:

dm(a,b) =

(
d

∑
i=1
|ai−bi|p

) 1
p

(5.5)
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Figure 5.10: Visual illustration of the most common Minkwoski distances showing all points that
are unit distance from the centre for Manhattan (left), Euclidean (centre), and Chebyshev (right).

Where d is the number of dimensions (in our case two), and p is the order of Minkowski distance.
The most commonly used p-values correspond to common distance measures of Manhattan
(p = 1), Euclidean (p = 2) and Chebyshev (p = ∞), see Figure 5.10 for a visual representation.
The Euclidean distance is the most intuitive of these measures, and the square of the standard
euclidean distance is often used in loss functions (e.g. root-mean squared error) because it places
greater emphasis on larger errors. Once a distance has been found for each pair of points between
the trajectories, the results must be agglomerated. The most common type of agglomeration
functions are the sum, mean, or root mean of all paired values. For example, the similarity
measure based on the average Euclidean distance between each pair of points in the trajectories
A and B is calculated as:

dm(A,B) =
1
n

n

∑
i=1
‖ai−bi‖ (5.6)

where n is the number of points in each trajectory, and ai is the ith point in trajectory A.

In the motion correlation literature, Velloso et al. introduced “2D correlation”, and demon-
strated that it outperformed the Pearson correlation-based methods for smooth pursuit eye move-
ments [269]. Although motivated by the R2 coefficient of determination, the algorithm as de-
scribed in [269] is not a conventional measure of correlation the values are not confined between
+1 and -1 like the aforementioned correlation metrics. The method utilises the Euclidean dis-
tance (as opposed to the sum of squares), after the trajectories have been normalised according
to their z-score. The euclidean distance between each pair of points in both user and target
trajectory is summed, prior to being normalised by the sum of the euclidean norms of the user
trajectory.

5.3.2 Elastic Measures

Elastic measures remove the one-to-one constraint of the lock-step techniques, instead allowing
for comparisons of one-to-many or one-to-none. The ability to stretch or compress one time
series relative to the other reduces the effect of local time distortions, such as accelerations or
decelerations.

Dynamic Time Warping

Dynamic Time Warping (DTW) allows local time warping in a non-linear manner. The output
of DTW is the smallest sum of absolute distances required to “warp” one trajectory to the other.
Prior to becoming a staple of the data mining community, DTW was traditionally used in the
speech recognition community and has found application in a wide variety of domains, from
gesture recognition [217] to real-time query-by-humming systems [305]. Originally introduced
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for time-series by Berndt and Clifford, DTW can be computed using dynamic programming
with O(nm) complexity, and is defined as [25]:

DTW (A,B) = f (n,m) (5.7)

f (i, j) = d(ai,b j)+min


f (i, j−1)
f (i−1, j)
f (i−1, j−1)

(5.8)

Where d(ai,bi) is a distance measure (e.g. Euclidean), i = 1, . . . ,n and j = 1, . . . ,m. There are
several constraints that can be placed to reduce the search space of warping paths. Monotonicity
ensures that the matched points are ordered with respect to time, and continuity ensures that
steps are confined to neighbouring points. The amount of warping between two time series can
be constrained, not only reducing the computational cost required, but it has also been shown
to improve similarity matching [282]. There has also been concern about the running time of
DTW, however with lower bounding techniques and ever improving hardware, DTW has found
application in many real-time applications [209].

The boundary conditions of the algorithm are commonly constrained to the endpoints, i.e. the
first index of one time series must be matched with the first of the other, and the same applies to
the last indices. This “anchoring” of start and end points was originally proposed to simplify the
search space of warping paths. By relaxing these constraints, we can instead look at subsequence
matching, first proposed in [180]. For our purpose this can be advantage as it removes the need
for both user and target trajectories to be of the same length, instead we can search a larger
portion of the target trajectory to account for the user trajectory to account for the leading/lagging
element.

Longest Common Subsequence

The Longest Common Subsequence (LCSS) is based on the concept of edit distance and was
originally used in the natural language processing community to find the maximum substring that
is common between two strings. Vlachos et al. adapted the fundamental concepts of LCSS to
time series similarity matching by introducing a parameter, ε [275]. If two data points are within
ε they are thought of as equivalent, akin to being the same character in the string. In contrast
to DTW, not all elements of both sequences must be matched which can make it more robust to
outliers. Similar to DTW, a threshold that limits the amount of warping can be used to reduce
computational complexity and improve performance, and we can also match subsequences.

The longest common subsequence of two trajectories, LCSSδ ,ε(A,B), is defined as:
0 if A or B is empty
1+LCSSδ ,ε(H(A),H(B)) if d(a,b)< ε and |n−m| ≤ δ

max(LCSSδ ,ε(H(A),B),
LCSSδ ,ε(A,H(B))) otherwise

(5.9)

Where H(A) represents the head of the trajectory, H(A) = (a1, . . . ,an−1), ε is the threshold for
determining whether two points are deemed “equal”, and δ constrains the time warping. The
similarity between two trajectories based on the LCSS is:

SL(A,B) =
LCSSδ ,ε

max(n,m)
(5.10)
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Geometric Similarity Measures

Often used in the computer vision and graphics communities, geometric similarity measures
measure the difference between two geometric shapes. The Hausdorff distance is used to match
a set of points against a template shape [110]. It is defined as the maximum of the minimum
Euclidean distances between a set of points to the nearest point in the other set:

dH(A,B) = max
∀a∈A

min
∀b∈B
‖a−b‖ (5.11)

Hausdorff is an asymmetric distance, and the bi-directional Hausdorff distance is calculated as:

DH(A,B) = max(dH(A,B),dH(B,A)) (5.12)

The Hausdorff distance does not take the order of the points into account. Another geometric
measure is the Fréchet distance which takes into account the order of both sets of points [66].
Intuitively, this can be thought of as a man walking along one trajectory and a dog on the other.
The Fréchet distance is the shortest leash that would be required assuming both the man and the
dog can only walk forwards (at varying speeds) along the trajectories.

5.3.3 Normalisation

One of the compelling properties of motion correlation techniques is scale invariance between
input and output spaces. That is the user and target’s motions do not need to have the same
scale, or be in the same coordinate space for a match to be detected. From an algorithmic
perspective, scale invariance is inherent to the correlation-based algorithms, but for all others we
can pre-process the data to remove the effect of scaling through normalisation. In this work, we
investigate three normalisation techniques:

Z-score normalisation

Z-score normalisation transforms the data so that it has zero mean and unit variance. We use
the maximum standard deviation for both axis to maintain the aspect ratio between the x- and
y-axis:

τ
′
x =

τx− τ̄x

max(σx,σy)
(5.13)

where τ ′x is the transformed x-values of the trajectory, τx is the original x values, τ̄x is the mean
of the original x-values, and σx the standard deviation of the x values. The y values would be
transformed by replacing y for x.

Min-max normalisation

Min-max normalisation transforms the data so that all values are within the range [0,1]. To
maintain the aspect ratio of the trajectory we use the axis with the largest range:

τ
′
x =

τx−min(τx)

max(max(τx)−min(τx),max(τy)−min(τy))
(5.14)

Where τ ′x is the transformed x-values, τx the original x values, min(τx) the minimum x value and
max(τx) the maximum x value.
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Table 5.3: Table showing the algorithms and parameters used for the evaluation

Algorithm Parameters
Parameter

Combinations

Procrustes Buffer size; Sweep 18
Pearson Correlation Buffer size; Sweep; Rotate 36
Spearman Correlation Buffer size; Sweep; Rotate 36
2D Correlation Buffer size; Sweep; Normalisation 54
Hausdorff Buffer size; Sweep; Normalisation 54
Minkowski Buffer size; Sweep; Normalisation; Distance metric 216
Dynamic Time Warping Buffer size; Padding; Normalisation; Distance metric; Window 648
Longest Common Subsequence Buffer size; Padding; Normalisation; Distance metric; Delta; Epsilon 2592

Procrustes analysis

Procrustes analysis determines the optimal linear transformation consisting of translation, re-
flection, orthogonal rotation and scaling that transforms a set of points A to another set of points
B, using the sum of squared errors as the goodness of fit criterion according to:

Minimize
∥∥c(τ ′+vxT )R− τ

∥∥2
(5.15)

where τ and τ ′ are (n×2) matrices that contain the co-ordinates of the trajectories of n data points
for the target and user, respectively. n is the number of data points found in both trajectories.
c represents the uniform scale factor (c ∈ R). R is a (2× 2) orthogonal rotation matrix, which
handles rotation and reflection. x is a (2× 1) vector which translates data points of P’ with v,
while v = (11 . . .1)T is a (n×1) vector. By extracting the translation (x), rotation (R)), and scale
(c) we can transform one set of points to optimally align the user’s trajectory with the target
trajectory. Although not a traditional normalisation procedure, we leverage its ability to align
two trajectories before determining a similarity score based on different distance-metrics. Note
that due to the rotation aspect the Procrustes algorithm can align trajectories temporally, as well
as spatially.

5.3.4 Parameter Selection

In order to evaluate different matching algorithms on the dataset collected in Section 5.1 we
performed an extensive search of the parameter space across eight algorithms, see Table 5.3. In
total we explored a total of 3,654 different parameter combinations. We initially included the
Fréchet distance using the algorithm proposed by Eiter and Mannila [66], but found it took too
long for all but the smallest buffer sizes, because the algorithm is polynomial-time, and therefore
do not include this in our analyses [34].

Lock-step

Based on our findings in the previous section we introduce a sweep through different starting
points to account for a user leading/lagging, or due to sensor characteristics such as input lag.
For the lock-step based approaches we introduce a “sweep” parameter which calculates the
similarity between user and target trajectories at different temporal offsets. This is analogous to
cross-correlation or convolving the signals, except we call it “sweep” because mathematically
we neither cross-correlate or convolve the signals. For example, for a sweep of 10, the user
trajectory starting at index i is compared to the target trajectory in the interval [i− 10, i+ 10],
and the similarity threshold of the best match is returned along with the respective target index
(e.g. lowest value for distance metrics, highest value for correlation-based metrics). We search
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the whole interval because as noted in the previous section, there is variability in the amount of
time a user leads or lags the target. For the Minkowski distance measure, we take the average of
the distances over the buffer, so that it is comparable across buffer sizes.

We use the Procrustes algorithm for both normalisation and as an algorithm itself. For this,
we use the output of the Procrustes analysis - the residual sum of squared errors, normalized
according to a measure of the input trajectories. Although the Procrustes algorithm can align
the signals temporally (due to the rotation component) it is still a lock-step algorithm because it
performs one-to-one mappings.

Elastic

Knowing that there is a lagging or leading element involved, and that this may dynamically
change over time we use subsequence variant matching, whereby anchor points are relaxed.
However, we enforce that all points in the user’s trajectory must be matched to at least one point
in the target’s trajectory in the DTW variants. For both LCS and DTW we use a “padding”
parameter, which uses a larger buffer size for the target trajectory relative to the user trajectory.
We include this to account for when the user’s movement is leading or lagging a target. Consider
a user and target trajectory of size 30, where the target is leading the user by 10 frames. If both
user and target trajectories are optimally aligned spatially according to their matching indices,
then only 20 frames of the trajectories are overlapping. If however, we pad the target trajectory
by 10 frames at each end, increasing its trajectory size to 50 then we would expect to match all
of the 30 frames in the user’s trajectory.

We also include, δ , a parameter that constrains the maximum amount of time warping allowed
in both LCS and DTW algorithms, such that when comparing index i from trajectory A with
index k from trajectory B, the following must hold true:

δ ≥ |i− k| (5.16)

In the DTW literature this is known as the Sakoe-Chiba Band [226], and it has two purposes.
The first is that it constrains the amount of warping possible and can lead to more accurate
results by preventing pathological warping (where a small subset of one trajectory matches to
a large portion of the other) [226]. The second is that it can reduce computational complexity
by reducing the number of calculations required. The LCS algorithm also requires the epsilon
(ε) parameter which is the value used to determine whether two data points are a classified as a
match. When there is no value of epsilon supplied (i.e. ε = None), it is calculated as the smallest
standard deviation between the two trajectories as suggested by Vlachos et al. [275].

Posthoc Window

Inspired by hand gesture recognition, Carter et al. used the notion of a bi-threshold posthoc filter
which has two thresholds: an initial threshold which must be initially met; and a second lower
threshold which the match must remain above for a predetermined amount of time [185]. Velloso
et al. demonstrated that a single level posthoc threshold, which looks to see if the signal is above
the threshold for Np frames, outperformed the bi-level threshold for use with smooth pursuit eye
movements where the signal is noisier. In [269] the authors also suggested that “maintaining
a high correlation would lead to user fatigue and consequently a drop in the similarity metric”
for body movements. However, our analysis of body movements in the previous section shows
this not to be the case. Instead what we see is fluctuations in a user’s ability to synchronise
with a target over time. In this work we forego the bi-level threshold and instead look at two
single-level posthoc filters of 15 frames (≈ 0.5s) and 30 frames (≈ 1s), in addition to the case of
no posthoc filter.
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Table 5.4: Values for each of the parameters used in the evaluation

Parameter(s) Values

Buffer size (Bs) 15, 30, 45, 60, 90, 120
Sweep (Sw); Padding (Pa) 0, 10, 20
Rotate (Ro) True, False
Normalisation (N) Minmax, Z-score, Procrustes
Distance metric (Dm) Manhattan, Euclidean, Chebyshev, Squared Euclidean
Delta (δ ) ∞, 10, 20
Epsilon (ε) None, 0.1, 0.2, 0.3

5.3.5 Procedure

Our goal is to find the algorithm and its parameters that maximises the true positive rate, whilst
minimising the false positives and activation time. Previous work has shown the properties of
the target movement affect the optimum parameters, for example in Chapter 3 we demonstrated
that the buffer size is dependent on the speed of a target in the case of circular movements. We
also hypothesise that the optimum algorithm and parameters for one shape may not translate to
all shapes. We therefore look to extract the optimum algorithm and its parameters for each speed
and shape combination. We look across all movement conditions to perform the matching, as
one may not be able to distinguish which body part, or object, is responsible for a motion at the
sensor level (e.g. using optical flow techniques).

We used a python framework to implement the described algorithms, using NumPy and SciPy
libraries for algorithms where available. All the algorithms we describe and implemented are
index-based. For computational simplification, we assume the captured frame rate of the de-
vice was constant at 30 fps as we captured the video under lab conditions, and thus 15 frames
represents 0.5 s. For real-world deployments, frame rates of capturing devices may vary and
therefore time-based algorithms may be more appropriate. For example, the TraceMatch and
MatchPoint systems use time-based windows, because the frame rate of a web camera may vary
depending on the amount of light available. Due to the large amounts of data being processed
and generated, we run the framework on a server of 56 CPUs running at 2.40GHz per CPU over
a number of weeks.

We begin by calculating the true positives. For each trial we run each parameter combination for
each algorithm against each true positive sample, i.e. each 8 second video of a user attempting
to match the motion of the on-screen target. For each true positive sample, we calculate the
similarity measure at each time stamp, on a rolling window basis, only once the buffer is full
with data, see Fig 5.11. For example, an 8 second trial at 30 frames per second will have 240
frames. Assuming a buffer size of 30 means there will be 210 frames that will have an associated
similarity measure. We found three trials that had erroneous data samples missing so we omit
these for our analyses.

We then investigate the false positive rate of each algorithm-parameter combination. We gener-
ate “dummy” target movements for each shape-speed combination which are used as the targets
for each video file of a user performing the semantic and spatial gestures. This is to simulate
targets moving in the background whilst the users performed the gesture, although we note that
these are simulated and users did not see any moving target when performing the semantic and
spatial gestures. Due to such an extensive search space, we found it was impractical to run all
parameter combinations against all the false positive data. We therefore extract the false positive
rate in two stages. The first, calculated for all parameter combinations, uses the first one minute
of false positive data from each participant using two simulated targets for each shape and speed
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Figure 5.11: An example of the similarity calculations for one trial using the Pearson correlation
with buffer size 60, PCA rotation, and zero sweep. The red line represents the maximum value
achieved, the green the median, and the blue the mean.

combination with a 180◦offset. This provides us with a lower-bound of the false positive rate
of each algorithm-parameter combination, and we can discard any combinations that encounter
false positives during this stage. To further reduce the amount of data processing for the false
positive detection we only calculate a similarity measure when the average movement of the
user’s trajectory is greater than 1 pixel per frame. The second is a more verbose

Once we have similarity measures for all true positive and the first-cut false positives, we deter-
mine the appropriate thresholds to use. For this, we calculate the thresholds required to achieve
a true positive rate of 100% (TP100) without a posthoc window, and for posthoc windows of 15
(≈0.5 s), and 30 (≈1 s). For example, when looking at the Pearson correlation algorithm we
extract the maximum value for each true positive trial, see Figure 5.11, and then sort the values
in ascending order. We can then determine the threshold required to achieve a 100% (minimum
value) true positive rate or any arbitrary true positive rate (e.g. 95% TP rate = 5th percentile).
We extract parameters for each parameter set, and for each shape-speed combination of target.
Using these thresholds we calculate the corresponding false positive rate, and activation time
(the time of the first detection) of each trial.

Once the true positive rate, false positive rate, and activation time has been calculated for each
shape-speed combination, we rank the parameter combinations for each algorithm. This is
achieved by extracting the top three parameter combinations by minimising the false positive
rate, and then in the event of a tie minimising the activation times. Once we have the top pa-
rameter combinations, we run these on the full false positive data with four simulated targets at
90◦offsets. This gives us a better indication of how well the algorithms (and motion correlation
in general) are at rejecting false positives.

5.3.6 Results

Table 5.5 shows that we find an algorithm-parameter combination that yields a 100% true posi-
tive rate with 0% false positives for every shape-speed combination. This is achieved using both
lock-step and elastic algorithms, with six of the eight algorithms featuring. Investigation of the
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Table 5.5: Top performing algorithms that achieve a 100% true positive rate whilst minimising
false positives, and ranked according to activation time for the circle (C), square (S), horizontal
(H), vertical (V), and their harmonic (h) variants.

Shape Speed Algorithm
TP

Rate
FP

Rate
Activation

time (s)
Buffe
size

Threshold Parameters Posthoc

C

2

LCS 100 0 2.30 30 1 Dm: sqeuclidean; No: procrustes; ε: 0.3; Pa: 10.0; δ : 20.0; 15
S Correlation2D 100 0 2.62 30 0.661 Sw: 20.0; No: procrustes; 30

S(h) Correlation2D 100 0 2.27 30 0.705 Sw: 20.0; No: z-score; 15
H Minkowski 100 0 3.03 45 0.187 Dm: chebyshev; Sw: 20.0; No: z-score; 15

H(h) Spearman 100 0 3.23 45 0.982 Sw: 20.0; Ro: True; 15
V Minkowski 100 0 2.84 45 0.199 Dm: cityblock; Sw: 20.0; No: z-score; 1

V(h) Spearman 100 0 3.99 90 0.946 Sw: 20.0; Ro: True; 1

C

4

LCS 100 0 2.86 45 0.733 Dm: chebyshev; No: procrustes; ε: 0.2; Pa: 0.0; δ : inf; 15
S LCS 100 0 3.20 60 1 Dm: sqeuclidean; No: z-score; ε: 0.3; Pa: 20.0; δ : inf; 1

S(h) LCS 100 0 3.17 60 1 Dm: sqeuclidean; No: z-score; ε: 0.3; Pa: 20.0; δ : inf; 1
H Procrustes 100 0 4.89 120 0.066 Sw: 20.0; 1

H(h) Spearman 100 0 5.43 120 0.973 Sw: 20.0; Ro: True; 15
V Pearson 100 0 3.59 60 0.967 Sw: 10.0; Ro: True; 15

V(h) Pearson 100 0 3.60 45 0.969 Sw: 10.0; Ro: True; 30

Table 5.6: The false positive rate and activation time (in brackets) for each algorithm’s best per-
forming parameter combination which achieves a 100% true positive rate. Blue highlighted cells
indicate the best performing algorithm for a given shape-speed combination, yellow indicate a non-
zero false positive rate.

Shape Speed Proc Pear Spea Corr Mink Haus DTW LCS

C

2

0.0 (2.44) 0.0 (2.65) 0.0 (2.74) 0.0 (2.33) 0.0 (2.44) 0.0 (2.53) 0.0 (2.83) 0.0 (2.30)
S 0.0 (3.09) 0.0 (3.15) 0.0 (3.51) 0.0 (2.62) 0.0 (2.86) 0.0 (3.25) 0.0 (3.31) 0.0 (2.67)

S(h) 0.0 (2.75) 0.0 (2.48) 0.0 (2.96) 0.0 (2.27) 0.0 (3.06) 0.0 (3.20) 0.0 (3.54) 0.0 (2.57)
H 0.0 (3.89) 0.0 (3.10) 0.0 (3.10) 0.0 (3.07) 0.0 (3.03) 8.3 (3.72) 2.1 (4.41) 2.1 (3.02)

H(h) 0.0 (4.24) 0.0 (3.26) 0.0 (3.23) 0.0 (4.01) 0.0 (3.55) 4.2 (3.98) 0.0 (4.56) 1.0 (3.40)
V 0.0 (4.03) 4.2 (4.47) 0.0 (5.64) 0.0 (4.05) 0.0 (2.84) 8.3 (3.85) 5.2 (5.12) 0.0 (3.43)

V(h) 0.0 (4.07) 0.0 (4.10) 0.0 (3.99) 2.1 (4.29) 6.2 (3.67) 8.3 (5.45) 3.1 (4.62) 4.2 (4.15)

C

4

0.0 (3.12) 0.0 (2.91) 0.0 (3.86) 0.0 (3.05) 0.0 (3.20) 0.0 (3.32) 0.0 (3.52) 0.0 (2.86)
S 0.0 (3.73) 0.0 (3.75) 0.0 (4.23) 0.0 (3.86) 0.0 (3.46) 0.0 (3.89) 0.0 (4.21) 0.0 (3.20)

S(h) 0.0 (3.19) 0.0 (3.23) 0.0 (3.50) 0.0 (3.45) 0.0 (3.17) 0.0 (3.68) 0.0 (3.85) 0.0 (3.17)
H 0.0 (4.89) 0.0 (4.90) 3.1 (4.71) 2.1 (4.82) 3.1 (5.32) 14.6 (4.83) 14.6 (3.62) 2.1 (4.34)

H(h) 14.6 (5.30) 1.0 (4.97) 0.0 (5.43) 5.2 (3.83) 7.3 (4.01) 14.6 (4.07) 12.5 (3.72) 10.4 (3.39)
V 12.5 (4.61) 0.0 (3.59) 1.0 (4.04) 0.0 (3.72) 2.1 (3.35) 35.4 (3.29) 5.2 (3.31) 2.1 (4.41)

V(h) 20.8 (3.57) 0.0 (3.60) 2.1 (3.48) 1.0 (3.06) 0.0 (3.62) 25.0 (2.71) 6.2 (5.45) 2.1 (3.21)

parameters shows how aligning input and output data both temporally and spatially is crucial
in determining a good match. We see this reflected with the use of the sweep parameter which
features in all of the top-performing lock-step algorithms. We observed higher thresholds for
combinations in which the sweep parameter was used, demonstrating that it is able to match
trajectories more closely. We also observe the Procrustes algorithm feature for both circle con-
ditions, which is the only normalisation technique that aligns temporally because it rotates the
trajectories relative to each other.

Table 5.6 shows how the parameters perform across all target conditions given a 100% true pos-
itive rate. Appendix A details all the results, including the parameter combinations required
to achieve these results. For faster movements, we observe the Procrustes and Spearman algo-
rithms can suppress false positives across all target conditions, followed by the Pearson, Corre-
lation 2D, and Minkowski algorithms which achieve robust results across all but one of the fast
conditions. For fast two-dimensional conditions all algorithms achieve robust results with zero
false positives. Across the three fast two-dimensional conditions Correlation 2D has the lowest
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average activation time (2.41 s), followed closely by LCS (2.51 s). For fast one-dimensional
conditions the Minkowski-based algorithms achieve the best results over the linear movement
types (2.93 s), whereas the Spearman algorithm achieves top results for the harmonic variants
(3.61 s). Interestingly, despite harmonic motion being the preferred choice of movement type,
it takes substantially longer on average to synchronise than their linear counterparts. We know
from the previous section that users can synchronise more closely with harmonic movement,
therefore we can infer that harmonic movement is more likely to occur as accidental motion and
thus algorithms must be more robust.

For slow two-dimensional movements we once again observe robust results with all algorithms
achieving zero false positives, yet LCS achieved the quickest activation time across all three
conditions. From the previous section we observed that the slower movements exhibited more
variability than the faster conditions, and LCS’s ability to temporally warp the trajectories may
be advantageous. Having said that, we do not see the same level of performance from DTW
which is outperformed by most of the lock-step measures. The disparity between elastic mea-
sures could be due to LCS being more robust to “noise” in the matching process [275]. In
contrast, the slow one-dimensional movements do not show the same level of robustness to false
positives. According to Table 5.5, both the slow horizontal conditions in particular show much
larger activation times than the other shapes. This is indicative that they are much more likely
to suffer from false activations than their vertical counterparts and as a result they require much
larger buffer sizes (≈ 3 s). According to Table 5.6 there are very few algorithms that can robustly
match the slow one-dimensional trajectories. This suggests that one must be much more careful
to select the correct algorithm when designing interfaces with slow one-dimensional movements.

The shapes which were quickest to detect for both slow and fast targets were the circle (fast: 2.3
s, slow: 2.86 s) and harmonic square (fast: 2. 27 s, slow: 3.17 s). We see a marked improvement
over the activation times for the circle in contrast to Chapter 3.3 (fast: 3.46 s, slow: 3.66 s).
We also note the differences between fast and slow targets (circle: 0.56 s, linear square: 0.58
s, harmonic square: 0.9 s), corresponding to increased buffer sizes of 0.5 s, 1.0 s, and 1.0 s
respectively. This contradicts our findings in the previous section which showed how participants
were more in sync with slower moving targets, and in some cases started gesturing sooner – our
results here demonstrate that faster targets are much quicker to detect. The additional buffer
size, and hence time to detect, could be required in order to capture enough salient information
of the shapes to ensure they are robust to false positives. Note how buffer sizes of 60 correspond
to half the square for the slow shape, and 30 for the fast shape (fast linear actually required a
buffer size of 45).

Rather than minimising false positives to zero, we also investigate a more “relaxed” approach
by allowing a maximum of 5% false positive rate, see Table 5.7. As a result of relaxing the
false positive rate we observe all activation times decreased across all shapes and speeds. This
is most notable in the case of worst performing conditions from Table 5.5 - the slow horizontal
movements (linear: -1.08 s, harmonic: -1.55 s) and the fast harmonic movements (horizontal:
-0.67 s, vertical: -0.82 s). We also note the lack of posthoc windows in all but the slow vertical
conditions, in contrast to Table 5.5 where the majority of top parameters feature the posthoc
window. This demonstrates the effectiveness of the posthoc window at reducing false positives,
and also suggests those most affected are indeed more likely to suffer from false positives.

5.3.7 Discussion

Our results demonstrate the robustness of motion correlation as an input technique. For
all target conditions we find an algorithm that achieves 100% true positive rate without any false
activations. This includes the more problematic cases such as the fast head movements with
circles and linear squares, which were problematic for some participants in Chapter 3 and in this
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Table 5.7: Algorithms with the lowest activation time that achieve a 100% true positive rate and a
maximum 5% false positive rate for the circle (C), square (S), horizontal (H), vertical (V), and their
harmonic (h) variants. ∆ T represents the difference in activation time between these algorithms
and the top-performing algorithms in Table 5.5.

Shape Speed Algorithm
FP

Rate
Activation

time (s)
∆ T

Buffer
size

Threshold Parameters Posthoc

C

2

LCS 2.1 1.94 -0.36 30 1 Dm: chebyshev; No: procrustes; ε: 0.3; Pa: 10.0; δ : inf; 1
S Correlation2D 4.3 2.24 -0.38 30 0.791 Sw: 10.0; No: z-score; 1

S(h) Minkowski 3.1 2.25 -0.02 45 0.366 Dm: euclidean; Sw: 10.0; No: z-score; 1
H Spearman 2.1 2.53 -0.5 45 0.986 Sw: 20.0; Ro: True; 1

H(h) Spearman 2.1 2.56 -0.67 45 0.987 Sw: 20.0; Ro: True; 1
V Correlation2D 3.1 2.81 -0.03 45 0.825 Sw: 20.0; No: z-score; 1

V(h) Pearson 4.2 3.17 -0.82 60 0.982 Sw: 10.0; Ro: True; 1

C

4

LCS 4.3 2.53 -0.33 45 0.978 Dm: chebyshev; No: procrustes; ε: 0.3; Pa: 10.0; δ : inf; 1
S Correlation2D 3.1 2.96 -0.24 60 0.739 Sw: 20.0; No: z-score; 1

S(h) LCS 3.1 2.87 -0.3 60 1 Dm: cityblock; No: z-score; Pa: 20.0; δ : inf; 1
H Spearman 4.2 3.81 -1.08 90 0.975 Sw: 20.0; Ro: True; 1

H(h) Spearman 4.2 3.88 -1.55 90 0.981 Sw: 20.0; Ro: True; 1
V Minkowski 4.2 3.23 -0.36 30 0.477 Dm: chebyshev; No: z-score; 30

V(h) Minkowski 2.1 2.94 -0.66 30 0.478 Dm: cityblock; No: z-score; 30

study. This robustness to accidental activations is demonstrated without using any delimiting
gestures - all algorithms were running for the duration of the false positive dataset (with the
exception of when there was no movement defined by a 1 px threshold).

We have demonstrated the importance of optimally aligning input and output signals both
temporally and spatially. For temporal alignment, this is shown by the top-performing algo-
rithms being either a lock-step algorithm featuring the sweep parameter, or an elastic measures
which temporally warp the trajectories. The success of the lock-step measures with the sweep
parameter suggests the ability of the elastic measures to temporally warp the signals is offset by
the lock-step algorithm’s abilities to align signals using the sweep parameter. This may infer
that the leading/lagging element is more important to the matching process than the fluctuation
in user-to-target distance over time.

From a detection perspective, two-dimensional target trajectories appear to be more ro-
bust to false positive activations compared with one-dimensional movements. With the
latter there were fewer algorithms which could suppress false positives, and this could have con-
tributed to the higher average activation times. There is greater variability in two-dimensional
movements due to the use of two axis, and accidental motion is less likely to be spatiotempo-
raly matched in both axes simultaneously. However, in the previous section we observed user
preference for the fast harmonic one-dimensional movements. Our results suggest that they may
be more subject to false activations, and require longer for a successful detection (on average),
than the two-dimensional movements. For applications in which accidental activations are more
likely (e.g. public displays, busy environments), two-dimensional shapes could provide addi-
tional robustness.

Our results also highlight the trade-off between false positive rate and activation time.
By sacrificing the false positive rate we can reduce activation time whilst maintaining 100%
true positives, especially in the case of the one-dimensional movements. This can therefore
be viewed as a design choice: does one prioritise robustness to false activations or activation
time? This choice will depend on the context of the application, and it would be possible to
use two sets of parameters - an initial robust parameter set to minimise false positives, and a
second parameter set optimised for activation time once the user has initiated interaction with
an application. One possibility is to design interfaces such that two-dimensional shapes are used
for initial interaction with/activation of the system, and once interaction has begun the system
could transition to the more favoured one-dimensional targets with more “relaxed” parameters
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that optimise for activation time.

There are two types of false positive: an accidental movement selecting a target (studied
in this section), and selecting the incorrect target when many targets are available for
selection (studied in Chapter 3.3). Our analysis in the previous section showed us how users
perform catch-up and slow-down movements, and therefore we must consider how the presented
algorithms may cope with the presence of simultaneous targets. Take the sweep parameter for
example. With a sweep size of 20 frames (≈ 0.6s) we search for movement in a 1.2 s window
around the target. In Chapter 3.3 we showed that users are capable of differentiating about four
targets in one direction separated by 90◦– which translates to temporal differences of 0.5 s for
the faster movements and 1 s for the slower movements. Using the sweep parameter would
therefore require disambiguation when multiple targets are selected.

One way of achieving this is to output the index of the sweep parameter which achieves the
highest similarity score to find the target closest to the user movement. Likewise, with the
elastic measures we can output the warping paths to extract which target the user is more closely
following. In the case of the Procrustes algorithm, its additional computational complexity can
be offset by outputting the rotation required for optimal alignment which also has the advantage
that only one target need to be compared with. For example, consider a circular target, if we
find that the optimum rotation is 180◦, then we can infer the user is following the target which
is 180◦offset to the (only) target we compare against.

We also observe the importance of algorithm and parameter selection based on different
target conditions, and thus the context of the application. Although our results demonstrate
zero false positive rates across the board, there was not a single algorithm which achieved zero
false positives across all shapes at either speed. We observed all of the algorithms achieving zero
false positives for the two-dimensional shapes, however we also see a variety of parameter com-
binations featuring in the top-algorithms (five parameter combinations out of six). Ideally one
approach would be suitable across all target configurations, reducing the burden of designers to
have to optimise parameters of the system, and allowing for a plug-in-and-play style approach.
The correlation 2D algorithm performed well across the desirable different types of motion, and
is our recommended algorithm based on activation time. Table 5.8 details the parameters re-
quired for different contexts. We have provided a foundation to begin with by exploring existing
trajectory matching techniques, and the insights we have gained from both the previous section
and this can be used to inform future algorithm design.

All algorithms are either scale invariant or normalise the input data, and we have demon-
strated the abilities of the algorithms to match across all of the types of input. The al-
gorithms presented are scale invariant insofar as that they do not require input and output co-
ordinate spaces to be in the same dimensions. We demonstrated how the algorithms can pick
up relatively small movement compared to the camera with head movements, however for ex-
tremely small movements (e.g. micro-gestures, very large distance of user from sensing device)
scale invariance is limited as the signal-to-noise ratio decreases. The insights we have gained
from this algorithm evaluation are transferable to other body sensing devices and application
contexts which may involve users at different distances to the camera. Other skeletal trackers
(e.g. Kinect) and optical flow based approaches (e.g. TraceMatch) output similarly smooth tra-
jectories to those outputted by the OpenPose skeletal tracker, and hence we would also expect
thresholds and parameters to be somewhat transferable, or in the worst case provide an initial
starting point.

Future work and Limitations

We focussed on the most common techniques used in the literature that do not require train-
ing, however there exists other techniques that we omit, e.g. Edit Distance on Real Sequence
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Table 5.8: Summary table showing the recommended types of motion and parameters for the Cor-
relation 2D algorithm

Context Speed Type of Motion Buffer Size Threshold Sweep Normalisation Posthoc Window

Robust against accidental activation
(e.g. activation gesture)

Fast Circle 15 0.764 0 Procrustes 30
Fast Square (Harmonic) 30 0.705 20 Z-score 15

Fast activation times
(e.g. selection)

Fast Circle 30 0.885 20 Procustes 1
Fast Square (Harmonic) 30 0.705 20 Z-score 15

Horizontal (Harmonic) 60 0.753 20 Z-score 1
Fast Vertical (Harmonic) 90 0.671 20 Z-score 15

(EDR) [44], Time Warped Edit Distance (TWED) [161], or statistical methods such as nor-
malised cross-correlation (NCC) with Bayesian estimation [240, 157] or machine-learning based
approaches [181, 195]. As suggested by Williamson and Murray-Smith in their pioneering
“Pointing without a pointer” paper, there is also scope to develop much more sophisticated
algorithms using methods from information and manual control theories which can incorporate
a mathematical model of the human behaviour. These models could also incorporate contextual
knowledge of the application domain for matching, e.g. tailoring to a specific type of input or
assigning higher probabilities of a match occurring at specific times.

We have shown the robustness of motion correlation to accidental activation generated by the
hands and head using semantic and spatial gestures. However, this is an indication of the ro-
bustness to common movements one would expect to be encountered, and deployments over
prolonged periods may reveal more information on the robustness of the system in-situ. For
a system such as TraceMatch, which senses movement from any source, there is an increased
likelihood that a false activation is encountered. Another aspect we didn’t consider is how robust
different shapes are at being matched against each other. For example, if a circular target and
a square target with the same phase are on an interface can they be differentiated? The ability
to display more than one shape not only increases the number of available targets, but gives
designers flexibility in how they can design interfaces, with different shaped widgets being used
for different purposes. We have also only looked at movements in the image plane of the camera
– we assume the users are facing the camera and not at an angle. Future work should look at
the effect of different angles on the detection capabilities, or take this into account using depth
sensors.

Insights gained from this work may not only transferred to other body sensing devices, but also
to other modalities such as eye gaze. We would not expect these results to directly translate
because other sensors may exhibit different characteristics. Drewes et al. found that introducing
a fixed offset into the eye tracking signal increased correlation, however it is not clear where this
was due to the sensor or the characteristics of smooth pursuit eye movement [63]. Eye trackers
have much higher frequency noise due to the need to detect smaller movements, however insights
such as the parameter sweep or Procrustes approach may be beneficial to aligning signals. This
would require a similar analysis to be performed on eye movements.

Finally, although we have performed an extensive search of the parameter space, we have not
performed an extensive search of the thresholds. The thresholds we have presented are based on
this dataset and there is a danger of overfitting, as our parameters are derived from this specific
dataset. It would be prudent to investigate how applicable they are to a wider range of users
and in different application scenarios. Assuming an algorithm yields 100% true positive rate
with 0% false positives, there exists a range of thresholds that could satisfy this requirement. In
this work, we chose thresholds on the boundary of ensuring 100% true positive rate, and hence
the thresholds are as robust to false positives as possible (whilst maintaining 100% true positive
rate). Alternatively, we could have selected thresholds on the boundary of yielding 0% false
positive rates. Once again the implications of this depend on whether the priority is suppressing
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false activations or enabling true detections.

5.4 Conclusion

In this chapter we have conducted an in-depth study into how users can follow motions with
different body parts, or whilst using an object, which has provided interesting insights for both
interface and algorithm design. By utilising our knowledge of how users move, we have demon-
strated how we can better design target movement to suit user’s body movement by using simple
harmonic motion. By displaying the target movement as simple harmonic motion, it is both
easier to follow and more preferred by users. We found that users showed preference for one-
dimensional target movement, however our analysis on algorithms suggests two-dimensional
trajectories offers compelling properties including lower activation times and more robustness
to false positives. We have demonstrated that motion correlation is robust against accidental
activations caused by common semantic gestures, and provide optimal parameters for a range of
algorithms for practitioners of motion correlation interfaces using body movements.
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Discussion

In this chapter we revisit our proposition that motion correlation is the third input paradigm for
touchless gestures and reflect on the research questions posed in Chapter 1. We discuss how
semantic and spatial input can be used to support motion correlation (and vice versa), and how
to better design motion on the interface. We then look at application areas that could benefit most
from motion correlation, and distil interface design guidelines from across our studies. Finally,
we discuss future work, including challenges and directions for incorporating user feedback into
the proposed systems, and the opportunities that arise if we extend the TraceMatch/MatchPoint
systems, before finishing on the limitations of our work.

6.1 Research Questions

6.1.1 Can movement be used as the primary sensing principle for interaction?

The concept of motion correlation has been used for different input modalities, from a mouse [73],
to gaze [273], to hand movements [40]. In Chapter 3, we showed how movement can be used
as the primary sensing principle, by a wide range of sources which can generate movement. By
leveraging the underlying concept of motion correlation, we investigated:

• RQ1.1: Is it feasible to harness movement as the primary sensing principle using motion
correlation to allow users to provide input more flexibly? By combining feature detection
and optical flow techniques, we demonstrated how sensing of arbitrary motion can be used
as input with the TraceMatch system. This approach avoids detecting and segmenting
specific users, creating a posture-agnostic input method which allows users to interact
flexibly with any body part or object.

• RQ1.2: How effective are users at providing input using different body parts, or when
holding objects, to generate the required motion? Using an abstract selection task, we
discovered users can provide input across a range of body parts, and even whilst using
objects-in-hand. The speed of the target motion affected the task success rate for partic-
ipants, especially when using the head for input. Participants were able to select a target
from eight Orbits (four in both directions) with an average task success rate of 88% across
all sizes, speeds, and types of movement during a controlled experiment, and with a task
success rate of >97% in a naturalistic application context. However, our results could be

108



6. Discussion

conflated by the use of the detection algorithm, and in Chapter 5 we further investigated
how users provide input by abstracting from any particular detection algorithm.

• RQ1.3: How do users provide input spontaneously when given the opportunity to in-
teract with different body parts and objects? Given that users can provide input by any
means necessary, we studied how they spontaneously chose to interact with a range of
applications based on real-world contexts. Participants expressed preference for different
methods of input, including input whilst holding a mobile phone or a cup, however the
dominant hand was the most preferred method of input. Despite this, it was not used ex-
clusively and choice of input was context dependent (e.g. participants used different hands
based on the position of the on-screen controls). Follow-up discussions with participants
also revealed how the head provided relaxed input which could have more application in
different contexts.

6.1.2 How can motion correlation be used to bootstrap spatial pointing?

Prior to this thesis, previous work focussed on motion correlation for discrete selection of ob-
jects, however many interactions in the real-world require more precise input control. In Chap-
ter 3.5 we explored how more expressive input could be achieved with varying speeds, sizes, and
colour of orbit, however motion correlation is unsuitable for continuous control. In Chapter 4
we explored how motion correlation can be extended to better support a wider range of input for
interaction with touchless gestures, with a particular focus on spatial gestures. Subsequently, we
investigated:

• RQ2.1: Can the control-display gain for spatial interaction be derived from motion cor-
relation? We demonstrated how the movement in the motion correlation stage encodes
important information, with which we can define a coordinate frame for spatial interac-
tion. Beyond defining the coordinate space, the motion correlation phase empowers users
to simultaneously select the function they wish to control, and the input to use (implicit in
their action). This enables unique opportunities for interaction which can be tailored on a
per-interaction basis.

• RQ2.2: What unique capabilities arise from combining motion correlation with spatial
coupling? By combining motion correlation and spatial input, we can leverage both of
their advantages for unique interaction techniques. We implemented MatchPoint, a com-
plete implementation of spontaneous spatial coupling, which we used to explore the design
space for interactions that leverage spontaneous coupling of multiple controls at a time, by
one or multiple users, with different body parts, or with objects as tangible intermediaries.

• RQ2.3: What are the usability implications of dynamically setting the control display
gain? We explored how the dynamic appropriation of “anything the user can move” as a
pointing device affects the user’s ability to consistently provide input accurately. Using
the webcam-based MatchPoint, users were able to complete a multi-directional pointing
task from a distance with approximately the same throughput as the Microsoft Kinect v1.
However, with MatchPoint the CD gain was dynamically set each time the user acquired a
pointer, and users were able to complete the task using their head, hand, and whilst using
an object, whilst the system had no underlying knowledge of which input method was
being used. The ability to accept any form of input is compelling as it enables users to
choose a form of input that is convenient in a given context, and invites exploration of
mappings that might not be general purpose but fitting for specific contexts.
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6.1.3 How do users reproduce trajectories in the context of motion correlation?

Our ability to synchronise with external stimuli is dependent on a number of physiological sub-
systems working in coordination. We have provided an understanding about how users syn-
chronise with target motion in the context of motion correlation by addressing the following
sub-questions:

• RQ3.1: How can we extract the ground truth of how well users follow a target, inde-
pendent of any particular detection mechanism intended for interaction? Extracting the
ground truth of how well users follow moving targets is non-trivial due to the ephemeral
nature of touchless gestures. In Chapter 5.2.1, we detail two approaches for extracting the
ground truth of how users follow both circular motion, and line-based motion. For circular
motions an ellipse fitting model can be used, with the start of the gesture extracted based
on anomalous angular velocities at the start of the gesture. For line-based motions, we use
a vertex and edge-based approach to identify salient parts of the motion.

• RQ3.2: How much do users lead or lag a target when synchronising with different shapes,
and across different input methods? Using the ground truth extraction approaches we anal-
ysed how well users can synchronise with target motion, aggregated over all participants.
This revealed how different target conditions affect the way in which users synchronise
with different methods of input. Faster targets were preferred by users, however slower
target motions results in closer synchrony. We also observed how there was little differ-
ence between dominant and non-dominant hand, confirming the findings from Chapter 3.3
that motion correlation does not rely on fine motor control.

• RQ3.3: Can simple harmonic movement better help users synchronise with target move-
ment? We showed how presenting target movement as simple harmonic motion helped
users to synchronise more quickly, more closely to the target signal, and with less oscilla-
tions than linear movement. In addition, participants expressed a preference for following
simple harmonic motion compared with linear across all methods of input, describing it
as “more natural” and “fluid”.

6.1.4 How robustly can we detect users matching motions?

The success of an input technique can be decided on its ability to accurately detect user inten-
tions, and reject accidental activations. Whereas the previous question addressed how well users
actually synchronise with targets, in Chapter 5.3, we demonstrate a 100% success rate of detect-
ing users follow target motion, with 0% false activations against common semantic and spatial
gestures. Two sub-questions shed light on this:

• RQ4.1: Which algorithms are appropriate for detecting motion correlation? We identi-
fied eight algorithms from the motion correlation and wider trajectory matching literature
suitable for matching user motion to target motion. We focussed on those approaches
which view the problem as matching two trajectories, and where a match is determined
by extracting a similarity measure. We also identify several other approaches, including
probabilistic and machine learning, which we did not investigate but have potential for
future research and application.

• RQ4.2: What are the best parameterisations for achieving optimal performance across
different types of input? We focussed on two specific contexts for extracting parameter-
isations for use with motion correlation: robustness against false activations (0% false
positive rate), and a more lenient context for interaction which minimises activation time
whilst ensuring a 5% false positive rate. Following an extensive search, we detail numer-
ous parameterisations across different algorithms that satisfy these criteria.
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6.2 Motion Correlation as the Third Input Paradigm

Our goal at the outset of this thesis was to position motion correlation as the third fundamental
interaction paradigm for touchless gestures. The notion of motion correlation as the third input
principle for touchless gestures has wider implications that extend beyond the research labora-
tory. Unlike the mouse and keyboard or touch-based input, there is no agreed upon means of
interacting with devices remotely. In a world where computing is becoming more ubiquitous
with internet-enabled devices, users are often faced with the issue of multi-device interaction.
Our ability to follow motion is universal, and transcends languages and cultures, and motion
correlation has the attributes for being a fundamental principle for interaction across devices.
However, interaction across multiple devices may require inter-device communication to en-
sure uniqueness of trajectories is maintained to ensure there is no ambiguity over which device
the user is addressing. We primarily focussed on simple selection tasks, intended for lazy in-
put where the number of options available are limited (< 10), which could equally be used as
activation gestures to first address a device prior to interaction, similar to the suggestion of Free-
man and colleagues [81]. However, due to the time required for selection, motion correlation is
not suitable for tasks requiring multiple sequential selections from a large vocabulary of input
options, such as typing.

Throughout this thesis, we have demonstrated that motion correlation is a powerful and versatile
input paradigm that abstracts from the need to provide input with specific body parts, objects,
or devices. In Chapter 3 we introduced TraceMatch, a computer vision technique which uses
generic motion as input without requiring user segmentation. Our subsequent studies highlighted
the versatility of motion correlation, showcasing how users are adept at providing input with a
variety of different types of input. Whereas we have focussed on sensing motion using computer
vision techniques, other sensing modalities can be used to capture our fundamental ability to
synchronise with motion on the interface.

Not only is motion correlation a powerful interaction paradigm in its own right, it lends itself
to integration with other principles. In Chapter 4, we introduced spontaneous spatial coupling
and showed how motion correlation can be used to support interaction beyond discrete selection.
By combining it with conventional spatial input we increase the available design space for more
expressive input, whilst maintaining the versatility to provide input by any means. In this case,
there is a symbiosis between spatial input and motion correlation in which both techniques
benefit from the other. Motion correlation has compelling properties for simple selection tasks
which can reduce the gorilla arm effect as cursor-based selection requires the arm to be held aloft
for longer periods [101]. Spatial input also benefits from a more seamless approach to defining
the spatial mapping, which can now be defined on a per-interaction basis and can help to avoid
ill-defined mappings. Similarly, motion correlation benefits from the ability of spatial input to
provide continuous control in a precise manner. We can also look towards how semantic input
can support motion correlation and vice versa.

Semantic gestures are powerful because they draw upon our natural communication skills and
can be performed in an eyes-free manner. However, as discussed in Chapter 2, there are dis-
coverability and memorability issues with ill-defined gesture mappings – motion correlation can
bridge this gap. In Chapter 3.4 we showed how motion correlation could be applicable to a
number of application scenarios featuring non-trivial mappings (e.g. selecting “multi-view” in
the Formula One application). In future, touchless gesture sets could consist of both semantic
and motion correlation-based gestures. Those gestures which are obvious to users can be pro-
vided semantically, with motion correlation used to “fill in the blanks” for those gestures whose
mappings are non-trivial.

In contrast to semantic gestures, which are often tied to a particular body part, the ability to
provide input using any body part or object provides opportunities to provide input seamlessly
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whilst performing other tasks. Iconic gestures (e.g. the tracing of a spatial trajectory) also exhibit
similar abstract properties, but without applying the temporal constraint of motion correlation
gesture sets are limited in the one-to-one mapping of shape-to-input command. In contrast,
motion correlation allows the reuse of a single shape multiple times by varying the phase or
speed of the targets. However, movement on the interface required to display targets could be
visually distracting for some applications. A small subset of semantic gestures (e.g. one for each
body part) could provide an eyes-free activation gesture to trigger the motion used for selection.

Our analysis in Chapter 5 suggests the spatio-temporal element of motion correlation is crucial
in being able to reject accidental activations from common semantic gestures which we use in
everyday life, and which are more susceptible to being inadvertently detected. Likewise, iconic
gestures with no temporal constraint (i.e. tracing a circle) will suffer from accidental activation
from other movement in the scene as demonstrated in Chapter 5, and obscure activation gestures
(e.g. a teapot [279]) may cause user embarrassment or be hard to remember. Thus, in addition to
its discoverability, motion correlation can support semantic gesture systems by providing a more
robust activation gesture which can be used to address multiple devices, such as demonstrated
in Freeman et al.’s Do-That-There [81].

6.3 Motion on the Interface

Inherent to motion correlation, as discussed in this thesis, is motion on the interface. In Chapter 5
we discussed the kinematic aspects of motion on the interface, however the aesthetic design of
the motion is also a vital component. In addition to providing discoverability and feed-forward
capabilities for interaction, motion-based design in interfaces provide a number of advantages.
It can be used to drive user attention, making it explicitly clear to the user what interactions are
available, and be utilised by designers to indicate the flow of an application. We have shown
that the properties of the motion shown can be used to convey underlying functionality of the
control, for example by using colour or the speed, and provide intuitive controls. As opposed to
traditional interface layouts (e.g. grid layouts), motion correlation allows for unique layouts and
overlapping targets which can be used to indicate spatial and temporal hierarchical relationships
between objects to support usability. This could be in the form of grouping similar function-
alities in a design, or by using motion to highlight differences (e.g. clockwise for positive,
anticlockwise for negative).

Design of the motion is also important for when users are not interacting with the system. Our
peripheral vision is attuned to detecting motion, and our peripheral temporal sensitivity is al-
most equal to that of our foveal temporal sensitivity [169]. This has both positive and negative
implications. Users could synchronise with simple one-dimensional movement patterns without
having to look directly at the target. However, an important consideration for some applications
is how to reduce motion when not required to avoid unnecessary distraction. As mentioned in
the previous section, one approach could be to use a semantic gesture to activate a motion cor-
relation interface. Alternatively, one could limit input to active regions of the sensor and only
display motion on the interface when movement in the active region is detected. However, this
removes the posture-agnostic element of a system like TraceMatch and constricts the way in
which users can interact with the system. Another approach could be to limit distraction by de-
sign of the motion itself. We have only considered a simple design of target motion in this thesis
(i.e. a moving dot), but the design of the target could be much more subtle, and even blend into
the background based on the application scenario. It is important to note that motion correlation
is feedback bound, and that a user needs to attend to the target visually to synchronise.

Another design consideration is the type of motion displayed. In this thesis we have demon-
strated how simple harmonic movement, inspired by the way in which we move our body, can
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be synchronised with more easily and is preferred by users. The use of naïve physics can be used
in interfaces to add the illusion of mass, inertia, and/or springiness to digital widgets [115]. Us-
ing physics-based motion has been used in previous motion correlation interfaces with fish [273],
flying insects [273], and shooting stars [199], where the movement of the targets mimicked their
real-life counterparts. Aside from the harmonic motion introduced here, little is known about
how we can utilise (simulated) physical properties of targets as an abstract concept in itself to
help in perception and matching by making motions more predictable and aesthetically pleasing.

There exists other avenues in which we can show motion to users, in this work we have con-
sidered target trajectories in 2D space on a display. Prior work has also shown mechanical
systems can be used to generate the motion required for users to synchronise with [271]. This
may offer unique and novels methods of interaction, where the properties of the mechanical sys-
tem could be naturally compatible with human motor system/perceptual/prediction capabilities,
e.g. a swinging pendulum. Previous work in the psychomotor literature also illustrates how
we are adept at synchronising with non-spatial cues, such as a flashing light [215], and work in
the motion correlation literature has shown how users can synchronise with a metronome using
micro-gestures [82].

6.4 Application Areas

In Chapter 2 we discussed the application areas most suited to touchless gestures. Some of
those may not be suitable for motion correlation because of the visual attention required (e.g.
automotive), however we believe the techniques presented here have applications in a number
of different areas. We have primarily explored motion correlation in the context of a living
room/television application space, but the concept of motion correlation can expand into other
areas of smart home living, such as when cooking in the kitchen with messy hands or whilst
using cooking utensils. In this case, display of the motion need not only occur on a display such
as a TV, but could instead occur on equipment itself such as the hob or microwave. The surgical
domain is another application which involves asepsis and could benefit from motion correlation
techniques. Surgical instruments need not be put down to interact with the system, which could
provide both simple selections (e.g. selecting a medical image), and spatial interaction (e.g.
manipulating said medical image).

Motion correlation does not require fine-grained motor control, as shown by similar abilities
across dominant and non-dominant hands, which presents opportunities to explore how it can be
used as a means of providing input for those who are not capable of fine-grained motor control.
We have alluded to the fact a system that detects generic motion could have implications for users
who can not use traditional methods of touchless input. Both the TraceMatch and MatchPoint
systems do not perform user detection or segmentation, and hence have no built-in knowledge of
the human body. Thus, users with physical disabilities, such as amputees, could use the system
unlike those which rely upon detection the hands. Likewise, the concept of motion correlation
is suitable for sensing devices not suited for pointing, but equally it is suitable for users who
are inaccurate or incapable of pointing precisely, and for those who do not have the dexterity or
hands to perform complex semantic gestures. This makes motion correlation ideally suited to be
investigated as an accessible input technique, but more work is needed to investigate how it can
best support those who can not use traditional input touchless input methods.

6.5 Design Guidelines

The set of studies presented in Chapter 3, and the results from Chapter 5 give insight into design
choices, from which we distil guidelines for the design of interfaces based on motion correlation

113



6. Discussion

using body movements. We reflect insights on the following properties:

• Shape – What is the best shape to use?
• Speed – What is the best speed to use?
• Number of Targets – How many targets should be displayed simultaneously?
• Size and Position – Does the size and position of the targets make a difference?
• Multi-Level Input – How should one convey additional information using the Orbits for

multi-level input?

6.5.1 Shape

Overall, this thesis has shown many shapes are suitable as input for motion correlation. Our
analysis in Chapter 5 studied both one- and two-dimensional shapes and showed each has bene-
fits and drawbacks. One-dimensional shapes are easy to perform across different types of input
and users preferred them for their simplicity. However, from an algorithm perspective, de-
signers have to be much more careful about parameter optimisation to avoid false positives.
Two-dimensional shapes also have compelling properties. It is easier to reject false positives
across all algorithms, and in Chapters 3 and 4 we showed how their button-like appearance can
be used for inspiring designs. Uniform circular movement, the projection of which undergoes
simple harmonic oscillation, is easy to perform across different types of input and economical
in terms of effort [94], and was a popular choice for participants in Chapter 5. We also saw how
square-based movement was more closely synchronized with than one-dimensional movement,
and provides clear perceptible events with which the user can synchronise [254]. However, we
also observed some users struggling with the fast head movements for two-dimensional shapes,
and any application contexts where users are more likely to use their head for interaction could
benefit from slow or one-dimensional movements. This highlights the importance of the speed
of moving targets presented to users. Also, different body parts have preferential directions and
axes of movement, for example the head has limited translational movement with more move-
ment in the horizontal axis than the vertical. This should be taken into account when designing
applications, for example when hands-free input is desirable. We have studied a small repertoire
of basic movements which can be performed across body parts. There is a larger space of shapes
for other research to explore.

6.5.2 Speed and Type of Movement

In this thesis, we have seen how both the magnitude and type of movement affects user prefer-
ence and their ability to accurately synchronise with moving targets. In Chapter 5 we showed
how presenting targets as simple harmonic motion was both preferred, and enabled better syn-
chronisation, than targets presented with constant velocity. For body movement-based motion
correlation interfaces there is little reason to pick constant velocity over simple harmonic motion
other than the quicker average activation times witnessed in the algorithm section of Chapter 5
– most likely due to simple harmonic motion being more likely to be susceptible to accidental
activation. Our studies have also shown that there are implications on the types of input that can
be used based upon the speed of the targets. In Chapter 3.3, we observed participants did not
perform well with fast head circular head movements, and in Chapter 5 we saw much higher
variability for the linear fast square-shaped movement with the head. Designers must be aware
of limitations with the use of fast targets which could inadvertently limit, or at least hinder, the
ways in which a user can provide input.

The application context is also important when deciding the speeds of the moving target. In
our studies, we purposefully filled the cup with (cold) water to simulate a drink. The ability
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to provide input with any object presents potential dangers depending on the object used, for
example gesturing with a hot cup of tea would be more dangerous at fast speeds. In Chapters 3.4
and 3.5 we observed participants using different types of movement to interact with the system in
a context where they were not performing other tasks other than interacting with the applications.
The varied use of different type of input can, in part, be explained by possible order and novelty
effects of having completed the first study and using the system for the first time. However, in
real-world deployments users may be performing other tasks with their hands when interacting
with the system, such as eating, drinking, cooking, or in a public display context the user may
have bags of shopping or be carrying or attending to a young infant. In this context, slower
targets would allow users to fully utilise the principle of providing input by whatever means
necessary.

In Chapter 3.3 the slower Orbits achieved a significantly higher task success rate across all
movement types, and our analysis in Chapter 5 showed users could synchronise more closely
with slower targets than their faster counterparts. However, slower movements showed more
variability and we observed different preferences with regards to participant favoured speed,
suggesting one speed does not suit all. This presents a conundrum to designers – what if the user
performs better with one speed, but prefers the other? Here we invoke the popular saying – “the
customer is always right”. If a user prefers faster targets then they should be able to configure
the system in a personalised manner. This can be achieved using a “settings” option to allow
the user to configure the speed on-the-fly to a configuration which they feel most comfortable
using. Alternatively, the system could adapt in real-time to the user by analysing how well a
user synchronises with target motions with different speeds, however this would not take into
account their subjective preferences. For public displays users should not be expected to have to
configure the interface before commencing interaction. An alternative approach would be to use
two sets of targets with both slow and fast moving targets, however this could make the interface
confusing. We therefore advise that the default speed of the targets are set to slow in this context,
to maximise the way in which users can accurately provide input.

6.5.3 Number of Targets

Based on our findings in the first study, we would recommend a default maximum limit of
eight simultaneous circular targets (four clockwise and four anti-clockwise) presented on an
interface when using only one speed. Reflecting on our findings in Chapter 5, we observe that
following circular targets results in higher variability compared with line-based movements, and
therefore we can infer that the number of simultaneous line-based targets would be at least the
same as circular targets. The speed of the targets is also a factor when considering how many
should be displayed simultaneously. In Chapter 3.3, six orbits (allowing for 12 simultaneously)
achieved a task success rate of 80% across all movement types for slow speeds, with seven
participants (35%) achieving an average task success rate of at least 90% with six orbits across
all movement types, and only three (15%) participants achieving a task success rate of less than
75%. In contrast, only two participants achieved a high task success rate (> 90%) when using
fast movement types. Analysis of how users followed motion in Chapter 5 suggests that users
are able to follow slower moving targets more closely than faster moving targets, and due to
the fact the time for one cycle of the gesture is longer it provides greater room for error when
selecting amongst many simultaneous targets. Therefore we would only recommend increasing
the capacity to twelve targets (six clockwise, six anticlockwise) when using slow moving targets
and if the application necessitated the increased capacity.

The shape of the target is important when considering the number of simultaneous targets. Pe-
riodic one-dimensional motions have no notion of direction, thus limiting the number of targets
given a specific phase offset compared with two-dimensional shapes. Therefore, one would
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have to use (for example) both horizontal and vertical moving targets to achieve the same num-
ber of simultaneous targets as a circle/square with targets in both clockwise and anti-clockwise
directions. The use of different speeds for the targets, such as shown in Chapter 3.5, also has the
potential to increase the capacity of the number of simultaneously displayed Orbits, however one
must take care in ensure the difference in speeds is sufficient enough to avoid false activations
occurring due to the overlapping trajectories. We used a time difference of 1 second between the
speeds, however a larger offset may result in a much lower false activation rate. We therefore
recommend a minimum difference of at least 2 seconds between the speeds of the targets. If us-
ing this approach, a practical capacity of sixteen simultaneous targets could be displayed using
two sets of targets with different speeds. Although we have only studied simultaneous circular
targets in this work, there is also the possibility of multiple shapes being used to extend the
maximum capacity, as long as the system can accurately differentiate the different trajectories.

6.5.4 Size and Position

In Chapter 3.3, we observed that the size of the targets did not affect task success rate. Smaller
trajectories may take up less screen space, however a user’s ability to accurately identify the
trajectory should be taken into account for extremely small target trajectories. We predict there
will exist a lower bound on the size in which the user can accurately distinguish the movement,
although we did not see one in our study suggesting very small target trajectories are possible.
This may vary depending on the shape, for example a square may have a smaller lower bound
than a circle because of the corners acting as perceptible events.

With regards to the positioning of the targets, we observed interesting user behaviour in Chap-
ters 3.4 and 3.5, with some users changing the way in which they provided input depending on
the position of the target on the screen. Similar behaviour was noticed in PathSync, where they
found a positive correlation between where users gestured and where the target appeared on the
screen [40]. Based on this, one might consider placing the targets centrally where possible so
that a user’s input is not influenced by their position on the screen.

6.5.5 Multi-Level Input

In Chapter 3.5 we showed how colour, speed and size can convey additional information to the
user for multi-level input. When using different speeds to convey additional information it is
important to consider the difference in speed of the targets to avoid false activations that occur
as a result of the trajectories overlapping. In contrast, size has been shown to have no significant
effect on task success rate, therefore this is a “safer” way in which additional information can
be conveyed. The downside to this is that not all users understood the implicit information
conveyed through the size or speed alone, therefore it is important to utilise both properties.
Some participants understood the concept of using colours to convey information, however this
is limited and could pose an issue for users who are colour blind. Instead we recommend using
icons for the targets of the Orbits to convey information more explicitly.

6.6 Future Work

In this section, we discuss future work and directions that arise from the insights and findings of
our research.
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6.6.1 Feedback and Reactivity

Providing feedback about an interaction is one of the basic heuristics of interaction design [186],
and is important in gestural interfaces to let users know their actions are being sensed [19]. For
motion correlation interfaces, feedback on the progress of a match could be provided on the
target itself, on the path preview, or on an object of interest (e.g. if the path surrounds an object).
Providing feedback for systems like TraceMatch, where any motion in a scene could be used as
input, involves additional complexity. There may be cases where a motion in the scene starts
mimicking the movement of one of the targets, not enough to cause a detection but enough to
trigger feedback to be given. This could present a confusing situation for users because it is
not obvious whether it is their movement, or movement of another object, that is causing the
feedback. This could also increase the issue of the targets being visibly distracting, and hence
subtle forms of feedback may be more suitable to avoid the user’s attention being drawn to
targets when accidental motion is causing feedback.

In this thesis, the moving targets we have studied have moved independently of user input.
Feedback could also be provided to users by introducing a “reactive” element, in which targets
change their motion according to user input. This could provide a number of advantages and
opens up some interesting research questions. First let us consider the process of disambiguating
multiple targets when many are simultaneously presented. As demonstrated in Chapter 3, the
most robust way of differentiating targets is by using the phase. If the system detects a user
is following a target, it could maximise the phase difference between its nearest neighbours to
better help disambiguate which target the user is following. In this scenario we look at changing
the motion of the targets around the target we believe the user is following, but we could also
consider what would happen if we changed the target the user is following itself. This could
be useful for further suppressing false activations, because the user must react to the system
changing the motion, and acts as a method of visual feedback to the user of the system’s detection
of their movement.

6.6.2 Input Segmentation

In this thesis we have highlighted the benefits of abstracting from body part segmentation for
input. We have shown how different types of input exhibit distinct differences in their ability to
match moving targets, provide spatial input, and in user preference. In MatchPoint, we demon-
strated how the properties of the matched motion can be used to inform control-display gain,
thus accounting for the use of different inputs and range of movements. However, we do not
perform user segmentation or object identification to identify what triggered the match. Adding
an element of body part segmentation when a match is detected could increase the capabilities
of these systems. Interfaces could be tailored to the type of input used to make the selection, for
example if the head is detected a much simpler spatial interaction could be presented due to the
higher difficulty in pointing.

In Chapter 4 we showed how the unique affordances of physical objects enable the spontaneous
creation of tangible user interfaces. A system which detects what input was used could dynami-
cally switch between spontaneous interaction of the body, to prolonged interaction with objects
such as those shown in MatchPoint. The specific properties of an object (e.g. shape, weight)
could also be inferred, and interaction in the spatial stage could utilise specific affordances (e.g.
nudging, rolling, tilting) of the object, in addition to, or instead of, translational movement. The
use of body part segmentation could also be used to provide input-dependent selections, either as
a means to increase the number of available targets for selection or for entertainment purposes,
such as a game for children in which they must use different objects depending on the context.
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6.6.3 Multi-modal Interaction

There are exciting opportunities to combine body-based motion correlation with other modali-
ties. As discussed in Chapter 2, gestures are commonly used in a multi-modal fashion to sup-
port speech. Natural language interfaces that can understand and interpret human speech have
gained huge popularity in recent years due to advances in natural language processing (NLP)
and cloud services, however it is difficult to refer to spatial locations with speech [49, 194].
Voice could be used to support motion correlation and spontaneous spatial coupling as a con-
firmation/cancellation mechanism, as opposed to the dwell we used in Chapter 4. In the case
of motion correlation, the mimicking of motion could be used to disambiguate which target the
users wants to select, with voice acting as the confirmation and/or cancellation. This provides
additional robustness against accidental activations because users must both mimic motion and
provide verbal confirmation. It also reduces/removes the need to establish a threshold for the
matching process because we need only identify which target is closer to the user’s movement.

This also prompts questions about how body movement-based motion correlation could be com-
bined with other modalities, such as gaze. Although gaze has been used for selection with motion
correlation, our eyes must follow the target to initiate sensorimotor synchronisation. Sensing
both modalities could provide interesting opportunities – two modalities provides sensing ro-
bustness against false positives (are both the hands and eyes following?), and only following
with the eyes could act as a different mode (e.g. as a pre-selection to display more information)
with confirmation occurring only when both hand and eyes follow the motion.

6.7 Limitations

We have focussed on the use of general purpose cameras as a sensing device that have deep
market penetration. However, a camera can only capture a scene in two-dimensions and requires
line-of-sight of the users. Our studies have involved users performing gestures square on to
the camera itself, in the optical axis of the camera. In real-world deployments it would be
advantageous for the systems to accept input irrespective of the user’s orientation to the camera.
This could be achieved using depth sensors, however they are much less ubiquitous than their 2D
counterparts. Vision-based systems also have potential privacy concerns that must be taken into
account for in-the-wild deployments. However, it should be noted that by using generic motion
as input, and not performing user detection or recognition, the systems we have developed are
only subject to bad actors in terms of intercepting visual data.

In this thesis we have studied motion correlation and the systems we have developed in the
context of providing input in a living room scenario. As discussed, motion correlation is com-
pelling for interaction in public spaces due to its discoverability, self-revealing nature, and ability
for simple gesture sets. Similar to the issue of revealing a gesture set to users, is the issue of
revealing how a user should provide input to a system. In PathSync, the button-like appear-
ance of the moving targets led some participants to think they were buttons, as touch-based
input is ubiquitous in modern life [40]. To fully leverage the capability of systems like Trace-
Match/MatchPoint, which allow input through motion, users must be aware that they can provide
input by any means.

The studies in this thesis have been conducted under lab conditions. In-the-wild studies may
reveal interesting insights into how users interact with the system over prolonged periods. For
the systems we have developed, we have not fully explored how scalable they are in terms of the
amount of motion they can process. In our studies, motion was limited to a sub-frame of what
was captured by the webcam and to a single participant. In-the-wild deployments may feature
multiple people, some intending to interact and others not. We would therefore expect more mo-
tion to be present in the scene, increasing the computational cost as more feature points require
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processing and also increasing the risk of false positives. In these contexts more sophisticated
approaches to processing motion, such as limiting the density of features detected or background
subtraction masks, may be required to minimise computational cost and ensure the most salient
motion of users is captured.
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As computing becomes more embedded in our everyday lives we look towards more seam-
less interactive experiences. At the outset of this thesis we posited that motion correlation is a
fundamental interaction principle which presents new opportunities for touchless gestures. In
Chapter 2, we showed how motion correlation is a generic principle that can be applied across
different types of input without a tight coupling between input and output spaces. The motions
presented are self-revealing and highly discoverable, guiding the user through the interaction
and reducing the need to design and remember complex gesture sets. We have leveraged and
built upon these properties in this thesis.

TraceMatch showed how users can provide input flexibly in a posture-agnostic manner by using
movement as the sensing principle for input (RQ1). Spontaneous spatial coupling demonstrated
how motion correlation can bootstrap spatial input, enabling seamless and ad-hoc appropriation
of pointers (RQ2). Our in-depth analysis has provided grounding into how adept users are at
synchronising with moving targets (RQ3), and an extensive search of the parameter space across
algorithms from both the motion correlation and time series comparison literature highlights the
robustness of motion correlation to accidental activation, and provides optimal parameters and
thresholds for future practitioners (RQ4). The design guidelines we distilled in Chapter 6 provide
a firm foundation for the creation of motion interfaces. In conclusion, we have shown how
motion correlation is a versatile and expressive technique with unique properties for touchless
gestures, and how it can be integrated with, and enhance, existing techniques.

Our insights have also sought to guide further directions in which research into motion corre-
lation can be expanded, both in general and with touchless gestures. We demonstrated how the
kinematics of motion on the interface can be better designed to support users with touchless
gestures by leveraging our innate ability to perform simple harmonic motion. We have scratched
the surface on designing target motions based on how we know people move, or similarly based
on what their limitations are. In the future, incorporating model-based approaches on how we
move, or what our limitations are at run-time, provide interesting research opportunities. Equally
important is the consideration of how best to design the visual aesthetics of motion on the inter-
face, which can lead to minimally distracting interfaces that offer unique layouts compared to
the traditional grid-layout of current interfaces. Feedback of the proposed systems is non-trivial,
yet reactive elements of motion correlation interfaces, where the interface responds to the user’s
input, could further enhance the interactive experience.

The systems we have developed could provide unique opportunities in a variety of application
spaces. Of particular interest are those areas in which interaction may be limited due to the

120



7. Conclusion

use of objects that are required for primary task completion, and where a flexible input method
which does not rely on recognition of user or object is desirable. There are a variety of examples
of this, such as cooking in the kitchen, performing surgery, using tools to follow a DIY video,
where motion correlation has the potential to provide seamless input. Of particular interest is the
accessibility space, where touchless input is currently lacking for some users. This would require
a user-centred design approach to ensure that motion correlation, along with both semantic and
spatial input, are utilised fully for the benefit of users. As computer vision and machine learning
techniques continually evolve, so do the opportunities that arise from using motion as input.
Systems like TraceMatch and MatchPoint could leverage advances in these fields for higher
accuracy and precision, and to incorporate “intelligent” aspects whilst maintaining the flexibility
and posture-agnostic sensing abilities, further adding to the systems’ touchless capabilities.
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Algorithm Results

This appendix reports the results of the top-performing parameter combination of all algorithms
in Chapter 5.
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Table A.1: Top performing algorithms for the Procrustes algorithm that achieve a 100% true posi-
tive rate, whilst minimising both false positives and average activation time for the circle (C), square
(S), horizontal (H), vertical (V), and their harmonic (h) variants.

Shape Speed Algorithm
TP

Rate
FP

Rate
Activation

time (s)
Buffer

size
Threshold Parameters Posthoc

C

2

Procrustes 100.0 0.0 2.44 15 0.051 30
S Procrustes 100.0 0.0 3.09 60 0.152 Sw: 10.0; 15

S(h) Procrustes 100.0 0.0 2.75 45 0.091 Sw: 20.0; 15
H Procrustes 100.0 0.0 3.89 60 0.073 Sw: 20.0; 30

H(h) Procrustes 100.0 0.0 4.24 90 0.049 Sw: 20.0; 1
V Procrustes 100.0 0.0 4.03 90 0.107 Sw: 20.0; 1

V(h) Procrustes 100.0 0.0 4.07 60 0.052 Sw: 20.0; 30

C

4

Procrustes 100.0 0.0 3.12 60 0.035 Sw: 20.0; 1
S Procrustes 100.0 0.0 3.73 90 0.095 Sw: 20.0; 1

S(h) Procrustes 100.0 0.0 3.19 60 0.034 Sw: 10.0; 1
H Procrustes 100.0 0.0 4.89 120 0.066 Sw: 20.0; 1

H(h) Procrustes 100.0 14.6 5.30 120 0.068 Sw: 20.0; 15
V Procrustes 100.0 12.5 4.61 90 0.052 Sw: 20.0; 15

V(h) Procrustes 100.0 20.8 3.57 45 0.114 30

Table A.2: Top performing algorithms for the Pearson algorithm that achieve a 100% true positive
rate, whilst minimising both false positives and average activation time for the circle (C), square
(S), horizontal (H), vertical (V), and their harmonic (h) variants.

Shape Speed Algorithm
TP

Rate
FP

Rate
Activation

time (s)
Buffer

size
Threshold Parameters Posthoc

C

2

Pearson 100.0 0.0 2.65 45 0.986 Ro: False; Sw: 20.0; 1
S Pearson 100.0 0.0 3.15 45 0.913 Ro: True; Sw: 20.0; 30

S(h) Pearson 100.0 0.0 2.48 30 0.954 Ro: True; Sw: 20.0; 15
H Pearson 100.0 0.0 3.10 60 0.970 Ro: True; Sw: 10.0; 1

H(h) Pearson 100.0 0.0 3.26 60 0.985 Ro: True; Sw: 10.0; 1
V Pearson 100.0 4.2 4.47 120 0.796 Ro: True; Sw: 10.0; 1

V(h) Pearson 100.0 0.0 4.10 60 0.968 Ro: True; Sw: 20.0; 30

C

4

Pearson 100.0 0.0 2.91 45 0.973 Ro: True; Sw: 20.0; 15
S Pearson 100.0 0.0 3.75 60 0.924 Ro: True; Sw: 10.0; 30

S(h) Pearson 100.0 0.0 3.23 60 0.978 Ro: True; Sw: 10.0; 1
H Pearson 100.0 0.0 4.90 120 0.961 Ro: True; Sw: 20.0; 1

H(h) Pearson 100.0 1.0 4.97 120 0.966 Ro: True; Sw: 20.0; 1
V Pearson 100.0 0.0 3.59 60 0.967 Ro: True; Sw: 10.0; 15

V(h) Pearson 100.0 0.0 3.60 45 0.969 Ro: True; Sw: 10.0; 30
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Table A.3: Top performing algorithms for the Spearman algorithm that achieve a 100% true posi-
tive rate, whilst minimising both false positives and average activation time for the circle (C), square
(S), horizontal (H), vertical (V), and their harmonic (h) variants.

Shape Speed Algorithm
TP

Rate
FP

Rate
Activation

time (s)
Buffer

size
Threshold Parameters Posthoc

C

2

Spearman 100.0 0.0 2.74 45 0.946 Ro: True; Sw: 20; 15
S Spearman 100.0 0.0 3.51 60 0.921 Ro: True; Sw: 10; 15

S(h) Spearman 100.0 0.0 2.96 60 0.958 Ro: True; Sw: 20; 1
H Spearman 100.0 0.0 3.10 60 0.978 Ro: True; Sw: 10; 1

H(h) Spearman 100.0 0.0 3.23 45 0.982 Ro: True; Sw: 20; 15
V Spearman 100.0 0.0 5.64 120 0.884 Ro: True; Sw: 20; 30

V(h) Spearman 100.0 0.0 3.99 90 0.946 Ro: True; Sw: 20; 1

C

4

Spearman 100.0 0.0 3.86 60 0.935 Ro: False; Sw: 20; 30
S Spearman 100.0 0.0 4.23 90 0.926 Ro: True; Sw: 10; 15

S(h) Spearman 100.0 0.0 3.50 60 0.949 Ro: True; Sw: 10; 15
H Spearman 100.0 3.1 4.71 120 0.952 Ro: True; Sw: 10; 1

H(h) Spearman 100.0 0.0 5.43 120 0.973 Ro: True; Sw: 20; 15
V Spearman 100.0 1.0 4.04 90 0.977 Ro: True; Sw: 10; 1

V(h) Spearman 100.0 2.1 3.48 45 0.872 Ro: True; Sw: 0; 30

Table A.4: Top performing algorithms for the 2D Correlation algorithm that achieve a 100% true
positive rate, whilst minimising both false positives and average activation time for the circle (C),
square (S), horizontal (H), vertical (V), and their harmonic (h) variants.

Shape Speed Algorithm
TP

Rate
FP

Rate
Activation

time (s)
Buffer

size
Threshold Parameters Posthoc

C

2

Correlation2D 100.0 0.0 2.33 15 0.755 Sw: 20.0; No: z-score; 30
S Correlation2D 100.0 0.0 2.62 30 0.661 Sw: 20.0; No: procrustes; 30

S(h) Correlation2D 100.0 0.0 2.27 30 0.705 Sw: 20.0; No: z-score; 15
H Correlation2D 100.0 0.0 3.07 60 0.771 Sw: 20.0; No: z-score; 1

H(h) Correlation2D 100.0 0.0 4.01 90 0.729 Sw: 10.0; No: z-score; 1
V Correlation2D 100.0 0.0 4.05 60 0.713 Sw: 20.0; No: z-score; 30

V(h) Correlation2D 100.0 2.1 4.29 90 0.671 Sw: 10.0; No: z-score; 15

C

4

Correlation2D 100.0 0.0 3.05 30 0.721 Sw: 10.0; No: z-score; 30
S Correlation2D 100.0 0.0 3.86 60 0.461 Sw: 20.0; No: minmax; 30

S(h) Correlation2D 100.0 0.0 3.45 45 0.772 Sw: 20.0; No: procrustes; 30
H Correlation2D 100.0 2.1 4.82 120 0.755 Sw: 20.0; No: procrustes; 1

H(h) Correlation2D 100.0 5.2 3.83 45 0.616 No: z-score; 30
V Correlation2D 100.0 0.0 3.72 30 0.674 Sw: 10.0; No: z-score; 30

V(h) Correlation2D 100.0 1.0 3.06 30 0.603 No: z-score; 30
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Table A.5: Top performing algorithms for the Minkowski algorithm that achieve a 100% true
positive rate, whilst minimising both false positives and average activation time for the circle (C),
square (S), horizontal (H), vertical (V), and their harmonic (h) variants.

Shape Speed Algorithm
TP

Rate
FP

Rate
Activation

time (s)
Buffer

size
Threshold Parameters Posthoc

C

2

Minkowski 100.0 0.0 2.44 30 0.217 Dm: euclidean; Sw: 20.0; No: z-score; Pp: mean; 15
S Minkowski 100.0 0.0 2.86 30 0.248 Dm: chebyshev; Sw: 10.0; No: z-score; Pp: mean; 15

S(h) Minkowski 100.0 0.0 3.06 45 0.476 Dm: euclidean; Sw: 20.0; No: z-score; Pp: mean; 30
H Minkowski 100.0 0.0 3.03 45 0.187 Dm: chebyshev; Sw: 20.0; No: z-score; Pp: mean; 15

H(h) Minkowski 100.0 0.0 3.55 60 0.159 Dm: euclidean; Sw: 20.0; No: minmax; Pp: mean; 30
V Minkowski 100.0 0.0 2.84 45 0.199 Dm: cityblock; Sw: 20.0; No: z-score; Pp: mean; 1

V(h) Minkowski 100.0 6.2 3.67 60 0.356 Dm: cityblock; Sw: 10.0; No: z-score; Pp: mean; 30

C

4

Minkowski 100.0 0.0 3.20 45 0.313 Dm: chebyshev; Sw: 10.0; No: z-score; Pp: mean; 30
S Minkowski 100.0 0.0 3.46 60 0.254 Dm: chebyshev; Sw: 20.0; No: procrustes; Pp: mean; 15

S(h) Minkowski 100.0 0.0 3.17 60 0.182 Dm: euclidean; Sw: 20.0; No: procrustes; Pp: mean; 1
H Minkowski 100.0 3.1 5.32 120 0.171 Dm: euclidean; Sw: 10.0; No: minmax; Pp: mean; 30

H(h) Minkowski 100.0 7.3 4.01 60 0.096 Dm: sqeuclidean; Sw: 10.0; No: z-score; Pp: mean; 30
V Minkowski 100.0 2.1 3.35 30 0.553 Dm: cityblock; No: z-score; Pp: mean; 30

V(h) Minkowski 100.0 0.0 3.62 60 0.231 Dm: chebyshev; No: z-score; Pp: mean; 15

Table A.6: Top performing algorithms for the Hausdorff algorithm that achieve a 100% true posi-
tive rate, whilst minimising both false positives and average activation time for the circle (C), square
(S), horizontal (H), vertical (V), and their harmonic (h) variants.

Shape Speed Algorithm
TP

Rate
FP

Rate
Activation

time (s)
Buffer

size
Threshold Parameters Posthoc

C

2

Hausdorff 100.0 0.0 2.53 15 0.445 Sw: 20.0; No: procrustes; 30
S Hausdorff 100.0 0.0 3.25 45 0.782 Sw: 10.0; No: procrustes; 30

S(h) Hausdorff 100.0 0.0 3.20 45 0.489 Sw: 20.0; No: procrustes; 15
H Hausdorff 100.0 8.3 3.72 60 0.494 Sw: 20.0; No: z-score; 30

H(h) Hausdorff 100.0 4.2 3.98 60 0.440 Sw: 20.0; No: z-score; 30
V Hausdorff 100.0 8.3 3.85 60 0.459 No: z-score; 30

V(h) Hausdorff 100.0 8.3 5.45 120 0.702 Sw: 20.0; No: procrustes; 30

C

4

Hausdorff 100.0 0.0 3.32 45 0.391 Sw: 20.0; No: z-score; 15
S Hausdorff 100.0 0.0 3.89 60 0.731 Sw: 10.0; No: z-score; 30

S(h) Hausdorff 100.0 0.0 3.68 45 0.306 Sw: 20.0; No: procrustes; 15
H Hausdorff 100.0 14.6 4.83 90 0.593 No: z-score; 30

H(h) Hausdorff 100.0 14.6 4.07 60 0.655 No: z-score; 30
V Hausdorff 100.0 35.4 3.29 30 0.459 No: procrustes; 15

V(h) Hausdorff 100.0 25.0 2.71 30 0.788 No: z-score; 30

Table A.7: Top performing algorithms for the dynamic time warping algorithm that achieve a
100% true positive rate, whilst minimising both false positives and average activation time for the
circle (C), square (S), horizontal (H), vertical (V), and their harmonic (h) variants.

Shape Speed Algorithm
TP

Rate
FP

Rate
Activation

time (s)
Buffer

size
Threshold Parameters Posthoc

C

2

DTW 100.0 0.0 2.83 30 6.388 Dm: euclidean; δ : 10.0; Pa: 0; No: procrustes; 30
S DTW 100.0 0.0 3.31 45 8.063 Dm: sqeuclidean; δ : 20.0; Pa: 10; No: procrustes; 30

S(h) DTW 100.0 0.0 3.54 60 29.928 Dm: euclidean; δ : 10.0; Pa: 10; No: z-score; 30
H DTW 100.0 2.1 4.41 90 15.114 Dm: euclidean; δ : 10.0; Pa: 0; No: minmax; AS: 30

H(h) DTW 100.0 0.0 4.56 90 2.947 Dm: sqeuclidean; δ : 10.0; Pa: 0; No: minmax; 30
V DTW 100.0 5.2 5.12 120 11.545 Dm: sqeuclidean; δ : 20.0; Pa: 0; No: z-score; 15

V(h) DTW 100.0 3.1 4.62 90 8.442 Dm: sqeuclidean; δ : 10.0; Pa: 10; No: z-score; 30

C

4

DTW 100.0 0.0 3.52 45 7.416 Dm: chebyshev; δ : inf; Pa: 0; No: procrustes; 30
S DTW 100.0 0.0 4.21 90 35.198 Dm: cityblock; δ : 10.0; Pa: 10; No: z-score; 15

S(h) DTW 100.0 0.0 3.85 60 10.655 Dm: sqeuclidean; δ : 10.0; Pa: 0; No: z-score; 30
H DTW 100.0 14.6 3.62 60 8.757 Dm: chebyshev; δ : 10.0; Pa: 0; No: minmax; 30

H(h) DTW 100.0 12.5 3.72 60 10.592 Dm: cityblock; δ : 10.0; Pa: 10; No: minmax; 30
V DTW 100.0 5.2 3.31 30 3.436 Dm: sqeuclidean; δ : inf; Pa: 0; No: z-score; 30

V(h) DTW 100.0 6.2 5.45 120 3.533 Dm: sqeuclidean; δ : 10.0; Pa: 0; No: minmax; 30
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Table A.8: Top performing algorithms for the longest common subsequence algorithm that achieve
a 100% true positive rate, whilst minimising both false positives and average activation time for the
circle (C), square (S), horizontal (H), vertical (V), and their harmonic (h) variants.

Shape Speed Algorithm
TP

Rate
FP

Rate
Activation

time (s)
Buffer

size
Threshold Parameters Posthoc

C

2

LCS 100.0 0.0 2.30 30 1.000 Dm: sqeuclidean; ε: 0.3; Pa: 10; δ : 20.0; No: procrustes; 15
S LCS 100.0 0.0 2.67 30 1.000 Dm: euclidean; Pa: 10; δ : 10.0; No: procrustes; 30

S(h) LCS 100.0 0.0 2.57 30 1.000 Dm: chebyshev; Pa: 10; δ : 10.0; No: procrustes; 30
H LCS 100.0 2.1 3.02 45 0.733 Dm: cityblock; ε: 0.2; Pa: 10; δ : inf; No: minmax; 30

H(h) LCS 100.0 1.0 3.40 45 0.978 Dm: cityblock; ε: 0.3; Pa: 10; δ : 10.0; No: minmax; 30
V LCS 100.0 0.0 3.43 90 0.733 Dm: euclidean; ε: 0.3; Pa: 0; δ : inf; No: z-score; 1

V(h) LCS 100.0 4.2 4.15 90 0.533 Dm: cityblock; ε: 0.3; Pa: 0; δ : 20.0; No: z-score; 30

C

4

LCS 100.0 0.0 2.86 45 0.733 Dm: chebyshev; ε: 0.2; Pa: 0; δ : inf; No: procrustes; 15
S LCS 100.0 0.0 3.20 60 1.000 Dm: sqeuclidean; ε: 0.3; Pa: 20; δ : inf; No: z-score; 1

S(h) LCS 100.0 0.0 3.17 60 1.000 Dm: sqeuclidean; ε: 0.3; Pa: 20; δ : inf; No: z-score; 1
H LCS 100.0 2.1 4.34 90 0.789 Dm: euclidean; ε: 0.2; Pa: 10; δ : inf; No: procrustes; 15

H(h) LCS 100.0 10.4 3.39 60 0.767 Dm: euclidean; ε: 0.2; Pa: 10; δ : 20.0; No: z-score; 1
V LCS 100.0 2.1 4.41 90 0.756 Dm: cityblock; ε: 0.2; Pa: 10; δ : inf; No: procrustes; 15

V(h) LCS 100.0 2.1 3.21 45 0.978 Dm: cityblock; ε: 0.3; Pa: 0; δ : 10.0; No: minmax; 15
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