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 
Abstract—Airborne Laser Scanning (ALS) is one of the main 

technologies for generating high-resolution digital terrain models 
(DTMs). DTMs are crucial to several applications, such as 
topographic mapping, flood zone delineation, geographic information 
systems (GIS), hydrological modelling, spatial analysis, etc. Laser 
scanning system generates irregularly spaced three-dimensional cloud 
of points. Raw ALS data are mainly ground points (that represent the 
bare earth) and non-ground points (that represent buildings, trees, 
cars, etc.). Removing all the non-ground points from the raw data is 
referred to as filtering. Filtering heavily forested areas is considered a 
difficult and challenging task as the canopy stops laser pulses from 
reaching the terrain surface. This research presents an approach for 
removing non-ground points from raw ALS data in densely forested 
areas. Smoothing splines are exploited to interpolate and fit the noisy 
ALS data. The presented filter utilizes a weight function to allocate 
weights for each point of the data. Furthermore, unlike most of the 
methods, the presented filtering algorithm is designed to be 
automatic. Three different forested areas in the United Kingdom are 
used to assess the performance of the algorithm. The results show 
that the generated DTMs from the filtered data are accurate (when 
compared against reference terrain data) and the performance of the 
method is stable for all the heavily forested data samples. The 
average root mean square error (RMSE) value is 0.35 m. 
 

Keywords—Airborne laser scanning, digital terrain models, 
filtering, forested areas. 

I. INTRODUCTION 

LS is an active remote sensing technology that provides 
three dimensional coordinates of the scanned area. Raw 

ALS data represent all natural (bare earth, trees, lakes, rivers, 
etc.) and manmade (buildings, vehicles, bridges, roads, etc.) 
features on the surface of the ground [1], [2]. DTMs could be 
generated after extracting only the bare earth (ground) points 
from the raw ALS data [3]. Extracting the ground points in 
heavily forested areas is a challenging task as the dense trees 
prevent the laser pulses from reaching the ground surface. 
Therefore, there is a need to develop methods that focus on 
filtering raw ALS data in forested areas specifically, such as 
[4]. Across the past few years, many filtering methods were 
presented. These methods could be classified into three main 
categories: the segmentation based [5], [6], the morphological 
operations based [7], [8] and the interpolation based methods 
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[9], [10]. However, there are some filtering approaches that do 
not belong to any of the above-mentioned categories, such as 
the statistical based methods and the TIN (triangulated 
irregular network) based methods [11]-[13].  

In this paper, a method for filtering ALS data in forested 
areas is presented. The approach is a surface interpolation 
based and mainly uses the smoothing splines criterion to fit 
the noisy forests point clouds and a weight function for 
assigning a weight value for each point of the raw ALS data 
for improving the classification process into ground or non-
ground point. 

II. SMOOTHING SPLINES FILTERING APPROACH 

A. Cubic Smoothing Splines Criterion 

A cubic splines function, uses the cubic polynomial to 
interpolate the data on each interval. 

 
𝑓௜ሺ𝑥ሻ ൌ 𝑎௜ ൅ 𝑏௜ሺ𝑥 െ 𝑥௜ሻ ൅ 𝑐௜ሺ𝑥 െ 𝑥௜ሻଶ ൅ 𝑑௜ሺ𝑥 െ 𝑥௜ሻଷ      (1) 
 

where 𝑎௜, 𝑏௜, 𝑐௜, & 𝑑௜ are the coefficients that can be 
determined using one of the available mathematical methods, 
such as [14]-[16]. Fig. 1 illustrates the noisy raw ALS data and 
how the cubic splines interpolation function fits these data 
measurements passing through each point. 

 

 

Fig. 1 (a) Raw ALS data (blue dots) 
 

 

Fig. 1 (b) A cubic splines function fitting the raw data by passing 
through each point (orange solid line) 
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For filtering raw ALS data, we need kind of a function that 
passes close to the data points but not exactly through each 
one. Cubic smoothing splines provides a good balance of the 
fitted curve as it passes between the ground and non-ground 
ALS data as shown in Fig. 2. The criterion for smoothing 
splines, 
 

𝛼 ∑ 𝑤௜ሺ𝑧௜ െ 𝑓ሺ𝑥௜ሻሻଶ ൅ ሺ1 െ 𝛼ሻ ׬ ሼ𝑓ᇱᇱሺ𝑥ሻሽଶ𝑑𝑥
௫೙

௫భ

௡
௜ୀଵ        (2) 

 
consists of two parts, the first one, 𝛼 ∑ 𝑤௜ሺ𝑧௜ െ 𝑓ሺ𝑥௜ሻሻଶ௡

௜ୀଵ , 
measures how closely the function fits the data measurements, 
and the second one, ሺ1 െ 𝛼ሻ ׬ ሼ𝑓ᇱᇱሺ𝑥ሻሽଶ𝑑𝑥

௫೙
௫భ

, measures the 

smoothness of the fitted curve. 
 

 

Fig. 2 The fitted curve using cubic smoothing splines criterion 

B. ASL Data Filtering  

The suggested filtering approach stages are presented in 
Fig. 3. MATLAB software is used to implement all the 
processing stages by designing a robust code specifically for 
this aim. A brief description of the processing operations will 
be provided in the next section.  

Stage 1: Creating a Uniform Grid for the Raw ALS Data 

Raw ALS data measurements are irregularly distributed 
points. Therefore, it is important to rearrange these random 
points into a regularly spaced grid [17]. The number of rows 
(𝑁௥) and columns (𝑁௖ሻ of the grid can be calculated as:  
 

𝑁௥ ൌ ሺ𝑌௠௔௫ െ 𝑌௠௜௡ 𝐶𝑒𝑙𝑙 𝑠𝑖𝑧𝑒⁄ ሻ ൅ 1 
 𝑁௖ ൌ ሺ𝑋௠௔௫ െ 𝑋௠௜௡ 𝐶𝑒𝑙𝑙 𝑠𝑖𝑧𝑒⁄ ሻ ൅ 1                (3)   

 
The selection of the grid cell size depends on the raw data 

density. It represents the spatial resolution. As a first step 
towards removing the non-ground (trees) points, the algorithm 
will remove the higher point (larger elevation value) if more 
than one have fallen in one cell. This will produce a uniform 
2D grid; each cell contains the coordinates of one point of the 
ALS data.  

Stage 2: ALS Data Fitting and Computing the Residual 
Values 

The cubic smoothing splines interpolation function -
Criterion (2) - is applied to each row of the abovementioned 
grid. After normalizing the data, the function fits them using a 
value of 0.9999 for the smoothing parameter 𝛼. This value is 
fixed for all the processing stages. It is determined after 
conducting many tests using different values of the smoothing 
parameter. The generated curve follows the general trend of 

the ALS data without passing through each point as shown in 
Fig. 2. The difference in elevation values between the ALS 
point 𝑧௜ ሺ஺௅ௌሻ and the fitted curve 𝑧௜ ሺ௖௨௥௩௘ሻ is called the residual 
value 𝑟𝑒𝑠௜, 
 

  𝑟𝑒𝑠௜ ൌ 𝑧௜ሺ஺௅ௌሻ െ 𝑧௜ሺ௖௨௥௩௘ሻ                           (4) 

Stage 3: Removing the Non-Ground Points and Computing 
the Weight Value for Each Point 

Creating a grid for the raw ALS data

Start

Loading raw ALS data

Normalizing the ALS data

Is this the last iteration?

Extracted DTM points

No

Yes

Fitting the data using the smoothing 
splines criterion

wi = 0
YesNo

Non-ground points 
(remove them)

Ground points

Computing the residual values (res i)

Computing the weights (wi) for all the 
data points

Starting the iterations using a set of 
threshold values (t)

 

Fig. 3 Flowchart illustrating all the ALS data filtering stages, starting 
from loading the raw data till extracting the filtered DTM points 
 
All the ALS points located above the fitted curve by a 

predefined threshold value 𝑡 will be classified as trees (non-
ground points) and removed. The threshold value represents a 
buffer to help the algorithm to avoid removing the ground 
points [18]. In the first iteration, all the points would be given 
an equal weight values. After that, (5) will be applied to assign 
a weight value for each point.  

 

  𝑤௜ ൌ

⎩
⎪
⎨

⎪
⎧

1,      𝑟𝑒𝑠௜ ൏ 𝜎

 1 െ 2 ቀ
௥௘௦೔ିఙ

௧ିఙ
ቁ

ଶ
, 𝜎 ൑ 𝑟𝑒𝑠௜ ൑ ሺ𝜎 ൅ 𝑡ሻ/2

           2 ቀ
௧ି௥௘௦೔

௧ିఙ
ቁ,   ሺ𝜎 ൅ 𝑡ሻ/2 ൑ 𝑟𝑒𝑠௜ ൑ 𝑡

  0,   𝑟𝑒𝑠௜ ൒ 𝑡

          (5) 
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The initial threshold value could be a small number, t=0.25, 
so that most of the trees points could be detected and removed 
in the first iteration. Then, to avoid removing the ground 
points, the second iteration will start with a big value and then 
it would be decreased gradually from 7 to 1.  

 
First iteration 

 
Second iteration 

 
Last iteration 

 
Filtered data 

 

Fig. 4 Filtering raw ALS data (blue points) by fitting the data using 
the cubic smoothing splines approach. The data above the fitted curve 

(the solid line) will be classified as trees and removed 
 

Fig. 4 illustrates how the algorithm removes the trees points 
(above the fitted curve) and how the ground points attract the 
fitted curve after each iteration.  

III. EXPERIMENTS AND RESULTS 

The performance of the presented filtering approach is 
tested using three samples of forested areas in the United 
Kingdom. These samples represent different tree types and 

data densities, and range from moderate sloped areas to steep 
mountains. The area of each sample is about 1 km², and the 
data density for samples 1 (Dartmoor forest, England) and 2 
(Drumtochy forest, Scotland) is 1 point/m², whereas sample 3 
(Caerwent forest, Wales) represents very dense data, 4 
points/m². The cubic smoothing splines algorithm is applied 
on these three forests’ samples.  

DTMs are generated from the extracted ground points for 
each sample and then they are compared cell-by-cell against 
very accurate reference data (DTMs) provided by the UK 
Environment Agency with a vertical accuracy of ± 0.05 m 
[19]. The RMSE value is calculated for each sample using, 

 

 𝑅𝑀𝑆𝐸 ൌ ට∑ ሺாሺ೔ሻሻమ೙
೔సభ

௡ିଵ
                                (6) 

 
where 𝐸ሺ௜ሻ is the error for each point, 

 
𝐸ሺ௜ሻ ൌ 𝑍ሺ௜ሻோ௘௙௘௥௘௡௖௘ ஽்ெ െ  𝑍ሺ௜ሻி௜௟௧௘௥௘ௗ ஽்ெ         (7) 

 
In addition, the three samples are filtered using a 

professional algorithm (ENVI LiDAR) designed by the world-
leading company, Harris Geospatial Solutions. Then, the 
RMSEs are calculated and compared against the RMSEs using 
the presented raw ALS data filtering method. Table I shows 
the results of filtering the three samples of the forested areas 
using both the proposed smoothing splines method (SSM) and 
ENVI software. 

 
TABLE I 

ACCURACY ASSESSMENT OF THE FILTERED DATA 

Forest 
Sample 

RMSE (m) Mean error (m) 
Minimum error 

(m) 
Maximum 
error (m) 

SSM ENVI SSM ENVI SSM ENVI SSM ENVI

Sample 1 0.19 0.41 -0.01 0.08 -2.56 -14.90 1.13 6.00 

Sample 2 0.48 0.88 -0.46 0.70 -3.90 -6.13 5.70 10.95

Sample 3 0.39 0.76 -0.79 1.07 -2.86 -3.36 2.49 8.62 

Average 0.35 0.68 -0.42 0.62 -3.11 -8.13 3.11 8.52 

 

The average RMSE values using the presented filter and 
ENVI filter are 0.35 m and 0.68 m, respectively. These results 
clearly show the excellent performance of the suggested 
filtering algorithm. Fig. 5 illustrates the raw ALS data (before 
filtering) and the generated DTMs (after filtering). Sample 2 
represents dense forest on steep mountains, which could be 
considered one of the most challenging areas for any filtering 
method, as it can mislead the filter and affect the algorithm’s 
performance easily. Despite both filters have reached the 
largest RMSE value with this sample, the presented approach 
has succeeded in achieving higher accuracy for the resulted 
filtered data, as the RMSE is 0.48 m, in comparison with 
ENVI’s RMSE, which is 0.88 m. In general, the statistical 
results in Table I show that the suggested algorithm has 
accurately filtered the raw ALS data. It performed very well 
with all samples, even with the very dense data (Sample 3). 
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Fig. 5 Shaded relief images of the three forested areas’ samples, before and after filtering, using the presented approach 
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IV. CONCLUSIONS 

This paper presents a method for extracting the terrain 
points from raw ALS data in forested areas. The approach is 
based on using the smoothing splines function with a 
predefined smoothing parameter and set of threshold values. 
The algorithm removes the trees (non-ground points) 
iteratively; all the ALS points have the same weight in the first 
iteration. After that, a weight function that allocates a weight 
value for each ALS point is used to enhance the filtering 
process. For assessing the performance of the method, three 
raw ALS data samples represent different spatial resolution 
and terrain types are tested. The accuracy of the filtered data is 
assessed by calculating the RMSE values of the generated 
DTMs using the proposed method. In addition, the three 
samples are filtered using a professional software (ENVI 
LiDAR), and the RMSE results are calculated and compared 
against the proposed method’s results. The average RMSE 
values are 0.35 m and 0.68 m using the presented method and 
ENVI software, respectively. All the results confirm the 
reliability of the proposed approach for filtering heavily 
forested areas.  
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