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Abstract

Utilising a reconstructed ancestral mitochondrial genome of a clade to design hybridisation

capture baits can provide the opportunity for recovering mitochondrial sequences from all its

descendent and even sister lineages. This approach is useful for taxa with no extant close

relatives, as is often the case for rare or extinct species, and is a viable approach for the

analysis of historical museum specimens. Asiatic linsangs (genus Prionodon) exemplify this

situation, being rare Southeast Asian carnivores for which little molecular data is available.

Using ancestral capture we recover partial mitochondrial genome sequences for seven

banded linsangs (P. linsang) from historical specimens, representing the first intraspecific

genetic dataset for this species. We additionally assemble a high quality mitogenome for the

banded linsang using shotgun sequencing for time-calibrated phylogenetic analysis. This

reveals a deep divergence between the two Asiatic linsang species (P. linsang, P. pardico-

lor), with an estimated divergence of ~12 million years (Ma). Although our sample size pre-

cludes any robust interpretation of the population structure of the banded linsang, we

recover two distinct matrilines with an estimated tMRCA of ~1 Ma. Our results can be used

as a basis for further investigation of the Asiatic linsangs, and further demonstrate the utility

of ancestral capture for studying divergent taxa without close relatives.

Introduction

Ancestral hybridisation capture is a method that employs RNA or DNA oligonucleotides

(“baits”) based on a reconstructed ancestral sequence of the target region to selectively enrich

genetic libraries prior to sequencing, thus increasing target sequence output compared to stan-

dard shotgun sequencing. As such, it can be employed in cases where no closely related refer-

ence sequence species is available, as has been shown by its successful application to recover a

mitochondrial genome from the extinct glyptodont [1]. Hybridisation capture in general is

particularly suited to the genetic analysis of ancient and historical specimens, where DNA is

likely to be highly degraded and potentially contaminated. Additional case studies on the
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application of ancestral capture are therefore useful to establish this approach as a standard

method for the genetic investigation of species which lack (extant) close relatives.

Asiatic linsangs (Prionodon sp.) are an example of a genus for which little molecular data

exists, and sampling fresh material is challenging. Linsangs are small, genet-like carnivores

with a wide Southeast Asian distribution (Fig 1). The monogeneric family Prionodontidae

consists of two extant species: the banded linsang (Prionodon linsang) that inhabits Sundaic

southeast Asia, and the spotted linsang (Prionodon pardicolor) that inhabits much of the non-

Sundaic southeast Asian mainland (Fig 1). While these species have been characterized mor-

phologically [2], and some basic knowledge exists regarding their ecology [3–7], little is known

about the populations of these elusive nocturnal carnivores. Molecular data has helped to

resolve their phylogenetic relationship to other carnivorans—resulting in the establishment of

their own family (Prionodontidae), rather than being placed within the Viverridae [8–10].

Fig 1. Approximate location of sampling sites. Distribution of the two linsang species (banded linsang P. linsang and spotted linsang P. pardicolor) are indicated in

orange and blue, respectively (adapted from [45, 46]).

https://doi.org/10.1371/journal.pone.0234385.g001
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However, very limited investigation of intraspecific genetic variation has been done for the

spotted linsang [11], and equivalent data for the banded linsang is lacking entirely. Further-

more, there is no knowledge on how populations are structured for either linsang species.

In order to assess the intraspecific variation of the banded linsang, we investigated speci-

mens sampled at natural history museums (30–100 years old) from several parts of its Sundaic

distribution (Sumatra, Borneo, and Java). We utilised a capture approach based on a recon-

structed ancestral mitogenome (henceforth “ancestral capture”) sequence of the Felidae (the

closest related family, ca. 28 million years (Ma) divergence from the Prionodon lineage; from

Paijmans et al. [12]) to enrich the linsang genetic libraries for mitochondrial DNA sequences.

The recovered sequences provided several novel insights into the evolution of the Asiatic lin-

sangs. We also evaluated the efficiency of our capture strategy for regions of the mitogenome

with high and with low sequence similarity, leading to recommendations for future ancestral

capture experiments.

Materials & methods

Samples

Epithelial tissue from skulls or skins, or maxillo-turbinal bones, were obtained for ten histori-

cal banded linsang samples from natural history museums, eight of which yielded DNA

(Table 1) and two failed to yield any mitochondrial DNA (S1 Table of S1 Data). The successful

specimens originated from Borneo (N = 3), Sumatra (N = 2), Bangka Island (N = 2) and Java

(N = 1). The provenance of one of the two Sumatran samples (PLI-5) has been drawn into

question, as the collector of this specimen (M. Bartels) was primarily known for his work in

Java, and only rarely visited Sumatra. Therefore, it is possible that this sample could represent

an individual from Java instead of Sumatra.

Table 1. Sample information and basic mitogenome recovery results. More detailed sequence statistics can be found in S1 Table of S1 Data.

Sample

code

Locality Collection Collection

year

Collector Collection

voucher code

Mitogenome

recovery

method

No.

mapped

reads

(unique)

Portion of

mitogenome

recovered at�3x

sequencing depth

Average

Read

depth

Genbank

Accession

number

PLI-5 Sumatra,

possibly Java

(see text)

Naturalis,

Leiden

1954 M. Bartels 14687 Capture 13,984 50.95% 51.0 MT559408

PLI-8 Bangka Island Naturalis,

Leiden

Unknown Sody 33550 Capture 33,015 85.76% 149.8 MT559409

PLI-15 Bangka Island Naturalis,

Leiden

1986 Coll.

Maaskamp

34820 Capture 23,842 68.88% 135.0 MT559411

PLI-20 West Java Naturalis,

Leiden

Unknown Beck 34769 Capture 34,277 75.30% 146.2 MT559412

PLI-28 Kinabalu Park,

Borneo

Sabah

Parks

1988 Unknown 18616 Capture 55,243 90.02% 276.0 MT559413

PLI-33 Murug, Ranau,

Borneo

Museum

Sabah

1976 Taraju

Kintarong

27 Capture 12,231 69.27% 59.9 MT559414

PLI-39 Kambu,

Penampang,

Borneo

Museum

Sabah

1971 Unknown 392 Capture 42,510 91.63% 220.3 MT559415

PLI-12� Pagaralam,

Sumatra

Naturalis,

Leiden

1919 Batenburg 34763 Shotgun 53,797 99.12% 39.1 MT559410

� = sample for which a complete mitochondrial genome was assembled using shotgun sequencing.

https://doi.org/10.1371/journal.pone.0234385.t001
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Laboratory procedures

DNA extraction & library preparation. All pre-PCR steps were performed in dedicated

ancient DNA facilities, with appropriate decontamination procedures in place. Digestion was

performed using a non-destructive extraction buffer consisting of 5M of GuSCN, 25 nM NaCl,

50 mM of Tris, 20 mM of EDTA, 1% Tween-20 and 1% ß-mercaptoethanol [13], and binding

and washing steps were performed following Dabney et al. [14]. Single-stranded DNA libraries

[15,16] and double-stranded DNA libraries [17,18] were prepared from the resulting extracts.

For the majority of samples, endogenous content was estimated using low-level shotgun

sequencing (appr. 1 million reads per library, 75bp paired- and single-end reads) prior to

enrichment. For sample PLI-12, additional shotgun sequencing was performed in order to de-

novo assemble a complete mitochondrial genome for the banded linsang (appr. 10 million

reads; Table 1; S1 Table of S1 Data; also in Taron et al. [19]).

Ancestral mitogenome enrichment. Sequence capture was performed using a 244k fea-

ture SureSelect microarray (Agilent), following the procedure described by Paijmans et al.

[20]. A reconstructed ancestral mitogenome of the carnivoran family Felidae [12] was used to

design bait sequences using 2 bp tiling. Although a more closely related mitogenome sequence

has recently become available (spotted linsang, P. pardicolor [10]), this sequence was not pub-

lished at the time the current study was initiated, thus the ancestral sequence assay was utilised

[12]. Libraries were pooled prior to enrichment according to their target content as well as

their molarity (S2 Table of S1 Data), to avoid libraries with high mitogenome content over-

whelming samples with low mitogenome content on the array. After enrichment, approxi-

mately 30 million 75 bp paired-end reads were generated using the Illumina NextSeq 500

sequencing platform (S1 Table of S1 Data), using custom sequencing primers as needed for

single-stranded libraries [15,21].

Bioinformatic procedures

Raw sequences were trimmed using SeqPrep for paired-end sequence data (available from

https://github.com/jstjohn/SeqPrep) and cutadapt v1.10 [22] for single-ended sequence data,

both with default parameters. Reads shorter than 30 bp after trimming were discarded.

Mitogenome assembly & mapping. MITObim (Hahn et al. 2013) was used to assemble

the P. linsang mitogenome, using the mitogenome from P. pardicolor (GenBank Acc. Nr.

NC_024569 [10]) as reference sequence and a maximum mismatch value of 15%. After align-

ment, duplicates were identified according to both the 5’ and 3’ end mapping coordinates

using MarkDuplicatesByStartEnd.jar (https://github.com/dariober/Java-cafe/tree/master/

MarkDupsByStartEnd). To improve the accuracy of the resulting mitogenome further, we re-

mapped the sequence data to the mitobim reference using the Burrows-Wheeler Aligner

(BWA) v0.7.8 [23], with default values for seed length (32 bp) and mismatch values (0.04).

Samtools v1.19 [24] was used to remove reads with a mapping quality <Q30. Duplicates were

again identified and removed with MarkDuplicatesByStartEnd.jar. The final consensus banded

linsang mitogenome sequence was then called from the mapped data, using a minimum read

depth of 3x and a 90% majority rule for base calling. By using this stringent base calling strat-

egy, any positions with inadvertent enrichment of nuclear copies of mitochondrial origin

(numts) should be detected and not incorporated into the final consensus. Annotation was

performed manually in Geneious v7.0 [25], using the published mitogenome sequence of the

spotted linsang P. pardicolor (GenBank Acc. Nr. NC_024569 [10]) as reference. For linsang

samples not selected for de-novo assembly, shotgun and capture sequences were mapped to

the new mitobim-assembled banded linsang mitogenome, using the same mapping tools and

parameters as described above.
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Sliding window analysis. Sliding window sequence identity between the ancestral bait

sequence and the P. linsang sequence was determined using a custom perl script, in 60 bp win-

dows with a step-size of 30 bp. Due to insertion/deletion differences between the ancestral

mitogenome and the linsang in the rRNA’s and the control region, this analysis excluded those

regions and was restricted to the region between 2–15 kb. Sequencing depth in each window

was recovered using bedtools v2.23 [26]. To assess the impact of sequence divergence on cap-

ture efficiency, we compared the shotgun data from individual PLI-12 to the capture data from

the same individual. For this we investigated the relative proportions of the number of 60 bp

windows and sequencing depth (capture/shotgun) at different levels of sequence divergence

from the ancestral bait sequence. These metrics were plotted using ggplot2 [27] using the sta-

tistical programming environment R (http://www.cran.r-project.org).

Sequence alignment. Linsang sequences were aligned using ClustalW [28] as imple-

mented in Geneious v7.0, with default parameters. For interspecific analyses, a second align-

ment was generated for the fossil calibration analysis (see below) following the same

procedure, including the two most divergent banded linsang sequences (one from each matri-

line; PLI-5 and PLI-20) and 21 additional Feliformia species (S1 Data). All alignments were

checked for internal stop codons using the vertebrate mitochondrial translation table in Gen-

eious, to further ensure no numt sequences were integrated in the mitochondrial genome

sequences. Furthermore, all columns with missing data were removed from the alignment.

Phylogenetic analysis. Four phylogenetic analyses were conducted, which are briefly

described below (see S1 Text of S1 Data and S3 and S4 Tables of S1 Data for additional

details):

• Analysis 1 involved maximum-likelihood analysis using RaXML v8.2.4 [29] of representative

mitochondrial sequences from the Feliformia clade, with the aim of reconstructing their

phylogeny and determining the phylogenetic position of the linsang sequences.

• Analysis 2 involved analysis of the Feliformia dataset using BEAST v1.8.2 [30], with the aim

of estimating the divergence time of banded and spotted linsangs, and the basal divergence

of the sampled haplotype lineages within the banded linsang, using a total of eight fossil cali-

brations (S4 Table of S1 Data). The latter was achieved by the inclusion of two sequences

representing the maximal phylogenetic divergence observed within the sampled specimens

based on prior exploratory analyses.

• Analysis 3 involved analysis of all eight banded linsang sequences in BEAST, with the aim of

estimating coalescence times of the sampled mitochondrial lineages, based on the tMRCA

estimated in Analysis 2.

• Analysis 4 involved generating a median-joining network for the banded linsang samples

using PopArt v1.7 [31].

Results

High quality mitogenome assembly for the banded linsang

Approximately 8 million reads of shotgun data for sample PLI-12 were generated in order to

assemble the mitogenome of the banded linsang with MITObim [32]. We recovered 55,442

unique reads using mitobim after 24 iterations. Conventional mapping (BWA) of the shotgun

data to the mitobim sequence resulted in 53,797 unique reads (Table 1; S1 Table of S1 Data),

which were then used to generate the consensus mitogenome sequence. Using this approach,

99% of the mitogenome was reconstructed, with an average sequencing depth of 156x. We

found that the banded linsang mitogenome had 88% sequence similarity to the published
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mitogenome sequence of the spotted linsang. The annotated banded linsang mitogenome

sequence has been deposited in GenBank (accession number MT559410).

Ancestral capture efficiency at variable sequence similarity

In addition to the complete mitogenome, we furthermore recovered partial mitochondrial

genomes for an additional 7 banded linsangs (Table 1): between 50–90% of these mitogenome

were retrieved with high sequencing depth (39-275x; Table 1). Regions with little to no

sequence divergence from baits showed proportionally higher read depth when compared to

the shotgun data (Fig 2; S1 Fig of S1 Data). The uneven coverage along the mitogenome fol-

lowing ancestral capture thus likely reflects local sequence divergence between bait and target,

Fig 2. Impact of sequence divergence on capture. Impact of sequence divergence between bait and target on coverage in 60 bp

sliding windows (step size of 30 bp). The proportion of the number of windows per sequence divergence bin is given by the grey

bars; trendlines (loess smooth regression) for the proportion of unique mapped reads per sequence divergence bin are shown

separately for captured libraries (orange) and the shotgun library (black). The shotgun library shows no bias towards/against

windows with high or low divergence, whereas the capture libraries show a very clear bias towards high identity windows.

https://doi.org/10.1371/journal.pone.0234385.g002
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a general property of hybridization capture that has been observed in multiple studies [e.g.

12,33–35]. The de-novo assembled banded linsang mitogenome showed between 0% and 27%

sequence divergence to the ancestral bait sequence, with a mean of 12%.

Linsang phylogeny

Maximum likelihood analysis of mitochondrial sequences (23 sequences, 8001 bp) represent-

ing the Feliformia clade recovered the monophyly of the spotted linsang and the banded lin-

sangs, and their position as sister to the Felidae clade, with 100% bootstrap support (S2 Fig of

S1 Data). The median estimated age for the divergence of the two linsang species was 11.76

million years (Ma; 95% credibility interval [CI]: 9.44–14.40 Ma; Fig 3A). The median estimated

age for the basal divergence of the banded linsang lineages was 1.22 Ma (95% CI: 0.85–1.60

Ma; Fig 3A). The intraspecific phylogeny (8 sequences, 8107 bp; Fig 3B; S2 Text of S1 Data)

and MJ network (S3 Fig of S1 Data) reveal two divergent matrilines among the sampled

banded linsang. Based on the estimated basal divergence of the banded linsang haplotype line-

ages, all other coalescence events among the eight sampled haplotypes are estimated to have

occurred within the last ~500,000 years (Fig 3B).

Discussion

Using a combination of shotgun sequencing and ancestral sequence capture, we were able to

recover a complete mitogenome and seven additional partial mitogenomes of the banded lin-

sang from historical museum specimens. This represents the first intraspecific mitochondrial

dataset for this species, and provides novel insights into their evolution.

Phylogenetic analysis supports a deep divergence within the Asiatic linsangs, with the two

recognised species coalescing around 12 Ma. This deep divergence between the spotted and

banded linsang has been shown previously using short mtDNA sequences [36,37]. It is notable

that this divergence approximates that found among all living felid species [38]. Unfortunately,

our small sample size and the questionable provenance of one of the Sumatran samples pre-

cludes any robust interpretation of the intraspecific population structure of the banded lin-

sang. The potential presence of two divergent matrilines within the banded linsangs could

serve as a basis for further, more thorough, investigation of the population structure using

more samples and more genetic markers.

The problematic provenance of one of the Sumatran samples highlights both the advantages

but also the difficulties of working with museum samples. As methodologies to mediate the

less-than-favourable sample quality develop further and further, museum collections become

an increasingly accessible and important sample source, providing access to genetic material

of rare or extinct lineages that are otherwise not readily available. However, the provenance of

museum samples is sometimes ambiguous, specifically regarding uncertainties about the geo-

graphic origin of the sample. Despite these issues, museum samples will remain a vital resource

for rare species such as the Asiatic linsang.

Our study also provides further useful information on the practical application of ancestral

capture. As the Felidae clade for which we reconstructed the ancestral mitogenome sequence

is sister to the linsang lineage, we show that ancestral capture can be applied to enrich not only

a range of descendant [12] as well as sister taxa (this study). Pooling of multiple samples in the

same capture experiments will greatly leverage the sample throughput and cost-efficiency.

However, in previous studies, pooling multiple libraries in the same capture experiment has

sometimes led to uneven representation of each library in the post-capture pool [e.g. 39]. We

find that pooling samples on the array according to their target content (based on low level

shotgun sequencing) as well as their molarity, provided a relatively equal representation of
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reads per library in the post-capture pool (S1 Table of S1 Data). We therefore recommend this

approach for pooling samples of variable sample quality in the same capture experiment in

order to increase throughput and to decrease per-sample costs. While we carried out the cap-

ture on Agilent SureSelect arrays, this pooling strategy is likely to be beneficial to in-solution

capture approaches as well.

Previous studies have found a strong correlation between enrichment efficiency and bait-

to-target similarity [e.g. 12,33,34,40], while successful enrichment has been reported for up to

40% sequence divergence between bait and target [e.g. 41]. The maximum sequence diver-

gence between our bait and target sequences was less than 30%. The large difference we

observed between highly successful recovery at high-similarity regions (more than 1000x read

depth in regions <10% sequence divergence) but low recovery at low-similarity regions (down

to 0x depth in regions >20% sequence divergence) suggests a strong bias towards the former,

in our case severe enough to lose the latter regions entirely. Some of this bias is expected due

to the increased mismatches between bait and target; however, the lack of recovered data at

higher levels of sequence divergence is not expected. It is possible that this may have resulted

from a template abundance bias in post-capture amplification steps, and/or the two consecu-

tive capture rounds. Although a single capture round has been shown to be less effective for

overall enrichment rates compared with two consecutive capture rounds for degraded samples

[42–44], the bias in recovery of low-similarity regions we observed may be partially reduced

when only a single round of capture is used. An alternative solution could potentially be to

split the capture baits into high- and low-identity pools, and capture the library separately with

each bait pool—although not every bait preparation method will lend itself for this strategy

(e.g. when preparing home-made baits from PCR products), and this also requires prior

knowledge of local sequence divergence which may not be available.

Despite the inability of our ancestral capture strategy to recover more divergent mitochon-

drial regions in this experiment, overall we were able to recover a sufficient portion of the

mitochondrial genome for phylogenetic and phylogeographic analyses. Thus, even without

further optimisation, this approach is tenable for many applications including phylogenetic,

phylogeographic and conservation genetic investigations of rare taxa. Furthermore, it is nota-

ble that this data can be generated rapidly and at relatively low cost, including for historical

museum specimens, and is applicable even to the sister taxon of the ancestral bait sequence in

addition to the descendent clade. Ancestral capture is thus a useful tool for genetic investiga-

tion of species which lack sequence information from close relatives.

Supporting information

S1 Data.

(PDF)
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