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Abstract 23 

The feet of ground-dwelling birds retain many features of their dinosaurian ancestry. 24 

Experiments with living species offer insights into the complex interplay among anatomy, 25 

kinematics, and substrate during the formation of Mesozoic footprints. However, a key aspect of 26 

the track-making process, sub-surface foot movement, is hindered by substrate opacity. Here, we 27 

use biplanar X-rays to image guineafowl walking through radiolucent substrates of different 28 

consistency (solid, dry granular, firm to semi-liquid muds). Despite substantial kinematic 29 

variation, the foot consistently moves in a looping pattern below ground. As the foot sinks and 30 

then withdraws, the claws of the three main toes create entry and exit paths in different locations. 31 

Sampling these paths at incremental horizons captures 2-D features just as fossil tracks do, 32 

allowing depth-based zones to be characterized by the presence and relative position of digit 33 

impressions. Examination of deep, penetrative tracks from the Early Jurassic confirms that 34 

bipeds had an equivalent looping response to soft substrates ~200 million years ago. Our 35 

integration of extant and extinct evidence demonstrates the influence of substrate properties on 36 

sinking depth and sub-surface foot motion, both of which are significant sources of track 37 

variation in the fossil record of dinosaurs. 38 

 39 

1.      Introduction 40 

Fossil dinosaur tracks preserve unique evidence of locomotion in long-extinct species [1-41 

4]. Rather than being perfect molds of static feet, track morphologies arise through the dynamic 42 

interplay of pedal anatomy, step kinematics, and substrate properties [5-10]. Ground-dwelling 43 

birds have proven to be excellent models for experimentally studying these interactions [11-19]. 44 

The functionally three-toed feet of many species closely resemble those of bipedal, non-avian 45 



dinosaurs [20-21], allowing the visible movements responsible for shallow tracks to be studied 46 

directly.  47 

With each step, a dinosaur deformed not only the exposed air-sediment boundary, but a 48 

volume of substrate beneath [7,17,22-25]. Layered sediments, once lithified, can develop planes 49 

of weakness at multiple potential track surfaces below the originally exposed horizon 50 

[7,17,22,26-28]. In species with relatively narrow toes (theropods and small ornithopods), 51 

compliant substrates can flow around and over the foot, leaving only furrow-like seams marking 52 

its deep passage [14,27-32]. Such ‘penetrative tracks’ offer an excellent source of functional 53 

information [14,33-36], capturing foot movements throughout the track volume. Yet tracks on 54 

bedding planes sampled from within these depths can differ substantially [17,34,37-38], both 55 

from each other and from the foot that made them. 56 

Herein, we quantify the three-dimensional (3-D) foot movements of a chicken-like bird 57 

(guineafowl) walking through a spectrum of deformable substrates. Following earlier studies of 58 

burrowing [39-45] and stepping [17,46-48], we use X-ray imaging to see through opaque ground. 59 

We emulate potential fossil track surfaces within each track volume by sampling guineafowl 60 

movement data at depth intervals, thereby identifying common patterns among the highly 61 

variable toe trajectories. Using this new perspective, we re-examine morphological variation 62 

among the classic Early Jurassic tracks of the Connecticut Valley [37-38,49-57] and discern 63 

previously unrecognized similarities with modern birds.  64 

 65 

2. Material and Methods  66 

(a) Animals, substrates, and recording 67 



Biplanar X-ray data were collected from three adult Helmeted Guineafowl (Numida 68 

meleagris). All live animal experiments were conducted in accordance with the Institutional 69 

Animal Care and Use Committee of Brown University. 70 

Dry and cohesive substrates were contained in a plastic trough filled to a depth of ~18 cm 71 

to form a trackway, which was enclosed by a clear acrylic tunnel. In lieu of sand, we used poppy 72 

seeds (Papaver somniferum) [17,58]. Artificial mud [10] was mixed from ~60 µm glass bubbles, 73 

ball clay, and water. Mud consistency was adjusted from very firm to semi-liquid by evaporating 74 

or adding water. For comparison, birds also walked across a stiff, non-deformable trackway.  75 

Walking guineafowl were recorded at 250 fps by two X-ray and two standard light 76 

cameras (Fig. 1a, b), along with images for camera calibration and X-ray undistortion. One bird 77 

had ~2 mm disc-shaped lead markers fixed with cyanoacrylate beneath each claw (Fig. 1b).  78 

 79 

(b) Point tracking, animation, and depth sampling 80 

3-D toe coordinates for the marked individual were extracted in XMALab [59-60]. and 81 

animated in Maya 2020 (Autodesk Inc., San Rafael, CA, USA). For the unmarked birds, point 82 

rotoscoping [47] was done in Maya using virtual camera calibrations and undistorted video from 83 

XMALab. 58 trials of birds walking on deformable substrates were analyzed, yielding 81 84 

subsurface steps (Table 1). CT-based bone models were animated for several trials using a 85 

combination of marker-based X-ray Reconstruction of Moving Morphology [61] and Scientific 86 

Rotoscoping [59].  87 



   number of trials analyzed  number of complete steps analyzed 

individual tracking method  solid dry granular muds total  solid dry granular muds total 

6 rotoscoping  6 2 16 24  10 4 22 36 

7 marker-based  5 12 17 34  8 16 23 47 

8 rotoscoping  5 11 0 16  8 16 0 24 

   16 25 33 74  26 36 45 107 

 88 

Table 1. Overview of analyzed guineafowl data.  89 

 90 

The paths of the three main toes (II-IV) were visualized in Maya by connecting their claw 91 

locations at each frame into motion trails (Fig. 1c). Substrate contact for digit III was identified 92 

from standard video, thereby setting the initial height of the substrate surface. To sample sub-93 

surface motion trails in the vertical dimension (equivalent to bedding planes spanning the track 94 

volume), we extracted the coordinates at which each claw passed down (entry) or up (exit) 95 

through depth horizons set at 5 mm increments. At each increment, the 2-D horizontal position 96 

of the claws were used to calculate three variables: ‘digit III offset,’ defined as the difference in 97 

entry and exit of the middle toe, measured along the direction of travel; ‘digit II-IV width,’ 98 

measured as the distance between the side toes, for both entry and exit pairs; and, “digit 99 

representation,” simply the presence or absence of each toe at each increment. Sample horizons 100 

and variable graphs were plotted in R [62]. 101 

 102 

(e) Fossil specimens 103 

 All fossil specimens included in this study are housed in the Beneski Museum of Natural 104 

History at Amherst College, Amherst, MA, USA and designated ACM-ICH. 105 

 106 

For more information, see Supplemental information. 107 



 108 

2. Results 109 

(a) Guineafowl sub-surface foot kinematics 110 

Across trials, guineafowl slowed down, sped up, and paused frequently. Such non-steady 111 

locomotion provided a broad sampling of kinematic variation from the three individuals. Normal 112 

striding steps were by far the most common, although a few trials included non-alternation. 113 

Guineafowl sank to a wide range of depths (1.15 – 13.13 cm), penetrating deepest in semi-liquid 114 

muds.  115 

As characterized by the paths of the three main toes, sinking and withdrawal exhibited 116 

consistent patterns. A lateral view of digit III, which forms the central axis of the tridactyl foot, is 117 

exemplary. Unlike its V-shaped path above solid surfaces, digit III always followed a loop below 118 

ground (Fig. 1d). Plotting digit III offset (Fig. 1e) reveals a consistent relationship between entry 119 

and exit, despite step by step variation in angle of entry, specific loop shape, and maximum 120 

depth. Digit III’s arc-like withdrawal typically crossed from behind entry (negative) to in front of 121 

entry (positive) prior to removal. As the foot sank, digits II and IV remained widely spread until 122 

they reached their maximum depth. Upon withdrawal, the side toes collapsed towards digit III 123 

throughout their arcing ascent (Fig. 1f, g). The combination of anterior-posterior looping and 124 

transverse collapse indicates that the three main claws crossed through all horizons above their 125 

maximum depth twice, but in different locations (Fig. 1h). Such dissimilar entry and exit paths 126 

were found on all deformable substrates.  127 

 128 

(b) Depth zones and fossil tracks 129 



The common sub-surface motion pattern among guineafowl steps allows depth-based 130 

zones to be characterized by digit representation, digit III offset, and digit exit conformation, 131 

(Fig. 1h, Table 2). In Zone 1 (Fig. 1h, 0-1 cm), the adducted claws exit in front of their entry, 132 

often moving horizontally. In Zones 2 and 3, digit III offset is negative (Fig. 1h, 3-13 cm). All 133 

three toes are tightly converged when passing back up through Zone 2, but exit separately in 134 

Zone 3. The deepest zone can be further subdivided by the number of main toes represented: all 135 

three (3a), only two (3b), or just digit III (3a).  136 

Using guineafowl sub-surface kinematics as a reference, we are now able to confirm the 137 

presence of comparable looping and depth zones in fossil penetrative tracks from Lower Jurassic 138 

strata of the Connecticut Valley (Fig. 2). Single slabs exposing penetrative tracks on both 139 

surfaces (Fig. 2b, c) support depth-based predictions of digit representation, anterior-posterior 140 

digit III offset, and digit exit conformation. Such patterns are particularly well-displayed when 141 

track volumes are split into multi-slabs. A five-slab specimen exposing track surfaces across 142 

Zones 2 and 3 preserves not only evidence of looping, but also allows specific details of digit III 143 

loop expansion and contraction to be distinguished (Fig. 2d).  144 

 145 

Zone digit representation digit III offset digit exit conformation 

1 II - IV exit in front three converged 

2 II - IV exit behind three converged 

3a II - IV exit behind three separate 

3b II + III or III + IV exit behind two separate 

3c III exit behind single 

 146 

Table 2. Summary of depth zones. 147 

 148 

Discussion 149 



(a) Impact on track diversity and interpretation 150 

Documentation of sub-surface looping in guineafowl walking through a wide variety of 151 

substrates offers a new perspective on the tracks of extinct bipeds. If dinosaurs responded to 152 

deformable ground similarly, we expected that the claws of the three main toes would have 153 

likewise passed through most surfaces twice—once going down and once coming back up—in 154 

different locations. Treatments of the Early Jurassic fauna of the Connecticut Valley [37-38,49-155 

51,56,63-64] do not recognize any evidence of withdrawal. Yet armed with an improved search 156 

image, we have identified distinctly separate entry and exit features in hundreds of fossil 157 

footprints (sampled in Fig 2). Once penetrative tracks are understood as slices through a 158 

disturbed volume of sediment, their true nature becomes apparent. Such surfaces do not represent 159 

anatomy per se, but rather the collapsed seams left behind by toes punching, slashing, scraping, 160 

and ascending into and out of each potential track horizon on their looping paths.  161 

A shared kinematic response to deformable substrates does not, however, mean that 162 

movements were tightly stereotyped. X-ray imaging allows us to measure guineafowl inter-step 163 

variation directly (Fig. 1e, g). In extinct dinosaur tracks, such kinematic variation must be 164 

inferred from its morphological consequences. For example, Connecticut Valley tracks 165 

assignable to Zone 2 reveal a wide range of loop-related disparity (Fig. 2e). Some preserve toe 166 

withdrawal back up through the entry furrow of digit III (Zone 2, left), others near the confluence 167 

of the digital furrows (Zone 2, middle), and yet others at the very rear of the track (Zone 2, 168 

right). Workers have attributed such a diverse array of shapes to multiple taxonomic groups 169 

(lizards, thin-toed birds, reptiles of uncertain affinity, and vertebrates of unknown class [38,50]). 170 

Yet despite their distinctive forms and deviation from known dinosaurian pedal anatomies, we 171 



propose that this diversity of penetrative tracks could all have been created by small theropods 172 

and/or ornithopods.  173 

 174 

(b) Foot function in birds and other dinosaurs  175 

Evidence of sub-surface looping in ~200 million-year-old fossils supports the hypothesis 176 

of functional continuity among tridactyl feet of birds and other bipedal dinosaurs when walking 177 

through deformable substrates. Although sub-surface looping has been previously reported in 178 

several dinosaur tracks [65-67], loops are ubiquitous and often of substantial magnitude in these 179 

Early Jurassic penetrative specimens. Our kinematic perspective offers a fresh viewpoint on 180 

depth-based track variation. Rather than being incomplete molds beneath the surface [38,68], 181 

substrate-modulated foot motion is intimately accountable for these disparate tracks. Perhaps the 182 

enduring success of the dinosaurian tridactyl foot design can be attributed, at least in part, to its 183 

ability to provide a stable base when spread, yet collapse to facilitate extraction from deformable 184 

substrates.   185 
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Figure Legends 201 

Figure 1. Sub-surface foot kinematics through a volume of substrate. Synchronized standard (a) 202 

and X-ray (b) video frames of a guineafowl walking through a dry granular substrate. Toes and 203 

markers are clearly revealed sub-surface (inset). c) Oblique view of digit claw marker motion 204 

trails for one step through dry grains. d) Lateral view of a sample of digit III motion trails on 205 

several deformable substrates (colored lines; thin = entry, bold = exit) and one solid substrate 206 

(black line). Digit III offset (e) measured at 5 mm depth horizons (horizontal lines), are plotted 207 

for 81 steps from all three individuals. f) Anterior view of claw motion trails showing the toes 208 

widely spread when sinking (thin), and smoothly collapsing upon withdrawal (bold). g) Digit II-209 

IV width are plotted from 49 steps of two individuals (equal scales in d-g). h) Selected horizons 210 

for the green step (d-g) showing changing locations of claw entry (filled circles) and exit (open 211 

circles). The looping entry (thin) and exit (bold) path of digit III is indicated by a dashed line. 212 

Division of this track volume into zones (gray bars). Vertical and horizontal scales in (d-g) 213 

shown by axes in (e). Tick marks in (h) equal 1 cm. For foot animations, see supplemental video. 214 

 215 

 216 

Figure 2. Exit features and depth zone attribution in Early Jurassic fossil tracks. a) Digit tip 217 

impression identification on entry (small circles) and exit (large circle) on one surface of ACM-218 

ICH 37/24. b) A penetrated slab (ACM-ICH 39/8) from high in the volume reveals three 219 

elongate Zone 1 tracks on its upper surface and furrowed, Zone 2 tracks on its lower surface 220 

(mirrored). c) A penetrated slab (ACM-ICH 31/50) from low in the volume reveals a scrape-like, 221 

Zone 3a track with separate exits on its upper surface; only digit III reached its lower, Zone 3c 222 

surface (mirrored). d) A five-slab specimen (ACM-ICH 34/33) preserves the down and forward 223 



penetration of the foot, followed by its looping withdrawal. Note changes in track morphology 224 

with depth. Dashed line indicates the entry (thin) and exit (bold) paths of digit III. e) Tracings of 225 

19 Early Jurassic track surfaces displaying inter- and intra-zone diversity (ACM-ICH specimen 226 

numbers shown below). Exit features (black arrows) vary widely in location along the lengths of 227 

the tracks (see Fig. S1 for specimen photos and entry/exit overlays). Scale bars equal 5 cm.  228 
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 399 

Figure 1. Sub-surface foot kinematics through a volume of substrate. Synchronized standard (a) and X-ray (b) video 400 
frames of a guineafowl walking through a dry granular substrate. Toes and markers are clearly revealed sub-surface 401 
(inset). c) Oblique view of digit claw marker motion trails for one step through dry grains. (d) Lateral view of a sample 402 
of digit III motion trails on several deformable substrates (coloured lines; thin = entry, bold = exit) and one solid 403 
substrate (black line). Digit III offset (e) measured at 5 mm depth horizons (horizontal lines in (d)) and are plotted for 404 
81 steps from all three individuals. (f) Anterior view of claw motion trails showing the toes widely spread when sinking 405 
(thin), and smoothly collapsing upon withdrawal (bold). (g) Digit II–IV width are plotted from 49 steps of two 406 
individuals (equal scales in d–g). (h) Selected horizons for the green step (d–g) showing changing locations of claw 407 
entry (filled circles) and exit (open circles). The looping entry (thin) and exit (bold) path of digit III is indicated by a 408 
dashed line. Grey bars indicate zones for this track volume. Vertical and horizontal scales in (d–g) shown by axes in 409 
(e) and (g). Tick marks in (h) equal 1 cm. For foot animations, see electronic supplementary material, video. 410 

  411 



 412 

Figure 2. Exit features and depth zone attribution in Early Jurassic fossil tracks. (a) Digit tip impression identification 413 
on entry (small circles) and exit (large circle) on one surface of ACM-ICH 37/24. (b) A penetrated slab (ACM-ICH 414 
39/8) from high in the volume reveals three elongate Zone 1 tracks on its upper surface and furrowed, Zone 2 tracks 415 
on its lower surface (mirrored). (c) A penetrated slab (ACM-ICH 31/50) from low in the volume reveals a scrape-like, 416 
Zone 3a track with separate exits on its upper surface; only digit III reached its lower, Zone 3c surface (mirrored). (d) 417 
A five-slab specimen (ACM-ICH 34/33) preserves the down and forward penetration of the foot, followed by its 418 
looping withdrawal. Note changes in track morphology with depth. Dashed line indicates the entry (thin) and exit 419 
(bold) paths of digit III. (e) Tracings of 19 Early Jurassic track surfaces displaying inter- and intra-zone diversity 420 
(ACM-ICH specimen numbers shown below). Exit features (black arrows) vary widely in location along the lengths of 421 
the tracks (see electronic supplementary material, figure S1 for specimen photos and entry/exit overlays). Scale bars 422 
equal 5 cm. 423 


