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Abstract

Before purchase, a buyer of an experience good learns about the product’s
fit using various information sources, including some of which the seller may
be unaware of. The buyer, however, can conclusively learn the fit only after
purchasing and trying out the product. We show that the seller can use a
simple mechanism to best take advantage of the buyer’s post-purchase learning
to maximize his guaranteed-profit. We show that this mechanism combines a
generous refund, which performs well when the buyer is relatively informed,
with non-refundable random discounts, which work well when the buyer is
relatively uninformed.

JEL: D82, C79, D42
Keywords : optimal pricing, robustness, return policies, refunds, monopoly, in-

formation design, mechanism design

1 Introduction

A buyer of an experience good often learns something about a product’s match
to her preferences through various sources before purchase. The seller, however,
may not know exactly what information a buyer has acquired, how a buyer gathers
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information or how she processes it. For instance, an online shoe retailer may be
unaware of the level of “showrooming” conducted by a shopper prior to visiting his
website, and is thus unable to discern if the buyer already knows about whether
a pair of shoes will fit. Similarly, a booking agent does not know if a traveler
planning to book a flight already has a specific travel itinerary in mind or whether
the individual already knows about what particular in-flight experience she wants.
In both instances, uncertainty about the buyer’s prior information limits the seller’s
ability to extract profits from the buyer should a trade occur.

However, it is often the case that a buyer conclusively learns about the product’s
fit only after the purchase has been made. For instance, a buyer of an airline ticket
may not immediately know her exact travel plans at the moment of purchase one or
two months prior. Additionally, she may only develop a much better understanding
of the expected itinerary, and therefore the “fit” of her ticket purchase, only a few
days prior to flying. This “learning through purchase” feature of experience goods
provides an opportunity for the seller to combat uncertainty regarding the buyer’s
information sources through a refund policy. From the buyer’s perspective, a gener-
ous refund policy allows her to try the good without taking on huge risk. Through
this, the seller is able to reduce the importance of the buyer’s prior information
on her purchasing decision, in turn allowing him to charge a high price without
sacrificing the probability of trade.

At the same time, the seller needs to be wary of costs associated with product
return. For each returned product, the seller incurs a restocking cost. More impor-
tantly, the seller is often unsure about how informed/uninformed the buyer is prior
to purchase, and is therefore unable to evaluate the buyer’s possibility of product
return at the time of purchase. Because of this, a seller including a generous provi-
sion for product returns in the hopes of earning higher profits by enticing potential
buyers to purchase the product at a higher price may suffer a significant loss if
the buyer turns out to be the one likely to return the product. As such, the seller
needs to set a refund policy that insures himself from these potentially unprofitable
outcomes.

We therefore ask the following questions. When faced with uncertainty about
the prior information that a potential buyer might have about the product, does the
seller always benefit from offering a refund policy? If so, what is the best way to
utilize the buyer’s “learning through purchase” to combat uncertainty? Our answer
is yes to the first question, and, to answer the second, we show that among all pos-
sible mechanisms, a simple mechanism that combines a generous refund policy with
random non-refundable discounts allows the seller to achieve the best guaranteed-
profit.

To answer these questions, we analyze a bilateral trade model, where the buyer’s
valuation of the product may either be high or low. Whereas this value is initially
unknown to both the seller and the buyer, both parties share a common prior belief
about the buyer’s valuation. The buyer also observes a private signal about her
valuation prior to her purchasing decision, but is only able to learn of her true
valuation for the product after a purchase has been made.

The first of the two key features of the model is that the seller and the buyer may
continue to interact even after the initial transaction has concluded. For instance,
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the seller can choose whether to allow the buyer to return the product and how much
to refund should the buyer choose to do so. In this case, the seller incurs a restocking
cost for each returned product. More generally, the seller may choose to employ any
direct or indirect mechanism. For example, the seller may choose to use what we
call a pricing policy—a simple mechanism that randomizes over price-refund pairs.
Alternatively, the seller may opt to use a dynamic sequential mechanism that screens
the buyer based on the signal distribution, the realized signal, and, post-purchase,
her private valuation.

The second key feature of the model is the seller’s uncertainty about the buyer’s
information structure (i.e., the distribution of signals). Whereas traditional Bayesian
models assume that the distribution of signals is commonly known,1 we analyze an
environment where the seller neither knows the buyer’s signal distribution nor has a
prior belief about possible signal distributions, yet wishes to maximize a guaranteed-
profit under this partial information.2

We adopt the standard approach in robust pricing literature and look for a solu-
tion that works well under all possible scenarios according to the guarantee criterion,
also known as the maxmin criterion.3 Specifically, our goal is to identify two ob-
jects: the best guaranteed-profit, i.e., the sharp lower bound of the seller’s profit
with respect to the buyer’s possible signal distributions; and a selling mechanism
that provides the best guaranteed-profit. We show that such a mechanism com-
bines a generous refund, which performs well when the buyer is relatively informed,
with non-refundable random discounts, which work well when the buyer is relatively
uninformed.

To understand the intuition and the implication of the results from our robust-
ness analysis, we start with the observation that the aforementioned pricing policy
provides some intuitive guarantee to the seller who only has partial information
about what the buyer knows. That is, the seller can partially hedge against uncer-
tainty through pricing policies. The rationale behind this is as follows. We start
by considering when the seller sets a single price with certainty. A buyer who is
relatively uninformed would face little variation in the signal that she receives, and
as such have a high likelihood of receiving a moderate signal. Setting a single high
price would likely result in no sales. Alternatively, it is possible for the buyer to be
relatively informed such that there is large signal variation. Given this, the signal
received by the buyer can be either highly favorable or unfavorable. In this case,
setting a low price leaves “money on the table”, as the buyer with a favorable signal
would be willing to pay more, whereas those with an unfavorable signal would not
purchase the product anyway.

Considering both cases, the seller can guarantee a better profit by randomizing
the price he sets. Through this, the seller increases the chance of trading with an

1See for example, Inderst and Tirosh (2015) and Krähmer and Strausz (2015).
2A possible modeling choice to capture such uncertainty is to introduce a hierarchy of higher-

order beliefs about the buyer’s possible information structure. However, as Savage (1972) puts it,
“Such a hierarchy seems very difficult to interpret, and it seems at best to make the theory less
realistic, not more.”

3This approach was first suggested in decision theory by Savage (1972) and axiomatized by
Gilboa and Schmeidler (1989). For a recent literature review on robust mechanism design and
contracting, see Carroll (2018).
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uninformed buyer without sacrificing too much of a profit from selling to the buyer
who has received a favorable signal. The randomization of prices that maximizes
the seller’s worst-case profit with respect to the buyer’s signal, which we refer to as
robust random pricing, is known to be log-uniformly distributed prices on a certain
range.4

Alternatively, a seller may improve upon his guaranteed-profit when setting a
single price by offering a refund upon product return. A generous refund reduces
the importance of the buyer’s signal in the purchasing decision and thus allows the
seller to increase the price he sets, in turn increasing his revenue from the initial
transaction. However, depending on the buyer’s signal distribution, offering a refund
may significantly increase the likelihood of product return, in turn increasing the
likelihood of restocking costs being borne by the seller. To make matters worse,
the seller has no prior knowledge of the buyer’s underlying signal distribution nor
the signal received by the buyer, and thus cannot evaluate the likelihood of product
return when deciding on the refund amount provided. Therefore, the seller must
design a refundable offer such that the offer is accepted by the buyer if and only
if she is unlikely to make a product return, i.e., the buyer receiving a sufficiently
favorable signal. The seller can achieve this by constructing a price-refund pair such
that the marginal buyer – i.e., the buyer who is indifferent between accepting and
rejecting the offer – provides the seller with zero expected profits if she accepts the
offer. Of all the possible price-refund pairs that satisfy this property, we refer to the
pair in which the price and refund is set at the buyer’s highest possible valuation as
that of the generous refund.

Intuitively, the seller should be able to further hedge against uncertainty and re-
ceive a better guaranteed profit by combining both tools. More specifically, consider
the robust refund policy, that is, a pricing policy that randomizes over the generous
refund and random discounting. Under the robust refund policy , lower prices ap-
pear more frequently in comparison to that of robust random pricing. 5 Relative to
robust random pricing, random discounting provides the seller with greater profits
when the buyer is relatively uninformed, but lesser profits when the buyer is rela-
tively informed. On the other hand, the generous refund by design results in a large
profit when the buyer receives a favorable signal, and no profit otherwise. In this
sense, it performs well when the buyer is relatively informed and poorly when the
buyer is relatively uninformed. Thus, we would expect that a mixture of the gener-
ous refund (that is only attractive to the buyer with a sufficiently favorable signal)
and random discounting (that is attractive to the buyer only when the signal she
receives is moderate or favorable) provides the seller with a better guaranteed-profit
than robust random pricing or the generous refund alone.

Our main result formally shows that this intuition is correct: the robust refund
policy, a simple mechanism that combines the generous refund and random discount-
ing, indeed provides the best guaranteed-profit among all other possible mechanisms,
including that of more complicated sequential screening mechanisms. Furthermore,
the robust refund policy satisfies the guarantee criterion and thus distinguishes it-

4This environment is a special case of Du (2018).
5The policy randomizes over price-refund pairs prior to the buyer’s purchasing decision. The

buyer only observes the single realized price-refund pair when deciding whether to buy the product.
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self from other possible simple mechanisms, addressing Wilson’s critique (Wilson
(1987)) by being a simple mechanism with good performance over a wide range of
possible buyer’s signal distributions.6

Our robustness analysis also identifies a worst-case distribution, i.e., a distri-
bution of the buyer’s signal that minimizes the highest profit of the seller even in
the case in which the seller can observe the buyer’s true signal distribution. Our
result demonstrates that the seller’s profit in the case of the worst-case distribution
is bounded from above by the best guaranteed-profit even when the seller knows
the distribution. In this sense, the seller uses the robust refund policy because he
cannot exclude the possibility that the buyer’s signal distribution is the worst-case
distribution. We then naturally pose the following question: When, if ever, should
the seller be worried about such a worst-case signal distribution?

The second contribution of our article is to provide an answer to this question.
We show that the worst-case distribution arises as an equilibrium of a game in which
the buyer first chooses a signal distribution, and the seller responds by designing a
selling mechanism.7 In this sense, the seller will want to be concerned of the worst-
case distribution if (but not only if) he cannot exclude the possibility that the buyer
can choose how much to learn and believes that the seller can observe her signal
distribution.

Our findings offer a novel rationale for generous return policies: they hedge
the seller against uncertainty in situations where the seller is unsure about how
much prior information a buyer may have about the product match before the
purchase decision. The literature has identified various other reasons that explain
why companies use return policies: e.g., as costly signals for product quality and
product fit for the consumer (Grossman (1981); Moorthy and Srinivasan (1995);
Inderst and Ottaviani (2013)), as insurance for risk-averse consumers (Che (1996)),
and as a tool for price discrimination (Zhang (2013); Escobari and Jindapon (2014);
Inderst and Tirosh (2015)).8

Among these, the closest to our article is that of Inderst and Tirosh (2015). In
an environment where the seller knows the buyer’s signal distribution, Inderst and
Tirosh (2015) show that return policies work as “metering devices,” where refunds
make different consumers more similar and thus allow the firm to capture more
of the surplus by raising prices.9 Consequently, the seller sets the refund amount
above the restocking cost. In contrast to our article, the authors predict that the
optimal refund is interior, i.e., strictly between the salvage value and the price of
the product, and thus fail to explain why the seller would promise to refund the
original purchase price minus a small fee charged to the buyer, as often observed in

6We analyze an environment where the interaction between the seller and the buyer may
continue after the initial transaction, which itself is a part of the seller’s mechanism design problem.
Thus, nothing guarantees a robust mechanism to be simple.

7For example, the buyer can delegate information gathering to a third party, such as an algo-
rithm or an employee, to commit to a particular information structure.

8Escobari and Jindapon (2014) also provide empirical evidence that a fully refundable airplane
ticket is typically about 50% more expensive than a non-refundable ticket. However, the difference
disappears in the last week before departure. These facts fit well with our model’s predictions.

9Similar ideas have been studied in other contexts, such as overbooking by airlines, e.g., Ely
et al. (2017).
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practice.
Our article belongs to the growing literature on information design in consumer

markets, which has recently shed new light on advertising (Anderson and Renault
(2006); Boleslavsky et al. (2019)), consumer search (Anderson and Renault (2006);
Armstrong and Zhou (2016); Choi et al. (2019)), price discrimination (Bergemann
et al. (2015)), pricing of attributes (Smolin (2019)), and price competition (Arm-
strong and Zhou (2019)). Among others, our findings are closely related to the
results presented in Roesler and Szentes (2017) and Du (2018). Roesler and Szentes
(2017) identify the information structure that maximizes the buyer’s welfare when
the seller best responds to the information structure via uniform pricing. Du (2018)
shows that the information structure found in Roesler and Szentes (2017) minimizes
the profit that the seller can obtain. Instead, the seller obtains the best guaranteed-
profit by what he calls exponential pricing.10

The key difference between our article and previous works is that we study
situations in which the interaction between the seller and the buyer can continue even
after the purchase has been made. Without post-purchase interactions, the buyer’s
signal affects her purchasing decision only through altering her expected private
value conditional on the signal received. If the buyer-seller interaction continues
after the buyer’s purchase, the buyer also cares about the likelihood of returning
the product, which itself depends on the mechanism offered by the seller. Thus,
in our model, there exists an interplay between the buyer’s signal distribution, the
buyer’s purchasing decision and the mechanisms the seller can offer.11 In our model,
the seller can indirectly control the impact that buyer’s prior information has on
her purchasing decision by incentivizing the buyer to learn through purchase.12 The
seller also can sequentially screen the buyer, first by her signal distribution, then by
her realized signal; and finally by her realized valuation for the product.13

Lastly, our model can be interpreted as a game between the seller, who maxi-
mizes his profit by indirectly controlling the buyer’s learning on product fit through
the design of a price-refund pair; and a player called Nature, who minimizes the
seller’s profit by directly choosing the buyer’s signal distribution. In this sense, the
game is akin to Bayesian persuasion games with competing information designers.
We therefore utilize the concavification technique (Aumann et al. (1995); Kamenica
and Gentzkow (2011)) and the properties of equilibrium payoff functions in compet-
itive Bayesian-persuasion settings (Boleslavsky and Cotton (2018); Au and Kawai
(2019a,b)) to guide our analysis.

10Libgober and Mu (2018) analyze a robust dynamic pricing problem where the product is
durable, and buyers learn about their value for the product over time.

11When goods are search goods, information plays a similar role as analyzed in Choi et al.
(2019). Given a signal, whether a consumer visits a seller depends not only on the conditional
expected value of the good, but also on the likelihood of purchase.

12Unlike many articles in the literature on sequential screening and dynamic mechanism design
where an uninformed-consumer can become informed over time, the buyer in our model does not
learn anything new after the initial purchasing decision should she decide not to buy the product.

13The literature on sequential screening and dynamic mechanism design has identified how and
why advance sales to still-uninformed consumers can help the seller. See, e.g., Gale and Holmes
(1992, 1993); Courty and Li (2000); Eső and Szentes (2007); Nocke et al. (2011); Gallego and Sahin
(2010); Ely et al. (2017); and von Wangenheim (2017).
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2 Model

There is a risk-neutral (male) seller of a product, and a risk-neutral (female) buyer
whose valuation for the product is v ∈ {0, 1}, i.e., the product either does not fit
(with value equal to 0) or does fit (with value normalized to 1). The buyer’s valuation
v follows a commonly known distribution such that µ = Pr (v = 1). Initially, neither
the seller nor the buyer know the realization of v. The seller’s production cost is
zero. That is, we assume that the trade between the seller and the buyer is socially
efficient.

The interaction between the seller and the buyer takes place over three stages. In
the first stage, the buyer receives a signal about the value v. In the second stage, the
seller offers and commits to a selling mechanism without knowledge of the signal or
the underlying stochastic process that generated the signal. In the third stage, the
buyer and the seller interact according to the previously specified selling mechanism.

If the mechanism does not allocate the product to the buyer, then the buyer-
seller interaction ends. On the other hand, if the mechanism allocates the product
to the buyer, then she learns of the realized value v. Depending on the specified
mechanism, she can keep the product or return it to the seller. We assume that
when the buyer returns the product to the seller, the value of the seller’s outside
option decreases by c, which we call the restocking cost. We interpret this restocking
cost as representing the losses absorbed by the seller when the product is returned.
This captures costs such as those associated with processing returns, repackaging
and restocking merchandise, product tests, and being unable to re-sell the product
again as new. Furthermore, as production costs are assumed to be zero, one may
interpret negative salvage value as the returned product being less valuable than
that of a newly produced one. Without loss of generality, we further assume that
the seller fully covers the buyer’s costs of returns, such that the buyer can return
the product without incurring any cost.14

Without loss in generality, we can represent a generic buyer’s signal as a posterior
q = Pr (v = 1), a random variable drawn from a cumulative distribution function
F ∈ F ≡{F : EF [q] = µ}. For this reason, we use a distribution F over posteri-
ors to represent the buyer’s information structure and call it a signal distribution.
Analogously, we call the realized posterior q a signal.

It is useful to observe that F ∈ F if and only if
∫ 1

0
F (q)dq = 1 − µ. Intuitively,

the buyer is relatively informed if the graph of F is relatively flat, such that the
likelihood of the posterior being favorable (close to 1) or unfavorable (close to 0) is
relatively high. In contrast, the buyer is relatively uninformed if F has a steep slope
around the prior µ and thus the posterior is likely to be moderate (close to µ).

The seller commits to a (direct or indirect) mechanism M ∈M that specifies mes-
sages, transfers, and the allocation in two stages. The mechanism must be consistent
with the primitives of the model, and incentive-compatible and individually-rational
for the buyer in both stages. Other than that, we do not impose any restrictions

14One can interpret our restocking cost c as the sum of the buyer’s return costs cb and the
restocking cost of the seller cs (i.e. c = cs + cb). If we adjust the (expected) monetary transfer
from the seller to the buyer by cb, then our model becomes equivalent to the model in which the
buyer bears the cost of return cb.
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about the mechanism that the seller can offer. For example, M contains a (direct)
mechanism such that the seller asks the buyer to report his signal distribution F
first, the realization of signal q, and then the realized value v. The set M also
includes randomization over such mechanisms.

However, of particular interest to us is a class of simple mechanisms that con-
sists of randomization over price-refund pairs. More specifically, by an offer, and a
pricing policy, we refer to a price-refund pair (p, r) and a randomization over (p, r)
respectively. We use P ⊂ M to denote the set of all possible pricing policies. If
the seller uses a pricing policy, then the buyer faces at most two choices. After
observing the realized offer (p, r), the buyer decides whether to buy at a price p. If
the buyer decides not to buy, or buys when a refund is not offered (r = 0), then the
interaction between the buyer and the seller ends. If the buyer buys the product
when a refund is offered (r > 0), the buyer learns of v and then decides whether to
return the product and receive the refund r.

We use V (M |F ) to denote the seller’s expected profit from mechanism M ∈ M

when the buyer’s signal distribution is F ∈ F. We say that the mechanism M
provides a guaranteed profit of V̂ when V (M |F ) ≥ V̂ for all F ∈ F, with equality
for some F ∈ F. Our goal is to identify the best guaranteed-profit as well as a
mechanism M that provides the best guaranteed-profit.15 To do this, we recast the
seller’s problem as a zero-sum game between the seller and an (adversarial) player
called Nature whose objective is to minimize the seller’s profit. More specifically, the
seller first chooses a (possibly stochastic) mechanism M ∈M. Nature then chooses
a signal distribution F ∈ F after observing the seller’s choice of M . The buyer then
learns of the signal q, and the buyer and the seller subsequently proceed to interact
according to the rules of the mechanism M .16

In particular, a pricing policy is an indirect mechanism that allocates the product
randomly. If the seller were only allowed to use pricing policies, the game proceeds
as follows:

1. The seller chooses a pricing policy P ∈ P.

2. After observing the seller’s choice P , Nature chooses a signal distribution
F ∈ F.

3. The buyer learns of the offer (p, r) ∼ P and the realized signal q ∼ F , and
then decides whether to purchase the product at the price p.

4. If the buyer does not buy the product, the game ends and the seller’s profit
and the buyer’s payoff are both zero. If the buyer purchases the product, she
learns of the value v. The buyer is allowed to return the product for a refund
of r if and only if r > 0. If the buyer does not return the product, then the
seller’s profit is p and the buyer’s payoff is v − p. On the other hand, if the
buyer returns the product, the seller’s profit is p− r− c and the buyer’s payoff
is r − p.

15Formally, the best guaranteed-profit and the set of mechanisms that provide the best
guaranteed-profit are supM∈M minF∈F V (M |F ) and arg supM∈M minF∈F V (M |F ).

16A (direct) mechanism M can specify the probability that the product being allocated to the
buyer based on her report. In such an instance, Nature chooses a signal distribution with knowledge
of only the probability of allocation for each reported signal q specified in M .
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Remarks

We now address several key assumptions and interpretations of our model. Firstly,
the assumption that µ is known captures situation in which the seller only has partial
information about the aggregate distribution of buyer valuations within society. In
particular, we assume that the seller knows the first moment of the population.17

However, as it is often the case in reality, we assume that the seller cannot observe
the sources of information used by a particular buyer and is thus forced to design
a mechanism that accounts for this uncertainty.18 For example, online retailers
such as Amazon are often able to estimate µ through compiling statistics on prior
purchasing consumers and through market research. These retailers sell a wide range
of experience goods such as clothing and shoes, the value of which to consumers can
be highly heterogeneous depending on their prior information sources.

Secondly, we note that our model captures various buyer-seller interactions in
which the buyer learns about the product’s fit only after making the purchase, even
in the case that the product is not an experience good. For instance, a buyer of
an airline ticket may not know the details of her itinerary at the time of purchase.
After she has a ticket booked, she may refine her traveling plan and come to learn a
few days before the flight that the ticket purchased is no longer an ideal match for
her. A fully refundable ticket allows the buyer to cancel the flight without incur-
ring significant expenses in such situations. In this context, our model investigates
whether and why the airline company should offer the buyer the ability to receive
a refund on her ticket should she “change her mind” and increase its guaranteed
profit.

3 Results

The Best Guaranteed-Profit

We begin this section by providing several important definitions necessary towards
describing the main findings of this article. We then present the main results of
the article in Theorem 1, which identifies the best guaranteed-profit of the seller
and a simple pricing policy, the robust refund policy, that allows him to achieve it.
Finally, we explain why the robust refund policy provides some intuitive guarantee
to the seller’s profit before arguing that the robust refund policy provides the best
guaranteed-profit of all possible mechanisms in M. Furthermore, we will be stating
our results in terms of the normalized restocking cost γ ≡ c

c+1
instead of c for

notational simplicity. We note that γ is strictly increasing in c, limc→0 γ = 0 and
limc→∞ γ = 1.

We first define a value V ∗γ ∈ (0, 1) and a buyer’s signal distribution Fw character-
ized by V ∗γ simultaneously. The function Fw is illustrated in Figures 1(a) and 1(b)

17Carrasco et al. (2018) analyzes the impact of the change in the seller’s knowledge, measured
by the change in the highest order of the moment that the seller knows, on the seller’s guaranteed-
profit from non-refundable offers.

18If the seller does not have any knowledge of the aggregate distribution of buyer valuations,
i.e., even µ is unknown to the seller, then the seller cannot guarantee himself a positive profit.
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for low and high restocking cost γ respectively. As we shall show, V ∗γ and Fw rep-
resent the seller’s best guaranteed-profit and a worst-case distribution for the seller
respectively. We define this worst-case distribution as:

Fw (q) ≡


0 if q ∈

[
0, V ∗γ

)
,

1− V ∗γ
q

if q ∈
[
V ∗γ , γ

)
,

1−min{V ∗γ , γ} if q ∈
[
max

{
V ∗γ , γ

}
, 1
)
,

1 if q = 1

(1)

The distribution Fw is a buyer’s signal distribution if and only if Fw ∈ F, i.e., V ∗γ
solves

∫ 1

0
Fw(q)dq = 1−µ. As the equation

∫ 1

0
Fw(q)dq = 1−µ has a unique solution

V ∗γ in (0, 1), we can express V ∗γ as follows:19

V ∗γ =


µ−γ
1−γ if γ ≤ γ ≡ 1−

√
1− µ,

µ−V ∗γ
1−γ+log γ−log V ∗γ

= −µ
W−1(−µγ eγ−2)

if γ > γ.
(2)

q0

1− µ

1

1γ V ∗γ = µ−γ
1−γ

V ∗γ

γ

Fw(q)
1− V ∗γ /q
1− γ/q

(a) Small Restocking Cost: γ ≤ γ

q0

1

1V ∗γ
γ

V ∗γ

1− µ

Fw(q)
1− V ∗γ /q

(b) Large Restocking Cost: γ > γ

Figure 1: Best Guaranteed-Profit V ∗γ and the Worst-Case Distribution Fw

We note that V ∗γ ∈ (0, 1) is continuous and strictly decreasing in γ, with V ∗1 > 0,
V ∗γ = γ, and V ∗0 = µ. We provide a graphical presentation of V ∗γ at different levels
of γ later in Figure 2.

We shall now name two pricing policies that are essential for our analysis. Both
policies provide the seller with the means to which he can combat uncertainty.

Definition 1 (Random Discounting). Random discounting PRD is a pricing pol-
icy that consists of non-refundable offers (p, 0) such that the price offered p is log-
uniformly distributed over the interval [V ∗γ , γ].20

19The functionW−1(·) ≤ −1 denotes the lower branch of the Lambert’s W function, i.e., function
W−1(x) = z is defined as the smaller of the two real solutions to the equation zez = x for z < 0.

20The cumulative distribution of p ∈ [V ∗γ , γ] is
log p−log V ∗

γ

log γ−log V ∗
γ

.
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Next, we consider refundable offers such that γ ∈ (0, 1) is a marginal signal, i.e.,
the buyer is indifferent between buying and not buying when the signal is γ. Under
these offers, the seller’s profit from the buyer with marginal signal γ is equal to zero
regardless of her purchasing decision. Additionally, among such refundable offers is
a fully refundable offer (1, 1), which we call the generous refund.

Definition 2 (Generous Refund). The generous refund PGR is a refundable offer
(1, 1) such that the buyer buys if and only if q ≥ γ.

Among all possible mechanisms, a particular mixture of random discounting and
the generous refund defined above allows the seller to achieve the best guaranteed-
profit V ∗γ . We will define this randomization as follows:

Definition 3 (Robust Refund Policy). The robust refund policy PRRP is a pricing
policy that induces the generous refund with probability β∗γ and random discounting
with probability 1− β∗γ, where

β∗γ =

{
1 if γ ≤ γ,

1−γ
1−γ+log γ−log V ∗γ

if γ > γ.
(3)

Now that we have defined V ∗γ and the robust refund policy, we are finally ready
to formally state our first main result:

Theorem 1. The best guaranteed-profit is V ∗γ , where V ∗γ is defined in (2). The robust
refund policy allows the seller to achieve the best guaranteed-profit. Furthermore,
the best guaranteed-profit that the seller can achieve through random non-refundable
offers is V ∗1 , which is strictly smaller than V ∗γ for all γ < 1.

Theorem 1 makes three distinct claims. Firstly, the best guaranteed-profit by
general mechanisms is supM∈M minF∈F V (M |F ) = V ∗γ . Secondly, the seller can
achieve the best guaranteed-profit by the robust refund policy. As pricing policies
are mechanisms, the best guaranteed-profit by pricing policies is bounded above by
the best guaranteed-profit from general mechanisms, i.e.,

min
F∈F

V (PRRP |F ) ≤ sup
M∈M

min
F∈F

V (M |F ) . (4)

Given that the seller can achieve the best guaranteed-profit by the robust refund
policy, which is a pricing policy in P, the inequality (4) holds with equality. Thirdly,
without utilizing refunds, the seller cannot achieve the best guaranteed-profit. That
is, the best guaranteed-profit by random non-refundable offers V ∗1 is strictly lower
than V ∗γ .

Robust Refund Policy: An Effective Hedge Against Uncer-
tainty

We will now explain intuitively why the robust refund policy provides some guar-
antee on the seller’s profit. In particular, we will first explain how the seller can
use either of randomized prices or offering the generous refund to combat uncer-
tainty. We will then explain how the robust refund policy is a pricing policy that,
through combining these two tools, allows the seller to most effectively hedge against
uncertainty.
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Randomizing Prices

To understand how the seller hedges against uncertainty by randomizing prices, we
start by considering the case where the seller makes a non-refundable offer (p, 0). For
a given price p, the buyer buys if and only if her signal q is above the price p. Thus,
a high price can result in a low profit due to a low probability of trade, especially
when the buyer is relatively uninformed such that q is likely to be much smaller
than one. In contrast, a low price can result in a low profit due to a small profit
margin conditional on a trade occurring, particularly when the buyer is relatively
informed and thus q is likely to be either close to 1 or 0.

We begin by noting that the robust price, i.e., the deterministic price that attains
the seller’s best guaranteed-profit by non-refundable offers, is p∗R = 1 −

√
1− µ.

Formally, deriving the guaranteed profit by a deterministic offer (p, 0) is a canonical
Bayesian persuasion problem in itself (Kamenica and Gentzkow (2011)). Nature
chooses a signal distribution F ∈ F to minimize the seller’s profit v (p|q) = 1[q>p]×p
with price p and signal q. It is only when p < µ that a positive profit is guaranteed
for the seller, with this worst-case profit being p × µ−p

1−p > 0. Therefore, the seller
can maximize his guaranteed-profit by setting p = p∗R.

We then consider when the seller instead decides to randomize prices, i.e., setting
different prices above or below the robust price with some probability. By offering
prices below the robust price p∗R with positive probabilities, the seller can capture
some gains from trade when the buyer’s signal is likely to be moderate, i.e., q is close
to but lower than p∗R. Thus, relative to the robust price, the seller’s profit is higher
when the buyer is relatively uninformed and is likely to have a moderate signal q. In
addition, by offering prices above the robust price p∗R with positive probabilities, the
seller earns a larger profit margin when the buyer’s signal is favorable, i.e., q > p∗R.
Hence, relative to the robust price, we see that the seller’s profit is higher when the
buyer is relatively informed and is likely to have either a large q or a small q.

More formally, we define the seller’s best method of hedging against uncertainty
via randomizing prices with non-refundable offers as that of robust random pricing
PRP , where the price offered is log-uniformly distributed on [V ∗1 , 1], with V ∗1 is defined
in (2).21 When the buyer’s signal distribution is F , the seller’s profit from robust
random pricing is thus

V (PRP |F ) =

∫ 1

V ∗1

p[1− F (p)]

p(log 1− log V ∗1 )
dp = V ∗1 +

∫ V ∗1
0

F (q) dq

− log V ∗1
≥ V ∗1 . (5)

From this, we present the following lemma:

Lemma 1. V ∗1 is the best guaranteed-profit by randomizing prices.

Proof. This is a special case of the exponential pricing identified in Du (2018). Let
GRS be the distribution identified in Roesler and Szentes (2017), which is equivalent

21That is, V ∗1 is the unique solution to
∫ 1

V

(
1− V

q

)
dq = 1−µ. The CDF that represents robust

random pricing takes 0 for q ∈ [0, V ∗1 ] and
log q−log V ∗

1

− log V ∗
1

for q ∈ [V ∗1 , 1].
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to Fw for γ = 1:

GRS(q) =


0 if q ∈ [0, V ∗1 ),

1− V ∗1
q

if q ∈ [V ∗1 , 1)

1 if q = 1.

(6)

From this, it is straightforward to verify that the seller’s profit by any non-refundable
offer when the buyer’s signal distribution is GRS is bounded from above by V ∗1 , i.e.,
V
(
PRP |GRS

)
≤ V ∗1 . Combining this with inequality (5) thus proves that V ∗1 is the

best guaranteed-profit by randomizing prices.

Generous Refund

The seller also can reduce the significance of the buyer’s signal distribution on her
purchasing decision by carefully designing a refund policy. Without loss of generality,
we only discuss refundable offers (p, r) such that p ≥ r.22 The buyer who faces
refundable offer (p, r) and receives a signal q buys if and only if q is above the
marginal signal: q̃ (p, r) ≡ p−r

1−r . We see that the marginal signal q̃ (p, r) is strictly
less than price p for all p < 1, and is strictly decreasing in r. That is, for a given
price, the more generous the refund, the more likely the buyer purchases the product.

However, the seller needs to be wary of product returns. The buyer with signal
q who purchases the product returns it with probability 1 − q. For each product
returned, the seller incurs the restocking cost c = γ

1−γ > 0. More specifically, if the

seller makes a refundable offer (p, r) and the buyer with signal q buys the product,
then his profit is:

ṽ (q; p, r) ≡ p− (1− q) (c+ r) = p− (1− q)
(

γ

1− γ
+ r

)
. (7)

If the refund is too generous, the buyer buys even when the value of q is small,
causing the seller to suffer a significant loss, i.e., ṽ (q; p, r) is negative for q close to
but above the marginal signal. In contrast, if the refund offered is too low, then
the seller fails to induce the buyer with a moderate signal to buy, i.e., even though
ṽ (q; p, r) is positive for q close to but below the marginal signal, the buyer with such
a q would not buy.

However, it is important to note that the seller does not know the distribution
of q. Thus, the seller can best hedge against this uncertainty by designing a refund
policy such that the buyer buys if and only if she brings in a positive profit condi-
tional on the purchase being made. The seller does this by assigning an amount to
r(p) so that ṽ (q; p, r(p)) ≥ 0 if and only if q ≥ q̃(p, r(p)). He can achieve this by
setting the refund to r(p) = p−γ

1−γ so that the marginal signal is q̃(p, r(p)) = γ. Fur-
thermore, the seller can strictly increase his profit from a buyer with signal q > γ,
i.e., ṽ(q; p, r(p)) = q−γ

1−γp, by increasing both the price p and refund offered r(p) to

(1, r(1)) = (1, 1). It is this very argument that defines the generous refund provided
in Definition 2.23

22Notice that if p < r, then the buyer buys irrespective of the value of the signal. Raising price
by a small amount therefore strictly increases the profit.

23If p < 1, then q = γ is the unique marginal signal under (p, r(p)). However, if p = 1, then
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Robust Refund Policy

Having identified two simple pricing policies that the seller can use to tackle un-
certainty, i.e., randomizing prices and the generous refund; we now discuss why the
robust refund policy defined in Definition 3 allows the seller to better hedge against
uncertainty in general.

The generous refund policy, by design, screens the buyer based on whether her
signal is above γ. Therefore, it is effective when the buyer’s signal is likely to be
favorable, i.e., when the buyer is relatively informed, but not so when the buyer is
relatively uninformed. More formally, when the buyer’s signal distribution is F , the
seller’s profit from using the generous refund policy is:

V (PGR|F ) =

∫ 1

γ

q − γ
1− γ

dF (q) = 1−
∫ 1

γ
F (q) dq

1− γ
≥ 0 (8)

We see that the profit from using the generous refund policy is decreasing in
∫ 1

γ
F (q) dq,

that is, the area under F on [γ, 1]. Observe that this area being small implies that
F is flat and that the likelihood of the signal q being above γ is high, i.e., the buyer
is relatively informed. Thus, when the buyer is relatively informed, the generous
refund brings in a significant profit. In contrast, if F is steep and the signal is
concentrated around µ so that the area under F on [γ, 1] is large, i.e., when the
buyer is relatively uninformed, then the profit from using the generous refund is
small. To hedge against the possibility of the latter, the seller can randomize prices
in a way that is more likely to generate a moderate price than that under robust
random pricing. More specifically, suppose that γ ≥ γ so that V ∗γ ≤ γ. With ran-
dom discounting PRD, i.e., the log-uniform randomization of prices over [V ∗γ , γ] for
V ∗γ ∈ (V ∗1 , γ) as defined in Definition 1, the profit of the seller who faces the buyer
with signal distribution F is

V (PRD|F ) =

∫ γ

V ∗γ

p[1− F (p)]

p
(
log γ − log V ∗γ

)dp =
γ − V ∗γ −

∫ γ
V ∗γ
F (q) dq

log γ − log V ∗γ
. (9)

Comparing the seller’s profit from random discounting V (PRD|F ) with the one from
robust random pricing V (PRP |F ) derived in (5), we find that the former is likely to
bring in a larger profit when the buyer is relatively uninformed such that F is steep,
and the area under F on [V ∗γ , γ],

∫ γ
V ∗γ
F (q) dq, is relatively small.

Given that the generous refund works well with a relatively informed buyer
whereas random discounting performs better with a relatively uninformed buyer,
we expect that a combination of both of these policies, which we call the robust
refund policy, will allow the seller to hedge against uncertainty to an even greater
degree.

Observe that the buyer’s signal distribution F only affects the seller’s profit
under the generous refund through the area below F over [γ, 1]; and the profit under
random discounting through the area below F over [V ∗γ , γ]. Thus, it is possible for the

r(1) = 1 and hence all signals are marginal signals. Therefore, one may interpret the generous
refund as the limit of (p, r(p)) where p is taken to 1; specified as the buyer’s tie-breaking rule at
(1, 1).
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seller to reduce the impact of uncertainty that F has on his profit if he can randomize
over both pricing policies such that his profit only depends on the sum of both areas,
i.e., the area below F over [V ∗γ , 1] rather than each area independently. The seller
can do so by choosing the value of β such that the coefficient on the first area, i.e.,
β/(1−γ), and the coefficient on the second area, i.e., (1−β)(γ−V ∗γ )/(log γ−log V ∗γ ),
are equal.24 It is this very argument that defines the weight β in Definition 3. Then,
we may write the seller’s profit from the robust refund policy when the buyer’s signal
distribution is F as:

V (PRRP |F ) = β∗γV (PGR|F ) +
(
1− β∗γ

)
V (PRD|F )

=

V
∗
γ +

∫ γ
0 F (q)dq

1−γ if γ ≤ γ,

V ∗γ +
∫ V ∗γ
0 F (q)dq

1−γ+log γ−log V ∗γ
if γ > γ.

(10)

As V (PRRP |Fw) = V ∗γ , we see that the seller’s guaranteed-profit through using the
robust refund policy is V ∗γ . Additionally, we note that V (PRRP |F ) > V (PRP |F ) for
all F and γ < 1, i.e., for any given buyer’s signal distribution, the profit from the
robust refund policy is always strictly higher than the profit under robust random
pricing. This is because V (PRRP |F ) is strictly decreasing in γ when γ > γ and
approaches V (PRP |F ) as γ → 1.

1

1 γ

Guaranteed-Profit

0

γ

γ µ

µ

β∗γ = 1 β∗γ ∈ (0, 1)

Robust Refund Policy (V ∗γ )

Robust Random Pricing (V ∗1 )

Robust Pricing

Generous Refund

Figure 2: Guaranteed-Profit under Various Pricing Policies

To further illustrate this, we provide a comparison of the guaranteed-profit by
various pricing policies as the functions of the normalized restocking cost γ in Fig-
ure 2. In particular, we see that V ∗γ is strictly decreasing in γ, and hence V ∗γ > V ∗1 for
all γ < 1. Thus, the guaranteed-profit by the robust refund policy is strictly higher
than the guaranteed-profit by robust random pricing. This leads us to provide the
following lemma:

24If the seller induces the generous refund with probability β and random discounting with

probability 1−β, then his profit is β+
(1−β)(γ−V ∗

γ )
log γ−log V ∗

γ
−
(

β
1−γ

∫ 1

γ
F (q) dq + (1−β)

log γ−log V ∗
γ

∫ γ
V ∗
γ
F (q) dq

)
.
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Lemma 2. For any buyer’s signal distribution F ∈ F, the seller achieves a strictly
greater profit under the robust refund policy than that under robust random pric-
ing. Consequently, the seller’s guaranteed-profit under the robust refund policy is
strictly greater than that under robust random pricing, and strictly decreasing in the
normalized restocking cost γ.

Worst-Case Distribution

We have argued that the robust refund policy PRRP offers an intuitive guarantee
on profit, i.e., minF∈F V (PRRP |F ) = V ∗γ ; and it is strictly higher than the best
guaranteed-profit by random pricing, i.e., V ∗γ > V ∗1 . We will now proceed to show
that the robust refund policy provides the best guaranteed-profit among all possible
mechanisms, i.e., minF∈F V (M |F ) ≤ V ∗γ for all M ∈ M. To do this, we will first
demonstrate that the robust refund policy provides the best guaranteed-profit among
all possible pricing policies. We then show that pricing policies can provide the best
guaranteed-profit among all possible mechanisms. These are represented by having
the following inequalities hold with equality:

sup
P∈P

min
F∈F

V (P |F ) ≥ min
F∈F

V (PRRP |F ) = V ∗γ ; (11)

sup
M∈M

min
F∈F

V (M |F ) ≥ sup
P∈P

min
F∈F

V (P |F ). (12)

We first consider when γ = 0, i.e., when the seller can offer refunds costlessly. In
this case, the seller’s guaranteed-profit from the generous refund is µ = limγ→0 V

∗
γ =

V ∗0 . As µ is the upper bound for gains from trade, this implies that the seller
can completely hedge against uncertainty through using the robust refund policy,
which, in this case, coincides with the generous refund. Thus the robust refund
policy provides the best guaranteed-profit when γ = 0.

We now consider when γ > 0. Observe that the robust refund policy provides the
best guaranteed-profit among all possible pricing policies if and only if, for Fw defined
by (1), all offers in the support of the robust refund policy are profit maximizing
offers and generate a profit of V ∗γ . As both refundable and non-refundable offers
comprise the set of P, we will discuss these cases separately, showing that the seller’s
profit from either type of offer under Fw is bounded above by V ∗γ .

First, recall that by (8), the seller’s profit under the generous refund policy,
which induces a marginal signal γ, is V (PGR|Fw) = V ∗γ . This policy is always in
the support of the robust refund policy. Among all refundable offers that induce
a marginal signal of γ, the generous refund provides the highest profit. Thus, the
seller’s profit from a refundable offer is bounded above by V ∗γ . Additionally, with
refundable offers, the sellers wishes for the buyer to purchase if and only if she brings
in a positive profit conditional on purchasing the product. For otherwise, the seller’s
profit would be bounded above V ∗γ . Thus, we see that among all refundable offers,
the generous refund brings the seller the highest profit.

Next, as discussed in Roesler and Szentes (2017), when the buyer’s signal dis-
tribution is F , the supremum of the seller’s profit from a non-refundable offer is
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V if limp̃→p− F (p̃) = 1 − V/p and F (q) ≥ 1 − V/q for all q ∈ [0, 1]. There-
fore, when the buyer’s signal distribution is Fw, the seller’s profit from any non-
refundable offer is bounded above by V ∗γ .25 Furthermore, a non-refundable offer
is in the support of the robust refund policy if and only if γ > γ, and if so, all
non-refundable offers in the support of the robust refund policy, i.e., (p, 0) such that
p ∈

[
V ∗γ , γ

]
, generate a profit of V ∗γ . We therefore conclude that among all pricing

policies, the robust refund policy provides the seller with the highest profit, i.e.,
supP∈P minF∈F V (P |F ) = V ∗γ ≤ V (PRPP |F ) for all F ∈ F.

We now show that the robust refund policy also provides the best guaranteed-
profit among all mechanisms in general. Recall that the robust refund policy es-
sentially screens the buyer based on his realized signal q without utilizing any in-
formation about the signal’s underlying distribution.26 Given this, a seller who can
obtain any (albeit impartial) information about the buyer’s signal distribution can
use it to his advantage to screen the buyer based on her realized signal and earn a
higher profit. A priori, nothing seems to guarantee that a worst-case distribution
for the seller who can only utilize pricing policies, i.e., mechanisms in P ⊂ M, is a
worst-case distribution for the seller who can utilize any mechanism in M. Even if
it is, it could be possible for a non-pricing policy M ∈ M \ P to provide the best
guaranteed-profit. To address this, we will show that Fw is a worst-case distribution
among all mechanisms, i.e., Fw ∈ arg minF∈F maxM∈M V (M |F ), and that the upper
bound of the profit against Fw is V ∗γ , i.e., supM∈M V (M |Fw) = V ∗γ .

To provide some context with regards to what we are about to show, suppose
hypothetically that the buyer’s signal distribution is commonly known to be some
F ∈ F. It is well known in mechanism design literature that if the seller and
the buyer can only interact once and if the distribution is regular, a simple non-
refundable offer will be a profit maximizing mechanism.27 Analogously, we demon-
strate that in our case, where the seller and the buyer can interact more than once
through product return and if buyer’s signal distribution of Fw is commonly known,
the seller will be able to maximize his profit through a refundable or non-refundable
offer. Furthermore, we have already established that against Fw, the seller’s profit
from any pricing policy is bounded from above by V ∗γ , the profit that is provided
by the robust refund policy . We can therefore conclude that the robust refund
policy provides the best guaranteed-profit not only among all pricing policies, but
also among all possible mechanisms. In this sense, the distribution Fw is a distribu-
tion that leaves no room for the seller to take advantage of other more complicated
mechanism.

We will now formalize our argument. Suppose that the buyer’s signal distribu-
tion is commonly known. A profit maximizing mechanism can be found from the
following class of mechanisms that utilize refunds:

25Observe that the solid black curve (Fw) is weakly above the loosely dotted gray curve (1 −
V ∗γ /q) for all q, and they coincide on

[
γ, V ∗γ

]
in Figures 1(a) and 1(b).

26Observe that the probability that the buyer receives the product (without the option to return)
is strictly increasing on

[
V ∗γ , γ

]
.

27By interacting once, we mean that the interaction between the buyer and the seller ends with
the purchase (or equivalently in our model, when restocking costs are infinitely large).
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Definition 4 (Direct Mechanism with Refunds). An individually-rational and incentive-
compatible direct mechanism

MD ≡ {p (q) , {α0 (q) , αr (q)}}q∈[0,1]

is a direct mechanism with refunds if, for each buyer’s report q ∈ [0, 1], the mecha-
nism specifies (i) p(q): the transfer from the buyer to the seller; (ii) α0 (q) ∈ [0, 1]:
the probability that the buyer receives the product without an option to return; and
(iii) αr (q) ∈ [0, 1− α0 (q)]: the probability that the buyer receives the product with
an option to return with refund r = 1.

Lemma 3. When the buyer’s signal distribution is commonly known to be F , there
exists a direct mechanism with refunds MD that maximizes the seller’s profit, i.e.,
V (MD|F ) = maxM∈M V (M |F ).

Proof. By the revelation principle, for any indirect mechanism M ∈M, there exists
an outcome-equivalent dynamic direct mechanism that is individually-rational and
incentive-compatible. The formal proof in the appendix shows that such a dynamic
direct mechanism is implementable through a direct mechanism with refunds.

Lemma 3 allows us to apply the standard argument to show that the generous
refund is a profit maximizing mechanism. More formally, we can represent the
seller’s profit from a direct mechanism with refunds MD when the buyer’s realized
signal is q, which we denote by v (q|MD), as follows:

Lemma 4. Suppose that the buyer’s signal distribution is commonly known to be
F . If MD = {p (q) , {α0 (q) , αr (q)}}q∈[0,1] is a profit-maximizing mechanism, then

α0 (q) is (weakly) increasing in q (13)

and

v (q|MD) ≡
{
qα0 (q)−

∫ q
0
α0 (q̃) dq̃ if q < γ,

qα0 (q) + q−γ
1−γ (1− α0 (q))−

∫ q
0
α0 (q̃) dq̃ if q ≥ γ.

(14)

Proof. In the Appendix.

We can therefore further simplify the seller’s problem to the one in which he
chooses a (weakly) increasing function α0 (·), instead of a triplet of functions MD, to

maximize V
(
M̃ |F

)
. We then find that when the buyer’s signal distribution is Fw,

the function α0(q), i.e., the probability that the buyer with posterior q receives the
product without an option to return, is indeterminate; and all offers in the support
of the robust refund policy turn out to be profit maximizing mechanisms.

Lemma 5. Suppose that the buyer’s signal distribution is commonly known to be
Fw as defined in (1). The seller’s profit from a profit-maximizing mechanism, i.e.,

maxM̃∈M V
(
M̃ |Fw

)
, is V ∗γ . Thus, Fw is a worst-case distribution among all mech-

anisms, and the robust refund policy provides the best guaranteed-profit V ∗γ .

Proof. In the Appendix.
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We emphasize that our goal here is not to identify optimal mechanisms for all
possible buyer’s signal distributions. In particular, Lemma 5 only informs us that
the robust refund policy is a profit-maximizing mechanism when the buyer’s signal
distribution is Fw; for an arbitrary buyer’s signal distribution, the lemma is silent
about the differences between the robust refund policy and optimal mechanisms, as
well as any differences in the profits that they generate for the seller, which can be
as large as µ− V ∗γ , when we consider an arbitrary buyer’s signal distribution.

Instead, our primary interest is to identify a mechanism that works well un-
der all possible buyer signal distributions, including the ones that do not satisfy a
set of certain regularity conditions that are often assumed in the literature.28 As
formally stated in Theorem 1, we show that the robust refund policy provides the
best guaranteed-profit among all possible mechanisms V ∗γ , including that of both
pricing and non-pricing mechanisms, and other potentially more complicated mech-
anisms. Moreover, the seller’s best guaranteed-profit under the robust refund policy
is strictly higher than the best guaranteed-profit under randomized prices, including
that of robust random pricing.

To conclude this section, we note that our results are closely related to Roesler
and Szentes (2017) and Du (2018). In particular, if (and only if) the restocking cost
is infinitely high so that γ = 1, our worst-case distribution Fw, the robust refund
policy, and the best guaranteed-profit, respectively correspond to the worst-case
distribution, the robust mechanism, and the best guaranteed-profit identified in Du
(2018). In contrast to these articles, we take into account the possibility of interac-
tions after the initial transaction between the buyer and the seller, which itself is a
part of the seller’s design problem. Therefore, there exists an interplay between the
buyer’s signal distribution, the buyer’s purchasing decision, and the mechanisms the
seller can offer in our model that is absent in previous works. This interplay is poten-
tially non-trivial, as it creates a room for the seller to take advantage of sequential
screening mechanisms to discriminate the buyer with different posterior beliefs. Our
results show that the seller, who is interested in maximizing his guaranteed-profit,
chooses to continue interacting with the buyer after the initial transaction through
offering the generous refund with a strictly positive probability.

4 Buyer-Optimal Information Structure

The analysis in the previous section identified a worst-case distribution for the seller.
We now provide an answer as to when, if ever, the seller should be concerned about
such a worst-case. We do so by showing that the worst-case distribution arises as
an equilibrium of the game described below in which the buyer strategically decides
what to learn. The game proceeds as follows:

1. The buyer chooses and commits to a signal distribution F ∈ F. The choice of
signal distribution is costless.

28See Inderst and Tirosh (2015); Ely et al. (2017); Courty and Li (2000); Eső and Szentes
(2007); Pavan et al. (2014) for an analysis of related settings, where the buyer’s signal distribution
is commonly known and satisfies various regularity conditions.
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2. The seller observes F , and commits to a mechanism M ∈M.

3. The buyer learns of her signal q ∼ F , and the buyer and the seller interact
according to the rules of the mechanism M .

We note that the critical assumption we impose is that the buyer commits to a
signal distribution at the first stage of the game. In other words, the buyer commits
to not learning any information that is not contained in the signal generated by
distribution F .29 Note that if the buyer lacks such a commitment power, then she
would choose to acquire a fully informative signal. Knowing that the buyer chooses
a fully informative signal, the seller would then always set the price to 1 and thus
capture the full surplus of the buyer.

We consider the equilibrium that maximizes the buyer’s equilibrium payoff and
call her equilibrium strategy the buyer-optimal information structure. If γ = 1,
i.e., the restocking cost is infinitely high, then this game coincides with the game
analyzed in Roesler and Szentes (2017). As analyzed in Du (2018), in the absence
of after-purchase buyer-seller interactions or when the restocking cost is infinitely
high, i.e., γ = 1, the buyer-optimal information structure is known to coincide with
the seller’s worst-case distribution.

Let U(M |F ) denote buyer’s expected payoff when she chooses the signal distri-
bution F and the seller responds by choosing the mechanism M . Then the buyer’s
problem can be described as

max
F∈F,M∗∈M

U(M∗|F ) subject to M∗ ∈ arg max
M∈M

V (M |F ) (15)

That is, the buyer essentially chooses a signal distribution and “recommends” a
mechanism to the seller that the seller finds optimal to follow given the buyer’s
signal distribution.

Lemma 3 allows us to focus on direct mechanisms with refunds instead of all
possible mechanisms. Yet, at a glance, this problem forces us to identify all profit
maximizing direct mechanisms with refunds for each possible F ∈ F. Nevertheless,
as an immediate corollary of the analysis conducted in the prior section, we can show
that the buyer-optimal information structure coincides with the seller’s worst-case
distribution Fw defined in (1).

Formally, the analysis in the previous section shows that (i) regardless of the
buyer’s strategy, the seller’s profit is bounded from below by his best guaranteed-
profit, i.e., V ∗γ ; and (ii) if the buyer chooses Fw, then making the non-refundable offer
(V ∗γ , 0) is one of the seller’s best responses. As the gain from trade is µ, the buyer’s
equilibrium payoff cannot exceed µ− V ∗γ . However, if the buyer chooses Fw and the
seller best responds by offering (V ∗γ , 0), then the trade occurs with probability one,
and the buyer’s payoff would be µ − V ∗γ , i.e., the upper bound. This establishes
that Fw is a buyer-optimal information structure, allowing us to state the following
theorem:

29A possible interpretation of this model is as follows: the buyer ex-ante commits to delegating
the information gathering to a third-party, such as an agent or an algorithm, knowing that the
seller best responds to the signal distribution by choosing a pricing policy.

20



Theorem 2. In the game in which the buyer chooses and commits to a signal
distribution F ; and the seller best responds by a mechanism, Fw is a buyer-optimal
information structure.

In this sense, if the seller cannot exclude the possibility that the buyer believes
that the seller optimally responds to the choice of buyer’s signal distribution, then
the seller has a good reason to be concerned of the possibility of facing the worst-case
distribution.

5 Discussion

We analyze the robust pricing problem of an experience good seller who faces un-
certainty about a potential buyer’s prior information and learning. Our results
demonstrate that a simple mechanism that utilizes both randomized prices and the
generous refund provides the best guaranteed-profit. Here, we provide a discussion
of several of the underlying assumptions we make and areas for potential future
research.

To make further predictions about how the seller’s use of the robust refund
policy may change in different environments, it is helpful to discuss how our results
will change if the value of the product to the buyer conditional on a good fit is
ṽ > 0 instead of 1. In our analysis, the normalized restocking cost γ captures
both the restocking cost c as well as the marginal signal under the generous refund.
Noting this, we define the normalized restocking cost as γ̃ ≡ cṽ

ṽ+c
∈ (0, ṽ). Then, the

generous refund will be (p, r) = (ṽ, ṽ) with marginal signal γ̃/ṽ ∈ (0, 1), and random
discounting will be a pricing policy that consists of non-refundable offers (p, 0) such

that p/ṽ is log-uniformly distributed over the interval
[
V ∗γ̃/ṽ, γ̃/ṽ

]
. Additionally, the

robust refund policy induces the generous refund with probability β∗γ̃/ṽ and random
discounting with probability 1−β∗γ̃/ṽ. The seller’s best guaranteed-profit is ṽ×V ∗γ̃/ṽ.
The marginal signal for ṽ, i.e., γ̃/ṽ, is decreasing in ṽ and increasing in the restocking
cost c, and β∗γ̃/ṽ is decreasing in γ̃/ṽ. Therefore, both an increase in the match value
ṽ and a decrease in the restocking cost c lead to an increase in the probability that
the buyer is offered the generous refund.

For instance, consider a fashion retailer. At the beginning of the season, the
buyer may have a higher match value as the product is “fashionable”. In other
words, ṽ goes down over time during the season. For the same reason, the retailer
may also find that returned products have a larger salvage value at the beginning
of the season than at the end of the season, particularly as they will then have
more time to resell the product before the product goes “out of fashion.” We may
interpret this as the (non-normalized) restocking cost c going up over time. Our
model would thus predict that the retailer wishes to make full-price fully-refundable
offers (generous refund policy) early in the season, and make “all sales final” offers
near the end of the season. Such policies are a common practice by many retailers,
who offer a full refund for items returned in their original condition, but make an
exception for final sale items, which cannot be returned or exchanged.

Our model hinges on the restrictive assumption of the buyer’s valuation being
binary, which significantly simplifies the analysis conducted. This assumption is
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reasonable if the buyer’s primary concerns are of the exact product match: e.g.,
shoes and clothes either do or don’t fit, a gadget is either compatible with the
buyer’s use or not, and a business traveler either needs to be in a particular location
on a specific date or not. We note that the implications of this assumption are
twofold. Firstly, there exists a one-to-one mapping between the signal that the
buyer receives and her expected willingness to pay for the product (in the absence
of a refund policy). Secondly, the buyer’s return decision is independent of the
refund amount offered.

Those two properties fail to hold if more than two levels of product fit are
present: e.g., when clothes do not fit at all, fit somewhat well or fit perfectly. Thus,
the assumption of binary buyer valuation, whereas restrictive, is important for the
tractability of the model. More precisely, in the absence of a refund policy, the
buyer buys only if her signal q, i.e., a posterior over possible levels of product fit
v, satisfies Eq [v] ≥ p. That is, the seller’s profit depends on the buyer’s signal
q only through the value of expected willingness to pay it induces, i.e., Eq [v]. In
this sense, if the seller cannot utilize a refund policy, then we still can represent
the seller’s uncertainty as the uncertainty over distributions of the buyer’s expected
willingness to pay, which is a one-dimensional random variable.30 In the presence
of a refund policy (p, r), however, the buyer with signal q buys only if the right-tail
of q is sufficiently fat, i.e., Pr (v > r|q)Eq [v|v > r] + Pr (v ≤ r|q) r ≥ p. Therefore,
two signals with an identical willingness to pay can result in different outcomes for
the seller. Consequently, we are no longer able to capture the seller’s uncertainty in
terms of the uncertainty over distributions of the buyer’s expected willingness to pay,
rendering the generalization that we make in this direction not as straightforward.

Having said that, we conjecture that the relaxation of the binary buyer valua-
tion assumption yields qualitatively similar results: for any given restocking cost,
there must exist a generous refund policy (or randomization over refund policies)
that guarantees the seller a non-negative ex-post (expected) profit over all possible
buyer’s signal distributions. Hence, combining such a refund policy with random
pricing is still likely to guarantee a higher profit than simply using randomized prices
alone.

We also abstract away the possibility of buyer heterogeneity in our model. In
reality, the seller may face two or more groups of consumers. If the seller could
differentiate between groups, then our analysis can be applied to each group sep-
arately. We illustrate this with an example. Consider an airline that faces both
corporate clients and private consumers. Suppose that corporate clients have either
higher match valuation or lower transaction costs for returns. As discussed above,
our results then imply that corporate clients will receive the generous refund offers
more frequently, whereas private customers will receive non-refundable discounted
offers more often. A similar third-degree price-discrimination argument applies in
other situations, such as geographic differentiation.

In other situations, it may be more realistic to assume that the seller cannot

30More precisely, the distributions (over signals) that minimize the seller’s profit from a deter-
ministic non-refundable offer and the seller’s worst-case distribution over signals when the seller
cannot utilize a refund policy can both be characterized in terms of distributions over the buyer’s
expected willingness to pay.
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distinguish different groups of buyers and has only a prior belief about which group a
particular consumer belongs to. Our model will naturally extend to this setting if the
seller’s partial knowledge is about the first moment of the population of each group.
Should we be able to identify a “worst-case scenario” for the seller, we conjecture
that an optimal mechanism can be shown to be a menu that consists of the generous
refund and random discounting. However, a major roadblock is the identification of
this worst-case scenario, which will be a profile of buyer signal distributions for each
group. The profile that consists of the worst-case distributions for homogeneous
buyers, one of which we identify and analyze in this article, is unlikely to be the
worst-case scenario within this context.

Another aspect that we do not address is the seller’s learning of buyer demand
through pricing. We believe that the insight we provide, that a well-designed refund
policy limits the significance of the buyer’s learning on the seller’s profit, should
apply even within the context of a dynamic environment. Additionally, a carefully
designed dynamic pricing policy with refunds, and the buyer’s resulting purchasing
and return decision can be used by the seller to learn about what and how the
buyer learns about the product’s fit. When faced with repeated purchases or buyers
arriving sequentially over time, this information can also be used by the seller to help
improve his future pricing decisions. Investigating how the seller’s learning motive
would shape intertemporal pricing with refunds would be an interesting avenue for
future research.

Finally, we note that our article’s findings highlight the importance of disclosure
rules with regards to platform design problems. A third-party platform, such as
eBay or Airbnb, can choose which information it reveals to the buyer about the
product offered: for example, details of the product description, photos and videos,
and ratings and reviews of previous consumers. The seller then chooses a pricing and
return policy, and the buyer sequentially makes a purchasing decision, potentially
making a return decision upon learning more about the product after purchase. Our
buyer-optimal learning model shows that the platform can maximize the volume of
trade by disclosing the information about product match in a way that maximizes
the buyer’s surplus. A valuable question to explore in future research would be what
information the platform chooses to disclose when its objective is not to maximize
the volume of trade, e.g., maximize the total revenue from the sales.
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Appendix: Proofs

Proof of Lemma 3

A dynamic direct mechanism M2 =
{
αq, pq,

{(
κvq , τ

v
q

)}
v∈{0,1}

}
q∈[0,1]

is a two-step

mechanism if it specifies, for each reported signal q ∈ [0, 1], (i) αq: the probability
that the buyer receives the product; (ii) pq: the transfer from the buyer to the
seller; and (iii)

{
κvq , τ

v
q

}
v∈{0,1}: the direct mechanism that specifies, for each buyer’s

reported realized valuation v ∈ {0, 1}, the probability that the buyer keeps the
product κvq and the transfer from the seller to the buyer τ vq such that κvqv + τ vq ≥
max

{
v, κv

′
q v + τ v

′
q

}
for v ∈ {0, 1} and v′ 6= v.

If the buyer with signal q reports q′ under the two-step mechanism M2, then her
payoff is

u (q, q′|M2) ≡ αq′q
(
κ1q′ + τ 1q′

)
+ αq′ (1− q) τ 0q′ − pq′ .

Furthermore, a two-step mechanismM2 is an IR-IC two-step mechanism if u (q, q|M2) ≥
0 for all q and u (q, q|M2) ≥ u (q, q′|M2) for all q and q′. The seller’s profit from the
buyer with signal q under an IR-IC two-step mechanism M2 is

v (q|M2) ≡ pq − αqq
((

1− κ1q
)
c+ τ 1q

)
− αq × (1− q)

((
1− κ0q

)
c+ τ 0q

)
= −u (q, q|M2)− αqq

((
1− κ1q

)
c− κ1q

)
− αq × (1− q)

(
1− κ0q

)
c.

If M is a profit-maximizing mechanism, then by the revelation principle, there exists

an outcome-equivalent IR-IC two-step mechanism M̃2 =
{
α̃q, p̃q,

{(
κ̃vq , τ̃

v
q

)}
v∈{0,1}

}
q∈[0,1]

.

Define (i) αq = α̃q; (ii) pq = p̃q+α̃q
(
1−

(
κ̃1q + τ̃ 1q

))
; (iii)

(
κ0q, τ

0
q

)
=
(
κ̃1q + τ̃ 1q − τ̃ 0q , 1 + τ̃ 0q −

(
κ̃1q + τ̃ 1q

))
;

and (iv)
(
κ1q, τ

1
q

)
= (1, 0). We first show that M2 ≡

{
αq, pq,

{(
κvq , τ

v
q

)}
v∈{0,1}

}
q∈[0,1]

is an IR-IC two-step mechanism, and outcome-equivalent to M̃2. We then show that
M2 can be implemented by a direct mechanism with refunds.

To verify that M2 is a two-step mechanism, we show that κvq ∈ [0, 1] , τ vq ∈
[0, 1] , κ1q + τ 1q ≥ max

{
1, κ0q + τ 0q

}
, and τ 0q ≥ max

{
0, τ 1q

}
. Observe that κ0q + τ 0q =

κ1q + τ 1q = 1, and τ 1q = 0. Thus, we are done if we show that τ 0q ∈ [0, 1]. As M̃2 is a
two-step mechanism, τ̃ 0q ≥ τ̃ 1q and κ̃1q + τ̃ 1q ≥ κ̃0q + τ̃ 0q , which imply

τ 0q = 1 + τ̃ 0q −
(
κ̃1q + τ̃ 1q

)
≥ 1 + τ̃ 0q −

(
κ̃1q + τ̃ 0q

)
= 1− κ̃1q ≥ 0; and

τ 0q = 1 + τ̃ 0q −
(
κ̃1q + τ̃ 1q

)
≤ 1 + τ̃ 0q −

(
κ̃0q + τ̃ 0q

)
= 1− κ̃0q ≤ 1.

M2 is an IR-IC two-step mechanism because M̃2 is an IR-IC two-step mechanism,
and for all q and q′,

u (q, q′|M2)− u
(
q, q′|M̃2

)
= αq′q

(
1−

(
κ̃1q′ + τ̃ 1q

))
+ αq′ (1− q)

(
1−

(
κ̃1q′ + τ̃ 1q′

))
+ p̃q − pq

= αq′
(
1−

(
κ̃1q′ + τ̃ 1q

))
− αq′

(
1−

(
κ̃1q + τ̃ 1q

))
= 0.
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IR-IC two-step mechanismsM2 and M̃2 are outcome-equivalent if v (q|M2) = v
(
q|M̃2

)
for all q. Observe that

v (q|M2)− v
(
q|M̃2

)
= αqq

(
1− κ̃1q

)
(1 + c) + αq × (1− q)

((
κ̃1q + τ̃ 1q

)
−
(
κ̃0q + τ̃ 0q

))
c

≥ 0.

However, M̃2 maximizes profit and therefore the above inequality must hold with
equality for all q in the support of Fw. Thus, M2 is an IR-IC two-step mechanism
that is outcome-equivalent to M̃2.

Lastly, for M2, define a direct mechanism with refunds MD by α0 (q) = αqκ
0
q,

αr (q) = αq
(
1− κ0q

)
, and p (q) = pq. Under MD, if the buyer with signal q reports

q′, then her payoff is

α0 (q′) q + αr (q′)− p (q′) = αq′κ
0
q′q + αq′

(
1− κ0q′

)
− pq′

= αq′q + αq′ (1− q)
(
1− κ0q′

)
− pq′

= u (q, q′|M2) .

The seller’s profit from the buyer with signal q (who truthfully reports q) is thus

p (q)− αr (q) (1− q) (1 + c) = pq − αq (1− q)
(
1− κ0q

)
(1 + c)

= v (q|M2) .

This establishes that MD implements M2.

Proof of Lemma 4

Consider a profit-maximizing direct mechanism with refundsMD = {p (q) , {α0 (q) , αr (q)}}q∈[0,1].
If the buyer with signal q reports q′, then her payoff is

U (q′; q|MD) ≡ (α∗0 (q′) + αr (q′)) q + αr (q′) (1− q)− p (q′)

= qα0 (q′)− (p (q′)− αr (q′)) .

The incentive-compatibility condition (IC) and the individual-rationality condition
(IR) are, respectively,

U (q; q|MD) ≥ U (q′; q|MD) for all q′ and q, (IC)

U (q; q|MD) ≥ 0 for all q. (IR)

By applying the standard argument, we can show that the incentive-compatibility
condition (IC) is equivalent to

α0 (q) is increasing in q and U (q; q|MD) =

∫ q

0

α0 (q̃) dq̃.
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Thus, the seller’s profit when the buyer’s signal is q is

v (q|MD) = p (q)− αr (q) (1− q) (c+ 1)

= p (q)− ar (q)
1− q
1− γ

= qα0 (q) + αr (q)−
∫ q

0

α0 (q̃) dq̃ − ar (q)
1− q
1− γ

= qα0 (q) +
q − γ
1− γ

αr (q)−
∫ q

0

α0 (q̃) dq̃.

Observe that v (0|MD) ≤ 0. Therefore, α0 (0) = αr (0) = 0. If q ∈ (0, γ), then, as
q−γ
1−γ < 0, αr (q) = 0. If q = γ, then v (γ|MD) does not depend on αr (γ). Similarly,

if q ∈ (γ, 1], then as q−γ
1−γ > 0, αr (q) = 1− α0 (q). Summarizing these, we obtain

α0 (q) is (weakly) increasing in q, αr (q) =

{
0 if q < γ,
1− α0 (q) if q ≥ γ,

and,

v (q|MD) ≡
{
qα0 (q)−

∫ q
0
α0 (q̃) dq̃ if q < γ,

qα0 (q) + q−γ
1−γ (1− α0 (q))−

∫ q
0
α0 (q̃) dq̃ if q ≥ γ.

Proof of Lemma 5

We start with the case where γ ≤ γ. Then Fw induces q = V ∗γ with probability 1−γ
and q = 1 with probability γ. As dα0 (q) /dq = 0 for all q that is not in the support
of Fw, α0(q) = 0 on

[
0, V ∗γ

)
, and α0(q) = α0

(
V ∗γ
)

on
(
V ∗γ , 1

)
. Thus,

E [v (q|a0)]
= Pr

(
q = V ∗γ

)
× v

(
V ∗γ |MD

)
+ Pr (q = 1)× v (1|MD)

= (1− γ)×
(
V ∗γ α0

(
V ∗γ
)

+
V ∗γ − γ
1− γ

(
1− α0

(
V ∗γ
)))

+ γ ×
(
1− α0

(
V ∗γ
) (

1− V ∗γ
))

= V ∗γ .

If γ > γ, then the support of Fw is
[
V ∗γ , γ

]
∪{1}. Thus, α0(q) = 0 on

[
0, V ∗γ

)
, and

α0(q) = α0(γ) on (γ, 1). Furthermore, Fw has density
V ∗γ
q2

over the interval
[
V ∗γ , γ

)
,

and two mass points, γ (with probability
V ∗γ
γ
− V ∗γ ) and 1 (with probability V ∗γ ).

Thus, the seller’s profit from using MD is

E [v (q|MD)] = Pr
(
q ∈

[
V ∗γ , γ

))
× E

[
v (q|MD) |q ∈

[
V ∗γ , γ

)]
+ Pr (q = γ)× v (γ|MD) + Pr (q = 1)× v (1|MD) .
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Notice that as Fw (q) = 1− V ∗γ
q

on
[
V ∗γ , γ

)
,

Pr
(
q ∈

[
V ∗γ , γ

))
× E

[
v (q|MD) |q ∈

[
V ∗γ , γ

)]
=

∫ γ

V ∗γ

(
aα0 (q)−

∫ q

V ∗γ

α0 (q̃) dq̃

)
dFw

= V ∗γ

∫ γ

V ∗γ

α0(q)

q
dq −

∫ γ

V ∗γ

(∫ q

V ∗γ

α0 (q̃) dq̃

)
dFw

= V ∗γ

∫ γ

V ∗γ

α0(q)

q
dq −

(∫ q

V ∗γ

α0 (q̃) dq̃

)
Fw (q)

∣∣∣∣∣
γ

V ∗γ

−
∫ γ

V ∗γ

α0 (q)Fw (q) dq


= V ∗γ

∫ γ

V ∗γ

α0(q)

q
dq −

(∫ q

V ∗γ

α0 (q̃) dq̃

)(
1−

V ∗γ
γ

)
+

∫ γ

V ∗γ

α0(q)

(
1−

V ∗γ
q

)
dq

= −

(∫ γ

V ∗γ

α0 (q̃) dq̃

)(
1−

V ∗γ
γ

)
+

∫ γ

V ∗γ

α0(q)dq =
V ∗γ
γ

∫ γ

V ∗γ

α0 (q̃) dq̃.

Furthermore,

Pr (q = γ)× v (γ|α0) =

(
V ∗γ
γ
− V ∗γ

)
×

(
γα0(γ)−

∫ γ

V ∗γ

α0(q)dq

)
, and

Pr (q = 1)× v (1|α0) = V ∗γ ×

(
1−

∫ γ

V ∗γ

α0(q)dq − α0(γ)(1− γ)

)
.

We thus have E [v (q|MD)] = V ∗γ .
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