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Abstract Bitcoin is a decentralized cryptocurrency,1

which is a type of digital asset that provides the basis2

for peer-to-peer financial transactions based on block-3

chain technology. One of the main problems with decen-4

tralized cryptocurrencies is price volatility, which indi-5

cates the need for studying the underlying price model.6

Moreover, Bitcoin prices exhibit non-stationary behav-7

ior, where the statistical distribution of data changes8

over time. This paper demonstrates high-performance9

machine learning-based classification and regression10

models for predicting Bitcoin price movements and11

prices in short and medium terms. In previous works,12

machine learning based classification has been studied13

for an only one-day time frame, while this work goes14

beyond that by using machine learning-based models15

for one, seven, thirty and ninety days. The developed16

models are feasible and have high-performance, with17
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the classification models scoring up to 65% accuracy 1

for next-day forecast and scoring from 62% to 64% ac- 2

curacy for seventh to ninetieth day forecast. For daily 3

price forecast, the error percentage is as low as 1.44%, 4

while it varies from 2.88% to 4.10% for horizons of seven 5

to ninety days. These results indicate that the presented 6

models outperform the existing models in literature. 7

Keywords time-series forecast · deep learning · 8

machine learning · blockchain 9

1 Introduction 10

Digital transformation of economies is the most serious 11

disruption that is taking place now in all economies and 12

financial systems. The economies and financial systems 13

of the world are becoming digital at an unprecedentedly 14

fast pace. According to a recent report, the size of digi- 15

tal economy in 2025 is estimated to be 25% (23 trillion 16

USD), consisting of tangible and intangible digital as- 17

sets [1]. The most recent technology for establishing and 18

spending digital assets is the distributed ledger technol- 19

ogy (DLT), and its most well-known application being 20

the cryptocurrency named Bitcoin [2]. 21

An important issue about the non-tangible digital 22

assets, and especially cryptocurrencies, is price volatil- 23

ity. The price of Bitcoin (BTC) for the period of April 1, 24

2013 to December 31, 2019 can be seen in Fig. 1. BTC 25

prices have exhibited extreme volatility in this period. 26

The price has increased 1900% in the year 2017, consec- 27

utively losing 72% of its value in 2018 [3]. Prior to 2013, 28

the popular interest in BTC, its usage in virtual trans- 29

actions, and its prices have been low. That period is not 30

considered in our models. Although the BTC prices ex- 31

hibit extraordinary volatility, BTC as a digital asset is 32

quite resilient as it can regain its value after significant 33
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drops, and even when the uncertainty is high in the1

market such as during the COVID-19 pandemic [4].2

Fig. 1: Bitcoin (BTC) prices from April 2013 to April

2020

Despite its rapidly changing nature, the price of3

BTC has been an area where various researchers have4

presented efforts for price forecast. A number of stud-5

ies have discussed whether BTC prices are predictable6

using technical indicators and demonstrated the exis-7

tence of significant return predictability [5] [6]. Other8

recent studies such as [7], [8] and [9], have applied var-9

ious machine learning related methods for end-of-day10

price forecast and price increase/decrease forecasting.11

[8] reported maximum accuracy up to 63% for forecast-12

ing of increase or decrease of prices. [9] reported 98%13

success rate for daily price forecast. However, the time14

periods of these studies have been limited by data —15

up to April 1, 2017 [9] and up to March 5, 2018 [8]. We16

believe that a current study is needed considering the17

volume of the BTC price movements that occurred after18

these dates. Secondly, the cited works focus on end-of-19

day closing price forecast and price increase/decrease20

forecasting for the next day prices. In our study, we21

address mid-term price forecast and increase/decrease22

forecasting for horizons of forecast ranging from 7 day23

to 90 days, as well as daily closing price forecast, and24

price increase/decrease forecasting for the short term25

(end-of-day and next day). In addition, this is the first26

study that takes into consideration all the price indica-27

tors up to 31 December 2019 and provides highly accu-28

rate end-of-day, short-term (7 days) and mid-term (3029

and 90 days) BTC price forecasts using machine learn-30

ing.31

Our performance results indicate that our results32

are better than the latest literature in daily closing price33

forecast and price increase/decrease forecasting. Addi-34

tionally, we present high performance neural-network35

based models for medium term (7, 30 and 90 days) BTC 1

price forecasts and price increase/decrease forecasting. 2

2 Related Work 3

When Bitcoin began to get worldwide attention at end 4

of 2013, it witnessed a significant fluctuation in its value 5

and number of transactions [10]. A strand of litera- 6

ture has examined the predictability of BTC returns 7

through various parameters such as social media at- 8

tention [11, 12] and BTC related historical technical 9

indicators [13]. One group studied the period from 4th 10

September 2014 to 31st August 2018 by capturing the 11

number of times the term ‘Bitcoin’ has been tweeted. 12

The results showed that the number of tweets on Twit- 13

ter can influence BTC trading volume for the following 14

day [14]. Moreover, [15] studied the influence of users 15

comments in online platforms on price fluctuations and 16

number of transaction of cryptocurrencies and found 17

that BTC is particularly correlated with the number 18

of positive comments on social media. They reported 19

an accuracy of 79% along with Granger causality test, 20

which implies that user opinions are useful to predict 21

the price fluctuations. 22

When it comes to time series forecasts, there are 23

three different types of model based approaches for 24

time-series forecast according to [16]. The first ap- 25

proach, pure models, only use the historical data on the 26

variable to be predicted. Examples of pure time-series 27

forecast models are, Autoregressive Integrated Moving 28

Average (ARIMA) [17] and Generalized Auto Regres- 29

sive Conditional Heteroskedasticity (GARCH) [18]. [19] 30

presents an ARIMA-based time-series forecast for next 31

day BTC prices. However, we have not yet seen a study 32

based on GARCH. 33

Pure time-series models models are more appropri- 34

ate for univariate and stationary timeseries data. In 35

this paper we focus on machine learning with higher 36

level features rather than the traditional models for the 37

following reasons. First of all, BTC prices are highly 38

volatile and non-stationary. We demonstrate that BTC 39

prices are non-stationary in the next section. Secondly, 40

there are a large number of features in the data and 41

the proposed machine learning methodology handles 42

auto-correlation, seasonality and trend effects while the 43

training process of pure time-series models require man- 44

ual tuning to address these effects. 45

The second approach, explanatory models, use a 46

function of predictor variables to predict the target 47

variable in a future time. Model-based time series fore- 48

cast approaches have the disadvantage of making a 49

prior assumption about data distributions. For exam- 50

ple, [19] and [20] are based on a log-transformation of 51
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Fig. 2: ML-based timeseries forecast using technical indicators

the BTC prices. Similarly [20] used daily BTC data1

from Sep 2011 up to Aug 2017 to conduct an empir-2

ical study on modeling and predicting the BTC price3

that compare the Bayesian neural network (BNN) with4

other linear and non-linear benchmark models. They5

found that BNN performs well in predicting BTC log-6

transformed price, explaining the high volatility of the7

BTC price. However the above mentioned studies have8

used log-transformed prices for reporting performance9

metrics, which are misleading, as such values tend to10

be lower than performance metrics computed using real11

prices. We have analyzed this by calculating the perfor-12

mance metrics using log-normalized values and compar-13

ing against the non-log-normalized ones for our own re-14

sults, and found that although the log-normalized price15

forecast reports a much lower MAPE value, whereas the16

actual error may be up to 10 times higher.17

Since cryptocurrency prices are non-linear and non-18

stationary, the assumptions on data distributions may19

have adverse effects on the forecast performance. Non-20

stationary time series models exhibit evolving statisti-21

cal distributions over time, which results in a chang-22

ing dependency behavior between the input and out-23

put variables. Machine learning based approaches uti-24

lize the inherent non-linear and non-stationary aspects25

of the data. They can also take advantage of the ex-26

planatory features by taking into consideration the un- 1

derlying factors affecting the predicted variable. There 2

are several research studies on modeling and forecasting 3

the price of BTC using machine learning, 4

[21] used Bayesian regression method that utilize la- 5

tent source model which was developed by [22] to pre- 6

dict the price variation using BTC historical data. [23] 7

used machine learning and feature engineering to inves- 8

tigate how the BTC network features can influence the 9

BTC price movements. They obtained classification ac- 10

curacy of 55%. [8] used artificial neural network (ANN) 11

to achieve a classification accuracy of 65%. Further- 12

more, [24] predicted the BTC price using Bayesian opti- 13

mized recurrent neural network (RNN) and long short- 14

term memory (LSTM). The classification accuracy they 15

achieved was 52% using LSTM with RMSE of 8%. They 16

also reported that in forecasting, the non-linear deep 17

learning models performed better than ARIMA. [9] em- 18

ployed ANN and SVM algorithms in regression models 19

to predict the minimum, maximum and closing BTS 20

prices, and reported that SVM algorithm performed 21

best with MAPE of 1.58%. One of the latest studies 22

in predicting BTC daily prices is by [7], which used 23

high dimensional features with different machine learn- 24

ing algorithms such as SVM, LSTM and random forest. 25

For next-day price forecast from July 2017 to January 26
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2018, the highest accuracy of 65.3% was achieved by1

SVM.2

3 Methodology3

In this study, we are focusing on the time-series forecast4

of BTC prices using machine learning. A time-series is5

a set of data values with respect to successive moments6

in time. Time-series forecast is the forecast of future7

behaviour by analyzing time-series data. The objective8

is to estimate the value of a target variable x in a future9

time point x̂[t+ s] = f(x[t], x[t− 1], ..., x[t− n]), s > 0,10

where s is the horizon for forecast. We take into con-11

sideration, end-of-day, 7, 30 and 90 days as the horizon12

for forecast.13

Fig. 2 gives an overview of the main ideas used in14

this paper. The ML-based time-series forecast method15

starts with the construction of a dataset. This is fol-16

lowed by the training of ML models, and forecasts17

based on these models for different horizons of fore-18

cast. Time-series forecast on cryptocurrency prices have19

underlying interdependencies that are hard to under-20

stand and model. For example, there are statistical21

factors such as variance and standard deviation that22

changes over time. Those interdependencies show up23

as technical indicators, which are explained in Section24

3.1. In our study, open data sources have been utilized25

for gathering the BTC price technical indicators. In26

the data pre-processing step, data is gathered, cleaned27

and scaled/normalized. The collected BTC data is pro-28

cessed and divided into three intervals. Feature selec-29

tion is used to identify relevant features. Furthermore,30

based on the third interval, the datasets of nth day fore-31

cast/forecast are created. We produce multiple datasets32

for different horizon of forecasts, for three different33

time periods, and exercise feature selection separately34

for each dataset. Feature selection is the most impor-35

tant step in ML for time series forecast and explained36

through Fig. 5 and in Section 3.2.1. Feature selection37

is done to extract high ranking features from each of38

these datasets, using the random forest (RF) method39

and pruned based on variance inflation factor (VIF)40

and Pearson cross-correlation. The candidate features41

are explanatory features based on different statistical42

data about the operation of the blockchain itself, as43

well as technical market indicators. The datasets are44

split into training and validation sets. The ML classifi-45

cation and regression models are trained on the training46

split and validated on the holdout split.47

The main difference of ML-based approaches from48

model based methods for time-series is the training49

phase. ML methods extract high-dimensional statisti-50

cal trends and underlying features from the training51

data to allow it to predict the outcome in previously 1

unseen cases. ML for time series forecast can be used 2

for classification and regression. We use the following 3

ML models for classification and regression: Artificial 4

neural network (ANN), stacked artificial neural net- 5

work (SANN), support vector machines (SVM), and 6

long short-term memory (LSTM). The classification 7

is applied as follows: If the BTC daily closing price 8

PBTC [t + 1] − PBTC [t] ≥ 0 then y[t] = +1 and if 9

PBTC [t + 1] − PBTC [t] < 0 then y[t] = 0, where y[t] 10

is a target variable for categories of increasing and de- 11

creasing price. The regression models are used to pre- 12

dict BTC prices in a horizon of forecast for end-of-day, 13

7, 30 and 90 days. Fig. 3 depicts the detailed steps of 14

ML-based methodology used in this paper. 15

BTC prices prove to be a non-stationary time se-

ries, based on the unit root augmented Dickey-Fuller

(ADF) testing, with ADF statistic of −1.6188 at 1%

significance level (ADFcritical = −3.433,p = 0.47). For

higher order autoregressive processes given by (1) the

ADF test checks for the non-stationarity by testing

the null hypothesis, H0 : δ = 0, against the alterna-

tive, H1 : δ < 0. Failing to reject the null hypothesis

(p > 0.05) indicates the time series has a unit root and

a trend.

∆yt = α+ ζt+ δyt−1 +

K∑
i=1

βi∆yt−1 + εt (1)

where ∆ is the finite difference operator, the variable 16

of interest is yt, α is a constant, ζ is the coefficient of 17

the deterministic trend, yt−1 is the lagged series, δ is 18

the coefficient of the lagged series, βi is the coefficient 19

of the lags, and εt is the residual error. 20

Non-stationary timeseries data exhibit varying statis- 21

tical properties as shown in the Fig. 4. The box and 22

whisker plots of the 3 different linear segments of the 23

BTC prices timeseries. The timeseries is divided in 3 24

segments each segment consisting of 822 days. Each of 25

the segment has different means, standard deviations, 26

maximum and minimum prices as shown in Table 1. 27

Table 1: Descriptive statistics show the varying statis-

tical properties of the BTC prices in each segment of

the timeseries

Segment n Mean SD Max Min
I 822 365 227 1052 66
II 822 1031 1046 4808 214
III 822 7683 2870 19401 3256
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Fig. 3: Detailed steps of ML-based timeseries forecast

Fig. 4: Boxplots of the different segments of the BTC

prices timeline

3.1 Data1

BTC features and price data are available online and2

freely accessible. The data for this study was col-3

lected from https://bitinfocharts.com by a using4

web scraper written in Python 3.6. More than 700 fea-5

tures based on technical indicators were collected. From6

this large feature set, a smaller subset of features was7

selected through feature selection method. The techni-8

cal indicators are: Simple Moving Average (SMA), Ex-9

ponential Moving Average (EMA), Relative Strength 1

Index (RSI), Weighted Moving Average (WMA), Stan- 2

dard Deviation (STD), Variance (VAR), Triple Mov- 3

ing Exponential (TRIX), and Rate of Change (ROC). 4

These technical indicators are calculated using differ- 5

ent periods such as end-of-day, 7, 30, and 90 days. The 6

end-of-day closing prices are considered as raw values. 7

The raw features, upon which these technical indicators 8

are based on, are tabulated in Table 2. The technical 9

indicators show properties that are not readily found 10

in the raw features: things like variances and standard 11

deviations as a function of time. These technical indica- 12

tors are calculated to show these properties in the BTC 13

price timeseries features. For example, they show how 14

the BTC price is related to the standard deviation of 15

the transactions or hashrate in 30-days periods rather 16

than just the raw transactions and hasrates. 17

In this study, three data intervals were considered 18

for comparing with the state-of-the art given by [9] and 19

[8]. In the first interval, data between April 1, 2013 20

and July 19, 2016 was considered. The second interval 21

consists of data from April 1, 2013 to April 1, 2017. 22

The third and the largest interval contains data from 23

April 1, 2013 to December 31, 2019. This interval has 24

not been previously studied in the literature. 25

https://bitinfocharts.com
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Table 2: Raw features from which the technical indicators are created.

Features Description Features Description
Transactions The number of sent and received Bitcoin

payments.
Median
transaction
fee

The median of transaction fees in Bitcoin.

Block size Transactional information cryptographi-
cally linked in the blockchain. The max-
imum block size is currently set at 1
megabyte.

Average
transaction
fee

Each transaction can have an associated
transaction fee determined by the sender.
The transaction fee is received by the min-
ers who verify the transaction. Transactions
with higher fees incentivize the Bitcoin min-
ers to process them sooner than transactions
with lower fees.

Sent from
addresses

These are distinct Bitcoin addresses from
which payments are made everyday.

Block time The time required to mine one block. Usu-
ally it is around 10 minutes but can fluctuate
depending on the hashrate of the network.

Difficulty The daily average mining difficulty. The dif-
ficulty is computed by the network after a
specified number of blocks have been cre-
ated so that the time it requires to mine a
block remains around 10 minutes.

Hashrate The daily total computational capacity of
the Bitcoin network. Hashrate indicates the
speed of a computer in completing an opera-
tion.

Average
transaction
value

The average value of the transactions in Bit-
coin.

Median
transaction
value

The median value of the transactions in Bit-
coin.

Mining prof-
itability

The profitabilityi in USD/day for 1 terahash
per second (THash/s).

Active ad-
dresses

The number of unique addresses participat-
ing in a transaction by either sending or re-
ceiving Bitcoins.

Sent BTC The total Bitcoins sent daily. Top 100 to
total

The ratio of Bitcoins stored in the top 100
accounts to all the other accounts of Bitcoin.

Fee to re-
ward ratio

The ratio of the fee sent in a transaction to
the reward for verifying that transaction by
the other users.

3.2 Pre-processing1

In pre-processing, missing cases were imputed using lin-2

ear interpolation method wherever possible. Otherwise,3

most frequently occurring value within the feature is4

used for imputation. For all the regression models, the5

dataset was shuffled and split into two sets: training6

set and validation set. 20% of the data was held for7

validation and 80% was used for training. 5-fold cross8

validation was applied to the training set for training9

the stacked artificial neural network. For all the classi-10

fication models, the dataset was linearly split into two11

sets: training and validation. The first 80% of the data12

was assigned to training set, and the last 20% was kept13

for validation.14

For training ANN, stacked ANN, and LSTM mod-15

els, the features were scaled using the robust scaling16

followed by minmax scaling method. With the min-17

max scaling, the features are shifted between 0 and 118

while preserving the relative magnitude of the outliers.19

The robust scaling method uses the median and the in-20

terquartile range to scale the data. The parameters of21

scaling are fit using the training set and transformed22

to both training and validation sets. For training SVM,23

standard scaling was applied to the features as it im-24

proved the model performance compared to the other 1

scaling methods based on our data. 2

For nth day price forecast, the train-test split is the 3

same except that the price column is shifted upwards 4

(or equivalently, backwards in the time domain) based 5

on the number of days required. For instance, for 7th 6

day forecasts, the price column is shifted upwards by 7 7

days. This enables the regression models to learn the re- 8

lation between the features and future prices. For clas- 9

sification models, the price is converted to categorical 10

value by assigning a value of 1 if the price increases 11

or remains the same compared to the previous day. It 12

is assigned a 0 otherwise. For forecasting the nth day 13

price, the same technique is used. For instance, for 30th 14

day price forecasting, the 30th day price is compared to 15

today’s price and the categories 0 or 1 are assigned as 16

appropriate. The effect of price outliers on the perfor- 17

mance of the models was studied and removing them 18

resulted in improved performance. 19

Isolation Forest method [25] was used for this case. This 20

an unsupervised method for detecting outliers based on 21

decision forest. It is built based on the assumptions that 22

outliers tend to be few in number and have properties 23

unlike the bulk of the data. For instance, a randomly 24

occurring unusually large spike in BTC price data can 25
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be considered an outlier. Removing about 10% of the1

outliers increased model performance for most of the2

ML models. A few models performed well despite the3

outliers.4

3.2.1 Feature selection5

Feature selection, which is a crucial part of data pre-6

processing, is necessary to improve model performance.7

The features were extracted and pruned iteratively us-8

ing a number of different approaches. Firstly, feature9

importance was determined using an ensemble method10

based on random decision forest. Secondly, the reduced11

feature set was checked for multi-collinearity and cross-12

correlations. Variance inflation factor (VIF) and Pear-13

son correlation were used for these steps. The result-14

ing subset of features were of relatively high impor-15

tance with low cross-correlation values and no multi-16

collinearity. The feature selection is repeated for each17

of the three intervals. When forecasting or predicting18

for nth day, the feature selection process is reiterated to19

create a new subset of features that are better suited20

for the period of interest. For instance, the features that21

can forecast 7-days-ahead price movements fails to fore-22

cast 90-days-ahead prices reasonably. Furthermore, fea-23

ture selection process is required for classification mod-24

els in each interval after encoding them into categories25

such as increase, 1, or decrease, 0. Fig. 5 shows the fea-26

ture selection process.27

Random forest is an ensemble machine learning28

method based on decision trees that can be applied to29

both regression and classification problems. Unlike a30

single decision tree, a random forest can use hundreds31

of trees to make forecasts giving better results. It does32

not require extensive training and is useful for relatively33

small datasets and for quick evaluation. The features34

that contributed to the forecast results are given im-35

portance scores, which can be inspected for tuning the36

results such as by keeping or removing those features.37

Since random forest does not consider multi-collinearity38

and cross-correlations, other methods need to be used39

to check for those issues.VIF is used for measuring the40

collinearity in a multiple regression model. It compares41

the difference between a model with multiple features42

versus the same model with a lone feature. This indi-43

cates the variability that occurs in the model due to44

having a feature that correlates with another feature45

present in the model. While VIF ≤ 10 can be accepted,46

some suggest using VIF ≤ 5.47

Table 3 shows some of the features that are com-48

mon to several forecast periods based on the feature49

importance determined by random forest. To elaborate50

on the feature nomenclature, take the feature label me-51

dian transaction fee30trxUSD for instance. This is the 1

30 days triple moving exponential smoothing of the me- 2

dian transaction fee of BTC given in terms of USD 3

exchange rate at that time. An alternative to manual 4

feature selection is dimensionality reduction by Prin- 5

cipal Component Analysis (PCA). In this way, all the 6

features are transformed into a new set of components 7

through matrix manipulations. These new features are 8

linearly independent. A few datasets have been pre- 9

pared using PCA that captures 95% of the variance 10

in the original dataset. 11

Table 3: Some features that are marked as important by

random forest across different forecast horizons. EOD

refers to end-of-day, and 7, 30, and 90 refer to horizon

of forecast.

Features EOD 7 30 90
median transaction fee30trxUSD • • •
median transaction fee7trxUSD • •
price90emaUSD • •
size90trx • • • •
transactions • •
price30wmaUSD • •
price3wmaUSD • • •
price7wmaUSD • •
median transaction fee7rocUSD • •
difficulty30rsi • • • •
mining profitability • • •
price30smaUSD • •
sentinusd90emaUSD • •
transactionvalueUSD • • •
top100cap • •
difficulty90mom • •
hashrate90var • •
price90wmaUSD • •
sentinusd90smaUSD • •
median transaction feeUSD • •

3.3 Machine learning models 12

We modeled the Bitcoin prices using different machine 13

learning regression and classification models based on 14

ANN, SANN, SVM, LSTM. These models are explained 15

below. 16

3.3.1 Artificial Neural Network 17

Artificial neural network is a machine learning model 18

that consists of an input layer, an output layer, and 19

one or more hidden layers. ANNs are universal function 20

approximators [26] and widely used in machine learn- 21

ing for forecasts and classifications. The ANN model is 22

trained on the training split with hyperparameter tun- 23

ing for optimal performance. Satisfactory results were 24
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Fig. 5: Feature selection process

obtained using the configuration shown in Table 4 for1

Interval II. For this model and most other ANNs, the2

stochastic gradient-based optimizer Adam [27] was used3

as it performed better in comparison to other gradient-4

based optimizers on our dataset. Hidden layers, number5

of neurons per hidden layer, learning rate, epochs, batch6

sizes were tuned empirically to obtain optimum results.7

The loss function logcosh was used as it is less affected8

by sparsely distributed large forecast errors than the9

commonly used mean squared error. The rectified lin-10

ear unit (relu) [28] was used as activation function as11

it is more robust to the vanishing gradient problem.12

Table 4: Configuration of the ANN model used for In-

terval II.

Hyperparameters Settings
Optimizer Adam
Hidden layers (neurons) 2 (128,128)
Learning rate 0.08
Epochs 5000
Batch size 64
Activation relu
Loss function logcosh

3.3.2 Stacked Artificial Neural Network 1

Multiple ANNs can be used to create an ML-model by 2

a technique called stacking. The stacked ANN (SANN) 3

consists of 5 individual ANN models that are used to 4

train a larger ANN. The individual models were trained 5

using the training split with 5-fold cross validation — 6

each model trained on a separate fold. As ANNs are 7

stochastic, each trained model has different weights en- 8

abling them to learn their respective fold well. The final 9

ANN learns from these different models thereby outper- 10

forming any individual model over the whole training 11

set. Fig. 6 shows the stacked architecture of the SANN 12

regression model. In this figure, the train split is divided 13

into 5-folds. A separate ANN is trained on each of these 14

folds. The output of these ANNs are fed to the final 15

ANN. The final ANN uses the test split to compare the 16

outputs from the smaller ANNs and uses the best out- 17

put as its input to make forecasts. Although it uses the 18

test split in deciding the which output to choose from 19

the smaller input, it does not learn from the test split. 20

The SANN model is different from the ANN model that 21

is trained on the whole train split. The SANN model 22

does not directly learn from the whole train split but 23

rather trains on the outputs of the individual smaller 24

ANNs. 25
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Fig. 6: Architecture of the densely connected SANN

wherein separate ANN are trained on unique folds of

the trained split. The outputs from the trained sub-

models are used as the input for the final model, which

uses the best input for making its own forecasts.

3.3.3 Support Vector Machines1

As a supervised machine learning algorithm, SVM is

used for both classification and regression problems.

SVM is based on the idea of separating the data points

in the training split using hyperplanes such that the dis-

tance of separation is maximum. The support vectors

are points closest to the hyperplane that are used for

calculating its position. SVM kernels can be linear or

nonlinear, which includes radial basis function (RBF),

hyperbolic tangent, and polynomial. For small datasets,

SVM can yield forecasts with low error rates without

requiring extensive training time. For computing the

SVM, either of the objective functions based on L1 (2)

or L2 SVM (3) has to be minimized subject to the con-

dition given by (4). The Gaussian RBF kernel is given
by (5).

‖w̃‖2 + C

n∑
i=1

ζi (2)

where the slack variable is ζi, the penalty is C, and w̃

is the normal to the hyperplane.

‖w̃‖2 +
C

2

n∑
i=1

ζi (3)

yi(w̃ · φ(xi) + b ≥ 1− ζi, where ζi ≥ 0 (4)

where xi and yi are data points, and φ(xi) is the data2

transformation. The offset of the hyperplane from the3

origin along the normal of the hyperplane, w̃, is given4

by b
‖w̃‖ .5

k(x̃i, x̃j) = e

(
−
‖x̃i−x̃j‖

2

2σ2

)
(5)

where ‖x̃i − x̃j‖2 is the square of the Euclidean distance 1

between the features x̃i and x̃j, and σ is a free parame- 2

ter. 3

3.3.4 Long Short-Term Memory 4

Long-short term memory (LSTM) network is a type of 5

recurrent neural network that can learn from both long- 6

and short-term dependencies. This deep learning model 7

is particularly useful for modeling and forecasting time 8

series data. Since the daily Bitcoin price and its fea- 9

tures are time series data, LSTM can be used for mak- 10

ing price forecasts and forecasting rise or fall of BTC 11

prices. An LSTM block is analogous to the neuron in 12

the ANN. It has three gates represented by the sigmoid 13

functions: forget (f), input (i), and output (o) gates. In 14

the LSTM block, Ct−1 is the memory or cell state from 15

the previous block, ht−1 is the previous block output, 16

Xt is the vector input, Ct is the cell state or memory 17

of the present block, and ht is the output of the cur- 18

rent block. At the ⊗ junction, the Hadamard product is 19

performed element wise, and likewise at the + junction 20

the summation is done element wise. The LSTM gates 21

and cell states equations are given by (6) to (11). 22

ft = σg(Wfxt + Ufht−1 + bf ) (6)

where ft is the activation vector of the forget gate, W

and U are the weight matrices, b is the bias vector, and

σg is the sigmoid function.

it = σg(Wixt + Uiht−1 + bi) (7)

where it is the action vector of the input or update gate.

ot = σg(Woxt + Uoht−1 + bo) (8)

where ot is the activation vector of the output gate.

c̃t = σh(Wcxt + Ucht−1 + bc) (9)

where the activation vector of the cell input is given by

ct and σh is the hyperbolic tangent function.

ct = ft ⊗ ct−1 + it ⊗ c̃t (10)

where ct is the cell state or memory vector.

ht = ot ⊗ σh(ct) (11)

where ht is the output vector of the LSTM block or the 23

hidden state vector. 24
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4 Results1

In this section, we present the results of the machine2

learning based regression and classification.3

4.1 Price forecasts by regression models4

To evaluate the performance of regression models, the5

following metrics are used: mean absolute error (MAE)6

(12), root mean squared error (RMSE) (13), and mean7

absolute percentage error (MAPE) (14). A model with8

low MAE, MAPE, and RMSE is desirable. In the con-9

text of BTC price, for example, an MAE of 5 means10

that the predicted price is ± USD 5 from the actual11

price. MAPE quantifies the error in terms of percent-12

age. For example, a MAPE of 3% can mean either USD13

3 or 30 depending on whether the actual price is USD14

100 or 1000, respectively. RMSE indicates the spread of15

the forecast errors. A model that predicts occasionally16

erratic values will have a higher RMSE value, although17

it may have still have lower MAE or MAPE. Thus, the18

models should be evaluated with respect to all the three19

metrics.20

MAE =
1

n

n∑
i=1

|yi − ŷi| (12)

where yi is the actual value and ŷi is the predicted value.21

RMSE =

√√√√1

n

n∑
i=1

|yi − ŷi|2 (13)

MAPE =
100

n

n∑
i=1

|yi − ŷi|
yi

(14)

The results of the regression models for the three22

intervals are tabulated in Table 5. In Interval I, from23

April 2013 to July 2016, the BTC prices did not experi-24

ence much volatility as shown in Fig. 1. In this interval,25

all the models performed well with SANN reporting the26

lowest MAPE of 0.52%. The highest MAPE is reported27

by the ANN model with 1.88% and an MAE of 4.45.28

This outperforms [9] in the same interval where their29

highest performing model has MAPE of 1.91%, RMSE30

of 15.92, and MAE of 9.63.31

Interval II, from April 2013 to April 2017, does have32

noticeably higher BTC prices towards the end; however,33

it is relatively stable like Interval I. SANN performed34

the best with lowest MAPE of 0.93%. Maximum MAPE35

of 1.98% was reported by LSTM with MAE of 6.55.36

LSTM reported the highest RMSE of 10.55. In com- 1

parison, MAPE of 1.81%, RMSE of 25.47, and MAE 2

of 14.32 was reported by [9] for their best performing 3

model in Interval II. 4

BTC prices experienced the highest volatility after 5

April 2017, which is covered within Interval III (April 6

2013 to December 2019). In this interval, SVM reported 7

the lowest MAPE of 1.44%, and ANN reported the 8

highest MAPE of 3.78%. Nevertheless, ANN performed 9

better than the SVM in terms of RMSE and MAE by 10

scoring 74.10 and 39.50, respectively. While LSTM re- 11

ported a lower MAPE than ANN, it had the highest 12

RMSE and MAE. Stacked ANN reported a MAPE of 13

2.73, coming in second. It has MAE and RMSE compa- 14

rable to those of the ANN’s. Overall, all the four types 15

of ML models showed robust performance in Intervals 16

I and II, and satisfactory performance in Interval III, 17

albeit with relatively higher errors. 18

Table 5: Performance of regression models in different

intervals for predicting the daily closing price.

Metrics Intervals ANN SVM SANN LSTM
MAE I 4.45 1.72 1.24 2.20

II 4.61 5.23 4.13 6.55
III 39.50 47.04 40.58 62.90

RMSE I 6.13 2.37 1.58 3.01
II 8.22 9.68 6.48 10.55
III 74.10 122.34 87.62 135.76

MAPE I 1.88 0.73 0.52 0.93
II 1.27 1.23 0.93 1.98
III 3.78 1.44 2.73 3.61

Table 6 summarizes the forecast of the regression 19

models for nth day BTC price considering Interval III, 20

from April 2013 to December 2019. The bar chart in 21

Fig. 7 shows the performance of the ML models in terms 22

of MAPE. SANN reports the lowest MAPE for nth day 23

price forecasts, except for SVM, which gives a lower er- 24

ror rate for end-of-day closing price forecasts. However, 25

this should be evaluated considering the fluctuations of 26

the models as shown by Fig. 8 and Fig. 9 – where LSTM 27

clearly outperforms all other models. 28

For 7th day price forecast, ANN model reported the 29

lowest RMSE of 31.78. Highest MAPE and MAE are 30

reported by the LSTM model, and the highest RMSE 31

is reported by SVM. SANN has the lowest MAPE of 32

2.88% and the lowest MAE of 16.22. 33

The performance of the models dropped in 30th day 34

forecasts. In this forecast horizon, SANN reported the 35

lowest error rate of 3.45% with lowest RMSE and MAE 36

of 156.30 and 77.12, respectively. The highest errors 37

were reported by LSTM with RMSE of 219.59, MAE 38

of 116.37, and MAPE of 5.96. 39



Time-series forecasting of Bitcoin prices using high-dimensional features: a machine learning approach 11

Table 6: Predicting BTC price by regression models for

nth day using Interval III.

Metrics Horizon ANN SVM SANN LSTM
MAE 7 17.71 19.15 16.32 22.05

30 90.12 87.43 77.12 116.37
90 96.01 98.03 72.23 109.22

RMSE 7 31.78 37.32 36.33 36.12
30 175.60 158.60 156.30 219.59
90 210.09 203.11 140.00 217.84

MAPE 7 3.09 3.29 2.88 3.83
30 4.83 5.50 3.45 5.96
90 4.44 4.96 4.10 5.41

Lastly, in 90th day forecast horizon, SANN performed1

the best with MAPE, RMSE, and MAE of2

4.10%, 140.00, and 72.23, respectively. LSTM reported3

the highest error rate with MAPE of 5.41%. Generally,4

the SANN model reported the lowest errors for this5

horizon of forecast, followed by ANN, SVM, and LSTM,6

respectively. However, when considering the model fluc-7

tuation as shown by Fig. 8 and Fig. 9, LSTM per-8

forms the best, followed by SVM. ANN and SANN have9

similar patterns, however, SANN has high fluctuations.10

Consequently, even though SANN reported lower mean11

errors, it is the lowest performing model when consid-12

ering the variability of its forecasts.13

Fig. 7: MAPE of the regression models for nth days

forecasts in Interval III.

The regression models perform better than baseline14

price estimates calculated by moving averages and tech-15

nical indicators. Table 7 shows the MAPE obtained16

by using moving averages against the MAPE of the17

ML models. In forecast of end-of-day closing price and18

short-term horizon of 7 days, the baseline estimate are19

competitive and comparable to some of our ML mod-20

els. However, for medium term horizon forecasts of 3021

to 90 days, all developed ML models outperform the22

baseline.23

Table 7: The baseline MAPE based on moving averages

versus the regression models MAPE.

Horizon Baseline MAPE Regression Models MAPE
EOD 2.32 1.44 (SVM)
7 3.287 2.88 (SANN)
30 8.36 3.45 (SANN)
90 14.13 4.10 (SANN)

Fig. 8: Based on the 30-days regression models and a

sampled dataset (shifted by 30 days) from the entire

study period is shown. It shows all the models are quite

close to each other and follow the BTC prices closely.

Fig. 9: The trained models based on Interval III are

used to forecast the BTC prices for data after December

2019 – which is excluded from the train and test sets. It

shows LSTM performs the best, followed by SVM. ANN

and SANN have similar patterns, although SANN has

more fluctuations.

4.2 Price increase/decrease forecast by classification 1

models 2

The classification models require different performance 3

metrics for evaluation. The metrics are accuracy (15), 4

F-1 score (16), Area Under Curve (AUC), and the 5

Receiver Operating Characteristic (ROC) curve. The 6

ROC curve is plotted with recall (18) along the y-axis 7

and specificity (19) along the x-axis. All these metrics 8
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are created based on true positives (TP), true negatives1

(TN), false positives (FP), and false negatives (FN)2

shown in the confusion matrix in Table 8. The accu-3

racy is the most commonly reported classification met-4

ric and easily interpreted — a higher accuracy means5

a superior model. However, when the reported classes6

are imbalanced, such as dataset with more days of de-7

creased price than increased ones, metrics such as F1-8

score may provide further insight. A higher F1-score9

indicates that the model performs both the precision10

(17) and the recall (18) well. AUC score indicates how11

good the model is in distinguishing between the true12

positives and the true negatives, AUC of 0.5 means no13

discrimination between classes thus the closer the AUC14

to one the better the classification performance [29].15

Table 8: Confusion matrix

Predicted Price

Actual Price
Decrease Increase

Decrease TN FP
Increase FN TP

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

F1− score =
2× Precision× Recall

Precision + Recall
(16)

where precision and recall are given by (17) and (18),

respectively.

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

Specificity =
TN

TN + FP
(19)

Table 9 summarizes the results of classification16

models for the three intervals. These datasets are17

different from the regression datasets as they include18

different set and number of features, are linearly split19

to make train-test sets, and the target variable is20

categorical. In Interval I, SANN performs the best in21

all the three metrics with accuracy of 60% and AUC22

of 0.56. ANN reported a higher accuracy compared23

to SVM and LSTM. In Interval II, SANN remains24

the best performing models with 65% accuracy and25

AUC of 0.59. F1-score is higher compared to Interval 1

I. SVM comes in second with accuracy of 62%. LSTM 2

reports the lowest accuracy of 53%. [9] reported their 3

best accuracy of 59.45% with AUC of 0.58 using SVM 4

for Interval II, and an accuracy of 62% in Interval 5

I. In Interval III, SVM accuracy drops below 50%. 6

SANN keeps its high classification performance with 7

accuracy of 60% with both AUC and F1-score being 8

0.60. In comparison, [7] reported 65.3% accuracy with 9

SVM, however, their interval of consideration was 10

from mid-2017 to beginning of 2018 where the trend 11

was generally increasing. In general, the classification 12

accuracy can be improved. However, the extent of 13

improvement remains a challenge since modeling the 14

price increase and decrease by the selected technical 15

features is not adequate. Macroeconomic factors and 16

other unpredictable events affect the fluctuations of 17

BTC price. 18

19

Table 9: Performance of classification models in differ-

ent intervals.

Metrics Intervals ANN SVM SANN LSTM
Acc. (%) I 57 55 60 54

II 56 62 65 53
III 53 56 60 54

F1-score I 0.72 0.67 0.71 0.63
II 0.69 0.74 0.75 0.58
III 0.61 0.53 0.60 0.66

AUC I 0.51 0.51 0.56 0.52
II 0.50 0.55 0.59 0.53
III 0.53 0.56 0.60 0.54

The results of the increase/decrease forecasting 20

of nth day BTC price is tabulated in Table 10. Fig. 21

10 shows the classification accuracies for the different 22

types of ML-models. For 7th day forecasts, SVM 23

performs the best with accuracy of 62% and AUC of 24

0.60. ANN performs the poorest with accuracy of 51%. 25

LSTM performs better than ANN with 55% accuracy 26

and AUC of 0.56. 27

For 30th day, SANN has the highest accuracy of 62% 28

with AUC of 0.61. SVM, LSTM, and ANN have similar 29

accuracy, F1 and AUC scores. 30

Finally, for 90th day forecasts, the LSTM model reports 31

the highest accuracy of 64% with AUC of 0.66. The 32

ANN model improves to 62% accuracy. SANN comes 33

in third with 60% accuracy. 34

35

LSTM model performed best for forecasting 90th 36

day increase/decrease. SANN performed best for next- 37

day forecasts across all intervals as well as 30th day 38

forecasts. SVM performed best for 7th day forecasts. 39
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ANN had similar performance in Interval I, II and III1

next-day forecast but improved in 90th day forecast.2

Overall, LSTM model is the best performing one based3

on Fig. 8, Fig. 9 and the overall results from Table 10.4

Table 10: Forecasting BTC price direction by classifica-

tion models for nth day using Interval III.

Metrics Horizon ANN SVM SANN LSTM
Acc.(%) 7 51 62 53 55

30 52 52 62 52
90 62 54 60 64

F1-score 7 0.65 0.58 0.38 0.65
30 0.68 0.68 0.70 0.68
90 0.56 0.66 0.68 0.71

AUC 7 0.53 0.60 0.51 0.56
30 0.50 0.50 0.61 0.50
90 0.59 0.57 0.62 0.66

Fig. 10: Accuracy of the classification models for nth

day forecast in Interval III.

We applied principal component analysis (PCA) for5

dimensionality reduction for the purpose of measuring6

its effects. Based on Interval III, the components of7

PCA that capture 95% (PCA95) of the variance in the8

original data were used for predicting BTC price and9

forecasting the incrase/decrease. However, the perfor-10

mance of the regression models were subpar compared11

to the other models reported in the Tables 5. SVM re-12

sulted in MAPE of ≥30%, ANN in MAPE of ≥22%,13

SANN in MAPE≥17%, and LSTM in MAPE≥41%. In14

classification, LSTM and ANN models reported accu-15

racy scores below 50%. However, SANN reported ac-16

curacy of 61%, and F1-score and AUC of 0.61. SVM17

reported 54% accuracy with F1-score of 0.57 and AUC18

of 0.54. Thus, while all the regression models did not19

perform well using PCA95, the classification metrics20

showed that SANN and SVM are quite comparable to21

the models reported in Tables 9.22

5 Discussion 1

Modeling BTC price consists of two components: the 2

rise and fall of the price and the actual price. Through 3

this paper, we have shown that the latter can be done 4

with very low error rates. However, the former is still an 5

open challenge to all researchers. As noted in the litera- 6

ture, researchers have used internal and external factors 7

to classify the increase/decrease of BTC price. BTC 8

prices are stochastic and no given sets of features can 9

provide a complete forecast. Nevertheless, researchers 10

have shown success to various degree in modeling BTC 11

prices based on a different kinds of feature sets. In this 12

paper, we have included features that are directly asso- 13

ciated with the blockchain. For instance, if a lot of min- 14

ers are interested in mining BTC, the hashrate and dif- 15

ficulty will be high. Likewise, if many people are using it 16

for transactions, then the related features such as active 17

addresses and number of transactions will be high. All 18

these features can also be considered time-series fea- 19

tures. The technical indicators are simple mathemat- 20

ical tools to convert these rapidly raw features into 21

smoother time-series features that can used to make 22

baseline estimates. Combining the technical indicators 23

for different time periods creates a large feature set that 24

is suitable for machine learning. 25

The feature selection process has to be robust to find 26

the most useful features. The selected features for the 27

various intervals and forecast horizons are different and 28

not unique to one particular interval or horizon period. 29

The feature selection process presented is systematic 30

and can be used to come up with good selections as 31

evidence by the performance of the models. Alterna- 32

tively, dimensionality reduction was experimented us- 33

ing the PCA method. The regression models based on 34

PCA did not perform as well as the models trained on 35

selected features. The reason our approach works well 36

is because the techniques used in our feature selection 37

process take care of the issues such as multi-collinearity 38

and cross-correlations in addition to obtaining the fea- 39

ture importance. Although PCA has a similar effect 40

of making new variables that are linearly independent, 41

our inclusion of feature importance with random for- 42

est allows us to identify individual features with high 43

importance, which was not possible to do with PCA. 44

The four ML models used are of different nature 45

and different strengths are weaknesses. SVM is easy to 46

train but it is not truly stochastic. For a given dataset, 47

it will always produce the same results with the same 48

parameters. It is fast and can be used for small datasets. 49

The reason SVM performed better than ANN in some 50

instances, can be attributed to the size of the dataset. 51

ANN performs generally performs with large datasets 52
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containing millions of data points. LSTM is designed to1

remember trends in the data such as past behavior. Its2

best performance in 90th day forecast can be attributed3

to its design. SANN is a stacked model consisting of4

sub-models made from smaller ANN models. Consider-5

ing the different performance metrics and fluctuations6

of the forecasts, LSTM performed the best overall, fol-7

lowed by SVM. SANN and ANN models can follow the8

BTC timeseries with more fluctuations. LSTM also per-9

formed the best in classification. This aligns with the10

results from [24].11

6 Conclusion12

In this paper we address short-term to mid-term BTC13

price forecasts using ML models. It is the first study14

that takes into consideration all the price indicators15

up to 31 December 2019 and provides highly accu-16

rate end-of-day, short-term (7 days) and mid-term (3017

and 90 days) BTC price forecasts using machine learn-18

ing. Four types of ML models have been used ANN,19

SANNN, and LSTM. The LSTM showed the best over-20

all performance. All the developed models are satisfac-21

tory and have good performance, with the classification22

models scoring up to 65% accuracy for next-day fore-23

cast and scoring from 62% to 64% accuracy for seventh24

to ninetieth day forecast. For daily price forecast, the25

MAPE is as low as 1.44%, while it varies from 2.88%26

to 4.10% for horizons of seven to ninety days. Perfor-27

mance evaluation results show an improvement over the28

latest literature in daily closing price forecast and price29

increase/decrease forecasting. The results are satisfac-30

tory and show potential for further applications in dif-31

ferent areas such financial technology, blockchain, and32

AI development.33

Our results show that it is possible to forecast the34

actual BTC price with very low error rates while it is35

much harder to forecast its rise and fall. The classifica-36

tion model performance scores presented are the best in37

the literature. Having said that, the classification mod-38

els for Bitcoin need to be further studied. As further39

work, hourly BTC prices and technical indicators may40

be utilized as well as using ensemble models that com-41

bined different types of models for making forecast.42

Further work which can be followed on the basis of43

this paper is, investigating the use of artificial intelli-44

gence for modeling the price of cryptocurrencies as a45

basis for measuring the risk factor for the financial us-46

age of Blockchain technology. This model could also be47

useful in detecting fraudulent activities and anomalous48

behavior. When the actual behavior (price) changes sig-49

nificantly from the modeled behavior, this may indicate50

the effect of external factors such as major global events51

as well as fraudulent activities such as artificial pumps 1

and dumps. While the price modeling and forecast is 2

not the only tool to detect such external factors, one of 3

the possible applications of such models is in the detec- 4

tion and prevention of fraudulent activities. Our future 5

research will be focusing on such application areas. Us- 6

ing external data inputs related to global events and 7

global financial risk, a combination of machine learn- 8

ing based price models and anomaly detection methods 9

may be utilized to assess and predict the stability of 10

cryptocurrencies. 11
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