
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

IEEE INTERNET of THINGS JOURNAL

Time Aggregation based Lossless Video Encoding
for Neuromorphic Vision Sensor Data

Nabeel Khan, Khurram Iqbal, Maria G. Martini, Senior Member, IEEE

Abstract—Dynamic Vision Sensors (DVS) are emerging neuro-
morphic visual capturing devices, with great advantages in terms
of low power consumption, wide dynamic range, and high tempo-
ral resolution in diverse applications such as autonomous driving,
robotics, tactile sensing and drones. The capturing method results
in lower data rates than conventional video. Still, such data
can be further compressed. Recent research has shown great
benefits of temporal data aggregation on event-based vision data
utilization. According to recent results, time aggregation of DVS
data not only reduces the data rate but improves classification
and object detection accuracy. In this work, we propose a
compression strategy, Time Aggregation based Lossless Video
Encoding for Neuromorphic Vision Sensor Data (TALVEN),
which utilizes temporal data aggregation, arrangement of the
data in a specific format and lossless video encoding techniques
to achieve high compression ratios. The detailed experimental
analysis on outdoor and indoor datasets shows that our proposed
strategy achieves superior compression ratios than the best state-
of-the-art strategies.

Index Terms—Dynamic Vision Sensor (DVS), Neuromorphic
Spike Events, Silicon Retinas, Spike Encoding, Video Encoding,
Data Compression, Time Aggregation.

I. INTRODUCTION

Dynamic Vision Sensors (DVS) [1], [2] are based on the
principle of biological sensing, i.e., they report only the on/off
triggering of brightness in the observed scene. Differently
from frame based cameras, where frames are acquired at
regular time intervals, DVS asynchronously acquire pixel-
level light intensity changes, with a time resolution up to
a microsecond. Events are triggered whenever there is either
motion of the neuromorphic vision sensor or motion / change
of light conditions in the scene or both. In other words, no
data is transmitted for stationary vision sensors and static
scenes. These unique properties enable neuromorphic vision
sensors to achieve wide dynamic range, low-latency, and low-
power requirements. The data rate produced by these sensors
depends on the scene complexity and on the camera speed, as
highlighted in [3], [4], where a model for the estimation of
such data rates is also presented.

The neuromorphic silicon technology utilizes the Address
Event Representation (AER) protocol for representing and
exchanging spike data. According to the protocol, each event
is represented by a tuple (x, y, p, t), where x and y are the

Submitted 11 Feb 2020. This work is part of a project that has received
funding from EPSRC via Grant EP/P022715/1 - The Internet of Silicon Retinas:
Machine to machine communications for neuromorphic vision sensing data
(IoSiRe). (Corresponding author: Nabeel Khan.)

The authors are with Wireless Multimedia & Networking Research
Group, Kingston University London, UK. Email: {n.khan, khurram.iqbal,
m.martini}@kingston.ac.uk

coordinates of the pixel where a brightness change occurred, t
is the firing time of the spike (timestamp), and p is the polarity
of the event (increase or decrease of brightness). Spike location
is represented in three dimensions by the spatial coordinates
and the timestamp information of the tuple, while the polarity
flag indicates the brightness change. Each tuple is represented
by 64 bits, where the timestamp is represented by 32 bits and
the remaining three fields are represented by 4 bytes.

Emerging applications of DVS can be found in diverse
scenarios ranging from self-driving cars [5], [6] to robotics
[7], [8] and drones [9]. Instead of constraining applications to
on-board processing many scenarios, such as the coordination
of multiple intelligent vehicles (cars, drones, etc.) require real-
time data sharing and feedback. Even if the neuromorphic
sensing technique provides an intrinsic compression, further
compression of the produced data can be beneficial for
transmitting such data in Internet of Things (IoT), Internet
of Intelligent Vehicles (IoV), and Industrial Internet of Things
(IIoT) scenarios. The data storage and transmission bandwidth
are finite for on-board DVS processing and transmission
respectively, therefore the compression of neuromorphic spike
events is an open challenge demanding prompt solutions.

Time aggregation of spike events has been primarily used
for practical reasons, such as interfacing event-based devices
with other hardware systems and operating within memory
and computational constraints. Recent works have shown
great advantages of aggregation of spike events for object
detection and classification in diverse scenarios ranging from
action recognition tasks to tactile sensing. These applications
have utilized different types of machine learning approaches,
summarized in Section III, where the spike event stream is
accumulated over fixed time intervals. The aggregation time
interval varies (ranging from 1 ms to 50 ms) depending upon
the target application and the desired accuracy. For instance,
the spike accumulation is performed every 50 ms for the
motion estimation task in autonomous driving, whereas the
optimum interval is 10 ms for object detection applications. The
higher the accumulation interval, the higher the compression
gains. The state-of-the-art compression approaches, discussed in
Section II-B, do not exploit accumulation of spike events, which
limits the adaptability as well as compression gains of such
strategies. Therefore, given the benefits of temporal aggregation,
we propose a compression approach where accumulation of
spike events is the key processing step. We organize the asyn-
chronous spike events data into a format where the exploitation
of temporal and spatial redundancy is maximized. The strategy
utilizes the lossless compression mode of recent video encoding
standards and achieves superior compression ratios as compared

IEEE INTERNET of THINGS JOURNAL

to the state-of-the-art approaches. Furthermore, the compressed
DVS stream has the capability to adapt to diverse transport
and networking layer protocols as a result of the utilization
of the video encoding step. The state-of-the-art compression
approaches lack such network friendly representation of the
DVS data.

The contributions provided in this work are summarized in
the following.

• A novel strategy, that we called TALVEN, to compress
DVS data by accumulating spike events over a time
interval. The proposed strategy is evaluated on diverse
outdoor and indoor scenes.

• Comparison in terms of compression gains of the state-
of-the-art strategies without time aggregation and our
proposed strategy: DVS data comprise a multivariate
stream of integers, therefore, it is important to analyze
general purpose and integer based compression approaches
on DVS data. We applied different types of compression
algorithms, shown in Figure 1 [10], to DVS data and
studied the compression gains on diverse outdoor and
indoor scenes.
Compression gains of the proposed and selected state-of-
the-art strategies with time aggregation: We analysed and
compared the achieved compression gains of the proposed
and benchmark strategies when time aggregation is applied
on the DVS data.

The remainder of this paper is structured as follows. The
state-of-the-art lossless compression strategies are reviewed in
Section II, where the suitability on DVS specific applications
of such strategies and their potential disadvantages are also
discussed. The benefits of spike events accumulation are
discussed in Section III, whereas the compression approach
is proposed in Section IV. Section V reports the simulation
setup and the considered dataset for the evaluation of the
proposed and benchmark compression algorithms. We analyse
existing lossless data compression strategies performance
without temporal aggregation in Section VI; whereas the
compression gains, when temporal accumulation of spike events
is employed, are analysed in Section VII. Finally. Section VIII
concludes the paper.

EXISTING COMPRESSION
STRATEGIES

FAST INTEGER
COMPRESSION

Simple8B

SIMD-BP128

FastPFOR

IoT SPECIFIC
COMPRESSION

Sprintz-FIRE

Sprintz-Delta-Huf

Sprintz-Delta
DVS

COMPRESSION
SPIKE Coding

DICTIONARY
BASED

COMPRESSION

Brotli

LZMA

LZ4/LZ77

Zstd

ZLib

ENTROPY
CODING

Huffman Coding

Arithmetic Coding

Snappy

Memcpy

Figure 1: Benchmark methodologies to compress the DVS data [11].

II. RELATED WORK

Figure 1 reports the benchmark algorithms to compress the
DVS data. These include DVS specific compression approach,
discussed in Section II-A, as well as general purpose and IoT
specific compression methodologies, reviewed in Section II-B.

A. DVS specific Spike Coding

The work in [12] proposed the first lossless compression
strategy for the asynchronous spike event stream. The encoding
method is derived from the spike firing model of the DVS.
According to the spike generation mechanism, the DVS
sequence exhibits spatial and temporal correlation. The spike
coding method exploits the correlation by projecting the event
stream into a sequence of three-dimensional macro-cubes.
The two dimensions of the macro-cubes span the full spatial
resolution of the sensor’s pixel array, for instance, M = 180
(maximum Y -address) and N = 240 (maximum X-address) for
DVS240B. The number of spike events is the third dimension
of the macro-cube. There are two coding modes of the macro-
cubes, namely Address-Prior (AP) and Time-Prior (TP) modes.
These two modes exploit spatial redundancy within the macro-
cube. The AP mode is designed for the scenarios where
spike events are scattered over the entire spatial resolution.
Conversely, the TP mode is designed for the case where
spike events occur locally, i.e., majority of the events occur
over adjacent pixels. The spike coding algorithm computes
prediction residuals for both the modes and the one yielding the
maximum compression is chosen. In the final step, prediction
residuals are entropy coded by utilizing CABAC (Context-
adaptive binary arithmetic coding). The work in [13] extends
the spike coding framework by introducing intercube prediction
which exploits temporal correlation among the macrocubes.
However, the compression gain achieved by the spike coding
strategy is quite limited; for instance, the compression ratio
for the intelligent driving dataset [13] varies between 2 and 3.

B. Existing compression methodologies tailored to the DVS
data

1) Entropy coding: Entropy is a measure of uncertainty,
i.e., the higher the uncertainty, the higher the entropy. In
entropy coding, the most probable (frequent) symbols require
shorter codewords. Huffman and Arithmetic are the most
common entropy coding strategies. Huffman is prefix encoder,
where each input data symbol is replaced by a variable
length codeword. Arithmetic coding differs from Huffman
as it encodes a group of input data symbols into a number.

Entropy coders are quite versatile, therefore they have the
potential to be applied in diverse applications [14] of the DVS.
They can be directly applied to the DVS data by treating each
field of the spike event as an input symbol. Advance coding
methods have entropy encoders as the final step mainly because
these strategies have limited compression gains as a standalone
compression algorithm.

2) Dictionary based compression: Dictionary coding strate-
gies operate by replacing long strings, in the data to be
compressed, with shorter codewords. These encoding methods

IEEE INTERNET of THINGS JOURNAL

maintain a collection of strings in a data structure called
dictionary. The text is encoded by replacing each string with a
code that that acts as a pointer to the dictionary. Most of the
dictionary-based strategies utilize a dynamic dictionary, one
whose content changes during the coding process. The advanced
dictionary coders, such as Zstd [15], Zlib [16], LZMA [17]
and Brotli [18], utilize multi-level encoding, where dictionary
codewords are further compressed by entropy coding.

Dictionary based compression can be applied to the DVS data
by converting spike events into a multivariate stream of integers
and then applying the concept of dictionary-based substitution.
The higher the frequency of repeatable integers, the higher the
compression gains. Dictionary based compression techniques
can greatly ease the data rate and storage problems of DVS
surveillance related applications [19] as these strategies have
the potential to greatly reduce the size of the data. However, the
lack of repetitive pattern in the asynchronous stream of DVS
data can limit the compression gains of the dictionary-based
compression strategies.

3) IoT specific compression: The authors in [20] proposed
a compression strategy, called Sprintz, for resource constrained
devices. The main design goal of the Sprintz algorithm is to
achieve state-of-the-art compression gains without violating
the memory and latency constraints of the IoT devices. The
Sprintz compression approach exploits correlation among the
successive samples of a multivariate stream. Sprintz-FIRE,
Sprintz-Delta and Sprintz-Delta-Huf are the three main variants
of the Sprintz strategy. Sprintz-FIRE is based on a forecaster
called Fast Integer Regression (FIRE). The FIRE algorithm
predicts the current sample based on information of the previous
samples. The prediction residuals, i.e., differences between the
predicted and the actual samples is Huffman coded. In order
to achieve superlative compression speed, Sprintz-Delta skips
the Huffman coding and replaces the FIRE algorithm with
delta coding. The third variant, Sprintz-Delta-Huf, achieves a
trade off between compression ratio and compression speed
by employing a combination of delta and Huffman coding.

The DVS data exhibit time-series characteristics, therefore,
IoT specific compression strategies (such as Sprintz) can be
directly applicable by converting the spike event stream into
multivariate time-series integers. IoT specific compression can
be useful in scenarios where higher compression gains and
reduced power consumption are important performance criteria
[14]. The compression ratio of the IoT specific approach is high
for time series data generated by sensors like a temperature
sensor which exhibits highly correlated data samples. Since
the event stream generated by DVS sensors is asynchronous
and presents less correlation than, for instance, data from
temperature sensors, the compression gains of the IoT specific
approach on DVS data are not expected to be as high as for
the data it was designed for.

4) Fast Integer Compression: Fast integer compression
strategies are known for their superlative compression speed
as they are specifically designed for encoding and decoding
billions of arrays of integers for search engines and relational
database applications. Simple8B [20], Memcpy [20], SIMD-
BP128 [21], FastPFOR [21], and SNAPPY [22] are the most
common fast integer compression algorithms. Fast integer

compression strategies have potential applications in scenarios
where DVS data is transported to cloud storage and computing
servers for the processing of visual data in order to per-
form event, action, person or object recognition/classification,
and context awareness [23]. In such scenarios, Fast integer
compression strategies can be applied to the DVS data by
transforming spike events into a column major format (vector
of integers). However, fast integer compression approaches
may result in modest compression gains, as their main design
goal is superlative compression and decompression speed at the
expense of compression ratios, thus limiting their applicability.

The aforementioned state-of-the-art approaches do not con-
sider the time aggregation of spike event data, which limits
the potential compression gains of such strategies. In the
subsequent section, we report the benefits of spike event
aggregation.

III. SPIKE EVENT AGGREGATION

Since a single event carries little information and is subject
to noise, it is important to process several events to yield
a sufficient signal-to-noise-ratio (SNR) for the considered
task. Recently several strategies [6], [7], [24], [25], [26], [27],
[28], [29] have been proposed that operate on a group of
events. These strategies aggregate the information present in
the group of events to estimate the solution to the problem.
The main advantage of event aggregation is the creation of
temporal frames over a fixed duration. These frames, also called
events frames [6], [24], [27], are created by aggregating the
asynchronous stream of events over a fixed time window. Time-
aggregation based neuromorphic event processing is beneficial
because it increases efficiency by bringing together a group of
distinct events into context with each other. In the following,
we highlight some of the recent works showing great potential
of time-aggregation based neuromorphic vision sensor data
processing in diverse applications.

A. Time-aggregation based visual classification task
The authors in [26] explore the benefits of spatial and

temporal downsampling of neuromorphic vision sensor data.
The authors refer to temporal downsampling as what we
call here ”spike events temporal aggregation”. The authors
studied the classification task accuracy on an established
neuromorphic dataset. The event based visual classification was
done by utilizing the Synaptic Kernel Inverse Method (SKIM).
The SKIM based classifier utilized 1000 hidden neurons and
performed classification tasks on a wide variety of dataset such
as N-MNIST, SpikingMNIST and N-Caltech101. According
to the SKIM based experiments, the classification accuracy
increases significantly when temporal aggregation of spike
events is employed, for instance, the accuracy increases to 85.05
% with the temporal resolution of 8 ms on the N-MNIST dataset.
Similarly the temporal resolution of 8 ms achieves the highest
accuracy for the SpikingMNIST dataset. For the N-Caltech101
dataset, the classification accuracy increases up to the temporal
resolution of 20 ms. The improved classification accuracy
results from the fact that increase in temporal accumulation of
spike events decreases the sparsity of the input pattern which
results in more information in each time step.

IEEE INTERNET of THINGS JOURNAL

B. Time-aggregation based motion estimation in autonomous
driving

The authors in [6] proposed a deep neural network approach
where DVS is employed to perform a challenging motion
estimation tasks, i.e., prediction of steering angle of a self-
driving car. The strategy converts asynchronous spike events
into frames over a specified frame rate. The process of event-
to-frame conversion is done by aggregating spike events over a
specified time interval. The resulting synchronous event frames
are fed into a 50 layer deep residual network (ResNet-50) which
predicts the steering angle of the autonomous car. According
to the detailed experimental analysis, spike event frames with
a frame rate of 20 fps (events accumulation time of 50 ms)
produces the best prediction of the steering angle (root-mean-
squared error of 9.74◦). The authors also compared the event
frame-based approach with that of the grayscale frames from
conventional camera. According to the results, during a sunny
day, the grayscale frame-based approach suffers from camera
saturation and lack of temporal information which produces
wrong steering angle prediction. Furthermore, poor illumination
during night causes wrong motion prediction when conventional
camera is utilised.

C. Time-aggregation based classification in tactile sensing
The authors in [27] proposed the first event based tactile

sensing by utilizing the DVS camera. The authors utilized
two time-series machine learning methods, Time Delay Neural
Network (TDNN) and Gaussian Process (GP), to estimate the
contact force in a grasp. Furthermore, the authors proposed
Deep Neural Network (DNN) to classify object materials by
using DVS based tactile sensing framework. According to
several experimental studies to classify four different materials,
spike data aggregation over 7 ms achieves the best accuracy,
79.17 %. Furthermore, the same time aggregated spike data
successfully estimate the contact force with a mean square
error of 0.16 N for TDNN and 0.17 N for GP. The framing
of events over 7 ms intervals reduces the impact of noise and
results in differentiation of meaningful events.

D. Time-aggregation based incipient slip detection
The authors in [7] proposed another novel industrial appli-

cation of the DVS in tactile sensing. The authors proposed
an approach to detect incipient slip based on the contact area
between transparent silicone medium and different objects by
utilizing the neuromorphic vision sensor. The authors proposed
a fixed window cycle of 10 ms to construct a frame based
on spike events produced during the grasping and releasing
phase. In order to obtain meaningful features, the spike events
triggered in the time period of 10 ms are aggregated. Therefore,
each pixel of the event frame contains an accumulated event
count. According to rigorous experiments, the results indicate
an accurate detection of incipient slip, stress distribution and
object vibration with very low latency.

E. Time-aggregation based object detection
In [28], the authors proposed a Convolutional Neural Net-

work (CNN) architecture called YOLE for object detection by

utilizing the neuromorphic vision sensor. The authors utilized
a frame based model as an input to the CNN, where each pixel
in the frame integrates neuromorphic spike events over time.
The authors group events into batches of 10 ms with an input
frame resolution of 128 × 128. According to the experimental
analysis, the proposed method is not only able to detect objects
but also their direction and position.

IV. PROPOSED STRATEGY (TALVEN)

The aforementioned strategies process DVS data by aggre-
gating events at fixed time intervals. A wide variety of machine
learning strategies then process the time-aggregated events to
perform different tasks in diverse scenarios. Therefore, it is
worth investigating the compression gains achieved when time-
aggregation of spike events is employed. In this section we
propose a compression method which takes into account the
time-aggregation of spike events.

According to the mathematical analysis in [12], [13], the
DVS spike firing mechanism has the following important
features:

• A linear increase and decrease of luminance intensity on
a certain pixel produces temporal correlation between the
consecutive events.

• Adjacent pixels receive almost the same luminance in-
tensities simultaneously which indicates the existence of
spatial redundancies.

The aforementioned features show that a DVS spike sequence
exhibits spatial and temporal correlation. Video compression is
a form of source coding where spatial, temporal and statistical
redundancies are exploited to store the relevant information
more compactly. Therefore, we propose to apply video encoding
to an appropriately processed form of the asynchronous stream
of DVS spike events. In order to utilize the benefits of video
compression, we transform the event stream into a format
mimicking video and exhibiting high spatial and temporal
correlation. Figure 2 shows the basic blocks of the proposed
strategy, where the DVS spike event sequence is converted into
synchronous video frames. In the following, we analyse the
basic blocks of the proposed strategy.

A. Event Frame

The advantages of reduction in data size through temporal
aggregation of events can be exploited by projecting the DVS
spike event stream into a sequence of frames, where each
frame has the full resolution (M × N) of the pixel array.
The projection of DVS spike sequence in a frame to the XY
plane is done by recording the location histogram count, i.e.,
recording the number of event count at each pixel. For instance,
Figure 3 shows the location histogram count in four scenarios
of different temporal resolution factors of 1 ms, 2 ms, 5 ms
and 10 ms. According to the figure, time resolution of 1 ms
represents 36 events with 36 bytes, i.e, each pixel has an event
and each event count is represented by a byte. The number
of bytes required to represent 222 events, for a resolution of
10 ms, remains the same. Therefore, the projection of spike
sequence as a frame representing event count at each pixel
inherently reduces the size of the data.

IEEE INTERNET of THINGS JOURNAL

Write event
count to M X N

frames for flags 0
and 1

Superframe:
Merging of Flag
0 and 1 frames

Lossless
compression using

Video Codec

Frame-based
compressed
event count

stream

DVS data

Temporal
Resolution

Concatenation of
subsequent

superframes into video
sequence

Flag 0

Flag 1

Flag 0 Flag 1

Frame 1

Frame 2
Frame n

Superframe size: 2M X N

DVS input:
e = [x, y, p, t]

DVS output:
e = [x, y, p, t]

Time resolution factor

Motion
Compensation

Intra-
Prediction

Entropy
Coding

NAL
Encapsulation

Video Codec

Figure 2: Block diagram of Time Aggregation based Lossless Video Encoding for Neuromorphic Vision Sensor Data (TALVEN).

36 events = 36 bytes 54 events = 36 bytes

132 events = 36 bytes 222 events = 36 bytes

1 ms 2 ms

5 ms 10 ms

Figure 3: Event frames containing the event count at four different time
resolutions.

B. Separate Event Frames for Each Flag

We propose to divide the spike sequence into two separate
frames, one associated to positive increase of luminance
intensity (flag 1) and one for decrease of luminance (flag
0). As highlighted in the mathematical model proposed in [12],
[13], there exists a strong correlation between the polarities of
co-located spike events. For instance, if the flag of the previous
event is one (or zero) on a pixel, there is a high probability that
the next event polarity will be one (or zero) on the same pixel.

This is mainly because of the smooth change in luminance.
For feature extraction, the authors in [30] divide the events in
spatio-temporal surfaces of flag zero and one mainly because
there exists a strong correlation between time surfaces of the
same polarity. Therefore, we propose to record event count
separately for each polarity with each frame having the full
resolution of the pixel array. This would increase the temporal
correlation between the frames of the same polarity, which can
then be exploited by applying the video compression concept
of interframe coding.

C. Arranging data in ”superframes”

We propose to merge the frames of each polarity with the
same timestamp into one single superframe composed of the
“0 polarity flag” frame on the left and the “1 polarity flag”
frame on the right. The main rationale behind the creation of
such ”superframes” is the requirement to arrange data in a way
resulting in high interframe correlation, that can be exploited
by a video encoder. For instance consider the three possible
alternative scenarios shown in Figure 4; subsequent frames
report events of opposite polarity in scenario one, whereas
in scenario two consecutive frames report events with either
the same or inverse polarity. With these data arrangement,
interframe correlation is low, hence resulting in inefficient
compression if a video encoder is used on these frames. In
scenario 3, where both the polarity frames are merged into one
superframe, subsequent frames have high interframe correlation
that can be effectively exploited by a video encoder used on
a ”video sequence” composed of these superframes. This is
mainly because of the increase in probability of finding the
best matching block as the neighbouring frame in time now
includes both the polarity frames. It is important to note that

IEEE INTERNET of THINGS JOURNAL

each frame requires extra header information (for instance,
frame number, frame type, etc.); therefore, another advantage
of the creation of such superframes is the lower proportion
of header data through reduction of frame rate. For instance,
without it the temporal resolution of one millisecond produces
2000 fps, whereas with frame concatenation, the frame-rate
reduces to 1000 fps.

Figure 4: Scenario 1: Neighbouring event frames have inverse polarity. Scenario
2: Neighbouring event frames have same polarity. Scenario 3: Neighbouring
concatenated frames (superframes) have both the polarities.

1) Impact of superframes on compression ratio: The arrange-
ment of spike event data in superframes doubles the frame
size. In the following, we discuss the three important benefits
of the superframes; due to these, the increase in frame size
has minimal impact on the potential compression gains.

• Superframes have better temporal correlation: Superframes
have concatenated M ×N spatial regions each for flag
zero and one. The components with the same polarity in
successive frames have high correlation. The interframe
coding algorithm of the video encoding exploits this
correlation to maximize the compression gains.

• Superframes have built-in information about polarity of
events: For instance, if we consider a frame size of M×N
(instead of a superframe resolution of 2×M ×N) then
the per-pixel count would represent cumulative events
of flag zero and one. In this scenario, not distinguishing
between the polarity of the spike events. In such a case,
the information about the polarity of the events should be
separately encoded and then integrated in the compressed
stream. The separate encoding and integration would limit
the compression gains.

• Superframes double the maximum limit of the event count:
Furthermore, a frame size of M×N would represent 2n−1
(where n is the bit depth of the encoder, i.e., 255 limit for
8-bit encoder) number of cumulative events for polarity
zero and one. On the other hand, superframe doubles the

maximum limit of the event count to 2n+2n−2 (510, for
8-bit encoder), i.e., 2n − 1 each for polarity zero and one
events. Experimental analysis of the TALVEN strategy on
diverse dataset shows that with superframe resolution and
8-bit video encoder, the maximum limit is never exceeded.

D. Video Encoding

Next, we propose to utilize video encoding by representing
each superframe as a video frame. The superframe contains all
the spike sequence information as shown in Figure 4 (scenario
3). The frame number field in the video header represents the
timing information, i.e., if the temporal aggregation is 10 ms
then the timing information for all the events recorded in frame
number 125 is 1250 ms.

In the following, we discuss the main encoding steps
of compression exploiting spatial, temporal and statistical
correlation among the event frames associated to the DVS
sequence.

1) Interframe coding: In conventional video coding, inter-
frame coding is the key technique in achieving high compres-
sion ratios. The arrangement of data of a spike sequence as an
event frame, where each pixel stores the event count, provides
the opportunity to exploit the most important concept in video
compression. In interframe coding, a reference frame is used
to predict the current frame. Frame prediction is done through
a concept called block-based motion compensated prediction
(MCP). A frame is divided into blocks, and for each block in
the current frame, a motion vector is identified based on the
address of the matching block in the reference frame. Figure
5 shows how interframe coding is performed on neuromorphic
event count by utilizing MCP. In the example shown in the
figure, the temporal correlation between adjacent blocks is
low. However, the flexibility of MCP to find the best matching
block over the entire pixel array of a frame, and over several
neighbouring frames, has the potential of achieving higher
compression.

- =

Reference Frame Current Frame

Best
matching
block

Reference
matching block

Current block Difference block

Figure 5: Interframe coding application to the event frames. Adjacent blocks
between the two frames show low correlation. MCP finds the best matching
block.

IEEE INTERNET of THINGS JOURNAL

2) Intraframe coding: In video compression, intraframe
coding exploits spatial redundancy by exploiting the correlation
among neighbouring pixels. According to the DVS spike
generation mechanism, adjacent pixels receive almost the same
luminance intensities simultaneously. In other words, if a pixel
receives a polarity zero (or one) spike then there is a high
probability that the neighbouring pixels have undergone a
polarity zero (or one) spike recently. The proposed arrangement
of DVS data in superframes results in higher spatial correlation
because the adjacent pixels within a superframe have the
same polarity. The same polarity spike event count, among
the neighbouring pixels, is exploited by different prediction
modes of intraframe coding. For instance, there are 9 prediction
modes for intraframe coding in the H.264 video coding standard,
whereas in HEVC (H.265) the number of prediction modes
increases to 35. These modes exploit spatial redundancy within
a frame by computing prediction values through extrapolation.

3) Entropy coding: Interframe coding results in motion
vector (address pointing the position of the best matching
block) and prediction residuals (difference between the two
matched blocks). On the other hand, intraframe coding results
in spatial residual prediction by utilizing the neighbouring
pixels. In order to achieve further compression, these residuals
and motion vectors are entropy coded. The entropy coding
utilized by the most recent standards, such as H.264 and HEVC,
is a lossless compression technique called Context Adaptive
Binary Arithmetic Coding (CABAC).

Algorithm 1 TALVEN

Input: Temporal resolution Tr [s]
Input: DVS spike sequence duration Tseq [s]
Input: Total frames to encode Tframes =

Tseq

Tr

for t = 1 to Tframes do
for t = 1 to Tr do

Write event count in an M ×N frame for flag 0
Write event count in an M ×N frame for flag 1

end for
Merge both the event frames into a superframe F for
video encoding
if F == frame type I then

Apply intraframe coding
else

Apply interframe coding
end if
Apply entropy coding to the residuals of interframe or
intraframe coding
Apply NAL encapsulation to the compressed frame F

end for
Output: Compressed event frame sequence

4) NAL units: One of the advantages of utilizing a video
encoding format for neuromorphic vision sensor data is the
incorporation of Network Abstraction Layer (NAL) units in
the video coding standards. NAL units provide a network
friendly representation of neuromorphic vision sensor data.
The increasing and diverse applications of DVS, ranging from
autonomous driving to drones, call for a flexible representation

of the compressed data. The main advantage of NAL units is
their flexibility to map the coded data to diverse transport
and network layer protocols such as RTP/IP, and TCP/IP.
Furthermore, NAL provides different ways to pack a NAL
unit stream ranging from packet-stream format to byte-stream
format, where the former is used for transmission applications
while the latter is used for storage applications. Another
important design goal of NAL is to provide robustness against
data loss by providing different modes of transmission such as
out-of-band and in-band transmission.

E. Pseudocode of the proposed strategy

Algorithm 1 summarizes all the steps of the TALVEN strat-
egy. The total number of frames encoded, Tframes, depends
upon the DVS spike sequence duration Tseq and the event
aggregation time interval Tr (temporal resolution). There are
three types of encoded frames in video compression. An I-frame
is the result of intraframe coding and is the least compressible
frame. B and P frames are the result of interframe coding,
where a P frame is predicted from a single reference frame
and a B frame is predicted from two neighbouring frames. The
residuals of the encoded frames are entropy coded, followed
by the NAL encapsulation step as shown in Algorithm 1.

V. SIMULATION SETUP

A. Dataset

The compression performance of the proposed and bench-
mark strategies is evaluated by utilizing Dynamic and Active-
pixel Vision Sensor (DAVIS) dataset [31]. The dataset was
produced by a hybrid sensor technology, DAVIS, which outputs
an asynchronous event output stream as well as classical
frame based intensity images with a spatial resolution of
180× 240. Furthermore, the dataset also includes the motion
speed information of every sequence. The dataset is comprised
of outdoor and indoor scenes as shown in Figure 6. These
scenes are captured in different conditions including indoor,
outdoor and different types of motion (angular, linear etc.).
In order to asses the compression gains of the proposed and
benchmark strategies, we extract sequences with different scene
complexity and motion speed as shown in Table I. According
to the table, the extracted Boxes sequence has a very high event
rate, approximately 4.3 Mega-events/s. This is mainly because
of the high scene complexity and very high motion speed of the
sensor. On the other hand, the Shapes sequence has a low event
rate because of the low scene complexity and low sensor speed
as shown in Table I. The Dynamic sequence is captured in an
office environment with camera motion as well as a person
moving in the scene. The Outdoor sequences in the dataset were
acquired in an urban environment with camera at both running
and walking speed. We extracted the Running sequence with
three different running speeds generating different event rates
as shown in Table I. The Urban sequence has slow walking
speed in a dense urban environment.

In the following, we report the simulation setup for the
benchmark and proposed strategies. Section V-B reports the
AER data format of the asynchronous event stream. Further-
more, Section V-B also reports the simulation setup for all the

IEEE INTERNET of THINGS JOURNAL

Shapes Poster Boxes Dynamic

Slider Outdoor Urban

Figure 6: Different types of scenes in the considered DAVIS dataset [31]. The sensor moves with different types of motion (angular, linear, etc.) in front of the
indoor scenes, whereas for the outdoor scenarios the body-mounted sensor moves with different walking and running speeds.

considered benchmark strategies discussed in Section II and
reported in Figure 1.

Table I: Extracted dataset for experimental analysis.

Sequence
Event
Rate
(kev/s)

Sequence
Duration (s)

Scene
Complexity Speed

In
do

or

Boxes 4288.65 5 (45-50) High High
Poster 4021.1 5 (45-50) High High

Dynamic 1077.73 20 (1-20) Medium Medium
Slider 336.78 3 (1-3) Medium Low
Shapes 245.61 20 (1-20) Low Low

O
ut

do
or

Running3 1525.5 20 (40-60) Medium High
Running2 1229.4 20 (20-40) Medium Medium
Running1 713.8 20 (1-20) Medium Medium

Urban 503.04 10 (1-10) High Low
Walking 342.2 20 (1-20) Medium Low

B. Simulation set-up for the benchmark strategies

The simulation setup for the benchmark strategies, discussed
in Section II-B, is shown in Figure 7. According to the figure,
the spike event stream of neuromorphic vision sensors is
represented by the AER data format, where each event is
8-byte long. The least significant four bytes (1-32 bits) of
the AER data represents the timestamp information, whereas
the retinomorphic vision sensor type, Asynchronous Time-
based Image Sensor (ATIS) or DVS, is represented by the
most significant bit (64th bit). The ATIS has built in temper-
ature, gyroscope and acceleration sensors. Analog-to-Digital
converted samples of these integrated sensors are conveyed by
10-bit (33-42 bits). The polarity flag and trigger (trigger bit is
switched on when polarity changes) information is conveyed by
the 43rd and 44th bit of the AER representation respectively.
Finally, X and Y spatial addresses are represented by 10-bit
(43-52 bits) and 9-bit (53-61 bits) respectively.

We convert a series of 64-bit AER data into a multivariate
stream with seven columns (each 8-bit long). The conversion is
performed by extracting the spatial addresses, timestamp, and
polarity flag information from the AER data, as shown in Figure
7. According to the figure, the four columns constitute the

timestamp information of the spike events. The spatial addresses
(X and Y) and the polarity flag comprise of the remaining three
columns. Finally, the multivariate stream is transformed into
row-major and column-major formats. IoT specific compression
strategies employ the row-major format [20], whereas the fast
integer compression, entropy and dictionary based algorithms
utilize the column-major format.

For spike coding strategy, the size of the macro-cube is
180× 240 in spatial and 32768 (number of events) in temporal
[13].

C. Simulation set-up for TALVEN

In order to asses the time-aggregation based compression
gains on the considered dataset, we utilize an H.265 (HEVC)
video encoder wrapper (x265) in FFmpeg library libx265. In
HEVC lossless encoding, DCT (Discrete Cosine Transform)
and quantization are bypassed which results in low complexity
implementation of the encoder. The main goal of the encoder
is to find the optimal intracoding and intercoding predictions
and then losslessly encode the residuals. The preset option
selects the compression ratio and speed tradeoff, i.e., the higher
the preset the higher the compression gains. We selected the
default medium preset for compression speed. Furthermore,
we selected 6 different (1 ms, 5 ms, 10 ms, 20 ms, 40 ms
and 50 ms corresponding to 6 different frame rate) temporal
resolutions for each of the considered scenes.

D. Key performance metrics

• End-to-end compression ratio (compression ratio w.r.t total
number of events). The performance of the considered
and benchmark strategies is evaluated by computing the
compression ratio: Nevent×64

γ , where γ is the size (in bits)
of the compressed output stream and Nevent is the total
number of spike events, with each event equal to 64 bits.

• Video encoder compression ratio (compression ratio
w.r.t input frame size). Since video encoding is one

IEEE INTERNET of THINGS JOURNAL

AER Data

X1 Y1 T1,1 T1,2 T1,3 T1,4 F1

X2 Y2 T2,1 T2,2 T2,3 T2,4 F2

Xn Yn Tn,1 Tn,2 Tn,3 Tn,4 Fn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X1 X2 …. Xn Y1 Y2 …. Yn T1,1 T2,1 …. Tn,1 T1,2 T2,2 …. Tn,2 T1,3 T2,3 …. Tn,3 T1,4 T2,4 Tn,4…. F1 F2 …. Fn

Column Major

X1 Y1 T1,1 T1,2 T1,3 T1,4 F1 X2 Y2 T2,1 T2,2 T2,3 T2,4 F2 ……. Xn Yn Tn,1 Tn,2 Tn,3 Tn,4 Fn

Row Major

Extract
DataFlag - 8 bit

AER
Data
64 bit

X - 8 bit
Y - 8 bit

Time - 32 bit

Y Address
Polarity (DVS)

Trigger (DVS)
ADC Sample
Time Stamp

Type: 0 = DVS, 1 = APS

Read (APS): 00 = reset read, 01 = signal read, 11 = IMU read

X Address

Figure 7: Experiment setup for the evaluation of benchmark strategies [10]. The top part of the figure shows the AER data format.

of the key steps of TALVEN, the performance of the
video encoder is evaluated by computing the ratio:∑Tframes

1
size of uncompressed frame [bits]
size of compressed frame [bits] , where Tframes

is the total number of encoded frames.

VI. COMPRESSION PERFORMANCE OF THE EXISTING
STRATEGIES WITHOUT TIME AGGREGATION OF SPIKE EVENT

DATA

The end-to-end compression performance (w.r.t total number
of events) of all the considered benchmark lossless compression
strategies is reported in Table II. The cube-based spike coding
mechanism achieves the best compression ratio as shown in the
table. Instead of compressing DVS sequence as a multivariate
stream of integers, spike coding strategy projects DVS spike
sequence into multiple macrocubes. Spatial redundancy within
the macrocube is exploited by considering the correlation
among the neighbouring pixels (intracube prediction). On
the other hand, temporal correlation among the neighbouring
macrocubes is exploited through intercube prediction. The
residuals of the both the prediction types are fed to the CABAC
thus achieving further compression.

Dictionary based compression strategies yield the second
best compression performance as shown in Table II. Among
the considered dictionary based compression strategies, LZMA,
Brotli, Zlib and Zstd show better compression gains. These
strategies utilize a huge variable size dictionary (up to 4GB)
with the output of the dictionary-based compression further
processed by an entropy coding step. For instance, LZMA
utilizes a binary arithmetic encoder which encodes the output
stream of dictionary phrases on a bit-by-bit basis, thus yielding
impressive compression gains. On the other hand, Brotli, Zlib
and Zstd use Huffman coding as the final compression step. In
order to achieve superior decompression speed, Zstd utilizes
Finite State Entropy (FSE) before the Huffman coding which

results in a slight decrease in compression ratio as compared
to Zlib and Brotli. On the other hand, Brotli uses second
order context modelling before the Huffman coding step which
improves its compression performance as compared to Zlib
and Zstd.

IoT specific compression strategies yield low compression
performance. This is mainly because these strategies encode
only 8 rows of data, i.e., compression is performed on 8
consecutive spike events. This type of encoding works well
for slow changing time series data, for instance temperature
measurements, where the correlation among the consecutive
data samples is very high. However, the correlation among
the 8 consecutive spike events is generally low mainly be-
cause the probability of consecutive events having similar
spatial addresses and time stamps is low. Sprintz-Delta-Huf
and Sprintz-FIRE show approximately the same compression
performance. This shows that both Delta coding and Sprintz
forecasting algorithm FIRE result in similar residuals of the
consecutive spike events. The performance of Sprintz-Delta is
the worst among the variants of the IoT specific approach. This
is mainly because the residuals of the Delta coding are not
Huffman coded. This shows that Huffman coding as the final
encoding step enhances the compression gains of the Sprintz
strategy. It is important to note that Huffman encoding as a
standalone compression approach yields low compression gains,
only 1.87. The combination of Huffman coding with other
encoding frameworks (Dictionary and IoT specific strategies)
improves the compression performance as reported in Table
II. Fast integer compression strategies (Memcpy, Simple8B,
SIMD-BP128 and FastPFOR) yield the worst compression
gains. The main design goal of these strategies is the fast
compression and decompression speed.

It is important to note that the higher event rate sequences
result in better compression performance as compared to the
low event rate sequences as shown in Table II. For instance,

IEEE INTERNET of THINGS JOURNAL

Table II: End-to-end compression ratio (w.r.t total number of events) comparison.

Sequence Spike LZMA Brotli Zlib Zstd LZ4 Sprintz Sprintz Sprintz Huffman Snappy FastPFOR SIMDBP128 Simple8B MemcpyCoding Delta-Huf FIRE Delta

In
do

or

Boxes 4.95 4.92 4.38 4.21 4.13 3.03 3.83 3.72 2.83 1.96 2.98 1.4 1.38 1.25 1.12
Dynamic 3.85 3.34 3.19 3.13 3.07 2.46 2.68 2.63 2.33 1.89 2.44 1.31 1.28 1.15 1.12

Poster 4.88 4.77 4.26 4.12 4.02 2.97 3.7 3.6 2.76 1.96 2.92 1.4 1.37 1.24 1.12
Slider 3.84 3.19 2.85 2.89 2.76 2.3 2.65 2.62 2.36 1.79 2.26 1.41 1.36 1.23 1.12
Shapes 3.78 3.04 2.78 2.8 2.67 2.19 2.46 2.43 2.26 1.79 2.21 1.34 1.31 1.17 1.12

O
ut

do
or

Running 1 3.68 3.25 3.09 3.05 2.96 2.39 2.6 2.58 2.33 1.87 2.37 1.35 1.32 1.18 1.12
Running 2 3.92 3.41 3.26 3.19 3.13 2.51 2.7 2.67 2.35 1.89 2.48 1.3 1.27 1.15 1.12
Running 3 3.97 3.49 3.32 3.26 3.21 2.56 2.75 2.72 2.36 1.9 2.53 1.29 1.26 1.14 1.12

Urban 3.45 3.13 2.93 2.91 2.83 2.32 2.58 2.54 2.31 1.83 2.31 1.36 1.35 1.22 1.12
Walking 3.54 3.11 2.89 2.88 2.8 2.24 2.53 2.52 2.3 1.84 2.24 1.35 1.31 1.18 1.12

Total Average 3.99 3.57 3.30 3.24 3.16 2.50 2.85 2.80 2.42 1.87 2.47 1.35 1.32 1.19 1.12

the Poster sequence exhibits very high event rate (4.01 Mega-
events/s), whereas the Shapes sequence has the lowest event
rate (0.245 Mega-events/s). Since the Shapes sequence has
very low scene complexity and low speed of the sensor,
intuitively this sequence should achieve high compression
gains. However, if we compare the compression performance
of both the sequences, then the Shapes sequence achieves
the lowest compression ratio, whereas Poster sequence yields
higher compression gain. In order to find the rational behind
this key observation, we computed histogram and entropy of
high and low event rate sequences data as reported below.

A. Histogram and entropy computation of different fields of
the spike event data

The histogram and entropy of the spatial addresses (X and
Y) and time stamp (delta coded) fields of the Shapes and Poster
sequences are reported in Figure 8. The higher the entropy,
the higher the uncertainty in the data, which results in low
lossless compression ratio. The spatial address is the least
compressible field of the DVS spike sequence as shown by the
entropy computation of spatial addresses X and Y in Figure
8 (the entropy is above 7 for both the sequences for both X
and Y, being log2(180) = 7.492 the entropy of the equivalent
”uncompressible source” for Y and log2(240) = 7.907 for X).
Hence, both the sequences results in low compression gains
for the spatial address field. The timestamp of each spike event
consumes 32 bits; however, the entropy of the delta-coded time
stamp is very low for both the sequences. This shows that this
field is highly compressible as compared to the spatial address
field. The range of values (histogram bins) for the Poster delta
coded time stamp is only 0 and 1, whereas for the Shapes
sequence the series of intervals ranges from 0 to 20. This is
mainly because a spike event is elicited every microsecond for
the high event rate sequence as shown by the delta-coded time
stamp histogram. This shows that the time stamp information
for the Poster sequence can only be represented by one bit (0
to 1) only, whereas the Shapes sequence requires at least 5
bits (0 to 31). Therefore, the compression performance of high
event rate sequences is better than the low event rate sequences
as reported in Table II.

The compression ratio achieved by all the considered
benchmark strategies is very limited. For instance, the average
compression performance of the Spike coding is 3.99 which
means that on average, 64

3.99 , 16.04 bits are required for each
spike event. The compressed data rate is still high; for instance,
the bit rate of the Boxes sequence for spike coding is 55.44

Figure 8: First Row: Histogram of the spatial address (X and Y) integers and
delta-coded time stamps of the Shapes scene. Second Row: Histogram of the
spatial address and delta-coded time stamps of the Poster sequence.

Mbps, whereas the low complexity Shapes sequence results in
4.158 Mbps according to the compression ratios reported in
Table II. In the subsequent section, we analyze the compression
gains achieved when time aggregation of spike events is
employed.

VII. COMPARATIVE PERFORMANCE ANALYSIS OF THE
PROPOSED AND BENCHMARK STRATEGIES

A. TALVEN performance for different contents and comparison
with benchmarks with no time aggregation

Figure 9 presents the compression performance of the
TALVEN approach for the considered outdoor and indoor
sequences, detailing the performance of the subsequent steps
in the TALVEN strategy.

The global compression performance, i.e., w.r.t the number of
spike events, is reported in the upper part of the figure. Accord-
ing to the first row of figure, a massive increase in compression
performance is observed for increasing time aggregation of
spike events (from 1ms to 50ms). If we compare the results of
TALVEN (hence with time aggregation) with the results of the
strategies in Table II (without time aggregation), we observe
that the compression ratio of the Boxes sequence is increased
from 4.95 (compression performance of the best strategy in
Table II) to 9.717 (TALVEN compression performance) under
time aggregation of 1 ms. Higher time aggregation intervals
result in even higher performance increases: the compression
ratio increases to 21.74 (339 % increase) and 77.28 (1461

IEEE INTERNET of THINGS JOURNAL

5 10 15 20 25 30 35 40 45 50

Time Aggregation [ms]

20

40

60

80

C
om

pr
es

si
on

 R
at

io
End-to-end compression ratio (Indoor)

Poster

Box

Dynamic

Shape

Slider

5 10 15 20 25 30 35 40 45 50

Time Aggregation [ms]

50

100

150

200

250

C
om

pr
es

si
on

 R
at

io

Video encoder compression ratio (Indoor)

Poster

Box

Dynamic

Shape

Slider

5 10 15 20 25 30 35 40 45 50

Time Aggregation [ms]

0

10

20

30

40

50

C
om

pr
es

si
on

 R
at

io

End-to-end compression ratio (Outdoor)

Running3

Running2

Running1

Walking

Urban

5 10 15 20 25 30 35 40 45 50

Time Aggregation [ms]

50

100

150

C
om

pr
es

si
on

 R
at

io

Video encoder compression ratio (Outdoor)

Running3

Running2

Running1

Walking

Urban

Figure 9: First row: end-to-end compression gains (i.e. w.r.t total event count) of the TALVEN strategy. Second row: Compression ratio of the video encoding
step of the TALVEN.

% increase) under aggregation time of 10 ms and 50 ms
respectively as shown in Figure 9.

1) Video encoding compression gains of TALVEN: The
second row compares the compression gains of the video
encoder section for the considered scenes, i.e., size after
compression w.r.t the input frame size. We observe that the
best compression gain in this step is achieved for the Shapes
sequence. This is mainly because the Shapes sequence exhibits
low scene complexity and low sensor speed. Therefore, the
subsequent event frames have very high correlation, which
is exploited by the interframe coding. The compression ratio
achieved for the Shapes sequence is close to 100 (encoder
compression performance) at the time aggregation interval of
10 ms, as reported in Figure 9. On the other hand, the Boxes
sequence yields the lowest compression gain; for instance the
compression ratio is only 7.59 at the temporal downsampling
factor of 10 ms. The Boxes sequence exhibits very high
scene complexity, coupled with high speed of the vision
sensor, which leads to low temporal correlation between the
subsequent frames. Similarly for the outdoor sequence of
Running3, the compression gain is the minimum; whereas the
Walking sequence achieves the best compression performance
among the considered outdoor scenarios.

Another important observation is the decrease of video
encoding compression gain of all the considered strategies
with the increase of temporal downsampling interval, as shown
in Figure 9. At lower time aggregation intervals (1 ms achieves
1000 fps), the temporal correlation between the frames is very
high which leads to high temporal redundancy and hence high
compression gains. The increase in size of the time aggregation
interval decreases the temporal correlation, which results in
lower compression gains for all the considered scenes.

2) End-to-end compression gains of TALVEN: The end-to-
end compression performance, reported in the upper part of
Figure 9, is the lowest at temporal downsampling factor of
1ms. This is mainly because the number of events per frame is
very low, i.e., the spike events (per second) are projected over

1000 fps. On the other hand, time aggregation of 50 ms yields
the best compression gains w.r.t total spike events because
only 20 frames (per second) carry the same number of spike
events. However, this does not imply that the higher the event
rate of the sequence, the higher the compression gain w.r.t the
number of spike events. For instance, the compression ratio
(w.r.t the total number of spike events) of the Shapes sequence
is higher than the Slider one, even though the event rate of the
Slider (336.78 Kilo-events/s) sequence is 37.12 % higher than
the Shapes sequence (245.6 Kilo-events/s). Similarly Poster
achieves a better compression ratio w.r.t total spike events as
compared to the Boxes sequence, which highlights the fact that
TALVEN exploits temporal redundancy efficiently thus yielding
high compression gains. This is in contrast to the compression
results for the benchmark strategies without time aggregation,
reported in Table II, where the higher the event rate, the higher
the compression gains, irrespective of the complexity of the
scene.

B. Comparative results with benchmark strategies with time
aggregation

Comparative results with the benchmark strategies are
reported in Figure 10, showing the end-to-end compression
performance (w.r.t total number of events) when neuromorphic
events are aggregated over constant time intervals of 1 ms, 5
ms, 10 ms, 20 ms, 40 ms and 50 ms. As benchmark strategies,
we selected Spike Coding, LZMA and Brotli, since they are the
three best performing strategies as highlighted in the previous
section and in our tests done under different time aggregation
intervals, not reported here for brevity.

A summary of the key observations from the comparative
results is reported below.

1) Marginal increase for LZMA and Brotli under time
aggregation: The increase in compression performance with
increasing time aggregation for LZMA and Brotli is marginal.
For instance, the compression performance of LZMA and Brotli
for the Boxes sequence increases to 5.5 and 5 (under time

IEEE INTERNET of THINGS JOURNAL

10 20 30 40 50

Time Aggregation [ms]

20

40

60

80

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Boxes
TALVEN

Spike Coding

LZMA

Brotli

10 20 30 40 50

Time Aggregation [ms]

20

40

60

80

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Poster
TALVEN

Spike Coding

LZMA

Brotli

10 20 30 40 50

Time Aggregation [ms]

10

20

30

40

50

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Dynamic
TALVEN

Spike Coding

LZMA

Brotli

10 20 30 40 50

Time Aggregation [ms]

5

10

15

20

25

30

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Slider
TALVEN

Spike Coding

LZMA

Brotli

10 20 30 40 50

Time Aggregation [ms]

10

20

30

40

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Shapes
TALVEN

Spike Coding

LZMA

Brotli

10 20 30 40 50

Time Aggregation [ms]

10

20

30

40

50

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Running1
TALVEN

Spike Coding

LZMA

Brotli

10 20 30 40 50

Time Aggregation [ms]

10

20

30

40

50

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Running2
TALVEN

Spike Coding

LZMA

Brotli

10 20 30 40 50

Time Aggregation [ms]

10

20

30

40

50

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Running3
TALVEN

Spike Coding

LZMA

Brotli

10 20 30 40 50

Time Aggregation [ms]

5

10

15

20

25

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Urban
TALVEN

Spike Coding

LZMA

Brotli

10 20 30 40 50

Time Aggregation [ms]

5

10

15

20

25

30

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Walking
TALVEN

Spike Coding

LZMA

Brotli

Figure 10: End-to-end time aggregation based compression gains (i.e. w.r.t total number of events) of TALVEN and benchmark strategies for the considered
Indoor (first row) and Outdoor (second row) sequences.

aggregation of 1 ms) from 4.92 and 4.38 respectively (without
time aggregation). We have observed a similar marginal
improvement in compression gain for all the other benchmark
strategies. A further increase in the time aggregation window
size does not improve the compression performance, as shown
in Figure 10. This is mainly because time aggregation of the
spike events has no impact on the spatial address field (X and
Y), i.e., it remains unchanged. The spatial address field exhibits
very high entropy as shown in Figure 8, therefore, this field
achieves the same low compression performance even after
the time stamp field has undergone downsampling. Hence, no
further compression gain is achieved for aggregation of the
spike events above 1 ms.

2) Spike coding achieves top comparative compression gains
at lower time aggregation intervals: In the proposed TALVEN
strategy, a frame of spike event data is created by accumulating
event count over the fixed time interval (the obtained frames
are equally spaced in time). On the other hand, in spike coding
[12] a macro-cube (similar to the event frame in TALVEN) is
created, where each macro-cube contains approximately the
same number of spike events, which results in a variable time
window. In this case, the number of macro-cubes to encode
remains constant irrespective of the temporal downsampling
interval. Each macro-cube contains 32768 events, therefore the
Boxes sequence (with an event rate of 4288.645 Kilo-events/s)
results in approximately 132 macro-cubes per second. The same
number of macro-cubes are encoded at every time aggregation
interval. Hence for the spike coding strategy, the compression
gain increases marginally with the increase in time aggregation
interval. On the other hand, the number of frames to encode in
TALVEN decreases with an increase in the time aggregation
interval. For instance, the temporal downsampling factor of

10 ms results in 100 fps for the TALVEN strategy. Therefore
the higher the temporal downsampling, the higher the event
aggregation per frame, which results in higher compression
gains as reported in Figure 10. However for low event rate
sequences (Shapes and Slider), the number of events aggregated
per frame (at lower temporal downsampling intervals) is very
low. Therefore, TALVEN results in lower compression gains
as compared to the spike coding strategy at time aggregation
below 10 ms, as shown in Figure 10.

3) TALVEN achieves better temporal redundancy exploita-
tion: Similar to the motion compensation concept in video
encoding, intercube prediction exploits temporal correlation
in the spike coding strategy [13], where previous coding
cubes are used as references to predict the current coding
cube. However, the prediction residuals achieved through the
intercube prediction are only for the spike event count because
spike polarity and timestamps are encoded separately. Since
each macro-cube contains an equal number of spike events in
the spike coding strategy, the timestamp associated with each
spike event is also encoded. For instance, if a pixel receives
an event count of 5, then the timestamp of all the five spikes
fired at the pixel must be recorded. The spike coding strategy
encodes the timestamps of the spike events by applying delta
coding, i.e., timestamps are differential coded one after another.
Similarly polarity of each event is separately coded in the spike
coding strategy. Since luminance increases or decreases in a
steady state, the temporal correlation between the polarities of
the events on a pixel is very high. Hence, the previous spike
polarity is taken as the context of the current spike polarity
which is fed to the context based entropy encoder.

On the other hand, timestamps of each spike event are not
required for TALVEN, instead the frame number field represents

IEEE INTERNET of THINGS JOURNAL

the downsampled timestamp of all the spike events in the frame.
Similarly the polarity information is embedded within the super-
frames. Prediction residuals computed through video encoding
(interframe coding) exploit temporal redundancy among all
the attributes (event count per pixel, spike event polarities and
time stamp information). Therefore, the embedding of polarity
and time stamp information within a frame allows TALVEN
to achieve better exploitation of temporal redundancies. For
instance, consider the Running3 sequence with 20 ms time
aggregation in Figure 10, where Spike coding encodes 47
macro-cubes/s (1525.532.7) and TALVEN encodes 50 frames/s.
Both the strategies approximately encode a similar number
of event frames, however, the compression ratio achieved by
TALVEN is approximately 40 % better than the spike coding
strategy. Similarly 20 ms of time aggregation for the Shapes
sequence yields approximately similar compression gains for
the spike coding (7.5 macro-cubes/s) and TALVEN (50 fps)
strategies as shown in Figure 10.

VIII. CONCLUSIONS

Recently several studies have shown the benefits of time
aggregation of spike event data in diverse scenarios, ranging
from steering angle prediction in intelligent driving to different
object detection and classifications tasks in tactile sensing,
robotics and computer vision. Motivated by these studies, in
this paper we proposed to aggregate over fixed time windows
the spike event stream and to represent such data in an
appropriate form compatible with video encoding to compress
the spike event data generated from the DVS. The proposed
strategy transforms the asynchronous stream of DVS data
into synchronous event frames, formatted in way that ensures
that the subsequent video encoder can exploit the spatial
and temporal redundancies in the data. According to the
experimental analysis, the proposed strategy shows excellent
compression gains as compared to the benchmark strategies.
Increases in the temporal aggregation window size further
increase the compression gains w.r.t the spike event rate.

REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120 dB 15 µs
Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE Journal
of Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[2] ——, “A 128x128 120 dB 30mW asynchronous vision sensor that
responds to relative intensity change,” in IEEE International Solid-State
Circuits Conference (ISSCC), San Francisco, USA, February 2006.

[3] N. Khan and M. G. Martini, “Bandwidth modeling of silicon retinas for
next generation visual sensor networks,” Sensors, vol. 19, no. 8, p. 1751,
2019.

[4] ——, “Data rate estimation based on scene complexity for dynamic vision
sensors on unmanned vehicles,” in IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna,
Italy, September 2018.

[5] J. Li, S. Dong, Z. Yu, Y. Tian, and T. Huang, “Event-based vision
enhanced: A joint detection framework in autonomous driving,” in IEEE
International Conference on Multimedia and Expo (ICME), Shanghai,
China, July 2019, pp. 1396–1401.

[6] A. I. Maqueda, A. Loquercio, G. Gallego, N. Garcia, and D. Scaramuzza,
“Event-based vision meets deep learning on steering prediction for self-
driving cars,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake city, USA, June. 2018.

[7] A. Rigi, F. Baghaei Naeini, D. Makris, and Y. Zweiri, “A Novel Event-
Based Incipient Slip Detection Using Dynamic Active-Pixel Vision Sensor
(DAVIS),” Sensors, vol. 18, no. 2, pp. 1–17, 2018.

[8] D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza, “Feature
detection and tracking with the dynamic and active-pixel vision sensor,” in
IEEE International Conference on Event-based Control, Communication,
and Signal Processing (EBCCSP), Krakow, Poland, June 2016.

[9] E. Mueggler, B. Huber, and D. Scaramuzza, “Event-based, 6-dof pose
tracking for high-speed maneuvers,” in IEEE International Conference
on Intelligent Robots and Systems (IROS), Chicago, USA, September
2014.

[10] K. Iqbal, N. Khan, and M. G. Martini, “Performance comparison of
lossless compression strategies for dynamic vision sensor data,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, May. 2020.

[11] N. Khan, K. Iqbal, and M. G. Martini, “Lossless compression of data from
static and mobile dynamic vision sensors-performance and trade-offs,”
IEEE Access, vol. 8, pp. 103 149–103 163, 2020.

[12] Z. Bi, S. Dong, Y. Tian, and T. Huang, “Spike coding for dynamic vision
sensors,” in IEEE Data Compression Conference (DCC), Snowbird, Utah,
USA, 2018, pp. 117–126.

[13] S. Dong, Z. Bi, Y. Tian, and T. Huang, “Spike coding for dynamic vision
sensor in intelligent driving,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 60–71, Feb 2019.

[14] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza,
“Event-based vision: A survey,” arXiv:1807.09480, 2020.

[15] Y. Collet and E. M. Kucherawy, “Zstandard - real-time data compression
algorithm,” July 2018, available at http://facebook.github.io/zstd/.

[16] P. Deutsch and J.-L. Gailly, “Zlib compressed data format specification
version 3.3,” RFC 1950, May, Tech. Rep., 1996.

[17] A. Lempel and J. Ziv, “Lempel -– Ziv — Markov chain algorithm,” 1996.
[18] J. Alakuijala and Z. Szabadka, “Brotli compressed data format,” Internet

Engineering Task Force, 2016.
[19] M. Litzenberger, B. Kohn, A. N. Belbachir, N. Donath, G. Gritsch,

H. Garn, C. Posch, and S. Schraml, “Estimation of vehicle speed based
on asynchronous data from a silicon retina optical sensor,” in IEEE
Intelligent Transportation Systems Conference (ITSC), Toronto, Canada,
September. 2006.

[20] D. Blalock, S. Madden, and J. Guttag, “Sprintz: Time Series Compression
for the Internet of Things,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 2, no. 3, p. 93, 2018.

[21] D. Lemire and L. Boytsov, “Decoding billions of integers per second
through vectorization,” Software - Practice and Experience, vol. 45, no. 1,
pp. 1–29, 2015.

[22] S. H. Gunderson, “Snappy: a fast compressor/decompressor,” April 2015,
available at https://github.com/google/snappy.

[23] M. G. Martini, N. Khan, Y. Bi, Y. Andreopoulos, H. Saki, and M. S.
Bahaei, “Challenges and perspectives in neuromorphic-based visual IoT
systems and networks,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Barcelona, Spain, May. 2020.

[24] S. Liu, B. Rueckauer, E. Ceolini, A. Huber, and T. Delbruck, “Event-
driven sensing for efficient perception: Vision and audition algorithms,”
IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 29–37, Nov 2019.

[25] M. Liu and T. Delbruck, “Adaptive Time-Slice Block-Matching Optical
Flow Algorithm for Dynamic Vision Sensors,” in British Machine Vision
Conference (BMVC), Newcastle, UK, September 2018, pp. 1–12.

[26] G. Cohen, S. Afshar, G. Orchard, J. Tapson, R. Benosman, and A. van
Schaik, “Spatial and temporal downsampling in event-based visual
classification,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 10, pp. 5030–5044, Oct 2018.

[27] F. B. Naeini, A. Alali, R. Al-Husari, A. Rigi, M. K. AlSharman, D. Makris,
and Y. Zweiri, “A novel dynamic-vision-based approach for tactile sensing
applications,” IEEE Transactions on Instrumentation and Measurement,
pp. 1–12, 2019.

[28] M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci, “Asynchronous
convolutional networks for object detection in neuromorphic cameras,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, Long Beach, California, US, June 2019.

[29] H. Rebecq, G. Gallego, E. Mueggler, and D. Scaramuzza, “EMVS: Event-
Based Multi-View Stereo—3D Reconstruction with an Event Camera in
Real-Time,” International Journal of Computer Vision, vol. 126, no. 12,
p. 1394–1414, Dec 2019.

[30] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman,
“Hots: A hierarchy of event-based time-surfaces for pattern recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 7, pp. 1346–1359, July 2017.

[31] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza,
“The event-camera dataset and simulator: Event-based data for pose

IEEE INTERNET of THINGS JOURNAL

estimation, visual odometry, and slam,” International Journal of Robotics
Research, vol. 36, no. 2, pp. 91–97, 2017.

	Blank Page

