
A Study on Offshore Wind Farm Siting Criteria Using
a Novel Interval-valued Fuzzy-rough based Delphi

Method

Abstract

This study investigates the degree of importance of criteria affecting the op-

timal site selection of offshore wind farms. Firstly, forty two different influential

criteria have been selected by reviewing the scientific literature on offshore wind

farm site selection. Secondly, a survey has been conducted receiving a response

from thirty four internationally renowned experts across seventeen countries.

Each participant is asked to indicate the importance and relevance of each cri-

terion based on their experience. Finally, the importance of each criterion for

offshore wind farm site selection is determined using a novel Decision Making-

Level Based Weight Assessment (LBWA) approach based on interval-valued

fuzzy-rough numbers (IVFRN). The proposed method allows exploitation of

the uncertainties and subjectivity that exist in the decision-making process.

The results from this study improve our understanding of the importance and

impact of each criterion which we believe would be invaluable for the future

studies on the site selection of offshore wind farms.

Keywords: Renewable energy, offshore wind farm, site selection, criteria,

Delphi technique, interval-valued fuzzy-rough numbers, traditional type-1

fuzzy numbers.

1. Introduction

Renewable energy is clean and cheap, collected from renewable resources,

such as, hydro-power, biomass, geothermal, solar, wind and so on (Breton and

Moe, 2009). Wind energy, in particular, has been constantly growing and devel-
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oping in the recent years (Mostafaeipour, 2010). It introduces more advantages

in terms of cost, sustainability, and competition when compared to the other

renewable energy sources (Kempton et al., 2005).

After the Kyoto conference at the end of 1997, especially on the global cli-

mate change, the offshore wind energy has become the focal point of national

and international organizations after the restriction of fossil fuel consumption,

adopted by many developed countries (Gaudiosi, 1999). In recent years, the

wind energy industry has started to move towards the offshore market, and

thousands of megawatt (MW) - capacity wind farms have been installed offshore,

because of large-scale electricity generation (Markard and Petersen, 2009). Off-

shore wind energy has become an increasingly attractive option owing to its

large offshore areas and enormous energy potential (Breton and Moe, 2009).

The offshore wind farms (OWFs) have less turbulence than the onshore

winds, leading to much higher speeds. Higher speed means generation of more

electricity. If the speed of wind produced, increases proportionally to the cube,

going to the marine areas for a few kilometres from the land provides a significant

increase in electricity generation. For example, it is possible to produce 60%

more electricity from a wind turbine with an average wind speed of 28 km/h

compared to one with an average wind speed of 22 km/h. This wind power shows

how vital the speed factor is in electricity generation (Kurian et al., 2010).

Northern Europe is the region where the offshore wind energy was introduced

for the first time owing to the intensive use of limited available land areas

and high wind capacity (Gaudiosi, 1999). European offshore wind farms are

concentrated in the North Sea and the Baltic Sea (Denmark, Sweden, Germany

and the Netherlands). The characteristics of the northern seas, such as the

continuity of depth, and high sea wind not exceeding 60 m, allows for offshore

wind farms. The wide area at low depth allows the turbines to be installed

directly on the seabed with monopiles or jackets, and convenient winds provide

simple wind energy potential (Del Jesus et al., 2014).

Although offshore wind farms are based on a ‘clean’ technology, they may

have some negative effects on the marine life, sport fishery, navigational risks,
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impact of radio and radar corridors, tourist, environmental impact, or local res-

idents. While the positioning of wind turbines in the offshore eliminates noise

disturbance, it may cause aesthetic externalities and especially visual impact

(Ladenburg and Dubgaard, 2007). Energy companies or governments must con-

sider the conflicts between these OWF siting interests (Ho et al., 2018). Site

selection is the key to the success of OWF projects both economically, techni-

cally, environmentally and socially (Cali et al., 2018).

Today, many countries in the world are facing increasing restrictions on the

evaluation of optimal sites for offshore wind development. The criteria that af-

fect the investment and acceptance of OWF site selection have become increas-

ingly important by energy companies (Ho et al., 2018). Research on OWF site

selection has improved our understanding of the criteria that affect the future of

OWF. So far, many criteria have been defined for site selection; weather condi-

tions, operation/profitability, environmental impact, social (Community/local

acceptance), power networks (grid connections), shipping density, incentives,

characteristics of the region and so on. These criteria are examined in detail in

Section 2.3.

In practice, the priority and ranking of each criterion in OWF site selection

is of considerable importance. The Delphi method, which is an expert group

decision-making technique, can be used to determine the importance level and

ranking of criteria. However, due to lack of information, time pressure, decision-

makers may not be able to provide a (top-down) ranking of criteria. Instead,

some criteria can be ranked equally well or only to some degree better than

other criteria. In such cases, it might be more useful to utilise fuzzy-sets-based

ranking approach instead of the crisp rankings.

The interval-valued fuzzy-rough number (IVFRN) approach presented in

this paper involves defining the initial reference fuzzy set, by means of which

the uncertainty in Delphi is described. After defining the initial fuzzy set, the

uncertainties contained in the evaluations of the decision makers (DM) are mea-

sured by means of rough sets. This leads to the objective indicators contained

in the data. Interval-valued fuzzy-rough numbers take advantage of both the
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theory of fuzzy sets and rough numbers (Pamučar et al., 2018, 2019). At the

same time, using the advantages of both approaches (fuzzy and rough) IVFRN

eliminate the disadvantages of fuzzy sets type-1 and interval-valued fuzzy sets

(Roy et al., 2019). The advantages of implementing IVFRN in the Delphi are

numerous. IVFRN use only internal knowledge to present the limit values of the

attributes of a decision. In this way, subjectivity and assumptions when defin-

ing the limit values of traditional fuzzy sets are eliminated that could affect the

values of the attribute and the final choice of alternatives. When using IVFRN,

instead of using additional/external parameters, the structure of the given data

is exclusively used. In this way, uncertainties that already exist in the data are

used, improving the objectivity of the decision process (Pamučar et al., 2018).

Another advantage of this approach is the suitability of IVFRN for use in sets

characterized by a small amount of data, and for which traditional statistical

models are not suitable.

This study presents a novel variant of the LBWA (Level Based Weight As-

sessment) model (Žižović and Pamucar, 2019) with the goal of determining the

weight coefficients of OWF criteria in interval-valued fuzzy-rough environment.

The LBWA model is novel technique for determining weight coefficients of crite-

ria in multi-criteria decision-making models. The model enables the involvement

of experts from different fields with the purpose of defining the relations between

criteria and providing rational decision making. It can be applied in wide range

of practical cases in specialized decision-making support systems, as well as in

alternative dispute resolutions in virtual environment. The LBWA model has

several key advantages over the other subjective models based on mutual com-

parison of criteria as listed below: (i) the LBWA model allows the calculation

of weight coefficients with less number of criteria comparisons, i.e., only n − 1

comparisons, where n is the number of criteria; (ii) the algorithm of the LBWA

can scale as the number of criteria increases, which makes it suitable even for

the complex multi-criteria (MCDM) models with a large number of criteria;

(iii) by applying the LBWA model, optimal values of weight coefficients are

obtained with simple mathematical apparatus that eliminates inconsistencies in
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expert preferences, which are tolerated in certain subjective models (Best Worst

Method - BWM and Analytic Hierarchy Process - AHP); (iv) the elasticity co-

efficient of the LBWA model enables, after comparing the criteria, additional

corrections of the values of the weight coefficients depending on the preferences

of the decision makers.

The aim of this study is to rank offshore wind farm site selection criteria

using Delphi method based on interval-valued fuzzy-rough numbers. We have

conducted an online survey to identify the importance of 42 criteria for the

site selection of OWF. 34 international experts from 16 countries with a wide

range of expertise and disciplines, who adequately represented the subject area,

filled out the questionnaire. Due to the long list of possible criteria, some

of them requiring prior knowledge in the domain we had to limit our target

population to experts in the field. We provide our findings in this study, which

we believe to have important implications for future research and practice. The

main contributions of this paper are as follows: (i) identify the importance of

various criteria for the site selection of offshore wind farms (ii) the design of

a novel Delphi- Level Based Weight Assessment approach based on interval-

valued fuzzy-rough numbers for various ranking problems (iii) the development

of an integrated model for determining the weight coefficients of criteria and

evaluation.

The remainder of this paper is structured as follows: Section 2 presents an

overview of fuzzy ranking techniques. The offshore wind farm siting criteria

are defined in Section 2.3. Section 3 introduces the interval-valued fuzzy-rough

numbers and extended Delphi method. A questionnaire to identify the impor-

tance of various criteria are conducted in Section 4. Section 5 is given the survey

results, and the results and discussion are presented in Section 6. Finally, section

7 includes the conclusions of this study.
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2. Background

2.1. Related Work on Offshore Wind Farm Site Selection

Many studies have been published about OWF site selection in the literature

using various siting criteria. Vagiona and Karanikolas (2012) assessed offshore

wind farm sites using multi-criteria approach considering five evaluation criteria

such as wind velocity, protected areas, ship routes, distance from to shore and

electricity network. Fetanat and Khorasaninejad (2015) proposed multi-criteria

decision making method to find the best site selection of OWF. They considered

six criteria that include depths and heights, proximity to facilities, resource

technical levels and culture, environmental and economic issues, and sub-criteria

to select suitable sites for OWF. Wu et al. (2016) structured a framework for

OWF site selection based on 6 main and 22 sub-criteria. Chaouachi, Covrig and

Ardelean (2017) presented a multi-criteria selection of offshore wind farm sites

taking into consideration three main and six sub-criteria. Argin et al. (2019)

investigated the offshore wind energy potential of Turkey based on multi-criteria

site selection. They used eight site selection criteria their studies.

There has been many techniques concerning criteria or alternative ranking in

the literature such as multi-criteria decision making methods that include TOP-

SIS (Technique for Order Performance by Similarity to Ideal Solution, VIKOR

(VIseKriterijumska Optimizacija I Kompromisno Resenje, ELECTRE (ELimi-

nation Et Choix Traduisant la REalitwas), Choquet integral, AHP/ANP (Ana-

lytic Hierarchy/Network Process), and so on. One of them is delphi technique

that can be used for determining the importance of criteria and screening key

criteria (Nordman et al., 2013).

2.2. Delphi Method and IVFRN Numbers

The Delphi Method was first introduced by Dalkey and Helmer (1963) which

is a group knowledge acquisition approach (Habibi et al., 2015). The main aim

of the this method is to extract the common opinion of a group of selected

experts, arriving at a consensus in a sense. Another technique used in recent
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years is fuzzy Delphi method. This method was derived from the classical Del-

phi method and fuzzy sets (Ishikawa et al., 1993).Various studies have been

done by using fuzzy Delphi techniques such as, human resources (Chang et al.,

2000), evaluating hydrogen production technologies (Chang et al., 2011), Rank-

ing the sawability of ornamental stone (Mikaeil et al., 2013), forecasting and

screening items (Habibi et al., 2015), evaluation of sustainable eco-tourism in-

dicators Ocampo et al. (2018), choosing the locations of logistics centers (Pham

et al., 2017), assessment of consumers’ motivations (Vafadarnikjoo et al., 2018),

identification and analysis of reverse logistics barriers (Bouzon et al., 2016),

developing indicators for sustainable campuses (Chen et al., 2018), selecting

road safety performance indicators (Ma et al., 2011), assessing the effectiveness

of community-promoted environmental protection policy (Hsueh, 2015). Apart

from the delphi based fuzzy approach, studies determining the criteria weight

using the MCDM method have been conducted (Stanković et al., 2019; Janković

and Popović, 2019).

The rough set theory was first introduced by Pawlak (1982) which is a proper

tool for capturing the uncertainties and inaccuracies without subjectivity. They

have been successfully utilised in many different areas (Song et al., 2014; Zhai

et al., 2010; Pawlak, 2012). The fuzzy sets are a very powerful and widely used

tool for handling imprecision. On the other hand, interval-valued fuzzy sets are

characterized by the subjectivity of defining the boundaries of sets (which could

significantly affect the final decision (Song et al., 2014).) and footprint of uncer-

tainty similar to the type-1 fuzzy sets. To eliminate this subjectivity, we propose

interval-valued fuzzy-rough numbers (IVFRN) to take advantage of both fuzzy

sets and rough numbers. IVFRN eliminates the disadvantages of type-1 and

interval-valued fuzzy sets. In the IVFRN approach, the borders are determined

on the basis of border approximation areas and the uncertainties/imprecision

that manage them. This approach uses only internal information, i.e., operative

data, and is not based on assumption models. In other words, in the IVFRN

implementation, only the structure of the given data is used instead of different

additional / external parameters (Pamučar et al., 2018).
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2.3. Criteria for Offshore Wind Farm Site Selection

There are various criteria in the scientific literature to evaluate the suitability

of sites for installing an OWF. In this study, we have considered 42 criteria of

them for the site selection of OWFs, as presented in Table 1. Each criterion is

explained in the following subsections.
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Table 1: Offshore wind farm site selection criteria from literature.

No Criteria Authors

C1 Wind speed Vasileiou et al. (2017); Wu et al. (2016); Kim et al. (2013); Vagiona and Karanikolas (2012)

Lynch et al. (2012); Schillings et al. (2012)

C2 Wind directions Ho et al. (2018)

C3 Wind power density Wu et al. (2016); Fetanat and Khorasaninejad (2015); Kim et al. (2013, 2016); Punt et al. (2009)

C4 Wind resource availability Fetanat and Khorasaninejad (2015); Kim et al. (2013)

C5 Effective wind duration (in hours) Wu et al. (2016)

C6 Extreme weather conditions Kim et al. (2013)

C7 Operation lifetime (in years) Kim et al. (2018)

C8 Total project pay back period Wu et al. (2016)

C9 Expected benefit to cost ratio Wu et al. (2016); Fetanat and Khorasaninejad (2015)

C10 Operating revenue Ho et al. (2018)

C11 Investment cost Wu et al. (2016); Chaouachi et al. (2017); Fetanat and Khorasaninejad (2015); Kim et al. (2018)

Möller (2011); Punt et al. (2009)

C12 Operation and maintenance costs Wu et al. (2016); Kim et al. (2018); Ho et al. (2018); Möller (2011); Punt et al. (2009)

C13 Wave energy potential Vasileiou et al. (2017)

C14 Wave height and period Fetanat and Khorasaninejad (2015); Kim et al. (2013); Ho et al. (2018); Schillings et al. (2012)

C15 Tidal range and current velocity Kim et al. (2013); Schillings et al. (2012)

C16 Water depth Vasileiou et al. (2017); Wu et al. (2016); Kim et al. (2013, 2016); Ho et al. (2018); Lynch et al. (2012)

Schillings et al. (2012)

C17 Soil conditions Kim et al. (2013); Schillings et al. (2012)

C18 Being a typhoon and/or earthquake region Kim et al. (2013)

C19 Proximity to the shore Vasileiou et al. (2017); Wu et al. (2016); Kim et al. (2013, 2016); Mekonnen and Gorsevski (2015)

Vagiona and Karanikolas (2012); Ho et al. (2018); Lynch et al. (2012); Schillings et al. (2012)

C20 Proximity to landscape protection area Kim et al. (2016)

C21 Proximity to the WF construction facilities Fetanat and Khorasaninejad (2015)

C22 Electricity transmission cable installation cost Kim et al. (2016, 2018); Mekonnen and Gorsevski (2015); Möller (2011)

C23 Proximity to grid connections Vasileiou et al. (2017); Wu et al. (2016); Fetanat and Khorasaninejad (2015); Kim et al. (2013, 2016, 2018)

Vagiona and Karanikolas (2012); Ho et al. (2018); Lynch et al. (2012); Schillings et al. (2012)

C24 Proximity to the electricity demand region Fetanat and Khorasaninejad (2015); Mekonnen and Gorsevski (2015); Ho et al. (2018)

C25 Proximity to the shipping density/congestion Vasileiou et al. (2017); Wu et al. (2016); Lynch et al. (2012); Möller (2011); Schillings et al. (2012)

C26 Proximity to shipping lanes Kim et al. (2016); Vagiona and Karanikolas (2012); Ho et al. (2018); Schillings et al. (2012)

C27 Proximity to ports/harbor Vasileiou et al. (2017); Kim et al. (2013); Ho et al. (2018); Lynch et al. (2012)

C28 Proximity to navigable waterways Mekonnen and Gorsevski (2015); Ho et al. (2018)

C29 Proximity to conservation area Kim et al. (2016); Vagiona and Karanikolas (2012); Möller (2011); Schillings et al. (2012)

C30 Effects of wind farm on marine life Fetanat and Khorasaninejad (2015); Bailey et al. (2014)

C31 Proximity to passage route of birds Kim et al. (2013, 2016); Mekonnen and Gorsevski (2015); Möller (2011); Punt et al. (2009)

Bailey et al. (2014)

C32 Proximity to contaminated/obstructed area Kim et al. (2016)

C33 Proximity to military operation area Vasileiou et al. (2017); Wu et al. (2016); Kim et al. (2013, 2016); Ho et al. (2018); Möller (2011)

Schillings et al. (2012)

C34 Proximity to radio and radar corridors Fetanat and Khorasaninejad (2015); Ho et al. (2018); Lynch et al. (2012); Möller (2011)

C35 Economic externalities Fetanat and Khorasaninejad (2015)

C36 Local economic benefits (employment) Wu et al. (2016); Fetanat and Khorasaninejad (2015); Ho et al. (2018)

C37 Proximity to the hydrocarbon reserves Vasileiou et al. (2017); Wu et al. (2016); Kim et al. (2016); Schillings et al. (2012)

C38 Investment incentives Wu et al. (2016); Ho et al. (2018); Lynch et al. (2012)

C39 Production incentives Ho et al. (2018)

C40 Feed-in-tariff for offshore wind energy Ho et al. (2018)

C41 Community/local acceptance Fetanat and Khorasaninejad (2015); Ho et al. (2018)

C42 Wind farm size (in terms of capacity in MW) Kim et al. (2018)

2.3.1. Wind speed

As expected, the wind speed is an important factor for the amount of energy

a wind turbine can convert to electrical power. The power generated by a wind

turbine varies with the cube of the wind speed. Due to torque limitations, a
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wind turbine is designed to generate power over a limited range of wind speeds,

starting with a cut-in speed (ca. 3-4 m/s) and ending with a cut-out speed (ca.

25 m/s). At high wind speeds wind turbines stop or employ other mechanism to

limit the high torque. Offshore wind speeds tend to be faster and less turbulent

than on land. Wind shade (wind speed behind an obstacle - e.g. a hill) is a

factor that should be considered since it influences offshore farms that are too

close to the shore.

2.3.2. Wind directions

Although a wind turbine’s nacelle can rotate to face the current wind direc-

tion, a rapidly changing wind direction affects the efficiency of the turbine - the

turbine is not able to follow the rapid changes in direction. At low to medium

wind speeds the presence of a yaw angle significantly reduces the power output.

Locations with a predictable wind direction should be prioritised.

2.3.3. Wind power density (WPD)

The product obtained by multiplying the power of each wind speed with

the probability of each wind speed appearing is named wind power density.

In other words it is the quantity of energy produced by various wind speeds.

Turbines that are deployed at sites having higher WPD generate more energy.

WPD also depends on air density (generally constant), atmospheric pressure

and temperature.

2.3.4. Wind resource availability

Overall for a wind farm it is more desirable to have a constant power output

(even if at lower power ranges) than long alternating periods of high power

output (could trigger the cut out limit) and no power output (under cut in

limit) - e.g. major seasonal changes. The wind availability should be as much

as possible correlated with the energy demand in the power system.
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2.3.5. Effective wind duration (in hours)

This criterion refers to effective wind hours that accumulate in one year Wu

et al. (2016). Generally, it is not a primary parameter. Effective wind hours

may be dependent on country-settings and the tariffs, but they do not vary

much in the sea regime.

2.3.6. Extreme weather conditions

Just as for onshore wind farms, extreme weather conditions can also damage

offshore farms. Wind turbines are designed to output power within a predefined

range of wind speeds. Electricity generation increases with wind speed until it

reaches a limit (rated speed), followed by a cut-out speed where the turbine

stops (to prevent damage to the rotor). Frequent storms or high winds, that

keep the wind farm in cut-out mode, bring a negative impact on the profitability

of the installation.

2.3.7. Operation lifetime (in years)

The lifespan of a wind turbine depends on its size and location and varies

from 15 to 25 years. A offshore wind farm will have a longer lifespan due to the

lower fatigue loads on the wind turbines (low turbulence at sea). In the end, it

is not clear what is the exact lifetime of a wind farm - as of today few if any

have been refurbished or decommissioned.

2.3.8. Total project pay back period

The pay back period is the time required to recover the investment plus the

operational costs. The main factor influencing this period is the scale of the

project. Although they generate a lot more energy, Offshore wind farms need

a longer period to reach the break-even point compared to onshore farms due

to the large investment costs. The pay back period could also be seen from the

environmental point of view (emitted CO2 and energy consumption during the

manufacture of the turbine).
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2.3.9. Expected benefit to cost ratio

The cost-benefit ratio shows the relationship between the relative monetary

value and benefits of a project. If the benefit is higher than the cost (ratio

higher than 1) the project is a good investment. For Wind farms, estimating

the cost-benefit ratio is complex since they play a role in climate change (it is

hard to estimate the monetary benefits).

2.3.10. Operating revenue

The operating revenue is one of the first factors to be considered when plan-

ning a new installation. Calculating the revenue is rather complex since a Wind

farm: is a intermittent power generator, receives or not financial support (e.g.

feed-in tariffs, environmental credits, capacity credits), might see occurrences of

zero or even negative energy prices and reactive power charges.

2.3.11. Investment cost

The installation of an offshore wind farm is much more complex than for

onshore installations (scale, location, anchoring to the seabed, transportation,

connection to grid, corrosive conditions etc.) However, the scale of offshore

wind farms is generally larger compared to onshore wind farms and the turbines

themselves are also larger. The economies of scale lower the costs per installed

MW for offshore wind turbines, but not enough to be comparable to onshore

wind turbines. Additionally, the planning and permitting phase for offshore

wind farms is tedious and more expensive.

2.3.12. Operation and maintenance costs

Offshore wind farms maintenance is much more costly compared to on-

shore installations due to the location accessibility, weather conditions, per-

sonnel qualification, multiple transportation means, health-monitoring systems,

maintenance teams living on site etc. Moreover, the corrosive nature of the

environment requires a higher maintenance frequency.
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2.3.13. Wave energy potential

Although not seen at a large scale, a high wave potential energy could allow

a combination of offshore wind farms and wave energy farms. In the future,

some of the existing farms could be retrofitted to include a wave energy option.

In some cases waves can damage the wind park, either because the brute force

of the waves or fatigue (wind still contributes most to the fatigue load).

2.3.14. Wave height and period

High waves limit the access to the wind farm for maintenance directly in-

creasing the operation and maintenance costs. In extreme cases they can damage

the turbines themselves (brute force or fatigue).

2.3.15. Tidal range and current velocity

Combining wind and tidal/current stream turbines in the same farm im-

proves the efficiency of the installation. However, the investment costs could be

too high to justify the improved efficiency. In areas with extreme tides, the rise

and fall of the sea due to the tide changes the wind shear profile around the

turbines. This might slightly affect the efficiency of the wind farm.

2.3.16. Water depth

Regarding the location bathymetry, the general consensus is that for depths

over 60m, a fixed foundation is unfeasible and a floating solution is needed. As

of today, beyond this depth the investment and operation costs of the offshore

wind farms would be too large for the farm to be profitable.

2.3.17. Soil conditions

The seabed (soil) supports or anchors the foundation of the turbines, trans-

ferring and absorbing the loads (weight, vibrations, wind, waves, rotor frequency

etc.) of the installations. It also support the connecting cables. The relief of the

seafloor (including how fast in changes) and the geology of the location are very

important in an offshore farm, the foundations costing ca. 30% of the overall

project.
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2.3.18. Being a typhoon and/or earthquake region

As expected, zones prone to natural disasters should be avoided when con-

sidering a new wind farm project. In some cases where there is no way to avoid

this (e.g. countries that are fully exposed to these natural phenomena) the wind

farms must be engineered to be survive these harsh conditions - this increasing

the investment costs.

2.3.19. Proximity to the shore (Noise, visual impact etc.)

Building an offshore wind farm too close to the shore may be unpopular with

local residents, and may influence negatively property values and/or tourism.

At 1.5 km distance most wind turbines become inaudible. Wind power stations

installed close to urbanized and industrial regions seem to have less of an impact.

2.3.20. Proximity to the landscape protection area

Landscape protection areas must be treated with special attention and in

most cases extra steps are required to receive the construction permits for the

wind farms. Extra environmental audits or more frequent maintenance might

be mandatory during the lifetime of the project, with risks of shutting down the

farm earlier than expected (e.g. new legislation). All this translates to a direct

economic impact for the project.

2.3.21. Proximity to the facilities for wind farm construction

Deploying the farm closer to a construction facility is an economic advantage

since the transportation logistic is somewhat simpler. This could allow larger

turbines to be built.

2.3.22. Electricity transmission cable installation cost

The cable and cable installation costs are much higher for offshore wind farm

since special cables and cable-laying vessels are used. Repairing such a cable

is also costly procedure with longer farm unavailability times. Undersea cables

will have to be buried in order to reduce the risk of damage.
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2.3.23. Proximity to the grid connections

A offshore wind farm that is close to a grid connection has some major

advantages: shorter connecting cables, less energy loss, lower reactive power, no

need for extra electrical substations etc. High-voltage direct current (HVDC)

transmission presents lower losses in exchange for a larger investment.

2.3.24. Proximity to the electricity demand region

If the offshore farm is far from the region that consumes the generated energy,

grid reinforcements are necessary - to move the extra power and to limit the

negative effect of the variable power on the regions that are closer to the farm.

This is a significant investment and it affects the power grid operator.

2.3.25. Proximity to the shipping density/congestion

Building next to or in a congested area could be prohibited. If not,

the accident risk is higher both for the offshore wind farm and the installa-

tion/maintenance vessels.

2.3.26. Proximity to the shipping lanes

Current legislation may limit the proximity to shipping lanes or favor ship-

ping lanes over wind farms. However, for some cases altering shipping routes for

offshore wind development could prove financially beneficial. In some countries

navigation within the borders of a wind farm is permitted.

2.3.27. Proximity to the ports/harbor

This is a financial advantage both for the installation and the maintenance

vessels: shorter trips, shorter down-times etc.). It has also a downside since the

farm is closer to a congested area.

2.3.28. Proximity to the navigable waterways

If not extremely busy, being close to a navigable waterway is a logistic ad-

vantage for the installation and maintenance vessels since the trips on land are

minimised.
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2.3.29. Proximity to the natural environment conservation area

Similarly to the landscape protected areas, special attention and inmost

cases extra steps are required to receive the construction permits for the offshore

wind farms. Extra environmental audits or more frequent maintenance might

be mandatory during the lifetime of the project, with risks of shutting down the

farm earlier than expected. As of today, the effects on marine life are not fully

understood.

2.3.30. Effects of wind farm on marine life (marine animals) during and after

its installation

Due to the large scale of the farms a change in the local environment is

present, however, the effects on marine life are not fully understood at the

moment. The environmental impact of wind power when compared to the en-

vironmental impacts of fossil fuels, is relatively minor.

2.3.31. Proximity to the passage route of birds

There are reports of bird mortality at wind turbines but the numbers seem

to be comparable to mortality due to collisions with buildings. Impacts are

very site-dependent. The scale of the ecological impact is not fully understood,

however birds may to consume more energy for additional flights due to the

interference of the turbines.

2.3.32. Proximity to the contaminated/obstructed area

Activities that have caused environmental pollution have been conducted

in the world for a very long time. A wind farm close or within a contami-

nated area can be dangerous and/or offer limited access for the construction

and maintenance teams. Extra costs may be needed for environmental moni-

toring activities.

2.3.33. Proximity to military operation area

If the wind farm is located close to low-level military operation areas, a

military requirement for infra-red lighting is noted next to the standard aviation
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active and passive markings. Additional training should be provided to the

agencies operating in the area and if needed restrictions or mitigation actions

should be applied (e.g. prohibit flights under a certain altitude).

2.3.34. Proximity to radio and radar corridors (impact on aviation)

Large wind farms can have a significant effect on radars used for aviation, as

they are typically designed to show only moving objects. The spinning blades of

the wind turbines can appear on the radar screen. Blade material, blade shape

and turbine height are the factors determining how much a turbine affects radar

equipment. There are a series of mitigation factors that need to be implemented

to ensure successful coexistence between wind farms and radio/radar corridors.

2.3.35. Economic externalities

An externality is an economic term referring to a negative or positive effect

over a third party who has no control over it. For example a wind farm can

increase or decrease electricity prices, can influence the housing market, can

bring environmental benefits to an area etc. Renewable energies have external

costs that are overall lower compared to other energy generation technologies.

2.3.36. Local economic benefits (employment)

An offshore wind farm will bring local economic benefits such as new jobs,

higher wages or increasing the tax bases for the neighbouring localities.

2.3.37. Proximity to the hydrocarbon reserves

Hydrocarbon reserves in the proximity of the wind farms could be seen as

a plus. In the area there already is infrastructure and experience for the con-

struction and maintenance of offshore equipment. On the other hand tensions

could appear between the two industrial sectors.

2.3.38. Investment incentives

The need for energy diversification and lower greenhouse gas emissions drive

the construction of new wind farms. Certain regions or countries encourage
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investment in offshore wind farms either financially (e.g. tax credits, partial

funding etc.) or legislatively (e.g. streamlining the permitting phase, creating

frameworks for collaboration between multiple parties etc.)

2.3.39. Production incentives

Local or national authorities can open programs that incentive wind power

generation: paying excess generation costs, tax credits, blocking curtailment,

giving priority over other energy sources etc.

2.3.40. Feed-in-tariff for offshore wind energy

A feed-in-tariff is a mechanism that encourages investment in renewable

energy technologies, in this case in offshore wind farms. Guaranteed grid access,

long-term contracts, cost-based purchase prices are all methods to achieve this.

2.3.41. Community/local acceptance

It is a matter of taste how people perceive that wind turbines and there is no

absolute clear conclusion regarding the social acceptance of offshore wind power

compared to onshore. Offshore wind farms are generally accepted by tourists

and locals if they are situated farther from the coastline.

2.3.42. Wind farm size (in terms of capacity in MW)

Due to the economies of scale, the larger the wind farm and the wind tur-

bines, the lower the investment per installed MW. However, large wind farms

bring a a wide array of technical, logistical and/or legislative issues, one of

them being the connection and interaction with the local power grid (and power

plants). Major grid reinforcements are generally needed.

3. Preliminaries

3.1. Interval-valued Fuzzy-rough Numbers

Based on the ideas of Zadeh (1965) and Pawlak (1982), the mathemati-

cal definition of the interval-valued fuzzy-rough numbers is presented in 2018,
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Pamučar et al. (2018). Since then, IVFRN using different notations have been

studied by several authors. The definitions of IVFRN are given by Pamučar

et al. (2018) as follows:

We will define fuzzy set as a set of ordered pairs A =
{

(x, (µA(x)) | x ∈

X, 0 ≤ µA(x) ≤ 1
}

which is described by means of a triangular membership

function. Then we can represent fuzzy number A as A = (a1, a2, a3), where a1

and a3 respectively represent the left and right limits of the interval of fuzzy

number A, and a2 represents the modal value (see Fig.1).

Figure 1: Type-1 fuzzy number.

We assume that U universe contains all of the objects and let Y be an

arbitrary object from U . We assume there is a set of k classes which represent

the preferences of the DM, G∗ = (A1, A2, . . . , Ak), with the condition that they

belong to a series which satisfies the condition A1 < A2 <, . . . , < Ak. All objects

are defined in the universe and connected with the preferences of the Decision

Maker (DM). Each element Ai = (1 ≤ i ≤ k) represents a fuzzy number that is

defined as Aq = (a1q, a2q, a3q).

Since element Ai from the class of objects G∗ is represented as fuzzy number

Aq = (a1q, a2q, a3q), for each value a1q, a2q, and a3q we obtain one class of objects

that is represented in the interval I(aj)q =
{
I(aj)lq, I(aj)uq

}
(j = 1, 2, 3) where

the condition is fulfilled that I(aj)lq ≤ I(aj)uq (1 ≤ q ≤ k), as well as the
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condition I(aj)q ∈ G∗. Then I(aj)lq and I(aj)uq respectively represent the

lower and upper border of the intervals of the q-th class of objects.

If both limits of the classes of objects (upper and lower limits) respec-

tively are compared so that I∗(aj)l1 < I∗(aj)l2 <, . . . , < I∗(aj)ls; I
∗(aj)u1 <

I∗(aj)u2 <, . . . , < I∗(aj)um(1 ≤ s,m ≤ k), then for any of the classes of objects

I∗(aj)lq ∈ G∗ and I∗(aj)uq ∈ G∗ we can define the lower approximation I∗(aj)lq

using the following equations:

Apr
(
I∗(aj)lq

)
= ∪

{
Y ∈ U/G∗(Y ) ≤ I∗(aj)lq

}
; (j = 1, 2, 3; 1 ≤ q ≤ k) (1)

And the upper approximation of I∗(aj)uq using the following equations:

Apr
(
I∗(aj)uq

)
= ∪

{
Y ∈ U/G∗(Y ) ≤ I∗(aj)uq

}
; (j = 1, 2, 3; 1 ≤ q ≤ k) (2)

Both classes of objects (object classes I∗(aj)lq and I∗(aj)uq) are defined by

their lower limits Lim
(
I∗(aj)lq

)
, and upper limits Lim

(
I∗(aj)uq

)
. The lower

limits are defined by the following equations:

Lim
(
I∗(aj)lq

)
=

1

ML(aj)

∑
G∗(Y ) | Y ∈ Apr

(
I∗(aj)lq

)
; (1 ≤ q ≤ k) (3)

where ML(aj) represents the number of objects included in the lower approx-

imation of the classes of object I∗(aj)lq The upper limits Lim
(
I∗(aj)uq

)
(j =

1, 2, 3) are defined by the following equations:

Lim
(
I∗(aj)uq

)
=

1

MU (aj)

∑
G∗(Y ) | Y ∈ Apr

(
I∗(aj)uq

)
; (1 ≤ q ≤ k) (4)

where MU (aj)(j = 1, 2, 3) represents the number of objects that are con-

tained in the upper approximation of the classes of object I∗(aj)uq. Eqs. (1)-(4)

are used in Section 5 for transformation of the experts fuzzy preferences into

IVFRNs. Both limits of the objects (lower limit and upper limit) Lim
(
I∗(aj)lq

)
and Lim

(
I∗(aj)uq

)
; j = 1, 2, 3 should satisfy the condition that

Lim
(
I∗(a1)lq

)
≤ Lim

(
I∗(a1)uq

)
≤ Lim

(
I∗(a2)lq

)
≤ Lim

(
I∗(a2)uq

)
≤ Lim

(
I∗(a3)lq

)
≤ Lim

(
I∗(a3)uq

)
(5)

If due to higher uncertainty (disagreement) in the expert decision making

and characteristics of the predefined fuzzy linguistic scales condition (Eq. 5)
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is not fulfilled, that is Lim
(
I∗(a1)uq

)
> Lim

(
I∗(a2)lq

)
or Lim

(
I∗(a2)uq

)
>

Lim
(
I∗(a3)lq

)
, then Eqs. (6) and (7) apply

Lim
(
I∗(a1)uq

)
= Lim

(
I∗(a2)lq

)
(6)

Lim
(
I∗(a3)lq

)
= Lim

(
I∗(a2)uq

)
(7)

For each class of objects we can determine a rough boundary interval of

I(a1)q represented as RB
(
I(aj)q

)
, which denotes the interval between the lower

and upper limit:

RB
(
I(a1)q

)
= Lim

(
I∗(a1)uq

)
− Lim

(
I∗(a2)lq

)
; (j = 1, 2, 3; 1 ≤ q ≤ k) (8)

As we see, each class of objects I(a1)q, I(a2)q and I(a3)q is defined by

means of its own lower and upper limits, which make up the interval fuzzy-

rough number (A) Fig. 2, defined as

A = [AL
q , A

U
q ] =

Lim(I∗(a1)uq
)
, Lim

(
I∗(a2)lq

)
, Lim

(
I∗(a2)uq

)
, Lim

(
I∗(a3)lq

)
;w1(AL

q )

Lim
(
I∗(a1)lq

)
, Lim

(
I∗(a2)lq

)
, Lim

(
I∗(a2)uq

)
, Lim

(
I∗(a3)lq

)
;w1(AU

q )

 (9)

where AL
q and AU

q respectively represent the upper and lower trapezoidal

fuzzy-rough number which meets the condition that AL
q ⊂ AU

q , while w1(AL
q )

and w2(AU
q ) respectively represent the maximum values of interval fuzzy-rough

number A.

Figure 2: Interval fuzzy-rough number A.
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From Fig. 2 we observe that for interval-valued fuzzy-rough number A it

is valid that w1(AL
q ) = w2(AU

q ) = 1. On this basis we can write Eq. 9 in the

following form:

A = [AL
q , A

U
q ] = [(aL1q, a

U
1q), (aL2q, a

U
2q), (aL3q, a

U
3q)] (10)

where aLjq = Lim
(
I∗(aj)lq

)
and aUjq = Lim

(
I∗(aj)uq

)
; (j = 1, 2, 3; 1 ≤ q ≤

k)

If there is consensus among the decision makers on the assignment of specific

values from the linguistic fuzzy scale then aL1q = aU1q, aL2q = aU2q and aL3q = aU3q.

Then interval-valued fuzzy-rough number A becomes fuzzy number A type-1.

Interval-valued fuzzy-rough number A defined at the interval (−∞,+∞) can

be represented using Eqs. (11) and (12)

A =
{
x
[
µAL

q
(x), µAU

q
(x)
]}
, x ∈ (−∞,+∞), µAL

q
(x), µAU

q
(x) : (−∞,+∞)→ [0, 1] (11)

µ
A

(x) =
[
µAL

q
(x), µAU

q
(x)
]
, µAL

q
(x) ≤ µAU

q
(x), ∀x ∈ (−∞,+∞) (12)

where µAL
q

(x) and µAU
q

(x) represent the degree of membership in the upper

and lower functions of interval-valued fuzzy-rough number A.

Based on the above we can define arithmetic operations between two

interval-valued fuzzy-rough numbers A =
[
(aL1 , a

U
1 ), (aL2 , a

U
2 ), (aL3 , a

U
3 )
]
, B =[

(bL1 , b
U
1 ), (bL2 , b

U
2 ), (bL3 , b

U
3 )
]

:

Addition of interval-valued fuzzy-rough numbers ”+”

A+B =
[
(aL1 , a

U
1 ), (aL2 , a

L
2 ), (aL3 , a

U
3 )
]

+
[
(bL1 , b

U
1 ), (bL2 , b

U
2 ), (bL3 , b

U
3 )
]

=
[
(aU1 + bU1 ), (aL1 + bU1 ), (aL2 + bL2 , a

U
2 + bU2 ), (aL3 + bL3 , a

U
3 + bU3 )

] (13)

Operations subtraction (−), multiplication (×) and division (÷) are defined

in the same way (Pamučar et al., 2018). These basic operations on IVFRN

numbers are used for calculations in IVFRN LBWA model, Section 5
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3.2. Interval-valued Fuzzy-rough Delphi Method

In this study, we combine IVFRN and classic Delphi method to address

imprecision, vagueness and uncertainty of judgments for the group decision-

making process. The schematic diagram of proposed model is shown in Fig. 3.

The steps of proposed method are given as follows:

Step 1: The experts’ opinions are gathered from the questionnaires for each

criterion. Under the assumption that there are m experts and n criteria under

consideration, each expert should determine the degree of preference of the

criterion Ci(i = 1, 2, . . . , n). The fuzzy preference of each criterion i, denoted

as ãi is defined based on predefined fuzzy scale. Based on the fuzzy preferences

of the experts’ answers, for each element lei , sei and uei of fuzzy number aei =

(lei , s
e
i , u

e
i ) we form vectors of the aggregated sequences of experts A∗el, A∗es

and A∗eu

A∗el =
[
l11, l

2
1, . . . , l

m
1 ; l12; l22; . . . ; lm2 , . . . , l1n; l2n, . . . , l

m
n

]
1×n

(14)

A∗es =
[
s11, s

2
1, . . . , s

m
1 ; s12; s22; . . . ; sm2 , . . . , s1n; s2n, . . . , s

m
n

]
1×n

(15)

A∗eu =
[
u11, u

2
1, . . . , u

m
1 ; u12;u22; . . . ;um2 , . . . , u1n;u2n, . . . , u

m
n

]
1×n

(16)

where lei , sei and uei represent sequences of fuzzy number aei = (lei , s
e
i , u

e
i )

by means of which the relative significance of criterion Ci is presented. Us-

ing Eqs. (1)-(7) each sequence lei , sei and uei is transformed into rough se-

quence RN(lei ) =
[
Lim(lei ), Lim(lei )

]
, RN(sei ) =

[
Lim(sei ), Lim(sei )

]
and

RN(uei ) =
[
Lim(uei ), Lim(uei )

]
, where Lim(lei ), Lim(sei ) and Lim(uei ) repre-

sent the lower limits, and Lim(lei ), Lim(sei ) and Lim(uei ) the upper limits of

the rough sequences RN(lei ), RN(sei ) and RN(uei ) respectively.

So for each sequence RN(lei ), RN(sei ) and RN(uei ) we obtain a rough vector:

for the first rough sequence A∗1l, A∗2l, . . . , A∗ml for the second rough sequence

A∗1s, A∗2s, . . . , A∗ms and for the third rough sequence A∗1u, A∗2u, . . . , A∗mu.
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Step 2: Determining average rough sequences of the rough vectors. By

applying Eqs. (17), (18) and (19) we obtain the average rough sequence of the

vector

RN(li) = RN(l1i , l
2
i , . . . , l

e
i )

l
L

i = 1
m

∑m
e=1 l

eL
i

l
U

i = 1
m

∑m
e=1 l

eU
i

(17)

RN(si) = RN(s1i , s
2
i , . . . , s

e
i )

s
L
i = 1

m

∑m
e=1 s

eL
i

sUi = 1
m

∑m
e=1 s

eU
i

(18)

RN(ui) = RN(u1i , l
2
i , . . . , u

e
i )

u
L
i = 1

m

∑m
e=1 u

eL
i

uUi = 1
m

∑m
e=1 u

eU
i

(19)

where e represents the e-th expert (e = 1, 2, . . . , n), RN(li), RN(si) and

RN(ui) represent the rough sequences that together make up IVFRN ai =[
(l

L

i , l
U

i ), (sLi , s
U
i ), (uLi , u

U
i )
]
. We thus obtain the averaged IVFRN preferences

of average responses A =
[
a1, a2, . . . , an

]
[1×n]

Step 3: Defuzzify ai using score function for IVFRN as in following:

d(ai) =
(

1 +
l
L

i + uUi
2

)
.
( lLi + l

U

i + 2sLi + 2sUi + uLi + uUi
8

)
(20)

where d(ai) is a crisp score which denotes the aggregate importance of each

criteria.

Step 4: Calculation of the influence function f : S → R of the criteria. The

influence function is defined in the following way. For every criterion Ci can be

defined the influence function of the criterion

f(Ci) =
r0

r0 +max
{
d(ai)

}
− d(ai)

∀i, (21)

where d(ai) is a crisp score which denotes the aggregate importance of each

criteria and r0 presents the elasticity coefficient.

The elasticity coefficient r0 ∈ N (where N presents the set of real numbers)

should meet the requirement where r0 > r, where r represents maximum num-

bers of criteria on the level (Žižović and Pamucar, 2019). Since we have all

criteria on the one level, i.e. r0 = 1, we have r0 > 1.
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Step 5: Calculation of the optimal values of the weight coefficients of

the criteria. Let the criterion C1 be the criterion in the set of criteria

S = {C1, C2, . . . , Cn} that is the most significant for the decision-making pro-

cess. By applying the Eq. (22) it is calculated the weight coefficient of the most

significant criterion:

w1 =
1

1 + f(C2) + · · ·+ f(Cn)
(22)

The values of the weight coefficients of the remaining criteria are obtained

by applying the Eq. (23)

wi = f(Ci).w1 (23)

where i = 2, 3, . . . , n, and n present total number of OWF criteria.

Step 6: Finally, the weight coefficients of the criteria are normalized by using

following equation:

θi =
wi

Max
(
w̃i

) (24)

where θi is normalized value.

Step 7: According to θi, the criteria can be classified three categories such

as critical, moderate and mild. These categories are presented as in the Table 2

and determined with the help of experts using the linguistic variables in Table

4.

Table 2: The categories for OWF site selection criteria.

Degrees Interval

Mild 0.00 ≤ θi < 0.700

Moderate 0.700 ≤ θi < 0.883

Critical 0.883 ≤ θi ≤ 1.00

1. If θi < 0.700, this i. criterion for OWF site selection is Mild shouldn’t be

considered.

2. If 0.700 ≤ θi < 0.883, this i. criterion for OWF site selection is Moderate

and should be considered.

25



3. If 0.883 ≤ θi ≤ 1.00, this i. criterion for OWF site selection is Critical

and must be considered.

Figure 3: The schematic diagram of the Delphi-LBWA model.

4. Problem Description

4.1. A Survey

We have prepared an online questionnaire to identify the importance of var-

ious criteria for the site selection of offshore wind farms. A total of 178 inter-

national experts were invited to participate in three separate rounds from the
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academia and industry. They have in-depth knowledge, practical experiences

and articles published in the field of offshore wind farm. The online survey1

was conducted by e-mail invitations using Google Drive. The majority of the

participants are experts working in academia or energy companies who have

publications in the field of OWF. The main characteristics of the experts are

given in Table 3.

Round 1:

118, 28 and 32 experts were invited for participating the online survey in the

first, second and third rounds, while 19, 9 and 6 experts responded, respectively.

At the end, this questionnaire was filled out by 34 different experts spread across

16 different countries. The number of experts participating the survey from

each country is illusrated in Figure 4. The top countries with the highest level

of participation to the survey are United States, Greece and Netherlands and

United Kingdom, respectively.

Figure 4: The number of experts participating the survey from each country.

Round 2:

28 experts were invited for participating the online survey and 9 experts

responded.

1https://goo.gl/forms/JBVo7uluO9r1ykGy2
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Round 3:

32 experts were invited for participating the online survey and 6 experts

responded.

Table 3: The main characteristics of the experts.

Round 1 Round 2 Round 3
Main characteristics

N (%) N (%) N (%)
Total

Initial number of participants 118 28 32 178

Number of participants filled out 19 (16.1%) 9 (28.6%) 6 (15.6%) 34

Country

Australia 0 (0%) 1 (3.57%) 0 (0%) 1

Canada 0 (0%) 1 (3.57%) 0 (0%) 1

Colombia 0 (0%) 2 (7.14%) 0 (0%) 2

France 0 (0%) 0 (0%) 1 (3.13%) 1

Germany 1 (0.85%) 0 (0%) 0 (0%) 1

Greece 3 (2.54%) 0 (0%) 1 (3.13%) 4

Hong Kong 1 (0.85%) 0 (0%) 0 (0%) 1

India 0 (0%) 0 (0%) 1 (3.13%) 1

Ireland 2 (1.69%) 0 (0%) 0 (0%) 2

Italy 2 (1.69%) 0 (0%) 0 (0%) 2

Mexico 0 (0%) 1 (3.57%) 0 (0%) 1

Netherlands 2 (1.69%) 1 (3.57%) 0 (0%) 3

Spain 2 (1.69%) 0 (0%) 0 (0%) 2

Taiwan 0 (0%) 0 (0%) 1 (3.13%) 1

Turkey 1 (0.85%) 0 (0%) 0 (0%) 1

United Kingdom 1 (0.85%) 1 (3.57%) 1 (3.13%) 3

United States 4 (3.39%) 2 (7.14%) 1 (3.13%) 7

Occupation

Practitioners 14 (11.9%) 9 (32.1%) 5 (15.6%) 28

Industry experts 4 (3.39%) 0 (0%) 1 (3.13%) 5

Other 1 (0.85%) 0 (0%) 0 (0%) 1

The 28, 5 and 1 out of the 34 experts who assessed the importance of the

OWF siting criteria were researchers, practitioners from energy companies and

with unknown occupancy, respectively.
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4.2. Fuzzy Linguistic Terms

In the case of many actual decisions, the nature of the different aspects of the

problem, the use of linguistic information is convenient and easy. In such cases,

a common approach to modeling linguistic information is the fuzzy linguistic

approach. It uses fuzzy set theory (Zadeh, 1965) to manage uncertainty and

model information (Rodriguez et al., 2012).

To assess the perceived importance of OWF selection criteria, 7-scale lin-

guistic terms that are trapezoidal were used from experts in the questionnaire.

The linguistic terms corresponding fuzzy sets, and their defuzzification values

are given Table 4, respectively.

Table 4: Linguistic variables for the importance weight.

Linguistic terms Triangular fuzzy number Defuzzification values

Very low (VL) (0.0,0.0,0.1) 0.017

Low (L) (0.0,0.1,0.3) 0.117

Medium low (ML) (0.1,0.3,0.5) 0.300

Medium (M) (0.3,0.5,0.7) 0.500

Medium high (MH) (0.5,0.7,0.9) 0.700

High (H) (0.7,0.9,1.0) 0.883

Very high (VH) (0.9,1.0,1.0) 0.983

5. Experimental Results

In this study, 42 different criteria for the OWF site selection are evaluated by

34 international participants that are experts in their field. The expert opinions

are gathered to determine the importance of each criterion as provided in Table

5.
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Table 5: The expert opinions on the importance of the OWF site selection criteria based on

linguistic terms including VL: Very Low, L: Low, ML: Medium Low, M: Medium, MH: Medium

High, H: High, VH: Very High, N/A: Not Applicable, respectively.

No Criteria VL L ML M MH H VH N/A Total

C1 Wind speed 1 9 24 34

C2 Wind directions 1 6 2 9 6 5 5 34

C3 Wind power density 2 4 11 15 2 34

C4 Wind resource availability 2 11 19 2 34

C5 Effective wind duration (in hours) 2 6 16 8 2 34

C6 Extreme weather conditions 9 11 10 4 34

C7 Operation lifetime (in years) 2 2 7 6 10 4 3 34

C8 Total project pay back period 3 5 7 8 11 34

C9 Expected benefit to cost ratio 1 2 5 13 12 1 34

C10 Operating revenue 1 2 3 7 14 7 34

C11 Investment cost 3 8 9 13 1 34

C12 Operation and maintenance costs 1 4 7 13 8 1 34

C13 Wave energy potential 3 9 4 5 5 5 1 2 34

C14 Wave height and period 1 4 5 8 11 3 1 1 34

C15 Tidal range and current velocity 1 4 7 10 8 3 1 34

C16 Water depth 2 4 6 14 8 34

C17 Soil conditions 3 3 5 9 10 3 1 34

C18 Being a typhoon and/or earthquake region 8 13 8 5 34

C19 Proximity to the shore (Noise, visual impact etc.) 3 3 5 20 3 34

C20 Proximity to landscape protection area 1 2 6 9 15 1 34

C21 Proximity to the facilities for wind farm construction 1 2 5 6 16 4 34

C22 Electricity transmission cable installation cost (km/USD million) 1 2 8 13 9 1 34

C23 Proximity to grid connections 1 1 1 3 20 8 34

C24 Proximity to the electricity demand region 2 1 7 9 12 3 34

C25 Proximity to the shipping density/congestion 2 2 8 10 9 2 1 34

C26 Proximity to shipping lanes 2 3 8 12 8 1 34

C27 Proximity to ports/harbor 2 1 6 10 12 3 34

C28 Proximity to navigable waterways 2 3 9 9 9 1 1 34

C29 Proximity to natural environment conservation area 1 2 6 12 11 2 34

C30 Effects of wind farm on marine life (marine animals) 1 1 6 10 10 5 1 34

C31 Proximity to passage route of birds 2 4 7 7 11 3 34

C32 Proximity to contaminated/obstructed area 1 3 6 8 5 7 1 3 34

C33 Proximity to military operation area 1 2 3 9 7 8 3 1 34

C34 Proximity to radio and radar corridors (impact on aviation) 2 3 4 7 9 5 2 2 34

C35 Economic externalities 1 3 3 7 9 7 2 2 34

C36 Local economic benefits (employment) 1 2 5 7 10 7 2 34

C37 Proximity to the hydrocarbon reserves 5 5 5 8 5 2 4 34

C38 Investment incentives 2 1 2 12 15 2 34

C39 Production incentives 3 1 4 10 15 1 34

C40 Feed-in-tariff for offshore wind energy 2 3 12 11 4 2 34

C41 Community/local acceptance 1 9 5 10 9 34

C42 Wind farm size (in terms of capacity in MW) 1 5 9 13 5 1 34
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Using Table 4, the linguistic expressions for the importance of criteria are

then converted into interval triangular fuzzy sets aei = (lei , s
e
i , u

e
i ). Using Eqs.

(1)-(7) each sequence , and lei , sei and uei is transformed into rough sequence.

By applying Eqs. (17)-(19) we obtain the average rough sequences RN(li),

RN(si) and RN(ui) that represents the ai =
[
(l

L

i , l
U

i ), (sLi , s
U
i ), (uLi , u

U
i )
]

for

each criterion, as given in Table 6.

Then, the IVFRN values capturing aggregated expert opinion are defuzzified

by using Eq. (20). The defuzzification values for each criterion is given in the

fourth column of Table 6.

The criteria weights are calculated by Eqs. (21)-(23) as given in sixth column

of Table 6. Subsequently, the weight values are normalized using Eq. (24) as

given in the seventh column of the same table. This is also the normalised value

of each criterion (θi). Then, the criteria are classified according to the degree of

importance consisting of critical, moderate and mild in the last column of this

table.
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Table 6: Overall value of offshore wind farm site selection criteria.

No Criteria Aggregated IVFRN Defuzzy max(ai)− ai wi Score value (θi) Rank Degrees

C1 Wind speed [(0.81,0.88),(0.94,0.99),(0.99,1)] 1.795 0.000 0.029 1.000 1 Critical

C2 Wind directions [(0.4,0.62),(0.62,0.79),(0.79,0.89)] 1.133 0.662 0.022 0.751 34 Moderate

C3 Wind power density [(0.7,0.83),(0.85,0.96),(0.96,0.99)] 1.640 0.155 0.027 0.928 3 Critical

C4 Wind resource availability [(0.74,0.86),(0.87,0.97),(0.97,0.99)] 1.687 0.108 0.028 0.949 2 Critical

C5 Effective wind duration (in hours) [(0.63,0.77),(0.79,0.92),(0.92,0.98)] 1.520 0.275 0.026 0.879 7 Moderate

C6 Extreme weather conditions [(0.54,0.68),(0.72,0.85),(0.86,0.96)] 1.348 0.447 0.024 0.817 20 Moderate

C7 Operation lifetime (in years) [(0.45,0.66),(0.66,0.83),(0.83,0.93)] 1.235 0.559 0.023 0.781 29 Moderate

C8 Total project pay back period [(0.59,0.78),(0.78,0.92),(0.92,0.97)] 1.484 0.311 0.025 0.866 11 Moderate

C9 Expected benefit to cost ratio [(0.66,0.81),(0.81,0.95),(0.95,0.99)] 1.580 0.215 0.026 0.903 4 Critical

C10 Operating revenue [(0.59,0.75),(0.76,0.91),(0.91,0.98)] 1.470 0.325 0.025 0.860 13 Moderate

C11 Investment cost [(0.65,0.81),(0.81,0.94),(0.94,0.98)] 1.564 0.231 0.026 0.896 6 Critical

C12 Operation and maintenance costs [(0.6,0.77),(0.77,0.92),(0.92,0.98)] 1.485 0.310 0.025 0.866 10 Moderate

C13 Wave energy potential [(0.25,0.45),(0.45,0.64),(0.64,0.79)] 0.820 0.975 0.020 0.672 41 Mild

C14 Wave height and period [(0.33,0.5),(0.5,0.69),(0.69,0.86)] 0.945 0.849 0.021 0.702 39 Moderate

C15 Tidal range and current velocity [(0.3,0.48),(0.48,0.66),(0.66,0.81)] 0.881 0.914 0.020 0.686 40 Mild

C16 Water depth [(0.61,0.76),(0.77,0.92),(0.92,0.98)] 1.492 0.303 0.025 0.868 9 Moderate

C17 Soil conditions [(0.46,0.65),(0.65,0.83),(0.83,0.94)] 1.238 0.557 0.023 0.782 28 Moderate

C18 Being a typhoon and/or earthquake region [(0.54,0.69),(0.72,0.85),(0.87,0.95)] 1.354 0.441 0.024 0.819 19 Moderate

C19 Proximity to the shore (Noise, visual impact etc.) [(0.6,0.72),(0.79,0.9),(0.92,0.99)] 1.483 0.312 0.025 0.865 12 Moderate

C20 Proximity to landscape protection area [(0.51,0.65),(0.7,0.85),(0.85,0.96)] 1.314 0.481 0.024 0.806 23 Moderate

C21 Proximity to the facilities for wind farm construction [(0.56,0.71),(0.74,0.89),(0.89,0.97)] 1.408 0.387 0.025 0.838 16 Moderate

C22 Electricity transmission cable installation cost (km/USD million) [(0.62,0.78),(0.78,0.92),(0.92,0.98)] 1.514 0.281 0.026 0.877 8 Moderate

C23 Proximity to grid connections [(0.66,0.78),(0.83,0.94),(0.94,0.99)] 1.576 0.219 0.026 0.901 5 Critical

C24 Proximity to the electricity demand region [(0.51,0.67),(0.69,0.85),(0.85,0.95)] 1.312 0.483 0.024 0.806 24 Moderate

C25 Proximity to the shipping density/congestion [(0.45,0.62),(0.63,0.81),(0.81,0.93)] 1.195 0.599 0.023 0.769 30 Moderate

C26 Proximity to shipping lanes [(0.44,0.59),(0.63,0.78),(0.81,0.92)] 1.176 0.619 0.022 0.764 31 Moderate

C27 Proximity to ports/harbor [(0.49,0.65),(0.67,0.84),(0.84,0.95)] 1.275 0.519 0.023 0.794 26 Moderate

C28 Proximity to navigable waterways [(0.42,0.59),(0.6,0.78),(0.78,0.91)] 1.140 0.655 0.022 0.753 33 Moderate

C29 Proximity to natural environment conservation area [(0.52,0.66),(0.71,0.84),(0.87,0.96)] 1.327 0.468 0.024 0.810 22 Moderate

C30 Effects of wind farm on marine life (marine animals) [(0.53,0.7),(0.7,0.86),(0.86,0.96)] 1.343 0.452 0.024 0.816 21 Moderate

C31 Proximity to passage route of birds [(0.47,0.65),(0.65,0.83),(0.83,0.94)] 1.249 0.546 0.023 0.786 27 Moderate

C32 Proximity to contaminated/obstructed area [(0.33,0.53),(0.53,0.72),(0.72,0.86)] 0.982 0.813 0.021 0.711 38 Moderate

C33 Proximity to military operation area [(0.42,0.62),(0.62,0.8),(0.8,0.91)] 1.167 0.628 0.022 0.761 32 Moderate

C34 Proximity to radio and radar corridors (impact on aviation) [(0.35,0.55),(0.55,0.74),(0.74,0.87)] 1.025 0.770 0.021 0.722 37 Moderate

C35 Economic externalities [(0.39,0.58),(0.58,0.77),(0.77,0.9)] 1.098 0.696 0.022 0.742 36 Moderate

C36 Local economic benefits (employment) [(0.41,0.6),(0.6,0.78),(0.78,0.91)] 1.128 0.666 0.022 0.750 35 Moderate

C37 Proximity to the hydrocarbon reserves [(0.19,0.35),(0.35,0.53),(0.53,0.72)] 0.646 1.148 0.019 0.635 42 Mild

C38 Investment incentives [(0.56,0.68),(0.75,0.87),(0.89,0.97)] 1.405 0.390 0.025 0.837 17 Moderate

C39 Production incentives [(0.51,0.65),(0.69,0.85),(0.85,0.96)] 1.308 0.486 0.024 0.804 25 Moderate

C40 Feed-in-tariff for offshore wind energy [(0.54,0.69),(0.71,0.87),(0.87,0.96)] 1.365 0.430 0.024 0.823 18 Moderate

C41 Community/local acceptance [(0.58,0.75),(0.75,0.9),(0.9,0.96)] 1.440 0.355 0.025 0.849 14 Moderate

C42 Wind farm size (in terms of capacity in MW) [(0.56,0.72),(0.74,0.89),(0.89,0.97)] 1.411 0.384 0.025 0.839 15 Moderate

The aggregated IVFRN values of the criteria collected from all experts are

depicted as box-plots in Figure 5. The box-plots display the symmetry and

deviations in the data. According to the box-plots, the importance level of the

C13, C15 and C37 criteria are the lowest and also their deviation of differences

of opinion among experts are high. Moreover, the importance level of the C1,

C3 and C4 criteria are the highest with relatively low deviation in the differences

of opinion.
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Figure 5: The aggregated IVFRN values of the weight coefficients of the criteria.

5.1. Comparison of IVRN Results

To test the feasibility and validty of the proposed interval-valued fuzzy-

rough numbers based Delphi model, it is compared with the traditional type-1

fuzzy number (TrFN) based Delphi model that proposed by Zadeh (1965). From

Figures 6 and 8, it can be noted that C1, C4 and C3 are the most crucial criteria,

respectively. Table A.1 presents the results of TrFN based Delphi model.

Figure 6: Comparison results of IVRN and type 1 fuzzy sets based on overall values.

According to the results of IVFRN and TrFN based Delphi model, we ob-
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serve almost no similarities between any of the ranking of criteria. Such small

inconsistency in the ranking was expected because there were different mathe-

matical models. However, the top three criteria (C1, C4 and C3, respectively)

and the lowest seven criteria (C35, C34, C32, C14, C15, C13, and C37, re-

spectively) have the same ranking. Figure 7 shows the number of importance

of criteria between IVFRN and TrFN.

Figure 7: Comparison of the number of importance between IVFRN and TrFN.

The ranking results and reliability of the proposed approach are verified

by the experts. They have confirmed that our proposed IVFRN based Delphi

model presents more meaningful results.
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Figure 8: The aggregated TrFN values of the weight coefficients of the criteria.

5.2. Comparison of Grouping Results

We run the model separately to see the difference between response of the

practitioners and researchers. The difference in values are presented by overlap-

ping charts in Fig. 9. As can be seen this from this figure, the criteria overlap

in terms of groups. There are slightly difference between some criteria. We con-

sider this slightly difference occurs due to the focus of each group. Practitioners

tend to add considerable weight to most criteria (they analyze all criteria at

once) while field experts focus more on the main problems that show up in real

situations (since they know that some of the criteria, or combinations of criteria

do not occur in most situations).
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Figure 9: The overlapping chart of data series for two groups.

The fuzzy weight coefficients of criteria evaluated by practitioners and in-

dustry experts are also illustrated in Fig. 10.
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(a) Practitioners

(b) Industry Experts

Figure 10: The fuzzy weight coefficients of criteria evaluated by practitioners and industry

experts.

Hierarchical clustering is performed to find the similarity among the partic-

ipants. The Wards method that says that the distance between two clusters
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is used for similarity. The hierarchical relationship among the participants is

illustrated by dendrogram as shown in Fig. 12. According to this dendrogram,

the most similarity participant {25 and 29}, {2 and 19}, {16 and 30}, {7 and

13}, {1 and 6}, {9 and 15} ending with participant {1 and 3}, respectively.

We performed statistical analysis compare the means between two groups

in terms of each criterion on SPSS. Independent samples t-test was used for

the analysis of two groups. It compares the means of two independent groups

in order to determine whether there is statistical evidence. Firstly, we could

test the stability of the data by using normality. Each group of histogram

and probability are shown in Fig. 11. When we check these plots, the groups

are normally distributed. According to t-test results, there is no relationship

between the two groups in terms of criteria. There is only a significant difference

in one criterion (C42) in terms of practitioner and industry expert.
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(a) histogram of practitioners (b) histogram of industry expert

(c) probability of practitioners (d) probability of industry expert

Figure 11: The histograms and probability of two groups (practitioners and industry experts).
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Figure 12: The hierarchical relationship of the response of participants.
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6. Results and discussion

To determine level of the importance of OWF siting criteria, the experts

have evaluated 42 criteria in interval-valued fuzzy-rough numbers based Delphi

rounds. We were particularly interested in the consensus (critical) and dissensus

(uncritical) of experts opinions and their feedback about criteria. These criteria

are ranked by priorities and preferences of relevant experts from the highest

score to the lowest score using Table 6. According this table, the most important

siting criteria is C1 (Wind speed), C4 (Wind resource availability), C3 (Wind

power density), C9 (Expected benefit to cost ratio), C23 (proximity to grid

connections), C11 (Investment cost), C5 (Effective wind duration), ending with

C37 (Proximity to the hydrocarbon reserves), respectively.

As expected, the criteria that scored high in the ranking are the ones that

are directly tied to the financial side of the offshore wind farm (both benefits

and costs). The most important factors is the wind speed, noting that the wind

turbines need a certain wind speed range to generate electricity. To have a wind

farm with a good capacity factor, the wind availability, density and duration are

also an important factors - although the capacity factor is more of an economic

decision related to the investment and operational costs (over the lifespan of the

wind farm the weather fluctuations will average out). The following criteria in

the ranking are linked to the investment, technical challenges, operational costs

and the social acceptance - somewhat guaranteeing a full lifespan for the wind

farm.

Some of the 42 criteria obtained from published studies in the literature for

OWF site selection are considered as unnecessary by some of the experts. These

criteria are defined as not applicable by the experts for OWF site selection. For

example, C37 Criterion (proximity to the hydrocarbon reserves) is defined as not

applicable criterion by four experts for OWF site selection according to Table 6

- a wind farm will only slightly interfere with the operation of the hydrocarbon

reserve areas and the other way around. Arguably, the lifespan of the farm

isn’t an important criteria, wind farms having a relatively fast payback period.
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Additionally a wind farm installed in an area that is contaminated or obstructed

would only bring additional costs during the construction phase.

According to the experts, other important criteria should be considered when

a new offshore wind farm is planned. Some of them would be: local legislation

and procedures (e.g. authorisation process, permits etc.), additional costs if

HVDC (high-voltage direct current) connections are used for wind farms that

are located farther from shore, correlation with power demand, tourism impact,

fishing grounds proximity, wildlife migration passage proximity, submerged cul-

tural resources proximity and feasibility of future expansions in the area.

Some of the 42 criteria presented in this paper could be considered as over-

lapping or directly linked. For example, the pay back period among others

considers all the economic oriented facts such as wind speed, incentives, oper-

ational and maintenance costs etc. However, for this study it was decided to

detail the criteria at a finer scale in order to have a better picture of the factors

that should be considered when a new offshore wind farm is planned.

7. Conclusion

Offshore wind farm (OWF) siting criteria should always be taken into ac-

count by energy companies, because criteria can have very positive or very

detrimental and negative effects on the overall performance of OWF site. The

selecting the most suitable sites for OWF is of high importance in terms of

technical, environmental, economic and social criteria.

In the context of achieving more renewable energy integration, the proposed

study is mainly intended to assist the decision and policy makers in ranking the

potential of offshore wind sites - taking into consideration the importance of a

comprehensive list of technical and non technical criteria.

This study adopted a interval-valued fuzzy-rough numbers (IVFRN) based

Delphi method that integrates expert’s knowledge in identifying and prioritizing

OWF site selection criteria. The fuzzy set theory is used to address uncertainty

and vagueness of judgments and the group decision-making process is applied
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by the Delphi method. The findings of this study is as follows: (1) Identify the

importance of various criteria for the site selection of offshore wind farms (2)

Determined priorities and preferences of relevant experts for siting criteria (3)

This study provides valuable expert feedback and the results show that wind

speed for siting ranks the highest among the 42 identified criteria (4) It has been

discovered that some criteria are uncritical for OWF site selection (5) IVFRN

based Delphi method is proposed to reflect uncertainty of inaccurate and vague

information, and (5) Finally, comparative analysis are presents to validate the

proposed model. The results of the proposed model are compared with TrFN

based Delphi model.

The advantages of IVFRN are numerous. IVFRN uses only the internal

knowledge to compute the limit values of the attributes for a decision. This way,

the subjectivity and assumptions for defining the limit values of traditional fuzzy

sets are eliminated which would affect the attribute values and so the final choice

of alternatives. IVFRN exploits the structure of the given data, exclusively and

utilises the uncertainties that already exist in the data, improving the objectivity

of the decision process. Another advantage of this approach is its suitability for

the use in sets characterized by small amount of data, and for which traditional

statistical models are not appropriate. Since this Delphi - LBWA approach

based on IVFRN has not been considered so far in the literature, future research

should be directed towards the use of Delphi - LBWA model in traditional multi-

criteria models for determining the weight coefficients of criteria and evaluation.

Further integration of the interval-valued fuzzy-rough approach in traditional

MCDM models would allow the exploitation of the ambiguities and subjectivity

that exist in the process of decision making.

In addition, due to insufficient experts and other criteria, some prejudices

of the survey results may still exist. However, the results of this research are

feasible and practical and can be applied in further investigation as reference for

OWF site selection. The proposed interval IVFRN based Delphi method can

easily be extended to assess criteria for other site selection problems or even a

totally different multi-criteria decision making problem.
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Appendix A

Table A.1: The overall values of traditional type-1 fuzzy set for offshore wind farm site selection

criteria.

No Criteria Aggregated T1FS Normalized values Rank Degrees

C1 Wind speed (1,0,1) 1.000 1 Critical

C2 Wind directions (0,0,0.84) 0.844 35 Moderate

C3 Wind power density (0,0,0.96) 0.958 3 Critical

C4 Wind resource availability (0,0,0.97) 0.966 2 Critical

C5 Effective wind duration (in hours) (0,0,0.93) 0.933 8 Critical

C6 Extreme weather conditions (0,0,0.91) 0.906 19 Critical

C7 Operation lifetime (in years) (0,0,0.86) 0.863 31 Moderate

C8 Total project pay back period (0,0,0.92) 0.920 13 Critical

C9 Expected benefit to cost ratio (0,0,0.94) 0.944 5 Critical

C10 Operating revenue (0,0,0.92) 0.922 12 Critical

C11 Investment cost (0,0,0.94) 0.941 6 Critical

C12 Operation and maintenance costs (0,0,0.92) 0.925 11 Critical

C13 Wave energy potential (0,0,0.79) 0.791 41 Moderate

C14 Wave height and period (0,0,0.82) 0.824 39 Moderate

C15 Tidal range and current velocity (0,0,0.81) 0.813 40 Moderate

C16 Water depth (0,0,0.93) 0.926 10 Critical

C17 Soil conditions (0,0,0.87) 0.870 29 Moderate

C18 Being a typhoon and/or earthquake region (0,0,0.91) 0.907 18 Critical

C19 Proximity to the shore (Noise, visual impact etc.) (0,0,0.94) 0.935 7 Critical

C20 Proximity to landscape protection area (0,0,0.9) 0.896 23 Critical

C21 Proximity to the facilities for wind farm construction (0,0,0.91) 0.912 17 Critical

C22 Electricity transmission cable installation cost (km/USD million) (0,0,0.93) 0.931 9 Critical

C23 Proximity to grid connections (0,0,0.95) 0.950 4 Critical

C24 Proximity to the electricity demand region (0,0,0.89) 0.893 24 Critical

C25 Proximity to the shipping density/congestion (0,0,0.87) 0.870 30 Moderate

C26 Proximity to shipping lanes (0,0,0.87) 0.873 28 Moderate

C27 Proximity to ports/harbor (0,0,0.88) 0.884 26 Critical

C28 Proximity to navigable waterways (0,0,0.86) 0.860 32 Moderate

C29 Proximity to natural environment conservation area (0,0,0.9) 0.902 20 Critical

C30 Effects of wind farm on marine life (marine animals) (0,0,0.9) 0.896 22 Critical

C31 Proximity to passage route of birds (0,0,0.88) 0.878 27 Moderate

C32 Proximity to contaminated/obstructed area (0,0,0.82) 0.824 38 Moderate

C33 Proximity to military operation area (0,0,0.86) 0.857 33 Moderate

C34 Proximity to radio and radar corridors (impact on aviation) (0,0,0.83) 0.829 37 Moderate

C35 Economic externalities (0,0,0.84) 0.843 36 Moderate

C36 Local economic benefits (employment) (0,0,0.86) 0.855 34 Moderate

C37 Proximity to the hydrocarbon reserves (0,0,0.77) 0.771 42 Moderate

C38 Investment incentives (0,0,0.92) 0.918 14 Critical

C39 Production incentives (0,0,0.89) 0.893 24 Critical

C40 Feed-in-tariff for offshore wind energy (0,0,0.9) 0.902 21 Critical

C41 Community/local acceptance (0,0,0.92) 0.916 15 Critical

C42 Wind farm size (in terms of capacity in MW) (0,0,0.91) 0.912 16 Critical
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