
Towards Deep Machine Reasoning: a Prototype-
based Deep Neural Network with Decision Tree

Inference
Plamen Angelov, Eduardo Soares

Abstract—In this paper we introduce the DMR – a prototype-
based method and network architecture for deep learning which
is using a decision tree (DT)- based inference and synthetic
data to balance the classes. It builds upon the recently intro-
duced xDNN method [1] addressing more complex multi-class
problems, specifically when classes are highly imbalanced. DMR
moves away from a direct decision based on all classes towards
a layered DT of pair-wise class comparisons. In addition, it
forces the prototypes to be balanced between classes regardless
of possible class imbalances of the training data. It has two novel
mechanisms, namely i) using a DT to determine the winning
class label, and ii) balancing the classes by synthesizing data
around the prototypes determined from the available training
data. As a result, we improved significantly the performance of
the resulting fully explainable DNN as evidenced by the best
reported result on the well know benchmark problem Caltech-
101 surpassing our own recently published ”world record”.
Furthermore, we also achieved another ”world record” for
another very hard benchmark problem, namely Caltech-256 as
well as surpassed the results of other approaches on Faces-1999
problem. In summary, we propose a new approach specifically
advantageous for imbalanced multi-class problems that achieved
two world records on well known hard benchmark problems
and the best result on another problem in terms of accuracy.
Moreover, DMR offers full explainability, does not require GPUs
and can continue to learn from new data by adding new
prototypes preserving the previous ones but not requiring full
retraining.

I. INTRODUCTION

In this paper we introduce a new deep neural network
(DNN) which departs from the amorphous and highly ab-
stract, ”black box” model structure towards deep machine
reasoning (DMR) architecture. This is based on the following
principle differences from the traditional approach: i) use of
prototypes as the core of the method; ii) use of a DT for
decision making (class labeling) instead of a flat ”winner
takes all” type function; iii) using similarity as a measure
of association to prototypes; iv) possibility to express the
method in a form of human-interpretable IF-THEN rules
with partial degree of satisfaction and to visualise by Voronoi
tessellation or by prototypes.

The staggering increase of the amount and complexity
of the data sets and streams led to a move from rule-
based systems (fuzzy, Bayesian inference, Markov decision
processes, using Q tables in reinforcement learning, case
base reasoning, etc.) towards DNN which have proven their
efficiency in a number of problems ranging from speech,

Plamen Angelov, and Eduardo Soares are with the School of Computing
and Communications, Lancaster University, Lancaster, LA1 4WA, UK. E-
mails: p.angelov@lancaster.ac.uk; e.almeidasoares@lancaster.ac.uk.

image recognition and language translation to games [2]. This
abundance of data led, however, to the temptation to shortcut
from data to the solutions driven entirely by the accuracy and
ignoring the depth of understanding the problem at hand, and
getting insights.

In DRM we make use of the strong properties of the DNN
and add new mechanisms to address their shortcomings.
For example, the DNN are very efficient feature extractors,
especially for image processing problems [2]. We use this
in DRM and we also use layered structure/architecture. We
further benefit from the transfer learning approach [3].

Traditional classifiers assume balanced classes, but in prac-
tice classes are usually (highly) imbalanced. For example, in
fault detection and identification the amount of data about the
faulty cases are usually significantly smaller than the amount
of data for ”normal” operation [4]. In social applications, for
example, this leads to possible un-fairness [5] when the data
is highly imbalanced with dominating class(es) and minority
class(es).

Finally, traditional statistical modelling is heavily influ-
enced by averages and starts with assumptions about the data
distributions which are then put to a test by parametrisation
[6]. We take the opposite approach starting with the observed
data samples and generalise from these local densities and
global multivariate generative distributions. These empiri-
cally derived distributions have discrete and continuous form
[7]. Their discrete forms are exact while the continuous forms
which are needed for the inference are local estimates.

Prototype-based models have demonstrated their high ef-
ficiency, e.g. the discriminative models such as kNN [8],
SVM [9], less so RBF [10] and LVQ [11]. The latter two
are also good in terms of explainability [1]. Explianability is
undoubtedly, the Achilles heel of the DNN and the solution
we propose is to have a synergy between reasoning and
learning rather than the current dichotomy.

In this paper we offer a new deep learning architecture
and method that builds upon our recently introduced xDNN
[1] method by adding two important novelties, namely:
i) using a DT to determine the winning class label, and
ii) balancing the classes by synthesising data around the
prototypes determined from the available training data.

We validated the new DMR method on three well known
benchmark problems, namely Faces-1999, Caltech-101 and
Caltech-256. Both Caltech problems are very hard and there
is a public record of the best results achieved so far [12]. We
surpassed one of them (Caltech-101) with xDNN already [1].

ar
X

iv
:2

00
2.

03
77

6v
1

 [
cs

.C
V

]
 2

 F
eb

 2
02

0
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/326508875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

With DMR we surpass our own xDNN ”world record”. Fur-
thermore, we also surpassed the best record on Caltech-256
as well as on Faces-1999 problems. Moreover, DMR does
not require GPUs, computationally lean and can continue to
train for new data without the need for full re-training.

The remainder of the paper is organised as follows: Section
II introduces the concept and novelties of the proposed
approach. Section III presents the proposed architecture used
during the training phase. Section IV outlines the learning
procedure, section V introduces the architecture of the DMR
used during the validation phase. Section VI illustrates ex-
plainability of DMR in terms of IF-THEN rules. Numerical
experiments are presented in the Section VII, results are
analysed in Section VIII and the paper is concluded with
Section IX.

II. CONCEPT AND NOVELTIES OF THE PROPOSED
APPROACH

The problem we consider in this paper is to design a
classifier with deep architecture that is explainable-by-design
due to the use of prototypes [1]. Prototypes are a small subset
of the training data that are highly representative. This is
because they are the local peaks of the distribution [7].

Let us denote the training data set of points by x =
{x1, ..., xN} ∈ Rn with corresponding class labels y1, ..., yC
∈ {1, ..., C}. Here, N is the number of training data samples
and n is their dimensionality (number of features); C is
the number of classes. DMR starts by selecting a set of
descriptive prototypes π ∈ X ⊂ P for each class/per class,
Mj is the total number of prototypes of class j; Mj = |Pj |;
M =

∑C
j=1Mj . Notice that Mj > 1 for ∀j, i.e. we

usually consider more than a single prototype per class . The
prototype extraction process (which can be both, offline and
online) is described in more detail in [7],[1]. At the heart of
practically all prototype-based methods is the concept that
the prototypes of class C are designed to be close to many
training points of class C and far from training points of the
other classes. As pointed out in [1] ”This idea captures the
sense in which the word prototypical is commonly used”.

The power of prototype-based approaches stems from
the fact that they are explainable-by-design [5], easy to
understand by the users because they represent samples
of the training data, e.g. images. They can be used for
classification. Any new data sample with unknown label,
x ∈ Rn can be associated with the nearest prototype from
the sets P1, P2, ..., PC ; P = P1 ∪ P2 ∪ ... ∪ PC .

L(x) = argmin
x∈X

min
π∈P

d(x, π). (1)

A. Decision Tree layer

In traditional DNN, the decision is flat, en bloc in the form
of a single stage ”winner takes all” function as in eq. (1) and
is the last layer of the network. In xDNN [1] we also followed
this popular decision concept, but split it into two stages: i)
per class winner, and ii) across classes global decision. In
DMR, similarly to xDNN [1] the decision mechanism is part
of the architecture used for validation of the results because

the training is per class and no decision for the class label is
needed during the training. In this paper, the proposed DMR
is using a multi-layer DT formed by pairwise comparison
of top two classes in terms of minimum error in training as
detailed in Section V and Fig. (4). The reason the result is
significantly different is that the Voronoi tessellation regions
of the data clouds that are formed around each prototype
(local zones of influence) are significantly different when
binary decisions are made.

B. Balancing classes through synthesising training data
strategically

The second innovation of the proposed method is related to
the balancing of the classes. We achieve this by synthetic data
augmentation. In this paper we propose a different approach
from our recently published one [13] for synthesising data for
highly imbalanced classification problems. The differences
are that in this paper we synthesise data around prototypes
which makes these synthetic data more likely to have the
same class as the prototype. The method starts by identi-
fying a population of pairwise neighbouring data samples
from minority classes around prototypes. Then, it imposes a
Gaussian disturbance on these data samples, and, finally, it
generates synthetic samples by creating linear interpolations
between these extrapolations. A further difference from our
recent method [13] is that in this paper we use the standard
deviation, σ as a radius of influence around the prototype
rather than absolute distance of first order. We then augment
the training data set with this synthetically generated data set
as shown in Fig. (1), see the augmented prototypes layer.

III. ARCHITECTURE OF THE PROPOSED DMR APPROACH
(DURING THE TRAINING PHASE)

The architecture of the proposed classifier can be repre-
sented as a multi-layered DNN with a very clear semantic
and functional meaning by design. The architecture for the
training and for the validation phases are different as detailed
in Figs. 1 and 4. The training phase is performed per class
(except the last layer) and includes the following layers:

1) Input (features) layer
This is the first layer which defines the data space. The
number of inputs is determined by the nature of the
problem that the data describe. In many problems these
are clearly known physical or biomedical variables, e.g.
velocities, pressure, temperature, etc. In image process-
ing problems traditionally size, shape of objects or HoG
[14] were used as well as more abstract methods like
GIST [15]. More recently, convolutional neural networks
(CNN) like AlexNet [16], VGG–VD–16 [17], Inception
[18], ResNet [19], Inception–Resnet [20] have proven
to be very efficient to encode images and represent
them as a highly abstract vector of the outputs from
the Fully Connected Layer (FCL). The proposed DMR
architecture is agnostic to the source of the features
vector that the input layer represents. It can be any of the
above. In this paper without any loss of generality we
use a 1×4096 dimensional vector formed by the outputs

Fig. 1. DMR Architecture during the training phase (STDAM stands for Synthetic Training Data Augmentation Mechanism).

from the first FCL from a VGG–VD–16 pre-trained on
Imagenet [21].

2) Data density layer
This layer is composed of neurons who’s activation
function represent the data density, D defined by a
Cauchy function [7]:

D(x) =
1

1 + ||x−µ||2
σ2

, (2)

where D is the density, µ is the global mean, and σ is
the variance. In [7] it was demonstrated theoretically that
starting from the mutual proximity of the data samples
in the data space and using Euclidean (or Mahalanobis)
type distance D takes the form of a Cauchy function.
Moreover, data density can be updated recursively as
detailed in [22]. The value of the data density, D
represent the closeness to the mean and is in the range
0 < D ≤ 1. It obtains its maximum (of 1) when x = µ.

D is indicative for the centrality of a data sample and
its suitability to be a prototype due to its proximity to
other data samples.

3) Conditional probability layer
The conditional probability can be estimated from the
empirically observed data as described in [7] where it
is also called typicality τ . It can be given by eq. (3).
The integral of

∫∞
−∞ p(C|x)dx = 1 same as for the pdf

[7], but it is multi-modal:

p(C|x) =

∑C
i=1NiD(xc)∑C

i=1Ni
∫∞
−∞D(xc)dx

(3)

where Ni denotes the number of data samples associated
with (support of) the i− th data cloud,

∑C
i=1; Ni = N .

Notice that since p(C|x) is empirically derived [7] it
is not constrained by any prior assumptions about the
data distribution type or even about the random or
deterministic nature of the data. This is clearly more

realistic in comparison with the common approach
which (for theoretical convenience) assumes randomness
and independence of the features of the experimentally
observed data which is usually far from the reality.

4) Prototypes layer
The next layer consists of prototypes, π. This is the
core layer of the proposed DMR architecture. This layer
is responsible to provide explainable-by-design model.
Prototypes are the local peaks of the data density (and,
respectively, local peaks of the conditional probability,
eq. (3)) identified in the previous layers/stages. The
proposed DMR algorithm absorbs the new data samples
by assigning them to the nearest prototype:

j∗ = argmin
i=1,..,N ;j=1,..,M

|xi − πj | (4)

In this way, each prototype forms a cloud of data
that it represents. These ”data clouds” form Voronoi
tessellation, illustrated in Fig.2

Fig. 2. Identified prototypes – Voronoi Tessellation. The blue circle
represents ”class 1” and the red circle denotes ”class 2”.

The prototypes are independent from each other. There-
fore, one can change the structure by adding a new
prototype without influencing the other already existing
prototypes. In other words, the proposed DMR network
is highly parallelizable and suitable for dynamically
evolving applications with non-stationary data streams
and evolving data patterns where new prototypes may
be added if the data pattern requires this. The proposed
DMR network is trained per class forming a set of
prototypes per class. Therefore, all the calculations are
done for each class separately. New prototypes are added
to this layer when the following condition is met [7]:

IF (D(x) ≥ max
j=1,..,M

D(πj))

OR (D(x) ≤ min
j=1,..,M

D(πj))

THEN (add a new data cloud (j ← j + 1))

(5)

If that is the case, then the vector of features of the
current training data sample becomes a new prototype,
πj+1 forms a new data cloud [1].

5) Synthetic data augmentation
This mechanism is not a separate layer, but a feed-
back process that gets information from the prototypes
layer, augments the training data set (in the form of
synthetically added features vectors close to the existing
prototypes) and expands the size of the prototypes layer
by balancing the amount of prototypes per class. This
mechanism is one of the two novelties of the proposed
approach in comparison with our recent xDNN [1]
method. The rationale for and the main functionality of
this mechanism has been described in Section II.B. In
fact, this is an augmentation of the amounts of training
data (by augmenting N to N + ∆ made by feeding
back the information from the prototypes layer. As a
result, the size of the prototypes layer is expanded (by
δ) so that the number of prototypes per class is being
balanced. This is visualised in Fig. (1) where the red
solid rectangle includes the black dotted one (original
prototypes) but also adds prototypes which result from
adding synthetic training data.

6) MegaClouds layer
This is the final layer of the training architecture.
Unlike the previous layers it is cross-class. At this
layer prototypes from all classes are put together and
once this is done all the adjacent data clouds that have
the same class label are combined into mega-clouds,
see Fig.(3). Notice that the number of megaclouds,
i = 1, 2, ...,MG is significantly smaller than the number
of prototypes, (MG << M) and the interpretability
improves significantly.

Fig. 3. Mega-Clouds are result of merging adjacent data clouds which has
the same class label.

IV. LEARNING PROCEDURE

The learning of DMR is summarised below by the follow-
ing pseudo-code. The proposed architecture is feed-forward
with the exception of the synthetic data augmentation mech-
anism which feeds back form the prototype layer back to the
input layer. The proposed method can work both, in a batch
mode as well as on a per sample basis, online.

DMR: Learning Procedure

1: Read the first feature vector sample xi of class c;
2: Standardise and normalise the data as detailed in [7]
3: Set i← 1; j ← 1;π1 ← xi;µ← x1;N ← 1
4: FOR i = 2, ...
5: Read xi;
6: Calculate D(xi) and D(πj) (j = 1, 2, ...,M) according

to eq. (2);
7: IF eq. (5) holds
8: Create new prototype: j ← j+1;πj ← xi;N ← N+1

9: ELSE
10: Search for the nearest prototype according to eq. (4);

11: Update the nearest prototype as:
N ← N + 1;
πj ← Nj

Nj+1πj +
Nj

Nj+1xi;
12: Balance the number of prototypes through synthetic

data augmentation mechanism detailed below;
13: END
14: END

Synthetic Data Generation

1: FOR j = 1,2,...,C DO
2: Calculate the amount of synthetic data samples needed

to balance the pair of classes j and j+1: δ = Mj−Mj+1.
3: UNTIL δ = 0 DO
4: k = 1
5: Randomly select a pair of neighbouring data samples

(pk, qk)∗ from the 0.3σ zone around the prototype from
the minority class;

6: Apply Gaussian disturbance to (pk, qk)∗ by eq. (6)
and obtain (p̂k, q̂k)∗ [23];

(p̂k, q̂k)∗ = (pk + gp, qk + gq)
∗
k (6)

where gp = [gp,1, gp,2, ..., gp,R]T and Gq =
[gq,1, gq,2, ..., gq,R]T are two R dimensional randomly
generated vectors sampled from the Gaussian distribu-
tions, gp,l, gq,l ∼ N(0, σ)(l = 1, 2, ..., R) with σ being
the standard deviation.

7: Create random interpolation ρk between (p̂k, q̂k)∗ as
follows [13]:

ρk = αTk p̂k + (1− αk)T q̂k (7)

where αk = [αk,1, αk,2, ..., αk,R]T is a R dimensional
random vector, elements of which follows the uniform
distribution within the range [0,1].

8: k ← k + 1
9: END UNTIL

10: END FOR

V. VALIDATION ARCHITECTURE

The architecture of DMR for the validation phase (see Fig.
4) has the following layers.

1) Input (features) layer The first layer is exact the same
as in the training phase and has been described in section
III.

2) Ranked prototypes layer
In this layer we rank order all the prototypes in terms
of minimum error during the training. Then we organise
them in overlapping pairs: we start with the top two
prototypes (providing smaller error) and then the pair of
the second best and the third; further on, the pair of the
third and the forth, etc. In this way, all prototypes take
part twice except the best one and the worst one, see Fig.
(4). The output of this layer is the degree of similarity,
S between the unlabeled data sample and the respective
prototype. The activation functions of the neurons of this
layer are defined as follows:

Sj = S(xi, πj) =
1

1 +
(x−πj)

σ2
j

, (8)

where j = 1, 2, ...,M ; i = 1, 2, ..., N . It is easy to see
that for similarity we use the same Cauchy function as
the data density, eq. (2).

3) Maximum similarity layer
Each neuron of this layer is performing a simple max
operation over the pair of similarity values that are
coming form the previous layer, namely:

S∗j,j−1 = max(Sj−1, Sj) (9)

The winner goes forward.
4) Pair-wise confidence checks layer

In this layer we check if the confidence in the best of the
two potential outcomes is high enough. In this paper we
use a threshold, Thr=0.9, which means 90% similarity
of the new, unlabeled data sample to any prototype.
The neurons of this layer are linked between each other
forming a competitive layer. This link is activated if
the confidence check fails (see Fig. 2). The flow of
the information to the next layer is conditional on the
outcome from the confidence check. First, the top two
pairs of prototypes are checked. If the winner surpasses
Thr it is the winner. Otherwise, the flow goes down to
the next pair (in the same layer of the network, the key
Fig. 4 is closed) and so on.

IF (min(S∗j,j−1, S
∗
j−1,j−2)≥ Thr) THEN (Step 4)

ELSE (Step 3)

5) Pair-wise winners layer
Pair-wise decisions are made to determine the winning
prototype form the candidate pair (S∗j−1, S

∗
j), which

passed the confidence check in the proceeding layer.

Label = argmax(S∗j,j−1, S
∗
j−1,j−2) (10)

Fig. 4. Architecture for the validation process of the proposed DMR approach.

VI. EXPLAINING THE DMR NETWORK AS A SET OF
IF...THEN RULES

One of the main advantages of the proposed DMR ap-
proach is that it is explainable-by-design and can be repre-
sented, for example, in the form of IF...THEN rules [22].
People can easily understand rules and prototypes. These are
often easy to visualise, e.g. in case of images and can also
be expressed as a set of linguistic rules as follows:

IF (Image ∼) THEN ”Bulldozer”

where ∼ denotes ”similar to”; it can also be seen as a fuzzy
degree of membership. One rule per prototype can be formed.
All rules per class can be combined together using logical
OR, also known as disjunction or S-norm:

IF (Image ∼) OR (Image ∼)OR

... OR (Image ∼) THEN ”Bulldozer”

VII. NUMERICAL EXPERIMENTS

We validated our proposed approach, DMR using several
complex, well-known image classification benchmark data

sets (Faces-1999, Caltech-101, and Caltech-256). Description
of the data sets are given below:

1) Faces-1999: The Faces-1999 data set [24] contains 450
frontal real faces images from 27 different people. This data
set is highly unbalanced.

2) Caltech-101: The Caltech-101 data set [25] contains
9144 images in divided into 102 categories(one background).
The Caltech-101 dataset is highly unbalanced and is widely
used as bench marking data set.

A. Caltech-256

Caletch-256 has 30,607 images divided into 257 object
categories (one of which is the background) [25].

B. Performance Evaluation

The performance of the classification methods is usually
evaluated based on their accuracy index which is defined as
follows:

ACC(%) =
TP + TN

TP + FP + TN + FN
, (11)

where TP, FP, TN, FN denote true and false, negative and
positive, respectively.

All the experiments were conducted with MATLAB 2018a
using a personal computer with a 1.8 GHz Intel Core i5
processor, 8-GB RAM, and MacOS operating system. The
classification experiments were executed using 10-fold cross
validation under the same ratio of training-to-testing (80% to
20%) sample sets.

VIII. RESULTS AND ANALYSIS

Computational simulations were performed to assess the
accuracy of the proposed explainable tree-based deep learn-
ing method (DMR), against other state-of-the-art approaches.

A. Faces Data set
Table I shows that the proposed DMR method provides the

best result in terms of classification accuracy than its state-
of-the-art competitors. The number of model parameters for
DMR (and xDNN) is, strictly speaking, zero, because the 2
parameters (mean, µ and standard deviation, σ) per prototype
(data cloud) are derived from the data and are not algorithmic
parameters or user-defined parameters. However, the tree-
based structure of the proposed DMR and the mechanism for
balancing the classes allow the result to surpass all others.
The propose deep reasoning through a layered pair-wise DT
is exploiting and benefiting from the old principle of divide
et impera.

TABLE I
PERFORMANCE COMPARISON: FACES-1999 DATA SET

Method Accuracy
DMR 96.71 %

VGG–VD–16 96.32%
xDNN 96.15%

VGG–VD–16 96.32%
SVM 95.51%
KNN 88.54%
DT 61.53%

B. Caltech-101 Data set
Table II shows the results considering the challenging

Caltech-101 data set. It is possible to note through Table
II that the proposed DMR method provides the best result
in terms of classification accuracy. The proposed Caltech-
101 is hugely unbalanced, and the inner data augmentation
mechanism of the proposed DMR method favour the balance
of the data, consequently, it improves the final classification
result. Moreover, the intelligent tree-based structure of the
proposed method allows interpretability and also favours
the improvement in the classification accuracy of the given
model.

The proposed explainable tree-based DNN surpasses in
terms of accuracy the state-of-the-art VGG–VD–16 algo-
rithm which is a well-established convolutional deep neural
network. Moreover, it could also surpass other state-of-art
approaches.

TABLE II
PERFORMANCE COMPARISON: CALTECH-101 DATA SET

Method Accuracy
DMR 94.31%

SPP-net 91.44%
xDNN 90.62%

VGG–VD–16 90.32%
KNN 85.65%
DT 54.42%

C. Caltech-256 Data set

Results for Caltech-256 are presented in Table III.

TABLE III
PERFORMANCE COMPARISON: CALTECH-256 DATA SET

Method Accuracy
DMR 77.54%

xDNN [1] 75.41%
SVM(1) [26] 24.6 %
SVM(2) [26] 39.6%
SVM(3) [26] 46.0%
SVM(4) [26] 51.3%
SVM(5) [26] 65.6%
SVM(7) [26] 71.7%

Softmax(5)[26] 65.7%
Softmax(7) [26] 74.2%

These results demonstrate that the proposed DMR ap-
proach obtains the best classification accuracy ever reported
for this complex problem, namely, 77.54%. The proposed
approach not only surpasses all published competitors but
also offers a clearly explainable model.

IF (Image ∼) OR (Image ∼)OR

... OR (Image ∼) THEN ”Mountain Bike”

DMR even surpasses the recently introduced by us xDNN
approach [1], which reported the world best result on 5
December 2019 for this classification problem.

IX. CONCLUSION

In this paper we introduce the DMR – a prototype-based
explainable DNN with DT inference and balanced amount
of prototypes per class regardless of the possible imbalances
of the training data. The proposed method offers two main
novelties, namely: i) using a DT to determine the winning
class label, and ii) balancing the classes by synthesising data
around the prototypes determined from the available training
data. It demonstrates excellent performance surpassing three
well known benchmark problems (Caltech-101, Caltech-256
and Faces-1999) where the first two are the the best results
published. The proposed approach is explainable-by-design,
computationally efficient (no need for GPUs, high degree of
parallelization possible, no iterative search procedures and
parameter optimisation). Furthermore, it offers the ability to
learn continuously (live-long) adapting smoothly to new data
patterns. It is a step towards bringing closer machine learning
and automated reasoning into what we call deep machine
reasoning aiming not only high levels of accuracy but also
deeper understanding and insight.

REFERENCES

[1] P. Angelov and E. Soares, “Towards explainable deep neural networks
(xDNN),” 2019.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[3] L. Y. Pratt, “Discriminability-based transfer between neural networks,”
in Advances in neural information processing systems, 1993, pp. 204–
211.

[4] B. S. J. Costa, P. P. Angelov, and L. A. Guedes, “Fully unsupervised
fault detection and identification based on recursive density estimation
and self-evolving cloud-based classifier,” Neurocomputing, vol. 150,
pp. 289–303, 2015.

[5] E. Soares and P. Angelov, “Fair-by-design explainable models for
prediction of recidivism,” arXiv preprint arXiv:1910.02043, 2019.

[6] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction. Springer Science &
Business Media, 2009.

[7] P. P. Angelov and X. Gu, Empirical approach to machine learning.
Springer, 2019.

[8] S. Zhang, X. Li, M. Zong, X. Zhu, and D. Cheng, “Learning k
for knn classification,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 8, no. 3, pp. 1–19, 2017.

[9] J. A. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–
300, 1999.

[10] M. J. Er, S. Wu, J. Lu, and H. L. Toh, “Face recognition with radial
basis function (rbf) neural networks,” IEEE transactions on neural
networks, vol. 13, no. 3, pp. 697–710, 2002.

[11] T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, and K. Torkkola,
“Lvq pak: The learning vector quantization program package,” Tech-
nical report, Tech. Rep., 1996.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1904–
1916, 2015.

[13] X. Gu, P. P. Angelov, and E. A. Soares, “A self-adaptive synthetic
over-sampling technique for imbalanced classification,” arXiv preprint
arXiv:1911.11018, 2019.

[14] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and
M. Yoshimoto, “Architectural study of hog feature extraction processor
for real-time object detection,” in 2012 IEEE Workshop on Signal
Processing Systems. IEEE, 2012, pp. 197–202.

[15] B. Solmaz, S. M. Assari, and M. Shah, “Classifying web videos using
a global video descriptor,” Machine vision and applications, vol. 24,
no. 7, pp. 1473–1485, 2013.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1–9.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[20] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[22] P. Angelov, Autonomous learning systems: from data streams to
knowledge in real-time. John Wiley & Sons, 2012.

[23] J. S. Freudenberg, R. H. Middleton, and V. Solo, “Stabilization and
disturbance attenuation over a gaussian communication channel,” IEEE
Transactions on Automatic Control, vol. 55, no. 3, pp. 795–799, 2010.

[24] M. Weber and M. Weber, “Caltech frontal face database,” California
Institute of Technology, 1999.

[25] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[26] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in European conference on computer vision.
Springer, 2014, pp. 818–833.

	I Introduction
	II Concept and novelties of the proposed approach
	II-A Decision Tree layer
	II-B Balancing classes through synthesising training data strategically

	III Architecture of the proposed DMR approach (during the training phase)
	IV Learning Procedure
	V Validation Architecture
	VI Explaining the DMR network as a set of IF...THEN rules
	VII Numerical Experiments
	VII-1 Faces-1999
	VII-2 Caltech-101

	VII-A Caltech-256
	VII-B Performance Evaluation

	VIII Results and Analysis
	VIII-A Faces Data set
	VIII-B Caltech-101 Data set
	VIII-C Caltech-256 Data set

	IX Conclusion
	References

