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Abstract: Various methods have been used to estimate the pupil location within an image or a 13 
real-time video frame in many fields. However, these methods lack the performance specifically in 14 
low-resolution images and varying background conditions. We propose a coarse-to-fine pupil 15 
localisation method using a composite of machine learning and image processing algorithms. First, 16 
a pre-trained model is employed for the facial landmark identification to extract the desired 17 
eye-frames within the input image. We then use multi-stage convolution to find the optimal 18 
horizontal and vertical coordinates of the pupil within the identified eye-frames. For this purpose, 19 
we define an adaptive kernel to deal with the varying resolution and size of input images. 20 
Furthermore, a dynamic threshold is calculated for reliable identification of the best-matched 21 
candidate. We evaluated our method using various statistical and standard metrics along-with a 22 
standardized distance metric we introduce first time in this study. Proposed method outperforms 23 
previous works in terms of accuracy and reliability when benchmarked on multiple standard 24 
datasets. The work has diverse artificial intelligence and industrial applications including human 25 
computer interfaces, emotion recognition, psychological profiling, healthcare and automated 26 
deception detection. 27 

Keywords: Pupil detection; Deep eye, Iris detection; Eye centre localisation; Eye gaze; Facial 28 
analysis, Image convolution; Machine intelligence, Pupil segmentation 29 

 30 

1. Introduction 31 

Detection and localization of the objects within images or real time video frames is considered 32 
an essential task in various computer vision algorithms [1]. Various studies have addressed the 33 
detection and tracking of facial landmarks including the iris and pupil which has various 34 
applications particularly, eye gaze estimation for human-machine interfaces. Control of assistive 35 
devices for disability [2], driver safety improvements [3-4], the design of diagnostic tools for brain 36 
diseases [5], cognitive research [6], automated deception detection system (ADDS) [7] and academic 37 
performance analysis [8] are some examples of such applications.  38 

Research studies for the eye detection and eye tracking mostly focus on the iris and pupil 39 
localization. Once the coordinates of pupils are determined, it can be used for the eye tracking, gaze 40 
estimation and eye movements within the images and video frames [6]. Eye images can be 41 
characterized by the intensity distribution of iris, pupil and the cornea, in addition to their shapes. It 42 
should be noted that various aspects can influence the appearance of the eye including the viewing 43 
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angle, ethnicity, head position, eye colour, light conditions as well as the texture, eye state (e.g. half 44 
closed, fully closed) and current wellbeing [6].  45 

Overall, eye detection techniques can be classified as shape-based, feature-based, 46 
appearance-based and hybrid methods. In the shape-based methods, open eyes are described by 47 
their shapes including the pupil and iris contours as well as shape of the eyelids [9-11]. For the 48 
feature-based methods, objective is to identify the local features within the eye that are less sensitive 49 
to the varying illumination as well as viewpoint [12-15]. Appearance-based methods depend upon 50 
detecting and tracking of the eyes using the photometric look which is characterized by colour 51 
distribution and filter responses to eyes and their surroundings [16-18]. The hybrid methods aiming 52 
to combine various techniques to mitigate the particular disadvantages of these methods [19-20].  53 

Standard methods in gaze estimation are based on corneal reflections that needs an accurate 54 
localization of the pupil centre as well as the glints [21]. Pupil and glints localization algorithms are 55 
usually based on image processing such as morphological operators for the detection of contour [22] 56 
and intensity threshold identification followed by the fitting using ray-based ellipse [23]. 57 
Topography based hybrid method is introduced in [24] which uses series of filters for the iris centre 58 
estimation. However, these techniques assume that the pupil exists in the darkest area of the input 59 
image and may susceptible to varying illumination conditions that might require manual tweaking 60 
to the threshold parameters [25]. 61 

Table 1. Eye movements and classification algorithms 62 

Reference Model Aims and Feature Used 

[26] Hidden Markov model 
Use of fixation count, fixation durations to distinguish 

between expert and novice participants 

[27] 
Multi-layer perceptron 

(MLP) 

Use pupil size & point-of-gaze for predicting the users’ 

behaviours (e.g., word searching, question answering, 

looking for the most interesting title in a list) 

[28] Naïve Bayes classifier 
Use of fixation duration, mean and standard deviation to 

identify various visual activities (e.g., reading, scene search) 

[29]  MLP 
Use of Pupil dilation, gaze dispersion to classify various 

tasks on decision making 

[30]  

Decision tree, MLP , 

support vector machines 

(SVM), linear regression  

Use of fixation rate, fixation duration, fixations per trial, 

saccade amplitude, relative saccade angles to identify eye 

movements to predict visualization tasks 

There are four main eye movement behaviours which are likely to show different details related 63 
to cognitive efforts when responding to tasks including blinks, pupillary responses, fixations, and 64 
saccades [31]. Blinking represents the involuntary deed of opening and closing the eyelids. Pupillary 65 
responses are the changes in pupil size restrained by the involuntary nervous system. Fixation 66 
represents the collection of gaze points that are relatively stable and near in spatial and temporal 67 
vicinity. Saccade represents the rapid and small eye movements when moving from one object to 68 
another [31]. These four eye-movement behaviours reveal the details about cognitive efforts and 69 
therefore can be used as suitable inputs for designing the machine learning (ML) systems as 70 
illustrated in Table 1 which shows various supervised ML algorithms to predict categorical 71 
responses from the eye movements.  72 

In addition to conventional methods, existing works also utilize the deep learning (DL) 73 
approaches for the pupil detection while using hierarchical image patterns to enhance and eliminate 74 
artefacts with Convolutional Neural Networks (CNNs). For instance, [21] proposed the use of fully 75 
connected CNNs for segmentation of the entire pupil area in which they trained the network on 3946 76 
video oscillography images. These images were hand annotated and generated within a laboratory 77 
environment. The authors claim that the proposed network enables them to perform elliptical 78 
contour detection, pupil centre estimation and blink detection. More explicitly, pupil centre are 79 
predicted with a median accuracy of one pixel and gaze estimation accuracy within 0.5 degrees. 80 
However, varying image resolution might provide different accuracy measures. More specifically, 81 



Sensors 2020, 20, x FOR PEER REVIEW 3 of 17 

 

[32] indicated the eye tracking as an important tool that can have a range of applications from 82 
scientific research to commercial sector. The authors show that the use of tracking software based on 83 
commodity hardware including tablets and smartphones, allows these advanced technologies to be 84 
available for everyone. The system is called iTracker which uses a CNNs model indicating 2.53cm 85 
and 1.71cm prediction error without calibration on tablets and smartphones respectively which is 86 
reduced to 2.12cm and 1.34cm using calibration. 87 

Research presented in [23] proposed a pipeline of two CNNs cascaded for pupil detection. 88 
Authors claim that their method outperforms state-of-the-art techniques with detection rate up to 89 
25% while avoiding computational complexity. To benchmark their proposed technique, 79000 hand 90 
labelled images were used in which 41000 were complementary to existing images from the 91 
literature. A similar work is presented in Naqvi et al. [33] which indicate that automobile accident 92 
deaths could be minimized using drivers’ gaze region to provide their point of attentions. In this 93 
respect, the authors suggest the use of DL for gaze detection with the use of near-infrared camera 94 
sensors. They incorporate driver head and eye movement into their study. Gaze estimation accuracy 95 
was benchmarked using loosely correct estimation rate and strictly correct estimation rate in which 96 
the study claim achieving good accuracy when benchmarked with the previous gaze classification 97 
techniques.  98 

Recent work that uses the CNNs based deep learning model for the pupil estimation [34] 99 
indicate around 70% accurate estimations while error threshold is within the 5 pixels. However, this 100 
accuracy is limited to be used in real time specifically, the applications that consider 101 
micro-movements within the eyes such as ADDS [7]. Similar work that uses CNNs for the pupil 102 
detection [35] indicates varying detection rate (70-90%) with respect to the tolerance level as pixel 103 
error and dataset they employed for testing. The study outcomes clearly indicate the trade-off 104 
between the error tolerance level and accuracy measure. Furthermore, the performance metric used 105 
in these studies is not standard (i.e. the error as number of pixels) and might produces varying 106 
accuracy with respect to image size and resolution. In contrast to CNNs, [36] utilizes the wavelet 107 
transform to extract the distinguishing features while SVM is used for the pupil classification. This 108 
work indicates 88.79% of accurate pupil estimation on a benchmarked dataset while utilizing the 109 
standard validation metric. 110 

Despite the variety of existing methods for the pupil localisation, further improvements are 111 
required in terms of a precise estimation for the pupil location. For instance, DL-based pupil 112 
localisation and gaze estimation in [21] uses pixel distance to validate the performance which is not a 113 
standard representation of the error in case of varying resolutions. Furthermore, the validation is 114 
performed on a dataset containing artificially rendered images which in most cases, does not reflect 115 
the real time dynamics. Likewise, [37] presented gaze estimation that utilizes the DL-based facial 116 
landmarks detection following the image segmentation to identify the pupil within the input 117 
images. However, the 81% accuracy produced by the algorithm on a benchmark dataset indicates 118 
the lack of preciseness in pupil localisation that might lead to the incorrect gaze estimation. 119 
Furthermore, this study along with [23, 24] utilizes a static threshold while considering the pupil as 120 
the darkest area within the image that may susceptible to various illumination conditions [25] and 121 
low-resolution images. Likewise, the use of static size kernel for the template matching to find out 122 
the best-matched candidate (i.e. pupil in this case) within the image might causes local maxima. For 123 
instance, a smaller sized kernel may cause attention to noisy details (i.e. local maxima) whereas, 124 
larger size may lead to mismatches and incorrect estimation of pupil location [38]. 125 

In proposed work, we introduce an efficient algorithm for the pupil identification within 126 
low-resolution images (and video frames) using a composite of DL and image processing 127 
algorithms. To clarify the novelty of this paper, the contributions are outlined as follows. a) utilizing 128 
the pre-trained DL model to identify the facial landmarks and extraction of desired eye-frames 129 
within the input images; b) unidirectional cascades of two-dimensional (2D) convolution is used to 130 
determine the pupil coordinates within the eye-frames of varying characteristics; c) an adaptive size 131 
of kernel is used to deal with the varying size of input images (i.e. eye-frame) during the template 132 
matching; d) we used a dynamic threshold to identify the best matched candidate more reliably; e) 133 
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for the first time, we introduce a relative error metric to measure the standardized distance (i.e. 134 
error) between the estimated and actual pupil centres; f) we validated the proposed methodology 135 
over multiple publicly available and benchmark datasets containing high diversity in gaze positions, 136 
participants background, lighting illuminations, image background, and comparatively smaller size 137 
of eye-frames. 138 

The remainder of this paper is organized as follows. Section 2 entails the proposed 139 
methodology and algorithms. Section 3 presents the detailed experimental design and newly 140 
introduced evaluation metric. Statistical results and technical discussions are presented in Section 4 141 
followed by a conclusion and future works in Section 5. 142 

2. Proposed Method 143 

The proposed pupil detection utilizes composite of techniques along with new algorithms while 144 
leveraging the DL-based facial landmark detection [39] to extract the eye information within an 145 
image/video frame. Existence of background noise and dark patches within the image frame and 146 
specifically prominent eyebrow parts, are normally detected as pits that might cause mismatch for 147 
computer vision-based iris and pupil detection [24, 38, 40]. However, this issue can be resolved 148 
readily by utilizing modern DL algorithms for a reliable face and eye-frame extraction from an 149 
ordinary quality images or video frames. In the first step, we utilize the facial landmark detection to 150 
extract the desired segments containing only the eye-frames (both left and right) from input image. 151 
We then convolve the extracted eye-frame with a pre-defined kernel in horizontal and vertical 152 
directions to identify the iris and pupil respectively within the eye-frame. We adapt the kernel size 153 
dynamically with respect to the varying eye-frame size to resolve the possible occurrences of local 154 
maxima being false representation of best matched patches. We further define a dynamic threshold 155 
for the identification of best-matched patch within the current eye-frame to reduce the impact of 156 
noisy matches. Figure 1 shows the sequential processing in our work to identify the pupil 157 
coordinates within an input image/video frame. The major components are: a) DL-based eye-frame 158 
extraction, b) image processing based iris localisation, and c) pupil detection, which are detailed in 159 
the following sub-sections.  160 
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 161 

Figure 1. Sequential processing components of the proposed method comprising A) DL library (i.e. 162 
Dlib-ml) for the eye-frame extraction, B) computer vision algorithm for localizing the potential iris 163 
and pupil candidates within eye-frames, C) post-processing for the pupil coordinate measurement. 164 
In images, eyes view is reversed (e.g. the left eye in an image is the right eye in actual and vice versa) 165 
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2.1. Eye frame extraction 166 

The DL component utilises a well-known toolkit (Dlib-ml) [39] which can reliably identify the 167 
facial landmarks while producing extensive fiducial points (68 in total) on the face including eye 168 
corners and eye lids as shown in figure 1(A). We first extract the face rectangle from an image using 169 
Dlib-ml that not only removes the unnecessary portion of input frame but also helps to eliminate the 170 
major noisy components that might exist in background region of the image frame. Within the face 171 
region, we then note the identified extreme points (left, right, top, bottom) for eye corners and eye 172 
lids which are used to crop the exact eye-frames within the identified face rectangle. This is one of 173 
the major advantages of using Dlib-ml which reliably eliminates the unnecessary portion of an 174 
image and extract the exact region of interest (i.e. eye-frames in this case) from the input frame. Only 175 
the input images (or video frames) with exactly one face rectangle and two eye-frames are 176 
considered as ‘valid’. The output of this component in form of eye-frames (left, right) are processed 177 
further to identify the iris and pupil within the image.     178 

2.2. Iris segmentation and pupil localization 179 

Following the eye-frame extraction, a convolution function is applied for the template matching 180 
between a custom kernel and eye-frame to localise the best matching segment within the eye-frame. 181 
Firstly, we built a custom kernel representing 100 iris frames (cropped from eyes frames) randomly 182 
chosen from datasets described in Section 3. The advantage of custom kernel over an ordinary black 183 
colour kernel, is a more generalized representation of an iris for a diverse population and 184 
morphology characteristics (e.g. geometry, patterns within the iris, colour etc.). Another common 185 
factor that can affect the template matching performance, is size of the template (i.e. kernel). Smaller 186 
sized kernel may cause attention to noisy details (i.e. local maxima) whereas, larger size may lead 187 
mismatches and incorrect estimation [38].  188 

To resolve this issue, the adaptive size kernel is employed using the interpolation and 189 
extrapolation techniques where the size (wk × hk) varies with respect to the input frame size (i.e. 190 
eye-frame). Furthermore, eye-frame (E) is padded with a rim of white pixels (see figure 1 and figure 191 
2) to enlarge it enough that the convolution kernel (K) fits inside the padded image to provide all 192 
possible best matches identification (i.e. between kernel K and overlapped eye-frame patches of a 193 
size similar to K). More specifically, when the desired patch (i.e. iris) is located at extreme positions 194 
(e.g. looking extreme left/right positions). 195 

 196 

Equation 1 represents a 2D convolution function where E is the current eye-frame (within the 197 
input image) to be convolved with the kernel matrix K resulting y as the output image. The indices i, 198 
j and m, n represent the indices within the E and K matrices (i.e. image pixels), respectively. 199 

   200 

Figure 2. Horizontal convolution (A) and vertical convolution (B) between adaptive size kernel K 201 
and white outlined eye-frame E.      202 

In contrast to the ordinary way of 2D-convolution where kernel K slides along E with a fixed 203 
overlapping window (usually 1 pixel) in both horizontal and vertical directions, we perform a 204 
comparatively simple and efficient convolutional steps (only one slide per horizontal and vertical 205 
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directions) as shown in figure 2. The reason behind an adaptive kernel selection is the geometric 206 
features of iris and pupil which are considered approximately circular and black compared to the 207 
rest of the eye with pupil as the most dark segment. First, kernel height hk is resized to eye-frame 208 
height (i.e. he = hk) and width wk is set to 0.4 of the eye-frame width. The convolution function then 209 
slides through E in the horizontal direction to determine the x-coordinate of iris centre within the E. 210 
It compares the overlapped patches of E (wk × hk) against K to calculate the matching scores at each 211 
horizontal stride (i.e. 1 pixel). The normalised correlation coefficient calculates a total matching score 212 
for the current patch in E using equation 2. 213 

 214 

Where  is the matching score of current overlap (x, y) between K and E patch of size 215 
equal to K (wk × hk). The summation in equation 2 is performed over the K and E patch where x′= 216 
0...wk -1, y′= 0... hk -1. As the kernel height hk is aligned with height of the eye-frame (i.e. he = hk), there are 217 
no vertical overlapping (i.e. no vertical overlapping/strides) which means, the kernel will only be 218 
able to move along E in the horizontal direction while computing the matching scores for 219 
overlapped patches in E.  220 

Once all the horizontal matching scores are calculated, the next step is to find the coordinates of 221 
the best matching segment. There have been several approaches to select the optimal match but the 222 
candidate with maximum match have been commonly used in similar works [12, 38, 41]. However, it 223 
can easily cause local maxima specifically in low-resolution images [38]. Likewise, using a 224 
predefined matching threshold can provide varying matching scores regarding the environment and 225 
can also mislead because of varying dynamics such as illuminations. We utilised quantile measure to 226 
select all candidates (M) in the horizontal direction) that crosses the adaptive threshold of 90th 227 
percentile of the matching scores sorted in ascending order. i.e. 228 

.  229 

The mean of horizontal (x-axis) coordinate of M selected patches is calculated using (3) which 230 

represents the x-coordinate of top-left corner ( ) of the final best matched patch (i.e. estimated iris 231 
rectangle). 232 

    (3) 233 

Where m, are the total number of elements (i.e. best-matched candidates) in M,  is the 234 
horizontal coordinate of corresponding best-matched candidates M.  235 

The iris rectangle I is identified using  and kernel width wk which is then used for the vertical 236 
convolution to identify the y-coordinate of iris centre. Similar to horizontal convolution-based 237 
matching, kernel height wh is resized to 0.4 of the height of I for overlapped stride matchings while 238 
keeping the width same. Vertical convolution steps are then performed to compute the matching 239 
score for K and overlapped patches of I along the vertical direction only. The output matrices SCv 240 
contains all the corresponding matching scores for vertical convolutions between the K and I 241 
overlapped patches. The quantile measure is used in a similar way to select all candidates (N) in the 242 
vertical direction) that crosses the adaptive threshold of 90th percentile of the matching scores sorted 243 

in ascending order where; . The mean of 244 
vertical (y-axis) coordinate of N selected patches is then calculated using equation 4 which represents 245 

the y-coordinate of top-left corner ( ) of the final best-matched patch (i.e. estimated pupil 246 
rectangle). 247 

       (4) 248 
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where n, is the total number of elements (i.e. best-matched candidates) in N,  is the vertical 249 
coordinate of corresponding best-matched candidates N.  250 

Finally, the centre coordinates of the best-matched patches within E in horizontal (Cx) and 251 
vertical directions (Cy) represent the pupil location along the x-axis and y-axis respectively and are 252 
calculated as: 253 

,    (5) 254 

where wk, hk are the width and height of kernel K, respectively. Algorithm 1 summarizes all the 255 
sequential steps involved in the proposed methodology to determine the pupil coordinate within an 256 
image frame. 257 

Algorithm 1: Proposed algorithm for iris detection and pupil localization in an image/video frame 258 

Inputs: image/video frame F, a custom-defined kernel frame K 

Output: Pupil coordinates (Cx, Cy), iris rectangle (top-left; bottom-right) 

STEP1: 

- Initialise validation Score = 0 for current F 

- Use Dlib-ml for the facial landmark detection within input frame F 

- Crop the face rectangle (Face) using the detected landmarks 

- IF count (Face) ==1 (i.e. exactly one face in image is found) 

- Score ++ 

- Extract the eye-Frames (EL, ER) for left and right eye 

- IF count (EL, ER) ==2. i.e. exactly 2 eyes within Face rectangle 

▪ Score ++ 

▪ Goto STEP 2 

- ELSE 

▪ Mark it as invalid frame 

▪ Goto STEP 1 for the next F 

- ELSE 

- Mark it as invalid frame 

- Goto STEP 1 for the next F 

STEP2: 

- Foreach eye-frame E in EL, ER 

▪ Convert E into grayscale  

▪ Outline E with white paddings  

▪ Adapt the kernel K height to height of E and width to 0.4*width(E)  

▪ Convolve K with E by sliding Horizontally with 1-pixel stride/sliding window  

▪ Store the matching scores for overlapped E patches in a vector SCh 

▪ Store the horizontal elements with high matching scores in lists M for 

.  

▪ Find the top-left of best-identified iris rectangle by taking mean (µ) of x-coordinates 

for M (i.e. ) using equation 3 

▪ Find the iris rectangle I, using  and wk  

▪ Goto STEP3 

- End Loop 

STEP3: 

- Adapt the kernel K height to 0.4*height(I) for vertical convolution 

- Convolve K with I by sliding Vertically with 1-pixel stride/window  

- Store the matching scores for overlapped I patches, in a vector SCv 

- Find the elements with high matching scores (call them N) where 

. 

- Find the top-left coordinate of best-identified rectangle by taking mean (µ) of y-coordinates of 

N (i.e. ) using equation 4 

- Find the pupil centre Cx, Cy by adding width and height of K into  and  respectively 

using equation 5. 
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3. Experimental Design  259 

We conducted detailed experiments to validate the proposed methodology while using various 260 
datasets and validation metrics. We also performed a critical analysis based on various conditions 261 
and validated the proposed algorithm while considering the diversity in validation datasets as well 262 
as validation metrics. Following sections explain the validation datasets and metrics along-with 263 
detailed experimental design. 264 

3.1. Datasets 265 

To validate the proposed methodology and reliable performance measure, we used three 266 
different publicly available datasets. The first dataset is known as Talking-Face [42] and have been 267 
used in previous works [37]. This dataset contains 5000 video frames captured during the engaged 268 
conversation from a person for 200 seconds. The original objective of this dataset was to model the 269 
facial behaviour during a natural conversation. Data is captured with a static positioned camera with 270 
a frame size of 720x576 pixel. Every frame is annotated semi-automated manner containing 68 facial 271 
points including the pupil coordinates. Following our validation check in Algorithm I (i.e. frames 272 
with exactly 2 eyes/frame) and removing the fully closed eyes (manually, found 280 images) images, 273 
we are left with 4720 frames for the validation purpose. The dataset contains varying gaze positions, 274 
facial and body movements, diverse natural expressions and variations in eye-state (e.g. closed, 275 
open, half closed) . However, because it is captured from individual person , the diversity within the 276 
eye characteristics is very limited. In other words, there are no variations in terms of eye 277 
characteristics (e.g. Iris or pupil colour, intensity, iris pattern etc.) and hence, not very challenging 278 
for the algorithm validation. 279 

In contrast to Talking-Face, we used the BIO-ID dataset [43] which is comparatively more 280 
challenging and has been used as a benchmark in various relevant studies such as [37, 41]. The data 281 
was acquired from 23 different subjects during multiple sessions and has 1521 images in total 282 
containing varying gaze positions, illuminations, background scene, eye features (e.g. eye colour, 283 
gender, ethnicity, iris size), camera focus and hence eye-frame (and face rectangle) size. The 284 
interesting aspect of this dataset is a comparatively lower resolution (grayscale 384x288 pixel) that 285 
makes the validation of pupil localisation algorithm more challenging but reliable. Besides, the 286 
dataset contains natural expressions such as images with half-closed eyes that further help to 287 
measure the validity of the proposed algorithm. Our algorithm detects only seven frames as invalid 288 
(i.e. not containing exactly two eyes) whereas we found 45 images (manually) with fully closed eyes 289 
that were excluded, resulting 1469 remaining dataset for validation purpose.  290 

Furthermore, we evaluated our method on comparatively larger dataset known as GI4E [44] 291 
containing more diversity involving various morphology types (e.g. eye size, eye/iris features, 292 
gender, ethnicity, varying background and illuminations). It should be noted that despite higher 293 
resolution images (800×600 pixels), size of the eye-frame rectangles is comparatively small. This is 294 
because of the larger distance of the capturing device from the subject resulting lower ratio of 295 
eye-frame to entire image. In other words, the whole frame covers more background pixels as 296 
compared to the actual face within the image which makes the eye-frame and hence iris/pupil 297 
localization more challenging. The dataset is much diverse containing 103 subjects (each with 12 298 
images) with 1236 total images involving 12 different gaze position. Also, there is no open eyes or 299 
invalid frame in this dataset.  300 

3.2. Validation Metrics  301 

One of the important factors in validation of the pupil detection and proposed work is the 302 
metric we chose for the performance measure. This is because of the nature of pupil localization 303 
problem. For instance, the absolute error in the estimated pupil/eye centre and actual eye centre 304 
might vary with respect to image size/resolution. Hence the standard distance measure such as 305 
Euclidean distance (ED) and/or R2 coefficient will not give a true representation of the accuracy 306 

measure. The authors in [43] introduced a relative error measure ( ) to deal with this issue which 307 
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has been utilized in various related works [37, 38, 43, 45]. It uses the maximum of the estimated pupil 308 

coordinates distances from left and right eyes ( ) and ) respectively, between the actual eye 309 

centres ( , ) and the estimated ones ( , ) using equation 6.  310 

    (6) 311 
For the normalisation, the calculated distance is divided by the distance between two actual eye 312 

centres  as shown in equation 6. The normalisation factor makes the error measure 313 

independent of the image scale and hence eye-frame size. Furthermore, [37] used best eye centre 314 

( ) which utilizes the minimum of the error between estimated and actual centres as: 315 

     (7) 316 
Although the wec (i.e. worst eye centre) metric provides a relative error estimate, it is based on 317 

some assumptions such as ‘on average population, the distance between the inner eye corners is equal to 318 

width of a single eye of the corresponding subject’. Likewise, a relative error of = 0.25 is considered as 319 

half of an eye width which may not be valid in every case. Interested readers can get further details 320 
in [43] study.  321 

To further deal with the metric generalisation issue, we first time introduce a standardized 322 
error measure (SED) as a function of distance between the estimated and actual coordinates within an 323 
eye-frame. It calculates the relative distance as percentage of the total possible ED (i.e. error) 324 
between the actual and estimated pupil coordinates. The SED measure interprets the error within the 325 
single eye-frame without depending on the second eye or interpupillary distance used in other 326 
related works. Besides, the SED metric can measure the relative error regardless of image/face or 327 
eye-frame size and hence the image resolution. Mathematically, the proposed SED is defined as: 328 

   (8) 329 

Where  represent the estimated and actual pupil horizontal coordinates respectively 330 

and  represent the estimated and actual pupil vertical coordinates respectively. The 331 

 are coordinates of the nearest corner of eye-frame (usually top left corner) whereas, 332 

 are coordinates of the farthest corner of eye-frame (usually bottom right). The numerator 333 

in equation 8 represents the error (in terms of pixels) between the actual and estimated positions 334 
whereas the denominator is the total possible error and is used as a normalisation factor. The 335 
resulting SED gives the percentage error representing a standardised distance between actual and 336 
estimated pupil positions in pixels which is not affected by the image size and resolution. In addition 337 
to evaluate the pupil detection techniques, the proposed standardised distance measure can also be 338 
useful for other related works such as object localisation, image segmentation and object tracking 339 
etc.  340 

In summary, a comprehensive comparative analysis is performed to evaluate the proposed 341 
methodology using aforementioned metrics including wec, bec, and SED along with other standard 342 
accuracy measures including the ED, absolute mean difference, and R2 (coefficient of determination). 343 

4. Results and Discussions 344 

Following the experimental design, performance of the proposed pupil detection approach is 345 
evaluated using various gold standards, validation metrics and benchmarked datasets. As discussed 346 
in the experimental design, it is important to use appropriate evaluation methods due to nature of 347 
the problem. To maintain the reliability in our performance measure, we utilised different metrics as 348 
well as the newly introduced SED in this work.  349 

 350 
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Table 2. Performance analysis of the proposed model using wec, bec with varying error threshold 351 

 

Dataset 

wec(%) bec(%) 

Error ≤ 0.05 Error ≤ 0.1 Error ≤ 0.05 Error ≤ 0.1 

BIO-ID 94.5 100 98.34 100 

Talking face 97.10 100 99.7 100 

GI4E 95.05 100 98.71 100 

Table 2 summarizes the results achieved from the proposed approach using wec and bec metrics 352 
that have been used in recent similar works [36-38, 43-45]. We are specifically interested in wec 353 
measure when error≤0.05 which indicates the model estimation within the pupil diameter (i.e. more 354 
restricted). Best accuracy achieved by the proposed method is 97.1% while tested over the 355 
Talking-Face dataset which outperforms the 89.59% presented in recent work[37] that uses the same 356 
dataset. The high accuracy is expected because of the comparatively less challenging nature of 357 
dataset (see Section 3.1). Firstly, the dataset contains high resolution images. Secondly, the data is 358 
captured from only one person hence, a generalization of iris and eye pattern is easily detected. It is 359 
important to note that despite the dataset is collected from single person, it contains high variations 360 
in terms of gaze, head movements, facial expressions and sufficient quantity (i.e. 5000 images) with 361 
annotated pupil coordinates. On the other hand, the proposed method achieves 100% wec accuracy 362 
while tested for error threshold≤0.1 indicating the robustness of the proposed methodology. This 363 
means that model estimation about pupil coordinates are within the iris in all cases (i.e. 5000 images). 364 
Overall, proposed method outperforms the most recent works related to pupil localization [37] 365 
while evaluated on the Talking-Face dataset. 366 

 367 

Figure 3. Comparison of estimated pupil coordinates using proposed model, with actual annotated 368 
coordinates (BIO-ID dataset) using R-squared error 369 

To further evaluate the model performance, the BIO-ID dataset is used which contains various 370 
subjects, high variations in gaze, head pose and body movements. Furthermore, the image quality 371 
(i.e. resolution) is comparatively lower (i.e. 286x384) which makes it more challenging when 372 
focusing the identified eye-frame and/or iris/pupil within the image. Also, a large proportion of the 373 
entire image contains background rather than the face itself which makes the dataset further 374 
challenging as addressed by the previous works [38]. Despite the associated challenges, proposed 375 
approach shows robust pupil estimations as shown in Table 2. The model indicated significant 376 
improvements with 94.5% wec measure with error threshold≤0.05 when benchmarked with the 377 
works of [37] and [40] of 81% and 84%, respectively. Furthermore, the model indicated 100% 378 
accuracy when evaluated for error threshold≤0.1 which means that pupil localization is within the 379 
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iris in all cases (i.e. 1521 cases in total). Despite the 100% of wec and bec accuracy for error 380 
threshold≤0.1, the main focus is to maximize the wec accuracy (which is the most challenging) with 381 
minimum error threshold (i.e. ≤0.05) to restrict the model estimation within the pupil diameter. 382 

Figure 3 shows the R2 coefficient for the proposed model tested on BIO-ID dataset. It can be 383 
observed that x-axis and y-axis estimated coordinates are almost overlapping to actual annotations 384 
with R2 value of 0.993 and 0.998 for x-axis and y-axis respectively. Although, R2 is a well-known 385 
statistical measure to determine the goodness of model fit, it might not be effective for validating the 386 
model estimation in pupil detection or similar problems because of the varying error rate with 387 
respect to the image size (and resolution). 388 

Table 3. Performance comparison between previous works based on wec measure using BIO-ID 389 
dataset 390 

wec % accuracy with varying error (e) threshold 

Methods e<0.05 e<0.1 e<0.15 e<0.2 

[24] 81.1 94.2 96.5 98.5 

 
[36] 88.7 95.2 96.9 97.8 

[37] 80.9 91.4 93.5 96.1 

 [38] 82.5 93.4 95.2 96.4 

[40] 84.1 90.9 93.8 97.0 

[41] 57.2 96.0 98.1 98.2 

[43] 38.0 78.8 84.7 87.2 

[45] 47.0 86.0 89.0 93.0 

[46] 85.8 94.3 96.6 98.1 

Proposed Model 94.5 100 100 100 

Table 3 summarizes the comparative results from various previous works while weighted over 391 
the challenging BIO-ID dataset using wec metric with varying thresholds. It can be noticed that the 392 
proposed model outperforms (94.5%) all previous works specifically with the most restricted error 393 
threshold≤0.05. Recent works that uses similar approach [37] achieved an accuracy of 80.9% and 394 
82.5% [38] with e≤0.05 whereas best accuracy of 88.79% is indicated by [36] that are significantly 395 
lower than the proposed method. Research study in [21] presented a robust technique for the pupil 396 
localization and gaze estimation, however, the measured performance is not standard (i.e. uses the 397 
mode of pixel distance which is not the true representation of error with varying resolutions). 398 
Furthermore, the validation is performed on different dataset containing artificially rendered images 399 
which in most cases, does not reflect the real time dynamics. 400 

Besides the Talking-Face and BIO-ID datasets, we evaluated the performance of proposed 401 
approach on another challenging dataset GI4E. It can be noted from Table 2 that our model produces 402 
95.05% wec and 98.71% bec accuracy respectively with critical threshold≤0.05. While most of the 403 
existing works used BIO-ID as benchmark dataset, some of them also used GI4E to evaluate their 404 
techniques. For instance, recently study on eye centre localisation [24] reported 93.9% wec accuracy 405 
on GI4E dataset which is slightly lower than our approach (i.e. 95.05%) however, their accuracy was 406 
decreased to 881.2% when tested on BIO-ID dataset. This indicates the robustness of proposed 407 
approach for pupil detection in varying datasets containing diversity in terms of eye colour, gaze 408 
position, facial emotions and real movements. Similarly, [46] indicated 89.28% wec on GI4E dataset 409 
which are significantly lower than the proposed approach. A clustering-based approach [47] 410 
produced mean pixel error of 2.73 pixels as compared to proposed model with 1.7 pixels while 411 
validated on GI4E. However, it is important to be noted that this metric does not represent a 412 
standard accuracy measure as described in Section 3.2. 413 

In addition to wec, [24, 41] used average point-to-point error (me17) with the inter-ocular distance 414 
between the left and right eye pupil. Recent works [21] that uses the DL to localize the pupil and 415 
estimate the gaze position also employed the median of absolute difference in x-axis and y-axis. 416 
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However, variations in image size, zoom-in/out due to body/head movements and/or camera 417 
positions might affect the mean difference in corresponding error estimate resulting variations in 418 
accuracy measure. The wec metric which has been used extensively in related works such as [24, 419 
36-38, 40, 45, 46], gives a comparatively better indication of the performance measure. However, 420 
these metrics measures the performance in terms of coordinate estimation within the pupil/iris 421 
diameter with a varying error threshold as shown in Table 2. Also, it is based on relative error 422 

assumption ( = 0.25) as half an eye width, which may not be true in every case. Therefore, model 423 

estimations and performance (specifically in pupil localization task) is needed to be evaluated using 424 
more standard metric representing the distance between estimated and actual pupil coordinates. 425 

Table 4. Comparing model estimations using newly introduced SED, Euclidean distance (ED), R2, and 426 
absolute error metrics 427 

Dataset µ|xa-xe| µ|ya-ye| R2_x R2_y ED(ca, ce) %ED(ca, ce) 

BIO-ID 1.04 0.57 0.993 0.998 1.43 3.98 

Talking face 1.23 0.97 0.990 0.956 1.96 2.49 

GI4E 1.32 0.71 0.996 0.999 1.70 3.87 

To overcome this issue, we first time introduce a standardized Euclidean distance (SED) which 428 
represents the percentage distance error as ED using equation 7 (see Section 3.2). The error 429 
represents the displacement between the actual and estimated pupil coordinates as a percentage of 430 
the whole image size (i.e. eye-frame) in terms of number of pixels. The major advantage of SED is a 431 
standard representation of the error which can be used to measure the accuracy regardless of image 432 
size and resolution which is not the case in wec, me17 and other metrics used in most of the existing 433 
studies. Table 4 presents the comparative analysis of proposed model estimations in terms of mean 434 
pixel difference in each axis, for both eyes (left and right), R2 coefficient, ED between centre of 435 
estimated and actual pupil coordinates and the newly introduced SED. The proposed method 436 
indicates 1.04 and 0.57 absolute pixel error on x-axis and y-axis respectively (i.e. 0.8 on average for 437 
both) as compared to 2.91 in [47] on BIO-ID dataset. Similarly, a DL-based model in [35] indicated 438 
their optimal performance with pixel error>10. However, they used different datasets which in case 439 
of high resolution, is not comparable with proposed method and clearly indicates the need of 440 
standard metric similar to SED. 441 

It can be analyzed that the model performs comparatively better for Talking-Face and BIO-ID 442 
datasets as compared to GI4E dataset based on the corresponding properties (as discussed in Section 443 
3). However, there are several crucial aspects to be noted in each case. First, in contrast to wec 444 
measures in Table 2, the ED(ca, ce) error in Table 4 for Talking-Face is 1.96 which is higher than the 445 
other two datasets (1.43 and 1.70 for BIO-ID and GI4E respectively) despite the high quality and 446 
fewer variations in the former case. This is because the size of images in Talking-Face dataset is 447 
comparatively larger than other datasets and consequently, the ED(ca, ce) error as well as absolute 448 
error (µ|xa-xe|, µ|ya-ye|) in each axis, are also high. However, results from these metrics (i.e. ED, 449 
µ|xa-xe|, µ|ya-ye|) does not align with results in Table 2 (wec measure) and therefore, does not reflect 450 
the true measure of the standardized difference between estimated and actual pupil coordinates. In 451 
contrast, SED provides more generic and standard representation of error between the actual and 452 
estimated coordinates as a percentage of the eye rectangle size. The SED error for Talking-Face 453 
dataset is 2.49% which is less than 3.98% and 3.87% of BIO-ID and GI4E datasets respectively, and 454 
also aligns with the wec outcomes in Table 2. As mentioned earlier, SED represents a standardized 455 
distance (i.e. pixels) using current eye-frame without depending upon the second eye or 456 
interpupillary distance which is not the case in wec measurement. Furthermore, SED interprets the 457 
error in term of pixel distance without using any thresholds (as in case of wec) and can be utilized as 458 
a standard metric to evaluate the true performance of such models in similar problems. 459 
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 460 

Figure 4.  Pupil coordinates estimations (green color) vs actual (red) coordinates within BIO-ID dataset 461 

Figure 4 demonstrates the pupil estimation performance of the proposed model for both left 462 
and right eye (x-axis and y-axis) on BIO-ID dataset. The model indicates a perfect overlapping for 463 
both axis and more specifically, at the peak positions which represent the extreme pupil and/or iris 464 
positions looking extreme left or right, and top or bottom positions. One of the reasons of such 465 
robust overlapping is the use of white paddings in our model that helps the adaptive kernel to 466 
achieve maximum overlaps at extreme positions resulting in appropriate matching candidates 467 
during horizontal and vertical cascades. 468 

 469 

Figure 5. Horizontal and vertical convolution-based pupil coordinates localization (in randomly selected 470 
images from BIO-ID, GI4E and Talking-Face dataset) for dynamic conditions such as gaze position, eye color, 471 

intensity, noise interference, eye size and image resolution  472 

As discussed earlier, a custom kernel might help for optimal representation of iris diversity. 473 
Additionally, adaptation of kernel size regarding the eye-frame and dynamic threshold for best 474 
candidate selection further improves the reliability of our method specifically in dynamic 475 
conditions. Figure 5 demonstrates various test cases of iris/pupil detection using proposed 476 
methodology for diverse eye properties and varying environmental conditions (e.g. patterns, gaze 477 
direction, varying background, half/full closed eyes, colour, intensity, illuminations, resolution, 478 
pupil/iris size, gender, ethnicity etc.). It indicates the robustness of model estimations in both 479 
horizontal and vertical convolutions specifically at extreme positions (such as left/right corners, top 480 
right, half-closed etc.) 481 
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Primarily, the proposed method is leveraging the pre-trained Dlib-ml that can locate the facial 482 
landmarks efficiently and reliably. It helps to filter out the unnecessary background segments within 483 
the input image as well as irrelevant facial components excluding the desired regions that contain 484 
exact eye-frames. Secondly, the proposed method uses efficient algorithm to adapt the kernel size in 485 
accordance with the eye-frame and padding the eye-frame with white surrounding pixels which 486 
further reduce the probability of selecting noisy matched candidates as mentioned by [37, 38]. The 487 
use of quantile based dynamic threshold to identify the best matching patch further enhances the 488 
reliability in proposed algorithm (e.g. outcomes in Figure 4-5). 489 

 490 

Figure 6. The wec measure for different datasets using proposed method 491 

Figure 6 shows the performance of the proposed method for pupil coordinate estimation using 492 
BIO-ID dataset while varying error threshold, to measure the mean wec for both eyes. The 493 
visualization indicates accuracy over 90% in all cases (i.e. dataset) while considering the strict 494 
constraint of e≤0.05. More explicitly, the model indicates that in over 97% of cases with 495 
high-resolution images/videos (which are ordinary for current technological advancement), the 496 
error in estimated pupil position is less than the diameter of pupil itself. Even in the worst-case 497 
scenario (i.e. small-size eye-frames in GI4E dataset), the model achieves above 95% accuracy.  498 

#LX        LY        RX     RY
   232    110      161    110

Ground truth file 
For BioID_0000.eye

 499 

Figure 7. Example of annotation error in BIO-ID dataset 500 

It is also imperative to mention that some annotation errors may slightly influence the 501 
performance measure even though, this is observed in very few cases. For instance, Figure 7 502 
indicates the eye centre coordinates annotations in BIO-ID dataset (Rx:161, Ry:110) provided by [43] 503 
for the right-eye of subject BioID_0000.eye. However, the correct values are Rx:158, Ry:108 (refer to 504 
Figure 7) which indicate approximately 2 pixels difference in each axis. This is significant for 505 
micro-movements estimation and would affect the model performance substantially (e.g. wec, SED). 506 

Finally, it can be noted that the proposed model performs initial checks on the current frame 507 
quality to assure the existence of exactly two eyes (Algorithm 1) within the identified face rectangle. 508 
However, additional constraints can further improve the accuracy specifically, in real-time scenarios 509 
and video stream data. For instance, [37] used the DL model to identify the blinking eyes which can 510 
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further improve the accuracy of proposed model while filtering out the images/frames without 511 
distinctive iris/pupil (i.e. separating the closed eyes not to be analyzed for pupil localization). 512 
Additional post-processing constraints such as symmetry constraints over the estimated pupils’ 513 
coordinates in both eyes might improve the gaze estimation accuracy. This might be useful to 514 
improve the eye-state information extraction approaches  such as [7] for the deception detection 515 
through facial micro-gestures. 516 

5. Conclusions and Future Works 517 

We proposed a novel pupil estimation method utilising the deep learning based facial 518 
landmark detection and an image processing algorithm to determine the eye centre within an image 519 
frame. Reliable extraction of the eye-frames within the input image is one of the major advantages of 520 
using Dlib-ml. This eliminates most of the background and irrelevant segment of the image which 521 
helps to identify the target segment using intelligent image processing. We developed a customized 522 
iris kernel using multiple images from various datasets, for its generalized representation. The iris 523 
kernel is then convolved with eye-frame in two stages (horizontal and vertical) such that no nested 524 
strides are performed by convolution function. White paddings surrounding the kernel as well as 525 
eye-frame, proved very helpful for template matching between the kernel and overlapped 526 
eye-patches, specifically for the extreme eye positions (e.g. left/right corners). Also, utilising a 527 
dynamic threshold for identifying the best-matched patch further contributed to reliability in our 528 
method. 529 

Compared to several state-of-the-art pupil detection methods, the proposed approach indicated 530 
significant improvements in pupil estimation accuracy specifically, with lower-resolution images 531 
and minimum error thresholds. We also introduced a standardized distance metric to measure the 532 
relative error in model estimation. This metric can be used regardless of image size and resolution 533 
which is not the case with most of the existing validation metrics used in similar works. In future, 534 
proposed method will be utilised along with eye-blink detection models, to determine eye gaze, in 535 
particular for infraduction iris positions. Our method can be useful in various computer vision 536 
applications specifically the one requiring precise pupil and eye centre estimation. For instance, the 537 
eye related feature extraction in [7] can be replaced with our method to extract the more reliable and 538 
micro-level movements within the eyes to distinguish the truthful and deceptive behaviour. More 539 
explicitly, this work is expected to direct several application areas such as human-computer 540 
interfaces, gaze estimation, emotion recognition, psychological profiling, fatigue detection, 541 
healthcare, visual aid and automated deception detection.   542 
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