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Abstract 
Neuronal mitochondrial fragmentation is a phenotype exhibited in models of 

neurodegeneration such as Parkinson’s Disease. Delineating the dysfunction in mitochondrial 

dynamics found in diseased states can aid our understanding of underlying mechanisms for 

disease progression and possibly identify novel therapeutic approaches. Advances in 

microscopy and the availability of intuitive open-access software has accelerated the rate of 

image acquisition and analysis, respectively. These developments allow routine biology 

researchers to rapidly turn hypotheses into results. In this protocol, we describe the utilisation 

of cell culture techniques, high-content imaging (HCI), and subsequent open-source image 

analysis pipeline for the quantification of mitochondrial fragmentation in the context of an in-

vitro Parkinson’s Disease model. 
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Automated Quantification of Mitochondrial Fragmentation in an 

In-Vitro Parkinson’s Disease Model 

Introduction. 
The extraction of substantial quantitative data from fluorescence and light microscope images 

of in-vitro and ex-vivo biological samples is beyond the ability of most day-to-day laboratory 

researchers. In the last few decades, the development of microscopy technology and the 

blending of routine biology and computer science skills has resulted in the development of 

intuitive open source image analysis software to support laboratory experiments. The 

existence of software allows the successful automation of data extraction processes to liberate 

investigators from hours of image-by-image manual data capture. As a result, the routine 

utilisation of such techniques by biology researchers has accelerated (Kamentsky et al., 2011).  

Many protocols (or pipelines) developed can be readily adapted by biologists to analyse 

myriad cell biology contexts. Here, we describe a protocol for the analysis of mitochondria. 

In eukaryotic cells mitochondria continuously undergo flux between fission and fusion resulting 

in an observable difference morphology (Scott & Youle, 2010). Dysfunction in mitochondrial 

dynamics in neurons is recognised as a measurable phenotype of in-vitro and in-vivo models 

of Parkinson’s Disease (PD) and other neurodegenerative diseases such as Alzheimer’s 

Disease and Huntington’s Disease (Franco, Li, Rodriguez-Rocha, Burns, & Panayiotidis, 

2010; Haque et al., 2008; Pozo Devoto & Falzone, 2017). In-vitro rotenone-based PD models 

represent a reliable and reproducible tool for investigating disease characteristics through 

analysis of subcellular organelle morphology (Betarbet et al., 2000; Sherer et al., 2002).   

Rotenone is a highly lipophilic compound and an inhibitor of the electron transport system’s 

complex 1 (NADH Dehydrogenase) (Hoglinger et al., 2005; Jayaraj, Tamilselvam, 

Manivasagam, & Elangovan, 2013). Inhibition of electron transfer from NADH to ubiquinone 

in complex 1 of the electron complex system causes a build-up of electrons in mitochondrial 

inter-membrane space and the increase of the mitochondrial membrane potential (Mehta & Li, 

2009). Rotenone exposure induces features of Parkinson's disease (PD) in-vitro and in vivo, 

including selective nigrostriatal dopaminergic degeneration and formation of ubiquitin- and α-

synuclein-positive inclusions (Betarbet et al., 2000; Sherer et al., 2002). 

In our in-vitro PD model, mitochondrial fragmentation is elevated following challenge with the 

neurotoxin rotenone. The 24hr neurotoxin challenge also results in decreased cell viability, 

increased cell cytotoxicity and loss of cell number. Here we describe a simple, yet robust 

protocol for the quantification of mitochondrial fragmentation using routine laboratory neuron 

cell culture techniques aided by automated analysis via open-source computer software. See 

figure 12 for supplementary data. 

In this paper we separate the protocol into its two key strands: SN4741 Neuron culture and 

treatment in a Rotenone-based model of Parkinson’s Disease (PD), which outlines an in-vitro 

rotenone PD model, fluorescence labelling of mitochondria and image acquisition (basic 

Protocol 1); and a step-by-step construction and execution of an automated CellProfilerTM 

(CellProfiler) pipeline for the analysis of mitochondrial fragmentation (basic protocol 2). 
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Basic Protocol 1: SN4741 Neuron Culture and Treatment in a 

Rotenone-based model of Parkinson’s Disease 
This protocol details wet-lab sample preparation and subsequent image acquisition 

procedures. The images acquired in this protocol are saved onto a physical or cloud storage 

platform. A step-by-step guide to build and execute an automated CellProfiler 

(https://cellprofiler.org/) analysis pipeline for the extraction of mitochondrial measurements will 

be detailed in ‘Basic Protocol 2’.  

In Basic Protocol 1 we acquire images for subsequent data measurements related to 

mitochondrial health and fragmentation status. We utilise an in-vitro rotenone-based PD model 

using which results in increased cytotoxicity, coupled with decreased neuron viability and 

neuron loss (see Figure 12). At the experimental endpoint, Multitracker Orange (HCS 

Mitochondrial Health Kit, Invitrogen, Cat. No #H10295) is used to label mitochondria with 

polarized membranes. In this assay, signal intensity in the orange channel is proportional to 

membrane potential and mitochondrial health. The experimental set-up was designed for 

testing the effect of a range of putative anti-PD compounds on mitochondria structure and 

function. 

Membrane potential is a central feature of healthy mitochondria, and membrane depolarization 

is a good indicator of mitochondrial dysfunction and a measure of cytotoxicity (Jayaraj et al., 

2013; Reddy, 2009). This protocol uses Invitrogen MitoTracker Orange as an indicator of 

mitochondrial function because its accumulation in the mitochondria of live cells is proportional 

to the mitochondrial membrane potential (Scorrano, Petronilli, Colonna, Di Lisa, & Bernardi, 

1999). Invitrogen Hoechst 33342 is used as a segmentation tool to identify cells. Hoechst 

33342 nucleic acid stain is a popular cell-permeant nuclear counterstain that emits blue 

fluorescence when bound to dsDNA. Hoechst 33342 binds preferentially to adenine-thymine 

(A-T) regions of DNA. This stain binds into the minor groove of DNA (Sandhu, Warters, & 

Dethlefsen, 1985). A viability stain, such as the Invitrogen Image-iT DEAD Green Viability 

Stain, can be easily incorporated to further multiplex the assay, however, is omitted from this 

experiment. These dyes have sufficient retention of fluorescence signal intensity upon 

formaldehyde fixation and detergent permeabilization to be useful in fixed endpoint assays, 

as well as applications involving immunocytochemistry for specific protein detection.  

Briefly, SN4741 neurons, an immortalised midbrain-derived dopaminergic mouse cell line 

(Son et al., 1999), were treated 24hs with rotenone, then incubated with MitoTracker Orange, 

as described in manufacturer ‘s user manual, prior to formaldehyde fixation and Hoechst 

33342 nuclear counterstaining. We subsequently use a CellProfiler image analysis pipeline to 

quantify intracellular mitochondrial fragmentation and fluorescence intensity of mitochondria 

in the peri-nuclear area of SN4741 neurons- details of subsequent step are in basic protocol 

2. 

Note: Herein, MitoTracker Orange will be referred to as ‘MitoHealth’. 
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Materials 
Toshiba HDTB320EK3AA 2 TB Canvio Basics USB 3.0 Portable External Hard Drive 

(Toshiba) 

Microscope system: HCA wide-field fluorescence (GE Healthcare InCell 2000/6000), x40 

Objective lens. To acquire 52 fields of view per well. 

MitoTracker Orange and Hoechst 33342 from the Invitrogen HCS Mitochondrial Health Kit 

(Invitrogen, #H10295) 

SN4741 mouse midbrain derived neuronal cell line cryopreserved in liquid N2.  

SN4741 cell culture media 

DMEM - Dulbecco's Modified Eagle Medium (high-glucose (4.5g/L) DMEM without 

sodium pyruvate (Invitrogen, 41965-039) supplemented with10% filtered FBS, 1% 

Penicillin/Streptomycin, 1% (100x) L-glutamate and 3% glucose (20% solution) 

50mL FBS (10106169, Invitrogen) 

5mL Penicillin/Streptomycin (Pen/Strep) (15140122, Gibco, UK) 

5mL L-Glutamine (25030081, Gibco, UK) 

15mL 20% Glucose solution, filtered bioultra for molecular biology 20% in water 

(Sigma, 49163-100mL) 

T75 cell culture flasks (156499, Thermo Fisher)  

Corning® 96-well Clear Flat Bottom Polystyrene TC-treated Microplates, Individually 

Wrapped, with Lid, Sterile (3596, Corning) 

Benchtop vortex 

100mM rotenone (Tocris, Cat. No. 3616) stock diluted in Dimethyl Sulfoxide (DMSO) (Sigma-

Aldrich, D2650). 50 mg in 1.267mL DMSO. 

Trypsin/EDTA (15400054, Gibco, UK) 

Paraformaldehyde, 16% w/v aq. soln. (Fischer Scientific) 

Water bath set to 37.5 oC for pre-warming cell culture media prior to application 

P1000, P200, P20 Pipettes and filtered-pipette tips (Fisherbrand™) 

Cell culture incubator. Set at 37°C and 5% CO2. 

25mL, 10mL and 5mL Sterile Pipettes. Individually wrapped (Fisherbrand™) 

Phosphate Buffered Saline PBS (pH 7.4) (10010023, Gibco, UK) 

Countess™ Automated Cell Counter (Cat no. C10227, Invitrogen) or manual haemocytometer 

Trypan blue stain (0.4%) (15250061, ThermoFisher) 
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Seeding SN4741 cells for In-Vitro Rotenone PD Model 
1. Retrieve cryovial of SN4741 cells (approximately 1x106 cells) from Liquid nitrogen storage 

liquid. 

 

2. Thaw a cryovial of SN4741 cells in water bath and pipette contents into 20mL of pre-

warmed full cell culture medium to expand culture for experimental procedure. Culture 

SN4741 cells in complete medium in T75 cell culture vessel under standard and sterile 

conditions until flask is 80-90% confluent. SN4741 cells require approximately 16hrs to 

settle and adhere. Cell culture medium is replaced the day after revival (16hrs) following 

1x10mL PBS wash. Cell medium should be replenished every 2-3 days. SN4741 neurons 

in T75 flasks should reach 80-90% confluency in 3-4 days. 

 

3. Remove excesses medium from T75 flask and wash once with 10mL PBS (without 

Calcium and Magnesium). Swirl flask and use pipette to remove excess. 

 

4. Apply 3-4mL of Trypsin/EDTA solution to culture vessel; swirl to ensure coverage and 

return flask to incubator for 3-5mins until SN4741 cells become detached from surface of 

culture vessel. Check flask every few minutes to gauge cell detachment. Gently tap flask 

to detach residual cells from surface of the T75 flask. 

 

5. Neutralise the cells in suspension with the addition of 4mL cell culture medium. 

 

6. Using a sterile stripette, pipette cell suspension up and down against surface of flask (~10 

times) to ensure single cell suspension and removal of the remaining adhered cells. 

 

7. Transfer cell suspension to 15mL tube and perform cell count and viability test using trypan 

blue and countess (automated) or haemocytometer (manual) scoring. 

 

8. Prepare a cell suspension with a cell concentration of 30,000 cells/mL (i.e. 3,000 

cells/100uL). 

 

9. Using a P200, pipette 100µL (~3,000 cells) of the cell suspension into each experimental 

well of a 96-well plate. 

 

10. Place plate in incubator overnight (16-24hrs) for cells to adhere and proliferate. 

 

11.  Add 100µL of culture media into each well following 24hrs incubation and incubate for a 

further 24hrs. 

 

Preparation and Addition of 10nM Rotenone in In-Vitro PD model  
Rotenone stock is prepared by the addition of DMSO to a concentration of 100mM. Aliquots 

are prepared and sealed into a 50mL falcon tube, protected from light and stored at -20oC.  

12. Dilute 50mg of powdered rotenone in 1.267mL DMSO to prepare 100mM rotenone stock. 

Stock is aliquoted into microcentrifuge tubes, protected from light and stored at 20oC. 
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13. Thoroughly mix (vortex) 3µL of 100mM rotenone stock diluted in DMSO into 10mL culture 

medium producing a 30,000nM rotenone solution.  

 

14. Sequentially prepare 3,000nM, 300nM and 30nM rotenone solutions by performing serial 

1 in 10 dilutions i.e. 100µL of 30,000nM rotenone solution mixed into 900 µL of cell medium 

to produce 1mL of 3,000nM rotenone solution etc. 

 

15. Vehicle treatment was prepared from DMSO using the same dilution method.  

 

16. Add 100µL 3x concentrated rotenone solution (30nM) to appropriate wells (this is a 1:3 

dilution resulting in final well concentration of 10nM). 

 

17. Incubate cells for 24hr under standard conditions (5% CO2; 37◦C).   

 

Note: 100µL of a 50:50 solution of DMSO in PBS was used as a positive control for 

analysis of cell death. 

 

Application of Mitohealth Dye and Image Acquisition at Experimental Endpoint  
MitoHealth solution was prepared according to the kit developers’ instructional protocol. 

Mitohealth kit contains Hoechst (Blue) and Mitohealth stain (red/orange). 

18) Remove 175µL of culture media from appropriate wells. Leaving a reminder of 125µL. 

 

19) Add 1.75µL Mitohealth solution into 1mL of medium. Protect from light. 

 

20) Add 50µL of staining solution prepared in step (2) to each well.  

There should now be 175µL of solution in each well. 

 

21) Incubate cells under normal cell culture conditions for 30 mins. 

 

22) Prepare fixation-counterstaining solution by adding stock reagents 16% PFA and Hoechst 

33342 to PBS (without MgCl2 and CaCl2) in the ratio 3mL: 6µL: 9mL. This makes a total 

of 14mL of fixation-staining solution containing 4% PFA and 1:2000 Hoechst 33342.  

Example: 300µL 16% PFA: 0.6µL Hoechst 33324: 900µL PBS; yields 1200µL of 

fixation-staining medium. 

 

23) Remove cell culture medium. 

 

24) Add 100µL of fixation-staining solution to each well. Protect from light and incubate at room 

temperature for 15mins. 

 

25) Remove fixation-staining solution and gently wash cells once with 100µL PBS. Thus, 

removing excess staining solution. 

 

26) Add 200µL PBS into each well. 
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27) Proceed to image acquisition. Acquire 52 x40 magnification 2D-Deconvoluted .tif format 

images per well. Table 1 summarised excitation and emission filters required for image 

acquisition. 

 

28) Store image files on external hard drive for downstream image analysis with CellProfiler 

image analysis pipeline (described in Basic Protocol 2).  

 

Table 1 Summary of dyes and filters required for image acquisition 

HCS 
Mitochondrial 
Health Kit stain 
 

Approximate FI 
Excitation 
Wavelength 

Approximate FI 
Emission  
Wavelength 

Location of 
cellular stain  

InCell x40 
objective 
filter 

MitoHealth stain 550nm 580nm Perinuclear/ 
Cytoplasmic 

Cy3 
 

Image-iT® DEAD 
Green™ Viability 
Stain 

488nm 515nm Nucleus FITC 
 

Hoechst  
33342 

350nm 461nm Nucleus DAPI 

 

 

Basic Protocol 2: Identification of Cell Nuclei, measurement of 

Mitochondrial Membrane Potential and Mitochondrial 

Fragmentation in Mouse Derived Midbrain Dopaminergic 

Neurons. 
CellProfilerTM software is a flexible, user-friendly platform on which to conduct image analysis. 

The software and corresponding website -http://www.cellprofiler.org (RRID:SCR_007358)- 

contain pre-made computer algorithms (modules) and example analysis pipelines, 

respectively, CellProfiler is not an out-of-the-box, plug-and-play image analysis software.  

Rather, these pre-made modules and example pipelines are used to teach researchers, with 

little computer programming or macro script writing experience, how to design and assemble 

an image analysis pipeline to fit the specific needs of their experimental question. Interestingly, 

CellProfiler also allows for ImageJ (NIH) software input of macro scripts to aid image analysis. 

The protocol below describes the step-by-step CellProfiler pipeline for the identification of 

nuclei, measurement of MitoHealth staining intensity and quantification of mitochondrial 

fragmentation protocol used to quantify SN4741 cell mitochondrial measurements from x40 

magnification digital images. This protocol was developed by optimising a range of modules 

and example protocols. Each step includes a description, CellProfiler-derived notes and 

rationale followed by instructions on how to execute the step in CellProfiler software (in italic 

font). ‘Notes’ are referenced from CellProfiler.org/manuals. The CellProfiler pipeline and 

modules described here is transferable between CellProfiler software versions 2.0 and 3.0 

(Kamentsky et al., 2011; McQuin et al., 2018). 
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Materials 
Digital images: on internal/external hard drive or cloud storage.   

Laptop or desktop PC: macOS, Windows (32-bit) or Windows (64-bit). 

MS Excel software  

GraphPad Prism for graphs and statistical analysis 

Toshiba HDTB320EK3AA 2 TB Canvio Basics USB 3.0 Portable External Hard Drive 

for data storage.   

Cell Profiler software: version 2.1.0 or newer. Cell profiler versions 2.2.0 or newer will 

require Java 8. Available at: https://cellprofiler.org/releases/ 

 

Step 1: Upload Image Set, Image Sorting and Image Pre-Processing and 

Illumination Correction 
1. Open Cell Profiler Software and select the experimental image set. 

 

2. Open Cell Profiler > Select ‘Images’ in ‘Input Module’ window > Right click inside empty 

‘File list’ window > Browse and select image set. 

Here, our image set is composed of two channels, Cy3 and DAPI, which account for x40 

magnification images of MitoHealth stained mitochondria and Hoechst stained nuclei of 

SN4741 cells respectively (see figure 2 for illustration). To filter the images according to 

filename: 

3. Select ‘Names and Types’ in pipeline Input modules > Select ‘Images Matching Rules’ 

then select ‘File’, ‘Does’, ‘Contain’ from dropdown box selections > Type ‘DAPI’ into 

input box to group DAPI channel images. 

 

4. Select ‘Add another image’ and repeat the process with exception to entering ‘Cy3’ 

into input box to group Cy3 channel images. Assign a (user-defined) name for grouped 

files > Select ‘Update’. 
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Figure 1: Images are Filtered into Groups by File Names. Figure 1 illustrates an image set 
containing DAPI and Cy3 images being separated into groups (DAPI and Cy3) based on their 
file names. Cropped image tile labelled DAPI/Cy3 represents a pseudo-coloured composite of 
both channels. Blue arrows illustrate the separation of DAPI and Cy3 channels based on 
contents of their file names. Example image filenames are given on pseudo-coloured DAPI 
and Cy3 images. Each pseudo-coloured image has a representative enlarged image for 
graphical purposes (dotted white box). Scale bar = 40µm. 

 

Note: Care must be taken when filtering image sets by common phrases in filenames, such 

as ‘DAPI’ and ‘Cy3’, as phrases are case-sensitive. Inconsistency in spelling or case-

sensitivity results in failure to identify files and sub-group images. Experimental image set 

should now be grouped in two file lists under user-defined group titles e.g. DAPI and Cy3 and 

ranked in numerical order. 

During the analysis of images taken with a fluorescence microscope it is common for the 

images to be pre-processed prior to analysis. The most common reason for this is uneven 

illumination across a field of view as the light source does not evenly illuminate across the 

entire area. This results in areas with greater illumination than other areas, usually the corners 

of the image. 
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Figure 2: Cy3 Image and DAPI Channel Images Before and After Illumination Correction. 

Figure 2 (A) and (C) show representative x40 magnification greyscale images acquired using 

In Cell 2000 Cy3 filters before (OrigCy3) and after (CorrCy3) illumination correction, 

respectively. Figure 2 (B) illustrates the illumination function (IllumCy3) produced from entire 

Cy3 image set. Figure 3 D & F show representative x40 magnification greyscale images 

acquired using In Cell 2000 DAPI filters before (OrigBlue) and after (CorrBlue) illumination 

correction, respectively. Figure 2 (E) (IllumBlue) illustrates the illumination function produced 

from entire image set. This illumination correction is carried out by CellProfiler modules 

CorrectIlluminationCalculate and CorrectIlluminationApply. Images (A-F) are micro 

pictograms acquired and saved from the CellProfiler Software. 

 

Calculate correct illumination function: 

5. Select Correct Illumination Calculate module > Select input image (name assigned 

from Names and Types). 

 

6. Insert a (user-defined) Name the Output Image e.g. ‘IllumCy3’.  

 

7. Select ‘Regular’ option in How the illumination function is calculated. 

Note: The option ‘Regular’ is selected if stained objects (e.g. cell bodies, nuclei) are evenly 

dispersed across your image(s) and cover most of the image. This is true in the case of Cy3 

and DAPI channel images. Regular intensities make the illumination function based on the 

intensity at each pixel of the image (or group of images if you are in ‘All’ mode) and applied by 

division using Correct Illumination Apply module. 

8. Select ‘Median Filter’ > Select ‘Manual’ method to calculate filter size > input smoothing 

filter size ‘325’. 
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Note: Illumination function was calculated across the entire image set prior to initiation of 

object identification and subsequent data measurements. 

To apply the illumination function calculated by Correct Illumination Calculate: 

9. Select Correct Illumination Apply module. 

 

10. Input > a user defined name into ‘Name the output image’ box e.g. ‘CorrCy3’. 

 

11. Select illumination function from drop down box (as defined in Correct Illumination 

Calculate module e.g. IllumCy3). 

 

12. Select ‘Divide’ as method for how the illumination function is applied. 

Note: Divide is the recommended method of illumination function application by CellProfiler 

users if the illumination correction function was created using ‘Regular’ in the Correct 

Illumination Calculate module. 

Figure 2 illustrates the shading seen on edges of Cy3 and DAPI channel images acquired 

images before and after application of illumination function as described above.  

 

Step 2: Identification of Nuclei  
Here we identify cell nuclei (a feature) based on their high contrast background to foreground 

staining intensity. In CellProfiler software, a primary object is defined as an object or feature 

(usually a cellular sub-compartment e.g. nucleus) which can be used as the basis on which 

the subsequent image analysis steps can be built upon.  

Nuclei are commonly selected as the primary object of an image analysis pipeline due to their 

relatively uniform morphology and high background to foreground staining intensity ratio which 

makes them easily identifiable.  

13. Select > ‘Identify Primary Objects’ module.  

 

14. Input > (user named illumination corrected) DAPI image(s).  

 

15. Input > Typical Nucleus diameter range (pixels). Min: 50 and Max: 135.  

 

16. Discard objects outside the diameter range > Yes. 

 

17. Discard objects touching the border of the image > Yes. 

Note: Estimate nucleus diameter using CellProfiler by selecting a DAPI image by ‘Right click’ 

on DAPI image and selecting ‘Show Selected Image’; and selecting ‘Tools > Measure length’. 

18. For thresholding select ‘Global’ Thresholding Strategy with ‘Otsu’ method and ‘Two 

Classes’ thresholding. Set threshold correction factor of ‘1.0’; and lower and upper 

bounds to ‘0.0’ and ‘1.0’, respectively. 

Note: Global thresholding strategy uses the pixel intensities in each un-masked image to 

calculate a single threshold value to classify pixels as foreground (intensity above the 

threshold value) or background (intensity below the threshold value). This thresholding 
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strategy is fast and robust and commonly applied to images that have a uniformly illuminated 

background. Foreground-to-background pixels are easily distinguishable using Hoechst 

counterstained SN4741 cell nuclei. Foreground and background pixels of Hoechst 

counterstained nuclei are easily identifiable in DAPI channel images, this we use ‘Global’ 

thresholding strategy for primary object (nuclei) identification. Otsu is a method of 

automatically finding thresholds by splitting image pixels into two (foreground and background) 

or three classes (foreground, mid-level and background) by minimizing the variance within 

each class. Lower bounds on threshold can be set at 0.0 as there is an object (Nucleus) in 

each image. Otherwise, an empirically determined lower threshold bound as automatic 

methods of thresholding may miss-assign pixels in a blank image to the foreground class, 

potentially yielding false-positive results. 

19. Select > ‘Shape’ for de-clumping of primary object which are touching or in close 

proximity and ‘Shape’ for drawing dividing lines between objects. 

 

20. Select > ‘Yes’ to ‘Automatically calculate size of smoothing filter for de-clumping’. 

 

21. Select > ‘Yes’ to ‘Automatically calculate minimum allowed distance between local 

maxima’.  

 

22. Select > ‘No’ to ‘Retain outlines of the identified objects. 

 

23. Fill in identified objects > ‘After both thresholding and de-clumping’. 

Note: By selecting ‘shape’ in CellProfiler pipeline as the de-clumping method, a line will be 

drawn between the areas of two the nuclei whose boundaries intercept.  An intersecting line 

will be drawn between the two (or more) clumped nuclei and these will then be identified as 

distinct nuclei. Examples of this are highlighted by white arrows in Figure 3D. 
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Figure 3: Identify Nuclei as Primary Objects. Figure 3 (A) shows a representative 

illumination corrected x40 magnification image of Hoechst counter-stained nuclei acquired 

using In Cell Analyser 2000 DAPI channel filters. (B) illustrates identified primary objects using 

object coloured masks. (C) shows nuclei fitting to protocol input criteria (outlined in green); 

nuclei filtered out by size criteria (outlined in magenta); and nuclei filtered out for touching the 

image border (outlined in yellow). Dashed white box shows enlarged area (D). (D) shows the 

enlarged area with white arrows indicate indentations used to de-clump objects (nuclei). 

Images (A-D) are micro pictograms acquired and saved from CellProfiler. 

 

Step 3: Identify Secondary Objects: Ring shaped Cell Body  
The next module in CellProfiler pipeline is Identify Secondary Objects. This module identifies 

objects by using the object identified of another module as a starting point. In this example, 

the primary object (nuclei) identified in the Identify Primary Object will act as the basis for the 

identification of SN4741 peri-nuclear area (doughnut shaped ring around the nucleus) in the 

corresponding Cy3 images. This will be executed by dilation of the previously identified nuclei 

- this dilated nucleus area is named ‘Full Doughnut’ in Figure 4. A subsequent module in this 

pipeline will remove the nucleus, and a ring like object will be remaining (a doughnut shaped-

perinuclear region). This is referred to as ‘True Doughnut’ in Figure 5.  Other modules will 

collect measurements such as area and intensity of peri-nuclear regions. 

To expand nucleus and create ‘Full Doughnut’ shape: 

24. Select > ‘Identify Secondary Object’ module.  

 

25. Input > Illumination function corrected Cy3 image ‘’CorrCy3’. 
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26. Input (primary) objects > Select ‘Nuclei’. These were identified by Identify Primary 

Object module. 

 

27. Insert the name of objects to be identified > ‘FullDoughnut’. 

 

28. Select > ‘Distance- B’ as method to identify the secondary objects. 

Note: By selecting Distance as the method to identify the secondary objects (‘Full Doughnut’) 

the primary object (nucleus) is expanded to identify a ‘doughnut’ (or ‘annulus’) shaped region 

in the cell, usually in the cytoplasm. CellProfiler provides two methods of identifying the 

secondary object. The first, ‘Distance-N’ does not utilise staining intensity in the image of the 

second stain - in this instance Cy3. This entails expanding the nucleus a set distance. 

However, this may include areas of image background as well as cell cytoplasm. Our protocol 

on the other hand utilises ‘Distance- B’ method. This second ‘Distance’ method expands the 

nucleus a set distance however, this method uses the thresholding of the secondary staining 

image to eliminate background regions. Thus, the nucleus is only expanded into areas of 

foreground staining intensity to identify ‘Full Doughnut’ secondary object without including 

background image regions. 

29. Select > ‘Automatic’ threshold method. 

 

30. Input > ‘25’ as number of pixels to expand the primary object (nucleus). 

 

31. Fill holes > Select ‘Yes’. 

 

32. Discard Objects touching the border of the image > Select ‘Yes’. 

 

33. Retain outlines of the identified secondary objects > Select ‘No’. 

Note: the ‘Automatic’ thresholding method is the default setting in CellProfiler and is robust. 

As this strategy is automatic it does not allow users to select the threshold algorithm or to 

apply additional corrections to the threshold. The ‘Automatic’ strategy calculated the threshold 

using maximum correlation thresholding (MCT) for the whole image. The threshold is then 

applied to the image and smoothed with a Gaussian filter with a sigma of 1. This blurs or 

obscures smaller than an entered diameter and spreads bright or dim features larger than the 

entered diameter. The MCT method is described by Padmanabhan, Eddy, & Crowley (2010) 

as computationally efficient and accurate without relying on assumptions of the statistics of 

the image. This algorithm has been trialled and tested on neuroscience images in the 

presence and absence of illumination correction to accurately aid in automated image analysis 

(Padmanabhan et al., 2010). 
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Figure 4: Identification of Secondary Object- Full Doughnut. Figure 4 shows the 

Illumination Corrected Cy3 image (A); the result of a 25-pixel distance dilation in nucleus size 

with respect to Cy3 image staining intensity thresholding. Identified secondary objects/Full 

Doughnuts are illustrated in the form of coloured masked objects. Dashed white line boxes in 

(A), (C) and (E) highlight the enlarged areas illustrated in (B), (D) and (F), respectively. These 

zoomed images show the image segmentation more clearly. Image (G) is a larger version on 

(F), illustrating the nuclear area/primary object with a green outline and the edges of the Full 

Doughnut/secondary object with a magenta outline. Images (A-G) are micro pictograms 

acquired and saved from the CellProfiler Software. 

 

Step 4: Identify Tertiary Objects: Cell Cytoplasm or True Doughnut 
Following the identification of the ‘Full Doughnuts’ (secondary objects), the Identify Tertiary 

Objects module is then used to remove the smaller objects (nuclei) from the larger secondary 

objects (Full Doughnuts) to leave a ring shape around the nucleus, referred to here as ‘True 

Doughnut’. 
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Figure 5: Identify Tertiary Objects. Images (A), (C) and (F) illustrate the masked image 

result of sequential steps/modules from identification of primary object (Nuclei), identification 

of secondary object (Full Doughnut) and tertiary object (True Doughnut), respectively. The 

ring-shaped True Doughnut is the result of removing the Nuclei areas from the Full Doughnuts. 

Micro-pictograph (G) highlights the outlines of the resulting True Doughnut. Dashed white box 

in images (A), (C), (E) and (G) indicated the areas which have been enlarged for illustrative 

purposes and are represented by images (B), (D), (F) and (H), respectively. Images (A-H) are 

micro pictograms acquired and saved from the CellProfiler software. 

 

To identify tertiary objects (ring shaped ‘True Doughnuts’): 

34. Select > ‘Identify Tertiary Objects’ module. 

 

35. Select > ‘FullDoughnut’ as larger identified objects (Output from Identify Secondary 

Object module). 

 

36. Select > ‘Nuclei’ as smaller identified objects (Output from Identify Primary Object). 

 

37. Select > ‘Yes’ to shrink smaller object prior to subtraction. 

Note: Nuclei will now be subtracted from Full Doughnut area to produce a ring shaped ‘True 

Doughnut’ in the peri-nuclear region of the identified SN4741 cells. By selecting ‘Yes’ to shrink 

the smaller object the nucleus is shrunk by 1 pixel before subtracting the objects. This ensures 

a tertiary object is produced. Measurements such as area and fluorescence intensity of the 

segmented area can be acquired subsequently.  
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Step 5: Identify Secondary Objects: SN4741 Cell Body  
Following the identification of SN4741 nuclei using Identify Primary Object module the 

Identify Secondary Object module is used again. However, this time the module and method 

must find the edge of SN4741 cell bodies as secondary objects using cell body-specific Cy3 

staining intensity. Again, this module involves a thresholding step which assigns pixels in the 

input image to foreground and background. To identify cell body: 

38. Select > ‘Identify Secondary Objects’ module. 

 

39. Input Image > Selects ‘CorrCy3’. 

 

40. Select > Input Objects ‘nuclei’ (identified in Identify Primary Object module). 

 

41. Input > 'CellBody’ as name for identified objects. 

 

42. Select > ‘Propagation’ as method to identify secondary objects. 

 

43. Select > ‘Automatic’ as threshold method. 

 

44. Input > ‘0.00’ as regularization factor. 

 

45. Select > ‘No’ to fill holes in identified objects. 

 

46. Select > ‘Yes’ to discard objects touching the image border. 

 

47. Select > ‘Yes’ to discard associated primary objects.  

 

48. Select > ‘No’ to retain the outlines of the identified secondary objects. 

Step 6: Identify Tertiary Objects: SN4741 Cytoplasm 
Similarly, to that described in ‘Step 4’ of MMP Protocol, the Identify Tertiary Objects module 

subtracts the shape of the smaller object (nucleus) from that of the larger identified object (i.e. 

cell body). Once removed the segmented area identified is the cell cytoplasm. 

To identify Mitohealth stained SN4741 cytoplasm using Cell Profiler modules:  

49. Select > Identify Tertiary Objects module. 

 

50. Select > ‘Cell Body’ as input for larger identified objects. 

 

51. Select > ‘Nuclei’ as input for smaller identified objects. 

 

52. Input > ‘Cytoplasm’ as name for tertiary objects to be identified. 

 

53. Select > ‘Yes’ to shrink smaller object. Ensuring a cytoplasm is created for each 

nucleus. 

 

54. Select > ‘No’ to Retain outlines of tertiary objects as these will not be utilised 

downstream. 
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Figure 6: Identify SN4741 Cell Body as Secondary Object. Figure 6 (A) shows the input 

Illumination Corrected x40 magnification Cy3 channel image. (C) Illustrates the result of 

propagation method of identifying cell (body) edge with respect to Cy3 image staining intensity 

thresholding. Identified secondary objects/Cell bodies are illustrated in the form of coloured 

masked objects. Image (E) shows the input Cy3 channel image with identified cell body 

outlines in magenta and nuclei outlines in green. Dashed white line box in (E) highlights the 

area enlarged to produce image (F). White box in image (F) indicates enlarged area to produce 

image (G). Images (F) and (G) were generated to illustrate image segmentation. Dashed white 

line boxes in (A) and (C) highlight areas that are enlarged and illustrated in (B) and (D), 

respectively. Images (A-G) are micro pictograms acquired and saved from the CellProfiler 

software. 

 

Step 7: Enhance Mitochondrial Speckles 
The Enhance Or Suppress Feature module is a CellProfiler module that suppresses or 

enhances selected image features such as speckles, ring shapes and neurites to improve the 

subsequent object identification by an ‘Identify module’. In this case it is used to enhance the 

punctate mitochondrial staining by applying image processing filters to the input image and 

giving a grayscale image output. Following the execution of this module the ‘Identify Primary 

Object’ module is used again to identify mitochondrial puncta. 

55. Select > ‘CorrCy3’ as input image (image is illumination function corrected). 

 

56. Input > ‘FilteredRed’ (or other user-defined name) for output grayscale image. 

 

57. Select > ‘Enhance’ as operation type. 
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58. Select > ‘Speckles’ as feature type to be ‘Enhanced’. 

 

59. Input > ‘20’ as feature size. 

 

 

Figure 7: Identify SN4741 Cytoplasm as Tertiary Object. Images (A), (C) and (F) illustrate 

the masked image result of sequential steps/modules from identification of primary object a 

(Nuclei), identification of secondary object (cell body) and tertiary object f (cell cytoplasm), 

respectively. SN4741 cytoplasm is the result of removing the Nuclei areas from the areas of 

entire cell bodies. Micro-pictograph (G) highlights the outlines of the resulting SN4741 cell 

cytoplasm. Dashed white boxed in images (A), (C), (E) and (G) indicated the areas which have 

been enlarged for illustrative purposes and are represented by images (B), (D), (F) and (H), 

respectively. Images (A-H) are micro-pictograms acquired and saved from the CellProfiler 

software. 

 

Step 8: Identify Primary Objects: Mitochondrial Fragments 
This step utilises the Identify Primary Objects module to identify the mitochondrial puncta in 

the images enhanced in step 5. To identify mitochondrial puncta in enhanced x40 objective 

Cy3 channel images of MitoHealth stained SN4741 cells: 

60. Select > Identify Primary Objects module. 

 

61. Select > FilteredImage (output image from previous module) as input image. 

 

62. Input > ‘Puncta’ (or other user-defined name) to assign to identified objects. 

 

63. Select object diameter range > Min= 2; Max= 35. 

 

64. Select > ‘Yes’ to discard objects outside the diameter range. 
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65. Select > ‘Yes’ to discard objects touching the bored of the image. 

 

66. Select > ‘Per Object’ as Thresholding strategy and ‘Otsu’ as thresholding method. 

 

67. Select > ‘Cytoplasm’ (previously identified tertiary objects) as masking objects. 

 

68. Select > ‘Three classes’ thresholding and minimize the ‘weight variance’. 

 

69. Assign> Middle intensity pixels to ‘Foreground’. 

 

70. Select > ‘Automatic’ smoothing method for thresholding. 

 

71. Input > ‘1.0’ as Threshold correction factor with ‘0.001’ lower and ‘0.005’ as upper 

bounds on threshold. 

72.  

73. Select > ‘No’ to automatically calculate size of smoothing filter for object de-clumping. 

 

74. Input > ‘5’ as size of smoothing filter. 

 

75. Select > ‘No’ to automatically calculate allowed distance between local intensity 

maxima. 

 

76. Input > ‘5’ to suppress local maxima that are closer than this minimum allowed 

distance. 

 

77. Select > ‘No’ to retain outlines of identified puncta. 

 

78. Select > ‘Never’ to fill holes in identified objects. 

 

79. Select > ‘Continue’ to handling of excessive number of identified objects- as puncta 

are small and therefore the number of puncta identified per image is usually high. 
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Figure 8: Enhance Mitochondrial Fragments and Identification. Figure 8 (A) shows an 

input ‘CorrCy3’ image prior to speckle enhancement. (B) shows image (A) post-enhance 

module. Dashed white line box in (A) and (B) highlight the area displayed in (C) and (D) which 

are pre- and post- enhancement module, respectively. (E) illustrates enlarged input image 

outlined in solid white box in (D); these illustrate outlined mitochondrial puncta (F); and marks 

of identified objects (G) seen in enhanced image (E).  
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Figure 9: Identification of Mitochondrial Puncta Images illustrating mitochondrial puncta 

identified with automated image analysis CellProfiler pipeline. Image (A) is an example input 

image to the Identify Primary Objects module. (B) illustrates the outlines of identified 

mitochondrial puncta, and (c) shows object masks of identified mitochondrial puncta. Dashed 

boxes on (A), (B) and (C) indicate where CellProfiler zoom function has been utilised to 

generate images (D), (E) and (F), respectively, for illustrative purposes. 

 

Note: At this stage in construction of CellProfiler analysis pipeline we have identified nuclei, 

cell body, mitochondrial fragments, cytoplasmic areas and peri-nuclear regions. Now that 

these cellular compartments have been identified using this CellProfiler pipeline, we must 

select which measurements and data to extract from our digital images using a set of 

measurement modules. 

Step 9: Measure Object Size and Shape 
Although the Measure Object Size and Shape module can measure a vast array of shape 

and area features, we use this module to measure object size (area in pixels) of each cells’ 

mitochondrial puncta, cytoplasm and True Doughnut respective to CellProfiler pipeline. 

To measure size and shape of object using Measure Object Size and Shape: 

80. Select > Measure Object Size and Shape module. 

 

81. Select > ‘Cytoplasm’ or ‘Puncta’ or ‘True Doughnut’ or any combination of identified 

objects. 
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Note: Specific shape or size measurements (e.g. area) to output into spreadsheet is defined 

in a later module. This module simply selects which objects the measurements should be 

taken from. 

Step 10: Measure Object Intensity: True Doughnut or Cytoplasm 
To measure the intensity of identified objects we use the Measure Object Intensity Cell 

Profiler module. To do so; 

82. Select > ‘CorrCy3’ illumination corrected image as image to measure. 

 

83. Select > ‘True Doughnut’ or ‘Cytoplasm’ (or other object) identified in previous modules 

to measure. 

Note: CorrCy3 image, as opposed to a Raw Image, is selected to acquire intensity 

measurements as this image previously undergoes illumination correction during the pre-

processing stage. Specific object intensity measurements (e.g. mean, median, minimum, 

maximum intensity) to output into spreadsheet is defined in a later module. This module simply 

selects which objects the measurements should be taken from. 

Step 11: Relate Objects: Assign Mitochondrial Fragments to Cell Cytoplasm.  
The Relate Objects CellProfiler module is used here to assign a relationship between ‘child’ 

objects (e.g. puncta) with ‘parent’ objects (e.g. cytoplasm). This module can be utilised in order 

to count the number of puncta per SN4741 cell cytoplasm and calculate a mean measurement 

value for all ‘children’ objects which are associated with each ‘parent’ object. Objects (e.g. 

mitochondrial puncta) are considered ‘children’ of a ‘parent’ object (e.g. a cell cytoplasm) if the 

‘child’ object is found within or at the edge of a ‘parent’ object. To assign the relationship 

between mitochondrial puncta and a cell cytoplasm: 

84. Select > ‘Puncta’ as input child objects (identified in second Identify Primary Objects 

module). 

85. Select > ‘Cytoplasm’ as input parent objects (Identified in Identify Tertiary Objects 

module). 

Step 12: Mask Objects to Telate Puncta to Cytoplasm of Origin 
The Mask Objects module hides regions of the input image which are not regions of interest. 

This aids in the assignment of puncta to a cell cytoplasm of interest and allows for cell-by-cell 

puncta counts. In this example only SN4741 cell cytoplasm is selected as a region of interest 

and subsequently aids in exporting the Parent-Child (Cytoplasm- Puncta) data in the Export 

to Spreadsheet module which follows. To create a mask from previously identified objects 

(i.e cytoplasm): 

86. Select > ‘Filtered Red’ (the output of Enhance or Suppress Feature module) as input 

image. 

 

87. Input > ‘Mask Red’ as (user defined) name for output image. 

 

88. Select > ‘objects’ and ‘Cytoplasm’ to select object (cytoplasm) for mask. 
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89. Select > ‘No’ to invert mask to ensure mask is produced from the foreground area 

within the masking objects (cytoplasm). 

Step 13: Export to Spreadsheet: Output Data into MS Excel Spreadsheet 
The final module in these CellProfiler protocols is the Export to Spreadsheet. Here we assign 

a folder/file destination and name for the output data.  

90. Select > ‘Elsewhere’ and then ‘browse’ for desired output file location. 

 

91. Select > ‘Yes’ to add prefix to file output file name.  

 

92. Input > ‘Name’ (user-defined) prefix for output filename (e.g. MitoMMP or MitoPuncta). 

 

93. Select > ‘No’ to overwrite without warning (Does not affect protocol- decided by end 

user). 

 

94. Select > ‘No’ to add metadata columns to object data file (Does not affect protocol). 

 

95. Select > ‘Yes’ to limit output to a size that allowed in Excel. If ‘no’ is selected, then 

upon exceeding limit on Excel spread sheet the pipeline will be terminated without data 

outputted.   

 

96. Select > ‘NaN’ to represent data points which are numerical values are ‘infinite’ or 

‘undefined’ in output spreadsheet. 

 

97. Select > ‘Yes’ to select the measurements to export. The user can define which data 

are outputted to spread sheet. By selecting ‘No’ all data types will be outputted. 

 

98. Select the following data outputs from drop down box ‘select measurement to export’. 

 

 

To export number of nuclei (cell count) and puncta per image: 

99. Image > Count > Nuclei; 

 

100. Image > Count > puncta.  

To export area of the objects True Doughnut and Cytoplasm: 

101. True Doughnut > Area Shape > Area; 

 

102. Cytoplasm > Area Shape > Area. 

To export intensity of Mitohealth staining intensity in SN4741 peri-nuclear area: 

103. True Doughnut > Intensity > Mean Intensity. 

To export cell-by-cell puncta counts: 

104. Cytoplasm > Children > Puncta > Count. 
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105. Select > ‘Yes’ to calculate the per-image mean values for object measurement. 

CellProfiler will calculate mean intensity, mean area, mean number of puncta per cell 

etc. for each image will then be exported into spreadsheet. Median and standard 

deviation measurements per image can also be calculated if desired.  

 

106. File > Save Project As > input user defined project name. to save the 

CellProfiler image analysis pipeline for future use. 

Note: CellProfiler protocol can now be opened and used on image set. 

To allow modules to run in sequence in an automated fashion select: 

107. File > Analyze Images. A spreadsheet will be populated and saved as an output 

upon termination of all executable algorithms/modules in the Cell Profiler pipeline. This 

pipeline can be applied to experimental repeats.  

Once these CellProfiler pipelines (CellProfiler Pipeline: Measuring Mitochondrial Membrane 

Potential and CellProfiler Pipeline: Measure SN4741 Mitochondrial Fragmentation) have been 

constructed it is then possible to automate image analysis for hundreds or thousands of 

images.  
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Below is a table (Table 2) containing the names and functions of the CellProfiler algorithm 

modules used in the above protocol(s). 

Table 2: Cell Profiler Modules and Functions 

Cell Profiler Module Function 

Correct Illumination - 

Calculate  

Calculates an illumination function that is used to 

correct uneven illumination/lighting/shading or to 

reduce uneven background in images. 

Correct Illumination - Apply  Applies an illumination function, usually created by 

Correct Illumination Calculate, to an image to correct 

for uneven illumination (uneven shading). 

Identify Primary Objects  Identifies biological components of interest in 

grayscale images containing bright objects on a dark 

background (e.g. nuclei or speckles). 

Identify Secondary Objects  Identifies objects (e.g., cell body) using objects 

identified by another module (e.g., nuclei) as a 

starting point, or seed. 

Identify Tertiary Objects  Identifies tertiary objects (e.g., cytoplasm) by 

removing smaller primary objects (e.g. nuclei) from 

larger secondary objects (e.g., cell body), leaving a 

ring shape. 

Enhance Or Suppress 

Features  

Enhances or suppresses certain image features (e.g. 

speckles, ring shapes, and neurites), which can 

improve subsequent identification of objects (such as 

mitochondrial fragments). 

Measure Object Size 

Shape  

Measures several area and shape features of 

identified objects. 

Measure Object Intensity  Measures several intensity features for identified 

objects. 

Relate Objects  Assigns relationships; all objects (e.g. speckles) 

within a parent object (e.g. nucleus) become its 

children. 

Export To Spreadsheet Exports measurements into one or more files that can 

be opened in Excel or other spreadsheet programs. 
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Commentary  

Basic Protocol 1 

Selection of an Appropriate Exposure Time 
Prior to image acquisition ensure that time is taken to select the optimal exposure time as this 

will avoid saturation and a lack of dynamic range in the image acquired.  To minimise potential 

of image saturation: i) maintain image acquisition conditions such as exposure times, lamp, 

and filters used etc. throughout the image acquisition process; ii) allow sufficient time for light 

source (lamp) to warm-up before running  samples to avoid overexposure as lamp warms; an 

LED provides more consistency so use this as light source if possible; iii) Aim to quantitatively 

compare signals across the set of images to ensure that image pixel intensities do not become 

saturated due to increased fluorescence signal that may result from particular treatment 

regimens - for example positive experimental controls. To mitigate against this, aim to set the 

exposure time such that the resulting images use as much of the dynamic range of the camera 

as possible, but without saturating any images. For example, setting the image maximum to 

be ~50-75% of the dynamic range is a good precaution and will allow for some images in the 

set being brighter than average without becoming saturated (Brown, 2007).  

 

Basic Protocol 2 

Upload Image set, Image Sorting and Image Pre-processing and Illumination 

Correction 
A limitation of many High-Content Screening (HCS) platforms, such as the InCell Analyser 

2000, is that a flat-field correction (FFC) function cannot easily be implemented into the 

imaging process. There is the option to modify the images taken during a post-processing 

stage; however, this leaves the quality control of the FFC to the imaging software without any 

further input or quality control from the end user. Without a FFC application we can see that 

the intensity of an image varies widely from the centre to its edges (illustrated in figure 3). This 

spread of illumination intensity within an image will deter the accuracy of downstream image 

analysis. For example, regions of a cell body may appear shaded and therefore segmentation 

of image into biologically-relevant compartments (i.e. identification of cell body boundary) may 

be prevented. 

The illumination pattern will change if different staining reagent(s) is used for a batch of 

samples or if there is a change in microscope components or setting of the optical path . For 

example, the illumination pattern may change throughout the same day or analysis as the 

lamp changes temperature. Therefore, in this protocol illumination is measured and correction 

applied for each image channel - that is Hoechst and Cy3. This illumination pattern must be 

corrected to ensure correct and comparable measurements in intra- and inter-image analysis.  

CellProfiler software has built-in modules to deal with these issues. The 

CorrectIlluminationCalculate module is used to measure the intensity pattern of a single or 

set of images and produces an intensity function which is to be applied across the entire image 

set.  The CorrectIlluminationApply module then applies the calculated intensity function to 

the images prior to analysis. Correction of intensities can be important for segmentation and 

intensity measurement functions. In this method of illumination correction, we create and save 

an illumination function and apply this correction to images before segmentation. This can be 

performed using a separate Cell Profiler pipeline to create an ‘average’ illumination function 
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for a specific fluorescence channel in a data set. Alternatively, as it is performed in this 

instance, the pre-processing (illumination correction) can be implemented at the start of an 

image analysis pipeline. This illumination function is saved as an image and is applied to the 

entire data set. The drawback of implementing illumination correction as part of a working 

pipeline, especially when dealing with large quantities of image files, is that calculation of the 

illumination function can add a considerable amount of time to the automated analysis process 

(Lindblad & Bengtsson, 2001). 

 

Identification of Nuclei  
See ‘In-vitro rotenone assay: cell density’ in troubleshooting section for considerations. 

 

Identifying Secondary Objects: SN4741 Cell Body  
Abnormal fragmentation of mitochondria is a trait observed in cells derived from patients 

afflicted with neurodegenerative diseases such as PD (Pieczenik & Neustadt, 2007). 

Pesticides such as rotenone are commonly used to generate PD models. In in-vivo rat models, 

systemic exposure to rotenone induces neurochemical, behavioural and neuropathological 

features of PD (Betarbet et al., 2000). These PD-like features are inclusive of nigrostriatal 

dopaminergic degeneration which is associated with the behavioural traits of hypokinesia and 

rigidity. The systemic exposure of rotenone in this rat model also resulted in other PD-

associated neurochemical hallmarks such as the accumulation of ubiquitin and alpha-

synuclein containing cytoplasmic inclusions (Betarbet et al., 2000). Moreover, evidence shows 

that cells exposed to rotenone, a mitochondrial Electron Transport Chain (ETC) complex-I 

inhibitor, results in a fragmented mitochondrial morphology in-vitro. An affect which is appears 

to be dependent on metabolic energy sensor, AMPK (Toyama et al., 2016). 

Here we describe a protocol which allows for identification of entire mitochondria in SN4741 

cell body and subsequent quantification of mitochondrial fragments and measurement of 

fragment size. This CellProfiler pipeline utilises aspects of the CellProfiler ‘Speckle Counting’ 

example pipeline with alterations to complement the analysis of SN4741 cells for mitochondrial 

fragments. The basic pipeline is similar to that described above, however, there are 

adjustments at i) ‘step 3’ as CellProfiler software is tweaked to identify SN4741 cell body; and 

ii) ‘step 4’ as the edges of entire SN4741 cell cytoplasm are identified as opposed to only the 

ring shaped ‘True Doughnut’ in the peri-nuclear region of the cell. Alterations are described in 

a step-by-step method below. During step 5 Note: This module uses ‘propagation’ as the 

method to identify dividing lines between clumped cell bodies (secondary objects) where there 

is a local change in staining intensity (i.e. cell bodies having different staining intensities; and 

foreground and background have different staining intensities). This algorithm varies from the 

watershed method (used in Image J macro) as the dividing lines between objects (cell bodies) 

are determined by both the changes in local image intensity (intensity gradient) and distance 

to the nearest primary object (nucleus). Dividing lines are placed where the image local 

intensity changes perpendicular to the boundary (Jones, Carpenter, & Golland, 2005). 

Therefore, this method is considered an improved method of object segmentation. Since 

‘propagation’ is selected a user-defined regularization factor (given the symbol λ) must be 

input to inform the execution of the propagation algorithm. Propagation takes 1) the distance 

to nearest primary object and 2) intensity of the secondary object image into account when 

defining the dividing lines between objects.  The regularization factor is used to decide the 
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balance and weight placed on each factor during propagation and can be anywhere in the 

range from 0 to infinity. If a regularization value >1 is selected, the image intensity is almost 

completely ignored. Whilst selecting a regularization value of 0, means that the distance to the 

nearest primary object is ignored and propagation relies on image intensity. The larger the 

regularization value the more image intensity is ignored and dividing lines drawn become more 

reliant on distance to the nearest primary object. 

 

Enhancing Mitochondrial Speckles 
During this step the enhance operation is used to create an output image which predominantly 

contains user defined features. In this pipeline, the module produces a grayscale image largely 

composed of mitochondrial puncta. Feature size was determined by measurement of 

mitochondrial puncta using the Tools > Measure length CellProfiler function. CellProfiler 

suggests that when enhancing (or subtracting) the largest feature size in the image should be 

selected. In these MitoHealth images the largest mitochondrial puncta measured were 

approximately 20 pixels in diameter. Speckle feature type was selected to enhance 

mitochondrial puncta in each image. CellProfiler defines a speckle as an area of enhanced 

pixel intensity relative to its immediate neighbourhood using a ‘tophat’ filter. This filter used 

grayscale image erosion within a set radius (Approx. object diameter = 20 pixels; therefore 

radius = 10 pixels), and then dilation. The speckles are enhanced by this module making them 

easier to identify with the Identify Primary Object module. See figure 9 (e-g) for example of 

identified puncta.  

 

Identifying Mitochondrial Fragments as Primary Objects 
In identifying mitochondrial fragments in step 8, we use ‘Per object’ thresholding strategy 

which relies on the identification of a cellular compartment in a previous CellProfiler module. 

In this example, SN4741 cell ‘Cytoplasm’ is identified by Identify Tertiary Object module. 

Using this strategy means each individual cell cytoplasm has its own applied threshold. Pixels 

outside of the object are considered background. CellProfiler suggests this as a useful method 

for identifying particles in cellular sub-compartments if staining varies between objects/cell-to-

cell. Otsu method of thresholding (named after Nobuyuki Otsu) calculates image threshold by 

minimising the variance within the pixel that are considered to be classed and assigned to 

foreground or background (Otsu, 1979; Sankur, 2004). CellProfilers’ application of Otsu 

thresholding method can be applied to assign pixels to either two-classes (foreground and 

background), or three-classes (foreground, mid-ground and background). Two-class is 

selected as foreground (regions of interest i.e. puncta) background are easily distinguishable 

following enhancement module.  

 

Critical Parameters and Troubleshooting 
The in-vitro rotenone assay described here is a 2D model with 2D image acquisition. We 

recognise that that 3D culture of neuronal spheroids and organoids may be a more 

physiologically relevant to studying the neurodegenerative disease and modelling cellular 

interactions within the human brain (Chlebanowska, Tejchman, Sułkowski, Skrzypek, & Majka, 

2020). In our laboratory we sought to develop an easily reproducible and resource efficient 
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method for the screening of multiple compounds for their potential neuroprotective effects in 

models of PD using readily available equipment, skills and resources.  We also recognise the 

use of live‐cell‐imaging techniques and approaches to answer key questions regarding the 

mechanisms or potential treatments of neurodegenerative diseases (Bakota & Brandt, 2009). 

In our protocol described in this paper we utilise paraformaldehyde fixation to immortalise the 

phenotype/morphology under investigation– to this end we use fluorescence probes which are 

compatible with PFA fixation process.  Fixation of our sample also allows for the option of 

multiplexing with antibody immunocytochemistry. We have a simple easily replicable step-by-

step guide to executing the protocol.   

Basic Protocol 1 and Basic Protocol 2 provide comprehensive step-by-step guidance to for 

execution of this protocol. Additional considerations and troubleshooting notes are described 

below.  

 

In-Vitro Rotenone Assay: Cell Density 
The protocol in basic protocol 1 describes the seeding of 3,000 cells in each treatment well. 

SN4741 cells under described culture conditions have a cell doubling time of approximately 

23hrs. The timeline from cell seeding through to experimental endpoint is 72hr. Seeding cells 

at 3,000 cells per well results in cell density at experimental endpoint of approximately 80%. 

Thus, mitigating against over confluent cell density. Over-confluent cells at experimental 

endpoint means that downstream image analysis difficult and can result in inaccuracies in 

image segmentation– specifically nuclear segmentation, where the goal is to identify discrete 

nuclei to build and execute subsequent image analysis steps. Misidentification of nuclei may 

result in repercussions for the subsequent image analysis steps and inaccuracies in data 

measurement. See step 2 in basic protocol 2 for nuclei segmentation.  

 

In-Vitro Rotenone Assay: Rotenone Efficacy 
On occasions we have observed a loss of efficacy of rotenone. Resulting in challenge resulting 

in non-significant loss of SN4741 neurons following 24hr. In order to mitigate against this, the 

reconstituted rotenone (in DMSO) is stored at -4oC protected from light and air using parafilm 

or tape to seal aliquots. We recommend aliquoting small volumes (10uL) of rotenone for 

storage and a max of 2-3 freeze-thaw cycles. There is also a possibility that rotenone falls out 

of aqueous solution with DMSO on freeze-thaw cycle. In light of this, we highly recommend 

through mixing of rotenone aliquots by vortex prior to use.  

 

Sample Storage Considerations 
Due to unforeseen circumstances it might not be possible to acquire images for samples 

immediately following staining procedure as recommended by manufacturers. Should this 

problem arise, place samples in cold room (4oC) overnight and protect from light; should the 

sample need to be kept longer Prolong GoldTM (Invitrogen, cat no. P36930) should be used 

following manufacturer’s instructions to retain sample fluorescence integrity, protect from light 

and store at 4oC. Ensure that the sample plate is left to acclimatise to room temperature prior 

to imaging to avoid condensation.  
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Data Storage Considerations 
Images (.tiff, 16-bit) acquired using the automated fluorescence microscopy system are saved 

to an external hard drive. Each .tiff image acquired in protocol requires approximately 8MB of 

storage. The main consideration here is ensuring that storage device has sufficient storage 

capacity for experimental setup. For more information on digital image data see ‘Digital Image 

Data’ in Supplementary Protocol Information.   

 

Time Considerations 
Outline of basic protocol 1 and basic protocol 2 experimental procedure and associated 

timelines can be seen in Figure 10. Figure 11 illustrated the experimental timelines of the in-

vitro rotenone PD model. 

Another consideration is estimated run time on each image set (1 DAPI image and 1 Cy3 

Image). In this CellProfiler pipeline is typically 1-1.5 minutes.  Run time for 10 image sets (10 

DAPI and 10 Cy3 images) is approximately 14 minutes with step-by-step display in CellProfiler 

software enabled; and 9.5 mins with display disabled. Run time for 52 images is approximately 

1hr 5mins with display and 48 mins without display. Display can be toggled on/off for each 

module in CellProfiler software pipeline panel. Run times represent those achieved using a 

Toshiba TECRA A50-C-218 with Inter(R) CoreTM i7-6500U CPU @2.5GHz to run this image 

analysis protocol. Run time will be quicker on laptops or desktop computers with additional 

RAM and CPU.  

 

Software for Statistical Analysis 
The terminating step in the CellProfiler pipeline is exporting measurements and data. In this 

protocol data is exported as comma separated value (.csv) files which can be opened in MS 

Excel. Graphing and biostatistics can be performed in MS Excel or commercially available 

software such as Graphpad Prism or MATLAB. Statistical analysis of mean puncta number 

per cell, mean fluorescence intensity per cell and cell number has been performed by One-

way ANOVA with Dunnett’s post-hoc analysis, with P<0.05 (*), P<0.01 (**), P<0.001 (***) 

considered significant when compared to control (0nM Rotenone). 

 

PPE and COSHH Considerations 
Rotenone and PFA pose a hazard to human health and will need to be disposed of 

appropriately. Relevant good laboratory practise, PPE and COSHH guidelines must be 

adhered when handling these chemical and compounds. In light of this appropriate risk 

assessments should be performed and approved by the organisation’s Health & Safety 

committee. 

 

Additional Applications for Image Analysis Pipeline 
The simplicity of this protocol means that it is easily adapted to the identification and 

quantification of other sub-cellular organelles. An example of such applications includes 

identification of fluorescently lebelled lysosomes and autophagosomes from 2D images 

acquired through HCI in the analysis of autophagy. The laboratory has found use for this 
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pipeline in a myriad of cell types including HT22, SN4741 and differentiated and un-

differentiated human ReN cells with slight modification of parameters such as ‘typical nucleus 

diameter’ in Identify primary objects module. 

 

Figure 10. Experimental Outline and Associated Timelines. This diagram illustrates the 

outlines key steps of basic protocol 1 and basic protocol 2. This includes wet-laboratory 

preparation of SN4741 cells; cell staining process; automated image acquisition; and 

execution of CellProfiler image analysis software for image segmentation and data output.  

 

 

 

Figure 11. Basic Protocol 1 Timeline. Illustration of Basic Protocol 1 timeline including cell 

seeding; addition of cell culture medium following 24hr incubation; 24hr rotenone challenge, 

and wet laboratory experimental endpoint. Cell staining is executed at 71.5hr into 

experimental timelines - not illustrated in this diagram. 
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Figure 12. Rotenone-Based Parkinson’s disease model results in Cell Loss, Decreases 

Viability and Increases SN4741 Cell Cytotoxicity and Mitochondrial Fragmentation. 

Figure 1 (A), (B), (C) and (D) represents SN4741 cell count, cytotoxicity, mitochondrial 

fragments per cell, and viability data respectively. A decrease in cell number (A); increase in 

cell cytotoxicity (B) and mitochondria fragments per cell (C); and a decreased cell viability (D) 

is observed following 24hr challenge with 10nM rotenone. SN4741 cell number (A) is 

expressed as mean cell count from cells treated with in quadruplicate (n=4); SN4741 

cytotoxicity, mitochondrial fragmentation and viability data (B - D) expressed as mean cell 

count from cells treated in triplicate for 3 experimental repeats (n=3). Cell Cytotoxicity (B) and 

viability data (D) are expressed as percentage of control (0nM). Statistical analysis was 

performed by One-way ANOVA with Dunnett’s post-hoc analysis (A - D) in graph pad prism 6 

software, with P<0.05 (*), P<0.01 (**), P<0.001 (***) considered significant when compared to 

treatment control (0nM Rotenone). Diagrams E, F and G are representative merged pseudo-
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coloured DAPI and Cy3 images for Control, 10nM rotenone and DMSO challenged SN4741 

cells, respectively. Images (E-G) represent x40 magnification images with scale bar = 40µm. 

Each merged image has a representative enhance image for graphical purposes highlighted 

by a white box. The enhanced regions shown in each merged image (E-G) defines a region 

of the image which have been enhanced for illustration of fragmentation morphology under 

treatment conditions. 
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Supplementary Protocol Information 

Digital Image Data  
The protocols described in this paper perform data capture on digital images of biological 

samples in an uncompressed 16-bit TIFF format. Details on digital image file displayed in table 

below: 

IN Cell Analyzer 2000 Output - Digital Image Data  
 

• File size= 7.93 MB (8,323,678 bytes = 
66,585,600 bits*) 

• Width= 2040 pixels 

• Length= 2040 pixels 

• Horizontal Resolution= 68649 dpi 

• Vertical Resolution= 68649 dpi 

• Bit-Depth= 16-bit 

• Compression= Uncompressed 
 
* Length * Width * Bit-Depth = Image Data Size 
(bits) 

 

Images captured on the IN Cell Analyzer 2000 (or equivalent HCS system) should be saved 

in an uncompressed (lossless) format. Here we capture 16-bit 2040 x 2040 pixel images on 

an external hard drive for image analysis purposes. 

Note: Lossless compression algorithms reduce file size while preserving a perfect copy of the 

original uncompressed image containing the detail and full pixel range/bit-depth available 

when stored as an image of 16 bit-depth. The levels (depth) of colour (referred to as grey scale 

in binary images) is important for effect collection of numerical values (a specific example is 

intensities) in the image analysis process. Lossless compression (or uncompressed files) 

usually result in larger files, whereas lossy compression of files generally produce smaller files 

but at the expense of image quality. Files which are saved can be converted to compressed 

files at the expense of image quality; however, it is not possible to retrieve lossless image 

quality (to ‘original’) from an image which has been saved in a compressed method. It is 

recommended that uncompressed 16-bit TIFF format files are utilised for protocols which refer 

to a HCS system, such as the IN Cell Analyzer, as the method of image acquisition.  

Note: Bit depth describes the number of data bits available to represent the intensity value of 

a single pixel. It is also known as bits per pixel (bpp). An image file format's bit depth indicates 

the number of separate grayscale intensity values (graylevels) that are allowable by the file 

format: 

➢ 8-bit images have 2^8 available pixel intensities, with a range of 0-255 

➢ 12-bit images have 2^12 available pixel intensities, with a range of 0-4095 

➢ 16-bit images have 2^16 available pixel intensities, with a range of 0-65535 

 

CellProfiler normalizes (contrast-stretches) images from raw image files. On most imaging 

platforms 12-bit images are saved as a 16-bit images and it is common when visualising raw 

images on standard computer software (e.g. MS media player) that your images will appear a 

dark when presented raw. CellProfiler analysis uses the actual (raw) intensity values for image 

analysis and data acquisition and not the contrast stretched image which is observed in the 

CellProfiler for visualisation purposes. 
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IN Cell Analyzer 2000 (GE Healthcare) Specifications 
Description: The GE Healthcare IN Cell Analyzer 2000 is an automated cellular and 

subcellular imaging system for fixed and live cells. Like other automated high-content-

screening (HCS) systems, the IN Cell 2000’s features such as CO2, humidity and temperature 

(heating) controls allow for the systems applicability to both fixed and live cell automated 

image acquisition. The systems allows both manual investigative microscopy as well as fully-

automated HCS and the study of a variety of sample inputs, from organelles to cells, tissues, 

and whole organisms, and from fixed end-point assays to extended live-cell studies. The 

system is composed of a combination of proprietary optics, fast hardware and software 

autofocus, with a high-performance CCD camera. This results in rapid well-to-well imaging 

and light source exposure time in order to minimise compromise on image quality and cell 

health. The designed features and functions on this system and supporting software enables 

complex biological techniques to be incorporated with ease into your high content program. 

Applications  performed with IN Cell Analyzer 2000 include compound screening, stem cell 

assays, phenotypic profiling, predictive toxicology, RNAi screening, tissue microarrays, whole 

organism imaging, signalling pathway analysis, neurite outgrowth/neuronal function, cell cycle 

studies, cell migration, micronucleus assay, co-localization analysis, automated slide imaging, 

organelle & protein trafficking, receptor activation, morphology analysis, DNA content 

analysis, apoptosis/cell viability, mitochondrial function, colony counting (e.g. stem cells) and 

fluorescent in situ hybridization. 

 

Features of the IN Cell 2000 Analyzer (HCS System)  
The IN Cell Analyzer 2000 system was used extensively to carry out image acquisition for the 

protocols described in this paper. The table below lists the IN Cell Analyzer 2000’s key 

features which allow for its application to a multiplicity of assays and analyses. 

 

IN Cell Analyzer  2000 (HCS System) Features: 

• High speed image capture: Bright optics 
with powerful light source 

• Slide and multi-well imaging ability 

• Fast hardware autofocus 

• Fast on-line cell count function 

• Rapid slide imaging 

• Automated filter, polychroic mirror & 
objective changing 

• Environmental chamber: Variable 
temperature control (up to 42°C), CO2 
and humidity. 

• Manual microscope mode and Preview 
Scan ability. 

• Image restoration (Deconvolution)- 3D 
Deconvolution software module 

• Automated image focusing based on 
laser and/or software 

• Transmitted light imaging (DIC or 
Phase) 

• Large chip CCD camera 
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IN Cell 2000 Analyzer (HCS System) Microscope Objective Lenses, Mirrors and Filters  
The IN Cell Analyzer is equipped with a range of objective lenses, mirrors and filters to facilitate 

its application to a multiplicity of experimental analysis scenarios and fluorescence probe 

detection. The details of objectives, mirrors & filters and related fluorescence 

excitation/emission detection ranges are listed in the tables below. 

 

Objectives 

IN Cell Analyser 2000 Objectives 

Magnitude NA ASAC (Range mm) Working Distance 

2X 0.1 No 8.5 mm 

10X 
  
0.45 

  
No 4.0 mm 

20X 0.45 Yes (0-2) 7.5 mm 

60X 0.95 Yes (0.11-0.23) 0.15 mm 

 

 

Polychroic Mirrors & Filters 

The IN Cell Analyzer 2000 imaging system comes complete with polychroic mirrors and 

filters covering all the most popular dyes and fluorescence proteins 

IN Cell Analyser 2000 Polychroic Mirrors & Filters 

Polychroic Suitable for 

QUAD 1 • DAPI/Hoechst/Quantum Dots 
• eGFP/FITC 
• Cy3/TRITC/DsRed/mOrange/Rhodamine/ dTomato 
• Cy5/DRAQ5 

QUAD 2 • DAPI/Hoechst/Quantum Dots 
• eGFP/FITC 
• Texas Red/HcRed1/mRaspberry/mPlum/mCherry 
• Cy5/DRAQ5 
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