
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Nanoscale

www.rsc.org/nanoscale

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/326507635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Nanoscale RSCPublishing 

COMMUNICATION 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 1  

Cite this: DOI: 10.1039/x0xx00000x 

Received 00th January 2014, 

Accepted 00th January 2014 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Enhanced catalytic electrochemical reduction of dissolved 

oxygen with ultraclean cucurbituril[7]-capped gold 

nanoparticles 

Anabel Lanterna,
a†

 Eduardo Pino,
a††

 Antonio Doménech-Carbó,
b
 María González-

Béjar,
*a

 Julia Pérez-Prieto
*a 

 

Gold nanoparticles capped with cucurbituril[7] have been 

prepared in the absence of metallic cations and organic 

ligands. Remarkably, these nanohybrids encapsulate 

dissolved oxygen and are highly active in its electrochemical 

reduction. The effect of the presence of sodium and 

ammonium salts on this catalysed process is also analysed.  

Cucurbiturils (CBs) are methylene-linked macrocyclic molecules 

made of glycoluril (C4H4N4O2) monomers (Fig. 1).
1
 They are 

water-soluble macrocyclic hosts with a hydrophobic cavity that 

form strong inclusion complexes with many types of guests (e.g. 

positively charged organic guests
2
), they can also interact with 

metallic cations
3, 4

 and bind to gold surfaces,
5
 as well as to the 

surface of silver,
6
 platinum,

7
 palladium,

8
 and gold nanoparticles 

(AuNPs),
9-12

 through the carbonyl groups at their edges.  

Up to now, supramolecular assemblies of AuNPs with CB have 

been made by in situ reduction of gold salts with sodium 

borohydride in the presence of CB,
9, 10, 13

 by employing 

metastable AuNPs as labile intermediate combined with a dilute 

NaCl solution,
10

 or by using AuNPs capped with organic ligands, 

such as citrate
12

 or thiols, that include moieties able to complex 

CB (e.g. diaminohexane
14

 or methyl viologen
15

). Unfortunately, 

the binding dynamics of the guests are influenced by the 

presence of cations that bind to CB portals
3, 16

 and so could be 

the catalytic performance of a nanohybrid containing CB[7]. 

We presumed that cucurbit[7]uril (CB[7]), which has seven 

glycouril units, could give rise to CB-capped AuNPs (NP@CB, 

Fig. 1) via polydentate binding to “ultraclean” AuNPs. 

Interestingly, Scaiano et al. have synthesised “ultraclean”, 

narrow-sized, water-dispersible AuNPs by UVA irradiation of 

HAuCl4 in the presence of H2O2 followed by ablation of the as-

prepared AuNPs by 532 nm laser irradiation.
17,18

 

We report here an alternative one-pot protocol to make 

“ultraclean” AuNPs and their subsequent capping with CB[7] to 

produce highly stable NP@CB systems without needing 

additional organic ligands or metallic cations. These nanohybrids 

are more catalytically active in the electrochemical reduction of 

dissolved O2 than the AuNPs alone. Remarkably, we 

demonstrate that sodium and ammonium salts stop oxygen 

entering the CB cavity of the NP@CB systems. 

The protocol for the preparation of the AuNPs combines the 

capacity of H2O2 to thermally reduce Au(III)
19

 to Au(0)
20

 and that 

of 532 nm-laser light (18-20 mJ per pulse) to ablate the AuNPs 

generated in situ, thus modulating their size (see details in ESI). 

We have checked the reproducibility of the method by repeating 

the synthesis of the AuNPs more than twenty times. 

 
Fig. 1. Binding of cucurbit[7]uril to “ultraclean” AuNPs. Not in real scale. 

Remarkably, after dilution in milli-Q water and elimination of the 

residual H2O2 (see ESI) the samples remained stable under 

ambient conditions for more than six months. Transmission 

electron microscopy revealed the formation of quasi-spherical 

monodisperse AuNPs (sized ca. 17±5 nm) (see Fig. S1). 

Afterwards, the AuNP and CB concentrations as well as their 

relative ratio were varied to find the conditions for the preparation 

of stable, non-aggregated NP@CB systems. We found that a 

AuNP concentration well below 1nM was required to avoid the 

formation of aggregates (see Fig. S2 and Table S1).  

Cyclic voltammetry was then used to demonstrate the binding of 

CB to AuNPs. The voltammetric response of CB or AuNPs, as 

well as those containing AuNPs capped with different CB 

concentrations, was studied in aqueous solution. In order to 

avoid interferences, experiments were performed without a 

supporting electrolyte using microelectrodes.
21,‡

 Although the 

electrochemistry of host-guest complexes of CB with 

electroactive guests has been widely studied,
22

 no detailed 

description of the CB electrochemistry has been provided so far. 
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Fig. 2 compares the cyclic voltammetric response, after 

deconvolution, of i) CB and ii) CB in the presence of AuNPs, 

CB/NP = 4000. An anodic peak appears at +1.0 V vs Ag|AgCl 

(A1) for CB (Fig. 2a); this signal can be attributed to the oxidation 

of urea motifs, a process occurring at high potentials with 

considerable kinetic constraints,
21, 23

 so that the electrochemical 

oxidation of CB appears as an irreversible process, as denoted 

by the absence of cathodic peaks coupled with the anodic wave.  

 
Fig. 2 Cyclic voltammograms at GCE after deconvolution of: a) CB (0.72 µM) and 

b) AuNPs (0.18 nM) and CB (0.72 µM) in milliQ water. Potential scan initiated at 

0.0 V in the positive direction (marked by arrows); potential scan rate 50 mV/s. 

                         
Fig. 3. Square wave voltammograms at the GCE for AuNPs (0.18 nM) with CB 

(0.72 µM) after subtracting that from a CB solution (0.72 µM) in milliQ water. 

Potential scan initiated at 0.0 V in the positive direction (marked by the arrow); 

potential step increment 4 mV; square wave amplitude 25 mV; frequency 5 Hz. 

Under identical conditions, the naked AuNPs remained 

electrochemically silent. The solution containing CB (0.72 µM) 

and the AuNPs (0.18 nM) showed two anodic peaks at +1.20 

(A1’) and +1.35 V (A1’’) followed, in the subsequent cathodic 

scan, by a reduction peak at ca. +1.15 V (C1). The existence of 

binding between CB and the AuNPs was evidenced by the 

significant peak potential shift in the anodic signal for the CB 

oxidation and even by the appearance of a peak splitting. These 

are typical features when both ‘weak’ and ‘strong’ coordination 

occur.
24

 Additionally, the appearance of a cathodic signal (C1), 

absent in the voltammograms of ‘free’ CB, was indicative of the 

increase in the reversibility of the electrochemical process and 

confirmed the existence of a significant CB-AuNP interaction. 

Consistently, if the voltammogram for CB solution is subtracted 

from that of the AuNPs plus CB solution, one obtains a unique, 

definite peak at +1.20 V (see Fig. 3), which can be considered as 

representative of the CB binding to the AuNP surface. Equivalent 

results were obtained in the absence and in the presence of 

NaClO4 supporting electrolyte (not shown).  

Pyrrolidone units of poly(vinylpyrrolidone), which have a similar 

structure that the glycouril units, interact with AuNPs via oxygen 

(by ligand-to-metal charge transfer interaction), nitrogen (less 

favoured due to steric hindrance effects) or via both of them 

oxygen and nitrogen.
25

 Therefore, it is expected that CBs 

become attached to the AuNP similarly. The peak potential value 

(Ep) recorded in the absence of a supporting electrolyte for a 

0.72 µM CB solution was 1000 mV, while in the presence of 

AuNPs (0.18 nM) the value was 1200 mV (obtained from CB-

centred process A1 and A1’).  

 
Fig. 4. Square wave voltammograms at Pt microdisk electrode of 0.46 nM AuNPs 

aqueous solutions of: a) air-saturated (black), id. and CB (red), N2-saturated 

(green); b) air-saturated CB and NaCl (red), N2-saturated CB and NaCl before 

(black) and after equilibration (green) with air; c) air-saturated CB and 

ammonium acetate (red), N2-saturated CB and ammonium acetate before 

(green) and after (black) equilibration with air. The concentration of CB, NaCl, 

and ammonium salt was 0.64 µM. Potential scan initiated at +0.05 V in the 

negative direction (see arrow); potential step increment 4 mV; square wave 

amplitude 25 mV; frequency 5 Hz. 

The performance of the NP@CB nanohybrids in the 

electrochemical reduction of dissolved O2 (ORR) was compared 

to that of the naked AuNPs. The CB-AuNP interaction can be 

further confirmed by the distinctive catalytic effect on the 

electrochemical reduction of dissolved oxygen (ORR); this effect 

has been recently studied in different NP-modified electrodes.
26

  

Figure 4a compares the linear potential scan voltammogram 

using a Pt microdisk electrode of an air-saturated nanopure 

water solution containing AuNP (0.46 nM) with those of i) an air-

saturated solution containing AuNP (0.46 nM) plus CB (0.64 µM) 

and ii) a nitrogen-saturated solution containing AuNP (0.46 nM). 

The reduction peak at −0.25 V vs. Ag|AgCl, which is 

characteristic of O2 reduction, was enhanced in the solution 

containing both the CB and the AuNP. This result revealed a 

synergistic effect of the AuNP and the CB to enhance the 

electrochemical reduction of oxygen. As expected, the O2 

reduction signal disappeared in a degasified solution of NP@CB 

(Fig. 4a).  

The effect of NaCl, ammonium acetate, and 

adamantylammonium chloride on the catalytic response of the 

nanohybrid was assessed. Remarkably, the O2 reduction peak 

vanished when the NP@CB solution was prepared in degasified 

water containing 0.64 µM NaCl and was subsequently 

equilibrated with air (ca. 20 min), see Fig 4b. The near complete 

absence of the O2 reduction wave was consistent with Na
+
 

blocking the entrance of O2, thus avoiding the formation of an 

O2@CB inclusion complex.  

Similarly, the addition of ammonium acetate to a deaerated 

solution of NP@CB blocked the subsequent entrance of O2 (Fig 

4c). Although there exists presently no experimental evidence for 

the encapsulation of guests as small as oxygen in a CB[7], the 

capacity of ammonium cations as lids of cucurbiturils has 

previously been applied to the encapsulation of N2 and O2 in 

decamethylcucurbit[5]uril(NH4
+
)2.

27
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As expected, adamantylammonium cations caused removal of 

the O2 from the CB cavity of the NP@CB (Fig. not shown), due to 

the complementarity between this cavity and the adamantyl 

moiety (binding constant ca. 10
12 

M
-1
).

28
. Consequently, the O2 

reduction peak practically vanished. The binding of H3O
+
 to the 

vacant carbonyl portal of the CB is considerably less efficient.
3
 

In short, ultraclean AuNPs have been prepared by a one-pot 

procedure in which only one by-product, specifically HCl, 

remained in the water solution. These nanoparticles can be 

capped with CB[7] without any additional organic ligand or metal 

ions. These nanohybrids showed an enhanced catalytic activity 

towards reduction of dissolved O2 due to a cooperative effect 

between their components by fixing oxygen to the nanoparticle 

surface and increasing the local concentration of oxygen. 

Remarkably, sodium and ammonium cations can block the 

entrance of oxygen to the CB cavity of NP@CB. The importance 

in catalysis of removing ligands or polymers used for the 

preparation of metallic nanoparticles has been highlighted when 

supporting the nanoparticles in solid supports
29

 but has never 

been proved before for nanohybrids in solution. Therefore, 

preparation of nanoparticles free of organic ligands and metal 

cations should be a must in order to design more efficient 

catalytic nanohybrids in solution.  
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