
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Tsushima, Kanae and Chitil, Olaf and Sharrad, Joanna (2020) Type Debugging with Counter-Factual
Type Error Messages Using an Existing Type Checker. In: 31st Symposium on Implementation
and Application of Functional Languages, 25-27 September 2019, Singapore. (In press)

DOI

Link to record in KAR

https://kar.kent.ac.uk/81976/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/326508242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Type Debugging with Counter-Factual Type Error Messages
Using an Existing Type Checker

Kanae Tsushima
National Institute of Informatics

Japan
k_tsushima@nii.ac.jp

Olaf Chitil
University of Kent
United Kingdom
oc@kent.ac.uk

Joanna Sharrad
University of Kent
United Kingdom
jks31@kent.ac.uk

ABSTRACT
The cause of a type error can be very difficult to find for the Hindley-
Milner type system. Consequently many solutions have been pro-
posed, but they are hardly used in practice. Here we propose a
new solution that provides counter-factual type error messages;
these messages state what types specific subexpressions in a pro-
gram should have (in contrast to the types they actually have) to
remove a type error. Such messages are easy-to-understand, be-
cause programers are already familiar with them. Furthermore, our
solution is easy-to-implement, because it reuses an existing type
checker as a subroutine. We transform an ill-typed program into a
well-typed program with additional λ-bound variables. The types
of these λ-bound variables yield actual and counter-factual type
information. That type information plus intended types added as
type annotations direct the search of the type debugger.

CCS CONCEPTS
• Software and its engineering→ Functional languages.

KEYWORDS
Hindley-Milner type system, OCaml
ACM Reference Format:
Kanae Tsushima, Olaf Chitil, and Joanna Sharrad. 2020. Type Debugging
with Counter-Factual Type Error Messages Using an Existing Type Checker.
In Proceedings of International Symposium on Implementation and Application
of Functional Languages (IFL’19). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Hindley-Milner type system is a foundation for most statically
typed functional programming languages, such as ML, OCaml and
Haskell. This type system has many benefits, but it does make type
debugging hard: if a program is not well-typed, it is difficult for
the programmer to locate the cause of the type error, that is, to
determine where to change the program and how.

Many solutions to the problem have been proposed in the lit-
erature (see Section 8). Here we propose a new solution with two
distinctive advantages: It is easy to understand for the functional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL’19, September 2019, Singapore
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

programmer, because it appears to be only a minor extension of
the type error messages they are already familiar with. It is easy to
implement, because it does not require the implementation of a new
type checker, but instead reuses any existing one as a subroutine.

Consider the following ill-typed OCaml program1 and the type
error message produced by the OCaml compiler:

let f n lst = List.map (fun x -> x ^ n) lst in
f 2.0

Error: This expression has type
float

but it should be an expression of type
string

The message identifies the underlined expression 2.0 in the pro-
gram as the location of the type error. The message gives two
different types for the expression 2.0: its actual type and an ex-
pected type. The expected type is determined by the context of 2.0,
the rest of the program. As the expected type is different from the
actual type, it is a counter-factual type. The message basically says
that if the expression 2.0 was replaced by some expression of the
expected type, then this part of the program would be well-typed
(there might be further type errors elsewhere). Indeed, replacing
2.0 by any string, for example "2.0", produces a well-typed pro-
gram.

So if the type error message identified the type error location
correctly, then the message with its actual and expected type is
very helpful. However, the subexpression 2.0 might be correct
and the programmer might have confused the string concatenation
operator ˆ with the floating point exponentiation operator **. In
that case a type error message like the following would have been
helpful:

let f n lst = List.map (fun x -> x ^ n) lst in
f 2.0

Error: This expression has type
string -> string -> string

but it should be an expression of type
'a -> float -> 'b

In this paper we first show how to produce such counter-factual
type error messages for all potential locations of type errors. Al-
though a program may contain many potential type error locations,
we assume that in practice a program contains a large, well-typed
part, which provides a context to limit the number of potential type
error locations and which yields informative counter-factual types.

1Library function List.map : (’a -> ’b) -> ’a list -> ’b list applies its
first argument, a function, to each element of its second argument, a list.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IFL’19, September 2019, Singapore Kanae Tsushima, Olaf Chitil, and Joanna Sharrad

There are still too many potential type error locations for show-
ing them all, embedded in counter-factual type error messages, to
the programmer. Hence the second part of our proposal is to run
an interactive debugger to find the correct error location. The pro-
grammer only has to state whether an actual type or expected type
agrees with their intentions. Sometimes both types do not agree
with the programmer’s intention. In that case the programmer can
also enter another type. In the example session below the input of
the user is given in italics.

Interactive counter-factual type debugger.

1. Choose your intended type for this expression.

let f n lst = List.map (fun x -> x ^ n) lst in
f 2.0

A: float
B: string
Your choice (C: another type): A

2. Choose your intended type for this expression.

let f n lst = List.map (fun x -> x ^ n) lst in
f 2.0

A: string -> string -> string
B: 'a -> float -> 'b
Your choice (C: another type): B

3. Type error located:

let f n lst = List.map (fun x -> x ^ n) lst in
f 2.0

This expression has type
string -> string -> string

but it should be an expression of type
'a -> float -> 'b

After two questions the type debugger identifies the correct type
error location. The debugger gives the full counter-factual type error
message so that the programmer can determine how to correct the
error.

In this paper we make the following contributions:
• We define a new method for enumerating all counter-factual
type error messages for an ill-typed program. The type
checker of a real functional programming system is too com-
plex to be easily replaced by something new. Hence we do
not develop a new type checking algorithm, but instead de-
scribe an algorithm that reuses any existing type checker,
which is treated as a black box (Sections 2 and 3).
• We provide an argument that it is sufficient to only consider
leafs in the abstract syntax tree of the ill-typed program as
potential type error locations (Section 2).
• We extend our method to produce counter-factual type error
messages also for expressions that have to be polymorphic
for the program to become well-typed (Section 4).

• The time complexity of our basic method is too high to be
used for medium-sized or large programs. Hence we show
how we can first execute a known type error slicing algo-
rithm to then obtain counter-factual type error messages
more quickly (Section 5).
• We define an interactive debugger that identifies the correct
type error location building on our method for enumerating
counter-factual type error messages (Section 6).
• We evaluate our prototype implementation with a number
of ill-typed programs (Section 7).

2 IDEA: COUNTER-FACTUAL TYPES FROM
AN EXISTING TYPE CHECKER

We reuse an existing type checker by giving it many variations
of our ill-typed program to check. Viewing the type checker as a
black box means that we expect the type checker to tell us only
whether the program is well-typed or ill-typed. If the program is
well-typed, then the type checker shall also tell us the type of the
given program. If the program is ill-typed, then we demand no
further information. In particular we do not use any details of the
type checker’s own error message(s).

2.1 Only Leaves as Potential Error Locations
In all our previous examples potential type error locations were
simple variables or constants, not more complex expressions. In
other words, a location was a leaf of the abstract syntax tree, never
an inner node of the abstract syntax tree.

Our method works for both leaves and inner nodes of an abstract
syntax tree, but here we argue that to debug all type errors it is
sufficient to consider only leaf locations.

Consider the following ill-typed example:
(fun (x, y) -> if x then y else y + 1) [true; 1]

We assume that the programmer intended the argument to be the
tuple (true, 1). So arguably the whole argument [true; 1] is
the type error location. However, because we consider only leaves
in the abstract syntax tree as potential type error locations, we will
instead offer the list constructor itself as type error location and
produce the message

(fun (x, y) -> if x then y else y + 1) [true; 1]

Error: This expression has type
'a -> 'a -> 'a list

but it should be an expression of type
bool -> int -> bool * int

This message states the error more indirectly. The message should
make the programmer consider replacing [..;..] by the function
fun x -> fun y -> (x,y). Subsequently simplifying (fun x ->
fun y -> (x,y)) true 1 to the expression (true,1) should be
trivial.

In the worst case a leaf-location message may suggest to sub-
stitute a complex function that rearranges a whole subtree of the
abstract syntax tree. Here "rearrange" is the keyword, because the ar-
guments are usually not superfluous but needed. Limiting ourselves
to leaves in the syntax tree has the advantage that the expression
identified as erroneous is always simple.

Type Debugging with Counter-Factual Type Error Messages Using an Existing Type Checker IFL’19, September 2019, Singapore

In general we can limit ourselves to leaves as potential type
error locations, because any program without any leaves2 is well-
typed. Only the use occurrences of variables, data constructors and
constants lead to type constraints that cause type errors.

2.2 Single- and Multiple-Location Type Errors
Consider the ill-typed expression [1;2;3.], which mixes integers
and floating point numbers in a list. Two different single locations
could be the cause of ill-typedness:

• The subexpression 3. may be the type error location. Re-
placing it by an integer constant such as 3 would yield the
well-typed expression [1;2;3].
• The list constructor [..;..;..] (cf. next subsection) may
be the type error location. Replacing it by, for example, a
tuple (..,..,..) would yield the well-typed expression
(1,2,3.).

We call both single-location type errors.
Another way to correct the ill-typed expression would be to

simultaneously replace 1 by 1. and 2 by 2., yielding the well-typed
expression [1.;2.;3.]. We call this a multiple-location type error,
more precisely a 2-location type error.

In general, a k-location type error states that replacing the ex-
pressions at k distinct locations in the program makes the program
well-typed.

In practice, ill-typed programs often contain many independent
type errors. However, we are not aware of any agreed definition of
when two type errors are independent and when they are not. Our
definition of k-location type error handles programs with many
type errors, no matter whether there exist dependencies amongst
these k locations or not.

Our method can handle k-location type errors for any k . How-
ever, to simplify the discussion, we will in most of this paper only
consider searching for a single location that causes a program to
be ill-typed. In practice, even when we enumerate all type errors, it
is sensible to first enumerate all single location type errors, then
2-location type errors, etc. It is very likely that the programmer
will find the actual cause of ill-typedness early in this list and thus
does not have to look at errors that include numerous locations.

2.3 Program Syntax and the Syntax Tree
In the previous example we considered [..;..;..] as an atomic
syntactic construct, which has the type ’a -> ’a -> ’a -> ’a
list and semantically denotes a function constructing a list from
three arguments (fun x -> fun y -> fun z -> [x; y; z]).
Desugaring this list construction into uses of the list constructor
(::) and the empty list is not desirable, because desugared expres-
sions in error messages would be confusing for the programmer.
Similarly if..then..else.. is an atom of type bool -> ’a ->
’a -> ’a.

In general we treat most syntactic constructs of a programming
language as constants with fixed types. In the syntax tree of a
program they are leafs.

2More precisely: any programwherewe replaced every leaf by a different fresh variable.

2.4 Determining Potential Error Locations
with Expected Types

Let us consider the simple program 1.0 + 2.0. Because the op-
erator + demands integer numbers but 1.0 and 2.0 are floating
point numbers, the program is ill-typed. Internally the program is
represented as an application of the operator + to two arguments,
that is, (@ (+) 1.0 2.0).

The program has three leaf locations. We investigate for each
leaf whether it is a potential single type error location by type
checking a corresponding variant of our program:

(1) fun hole -> @ hole 1.0 2.0
(2) fun hole -> @ (+) hole 2.0
(3) fun hole -> @ (+) 1.0 hole

So we replaced a potential type error location by a new variable
hole and added a λ-binding for the variable to the whole program.
The λ-binding ensures that the program has no free variables and
allows us to obtain a type for hole from the type checker.

We run the existing type checker on each of the three program
variants. Programs (2) and (3) are ill-typed. Hence replacing the
variable hole by any expression of any type would not make the
program well-typed. Consequently the locations 1.0 and 2.0 are
not potential single type error locations.

Program (1) is well-typed and its inferred type is (float ->
float -> ’a) -> ’a. So the type of the variable hole is float ->
float -> ’a. Consequently (+) is a potential type error location
and we can produce the following message:

1. + 2.

Here should be an expression of type
float -> float -> 'a

2.5 Obtaining Actual Types Too
The error message above does not yet include the actual type of +.
We can also obtain that type if we do not simply replace a potential
type error location by a variable hole, but instead apply a variable
hole to the potential type error location. Again we λ-bind the
variable hole. So instead of the 3 program variants listed before,
we type check the following 3 variants:

(1) fun hole -> @ (hole (+)) 1.0 2.0
(2) fun hole -> @ (+) (hole 1.0) 2.0
(3) fun hole -> @ (+) 1.0 (hole 2.0)

As before, only variant (1) is well-typed. For this variant the inferred
type is ((int -> int -> int) -> (float -> float -> ’a))
-> ’a. So the type of the variable hole is (int -> int -> int)
-> (float -> float -> ’a), which contains both the actual and
the expected type of the potential type error location. Thus we can
produce the complete message:

1. + 2.

Error: This expression has type
int -> int -> int

but it should be an expression of type
float -> float -> 'a

Naturally we could have obtained the actual type of + by just type
checking the program (+). However, in general a potential type

IFL’19, September 2019, Singapore Kanae Tsushima, Olaf Chitil, and Joanna Sharrad

error location may not be a predefined function or data constructor,
but some variable that is λ- or let-bound in the ill-typed program.
Our method of applying a variable hole to the potential type error
location works in all situations.

3 OBTAINING COUNTER-FACTUAL TYPES
FOR THE SIMPLY-TYPED λ-CALCULUS

In this section we formalise our idea for a small core functional
language, the simply-typed lambda calculus λ→. Whereas in the
preceding section we focussed on 1-location type errors, we now
consider the general case of k-location counter-factual type er-
rors. Recall that a k-location counter-factual type error states that
replacing the expressions at k distinct locations in the program
by expressions of different, expected types, makes the program
well-typed.

The syntax and types of λ→ are shown in Figure 1. The constants
include numeric literals, tuple data constructors and list data con-
structors. Each constant and each variable has location information,
l , which uniquely identifies each occurrence in the program.

Figure 2 gives the algorithm for obtaining counter-factual type
errors for λ→. The capitalised type-writer font functions (GENVAR
etc.) are external.

The last function, get_cft_nloc, obtains for a given program M
and number k all k-location counter-factual type errors. The func-
tion get_cft_nloc uses the function LEAFLOCS to determine all (leaf)
locations of the program, the function SUBSETS to determine all
subsets of k elements, and applies the get_cft function with the
standard function MAP to every subset (represented as list).

The function get_cft obtains for a termM and list of locations L
a counter-factual type error, namely an actual and expected type for
each location. However, it returns the empty list if no such counter-
factual type error exists for the given arguments. Therefore function
get_cft_nloc usually returns many empty lists. The function get_cft
uses the functions pierce and infer .

The function pierce takes an expression and list of locations. It
inserts new variables as holes at the given locations in the expres-
sion and also returns the list of new variables. The function GENVAR
creates a fresh variable from a given location.

The function infer takes an expression with k “holes” and the list
of “hole” variables; it returns a k-location counter-factual type error,
if for the given input there is such a type error. Otherwise, it returns
the empty list. The function INFER is an existing type checker.
It takes an expression and returns its inferred type. However, if
the expression is ill-typed, the type checker raises an exception
TYPE_ERROR. In the definition of the function infer that exception is
caught by the try . . . with construct. Finally, the function GET_LOC
obtains from a variable the location information given at its creation.
Note that if type checking succeeds, then every “hole” variable will
have a type of the shape actual type → expected type.

4 OBTAINING COUNTER-FACTUAL TYPES
FOR THE LET-POLYMORPHIC λ-CALCULUS

Problem. The method presented in the preceding two sections
does not work with let polymorphism. Consider the following ill-
typed example:

(M : term) ::= cl (constant)
| x l (variable)
| fun x 7→ M (abstraction)
| @M1M2 (application)

(l : loc) ::= location information
(τ : typ) ::= b (type variable)

| int, bool, ... (type constants)
| τ1 → τ2 (function type)

Figure 1: The terms and types of λ→

pierce : term ∗ (loc list) → term ∗ (var list)

pierce[[cl]]L =
if l ∈ L then let u = GENVAR l in (@u cl , [u])

else (cl , [])
pierce[[x l]]L =

if l ∈ L then let u = GENVAR l in (@u x l , [u])
else (x l , [])

pierce[[fun x 7→ M]]L =
let (M′,us) = pierce[[M]]L in (fun x 7→ M ′,us)

pierce[[@M1 M2]]L =
let (M ′1,us1) = pierce[[M1]]L in
let (M ′2,us2) = pierce[[M2]]L in (@M ′1 M

′
2,us1 + us2)

infer : term ∗ (var list) → (loc ∗ typ ∗ typ) list
infer[[M]][u1;· · · ;un] =

try(let ((τ1 → τ ′1) · · · → (τn → τ ′n) → τ) =
INFER (fun u1 7→ · · · 7→ fun un 7→ M) in

[(GET_LOC u1,τ1,τ ′1); · · · ; (GET_LOC un ,τn ,τ
′
n)])

with TYPE_ERROR 7→ []

get_cft : term ∗ (loc list) → (loc ∗ typ ∗ typ) list
get_cft[[M]]L =

let (M ′, locs) = pierce[[M]]L in infer [[M ′]]locs

get_cft_nloc : term ∗ int → ((loc ∗ typ ∗ typ) list) list
get_cft_nloc[[M]]k =

MAP (λL. get_cft[[M]]L) (SUBSETS (LEAFLOCSM) k)

Figure 2: Obtaining counter-factual types for λ→

let id = (fun lst -> List.iter
(fun x -> x) lst) in

(id [1;3;4], id [true])

Because the type of List.iter is (’a -> unit) -> ’a list
-> unit, the type of id must be unit list -> unit. However,
we pass two non unit lists ([1;3;4] : int list and [true] :
bool list) to id, so type checking fails. We assume that the use of
List.iter is the source of the type error: the programmer intended
to use the function List.map instead, which has type (’a -> ’b)
-> ’a list -> ’b list, and thus makes the whole program
well-typed.

Let us now apply our old method to the program (changed parts
are underlined):

Type Debugging with Counter-Factual Type Error Messages Using an Existing Type Checker IFL’19, September 2019, Singapore

(fun hole ->
let id = (fun lst -> (hole List.iter)

(fun x -> x) lst) in
(id [1;3;4], id [true]))

Weexpect to obtain counter-factual types from this transformed pro-
gram. However, it is ill-typed! In the original program List.iter
has a polymorphic type, but the expression substituted for it, (hole
List.iter), has a monomorphic type, because the variable hole
is λ-bound in the program. Therefore the let-bound variable id is
monomorphic too and its two different uses have to cause a type
error.

Solution. To preserve the polymorphism of let-bound variable
id, we move the binding for hole under the definition of id.

let id = (fun hole -> (fun lst ->
(hole List.iter) (fun x -> x) lst))

This transformation increases the number of id’s arguments. There-
fore, we add additional variables hole1 and hole2 to each occur-
rence of id as the first argument.

let id = (fun hole -> (fun lst ->
(hole List.iter) (fun x -> x) lst)) in

(id hole1 [1;3;4], id hole2 [true])

In this program the fresh variables hole1 and hole2 are not bound.
Therefore we add lambda bindings for them and obtain the follow-
ing program as the final result:

fun hole1 -> fun hole2 ->
let id = (fun hole -> (fun lst ->

(hole List.iter) (fun x -> x) lst)) in
(id hole1 [1;3;4], id hole2 [true])

We infer the type of this transformed program using an existing
type checker and obtain the expected types and actual types of the
occurrence of List.iter. From the types of hole1 and hole2 we
know that one of the expected types is (’b -> ’b) -> int list
-> ’c and another one is (’d -> ’d) -> bool list -> ’e.
Using these types, we can produce the following counter-factual
type error message:

let id = (fun lst -> List.iter (fun x -> x) lst) in
(id [1;3;4], id [true])

Error: This expression has type
(('a -> unit) -> 'a list -> unit)

but it should be an expression with types
('b -> 'b) -> int list -> 'c
('d -> 'd) -> bool list -> 'e

Wenote that a counter-factual type error sometimes has to explic-
itly require that the replacement for an expression is polymorphic.
Our message states this requirement by listing several types for the
replacement.

Fixed Points. In OCaml the let-rec-binding is also polymorphic.
However, we can translate an OCaml program such as

let rec exponential x =
if x = "0" then 1

else exponential (x - 1) in
exponential 5

into our language as follows:

(M : term) ::= cl (constant)
| x l (variable)
| fun x 7→ M (abstraction)
| @M1M2 (application)
| let x = M1 inM2 (let expression)
| fix M (fixed point)

Figure 3: The terms of λlet

pierce : term ∗ (loc list) → term ∗var list
pierce[[let x = M1 inM2]]L =

let (M ′1, [u1; · · · ;un]) = pierce[[M1]]L in
let (M ′2,us

′) = add[[M2]](x,n) in
let (M ′′2 ,us

′′) = pierce[[M ′2]]L in
(let x = fun u1 7→ · · · 7→ fun un 7→ M ′1 inM

′′
2 ,us

′ + us ′′)
pierce[[fixM]]L =

let (M ′,us) = pierce[[M]]L in (fixM ′,us)

add : term ∗ var ∗ int → term ∗var list
add[[cl]](y,n) = (cl , [])
add[[x l]](y,n) =

if y , x then (x l , [])
else let u1 = GENVAR l in

...
...

let un = GENVAR l in
(@x u1 . . . un , [u1; · · · ;un])

add[[fun x 7→ M]](y,n) =
if y = x then (fun x 7→ M, [])

else let (M ′,us ′) = add[[M]](y,n) in
(fun x 7→ M ′,us ′)

add[[@M1M2]](y,n) =
let (M ′1,us1) = add[[M1]](y,n) in
let (M ′2,us2) = add[[M2]](y,n) in (@M ′1M

′
2,us1 + us2)

add[[let x = M1 inM2]](y,n) =
let (M ′1,us1) = add[[M1]](y,n) in
let (M ′2,us2) = add[[M2]](y,n) in
if us1 = [] then (let x = M ′1 inM

′
2,us2)

else let [u1; · · · ;um] = us1 in
else let (M ′′2 ,us

′
2) = add[[M ′2]](x,m) in

else (let x = fun u1 7→ · · · fun um 7→ M ′1 inM
′′
2

else ,us2 + us ′2)
add[[fixM]](y,n) =

let (M ′,us ′) = add[[M]](y,n) in (fixM ′,us ′)

Figure 4: Obtaining counter-factual types for λlet

(new cases only)

let exponential =
(fix (fun f -> fun x ->

if x = "0" then 1 else f (x - 1))) in
exponential 5

The fixed point construct is monomorphic. fix simply has type
((’a -> ’b) -> (’a -> ’b)) -> (’a -> ’b) and does not

IFL’19, September 2019, Singapore Kanae Tsushima, Olaf Chitil, and Joanna Sharrad

require any special treatment. Only the let-binding is polymorphic
and needs to be handled as described before. For example, when
we consider the occurrence of "0" in the program as a potential
type error location, we pass the following transformed program to
the type checker:

(fun hole1 ->
let exponential =

(fun hole -> (fix (fun f -> fun x ->
if x = (hole "0") then 1 else f (x - 1)))) in

exponential hole1 5)

From the inferred type for hole1 we then produce the counter-
factual type error message:

let exponential =
(fix (fun f -> fun x ->

if x = "0" then 1 else f (x - 1))) in
exponential 5

Error: This expression has type
string

but it should be an expression of type
int

Formalisation. Figure 3 shows the syntax of the let-polymorphic
λ-calculus λlet. The types are the same as for λ→ in Figure 1. We do
not need to include type schemas amongst the types. Type schemas
are used during type inference for inferring polymorphic types.
Because we use an existing compiler’s type checker and its inferred
types, our type debugger never sees any type schemas.

Figure 4 extends our algorithm of Figure 2 to obtaining counter-
factual types for λlet. Recall the purpose of function pierce: It takes
an expression and list of locations; then it inserts new variables as
holes at the given locations in the expression and also returns the
list of new variables. For a let-expression it uses the new function
add to add new n argument variables to every occurrence of a
target variable y. The function add returns both the transformed
expression and the list of new argument variables. Note that GENVAR
is not a pure function but creates a fresh variable for every call.

5 OBTAINING COUNTER-FACTUAL TYPES
MORE EFFICIENTLY

In Sections 3 and 4 we introduced a method to obtain counter-
factual types using an existing type checker. However, the time com-
plexity of the naive implementation of this method (get_cft_nloc in
Figure 2) is too high to be used for anything but short toy programs.
Hence we consider in this section how to improve the algorithm to
make the method applicable to real programs.

Time complexity of the naive implementation. Assume we have
a program of size n. Any leaf in the syntax tree could be a single
location type error. So to find all single location errors, we have
to call the type checker O (n) times with a variant of the program.
There are O (n2) location pairs that could be 2-location type errors.
In general, the naive implementation described in Sections 3 and 4
calls the type checker O (nk) times to find all k-location counter-
factual type errors. This time complexity is clearly unacceptable in
practice.

Type constraints and program slices. To improve the time com-
plexity, we now build on established work on type error slicing,
which is also discussed in Section 8. A slice is a part of a program,
possibly including holes. Every part of a program gives rise to a
constraint on the types of the whole program. For a fixed program
there is a bijection between its slices and the subsets of its type
constraints. We assume that we have an ill-typed program P and
its set of type constraints is p. Because P is an ill-typed program,
ill_typed (p) holds.

If we assume that the original type constraints of the holed part
(for counter-factual types) are pcft, then the type constraints of the
transformed program are p \ pcft. The aim of this paper is to find
pcft that satisfies the following property:

well_typed (p \ pcft) and ∀p′ ⊂ pcft. ill_typed (p \ p′)

The second part ensures that pcft is minimal; a minimal set is
removed from the program to make the program well-typed.

Our concern is that it is sometimes hard to find pcft. The key
observation to solve this problem is that this property is similar to
the property of type error slices [6]. Letpslice be the type constraints
of a type error slice of P . Then pslice satisfies the following property:

ill_typed (pslice) and ∀p′ ⊂ pslice. well_typed (p′)

From this definition we know that if we have a type error slice
pslice, we can obtain many pcfts of pslice easily. Therefore, our im-
proved approach is the following. First we obtain a type error slice
pslice. Any non-empty subset of pslice is pcft of pslice. To obtain pcft
of p, first we choose a part of pslice as pcft and restore each element
of p \pslice to pslice or pcft. Then we can obtain pcft of p. If we apply
this method to each subset of pslice, then we can obtain several
counter-factual types of the program P .

An example. Let us see how our improved approach works with
a concrete example:

(fun x -> x +. 1) 3

The underlined part is a type error slice of the program. Every part
of a type error slice can be a hole for a counter-factual type error.
Thus we can choose either +. or 1 as a hole.

Choice 1. First we pierce 1, that is, apply the pierce function to
the program with the location of 1.

(fun hole -> (fun x -> x +. (hole 1)) 3)

Wemight expect this program to be well-typed, but it is not, because
the types of 3 and +. conflict. This is because ifwell_typed (pslice\x)
holds,well_typed (p\x) does not always hold. To avoid this problem,
we should pierce the parts that are not included in the type error
slice by holes as follows:

(fun hole -> (fun h1 -> (fun h2 ->
(fun x -> h1 +. (hole 1)) h2)))

Then we obtain a counter-factual type error and generate the fol-
lowing error message:

(fun x -> x +. 1) 3
Error: This expression has type

int
but it should be an expression of type

float

Type Debugging with Counter-Factual Type Error Messages Using an Existing Type Checker IFL’19, September 2019, Singapore

This approach, making counter-factual types of type error slices,
seems to work well. However, this is a counter-factual type of this
type error slice, it is not always a counter-factual type of the whole
program. To see the problem, let us consider another choice of the
original program.

Choice (+.). Following our method, we obtain:
(fun hole -> (fun h1 -> (fun h2 ->

(fun x -> (hole (+.)) h1 1) h2)))

The parts that are not included in the type error slice are replaced
by holes too. Because this program is well-typed, we can produce
the following message:

(fun x -> x +. 1) 3
Error: This expression has type

float -> float -> float
but it should be an expression of type

'a -> int -> 'b

Because this is a counter-factual type error for this type error
slice, the expected type is more general than the expected type of
the whole program, int -> int -> ’c. However, it is very easy
to expand the upper program to obtain the counter-factual types of
the whole program. We just restore removed program fragments
that do not conflict. In this example, we can restore all removed
program fragments, x and 3.

(fun hole -> (fun x -> (hole (+.)) x 1) 2)

This program is well-typed and satisfies the property of counter-
factual type errors of the whole program.

The algorithm. We need a type error slicer using the existing
compiler’s type checker. Schilling [12] computes type error slices
by increasing program fragments until the program is ill-typed.
Because the last added program fragment relates to a type error, we
can obtain type error slices by collecting them. We can emulate his
approach using the function pierce of Figures 2 and 4. Figure 5 shows
the functions for type error slicing, Figure 6 shows the function for
restoring, and the main function for improved obtaining counter-
factual types is given in Figure 7.

The slicing function increases the number of program fragments
and checks whether the program fragments are sufficient to be
ill-typed. The function slicinд′ chooses a location randomly from
L using PICKUP_ONE. Because L is the locations of holes, Lslice \ l
means increasing l ’s program fragment (= decreasing the number
of holes). If the program constructed by program M and location
information Lslice \ l is ill-typed, then the last added location relates
to the type error. Therefore slicinд′ returns the last added location.
The function slicinд gathers the return values of slicing′. It stops
when the gathered locations are sufficient to be ill-typed.

The function restore restores program parts that were removed
by type error slicing. It receives locations of counter-factual types
for a type error slice and checks whether each location makes the
whole program well-typed or not. If adding a location preserves
well-typedness, then the location is not related to a type error.

The function get_cfts_of _slice is the main function; it obtains
counter-factual types. First, it obtains a type error slice using slicing.
Because Lslice includes the locations of a type error slice, we can
use L \L_slice for obtaining a type error slice using pierce. We add a

slicing′ : term ∗ (loc list) ∗ (loc list) → loc
slicing′[[M]](L,Lslice) =

let l = PICKUP_ONE L in
if infer (M,Lslice \ l) = []

then slicing′[[M]](L\l,Lslice\l)
else l

slicing : term ∗ (loc list) ∗ (loc list) → loc list
slicing[[M]](L,Lslice) =

if infer (M,Lslice) = [] then Lslice
else let l = slicing′[[M]](L,Lslice) in

slicing[[M]](L\l,Lslice\l)

Figure 5: Type error slicing

restore : term ∗ (loc list) ∗ (loc list) → loc list
restore[[M]](Lcft,Lacc) =

if Lcft = [] then Lacc
else let l = PICKUP_ONE (Lcft) in

if infer (M,Lcft \ l) = []
then restore[[M]](Lcft\l,Lacc)
else restore[[M]](Lcft\l,Lacc+l)

Figure 6: Restoring

get_cfts_of _slice : term ∗ (loc list) → ((loc ∗ typ ∗ typ) list) list
get_cfts_of _slice[[M]]L =

let Lslice = slicing[[M]](L,L) in
let Lcfts = MAP(λl . (L \ Lslice) + l) Lslice in
letM ′s = MAP (λLcft. restore[[M]](Lcft,[])) Lcfts in
MAP (λM ′. infer[[(M ′, [l])]]) M ′s

Figure 7: Improved obtaining counter-factual types

part of Lslice to it for obtaining its counter-factual type, and restore
the Lcft and infer its type. We apply this method to each Lcft and
obtain several counter-factual types.

Computational complexity. Let n be the program size. The com-
plexity of type error slicing isO (n2) and the complexity of restoring
is O (n) for each pcft. Therefore the whole complexity is O (n2). If
we need k locations for k > 1, then the complexity is lower than
the naive use of Sections 3 and 4.

6 AN INTERACTIVE TYPE DEBUGGER
In this section, we describe an interactive debugger that uses the
enumerated counter-factual type error messages to find the correct
type error location. Usually the debugger shows only a few counter-
factual type error messages to the programmer.

6.1 When is the correct location found?
The purpose of the interactive type debugger is to determine a
subexpression in the program that needs to be changed to obtain
a well-typed program. The debugging process is driven by the

IFL’19, September 2019, Singapore Kanae Tsushima, Olaf Chitil, and Joanna Sharrad

programmer’s intention, the types that the programmer intends
certain subexpressions to have.

To clarify the idea, let us consider some examples.
Choose your intended type for this expression.

(1 +. 2)

A: float -> float -> float
B: int -> int -> int
Your choice: (C: another type): B

In this case +. is the correct type error location, because the actual
type of +. and the programmer’s intended type are in conflict.

Choose your intended type for this expression.

let f = (+.) in (f 1 2)

A: float -> float -> float
B: int -> int -> int
Your choice (C: another type): B

This program is very similar to the previous example. However, the
cause of the type error has not yet been located. The highlighted
expression f is not the cause, but the expression (+.). Replacing
(+.) by (+) makes the program well-typed.

These examples indicate when the cause of a type error has been
found. During the debugging process the type debugger collects the
programmer’s intentions. The cause of a type error is located when
there is a conflict amongst the stated programmer’s intentions.

6.2 The debugging process.
We reconsider the following program from the introduction:

let f = (fun n -> (fun lst ->
List.map (fun x -> x ^ n) lst)) in

f 2.0

In this program we have four potential single counter-factual
type error locations: f (in f 2.0), 2.0, ˆ and n (in x ˆ n). Our
interactive type debugger does not simply enumerate these four
locations with actual and expected types and leaves it to the pro-
grammer to find the location that causes the type error. Instead
the type debugger starts by randomly selecting one counter-factual
type error message. Let us assume that the selected message is

Choose your intended type for this expression.

let f = (fun n -> (fun lst ->
List.map (fun x -> x ^ n) lst)) in

f 2.0

A: float
B: string
Your choice (C: another type):

Choice A. The programmer states that the actual type, float,
is the intended type. The debugger adds this information to the
original ill-typed program by adding a type annotation:

let f = (fun n -> (fun lst ->
List.map (fun x -> x ^ (n:float)) lst)) in

f 2.0

For this annotated program we can obtain only one counter-
factual type error that does not include (n:float). Because ˆ and
(n:float) have a type conflict, we have to remove either ˆ or
(n:float) for the program to bewell-typed. However, the debugger
already asked about n, hence ˆ must be the type error location:

Type error located:
let f = (fun n -> (fun lst ->

List.map (fun x -> x ^ n) lst)) in
f 2.0

This expression has type
string -> string -> string

but it should be an expression of type
'a -> float -> 'b

In conclusion, we started with four potential type error locations,
but after one question the debugger has identified the correct type
error location.

Choice B. The programmer states that the expected type, string,
is the intended type.

Note that just because the expected type is the intended type, n
is not necessarily the cause of the type error. The types of variables
are often forced by other parts of the program3.

To judge whether the n is the cause of the type error or not, the
type debugger generates the following program with several holes
and passes it to the type checker:

(fun h5 -> fun h6 -> fun h7 -> fun h8 -> fun h9 ->
fun h10 ->
let f = fun h1 -> fun h2 -> fun h3 -> fun h4 ->

fun n -> fun lst ->
h1 (fun x -> h2 h3 (n:string)) h4 in
h5 h6 h7 h8 h9 h10)

This is the original program with every leaf replaced by a different
variable, except for the sub term n and its type annotation. Be-
cause this program is well-typed, the debugger knows that it has
to continue considering other candidates as cause of the type error.

The debugger adds the intended type as a type annotation and
produces counter-factual type error messages for the program:

let f = (fun n -> (fun lst ->
List.map (fun x -> x ^ (n:string))

lst)) in
f 2.0

There are only two single-location counter-factual type error mes-
sages, one for f and one for 2.0. Note that ˆ is no longer a candidate.

The debugger randomly chooses one of the two counter-factual
type error messages:

Choose your intended type for this expression.

let f = (fun n -> (fun lst ->
List.map (fun x -> x ^ (n:string))

lst)) in
f 2.0

3This does not mean that the cause of a type error has to be in another part. The cause
is sometimes a variable itself. In this example, if the programmer replaced n by another
variable that has type string, then the whole program would be well-typed.

Type Debugging with Counter-Factual Type Error Messages Using an Existing Type Checker IFL’19, September 2019, Singapore

A: float
B: string
Your choice (C: another type): B

Let us assume that the programmer states that the expected type B
is correct. Integrating this intention into the program the debugger
internally produces

let f = (fun n -> (fun lst ->
List.map (fun x -> x ^ (n:string))

lst)) in
f (2.0:string)

Again the debugger has to check whether the cause has been found
or it needs to continue asking questions. Hence again it replaces
every leaf by a different variable excluding the terms already asked
about and their type annotations. It passes the following program
to the type checker:

(fun h5 -> fun h6 -> fun h7 -> fun h8 -> fun h9 ->
let f = fun h1 -> fun h2 -> fun h3 -> fun h4 ->

fun n -> fun lst ->
h1 (fun x -> h2 h3 (n:string)) h4 in
h5 h6 h7 h8 h9 (2.0:string))

This program is ill-typed and hence the last counter-factual type
error did indeed locate the fault:

Type error located:

let f = (fun n -> (fun lst ->
List.map (fun x -> x ^ (n:string))

lst)) in
f 2.0

This expression has type
float

but it should be an expression of type
string

Type annotations. Type annotations reduce type error candidates
very effectively. This raises the question whether, to find the cause
of a type error, the programmer could not simply add themselves
type annotations about their intentions to a program. Sometimes
this does work, but there is no guarantee. Type checking algorithms
are free to handle type annotations in many different ways. When
the OCaml type checker traverses a type annotation, it often al-
ready inferred the type of the annotated term. Hence OCaml often
identifies the correctly annotated term as the cause of the type error.
Because counter-factual types are produced independently of the
order of type unification, type annotations work more effectively
than with standard type checking.

6.3 The Type Error Debugging Algorithm
We extend the object language with type annotated terms in Fig-
ure 8. For simplicity we assume that annotated terms are only
introduced by the debugger4.

4The programmer’s annotated terms might be the cause of a type error, but the answers
to the debugger cannot be the cause of a type error, provided the debugger’s questions
are answered correctly. Thus, if we want to introduce the programmer’s type annotated
terms, we should distinguish between these two forms of annotations.

(M : term) ::= (M : τ) (type annotated term)

Figure 8: Additional syntax for type annotation

pierce : term ∗ (loc list) → term ∗ (loc list)
pierce[[(M : τ)]]L = let (M ′,us) = pierce[[M]]L in (M ′ : τ ,us)

add : term ∗ term ∗ (loc list) → term ∗ (loc list)
add[[(M : τ)]](f ,us) =

let (M ′,us ′) = add[[M]](f ,us) in ((M ′ : τ),us ′)

Figure 9: Additional definitions for obtaining counter-
factual type errors

annot : term ∗ loc ∗ typ → term
annot[[cl]](l ′,τ) = if l = l ′ then (cl : τ) else cl

annot[[x l]](l ′,τ) = if l = l ′ then (x l : τ) else x l
annot[[fun x 7→ M]](l ′,τ) = fun x 7→ annot[[M]](l ′,τ)
annot[[@M1M2]](l ′,τ) = @ annot[[M1](l ′,τ) annot[[M2]](l ′,τ)
annot[[let x = M1 in M2]](l ′,τ) =

let x = annot[[M1]](l ′,τ) in annot[[M2]](l ′,τ)
annot[[fixM]](l ′,τ) = fix annot[[M]](l ′,τ)

debug : term ∗ ((loc ∗ typ) list) ∗ (loc list) → unit
debug[[M]](asked,remaining) =

if infer (pierce[[M]]remaining) = []
then () (* located at last question *)
else let lst = get_cft_of _slice[[M]]remaining in

let (l ,τ ,τ ′) = PICKUP_ONE lst in
let τintended = ASK[[M]](l,τ ,τ ′) in
letM ′ = annot[[M]](l,τintended) in
debuд[[M ′]](l,τintended)::asked,remaining\l)

Figure 10: Interactive type debugger using type annotations

The definitions for additional syntax to obtain the counter-factual
types are shown in Figure 9. In the definition of pierce we do never
remove type annotations, because we assume type annotations
introduced by the debugger are always correct.

The definitions for a type debugger using counter-factual types
and type annotations are shown in Figure 10. The function annot
adds the user’s intentions as type annotations. It receives a program,
the target location l ′, and the user’s intended type τ for l ′. For
constants and variables, it adds a type annotation if its location is
equal to the target location. For other constructors we call annot
recursively to add a type annotation in a sub-expressions.

The function debug is an interactive type debugger. It receives a
closed ill-typed programM , a list of already asked locations with
their intended types asked and not asked locations remaining. First,
we check whether the already asked parts of the annotated program
M cause a type conflict or not. If they cause a type conflict, then the

IFL’19, September 2019, Singapore Kanae Tsushima, Olaf Chitil, and Joanna Sharrad

Figure 11: Search space of our prototype

type debugging process ends. Otherwise, we need to continue ask-
ing questions. For asking questions, we obtain counter-factual types
using get_cft_of _slice and ask the programmer about it. The exter-
nal function ASK receives the program M and its counter-factual
type, asks the programmer and returns the programmer’s intended
type τintended. After that, the type debugger adds the correct in-
tended annotation to the program and obtains a new annotated
program M’. Because the cause of the type error is not located yet,
we call debug again with the updated information. To start type
debugging, we call debug with the original ill-typed programM , an
empty asked list and a list of all locations ofM .

7 EVALUATION
We built a prototype implementation of our type debugging method.
It is embedded in OCaml 4.01.0. We compared it with two other
implementations: OCaml 4.01.0 itself and an existing interactive
type debugger [17], which is also embedded in OCaml 4.01.0.We use
15 small ill-typed programs from two sources: student’s programs
from an OCaml introductory course and test code for Skalpel’s
online demonstration [11].

How was the search space reduced by our approach? Figure 11 gives
for each program its size, the number of candidates for the first
question and the number of questions needed for locating the fault.
We can learn two things: Program parts that are unrelated to type
errors are often successfully removed. If a type error includes many
conflicts, then the number of candidates can be large, but the num-
bers of questions needed is smaller, often substantially so.

For removing the unrelated candidates, the user’s interactive
input can help much. In Test 11 the number of candidates is 8 and
our prototype asks about the type of ::. With the general type of
::, the number of candidates for the second question is 7. However,
if the user inputs a specific type (e.g., int → int list → int
list), then the number of the candidates for the second question
becomes 1. Thus we know that the type annotations of Figure 10
remove candidates substantially.

Figure 12: Question numbers of different type debuggers

Program size (LOC) Error line (LOC) Time (seconds)
10 35 1.01
22 37 2.69
122 5 2.43
122 39 2.85
122 107 3.66
482 413 6.92

Table 1: Runtime measurements

Is the prototype better than an existing type debugger? In Figure 12
we compare the number of questions with an existing interactive
type debugger [17] and the OCaml compiler. Because the OCaml
compiler is not interactive, we only record when its error message
locates the source of the type error correctly (Test 5, 6 and 11). We
see that our prototype locates the source of a type error quicker
than the older debugger. This is because the older debugger asks
about many parts of the program, but our type debugger focusses on
parts related to the type error. The OCaml compiler can sometimes
locate the error source, but not always.

Is runtime reasonable for interactive use? Table 1 shows the runtimes
of our prototype debugger for different programs. These programs
were made by injecting a type error into a well-typed program. The
runtime time depends on the program size and error location in the
program; it varies substantially. Because our implementation is a
prototype, we expect to achieve speed improvements in the future.
At least our prototype works in reasonable time for small programs
(around 100 LOC).

8 RELATEDWORK
A wealth of papers have been published on type error debugging
since the 1980’s. Here we focus on a few.

New Type Checking Algorithms. Existing functional programming
systems use variants of the standard type checking algorithmW
by Milner and Damas [5]. AlgorithmW traverses the abstract
syntax tree of the program and eagerly solves type constraints by

Type Debugging with Counter-Factual Type Error Messages Using an Existing Type Checker IFL’19, September 2019, Singapore

unification. When type unification fails, the currently inspected
expression is reported as type error location together with its actual
and expected type. Thus the reported type error location depends
on the order in whichW solves type constraints, that is, traverses
subexpressions and unifies types.

Many improved type checking algorithms have been proposed.
Wand [19] extendsW to keep track of the history of how type vari-
ables are instantiated and shows this history for conflicting types
when unification fails. Lee and Yi [9] propose to use the algorithm
M. They show thatM finds type conflicts earlier than algorithm
W and thusM reports a smaller expression as error location. Yang
et al. [20] describe a new algorithm IEI that combines the algo-
rithmM with unification of type assumption environments. Their
implementation enumerates several error messages with counter-
factual types like our method. However, IEI focuses on a type
conflict in function applications. Therefore their approach does not
enumerate all counter-factual type errors of the ill-typed program.
In contrast to all these algorithms, our approach is completely inde-
pendent of the order of traversing the syntax tree or solving type
constraints.

Reusing an Existing Type Checker. Braßel [1] was the first to propose
using an existing type checker for type debugging. His experimental
tool TypeHope automatically corrects type errors for the functional
logic language Curry. The type debugger Seminal [10] takes this
idea further. It replaces erroneous parts with various syntactically
correct similar expressions, and sees if they type check. If they do,
the replacements are displayed as candidates for fixing the type
error.

Chen and Erwig [2] already note that usually there exist too
many different expression changes that correct a type error; most
of these expression changes do not agree with the programmer’s
intentions. Hence, unlike Seminal [10] but like Chen and Erwig [2],
our aim is to suggest type changes and leave it to the programmer
to select the appropriate expressions.

Sharrad et. al. [13] take the idea of using an existing type checker
as a black box even further by not transforming a syntax tree but
just the lines of the original program text. They apply the delta-
debugging method to locate a line or lines of code that cause the
error. Scaling up to large programs is under current development.

Counter-Factual Types. Most existing compilers for Hindley-Milner-
based programming languages produce type error messages with
counter-factual types. Also several of the early proposals for im-
proving type error debugging use counter-factual types. However,
Chen and Erwig [2] were the first to clearly identify the concept
of counter-factual types and argue their usefulness for type error
debugging. They propose to assist type debugging by automatically
enumerating all potential type error locations with counter-factual
types. So a message suggests changing the actual type of a given
program location to the counter-factual type. Chen and Erwig use
a new type checking algorithm based on variational types. Because
these variational types are monomorphic, they restrict counter-
factual types to be monomorphic as well. Potential type error loca-
tions that require polymorphic types are not identified. In contrast,
our approach produces in such a case a list of expected monomor-
phic types, which could also be transformed into a single expected
polymorphic type.

Interactive Type Debugging. Interactive type debugging systems
have been proposed to enable the programmer to include their
intentions in the search for the error location. Chitil [4] developed
an algorithmic debugger for type debugging, using a compositional
type inference algorithm. Based on his work, Tsushima and Asai
[17] designed an algorithmic type debugger for OCaml that uses the
compiler’s own type checker rather than a tailor-made type check-
ing algorithm. Algorithmic debugging guarantees to find a type
error location correctly, but answering the questions of an algorith-
mic debugger requires a good understanding of types, especially
intended types, by the programmer.

Chen and Erwig [3] propose an interactive type debugger based
on enumerating counter-factual type errors. Like our interactive
type debugger it determines the correct type error location and
gives its counter-factual type. However, the interaction is different
in that the programmer does not choose between types like in our
debugger but has to enter intended types for given subexpressions.
Internally Chen and Erwig’s type debugger relies on the use of their
variational types [2] to quickly reduce the number of type error
location candidates.

Type Error Slicing. The aim of type error slicing is to determine a
minimal slice of an ill-typed program which contains all the pro-
gram parts responsible for the ill-typedness. To make the program
well-typed, a change within this type error slice is required. Un-
derlying type error slicing is the observation that every program
fragment corresponds to a constraint on the types of subexpres-
sions of the program. For an ill-typed program the complete set
of its type constrains is unsatisfiable. A minimal unsatisfiable set
of type constraints can be computed that then corresponds to a
minimal type error slice of the program.

Haack and Wells [6] define and implement type error slicing for
ML using their own type checking algorithm which solves anno-
tated type constraints. Later Rahli et al. [11] extend this work to
a much larger fragment of ML. Independently Stuckey, Sulzmann,
and Wazny [14][15][16] develop the idea of finding the source
of type errors by solving constraints expressed with constraint
handling rules (CHRs). Their type debugger called Chameleon im-
plements its own type inference based on CHRs. The debugger can
explain type errors and inferred types by showing relevant slices.
Their work covers many advanced language features, such as type-
annotation, Haskell-style overloading and generalised algebraic
data types (GADTs).

Later Schilling [12] obtains type error slices for a large subset of
Haskell using the compiler’s type checker as a black box. Tsushima
and Asai [18] improve Schilling’s type error slicer using weights. If a
type error slice has conflicts with several parts of the program, then
it is more likely to be the cause of ill-typedness. Hence weighting
such conflicts enables choosing better slices.

The advantage of type error slicing is that the process is fully
automatic and the programmer does not have to answer any ques-
tions. On the other hand even minimal slices can still be relatively
big and slices do not explain an error or how to correct it. Although
looking very different to the programmer, type error slicing and
our approach are closely related, as Section 5 demonstrates.

Heuristics for type debugging. Heuristics based on a large corpus
of ill-typed programs can help with finding the correct type error

IFL’19, September 2019, Singapore Kanae Tsushima, Olaf Chitil, and Joanna Sharrad

location and providing more helpful type error messages. Heeren
and Hage [8] use a constraint-based type checker to flexibly vary
the order of solving constraints based on a heuristic. Their approach
sometimes but not always produces good errormessages, depending
on whether a specific type error is considered by the heuristic or
not. Hage and Heeren [7] define heuristics for type debugging
using their students’ programs. They focus on helping non-expert
programmers. Wherever our interactive type debugger currently
makes a random choice it could instead be guided by a heuristic.
With experience in practice the messages themselves could be made
more helpful in future.

9 CONCLUSION AND FUTUREWORK
In this paper we proposed a new method for enumerating counter-
factual type error messages for all potential type error locations in
a program, reusing an existing type checker. Our method also fully
supports the polymorphic Hindley-Milner type system in that it
handles the situation where a subexpression of a program needs to
be replaced by a polymorphic expression. The basic idea underlying
our method is very simple: we introduce holes in the program and
obtain their types.We introduced an improvedmethod for obtaining
counter-factual type error messages using type error slicing. Its
computational complexity is O (n2) where n is the program’s size.
We married the enumeration of counter-factual type error messages
with a new interactive debugger that locates the correct type error.
Type annotations are at the heart of this interactive debugger.

We both gave informal descriptions with examples of all algo-
rithms and defined them formally for the Hindley-Milner-typed
λ-calculus with recursion. We also implemented it for a small subset
of OCaml.

The advantage of this work is twofold. First, our method does
not depend on any algorithm for inferring types and it requires
only the inferred types. Hence our method can be applied to many
programming languages based on the Hindley-Milner type system,
regardless of which type inference algorithm is used by their com-
pilers. Second, it is easy to implement. To implement a type checker
that returns exactly the same type as the compiler’s type checker
would be tedious and error-prone.

We have several plans for future work:
We want to explore whether replacing the program slicing by

our delta-debugging implementation [13] improves the speed of
our type error debugger.

If an expression should be polymorphic, our counter-factual
type error message currently lists several expected types. Anti-
unification of these expected types might give the right expected
polymorphic type.

We want to apply our idea to advanced language features. Practi-
cal functional programming languages include numerous features,
for example module and object systems, for which we still have to
define our method. Thus we expect to prove the scalability of our
approach.

Finally, we want to develop heuristics for our type debugger.
Which potential type error location should the debugger ask about
first? Are some locations more likely to be correct than others? To
get answers to these questions we need to implement and use a
type debugger that covers a large subset of OCaml.

REFERENCES
[1] Braßel, B. “Typehope: There is hope for your type errors,” IFL 2004.
[2] Chen, S., M. Erwig. “Counter-Factual Typing for Debugging Type Errors,”
POPL 2014, ACM.
[3] Chen, S., M. Erwig. “Guided Type Debugging,” FLOPS 2014, pp. 35–51.
[4] Chitil, O. “Compositional Explanation of Types and Algorithmic De-
bugging of Type Errors,” ICFP 2001, ACM, pp. 193–204.
[5] Damas, L., R. Milner. “Principal type-schemes for functional programs,”
POPL 1982, ACM, pp. 207–212.
[6] Haack, C., J. B. Wells. “Type Error Slicing in Implicitly Typed Higher-
Order Languages,” Science of Computer Programming - Special issue on
12th European symposium on programming (ESOP’03), Volume 50 Issue 1-3
(2004).
[7] Hage, J., and B. Heeren. “Heuristics for Type Error Discovery and Re-
covery,” IFL 2007, LNCS 4449, pp. 199-216.
[8] Heeren, B., D. Leijen., J. Hage. “Helium, for Learning Haskell,”Workshop
on Haskell 2003, ACM, pp. 62–72.
[9] Lee, O., K. Yi. “Proofs about a Folklore let-polymorphic Type Inference
Algorithm,” ACM Transactions on Programming Languages and Systems,
pp. 707-723 (1998).
[10] Lerner, B. S., M. Flower, D. Grossman, C. Chambers. “Searching for
Type-Error Messages,” PLDI 2007, pp. 425–434.
[11] Rahli, V., J. B. Wells, J. Pirie and F. Kamareddine. “Skalpel: a type error
slicer for standard ML,” Electronic Notes in Theoretical Computer Science,
Vol. 312, pp. 197–213 (2015).
[12] Schilling, T. “Constraint Free Type Error Slicing,” TFP 2011, pp. 1–16.
[13] Sharrad, J., O. Chitil and M.Wang. “Delta Debugging Type Errors with
a Blackbox Compiler,” IFL 2018, pp. 13–24.
[14] Stuckey, P. J., M. Sulzmann, J. Wazny. “Interactive type debugging in
Haskell,” Workshop on Haskell 2003, ACM, Proceedings of the 2003 ACM
SIGPLAN workshop on Haskell (Haskell’03), pp. 72–83.
[15] Stuckey, P. J., M. Sulzmann, J. Wazny. “Improving type error diagnosis,”
Workshop on Haskell 2004, ACM, pp. 80–91.
[16] Stuckey, P. J., M. Sulzmann, J. Wazny. “Type Processing by Constraint
Reasoning,” APLAS 2006, pp. 1–25.
[17] Tsushima, K., K. Asai. “An Embedded TypeDebugger,” IFL 2012, pp. 190–
206.
[18] Tsushima, K., and K. Asai. “A weighted type-error slicer (in Japanese),”
Journal of Computer Software, Vol. 31, No. 4, pp. 131–148 (2014).
[19] Wand, M. “Finding the Source of Type Errors,” POPL 1986, ACM, pp. 38–
43.
[20] Yang, J., G. Michaelson, P. Trinder, J. B. Wells. “Improved Type Error
Reporting,” IFL 2000, pp. 71-86.

