
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Hurley-Smith, Darren and Patsakis, Constantinos and Hernandez-Castro, Julio C. (2020) On
the unbearable lightness of FIPS 140-2 randomness tests. IEEE Transactions on Information
Forensics and Security . p. 1. ISSN 1556-6013.

DOI

https://doi.org/10.1109/TIFS.2020.2988505

Link to record in KAR

https://kar.kent.ac.uk/81881/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/326508191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

1

On the unbearable lightness of FIPS 140-2 randomness tests

Darren Hurley-Smith1, Constantinos Patsakis2 (Member, IEEE), and Julio Hernandez-Castro3

Abstract—Random number generation is critical to many
applications. Gaming, gambling, and particularly cryptography
all require random numbers that are uniform and unpredictable.
For testing whether supposedly random sources feature par-
ticular characteristics commonly found in random sequences,
batteries of statistical tests are used. These are fundamental tools
in the evaluation of random number generators and form part of
the pathway to certification of secure systems implementing them.
Although there have been previous studies into this subject [1],
RNG manufacturers and vendors continue to use statistical tests
known to be of dubious reliability, in their RNG verification
processes.

Our research shows that FIPS-140-2 cannot identify adversar-
ial biases effectively, even very primitive ones. Concretely, this
work illustrates the inability of the FIPS 140 family of tests
to detect bias in three obviously flawed PRNGs. Deprecated by
official standards, these tests are nevertheless still widely used,
for example in hardware-level self-test schemes incorporated into
the design of many True RNGs (TRNGs). They are also popular
with engineers and cryptographers for quickly assessing the
randomness characteristics of security primitives and protocols,
and even with manufacturers aiming to market the randomness
features of their products to potential customers. In the following,
we present three biased-by-design RNGs to show in explicit detail
how simple, glaringly obvious biases are not detected by any of
the FIPS 140-2 tests. One of these RNGs is backdoored, leaking
key material, while others suffer from significantly reduced
unpredictability in their output sequences. To make our point
even more straightforward, we show how files containing images
can also fool the FIPS 140 family of tests. We end with a
discussion on the security issues affecting an interesting and
active project to create a randomness beacon. Their authors
only tested the quality of their randomness with the FIPS 140
family of tests, and we will show how this has led them to
produce predictable output that, albeit passing FIPS fails other
randomness tests quite catastrophically.

I. INTRODUCTION

Random numbers are at the foundation of secure cryptog-
raphy. From keys to authentication challenges, from nonces to
initialisation vectors, crypto-systems and the secure infrastruc-
tures they underpin heavily rely on Random Number Genera-
tors (RNGs). As one of the most fundamental building blocks
of any modern crypto-system, RNGs must be trustworthy,
unbiased and unpredictable.

RNGs can be implemented in software or hardware.
Software-implemented RNGs are called pseudo-random num-
ber generators (PRNGs) and are, fundamentally, deterministic.

1D. Hurley-Smith is with the Information Security Group,
Royal Holloway University of London, TW20 0EX, Surrey, UK
Darren.Hurley-Smith@rhul.ac.uk

2C. Patsakis is with the Department of Informatics, University of Piraeus,
Greece and the Information Management Systems Institute of Athena Re-
search Center, Greece. Email: kpatsak@unipi.gr

3J. Hernandez-Castro is with the School of Comput-
ing, University of Kent, Canterbury CT2 7NF, Kent, UK
j.c.hernandez-castro@kent.ac.uk

Non-deterministic RNGs, also known as True Random Num-
ber Generators (TRNGs), typically use physical sources of
entropy. Both are employed in a variety of security-critical
applications.

Dodis et al. [2] demonstrate that testing for sufficient entropy
cannot ensure that sources of randomness are appropriate for
use in cryptography. Secret-sharing, bit-commitment, encryp-
tion and zero-knowledge proofs are shown to be compromised
by one or more parties using imperfectly random values.

Statistical tests of randomness attempt to identify non-
randomness in a tested sequence [3]. While it is not technically
possible to prove randomness beyond a shadow of a doubt, it
is certainly feasible to collect enough statistical evidence to
show that an RNG does not behave randomly. Marsaglia’s [4]
Diehard tests were one of the first examples of software
implemented RNG tests. The National Institute of Standards
and Technology (NIST) proposed a battery of tests, formalised
in SP800-22 [5]. These two batteries were later consolidated
into the Dieharder battery [6]. L’Ecuyer et al.’s [7] TestU01
is not as widely used as Dieharder and NIST SP800-22, but
is nevertheless a powerful and very stringent set of tests that
currently represent the state of the art in the area.
Motivation. Lightweight, hardware-friendly tests are used as
health-checks in many TRNGs. Lee et al. [8] proposed an
efficient hardware-implementation of the full Federal Infor-
mation Processing Standard (FIPS) 140-2 randomness tests,
while Suresh et al. [9] provided an on-chip reduced set of
NIST 800-22 randomness suite. In fact, major manufacturers
promote the FIPS 140-2 compliance of their products as a
selling point and a proof of high security standards1. Some
manufacturers have chosen to use a subset of FIPS 140-2,
making the study of the limitations of this battery particularly
relevant. These health-checks, also called online tests, require
fast lightweight algorithms that do not significantly impact on
the output speed of the hardware device. As a consequence
of these requirements, the study of hardware-implemented
statistical tests is a thriving area of research. For example,
Hotoleanu et al. [10] discuss which of the NIST SP800-22
tests can be efficiently implemented in hardware, finding that
7 of the 15 tests are not suitable for lightweight hardware
implementation.

Adversarial analysis of statistical tests can improve our
general knowledge of randomness and testing, but also help
modelling a range of realistic attack vectors [11]. Hardware
trojans, implemented at the time of manufacture (by an ap-
propriately well-provisioned agency), or created afterwards by
enterprising (and malicious) resellers, pose a grave threat. By
modelling biases that can pass statistical tests of randomness

1https://cloud.google.com/security/compliance/fips-140-2-validated/,
https://aws.amazon.com/compliance/fips/, https://www.docker.com/
docker-news-and-press/docker-awarded-fips-140-2-validation-nist

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

2

and determining whether they have utility as a means of
leaking privileged information (such as a hidden deterministic
structure in the output of the RNG in question), we can come
closer to understanding where the current gaps in randomness
testing lie. Any attacker would ideally like that their trojanised
generator pass all the common randomness tests batteries, with
FIPS 140-2, SP800-22, and Dieharder being the main targets.
FIPS 140-2 is the most common source of hardware self-
tests, therefore the ability to bypass these is a requirement
for compromised generators that attempt to seem legitimate to
both internal and user-run statistical tests.
Main contributions. The main contribution of this work is to
demonstrate that current methodologies for PRNG testing and
verification, and in particular the FIPS 140-2 set of randomness
tests, cannot detect a wide range of extremely poor generators
and hence do not merit the continuous use and trust they re-
ceive from both the academic and the industrial communities.
Many manufacturers continue to use the FIPS 140-2 tests as
evidence of their compliance with the standards proposed by
NIST, whether or not they have actually been certified by the
organisations that establish those standards. We show this is
sadly true even when confronted with unsophisticated biases.
To prove this point, we define and analyse two extremely
simple families of random generators (the σ-counter and ε-
hole) and show that despite their simplicity they can fool the
FIPS 140-2 tests. The ε-hole can also be implemented in a
keyed format, wherein a key is leaked via the missing bytes
in consecutive periods of the output sequence.

A slightly more sophisticated but also biased-by-design
generator (the t-counter) is later introduced, which can re-
markably avoid detection by FIPS 140-2 for any degree of
bias. Sequences generated by a t-counter possess significantly
lower entropy than would be expected of a true RNG, severely
weakening any systems using their output.

To further shed light on the misleading results these tests can
lead to, we compare their output on a real-world implemented
RNG intended to provide randomness over the Internet, the
League of Entropy2 which uses the drand project as its basis.
We are the first to report that this service, while claiming to
offer random and unpredictable outputs, instead generates ones
with a persistent and significant bias. This was unfortunately
not detected by the developers, possibly because they only
tested its output with FIPS 140-2.

To further demonstrate the limitations of the FIPS 140-2
battery of randomness tests, we finish by showing that we can
bypass these tests with inputs that contain fully meaningful
information, and hence are obviously non-random. Even more
counter-intuitive is the fact that we have a great deal of
freedom in choosing these contents. In particular, we show
how images in the WEBP format can, typically after some
simple transformations, successfully pass all the tests in the
FIPS 140-2 battery.

Despite being deprecated FIPS 140-2 is still heavily in use.
Non-experts may associate passing the FIPS 140-2 tests with
a higher degree of randomness, or proof that the generator is
appropriate for cryptographic use. This is clearly an erroneous

2https://leagueofentropy.com

assumption. Our motivation and why we believe it matters to
focus primarily on FIPS 140-2, is to demonstrate exactly how
easy it is to pass these tests and contribute to a wider academic
and industrial awareness of their limitations. We hope works
like this one, repeatedly exhibiting the many inadequacies of
these tests can encourage the community to advance and adopt
better practices.
Impact. Our work extends previous work by Becker et al. [1],
regarding the failure of commonly used statistical tests of
randomness as a means of detecting even primitive attempts
to trojanise RNG output. We demonstrate how dangerous it
is to trust sources of randomness implementing FIPS 140-2
as a means of hardware self-testing. This is achieved through
rigorous statistical testing and comparison of sequences with
known biases to a real-world trusted source. We achieve
this by exploring extremely simple trojans, to identify the
degree of technical sophistication required to successfully
trojanise an RNG. While previous work focuses on the use
of cryptographic algorithms or dopant-level hardware trojans,
we identify that these tests can be fooled by significant less
sophisticated trojans requiring little to no domain expertise.

Therefore, many sources of randomness currently in use,
despite having credible certifications or even theoretical proofs
backing their randomness, may be predictable at a minimal
cost. For example, Dual-EC-DRBG has been shown to possess
a backdoor which is difficult to detect with lightweight statis-
tical tests, a fact discussed by Bernstein et al. [12]. Previous
work undertaken by Checkoway et al. [13] demonstrates how
this vulnerability can be exploited in TLS implementations,
providing a practical way to compromise vital network security
protocols.
Road map. The rest of the paper is organised as follows: In
Section 2, we discuss generalities about the statistical testing
of random number generators. Section 3 defines three biased-
by-design generators, the σ-counter, t-counter, and ε-hole, with
a backdoored variation of the latter. Their characteristics are
outlined, followed by our experimental methodology. Section 4
discusses a real-world example of PRNGs. We conduct the first
third-party analysis of the League of Entropy generator, iden-
tifying a consistent and significant bias, despite it successfully
passing the FIPS 140-2 tests. Section 5 presents in more detail
the methodology used to conduct these experiments. Section 6
provides the results of testing with FIPS 140-2 and Ent over
all of the studied generators. Section 7 discusses the results in
the context of validating statistical tests. Section 8 concludes
the paper.

II. STATISTICAL TESTS OF RANDOMNESS

In this section, two lightweight batteries of statistical tests
(FIPS 140-1/2 and Ent) are discussed.

A. FIPS 140-1 and 140-2

The FIPS documents describe processes and algorithms
related to civilian information technology security. FIPS 140-
2 (security requirements for cryptographic modules) [14], is
the successor of the deprecated FIPS 140-1 standard. It is

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

3

used to approve cryptographic modules in the U.S. FIPS 140-
2, with errata added by NIST, continues to be an important
element of many existing standards. Interestingly, the standard
does not provide any description of secure processes for key
generation. This lack can be detrimental for such certified
products. Indeed, Cohney et al. [15] showed that hundreds of
such certified products are vulnerable to attacks as, e.g. their
manufacturers have hard-coded keys in their firmware.

FIPS 140-2 randomness tests are no longer officially sup-
ported, but they are still widely employed by many scientists
and engineers around the world and, notably, they are still an
important component of the largest battery of tests included
in the Common Criteria evaluation of RNGs. Bundesamt für
Sicherheit in der Informationstechnik (BSI) outlines the AIS-
31 [16] evaluation methodology, which uses four of the FIPS
140-1 tests as part of its procedure A offline tests. As stated
by Balasch et al. [17], BSI’s methodology is considered to be
the de facto European standard for evaluating RNGs.

The rng-tools module for Linux includes an implemen-
tation of FIPS 140-2 in rngtest. In addition, these tests are
notably used as part of the random number generator daemon’s
(rngd) entropy-source procedure, checking 20,000-bit binary
sequences. Although intended only as a test of the entropy
being fed to the kernel entropy pool, many RNG developers
still use them as evidence of unpredictability in their devices.

The test definitions outlined below, and may also be found in
the NIST FIPS 140-2 [14] documentation, though they are no
longer mandatory and have been struck out (but not replaced)
in the most recent revision. FIPS 140-1’s [18] less stringent
set of parameters is also provided to show the developments
made in this area.

Poker test. A 20,000-bit block is divided into 5,000 consec-
utive 4-bit chunks. The occurrences of each of the 16 possible
chunks (15 degrees of freedom) are counted. With f(i) rep-
resenting the occurrences of each value, evaluate X as shown
below. The FIPS 140-2 test is passed if 2.16 < X < 46.17.
FIPS 140-1 only requires that 1.03 < X < 57.4. Both versions
evaluate the following equation:

X = (16/5, 000) ·
15∑
i=0

[f(i)]2 − 5, 000 (1)

Monobit test. This test simply counts the number of 1’s
in a 20,000 bit block. Let the number of 1’s be X , FIPS
140-2 passes if 9725 < X < 10275. FIPS 140-1 passes if
9, 654 < X < 10, 346.

Length FIPS 140-1 FIPS 140-2
1 2,267 - 2,733 2,343 - 2,657
2 1,079 - 1,421 1,135 - 1,365
3 502 - 748 542 - 708
4 223 - 402 251 - 373
5 90 - 223 111 - 201
6+ 90 - 223 111 - 201

TABLE I: Runs intervals

Runs test. A run is defined as an unbroken sequence of 1’s
or 0’s. Under rngtest, this test counts runs of length between 1
and 6. Table I specifies the passing intervals for both versions
of the test.

Long run test. A long run is defined by FIPS 140-2 as
any run of 1’s or 0’s larger than 25 bits. The probability of
observing a 26-bit run is 0.000298 per block of 20,000 bits.
If a long run occurs, the test is failed. FIPS 140-1 only fails
this test if the number of identical consecutive values exceeds
34 bits.

Continuous run test. This test simply checks for consecu-
tive identical 32-bit patterns. A 20,000-bit block fails this test
if a consecutive repetition of any 32-bit sequence is detected.

FIPS 140-3’s final draft3 was published in March of 2019.
FIPS 140-3 does not implement the FIPS 140-2 nor any other
statistical tests. Instead, with regards to RNG testing, it focuses
on entropy source modelling.
Despite their later redaction in FIPS 140-2 and removal from
FIPS 140-3, these tests are frequently employed as a health
check in RNGs by manufacturers. For example, Trezor [19]
uses rngtest as part of their hardware cryptocurrency wallet
evaluation process. Redhat [20] suggests that customers use
rngtest to self-evaluate the quality of the randomness available
for the generation of cryptographic keys. As we demonstrate
in the following section, this is ill-advised.

B. Ent

Ent is a simple Linux utility created by John Walker [21]. It
provides six output statistics: entropy, compression, χ2, serial
correlation, arithmetic mean and Monte-carlo estimated value
for π. Unlike FIPS 140-2, it is not part of any official RNG
evaluation scheme, but it has been used successfully to identify
flaws in RFID card key generators, particularly the DESFire
EV1 [22] and Mifare Classic. This makes it useful as a tool
for cursory investigation of data, though it is unsuitable for
the evaluation of cryptographic RNGs.

III. CONSTRUCTING BIASED GENERATORS: THE ε-HOLE,
σ-COUNTER & t-COUNTER

Most current randomness tests focus on measuring either
uniformity or independence, very few are capable of analysing
both simultaneously. This leads to issues. A case in point
are counters, which maximise uniformity but are horrendous
in terms of independence so they can fool many tests only
concerned by the flatness of the output. This inspired our σ-
counter. On the other hand, tests specialised on measuring
output independence can overlook if one value is significantly
missing quite easily. This was our inspiration for the ε-hole
generator. The t-counter is an attempt to hybridise these two
approaches.

These RNGs are then tested extensively for different values
of their parameter using FIPS 140-1 and FIPS 140-2. Addi-
tional analysis and insights are provided with the help of Ent.

The /dev/urandom PRNG is used as the source of
random values for these biased generators. They all operate
similarly: generating single bytes using urandom and then
subject them to some conditional modification, as shown in the
following sections. /dev/urandom) has been selected as it is a
fast, efficient means of producing random numbers considered

3https://csrc.nist.gov/publications/detail/fips/140/3/final

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

4

suitable for use as key material in non-critical systems. It has
been chosen over /dev/random because it is non-blocking;
it does not stop when the entropy buffer of the operating
system is exhausted, allowing us to collect sufficient data in
a timely manner. As urandom sequences pass without any
trouble far more stringent tests (TestU01 and SP800-22), they
are considered a suitable control sample for these experiments.

It is interesting to highlight that even unsophisticated ap-
proaches (such as the ones discussed below) offer a means
of leaking information that could include keys, system state,
or even exfiltrated files while passing many common tests
of randomness. AES in counter mode will also pass these
tests, but more insights is gained from studying which are the
minimal, most simplistic types of flawed generators still able
to fool these tests. Moreover, showing how these biased-by-
design generators fool FIPS 140-2 will probably have a more
impactful effect in spreading the message that these widely
used generators are, for all intents and purposes, meaningless.
For raising awareness, showing how these deeply flawed
generators can bypass FIPS is more relevant than showing
that AES in counter mode would do.

A. ε-hole

We can interpret ε as the degree to which an ε-hole is biased,
and we write Ehε. Xi represents the values the Ehε generator
outputs, Ri is a truly random byte (i.e. from a TRNG) and can
be seen as the ε-hole input. The following expression defines
this generator where b represents any fixed byte value, which
in our experiments has been set to 0xff :

X i =

{
Ri − {b}, with probability ε
Ri, with probability 1− ε

The intuitive concept of an ε-hole is very simple: It behaves
identically to a random number generator with probability
1−ε, but with probability ε it suppresses a given value (in this
paper 255). This means that with probability roughly ε

256 the
ε-hole will discard its input and output instead the first value
in the sequence Rj+1, Rj+2, ... which is different from 255.
This makes Ehε produce an output that is seemingly random,
particularly for small values of ε, but that in a histogram can
be observed to produce slightly fewer values of the 255th

byte. The idea behind the Ehε is to measure how sensitive
randomness tests are to partially missing values. The name
for this transformation comes from the fact that for ε = 1,
the value 255 is never generated, hence creating a hole in the
corresponding histogram.

Based in the definition above, the entropy of an epsilon-hole
is: H ≈ 8(1− ε) + ε log2(255) ≈ 8− 0.0056465631ε

As a result, the actual entropy of an ε-hole varies from a
maximum of 8 (for ε = 0) to a minimum of log2(255) ≈
7.994353 (for ε = 1) bits per byte.

a) Keyed ε-hole: A keyed version of this generator has
been implemented to show how keys can be easily leaked
using the output stream of a PRNG that still passes FIPS 140-
2. By changing the ‘missing’ byte (set previously to 0xff) to
consecutive values in the series of bytes to leak, it is possible
to perform a simple frequency analysis of ‘missing’ bytes

and identify the secret information, all without FIPS noticing
anything untoward. We have tested this idea by leaking 16-byte
keys and the approach works very reliably and is unnoticed
by the tests if we change this missing value to the next one
in the key every 2048 outputs.

A randomly generated 16-byte value (analogous to a key)
was embedded sequentially in output generated by a keyed ε-
hole, and a χ2 test was used to perform a frequency analysis
of byte value. This allowed us to observe which values were
absent or significantly less frequent than expected. By mapping
these to a 16-byte repeating sequence we could identify the
original embedded key. One-hundred 1MB sequences were
generated using this backdoored RNG approach, each leading
to a successful recovery. Listing 1 shows a Python script
demonstrating such a generator.

def epsilon_hole(s_size, key, period):
sequence = []
random.seed(key)
c = 0

for i in range(0, int(s_size/period)):
for j in range(0, period):

temp = random.randint(0, 255)
if temp == key[c]:

while temp == key[c]:
temp = random.randint(0,

255)↪→

sequence.append(temp)

if c >= len(key)-1:
c = 0

else:
c += 1

return sequence

Listing 1: A Python function for creating an ε-hole.

B. σ-counter

The value of the parameter σ can, also in this case, be
intuitively interpreted as the degree to which this RNG is
biased. A counter c is initialised to 0 when the RNG starts,
and increased after each output. The definition of a σ-counter
is then:

X i =

{
c mod 256, with probability σ
Ri, with probability 1− σ

When the value in c mod 256 is outputted, c is incre-
mented. When σ = 1 the output will simply consist of a
counter cycling upwards from 0 to 255 repeatedly, and hence
its name. The intuitive idea behind the σ-counter is to explore
how well randomness tests react to sequences that can exhibit,
simultaneously, an almost perfectly uniform distribution but
also a very high correlation, both characteristics of a counter.

The entropy of a sigma counter can be calculated based on
its definition as H ≈ 8(1− σ) + 0σ = 8− 8σ.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

5

(a) ε = 1 (b) σ = 1 (c) t = 1

Fig. 1: Visual representation of maximally biased sequences for σ, ε and t

This can take any value from 0 (for σ = 1) to 8 (for σ = 0)
bits per byte.

C. t-counter

The previously discussed biased generators are rela-
tively trivial examples. They possess a simplistic and uni-
dimensional bias that is unlikely to pass the most rigorous
inspection. However, they can deliver surprising results under
less stringent analysis, as we will see. The t-counter is slightly
more sophisticated.

The t-counter produces either a random number, with
probability 1 − t or a value taken from the AES [23] S-
box S indicated by index y. The value y is computed as
y = i + [−n, ..., 2n] mod 256, where i is the current index
and n is a pre-defined value. This results in a locally random
selection of values close to the target index; It is basically
an attempt to obfuscate the bias of the generator without
excessively reducing the predictability of the sequence.

X i =

{
Sy, with probability t
Ri, with probability 1− t

In this work, the values n ∈ {4, 6, 8, 10, 16} are investi-
gated. Fig. 1 (c) provides a visualisation of a t-counter with
varying t and n = 4, generated using the Infinite Noise test
scripts [24]. This scatter plot is the result of taking consecutive,
non-overlapping pairs of bytes from the extracted sequence,
and using the bytes as X and Y coordinates respectively.
Patterns begin to emerge only when t = 0.5 and become
steadily more visible as t approaches 1.

The associated entropy of a t-n-counter is approximately
8(1− t) + log2(3n)t = 8− 8t+ log2(3n)t bits per byte.

D. Initial observations

Fig. 1 provides a visualisation of the ε-hole (a), σ-counter
(b), and t-counter (c) generated using the Infinite Noise
scripts [24]. The period of the σ-counter can be observed
clearly as can the underlying structure of t = 1 when n = 4.
The ε generator is indistinguishable from noise even for this
high value of ε. The purpose of this visualisation is to set
initial expectations of how these generators should perform in

randomness tests; if we can visually perceive the biases, surely
the tests must provide a far more damning indication of their
non-randomness. Unfortunately, this seems not to be always
the case, at least with FIPS 140-2.

IV. LEAGUE OF ENTROPY

As the project claims4:
“The League of Entropy is a collaborative project
between the founding members Cloudflare, École
Polytechnique Fédérale de Lausanne, Kudelski Se-
curity, Protocol Labs, and University of Chile to
provide a verifiable, decentralized randomness bea-
con. A decentralized randomness beacon combines
randomness from multiple independent high entropy
sources to generate a truly unbiased random num-
ber for anyone that may need a public source of
randomness.”

The project is based on drand, a distributed randomness
beacon first reported by Syta et al. [25]. The core concept
is that it operates in a “chained” mode so that each newly
generated value is linked with the previous one. To this end,
each time we want to produce a new value, we create a
message m of the form m = H(r||σr−1), where r is an integer
denoting the current round, H is a secure hash function, and
σr−1 is the previously produced output. To create the new
random output we compute the BLS threshold signature σr(m)
proposed by Boneh et al. [26], therefore, every new generated
random value depends on all the previous ones. Moreover,
the use of BLS threshold signatures guarantees that no party
can individually generate any values, nor manipulate them.
To convert standard BLS signatures into threshold signatures
Syta et al. exploit the secret sharing scheme of Feldman [27],
using the Pedersen distributed key generation method [28]. As
a result, there is no trusted third party to handle the shares of
the involved parties, and the signature can only be made if at
least τ parties cooperate to sign a message.

V. RESULTS

In this section, we present the results of our statistical
testing. The ability of statistical tests to detect existing and
known biases is the focal point of this work.

4https://www.cloudflare.com/leagueofentropy/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

6

All code associated with the biased generators presented in
this section may be found in a BitBucket repository 5.

To provide an unbiased sample against which we could
compare the three biased generators (σ, ε, t), 100 binary files
of 2.5MB were generated using urandom. For the ε-hole and
σ-counter, we generated 100 files of 2.5 · 106 bytes for every
value of ε and σ in the interval [0,1) in increments of 0.01.
This resulted in 9,900 files for each and a total of 19,900 files
to analyse, including the urandom samples.

A. FIPS 140-1

FIPS 140-1 was used to test each file for 500 iterations, with
each iteration requiring 20,000 bits of output. The Monobit,
Poker, Run and Long-run tests were executed using the default
parameters outlined in the FIPS 140-1 guidelines [18].

The total number of test failures for FIPS-140-1 is evaluated
with a confidence threshold of 0.01. Individual test failures
are analysed to characterise the tested sequences. It is unwise
to reject a generator if it fails the tests once or twice, but
consecutive sequences repeatedly failing the same test indicate
systemic issues.

Fig. 2 shows the average failure rate for the Poker test
out of 10 iterations of 500 runs each, for each value of σ
in the interval [0,1] in increments of 0.1. Only the σ-counter
is shown, as the ε-hole and t-counter pass all tests. We only
show the Poker test in this graph because all other tests pass
for all values of σ.

Fig. 2: σ-counter FIPS 140-1 poker test results

It is only at values of σ ≥ 0.9 that one observes failures,
and then only on the Poker test but the test is passed as the
number of failures is very low. All other tests are passed.
Compared with the results for FIPS 140-2, this demonstrates
that the FIPS 140-1 requirements are too lax, allowing biased
data to pass as if it was random. The t-counter passes this test
for all tested values of n. Furthermore, the League outputs
systematically pass these tests.

B. FIPS 140-2

FIPS 140-2 provides the same tests as 140-1, but with
updated, more stringent pass conditions. For FIPS 140-2
evaluation, each file was tested using rngtest for 1,000

5https://highly entropic@bitbucket.org/highly entropic/dismantling
fips140-2

iterations. Each iteration takes 20,000 bits of input and uses the
FIPS 140-2 Monobit, Poker, Run, Long Run and Continuous
Run tests. We maintain the a = 0.01 confidence threshold
(less than 1% of tests may fail) used to evaluate FIPS-140-1,
for our analysis of FIPS-140-2.

Fig. 3 shows the mean FIPS 140-2 pass rate for the ε-
hole (a), σ-counter (b), and t-counter (c). The red channel
represents the standard deviation of urandom around its mean
pass rate, to provide a direct comparison with unbiased data.
In graph (b), this channel is very close to 1000 so is not easily
distinguished. A snapshot offering greater detail can be seen
in Fig. 4 (a).

The ε-hole passes rngtest (and hence FIPS 140-2) for
all values of ε, despite being trivially non-random. Some
individual FIPS 140-2 tests are failed, but these failures are
incidental and non-consecutive, consistent with false negatives
coming from a truly random source. There is no discernible
pattern to the distribution of test failures. No value of ε fails
more than 7 tests in total (out of 1,000), meaning it never
exceeds our confidence threshold of 0.01 (that will need more
than 10 failures).

The keyed ε-hole performs even better on these tests, failing
a maximum of 4 tests when ε = 1. This is due to the
periodic change in the missing byte. The period selected for
this shift was 2048 bytes, as 100% probability of recovering
the secret values was not possible with smaller periods.
This result demonstrates that ε-holes can easily be used to
hide information recoverable by malicious actors by simple
observation and analysis of the output stream while passing
online tests of randomness.

The σ-counter consistently passes FIPS 140-2 tests within
our confidence threshold, up until values around σ = 0.6.
At this point, rngtest fails for σ in [0.59,. . . ,0.65] before
recovering for σ in [0.66,. . . ,0.68]. From this point onward
rngtest fails for all values of σ. Interestingly, the distribution of
test failures is far from random. The Poker test is consistently
failed for the σ values in the above-mentioned parameter
intervals.

The t-counter results, observable in Figure 3 (c), show
performance almost equivalent to the ε-hole for n = 4. This
is the lowest value of n tested in these experiments, and it
passes FIPS 140-2 for all values of t. When t = 1, the pass
rate drops below that observed for urandom, but is still well
within the 0.01 confidence interval.

It is quite surprising that the ε-hole can pass FIPS 140-2
tests regardless of the value of ε, i.e. of the degree of bias
of its output. However, the σ-counter requires a further, more
nuanced, analysis. Fig. 4 provides a closer look at the first
area of interest from Fig. 3 (b). The t-counter passes all these
tests.

Fig. 4 (a) shows the total pass rate for σ in (0.5, . . . , 0.75).
The trend towards failure, with an unexpected recovery around
σ = 0.66, is more evident at this scale. It is clear that this
RNG does not pass the FIPS 140-2 tests in this interval, but
is interesting to note it is only failing the Poker test to any
significant degree. It is also clear that if the Poker test was
not included, the flaw in this generator would not be identified

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

7

(a) ε-hole (b) σ-counter (c) t-counter (n=4)

Fig. 3: FIPS 140-2 aggregated test results

(a) FIPS-140-2 total pass rate (b) Individual FIPS-140-2 test results

Fig. 4: FIPS 140-2 results for σ =[0.5,0.75]

(a) FIPS-140-2 total pass rate (b) Individual FIPS-140-2 test results

Fig. 5: FIPS-140-2 detailed results for σ =[0.75,1.0]

at all. This makes sense because the Poker test is especially
sensitive to the correlation between consecutive output bytes.

Fig. 4 (b) shows the failure rates for each test. As previously
discussed, the Poker test can be seen to deviate significantly
from the failure rate of the other tests. The coloured chan-
nels towards the bottom of the y-axis represent the standard
deviation of failure rates for urandom, for comparison.

Fig. 5 focuses on the aggregated (a) and individual (b) test
results for σ in (0.75, . . . , 1).

The unexpected recovery of the Poker test between periods
of catastrophic failure is intriguing and, as yet, unexplained.

This pattern also occurs in individual test results.

The ε-hole highlights the very real possibility of failing to
recognise obvious biases despite employing FIPS 140-2 to
validate RNG output. As we have seen, Ehε passes these tests
with ease for any value of ε.

The σ-counter is spotted by the FIPS 140-2 Poker test.
For σ ≤ 0.5 it is only marginally worse than urandom or
the ε-hole. The confidence threshold of 0.01 is not crossed
until σ ≥ 0.59. The Poker test operates on nybbles (4-bit
sequences), testing the distribution of bits for 15 degrees of
freedom. As a result, it can identify σ when its value rises

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

8

to sufficiently bias the appearance of specific nybbles. The
recovery at σ => 0.95 is explained by the return to an equal
distribution as the counter reasserts itself, no longer acting to
create duplicates of random bytes in the sequence. The Runs,
Long Run, and Continuous Run tests will identify sufficient
(though less dramatic) numbers of over-length bit-sequences
to fail above the threshold a = 0.1. The ε-hole and t-counter
are not detected, because they do not substantially alter the
distribution of bits in nybbles, nor do they significantly modify
the distribution of n-bit runs within the sequence.

C. Ent
The Ent tool was used to test each generator using the

Approximate Entropy, χ2, and Serial Correlation tests. Each
output was tested for its full length of 2.5 · 106 bytes. A t-
counter with parameters n = 16 and t = 1 was tested to allow
for a reasoned comparison with the σ and ε generators.

Due to its simplicity and robustness, we use ent in this
work to visualise and understand better the properties of the
binary sequences under investigation.

Fig. 6 shows the results of the Serial Correlation test for ε-
holes (a), σ-counters (b), and t-counters (c). The red channel
represents the standard deviation plotted as error around the
mean of urandom results, to indicate what a real random
result should look like. This channel is highly compressed for
(b), due to the scale of the y-axis.

The ε-hole once more proves difficult to distinguish from a
random output, as it passes the serial correlation test with no
issues. There is no discernible pattern in the graph, indicating
that increasing values of ε have almost no effect on the test
results. Removing a single byte-value from the stream has a
minimal impact on the predictability of the sequence according
to this test.

The σ-counter is, as expected, easily identified. It shows a
steadily increasing Serial Correlation for larger values of σ.
Even small values of σ (> 0.03) cause this test to fail. As a
result, the serial correlation test is able to detect the σ-counter
even when the FIPS 140-2 tests cannot. This should be a cause
for further concern regarding FIPS 140-2.

The t-counter is identified almost as easily as the σ counter.
The rapid decrease in 0xff bytes causes a rapid divergence
from the parameters established using urandom. By t = 0.4,
this generator consistently fails the serial correlation test.
Further results in the accompanying supplementary material
show that increasing n has a marginal, but positive, impact on
the serial correlation results. The t-counter is, however, still
detectable using this test.

Fig. 7 shows the χ2 results for the ε-hole (a), σ-counter (b),
and t-counter (c). The left y-axis shows the χ2 score (log-scale
for (b)). The right y-axis shows the corresponding p-value.
The red channel is the standard deviation of χ2 scores for 100
urandom files, plotted around their mean. This provides a
useful comparison.

Both biased RNGs perform quite poorly on this test. The
ε-hole rapidly approaches (ε ≈ 0.2) χ2 scores on the order of
103, and reaches just short of 104 for ε = 0.99. By ε ≈ 0.09
the p-value of the test is so low (p < 0.01) that the ε-hole
fails.

The σ-counter actually decreases its χ2 score as σ ap-
proaches 1. This is slightly counter-intuitive but not unex-
pected. It performs slightly better than the ε-hole, requiring
values of σ ≈ 0.18 before the p-value of the mean exceeds
0.99.

The t-counter passes the χ2 test for all values of t when
n = 4. Other results for greater values of n can be found
in the accompanying supplementary materials, where one can
observe that increasing n brings the χ2 results closer in line
with urandom results.

The main limitation of the χ2 test is that 20,000 bits of
output are generally not sufficient to detect the ε-hole. We
need to use 2.5MB of data (equivalent to the 1,000 blocks of
20,000 bits tested by rngtest) to achieve these results. A
continuous, hardware implemented test, will generally have to
run over significantly less output.

Fig. 8 shows the results of the approximate entropy test for
the ε-hole (a), σ-counter (b), and t-counter (c).

The ε-hole shows an inverse correlation between entropy
and ε. As ε increases, entropy decreases, but not by more than
5 ·10−3. urandom provides a mean entropy of approximately
7.99992, whilst the mean entropy for ε = 0.99 is approxi-
mately 7.9946.

AIS-31 [16] specifies an entropy of at least 0.997 per bit,
which is far exceeded by both σ and t-counters, even for their
worst parameter values. Values of ε above 0.8, however, fall
below this guideline.

The σ-counter shows a direct correlation between entropy
and σ values. As σ approaches 1, entropy approaches the
maximum value of 8 bits per byte.

These results are a direct counterexample to the intuitive
notion that higher Shannon entropy implies better randomness.
For example, the sigma counter increases its entropy with
higher σ values. It is important to keep in mind that multiple
entropy tests exist, and any single one may not provide a
definitive measure of the real entropy of a sequence.

Keyed ε-holes fail the χ2 test significantly (with a score
of 503.09), but pass all other Ent tests (serial correlation is
2.2 · 10−5 and entropy is 7.99964 bits per byte). These results
are the mean of 100 1MB samples with ε = 1. Notably, the χ2

result is significantly lower than that observed for a standard
ε-hole. This is due to the changing byte values omitted in
each period, which reduces (but does not wholly eliminate) the
under-occurrence of specific bytes. The seed or key embedded
in the output stream will have a direct effect on this test result;
keys without repetition (sequential or otherwise) of bytes will
achieve slightly better χ2 scores than those with repeated
values.

D. League of Entropy

The League of Entropy is a publicly available generator
based on elliptic curves. As this generator produces values
very slowly, only a single file of 2.5MB has been tested at the
time of writing. The Ent and FIPS 140-2 tests have been used
over this file. Data collection from this source is an ongoing
item of work.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

9

(a) ε-hole (b) σ-counter (c) t-counter (n=4)

Fig. 6: Serial correlation results

(a) ε-hole (b) σ-counter (c) t-counter (n=4)

Fig. 7: χ2 results

(a) ε-hole (b) σ-counter (c) t-counter (n=4)

Fig. 8: Approximate entropy results

It passes6 FIPS 140-2 without issues, but ent tells a
different story. A model of the byte-level bias observed in
League output has been developed to aid in further analysis
of the issues observed.

Figure 9 shows the byte-level biases of League (a), and Bias
model (b) output. League sequences as small as 100KB fail
the χ2 test. The full sequence fails catastrophically, as can be
observed in Table II.

Figure 9 (b) shows a clear bias of approximately 1.25·10−4,
positive in byte values below 0x90 and negative for higher

6Full results available in the accompanying supplementary materials

TABLE II: League Ent results

Test Result

χ2 score 503.08744
Entropy 7.99964
Arithmetic mean 125.6930
Monte Carlo π 3.185627 (error = 0.014)
Serial correlation coefficient -0.001262

ones. This is apparent in the terrible χ2 score. This can be
approximately explained by an over-occurrence of 0 values
in the most significant bit of every byte. Figure 9 (c) shows

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

10

(a) League output (b) Bias model output (p=0.035)

Fig. 9: Byte-level bias

(a) bias = 0.01 to 0.5 (b) bias = 0.02 to 0.045

Fig. 10: R2-values comparing League and model data

the most accurate synthetic model generated thus far, which
approximately emulates the bias observed in League data.

Figure 10 (a) shows the R2 values for the model, compared
with League data. In this case, 1MB of league data was
compared with the mean of 100 1MB sequences generated
by the model. Biases between 0.01 and 0.5 were tested in in-
crements of 0.01 to localize the sequence most comparable to
the League data. An R2 value of 0.7143206 (71.4% similarity)
was observed between 0.03 and 0.04. Figure 10 (b) is the result
of a more granular analysis, checking biases between 0.02 and
0.045 in 0.001 increments. A bias of 0.035 seems to provide
the closest match to the League data for byte-level bias. Full
FIPS and ent results for the bias model values 0.01 to 0.5
can be found in the accompanying supplementary material.

E. Confounding image compression and randomness
We present in the following what we believe should be the

last nail in the FIPS 140-1/2 coffin. We will show how strictly
formatted and fully meaningful data can fool the FIPS 140-2
randomness tests and pass as random.

It is well-known that some image compression algorithms
can come very close to optimal compression, producing highly
formatted but highly entropic outputs. The JPEG format has
this property, but we have observed that the WEBP format [29]
is even more remarkable in that it is regularly capable of con-
sistently achieving even higher compression rates, in exchange
for a slower encoding than JPEG.

A small percentage of images compressed in this format can
pass the FIPS and ent tests. The files we have found so far
in the wild are of insufficient size to process with SP800-22
as they range between 81 and 101KB in size.

Table III shows the results of FIPS 140-2 over 8 different
WEBP images, including Figure 11, that can be found in the
accompanying supplementary materials. Not a single image in
this group fails any of the tests in the battery. We estimate that
around 1% of images compressed with the WEBP format can
fool FIPS 140-2 tests. We have additionally devised a proce-
dure7 able to convert any image into the WEBP format with
a significantly improved chance (around 30%) of bypassing
FIPS 140-2.

TABLE III: WEBP failed FIPS 140-2 results.

Image Fail rate Image Fail rate

Figure 11 0/38 5.webp 0/32
2.webp 0/40 6.webp 0/35
3.webp 0/36 7.webp 0/36
4.webp 0/32 8.webp 0/36

Figure IV shows that all ent results clearly pass for
each of the eight images tested. These results are impressive,
particularly when considering that the corresponding JPEG

7Using the cwebp application, and in particular its -preset picture and -psnr
lossy option.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

11

version of Figure 11 has a χ2 score of 4568.70, failing this
test catastrophically.

TABLE IV: WEBP Ent results

Image χ2 Entropy Serial corr. Arith mean. MC π

Figure 11 257.32 7.997849 0.005079 127.6408 3.114208
2.webp 232.35 7.998336 -0.006307 127.4304 3.137540
3.webp 255.93 7.997998 -0.002842 127.6322 3.129841
4.webp 276.17 7.997551 -0.004760 128.0694 3.132162
5.webp 280.10 7.997498 0.010718 128.0094 3.132210
6.webp 224.64 7.998040 0.005412 127.3812 3.143479
7.webp 282.88 7.997743 0.001561 127.7401 3.130227
8.webp 262.32 7.997941 -0.001069 127.6744 3.138598

These results become even more interesting when one
observes the kind of content that can be communicated using
such a sequence, such as the picture shown in Figure 11.

Fig. 11: This image passes all FIPS 140-2 randomness test
with zero failures.

If an image can be reduced to such a compressed, apparently
random state that it can pass statistical tests of randomness,
it may be possible to encode such images into the output
of PRNGs as a form of information leakage. Instead of
introducing bias in as brutal a manner as the keyed ε-hole, one
could simply produce WEBP images that could be recovered
with knowledge of the offset at which they occur in the
output of a RNG. In this manner, complex information may
be communicated stealthily, with the appearance of a random
stream of data (and without the strong biases that σ, ε, and t
produce).

VI. CONCLUSIONS

This work demonstrates that even trivially biased generators
are more than capable of fooling fast, efficient statistical tests
of randomness. FIPS 140-2 tests are particularly susceptible
to these adversarial generators. Of the three biased generators
presented, the ε-hole and t-counter are able to completely
evade detection by FIPS 140-1 and 140-2. The σ-counter
remains undetected until σ ≥ 0.59. Notably, the t-counter is
able to pass these tests even when t = 1 and n = 4.

Many RNGs, such as the ID Quantique AIS-31 validated
QRNG, and the Gemalto IDPrime MD 830 B RFID card
(FIPS 140-2 level 3 certified) are certified using methodologies
that incorporate these tests. Being able to bias a device whilst
passing statistical tests enables future stealthy attacks. Despite
being considered defunct, the FIPS 140 family of tests is
still relevant. FIPS 140-2 is, for example, implemented in

rngtest and AIS-31 relies on the FIPS 140-2 tests for
procedure A of its statistical test battery.

The ability to independently verify the reliability of a RNG
product is vital. Without it, end-users are at the mercy of mali-
cious actors who may trojanise devices, or of subtle hardware
failures. The FIPS 140-2 tests (albeit deprecated) continue to
represent some of the most common hardware-implemented
ones for output verification. As a result, their apparent inability
to detect trivial biases undermines many current validation and
self-test procedures employed in TRNGs. NIST’s redaction of
the FIPS 140-2 tests and their removal from FIPS 140-3 is a
step in the right direction. However, this may be insufficient
to dissuade RNG manufacturers, who continue to see them
as a means of measuring and displaying the quality of their
products. A clear and authoritative criticism of such tests is
required to dissuade their future use in TRNGs for more than
basic fault testing.

The League of Entropy generator, based on drand, gener-
ates surprisingly poor randomness, especially for a project that
claims “truly unbiased random numbers for anyone that may
need a public source of randomness”. We demonstrate a clear
and simple model of the bias, capable of explaining roughly
71% of the observed behaviour if the 8th bit of every byte takes
the value 0 with a bias of 0.035. Considering the nature of this
generator, this result is counter-intuitive; the distributed nature
of drand should mitigate deterministic biases. Syta et al. [25]
do not provide statistical test results as part of their work on
drand but instead, focus on the robustness of their approach
to adversarial actors in the contributing pool of servers.

Image compression as a means of embedding information
in an apparently random stream is not a new concept, but
previous compression algorithms have had a hard time fooling
statistical tests of randomness. FIPS 140-2 and ent both
trivially identify JPEG images, but an alarming amount of
WEBP images (at least for file sizes less than 101KB) are
reported as random by both these methods. While there are
statistical means to distinguish encrypted from compressed
data [30], it is yet to be seen whether with a larger amount
of data and more sophisticated tests WEBP will be detected
as non-random. The ability to embed meaningful, visually-
rich information in a random stream cannot be understated; if
undetected this could be used as a means of data exfiltration.
Unlike the previously discussed approaches, no explicit bias is
observable and the stream itself is meaningless from the point
of view of an uninformed observer. This makes it exceedingly
useful to malicious actors.

AIS-31 procedure A still uses FIPS 140-2, and manufac-
turers continue to use FIPS 140-2 test results as a form
of quality assurance. The reliability any verification process
implementing these tests must be considered suspect. This
work, indirectly, also highlights the large degree of correlation
between the different tests in popular randomness test suites
(namely FIPS 140-2 and AIS-31). This is a well-known
problem [31], [32] that has not been tackled yet. This intra-
battery test correlation makes it easier to design adversarial
generators capable of bypassing all the randomness tests in a
given set of standards.

In future works, we will explore how to design more

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

12

efficient, independent and characteristics-driven tests, while
analysing commercial RNGs that despite having been certified
can still present serious security issues. Moreover, we plan to
apply the methodology of this work to other randomness test
suites, for example, TestU01 [7], with the aim of identifying
weaknesses and improving more sophisticated test batteries.
We also plan to work on developing more robust and harder-to-
fool statistical tests that could increase the trustworthiness of
randomness evaluation and certification. A further evaluation
of AIS-31 will be part of future work to identify whether
Procedure B suffers from similar issues as those faced by
Procedure A.

ACKNOWLEDGEMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme, under grant
agreement No.700326 (RAMSES project), CyberSec4Europe
(Grant Agreement no. 830929), and LOCARD (Grant Agree-
ment no. 832735).

The authors would also like to thank EPSRC for project
EP/P011772/1, on the EconoMical, PsycHologicAl and Soci-
etal Impact of RanSomware (EMPHASIS), which supported
this work. The authors are thankful to the ECOST Crypta-
cus (ICT COST Action IC1403) project for the invaluable
discussions and insights that have aided the development of
this work. This work has been partly funded by the EPSRC
Quantum Communications Hub Project (EP/T001011/1).

The content of this article does not reflect the official opin-
ion of the European Union. Responsibility for the information
and views expressed therein lies entirely with the authors.

REFERENCES

[1] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems. Springer, 2013, pp. 197–
214.

[2] Y. Dodis, S. J. Ong, M. Prabhakaran, and A. Sahai, “On the (im)
possibility of cryptography with imperfect randomness,” in 45th Annual
IEEE Symposium on Foundations of Computer Science. IEEE, 2004,
pp. 196–205.

[3] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical
test suite for random and pseudorandom number generators for crypto-
graphic applications,” Booz-Allen and Hamilton Inc Mclean Va, Tech.
Rep., 2001.

[4] G. Marsaglia, “A current view of random number generators,” in
Computer Science and Statistics, Sixteenth Symposium on the Interface.
Elsevier Science Publishers, North-Holland, Amsterdam, 1985, pp. 3–
10.

[5] A. Rukhin, J. Soto, and J. Nechvatal, “A statistical test suite for random
and pseudorandom number generators for cryptographic applications.
NIST DTIC Document,” NIST SP800-22, 2010.

[6] R. G. Brown, D. Eddelbuettel, and D. Bauer, “Dieharder: A random
number test suite,” Open Source software library, under development,
2013.

[7] P. L’Ecuyer and R. Simard, “TestU01: A C library for empirical testing
of random number generators,” ACM Transactions on Mathematical
Software (TOMS), vol. 33, no. 4, p. 22, 2007.

[8] J. S. Lee, P. Choi, S.-J. Kim, B.-D. Choi, and D. K. Kim, “Built-in
hardware pseudo-random test module for Physical Unclonable Func-
tions,” Nonlinear Theory and Its Applications, IEICE, vol. 5, no. 2, pp.
101–112, 2014.

[9] V. B. Suresh, D. Antonioli, and W. P. Burleson, “On-chip lightweight
implementation of reduced NIST randomness test suite,” in 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST). IEEE, 2013, pp. 93–98.

[10] D. Hotoleanu, O. Cret, A. Suciu, T. Gyorfi, and L. Vacariu, “Real-time
testing of true random number generators through dynamic reconfigu-
ration,” in 2010 13th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools. IEEE, 2010, pp. 247–250.

[11] J. P. Degabriele, K. G. Paterson, J. C. Schuldt, and J. Woodage, “Back-
doors in pseudorandom number generators: Possibility and impossibility
results,” in Annual International Cryptology Conference. Springer,
2016, pp. 403–432.

[12] D. J. Bernstein, T. Lange, and R. Niederhagen, “Dual ec: A standardized
back door,” in The New Codebreakers. Springer, 2016, pp. 256–281.

[13] S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange,
T. Ristenpart, D. J. Bernstein, J. Maskiewicz, H. Shacham, and
M. Fredrikson, “On the practical exploitability of dual {EC} in {TLS}
implementations,” in 23rd {USENIX} Security Symposium ({USENIX}
Security 14), 2014, pp. 319–335.

[14] S. H. Standard, “FIPS PUB 180-2,” National Institute of Standards and
Technology, 2002.

[15] S. N. Cohney, M. D. Green, and N. Heninger, “Practical state recovery
attacks against legacy rng implementations,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2018, pp. 265–280.

[16] W. Killmann and W. Schindler, “AIS 31: Functionality classes and
evaluation methodology for true (physical) random number generators,
version 3.1,” Bundesamt fur Sicherheit in der Informationstechnik (BSI),
Bonn, 2001.

[17] J. Balasch, F. Bernard, V. Fischer, M. Grujic, M. Laban, O. Petura,
V. Rozic, G. Van Battum, I. Verbauwhede, M. Wakker et al., “Design and
Testing Methodologies for True Random Number Generators Towards
Industry Certification,” in International IEEE European Test Symposium-
ETS 2018, 2018.

[18] S. H. Standard, “FIPS Pub 180-1,” National Institute of Standards and
Technology, vol. 17, p. 15, 1995.

[19] Trezor, “Trezor hardware wallet random number generator (rng) tests.”
[20] RedHat, “RedHat Customer Portal - 3.4 Using the Random

Number Generator,” https://access.redhat.com/documentation/
en-us/red hat enterprise linux/6/html/security guide/sect-security
guide-encryption-using the random number generator, accessed:
2019/08/01.

[21] J. Walker, “ENT: a pseudorandom number sequence test program,”
Software and documentation available at www.fourmilab.ch/random/S,
2008.

[22] D. Hurley-Smith and J. Hernandez-Castro, “Certifiably Biased: An In-
Depth Analysis of a Common Criteria EAL4+ Certified TRNG,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 4, pp.
1031–1041, 2018.

[23] E. Prouff and M. Rivain, “A generic method for secure sbox implemen-
tation,” in International Workshop on Information Security Applications.
Springer, 2007, pp. 227–244.

[24] C. Van Wandelen, WaywardGeek, and 13-37-org, “InfNoise color
map and scatterplot scripts,” 2018. [Online]. Available: https:
//github.com/13-37-org/infnoise/tree/master/tests/plots

[25] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser,
I. Khoffi, M. J. Fischer, and B. Ford, “Scalable bias-resistant
distributed randomness,” in 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017.
IEEE Computer Society, 2017, pp. 444–460. [Online]. Available:
https://doi.org/10.1109/SP.2017.45

[26] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2001, pp. 514–532.

[27] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer
Science (sfcs 1987). IEEE, 1987, pp. 427–438.

[28] T. P. Pedersen, “A threshold cryptosystem without a trusted party,” in
Workshop on the Theory and Application of of Cryptographic Tech-
niques. Springer, 1991, pp. 522–526.

[29] G. Ginesu, M. Pintus, and D. D. Giusto, “Objective assessment of the
webp image coding algorithm,” Signal Processing: Image Communica-
tion, vol. 27, no. 8, pp. 867–874, 2012.

[30] F. Casino, K. R. Choo, and C. Patsakis, “Hedge: Efficient traffic
classification of encrypted and compressed packets,” IEEE Transactions
on Information Forensics and Security, vol. 14, no. 11, pp. 2916–2926,
Nov 2019.

[31] L. Fan, H. Chen, and S. Gao, “A general method to evaluate the corre-
lation of randomness tests,” in International Workshop on Information
Security Applications. Springer, 2013, pp. 52–62.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2988505, IEEE
Transactions on Information Forensics and Security

13

[32] M. S. Turan, A. DoĞanaksoy, and S. Boztaş, “On independence and
sensitivity of statistical randomness tests,” in International Conference
on Sequences and Their Applications. Springer, 2008, pp. 18–29.

Darren Hurley-Smith is a Lecturer in Informa-
tion Security, in the Information Security Group
of Royal Holloway University of London. He re-
ceived a BEng. Degree in Computer Systems and
Hardware Design in 2012, and a PhD in Computer
and Network Security in 2015, from the Univer-
sity of Greenwich. His interests are in statistical
testing of Random Number Generators, RFID/NFC
Security, Mobile Ad Hoc Network Security, and
Cryptocurrencies. He also has a keen interest in
ransomware, the economics of cyber-crime, and au-

tonomous aerial systems.

Constantinos Patsakis holds a B.Sc. in Mathemat-
ics from the University of Athens, Greece and an
M.Sc. in Information Security from Royal Holloway,
University of London. He obtained his PhD in
Cryptography and Malware from the Department of
Informatics of the University of Piraeus. His main
areas of research include cryptography, security,
privacy, data anonymization and data mining. He
has authored more than 100 publications in peer
reviewed international conferences and journals. He
has participated in several national and European RD

projects. Additionally, he has worked as a researcher at the UNESCO Chair
in Data Privacy and as a research fellow at Trinity College. Currently, he is
an Assistant Professor at the University of Piraeus and adjunct researcher of
Athena Research and Innovation Center.

Julio Hernandez-Castro is a Professor of Cyber-
security at the University of Kent, in the UK. He
received a degree in Mathematics in 1995, an M.Sc.
in Coding Theory and Network Security in 1999
and a PhD in Computer Science in 2003. His inter-
ests are primarily in Computer Security, especially
Steganography and Steganalysis, but also in Machine
Learning applications to Cybersecurity, RFID/NFC
Security, and in advancing the study of Randomness
Generation and Testing, particularly on hardware
and constrained IoT devices. He additionally works

in studying ransomware and other types of malware. He is a keen chess player
and python enthusiast.

