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ABSTRACT

This thesis consists of three essays on hypothesis testing and Granger causality analysis. The

two main topics under consideration are: (1) exact point-optimal sign-based inference in linear

and non-linear predictive regressions with a financial application; and (2) sign-based measures of

causality in the Granger sense with an economics application.

These essays can be regarded as an extension to the sign-based procedures proposed by Dufour

and Taamouti (2010a). The distinction is that in our study the predictors are stochastic and the

signs may exhibit serial dependence. As a consequence, the task of obtaining feasible test statistics

and measures of Granger causality is more challenging. Therefore, in each essay we either impose

an assumption on the sign process or propose tools with which the entire dependence structure of

the signs can feasibly be modeled. The three essays are summarized below.

In the first chapter, we acknowledge that the predictors of stock returns (e.g. dividend-price

ratio, earnings-price ratio, etc.) are often persistent, with innovations that are highly correlated

with the disturbances of the predictive regressions. This generally leads to invalid inference using

the conventional T-test. Therefore, we propose point-optimal sign-based tests in the context of

linear and non-linear models that are valid in the presence of stochastic regressors. In order to

obtain feasible test statistics, we impose an assumption on the dependence structure of the signs;

namely, we assume that the signs follow a finite order Markov process. The proposed tests are

exact, distribution-free, and robust against heteroskedasticity of unknown form. Furthermore,

they may be inverted to build confidence regions for the parameters of the regression function.

Point-optimal sign-based tests depend on the alternative hypothesis, which in practice is unknown.

Therefore, a problem exists: that of finding an alternative which maximizes the power. To choose

the alternative, we adopt the adaptive approach based on the split-sample technique suggested

by Dufour and Taamouti (2010a). We present a Monte Carlo study to assess the performance of

the proposed “quasi”-point-optimal sign test by comparing its size and power to those of certain

existing tests that are intended to be robust against heteroskedasticity. The results show that our

procedures outperform the other tests. Finally, we consider an empirical application to illustrate

the usefulness of the proposed tests for testing the predictability of stock returns.
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In the second chapter, we relax the assumption imposed earlier on the dependence structure of the

signs. We had provided a caveat that to obtain feasible test statistics, the Markovian assumption

must be imposed on the signs. In this essay, we extend the flexibility of the exact point-optimal

sign-based tests proposed in the first chapter, by considering the entire dependence structure of the

signs and building feasible test statistics based on pair copula constructions of the sign process. In

a Monte Carlo study, we compare the performance of the proposed “quasi”-point-optimal sign tests

based on pair copula constructions by comparing its size and power to those of certain existing

tests that are intended to be robust against heteroskedasticity. The simulation results maintain

the superiority of our procedures to existing popular tests.

In the third chapter, we propose sign-based measures of Granger causality based on the Kullback-

Leibler distance that quantify the degree of causalities. Furthermore, we show that by using

bound-type procedures, Granger non-causality tests between random variables can be developed

as a byproduct of the sign-based measures. The tests are exact, distribution-free and robust against

heteroskedasticity of unknown form. Additionally, as in the first chapter, we impose a Markovian

assumption on the sign process to obtain feasible measures and tests of causality. To estimate

the sign-based measures, we suggest the use of vector autoregressive sieve bootstrap to reduce the

bias and obtain bias-corrected estimators. Furthermore, we discuss the validity of the bootstrap

technique. A Monte Carlo simulation study reveals that the bootstrap bias-corrected estimator

of the causality measures produce the desired outcome. Furthermore, the tests of Granger non-

causality based on the signs perform well in terms of size control and power. Finally, an empirical

application is considered to illustrate the practical relevance of the sign-based causality measures

and tests.

Keywords: Stochastic regressors; stock return predictability; valuation ratios; persistency; sign

test; point-optimal test; non-linear model; heteroskedasticity; exact inference; distribution-free;

split-sample; adaptive method; projection technique; numerical optimization; causality measures;

time series; Kullback-Leibler distance; bootstrap; Bonferroni test; D-vine; power envelope.
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Motivation

It is well established that in nonparametric settings and under weak distributional assumptions, it

is not possible to obtain a valid test or confidence interval on the mean (moments) of observations,

even in large sample sizes and under the restrictive assumption of i.i.d data. More specifically, the

absence of the knowledge of the population distribution implies that a sample from the population

would provide little information about its tails; and as the population mean µ is sensitive to

the tails of the distribution, there are no effective means of testing the hypotheses of the form,

say, H0 : µ = 0 [see Bahadur and Savage (1956)]. These findings suggest that a valid test (i.e.

control size whatever the sample size) about the mean µ with level α, where 0 ≤ α < 1, can

not possess power greater than its size when the distribution is unspecified. This situation which

is referred to as the issue of non-testability extends to the coefficients of regression models [see

Dufour et al. (2008)]. Furthermore, the simulation results of Dufour and Taamouti (2010a), as

well as in the first and the second chapters of this thesis, reveal that in the presence of small

number of observations and under different forms of heteroskedasticity, “robust”test statistics,

such as the T-test based on White (1980) variance-correction suffer from poor power and size

control. These issues have turned the attention of numerous scholars to quantiles (e.g. median).

Under adequately broad distributional assumptions, sign statistics are the only possible way of

producing valid inference about the median in finite sample procedures and in the presence of

general forms of heteroskedasticity [see Lehmann et al. (1949) and Pratt and Gibbons (2012)].

This is due to the fact that sign statistics are predicated on quantiles, which do not suffer from

the issue of non-testability. As such, they offer more flexibility, since no moment conditions are

imposed on the dependent variable. Motivated by the generalities of sign statistics, this thesis

proposes sign-based procedures in the context of linear and non-linear models that are robust

against non-standard and asymmetric distributions and further address certain gaps within the

domains of nonparametric inference for time-series data.

To further elaborate on some of the points raised earlier, consider testing the hypothesis that a

xviii



sample of n observations are independent with a distribution symmetric about zero

H0 : X1, · · · , Xn are independent with a common zero median.

Rejecting this null hypothesis would imply that either the distribution is asymmetric, or that it has

a median other than zero. Further, If the assumption of symmetry is imposed, this would turn to

a location hypothesis, as H0 : µ = 0. Given the absolute values of the observations |X1|, · · · , |Xn|,

under the null hypothesis the assignments of positive and negative signs are equally likely, and

since there are 2n possible permutations of assigning the signs, there are 2n members of the family

of possible samples, each with a probability of 0.5n. Hence, once the test criterion is selected,

the test statistic can be calculated for each member of the family and the distribution of the test

statistic is obtained under the null hypothesis, using which the critical values are easily found.

Pratt and Gibbons (2012) refer to this testing approach and its respective simulated distribution

under the null hypothesis, as the randomization test and the randomization distribution of the

test statistic respectively, which are conditional on the absolute values of the observations. The

level of randomization test is α if

P [Rejecting H0 | |X1|, · · · , |Xn|] ≤ α

under the null hypothesis. In other words, this implies that any valid test must have level equal to

α conditional on the absolute values, otherwise the procedure has size one. It is not immediately

obvious whether the robust least-squares based T-test based on White (1980) variance correction

(commonly designated as “HAC”) satisfy the above condition.

The literature surrounding sign-based inference is vast with numerous scholars dedicating articles,

books and monographs to study it extensively. Sign-based procedures started to attract careful

attention after decades of research on rank-based inference in the area of nonparametric statistics.

The latter concerns the rank of the observations (specifically that of the residuals of the fitted data),

as opposed to their numerical value. On the other hand, experiments in sign-based inference in

the past few decades mainly express interest on the signs of the observations. As with the example

xix



above, under the general assumption that the random residuals possess positive and negative signs

with equal probability, or in other words

P [εt > 0] = P [εt < 0], t = 1, · · · , n

sign-based tests are distribution-free.

Boldin et al. (1997) develop sign-based procedures in the context of independent and time-series

data for linear statistical models. They particularly focus on exact inference (i.e. results that

provide exact significance level) in finite samples and further explore the asymptotic properties of

sign-based statistics. In a more recent work, Taamouti (2015) surveys the latest developments in

sign-based inference. These include procedures for testing orthogonality between random variables

in linear and non-linear models and in the context of both independent and dependent data. By

considering a general regression of the form

yt = µ+ f(xt; β) + εt,

Taamouti (2015) reviews an array of sign tests that impose different assumptions on the residuals

εt, the functional form f(xt; β), the randomness and the dimension of xt, and on the presence or the

absence of a drift parameter µ For independent data, many studies propose distribution-free sign

and sign-ranked statistics that are exact and robust against different forms of heteroskedasticity.

A few notable examples in the context of one regressor (where xt is a scalar) include the sign-

based procedures of Campbell and Dufour (1991, 1995, 1997) and Luger (2003) among others,

where the said procedures are shown to be exact in the presence of non-Gaussian, asymmetric and

heteroskedastic distributions. The sign-based and Wilcoxon sign-ranked test statistics proposed

by Campbell and Dufour (1991, 1995) are non-parametric analogues of the T-test in the absence of

a nuisance drift parameter µ, whereas Campbell and Dufour (1997) and Luger (2003) extend these

procedures to further incorporate a drift term. In a multivariate framework within the context

of independent data, where xt is a k × 1 vector of fixed regressors, Dufour and Taamouti (2010a)

propose exact tests that further address the issue of optimality (i.e. maximum achievable power
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for a given testing problem), under the broad assumption that the residuals possess zero median

conditional on the explanatory variables:

P [εt > 0 | X] = P [εt < 0 | X] =
1

2
, t = 1, · · · , n,

where X = [1, x1, · · · , xn]′ is an n× (k + 1) matrix of explanatory variables. On the other hand,

in the context of dependent data, Coudin and Dufour (2009) develop sign-based statistics that

further consider serial (non-linear) dependence and discrete distributions. To construct their tests,

they impose a mediangale assumption on the disturbances, which is a median-based analogue of a

martingale difference sequence. The process of disturbances is a weak conditional mediangale iff

P [ε1 > 0 | X] = P [ε1 < 0 | X], and P [εt > 0 | ε1, · · · , εt−1, X] = P [εt < 0 | ε1, · · · , εt−1, X],

for t = 2, · · · , n. This assumption permits εt to possess discrete distributions, since it allows for

non-zero probability mass at zero. A strict version of the conditional mediangale is

P [ε1 > 0 | X] = P [ε1 < 0 | X] =
1

2
,

and

P [εt > 0 | ε1, · · · , εt−1, X] = P [εt < 0 | ε1, · · · , εt−1, X] =
1

2
, for t = 2, · · · , n

which has no mass at zero. For the purpose of simplifying the construction of their test statistic,

Coudin and Dufour (2009) impose the latter assumption.

In this thesis, we extend the work of Dufour and Taamouti (2010a), by constructing sign-based

procedures for linear and non-linear predictive regressions of the form

yt = f(xt−1; β) + εt,

where the data is no longer necessarily independent and xt−1 is a (k + 1) × 1 vector of fixed or

stochastic regressors. In the first and the second chapters, we propose exact point-optimal (i.e.
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optimal at a specific point in the alternative hypothesis parameter space) sign-based inference to

test for orthogonality between random variables. These tests are motivated by the type of feedback

studied by Mankiw and Shapiro (1986), in which xt is assumed to follow an AR(1) process

xt = θxt−1 + ut

with

cov(εt, ut) = ρ and corr(ut+j, εt) = 0, ∀j 6= 0.

Thus, while xt−1 is contemporaneously uncorrelated with εt
1, it is not uncorrelated with all its leads

and lags. Particularly xt−1 is correlated with εt−1, εt−2, · · · and as such E[εt | xt, xt−1] 6= 0, which

is a violation of the Gauss-Markov theorem. As a consequence of this, finite-sample estimation

and inference are misleading, as the OLS estimate of β is biased and has a non-standard sampling

distribution [see Stambaugh (1999) for a practical example]. Using Monte-Carlo simulations,

Mankiw and Shapiro (1986) examine the actual rejection rates in T-type tests of the hypothesis

H0 : β = 0 and find that when θ < 1 yet the process xt is highly persistent, the test does not

control size in finite samples; albeit, the size distortions improve as n→∞. However, when θ = 1,

the size distortions persist as n → ∞. As noted by Magdalinos and Phillips (2009), when the

process xt is mildly integrated towards the stationary side (with θ < 1), the OLS estimator is

consistent and asymptotically normal, yet suffers from significant bias in finite samples. On the

other hand, in the moderately explosive case (with θ > 1), the least squares estimator is mixed

normal with Cauchy-type tail behavior with an explosive convergence rate.

By imposing the strict conditional mediangale assumption on the residuals, which allows for serial

(non-linear) dependence between y1, · · · , yn, the point-optimal sign-based tests (POS-based tests

hereafter) introduced in this thesis are distribution-free and exact in the presence of non-standard

distributions - for instance, in the context of predictive regressions with highly persistent and

potentially non-stationary regressors. Furthermore, they are robust against heteroskedasticity

of unknown form and “trace out”the power envelope [see King (1987)], and can be inverted to

1Note that as highlighted by Banerjee et al. (1993) this is not a simultaneity problem - i.e. corr(xt−1, εt) = 0
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produce confidence region for the vector (sub-vector) of parameters.

POS-based tests depend on the alternative hypothesis, which in practice is unknown. Therefore,

a problems consists of finding an alternative such that the power curve of the POS-based test is

close to that of the power envelope. In the first chapter, we follow Dufour and Taamouti (2010a)

by using 10% of the sample to find the alternative and the rest to calculate the test statistic to

maximize the power of the POS-based tests.

In the second chapter, we relax the Markovianity assumption by considering the entire dependence

structure of the signs using copulae. However, as the signs are discrete by nature, evaluating

the sign statistics with a sample size n involves 2n multivariate copula evaluations, which is

computationally infeasible. Therefore, we propose exact point-optimal sign-based tests based on

pair copula constructions (PCC hereafter) of discrete data using models and algorithms introduced

by Panagiotelis et al. (2012), which drastically reduce the computations to 2n(n − 1) bivariate

copula evaluations. Furthermore, by conducting an extensive simulations exercise in the second

chapter, we extend the optimal split-sample ratio proposed in the first chapter to the POS-based

tests constructed using the pair copula constructions of the signs. Our simulation study reveals

that the point-optimal sign-based tests based on PCC using the 10% sample-split outperform the

existing popular tests in the majority of circumstances.

Finally, in the third chapter, we extend the work of Gourieroux et al. (1987) and propose sign-

based Granger causality measures based on the Kullback-Leibler distance criterion. The proposed

measures assess the strength of the relationship between random variables and quantify the degree

of causalities. Furthermore, we show that by using the bound-type procedures suggested by Dufour

(1990) and Campbell and Dufour (1997) to address the nuisance parameter problem, Granger non-

causality tests can be developed as a byproduct of the sign-based Granger causality measures.

These tests are exact, distribution-free and robust against heteroskedasticity.

To obtain feasible sign statistics and measures of Granger causality in the first and the third chap-

ters, we first impose an assumption on the dependence structure of the sign processes; specifically,

we assume that the signs follow a Markov process of order one. The simulations reveal that in spite

of the Markovianity assumption, the sign-based tests of orthogonality outperform certain existing

xxiii



tests that are intended to be robust against non-standard distributions and heteroskedasticity of

unknown form. Furthermore, the sign-based Granger non-causality tests control size and possess

good power properties.
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Chapter 1

Exact point-optimal sign-based tests for

predictive linear and non-linear

regressions

1.1 Introduction

Numerous studies investigate the predictability of financial and economic variables using the past

values of one or more predictors. The most commonly encountered examples of such studies

concern the predictability of stock returns using the lag of certain fundamental variables, such as

the dividend-yield, earnings-price ratio or interest rates [see Campbell and Shiller (1988), Fama

and French (1988), Campbell and Yogo (2006), Campbell and Thompson (2008), and Golez and

Koudijs (2018), among others]. Predictability in this context is generally assessed using the OLS

regression of the returns against the said predictors and tested with conventional T-type tests.

However, the predictors that are often considered in these studies are known to be highly persistent

with innovations that are correlated with the disturbances in the predictive regression of the

returns. In such situations, we know that the OLS estimator of the coefficients, although consistent,

will be biased. As a result of this bias, in finite samples the T-statistic will have a nonstandard

distribution which leads to invalid inference [see Mankiw and Shapiro (1986), Banerjee et al.
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(1993) and Stambaugh (1999) among others]. In this paper, we address this issue by deriving

point-optimal sign-based tests (hereafter POS-based tests) in the context of linear and non-linear

predictive regressions that are distribution-free, robust against heteroskedasticity of unknown form

and which allow for serial (non-linear) dependence provided that the residual process has zero

median conditional on the explanatory variables and its own past. This assumption allows the

signs to be i.i.d under the null hypothesis of orthogonality according to a known distribution,

despite the fact that the variables to which the indicator functions are applied are dependent [see

Coudin and Dufour (2009)].

Nelson and Kim (1993) reduce the small-sample bias using bootstrap simulations and Stambaugh

(1999) shows that in the case of stationary regressors the said bias can be corrected. However,

in later studies Phillips and Lee (2013) and Phillips (2014) show this to be infeasible in the

presence of predictors that exhibit local-to-unity, unit-root or explosive persistency. Therefore,

many inference procedures in this context address the issue of size distortions by considering local-

to-unity asymptotics, where the key predictor variable is assumed to contain a unit root [Lewellen

(2004)], or can be modeled as having a local-to-unit root [Elliott and Stock (1994), Torous et al.

(2004), and Campbell and Yogo (2006), among others]. Notable studies under the local-to-unity

dynamics employ an array of procedures, such as Bonferroni corrections [e.g. Cavanagh et al.

(1995) and Campbell and Yogo (2006)], a conditional likelihood based approach [e.g. Jansson

and Moreira (2006)], as well as the nearly optimal tests proposed by Elliott et al. (2015). In

more recent work, Kostakis et al. (2015) and Phillips and Lee (2016) expand on the predictability

literature by utilizing an extension of the instrumental variable procedure suggested by Phillips

et al. (2009) to generalize inference to multivariate regressors with stationary, local-to-unity and

explosive persistency. The contribution of the POS-based tests proposed in our study is twofold:

firstly, as our tests are distribution-free, they are valid in the presence of regressors with general

persistency in finite samples and do not suffer from the discontinuity that is commonly observed

in the limiting distribution of conventional test statistics between stationary, local-to-unity and

explosive autoregressions. Secondly, our tests possess the greatest power among certain parametric

and non-parametric tests that are often encountered in practice and can easily be extended to
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multivariate testing problems.

In a recent study, Dufour and Taamouti (2010a) propose simple point-optimal sign-based tests

in the context of linear and non-linear regression models, which are valid under non-normality

and heteroskedasticity of unknown form, provided the errors have zero median conditional on

the explanatory variables. These tests are exact, distribution-free, and robust against hetero-

skedasticity of unknown form, and may be inverted to build confidence regions for the vector of

unknown parameters. This work, however, is developed under the assumption that the predictors

are fixed; thus, these tests are not applicable in the presence of stochastic regressors. We extend

the above tests to the case where the predictors can be fixed or stochastic. The main motivation

is to build point-optimal sign-based tests for linear and non-linear predictability of stock returns

that retain the advantages of the POS-based tests proposed by Dufour and Taamouti (2010a).

To extend the previous work of Dufour and Taamouti (2010a), we recognize that under the al-

ternative hypothesis the signs are no longer necessarily independent and the test-statistic now

depends on the joint distribution of the signs, which is computationally infeasible. Therefore, an

additional assumption on the dependence structure of the process of signs is needed to obtain

feasible test statistics. In particular, we assume that this process is a Markov process of finite-

order. By construction, our POS-based tests control the size for any given sample. Under the null

hypothesis of unpredictability, the tests are valid even in the presence of the bias problem pointed

out by Mankiw and Shapiro (1986) and Stambaugh (1985, 1999), which affects the classical testing

procedure for stock returns predictability. In addition, our tests are model-free and robust against

heteroskedasticity of unknown form. The tests are point-optimal tests, which are useful in a num-

ber of ways and are particularly attractive when testing one financial theory against another. An

important feature of these tests stems from the fact that they trace out the power envelope, i.e.

the maximum achievable power for a given testing problem, which may be used as a benchmark

against which other testing procedures can be evaluated. Finally, our tests may be inverted to

build confidence regions for the parameters of the regression function.

As point-optimal tests maximize the power at a nominated point in the alternative hypothesis

parameter space, a practical problem concerns finding an alternative at which the power curve of
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the POS-based test is close to that of the power envelope. Following Dufour and Torrès (1998),

Dufour and Jasiak (2001) and Dufour and Taamouti (2010a), we propose an adaptive approach

based on the split-sample technique to choose the alternative hypothesis. This procedure consists

of splitting the sample into two independent sub-samples, where the first part is used to estimate

the alternative hypothesis and the second part to compute the POS-based test statistic [see Dufour

and Iglesias (2008)]. In a simulations exercise, Dufour and Taamouti (2010a) find that using the

first 10% of the sample to estimate the alternative and the rest to compute the test statistic,

achieves a power that traces out the power envelope. We present a Monte Carlo study to assess

the performance of the proposed “quasi”-POS-based tests by comparing its size and power to

certain existing tests that are intended to be robust against heteroskedasticity. We show the

superiority of our procedures in the presence of nearly integrated regressors and under different

distributional assumptions and forms of heteroskedasticity..

The plan of the paper is as follows: Section 1.2 provides exact POS-based tests in the context

of linear and non-linear predictive regressions. Section 1.3 discusses the selection approach for

the alternative hypothesis to compute the POS-based test statistic. Section 1.4, discusses the

construction of POS-based confidence regions using the projection techniques. Section 1.5, presents

a Monte Carlo study to assess the performance of the POS-based tests by comparing their size

and power to those of certain popular tests. Section 1.6 is devoted to an empirical application,

and finally, the paper is concluded in Section 1.7. Proofs are presented in Appendix 1.8.

1.2 POS tests in linear and non-linear regression models

In this Section, we follow the structure of Dufour and Taamouti (2010a) to derive POS-based

tests in the context of linear and non-linear regression models. However, in our study stochastic

regressors may as well be considered. First, we divert our attention to the problem of testing

whether the conditional median of a vector of observations is zero against a linear regression

alternative. This is is later generalized to test whether the coefficients of a possibly non-linear

median regression function have a given value against an alternative non-linear median regression.

Although the former problem is a special case of the latter, for the simplicity of exposition the
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linear regression model is considered first.

1.2.1 Testing independence (zero coefficients) hypothesis in linear reg-

ressions

Consider a stochastic process Z = {Zt = (yt, x
′
t) : Ω → R(k+1) : t = 0, 1, · · · } defined on a

probability space (Ω,F , P ). Let {Zt,Ft}t=0,1,··· be an adapted stochastic sequence, such that Ft is

a σ-field in Ω, Fs ⊆ Ft for s < t, σ(Z0, · · · , Zt) ⊂ Ft, where σ(Z0, · · · , Zt) is the σ-field generated

by Z0, · · · , Zt. Suppose that yt can linearly be explained by a vector variable xt

yt = β′xt−1 + εt, t = 1, ..., n, (1.1)

where xt−1 is an (k+1)×1 vector of stochastic explanatory variables, say xt−1 = [1, x1,t−1, ..., xk,t−1]′,

β ∈ R(k+1) is an unknown vector of parameters with β = [β0, β1, ..., βk]
′ and

εt | X ∼ Ft(. | X)

where Ft(. | X) is an unknown conditional distribution function and X=[x0, · · · , xn−1]′ is an

n× (k + 1) matrix.

In the context of general forms of (non-linear) dependence, an assumption that is commonly made

on the error terms {εt, t = 1 · · · , n} is that the error process is a martingale difference sequence

(MDS hereafter) with respect to Ft = σ(Z0, · · · , Zt) for t = 0, 1, · · · , - i.e. E{εt | Ft−1} = 0,

∀t ≥ 1. As the latter assumption relies on the first moment of the residuals, we follow Coudin and

Dufour (2009) by departing from this assumption and considering the median as an alternative

measure of central tendency. This implies imposing a median-based analogue of the MDS on the

error process - namely we suppose that εt is a strict conditional mediangale

P [εt > 0 | εt−1, X] = P [εt < 0 | εt−1, X] =
1

2
, (1.2)
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with

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}, for t ≥ 2

Note (1.2) entails that εt | X has no mass at zero for all t, which is only true if εt | X is a

continuous variable. Model (1.1) in conjunction with assumption (1.2) allows the error terms to

possess asymmetric, heteroskedastic and serially (non-linear) dependent distributions, so long as

the conditional medians are zero. Assumption 1.2 allows for many dependent schemes, such as

those of the form ε1 = σ1(x0, · · · , xt−2)ε1, εt = σt(x0, · · · , xt−2, ε1, · · · , εt−1)εt, t = 2, · · · , n, where

ε1, · · · , εn are independent with a zero median. In time-series context this includes models such as

ARCH, GARCH or stochastic volatility with non-Gaussian errors. Furthermore, in the mediangale

framework the disturbances need not be second order stationary.

We wish to test the null hypothesis

H0 : β = 0 (1.3)

against the alternative H1

H1 : β = β1. (1.4)

We define the following vector of signs

U(n) = (s(y1), ..., s(yn))′,

where, for 1 ≤ t ≤ n,

s(yt) =

 1, if yt ≥ 0

0, if yt < 0
.

The test is Neyman-Pearson type test based on signs [see Lehmann and Romano (2006)] which

maximize the power function under the constraint P [reject H0 | H0] ≤ α. The idea is to build

point-optimal sign-based tests to test the null hypothesis (1.3) against the alternative hypothesis

(1.4). To do so, we first define the likelihood function of sample in terms of signs s(y1), ..., s(yn)
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conditional on X

L (U(n), β) = P [s(y1) = s1, ..., s(yn) = sn | X] =
n∏
t=1

P [s(yt) = st | S
¯t−1, X] ,

with

S
¯0 = {∅} , S

¯t−1 = {s(y1) = s1, ..., s(yt−1) = st−1} , for t ≥ 2,

and

P [s(y1) = s1 | S
¯0, X] = P [s(y1) = s1 | X] ,

where each st, for 1 ≤ t ≤ n, takes two possible values 0 and 1.

As the error terms satisfy the strict conditional mediangale assumption (1.2), the distribution of

the signs s(ε1), · · · , s(εn), and in turn s(y1), · · · , s(yn) under the null hypothesis of orthogonality

is specified and are mutually independent [see Coudin and Dufour (2009)].

Theorem 1 Under model (1.1) and assumption (1.2), the variables s(ε1), · · · , s(εn) are i.i.d con-

ditional on X, according to the distribution

P [s(ε1) = 1 | X] = P [s(ε1) = 0 | X] =
1

2
, t = 1, · · · , n

This result holds true iff for any combination of t = 1, · · · , n there is a permutation π : i→ j such

that the mediangale assumption holds for j. Then the signs s(ε1), · · · , s(εn) are i.i.d.

Proof: See Appendix.

A sign-based test for testing the null hypothesis (1.3) against the alternative hypothesis (1.4) is

given by the following proposition.

Proposition 1 Under assumptions (1.2) and (1.1), let H0 and H1 be defined by (1.3) - (1.4),

SLn(β1) =
n∑
t=1

at(β1)s(yt),

where, for t = 1, ..., n,

at(β1) = ln

{
P [yt ≥ 0 | S

¯ t−1, X]

P [yt < 0 | S
¯ t−1, X]

}
, (1.5)
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and suppose the constant c1(β1) satisfies P [
∑n

t=1 at(β1)s(yt) > c1(β1)] = α under H0, with 0 <

α < 1. Then the test that rejects H0 when

SLn(β1) > c1(β1) (1.6)

is most powerful for testing H0 against H1 among level-α tests based on the signs
(
s(y1), ..., s(yn)

)′
.

Proof: See Appendix.

Notice that the calculation of the test statistic SLn(β1) depends on the weights at(β1), which

in turn depends on the calculation of the conditional probabilities P [yt ≥ 0 | S
¯t−1, X] and

P [yt < 0 | S
¯t−1, X] . The latter terms are not easy to compute and involves the distribution of

the joint process of signs
(
s(y1), ..., s(yn)

)′
conditional on X, which is unknown. An alternative

way to compute the terms P [yt ≥ 0 | S
¯t−1, X] and P [yt < 0 | S

¯t−1, X] is to use simulations, how-

ever again this will be time consuming as it requires to simulate the joint distribution of the

process of signs
(
s(y1), ..., s(yn)

)′
, which depends on the sample size n. For all these reasons and

to make the test statistic SLn(β1) feasible, we make the following assumption.

Assumption A1: Let {yt, t = 0, 1, · · · } follow a Markov process of order one. Then under the

alternative hypothesis, the sign process {s(yt)}∞t=0 follows a Markov process of the same order.

Proof: See Appendix.

As the mediangale assumption allows for non-linear serial dependence, testing assumption A1 by

considering linear correlation is inappropriate. One approach involves fitting copula models, which

provides the means of separating the marginal distributions of the process from their respective

dependence structure. The latter stems from Sklar (1959), which decomposes the joint conditional

distribution function of Y = [y1, · · · , yn]′ conditional on X as

Y | X ∼ H(. | X) = C (F1(. | X), · · · , Fn(. | X)) ,

where Ft(. | X) for t = 1, · · · , n are uniformly distributed marginals - i.e. Ft(. | X) := ut ∼

U [0, 1]. Note that the elements of Y are uncorrelated, yet exhibit serial dependence which is

captured by the copula C(.). The issue with specifying a copula for Y is that the no serial
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correlation assumption implies an identity correlation matrix. As a result, in the literature, the

means of allowing for non-linear serial dependence for processes which are linearly unrelated is

often accompanied by assuming that Y conditional on X is distributed as a multivariate Student’s

t distribution - i.e. Y | X ∼ tν(0, I), where I is an identity matrix. When I is imposed on the

multivariate Student’s t distribution, the conditional joint distribution of Y does not factorize

into the product of its marginals. Alternatively, we may consider the “jointly symmetric”copulae

proposed by Oh and Patton (2016), where the latter can be constructed with any given (possibly

asymmetric) copula family. In addition, when they are combined with symmetric marginals, they

ensure an identity correlation matrix. A “jointly symmetric”copula is defined as follows

Definition 1 The n dimensional copula CJS, is jointly symmetric:

CJS (u1, · · · , un) =
1

2n

2∑
k1=0

· · ·
2∑

kn=0

(−1)R C(ũ1, · · · , ũi, · · · , ũn)

where R =
n∑
i=1

1{ki = 2}, and ũi =


1, ki = 0

ui, ki = 1

1− ui, ki = 2

The general idea is that the average of mirror image rotations of a possibly asymmetric copula

along each axis generates a jointly symmetric copula [see Oh and Patton (2016). For instance, the

marginals can be assumed to possess standard normal distributions, while the nonlinear depen-

dency is modeled using the jointly symmetric copulae. The Markovian assumption can then be

tested by considering in turn, the independent, bivariate, trivariate and higher order multivariate

copulae (or multivariate Student’s t distributions of varying orders), where the model with the

lowest Akaike Information Criterion (AIC hereafter) is then chosen. However, in an extensive

simulation analysis, we observe that the order of the Markovianity does not have a significant

impact on the power of the test, and as such the assumption that under the alternative hypothesis

{yt : t = 1, · · · , n} and in turn {s(yt) : t = 1, · · · , n} follow a Markov process of order one is

sufficient for testing the null hypothesis of orthogonality.
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Now, under assumption A1, the probability terms P [yt ≥ 0 | S
¯t−1, X] and P [yt < 0 | S

¯t−1, X] in

the weight function at(β1) can be written as follows:


P [yt ≥ 0 | S

¯t−1, X] = P [yt ≥ 0 | yt−1 ≥ 0, X]s(yt−1) P [yt ≥ 0 | yt−1 < 0, X]1−s(yt−1) ,

P [yt < 0 | S
¯t−1, X] = P [yt < 0 | yt−1 ≥ 0, X]s(yt−1) P [yt < 0 | yt−1 < 0, X]1−s(yt−1) .

The use of the above expressions of P [yt ≥ 0 | S
¯t−1, X] and P [yt < 0 | S

¯t−1, X] simplifies a lot the

calculation of the test statistic SLn(β1). We have the following result.

Corollary 1 Under assumptions (1.2) and (1.1), let H0 and H1 be defined by (1.3) - (1.4),

S̃Ln(β1) =
n∑
t=1

ãt(β1)s(yt) +
n∑
t=1

b̃t(β1)s(yt)s(yt−1),

where

ã1(β1) = ln

{
1− P [ε1 < −β′1x0 | X]

P
[
ε1 < −β

′
1x0 | X

] }
, b̃1(β1) = 0

and for t = 2, ..., n,

ãt(β1) = ln


1−P [εt<−β

′
1xt−1, εt−1<−β

′
1xt−2|X]

P[εt−1<−β′1xt−2|X]
P[εt<−β′1xt−1, εt−1<−β′1xt−2|X]

P[εt−1<−β′1xt−2|X]



b̃t(β1) = ln


1−
(

P [εt<−β
′
1xt−1|X]

1−P[εt−1<−β′1xt−2|X]
−P [ εt−1<−β

′
1xt−2, εt<−β

′
1xt−1|X]

1−P[εt−1<−β′1xt−2|X]

)
P[εt<−β′1xt−1|X]

1−P[εt−1<−β′1xt−2|X]
−
P[ εt−1<−β′1xt−2, εt<−β′1xt−1|X]

1−P[εt−1<−β′1xt−2|X]

− ln


1−P [εt<−β

′
1xt−1, εt−1<−β

′
1xt−2|X]

P[εt−1<−β′1xt−2|X]
P[εt<−β′1xt−1, εt−1<−β′1xt−2|X]

P[εt−1<−β′1xt−2|X]


and suppose the constant c̃1(β1) satisfies P

[
n∑
t=1

ãt(β1) s(yt) +
n∑
t=1

b̃t(β1) s(yt)s(yt−1) > c̃1(β1)

]
= α

under H0, with 0 < α < 1. Then the test that rejects H0 when

S̃Ln(β1) > c̃1(β1) (1.7)

is most powerful for testing H0 against H1 among level-α tests based on the signs
(
s(y1), ..., s(yn)

)′
.
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Proof: See Appendix.

Now, the calculation of the test statistic S̃Ln(β1) depends on the univariate and bivariate distri-

butions P [εt < · | X] and P [ εt−1 < ·, εt < · | X],

Observe that under the null hypothesis, the signs s(y1), ..., s(yn) are i.i.d. according to a Bernoulli

Bi(1, 0.5). Thus, the distribution of the test statistic S̃Ln(β1) only depends on the known weights

ãt(β1) and b̃t(β1) and does not involve any nuisance parameter under the null hypothesis. Non-

parametric assumption (1.2) implies that tests based on S̃Ln(β1), such as the test given by (1.7),

are distribution-free and robust against heteroskedasticity of unknown form, and thus, a nonpara-

metric pivotal function. Under the alternative hypothesis, however, the power function of the test

depends on the form of the distributions P [εt < . | X] and P [ εt−1 < ·, εt < · | X].

A special case is where ε1, ε2, · · · , εn−1, εn are distributed according to N(0, 1). As suggested

before, since the form of the serial dependence of the errors is non-linear, we may calculate the

bivariate probabilities using “jointly-symmetric”copulae by considering the Archimedean Frank,

Clayton or Gumbel as the copula family [see Joe (2014)]. Alternatively, we may evaluate the

bivariate probabilities P [ εt−1 < ·, εt < · | X] using a multivariate Student’s t distribution by

imposing the identity matrix I. Then the optimal test statistic takes the form

S̃Ln(β1) =
n∑
t=1

ãt(β1)s(yt) +
n∑
t=1

b̃t(β1)s(yt)s(yt−1),

where

ã1(β1) = ln

{
Φ(β′1x0)

1− Φ(β′1x0)

}
, b̃1(β1) = 0

and for t = 2, ..., n,

ãt(β1) = ln

1−C
JS(Φ(−β′1xt−1),Φ(−β′1xt−2))

1−Φ(β′1xt−2)
CJS(Φ(−β′1xt−1),Φ(−β′1xt−2))

1−Φ(β′1xt−2)



b̃t(β1) = ln


1−
(

1−Φ(β′1xt−1)

Φ(β′1xt−2)
−C

JS(Φ(−β′1xt−1),Φ(−β′1xt−2))

Φ(β′1xt−2)

)
1−Φ(β′1xt−1)

Φ(β′1xt−2)
−
CJS(Φ(−β′1xt−1),Φ(−β′1xt−2))

Φ(β′1xt−2)

− ln

1−C
JS(Φ(−β′1xt−1),Φ(−β′1xt−2))

1−Φ(β′1xt−2)
CJS(Φ(−β′1xt−1),Φ(−β′1xt−2))

1−Φ(β′1xt−2)
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where Φ(.) is the standard normal distribution function and CJS(u1, u2) is the bivariate “jointly

symmetric”copula with uniformly distributed margins.

The distribution of S̃Ln(β1), can be simulated under the null hypothesis and the relevant critical

values can be evaluated to any degree of precision with a sufficient number of replications. Since

the test statistic S̃Ln(β1) is a continuous random variable, its quantiles are easy to compute. To

simulate the distribution of S̃Ln(β1), the following algorithm is implemented:

1. Compute the test statistic S̃Ln(β1) based on the observed data, say S̃L0
n(β1);

2. Generate a sample {yt}nt=1 of length n under the null H0 and compute S̃Ljn(β1) using that

generated sample;

3. Choose B such that α(B + 1) is an integer and repeat steps 1-2 B times;

4. Computer the (1− α)% quantile, say c̃1(β1), of the sequence {S̃Ljn(β1)}Bj=1;

5. Reject the null hypothesis at level α if S̃L0
n(β1) ≥ c(β1).

1.2.2 Testing general full coefficient hypotheses in non-linear regres-

sions

We now consider a non-linear regression model

yt = f(xt−1, β) + εt, t = 1, ..., n, (1.8)

where xt−1 is an observable (k + 1) × 1 vector of stochastic explanatory variables, such that

xt−1 = [1, x1,t−1, ..., xk,t−1]′, f( · ) is a scalar function, β ∈ R(k+1) is an unknown vector of parameters

and

εt | X ∼ Ft(. | X)

where as before Ft(. | X) is a distribution function and X = [x0, ..., xn−1] is an n× (k+ 1) matrix.

Once again, we suppose that the error terms process {εt, t = 1, 2, · · · } is a strict conditional

mediangale, such that

12



P [εt > 0 | εt−1, X] = P [εt < 0 | εt−1, X] =
1

2
, (1.9)

with

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}, for t ≥ 2

and where (2.20) entails that εt | X has no mass at zero, i.e. P [εt = 0 | X]=0 for all t. We do

not require that the parameter vector β be identified. We consider the problem of testing the null

hypothesis

H(β0) : β = β0 (1.10)

against the alternative hypothesis

H(β1) : β = β1. (1.11)

A test for H(β0) against H(β1) can be constructed as in Section 1.2.1. First, we note that model

(1.8) is equivalent to the transformed model

ỹt = g(xt−1, β, β0) + εt,

where ỹt = yt − f(xt−1, β0) and g(xt−1, β, β0) = f(xt−1, β) − f(xt−1, β0). Thus, testing H(β0)

against H(β1) is equivalent to testing

H̄0 : g(xt−1, β, β0) = 0, for t = 1, ..., n,

against

H̄1 : g(xt−1, β, β0) = f(xt, β1)− f(xt, β0), for t = 1, ..., n.

For Ũ(n) = (s(ỹ1), ..., s(ỹn))′, where, for 1 ≤ t ≤ n,

s(ỹt) =

 1, if ỹt ≥ 0

0, if ỹt < 0
,
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the likelihood function of new random sample {s(ỹ)t}nt=1 conditional on X is given by:

L
(
Ũ(n), β

)
= P [s(ỹ1) = s̃1, ..., s(ỹn) = s̃n | X] =

n∏
t=1

P
[
s(ỹt) = s̃t | S̃t−1, X

]
,

with

S̃0 = {∅} , S̃t−1 = {s(ỹ1) = s̃1, ..., s(ỹt−1) = s̃t−1} , for t ≥ 2,

and

P
[
s(ỹ1) = s̃1 | S̃0, X

]
= P [s(ỹ1) = s̃1 | X] ,

where each s̃t, for 1 ≤ t ≤ n, takes two possible values 0 and 1. Thus, we can use the result

of proposition 1 to derive a sign-based test for the null hypothesis H(β0) against the alternative

hypothesis H(β1), which leads to the following proposition:

Proposition 2 Under assumptions (1.2) and (1.8),let H(β0) and H(β1) be defined by (1.10) -

(1.11),

SNn(β0|β1) =
n∑
t=1

at(β0|β1)s (yt − f(xt−1, β0))

where, for t = 1, ..., n,

at(β0|β1) = ln

P
[
ỹt ≥ 0 | S̃t−1, X

]
P
[
ỹt < 0 | S̃t−1, X

]
 ,

and suppose the constant c1(β0, β1) satisfies P

[
n∑
t=1

at(β0|β1) s (yt − f(xt, β0)) > c1(β0, β1)

]
= α

under H(β0), with 0 < α < 1. Then the test that rejects H(β0) when

SNn(β0|β1) > c1(β0, β1)

is most powerful for testing H(β0) against H(β1) among level-α tests based on the signs
(
s(ỹ1), ..., s(ỹn)

)′
.

As in Section 1.2.1, to make the calculation of the weight function at(β0|β1) that depends on the

terms P [ỹt ≥ 0 | S
¯t−1, X] and P [ỹt < 0 | S

¯t−1, X] feasible, we consider the following assumption.

Assumption A2: Let {ỹt, t = 0, 1, · · · } follow a Markov process of order one. Then under the
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alternative hypothesis, the sign process {s(ỹt)}∞t=0 is a Markov process of the same order.

Under Assumption A2, the terms P
[
ỹt ≥ 0 | S̃t−1, X

]
and P

[
ỹt < 0 | S̃t−1, X

]
simplify and can

be expressed as follows:


P
[
ỹt ≥ 0 | S̃t−1, X

]
= P [ỹt ≥ 0 | ỹt−1 ≥ 0, X]s(ỹt−1) P [ỹt ≥ 0 | ỹt−1 < 0, X]1−s(ỹt−1) ,

P
[
ỹt < 0 | S̃t−1, X

]
= P [ỹt < 0 | ỹt−1 ≥ 0, X]s(ỹt−1) P [ỹt < 0 | ỹt−1 < 0, X]1−s(ỹt−1) .

The use of the new expressions of the probabilities P
[
ỹt ≥ 0 | S̃t−1, X

]
and P

[
ỹt < 0 | S̃t−1, X

]
simplifies the calculation of the test statistic SNn(β0|β1). We have the following results:

Corollary 2 Under assumptions (1.2) and (1.1), let H(β0) and H(β1) be defined by (1.10) -

(1.11),

ŜNn(β0|β1) =
n∑
t=1

ãt(β0|β1)s(yt − f(xt−1, β0)) +
n∑
t=1

b̃t(β1) s(yt − f(xt−1, β0))s(yt−1 − f(xt−2, β0)),

where

ã1(β0|β1) = ln

{
1− P [ε1 < f(x0, β0)− f(x0, β1) | X]

P [ε1 < f(x0, β0)− f(x0, β1) | X]

}
, b̃1(β0|β1) = 0

and for t = 2, ..., n,

ãt(β0|β1) = ln

{
1− P [εt<f(xt−1,β0)−f(xt−1,β1), εt−1<f(xt−2,β0)−f(xt−2,β1)|X]

P [εt−1<f(xt−2,β0)−f(xt−2,β1)|X]

P [εt<f(xt−1,β0)−f(xt−1,β1), εt−1<f(xt−2,β0)−f(xt−2,β1)|X]
P [εt−1<f(xt−2,β0)−f(xt−2,β1)|X]

}

b̃t(β0|β1) = ln

{
1−
(

P [εt<f(xt−1,β0)−f(xt−1,β1)|X]
1−P [εt−1<f(xt−2,β0)−f(xt−2,β1)|X]

−P [ εt−1<f(xt−2,β0)−f(xt−2,β1), εt<f(xt−1,β0)−f(xt−1,β1)|X]
1−P [εt−1<f(xt−2,β0)−f(xt−2,β1)|X]

)
P [εt<f(xt−1,β0)−f(xt−1,β1)|X]

1−P [εt−1<f(xt−2,β0)−f(xt−2,β1)|X]
−P [ εt−1<f(xt−2,β0)−f(xt−2,β1), εt<f(xt−1,β0)−f(xt−1,β1)|X]

1−P [εt−1<f(xt−2,β0)−f(xt−2,β1)|X]

}

− ln

{
1−P [εt<f(xt−1,β0)−f(xt−1,β1), εt−1<f(xt−2,β0)−f(xt−2,β1)|X]

P [εt−1<f(xt−2,β0)−f(xt−2,β1)|X]
P [εt<f(xt−1,β0)−f(xt−1,β1), εt−1<f(xt−2,β0)−f(xt−2,β1)|X]

P [εt−1<f(xt−2,β0)−f(xt−2,β1)|X]

}

and suppose the constant c̃1(β0, β1) satisfies P
[
ŜNn(β0|β1) > c̃1(β0, β1)

]
= α under H(β0), with
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0 < α < 1. Then the test that rejects H(β0) when

ŜNn(β0|β1) > c̃1(β0, β1)

is most powerful for testing H(β0) against H(β1) among level-α tests based on the signs
(
s(ỹ1), ..., s(ỹn)

)′
.

If we consider a linear function f(x′t−1, β) = β′xt−1, as before we may suppose that εt for t =

1, · · · , n follow N(0, 1), which allows us to evaluate the bivariate probabilities by utilizing the

“jointly symmetric”copula or the multivariate Student’s t distribution with the identity matrix

imposed. Then the test statistic for the null hypothesis H(β0) against the alternative H(β1) is

given by

ŜNn(β0|β1) =
n∑
t=1

ãt(β0|β1)s(yt − β′0xt−1) +
n∑
t=1

b̃t(β1)s(yt − β′0xt−1)s(yt−1 − β′0xt−2),

where

ã1(β0|β1) = ln

{
Φ
(
(β1 − β0)′ x0

)
1− Φ

(
(β1 − β0)′ x0

)} , b̃1(β0|β1) = 0,

and for t = 2, ..., n,

ãt(β0|β1) = ln

{
1−C

JS(Φ((β0−β1)′xt−1),Φ((β0−β1)′xt−2))

1−Φ((β1−β0)′xt−2)
CJS(Φ((β0−β1)′xt−1),Φ((β0−β1)′xt−2))

1−Φ((β1−β0)′xt−2)

}
,

b̃t(β0|β1) = ln

1−
(

1−Φ((β1−β0)′xt−1)
Φ((β1−β0)′xt−2)

−C
JS(Φ((β0−β1)′xt−1),Φ((β0−β1)′xt−2))

Φ((β1−β0)′xt−2)

)
1−Φ((β1−β0)′xt−1)

Φ((β1−β0)′xt−2)
−C

JS(Φ((β0−β1)′xt−1),Φ((β0−β1)′xt−2))

Φ((β1−β0)′xt−2)



− ln

{
1−C

JS(Φ((β0−β1)′xt−1),Φ((β0−β1)′xt−2))

1−Φ((β1−β0)′xt−2)
CJS(Φ((β0−β1)′xt−1),Φ((β0−β1)′xt−2))

1−Φ((β1−β0)′xt−2)

,

}

where Φ(.) is the standard normal distribution function and CJS(u1, u2) is the “jointly-symmetric”bivariate

copula with uniformly distributed marginals. As in Section 1.2.1, the test statistic ŜNn(β0|β1)

depends on a particular alternative hypothesis β1. In practice, the latter is unknown, which makes

the proposed POS test infeasible. However, in Section 1.3 we will suggest an adaptive approach
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[see Dufour and Taamouti (2010a)] which can be used to choose an optimal alternative hypothesis

at which the power of the test is maximized.

1.3 Choice of the optimal alternative hypothesis

Point-optimal tests depend on the alternative β = β1, which in practice is unknown. Formally,

the test statistic ŜNn(β0|β1) for testing the linear full-coefficient hypothesis (1.10) is a function

of β1

ŜNn(β0|β1) =
n∑
t=1

ãt(β0|β1)s(yt − x′t−1β0) +
n∑
t=1

b̃t(β1)s(yt − x′t−1β0)s(yt−1 − x′t−2β0),

which in turn implies that its power function, say Π(β0, β1), is also a function of β1. Therefore,

the choice of the alternative β1 has a direct impact on its power function. In other words,

Π(β0, β1) = P [ŜNn(β0|β1) > c̃1(β0, β1) | H(β1)],

where c̃1(β0, β1) satisfies the constraint

P [ŜNn(β0|β1) > c̃1(β0, β1)|H(β0)] ≤ α.

Our objective is to choose the value of β1 at which the power of the POS-based test statistic is

maximized and is close to that of the power envelope. This can be accomplished in a number

of ways. Dufour and Taamouti (2010a) suggest an adaptive approach based on the split-sample

technique [see Dufour and Jasiak (2001)] for estimating the optimal alternative to make size

control easier and maximize the power. For a review of adaptive approach for parametric tests

with non-standard distributions see Dufour and Taamouti (2003) and Dufour et al. (2008).

This approach consists of splitting the sample into two independent parts, where the alternative

β1 is estimated using the first part, while the POS test-statistic ŜNn(β0|β1) is calculated using

the second part of the sample, along with the alternative β1 estimated using the first part. By

adopting this technique, size control is easier and the power function of the POS-test traces out
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the power envelope. Let n = n1 + n2, y = (y′(1), y
′
(2))
′, X = (X ′(1), X

′
(2))
′, and ε = (ε′(1), ε

′
(2))
′, where

y(i), X(i) and u(i) for i ∈ {1, 2} each have ni rows. The first n1 observations of y and X can thus

be denoted by y(1) and X(1), which are used for estimating the alternative hypothesis β1 with the

OLS estimator:

β̂(1) = (X ′(1)X(1))
−1X ′(1)y(1).

Alternatively, in the case of extreme outliers other robust estimators that are less sensitive to

outliers can be utilized [see Maronna et al. (2019) for a review of robust estimators]. Since β̂(1) is

independent of X(2), the last n2 observations can be used to calculate the test statistic and obtain

a valid POS test

ŜNn(β0|β(1)) =
n∑

t=n1+1

ãt(β0|β(1))s(yt − x′t−1β0) +
n∑

t=n1+1

b̃t(β(1))s(yt − x′t−1β0)s(yt−1 − x′t−2β0),

Different choices for n1 and n2 is possible. However, as Dufour and Taamouti (2010a) have noted,

the number of observations retained for the first and the second sub-samples has a direct impact

on the power of the test, and a more powerful test is obtained when a relatively small number of

observations is used for estimating the alternative and more observations are saved for calculating

the test statistic. Having conducted a simulation study to compare the power-curves of split-

sample-based POS tests to the power envelope, they find that using approximately 10% of the

sample to estimate the alternative yields a power which is very close to that of the power envelope.

Therefore, we follow Dufour and Taamouti (2010a) by using the first 10% of the sample to estimate

the alternative and the remaining 90% to calculate the test statistic.

1.4 POS confidence regions

In this Section, we follow Dufour and Taamouti (2010a) and Coudin and Dufour (2009) to discuss

the process of building confidence regions at a given significance level α, say Cβ(α), for a vector

(sub-vector) of the unknown parameters β using the proposed POS test. We consider again the

linear regression (1.8) and suppose we wish to test the null hypothesis (1.10) against the alternative
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hypothesis (1.11). Formally, the idea involves finding all the values of β0 ∈ R(k+1) such that

ŜNn(β0| β1) =
n∑
t=1

ãt(β0 | β1)s(yt − β′0xt−1) +
n∑
t=1

b̃t(β1)s(yt − β′0xt−1)s(yt−1 − β′0xt−2) < c̃1(β0, β1)

(1.12)

where the critical value c̃1(β0, β1) satisfies the constraint

P
[
ŜNn(β0| β1) > c̃1(β0, β1)|β = β0

]
≤ α

Thus, the confidence region Cβ(α) of the vector of parameters β is defined as

Cβ(α) =
{
β0 : ŜNn(β0| β1) < c̃1(β0, β1)|P [ŜNn(β0| β1) > c̃1(β0, β1)|β = β0] ≤ α

}
.

Given the confidence region Cβ(α), confidence intervals for the components of vector β can be

obtained using the projection techniques. Confidence sets in the form of transformations T of

β ∈ Rm, T (Cβ(α)) for m ≤ (k + 1) can easily be found using the said techniques. Since, for any

set Cβ(α)

β ∈ Cβ(α) =⇒ T (β) ∈ T (Cβ(α)), (1.13)

we have

P [β ∈ Cβ(α)] ≥ 1− α =⇒ P [T (β) ∈ T (Cβ(α))] ≥ 1− α, (1.14)

where

T (Cβ(α)) = {δ ∈ Rm : ∃β ∈ Cβ(α), T (β) = δ}.

From (1.13) and (1.14), it is evident that the set T (Cβ(α)) is a conservative confidence set for

T (β) with level 1− α. If T (β) is a scalar, then we have

P [inf{T (β0), for β0 ∈ Cβ(α)} ≤ T (β) ≤ sup{T (β0), for β0 ∈ Cβ(α)}] > 1− α.

To obtain valid conservative confidence intervals for the individual component βj in (1.8) un-

der assumption (1.2), we follow Coudin and Dufour (2009) by implementing a global numerical
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optimization search algorithm to solve the problem

min
β∈R(k+1)

βj s.c. ŜNn(β0 | β1) < c̃1(β0, β1), max
β∈R(k+1)

βj s.c. ŜNn(β0 | β1) < c̃1(β0, β1) (1.15)

where the critical value c(β0, β1) at level α, is computed using B replications of the statistic

ŜN
(i)

n (β0 | β1) under the null hypothesis and finding its (1 − α) quantile. Using the projection

technique, multiple tests maintain control of the overall level when performed on an arbitrary

number of hypotheses.

1.4.1 Numerical illustration

Following Coudin and Dufour (2009), we illustrate the projection technique by generating a process

with sample size n = 500, such that

yt = β0 + β1x1,t−1 + β2x2,t−1 + εt
i.i.d∼

 N(0, 1) with probability 0.95

N(0, 1002) with probability 0.05

where β0 = β1 = β2 = 0 and

x1,t = θ1x1,t−1 + u1,t

x2,t = θ2x2,t−1 + u2,t

with θ1 = θ2 = 0.9 The initial values of x1 and x2 are respectively given by: x1,0 = u1,0√
1−θ2

1

and

x2,0 = u2,0√
1−θ2

2

, and u1,t and u2,t are generated from N(0, 1).

The exact inference procedure is conducted with B = 1, 000 replications of the test statistic under

the null hypothesis. As β is a vector in three-dimensional space, the confidence region and the

projections can be illustrated graphically. The tests of H0(β∗) : β = β∗ are performed on a grid

for β∗ = (β∗0 , β
∗
1 , β

∗
2). Due to the curse of dimensionality encountered in the process of creating a

grid for the parameters, the simulated annealing optimization algorithm is initially used to solve

problem (1.15) for each parameter βi, to obtain a realistic size dimension of the grid [see Goffe
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et al. (1994) for a review of the simulated annealing algorithm].

Figure 1.1: 95% confidence region for the unknown vector β = (β0, β1, β2) obtained by searching

a three-dimensional grid β∗ using the 10% SS-POS test.

Note: The shaded regions on the β0 − β1 and β2 − β1 planes are the shadows casted by the

three-dimensional confidence region, which simplify the visual identification of the 95% confidence

intervals for each parameter βi.

The optimizations were performed using MATLAB software on a high-performance computing

(HPC) cluster, by utilizing six nodes each equipped with Intel(R) Xeon(R) 16-core processors

(2.40GHz). The simulated annealing algorithm’s speed of adjustment was set to 0.25, with a

temperature reduction factor of 75%, an initial temperature of 50 and a convergence criteria of

0.01. All algorithms converged in less than an hour. Once the global maximum and minimum

for each parameter βi were obtained, the grid was constructed by the Cartesian product of the

linearly spaced distance between the βi’s maxima and minima.
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Table 1.1: Comparison of the 95% confidence intervals obtained for the unknown parameters β0,

β1 and β2 using the 10% SS-POS-test, with those achieved using the T-test and T-test based on

White (1980) variance correction.

OLS White 10% SS-POS

β0 95% CI [-0.01, -0.00] [−0.01, 0.00] [−0.37, 0.55]

β1 95% CI [-1.04, -0.60] [-1.09, -0.56] [−0.05, 0.07]

β2 95% CI [0.47, 0.67] [0.45, 0.69] [−0.12, 0.16]

Note: The confidence intervals in bold do not contain the value of zero and imply significance at

the 5% level.

It is evident that the 10% split-sample POS-based test outperforms the T-test and the T-test based

on white (1980) variance correction test, as the former correctly fails to reject the null hypothesis

of orthogonality at the 5% level, whereas the latter two tests reject the null hypothesis in favor of

the alternative for almost all parameters.

1.5 Monte Carlo study

In this Section, we provide simulation results that illustrate the performance of the POS-based tests

proposed in the previous Sections. We have limited our results to two groups of data generating

processes (DGPs) which correspond to different symmetric and asymmetric distributions and

different forms of heteroskedasticity.

1.5.1 Simulation setup

We assess the performance of the proposed 10% SS-POS tests in terms of size and power, by

considering various DGPs with symmetric and asymmetric distributions and different forms of

heteroskedasticity. The DGPs under consideration are supposed to mimic different scenarios that

are often encountered in practical settings within the domains of predictive regressions. The

performance of the 10% SS-POS tests is compared to that of a few other tests, by considering the
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following linear predictive regression model

yt = βxt−1 + εt (1.16)

where β is an unknown parameter. Furthermore, we follow Mankiw and Shapiro (1986) by assum-

ing that xt is a stationary AR(1) process

xt = θxt−1 + ut (1.17)

such that ut are mutually independent, and each ut is independent of xt−k for k ≥ 1. Moreover,

the disturbances (εt, ut) are distributed as bivariate normal, with the contemporaneous covariance

matrix

Σεu =

 1 σεu

σεu σ2
u


Therefore, there is feedback from ut to xt through εt, which implies that corr(εt, xt+k) 6= 0 for

k ≥ 0. Thus, as the disturbance vector [ε1, · · · , εn]′ is not independent of the regressor vector

[x0, · · · , xn−1]′, the OLS estimator is biased in finite-samples and the T-statistic has a non-standard

distribution. Mankiw and Shapiro (1986) perform an extensive simulations exercise by considering

different values of the correlation between ut and εt (say ρ) and find that in small samples, as θ

and ρ approach unity, the T-test using asymptotic critical values leads to oversized tests; however,

this size distortion improves as n→∞.

To compare the performance of certain parametric and non-parametric tests to that of the POS-

based tests, the data is generated from model (1.16), with the stationary process xt specified as

(1.17) and by further setting

ut = ρεt + wt
√

1− ρ2 (1.18)

for ρ = 0, 0.1, 0.5, 0.9, where εt and wt are assumed to be independent. The initial value of x is

given by: x0 = w0√
1−θ2 . Further, wt are generated from N (0, 1) and we assign θ = 0.9.

The errors εt are i.n.i.d and are categorized by two groups in our simulation study. In the first

group, we consider DGPs where the residuals εt possess symmetric and asymmetric distributions:
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1. normal distribution: εt ∼ N(0, 1);

2. Cauchy distribution: εt ∼ Cauchy;

3. Student t distribution with two degrees of freedom: εt ∼ t(2);

4. Mixture of normal and Cauchy distributions: εt ∼ st | εCt | −(1− st) | εNt |, where εCt follows

Cauchy distribution, εNt follows N(0, 1) distribution, and

P (st = 1) = P (st = 0) =
1

2
.

The second group of DGPs represents different forms of heteroskedasticity:

5. break in variance:

εt ∼

 N(0, 1) for t 6= 25
√

1000N(0, 1) for t = 25
;

6. exponential variance: εt ∼ N(0, σ2
ε(t)) and σε(t) = exp(0.5t);

7. GARCH(1, 1) plus jump variance:

σ2
ε(t) = 0.00037 + 0.0888ε2

t−1 + 0.9024σ2
ε(t− 1) ,

εt ∼

 N(0, σ2
ε(t)) for t 6= 25

50N(0, σ2
ε(t)) for t = 25

;

8. nonstationary GARCH(1, 1) variance: εt ∼ N(0, σ2
ε(t)) and

σ2
ε(t) = 0.75ε2

t−1 + 0.75σ2
ε(t− 1) .

We implement the POS-based test and other tests, which are intended to be robust against het-

eroskedasticity and non-normality, to test the null hypothesis of orthogonality - i.e. H0 : β = 0.

As in Dufour and Taamouti (2010a), Monte Carlo simulations are used to compare the size and

power of the 10% split-sample POS-based tests (10% SS-POS test hereafter) to those of T-test,
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T-test based on White (1980) variance correction (hereafter WT-test), and sign-based test pro-

posed by Campbell and Dufour (1995) (CD(1995) test hereafter). The simulation study involves

M1 = 10, 000 iterations for evaluating the probability distribution of POS test statistic and

M2 = 5, 000 iterations to estimate the power functions of POS test and other tests. We con-

sider a sample size of n = 50 for conducting the simulation exercise. Note that the sign-based test

statistic of Campbell and Dufour (1995) possesses a discrete distribution, as a result of which it is

not possible (without randomization) to attain test whose size is exactly 5%. In our simulations

study, the size of the aforementioned test is 5.95% for n = 50.

As in Mankiw and Shapiro (1986), it is further possible to consider values of ρ and θ closer to

unity at which the size distortions of T-type tests are magnified. For instance, the size of the

T-test in their study is shown to be severely distorted with values of θ = 0.999 and ρ = 1.0, given

a sample size of n = 50. The simulations for the latter scenario can be found in the Appendix for

standard normal disturbances. It must be noted that as the exact finite-sample distribution of the

POS-based tests are simulated, our tests control size regardless of the values of ρ and θ - the results

in figure (1.10) confirm these findings. It is further evident that although the size distortions for

the T-test and T-test based on White (1980) variance correction improve in large samples, these

tests still reject the null hypothesis at twice and thrice their nominal level respectively given a

sample of n = 500 observations.
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Figure 1.2: Symmetric distributions
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Note: In this figure, we compare the symmetric Normal, Cauchy and Student’s distribution with
two degree of freedom - i.e. ν = 2
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Figure 1.3: Time-varying distributions
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Note: In this figure, we compare the disturbances generated using the mixed normal and Cauchy
distributions, as well as normal distribution with break in variance.
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The DGPs considered in this chapter have been inspired by the simulation exercises conducted in

the previous studies [see Mankiw and Shapiro (1986), Campbell and Dufour (1995), Coudin and

Dufour (2009) and Dufour and Taamouti (2010a)]. The first three DGPs all possess symmetrical

distributions that are independent and identical across different observations t = 1, · · · , n. Evi-

dently, as depicted in figure (2.16), the Cauchy and Student’s t distribution possess heavier tails in

comparison to that of the normal distribution. The standard error of the coefficients are inflated

in the presence of heavy tails, as a result of which the power of the T-type tests tend to be poor in

comparison to other measures of central tendency (such as the median). Furthermore, the length

of the confidence intervals are extended when the data is sampled from heavy tailed distributions.

DGP 4 is a mixture of Cauchy and Gaussian distribution; as such, while the errors are indepen-

dent, they are not identically distributed across different observations [see figure 1.3]. DGP 4 is

inspired by Magdalinos and Phillips (2009), who note that when xt is moderately explosive (with

θ > 1), the least squares estimator is mixed normal with Cauchy-type tail behavior with an explo-

sive convergence rate. The second group of DGPs covers different forms of heteroskedasticity, such

as conditional heteroskedasticity (e.g. stationary and non-stationary GARCH models) and other

forms of non-linear dependencies. Dufour and Taamouti (2010a) show that under certain forms

of heteroskedasticity, T-type tests are not valid; hence, these DGPs fit well within the domains of

our study.

1.5.2 Simulation results

Monte Carlo simulation results are presented in Figures 1.4-1.8. These results correspond to

different DGPs described in Section 1.5.1. The figures compare the power of the 10% SS-POS test

to the T-test, WT-test, and CD (1995) test. The results are detailed below.

First, Figure 1.4 compares the power function of the above tests in the case where the error term

εt in the model (1.16) is normally distributed. From this we see that all these tests control size,

except WT-test which is undersized. We also find that T-test is more powerful than 10% SS-POS

test, CD (1995) test, and WT-test. This result is expected since under normality T-test is the

most powerful test. However, the power of 10% SS-POS test has the second best power among the
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Figure 1.4: Power comparisons: different tests. Normal error distributions with different values of

ρ in (1.18) and θ = 0.9 in (1.17).
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the T-test; (2)

the sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the T-test

based on White’s (1980) variance correction [WT-test].

29



other tests. These results are still the same when we increase the correlation coefficient ρ, except

that when there high correlation between the error terms εt and wt the power curves of T-test,

10% SS-POS test and CD (1995) test become closer to each other.

Second, Figure 1.5 corresponds to the cases where the error term εt follows Cauchy distribution.

From this we see that 10% SS-POS test is more powerful than CD (1995) test, WT-test, and the

T-test. It seems that the latter two tests are undersized. 10% SS-POS test and CD (1995) test have

much more power than WT-test and T-test for small values (0 and 0.1) of correlation coefficient

ρ, but the difference in power decreases when we increase ρ even if it still quite important.

Third, Figure 1.6 corresponds to the cases where the error term εt follows a mixture of normal

and Cauchy distributions. The results show that 10% SS-POS test is again more powerful than

CD (1995), T-test, and the WT-test. The difference in power is much more significant when the

correlation coefficient ρ is smaller.

Finally, Figures 1.7 and 1.8 compare the power function of the 10% SS-POS test, CD (1995) test,

WT-test, and T-test in the case where εt follows normal distribution with a break in variance and

an exponential variance, respectively. Figure 1.7 shows that in the presence of break in variance,

WT-test and T-test are undesized, whereas 10% SS-POS test and CD (1995) test control size.

In addition, 10% SS-POS test has more power that the other tests. The CD (1995) test has the

second best power followed by WT-test and T-test. The power of these tests improve when we

increase the correlation coefficient ρ. Figure 1.8 shows that in the case of exponential variance,

the WT-test, and T-test are oversized. We find that 10% SS-POS test has more power than CD

(1995) test when ρ is equal to zero. However, CD (1995) test becomes more powerful than 10%

SS-POS test when correlation coefficient ρ increases. The difference in power between the latter

two tests becomes small for higher values of ρ.
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Figure 1.5: Power comparisons: different tests. Cauchy error distributions with different values of

ρ in (1.18) and θ = 0.9 in (1.17).
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the T-test; (2)

the sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the T-test

based on White’s (1980) variance correction [WT-test].
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Figure 1.6: Power comparisons: different tests. Mixture error distributions with different values

of ρ in (1.18) and θ = 0.9 in (1.17).

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20

CD (1995) test
10% SS-POS test
T-test
WT-test

Mixture Distribution, Teta=0.9, Roh=0

P
o

w
e

r

Parameter value

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20

CD (1995) test
10% SS-POS test
T-test
WT-test

P
o

w
e

r

Mixture Distribution, Teta=0.9, Roh=0.1

Parameter value

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20

CD (1995) test
10% SS-POS test
T-test
WT-test

Mixture Distribution, Teta=0.9, Roh=0.5

P
o

w
e

r

Parameter value

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20

CD (1995) test
10% SS-POS test
T-test
WT-test

Mixture Distribution, Teta=0.9, Roh=0.9

P
o

w
e

r

Parameter value

Note: These figures compare the power function of the 10% SS-POS test with: (1) the T-test; (2)

the sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the T-test

based on White’s (1980) variance correction [WT-test].
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Figure 1.7: Power comparisons: different tests. Normal error distributions with break in variance,

different values of ρ in (1.18) and θ = 0.9 in (1.17).
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the T-test; (2)

the sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the T-test

based on White’s (1980) variance correction [WT-test].
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Figure 1.8: Power comparisons: different tests. Normal error distributions with Exp(t) variance,

different values of ρ in (1.18) and θ = 0.9 in (1.17).
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the T-test; (2)

the sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the T-test

based on White’s (1980) variance correction [WT-test].
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1.6 Empirical application

In this Section, we consider an empirical application of the proposed 10% SS-POS tests to illustrate

its practical relevance. Valuation ratios are widely considered as predictors of stock returns and

are generally known to be persistent. Therefore, they fit well within the framework of our study.

In what follows, we specifically divert our attention to an application in the context of stock return

predictability using the said ratios.

1.6.1 Stock return predictability using valuation ratios

Many studies have investigated the predictive power of valuation ratios on excess stock returns.

Dividend-price and earnings-price ratios are among few that were the focus of study in the early

1980s. The attention to these ratios was heightened when Rozeff (1984), Fama and French (1988),

and Campbell and Shiller (1988) showed the ratios positive correlation with ex-post stock returns.

Fama and French (1988) find that in short horizons dividend yields only explain a small fraction of

the variation in time-varying returns, yet in longer horizons (beyond one year) this proportion is

significantly increased. Campbell and Shiller (1988) employ a two-variable system approach with

the lagged log of the dividend-price ratio together with the lagged real dividend growth rate, to

show significant predictive power on stock returns.

These studies are typically performed by regressing the excess returns on a constant and a lagged

variable. The conventional T-test is then used to make inference concerning predictability. How-

ever, most of these studies are based on the presumption of the stationarity of the predictors,

where the T-statistic is approximately normally distributed in large samples. Unfortunately, this

is not the case in the presence of highly persistent variables. Even when the predictors are station-

ary, asymptotic critical values are not a good approximation for those obtained in finite-sample

distributions. In the presence of highly persistent predictors, the innovations are greatly corre-

lated with the returns, and thus, the T-statistic has a non-standard distribution which leads to

the over-rejection of the null hypothesis of orthogonality [see. Elliott and Stock (1994), Mankiw

and Shapiro (1986), Stambaugh (1999) and Campbell and Yogo (2006)].

Most studies address the issue of persistency by making inference based on more accurate appro-
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ximations of the finite-sample distribution of the test-statistic. This is accomplished either by

relying on exact finite-sample theory under the assumption of normality [see. Evans and Savin

(1981, 1984) and Stambaugh (1999)] or local-to-unity asymptotics [see Elliott and Stock (1994),

Campbell and Yogo (2006) and Torous et al. (2004)]. More recently Taamouti et al. (2014)

confirm the predictability power of the valuation ratios using monthly data, in a nonparametric

and model-free copula-based Granger causality framework.

In this Section, we use our exact 10% SS-POS-based test to make inference and compare the

predictive power of the valuation ratios (dividend-price ratio, smoothed earnings-price ratio, and

total return smoothed earnings-price ratio) on stock market returns. The smoothed earnings-price

ratio is proposed by Campbell and Shiller (1988, 2001) upon observing numerous spikes in the plot

of the earnings-price ratio that had not been observed in the dividend-price ratio. The spikes were

explained to be caused by recessions, which temporarily suppress corporate earnings. The latter

measure is the ratio of the ten-year moving average of real earnings to current real prices and is said

to possess better forecasting powers. Furthermore, the total return smoothed earnings-price ratio

is recently incorporated in forecasting, as a consequence of the changes in corporate payout policy

documented by Bunn et al. (2014) and Jivraj and Shiller (2017). Share repurchases (as opposed

to dividends) have become the dominant approach for distributing cash to shareholders in the

U.S. which may impact the smoothed earnings-price ratio through changes in growth of earnings

per share. The total return smoothed earnings-price ratio corrects for this bias by reinvesting the

dividends into the price index, such that the earnings per share is appropriately scaled.

1.6.1.1 Data description

Our data consists of monthly and quarterly observations of the aggregate S&P500 composite index

for the period spanning from March 1980 to December 2019 for a total of 480 trading months or 160

trading quarters. We consider the logarithmic returns on the S&P500 in excess of the 30-day and

90-day T-bill rate. The valuation ratios under consideration are: dividend-price ratio, smoothed

earnings-price ratio, and total return smoothed earnings-price ratio. The nominal monthly and

quarterly prices of the value-weighted S&P500 composite index, as well as the corresponding
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dividends and earnings are obtained from a database provided on Robert Shiller’s website. The

30-day and 90-day Treasury bill returns, on the other hand, have been retrieved from the Center

for Research in Security Prices (CRSP).

Figure 1.9: Monthly and quarterly S&P500 excess stock returns, dividend-price, smoothed

earnings-price and total return smoothed earnings-price ratios.
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Note: The data spans from March 1980 to December 2019 for a total of 480 trading months and 160
trading quarters respectively. The red and the blue lines in turn correspond to the quarterly and
monthly samples. To assess the predictability power of the valuation ratios, we further consider
two sub-periods separated by the dashed line: one spanning from March 1980 to January 2002
and another in the period of January 2002 to January 2019.

in different At first glance figure 1.9 suggests that the predictors under consideration are highly

persistent and potentially non-stationary. This visual assessment is confirmed in table 1.2, which

presents the test statistics for the augmented Dickey-Fuller test (ADF hereafter) for all the time

series. Evidently, for the full sample and the two sub-periods we fail to reject the null hypothesis
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of nonstationarity. The testing procedure entails estimating and testing the model in its most

general form using more deterministic components than the hypothesized DGP (i.e. including

both an intercept and a trend), and following Phillips and Perron (1988) sequential testing strategy

thereafter, eliminating the unnecessary nuisance parameters in the process. At each stage, if the

null hypothesis of orthogonality is rejected, we conclude that the model is correctly specified and

that the process is stationary. Otherwise, the test is performed on a more restricted model. This

procedure is continued until we arrive at the most basic form of the model (with no intercept or

a trend), or until the null hypothesis of unit root is rejected. As it is evident, all valuation ratios

reject the null hypothesis of non-stationarity at the 5% level.

1.6.1.2 Predictability results

The projection technique based on the proposed 10% SS-POS test is used to build simultaneous

confidence sets for the parameters of the regressions of the excess returns against the dividend-

price ratio, smoothed earnings-price ratio of Campbell and Shiller (1988) and the total return

smoothed earnings-price ratio of Bunn et al. (2014) and Jivraj and Shiller (2017) respectively.

The results for different sub-periods and the full sample are reported in table 1.3. As explained

in Section 1.4, each simultaneous confidence set is obtained by collecting all pairs of (β0, β1) that

are not rejected using our 10% SS-POS test. Thus, a grid search is applied over an appropriate

range1 and 95% level confidence sets are constructed by retaining all the pairs (β0, β1) that are

not rejected by the 10% SS-POS test. Alternatively, the simulated annealing algorithm can be

used to solve the optimization problem (1.15) for each parameter βi.

The 95% confidence intervals for the parameters β0 and β1 contain zero for the regressions of the

excess returns against all the predictors using the T-test based on White (1980) for all periods

in our study. However, using the 10% SS-POS based test, there is evidence of predictability in

quarterly data in favor of all predictors for the period spanning from January 2002 to January

2019. Our findings are in line with those of Campbell and Yogo (2006) who do not find any

evidence of predictability in favor of any of the predictors in the period spanning from 1952-2002.

1See Section 1.4.1.
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Table 1.2: Results of the ADF test on the real and nominal time-series using the general-to-specific

sequential testing procedure

Series Obs. Predictor p δ + µ µ None

Panel A: 1980-2002

Monthly 264 rmt − r
f
t 1 −10.959∗∗∗ −− −−

d/pt 2 −2.217 −0.657 2.026
e/p

′
t 2 −2.248 −1.171 1.721

e/p
′′
t 2 −2.160 −1.376 1.544

Quarterly 88 rmt − r
f
t 0 −9.026∗∗∗ −− −−

d/pt 0 −2.209 −0.777 1.830
e/p

′
t 0 −1.816 −1.210 1.576

e/p
′′
t 0 −1.669 −1.400 1.391

Panel B: 2002-2019

Monthly 215 rmt − r
f
t 0 −11.369∗∗∗ −− −−

d/pt 1 −2.853 −2.983∗∗ −−
e/p

′
t 1 −2.317 −1.938 −0.027

e/p
′′
t 1 −2.389 −1.935 0.009

Quarterly 72 rmt − r
f
t 0 −7.513∗∗∗ −− −−

d/pt 1 −3.261∗ −3.278∗∗ −−
e/p

′
t 0 −2.374 −1.915 −0.095

e/p
′′
t 0 −2.448 −1.901 −0.057

Panel C: 1980-2019

Monthly 479 rmt − r
f
t 1 −14.347∗∗∗ −− −−

d/pt 2 −1.861 −2.104 0.935
e/p

′
t 2 −1.802 −2.042 1.136

e/p
′′
t 2 −1.965 −2.161 1.056

Quarterly 160 rmt − r
f
t 0 −11.848∗∗∗ −− −−

d/pt 0 −1.762 −2.051 0.876
e/p

′
t 0 −1.732 −1.995 1.084

e/p
′′
t 0 −1.897 −2.114 0.998

Note: This table reports the results of the ADF test on the time-series in the predictive
regression model. The appraoch involves using the general-to-specific sequential testing pro-
cedure to test the null hypothesis of non-stationarity, where the general form of the model is:

∆xt = ρxt−1 +

p−1∑
i=1

ψi∆xt−i + µ+ δt+ ut ut ∼ IID(0, σ2) .

The corresponding test statistics are reported in turn for the general form of the model (including
the trend δ and intercept c), the more restrictive form constituting only of an intercept c, and
the case where neither the trend nor the intercept are present. The variables are defined as
follows: rmt − tft are the excess logarithmic stock returns, d/pt is the dividend-price ratio, e/p′t
is the smoothed earnings-price ratio and e/p′′t is the total return smoothed earnings-price ratio
respectively. The statistics with three asterisks (***), two asterisks (**) and one asterisk (*) are
significant at the 1%, 5%. and the 10% levels respectively.
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Table 1.3: Predictability results for the dividend-price, earnings-price and the smoothed earnings-

price ratios

Series Predictor β̂ 95% confidence interval

10% SS-POST WT-test
Panel A: 1980-2002
Monthly d/pt 0.002 [−0.024, 0.036] [−0.008, 0.011]

e/p
′
t -0.001 [−0.044, 0.046] [−0.009, 0.008]

e/p
′′
t -0.001 [−0.052, 0.049] [−0.010, 0.010]

Quarterly d/pt 0.009 [−0.104, 0.106] [−0.028, 0.047]

e/p
′
t 0.003 [−0.116, 0.104] [−0.029, 0.036]

e/p
′′
t 0.004 [−0.126, 0.104] [−0.033, 0.040]

Panel B: 2002-2019
Monthly d/pt 0.019 [−0.220, 0.330] [−0.015, 0.053]

e/p
′
t 0.012 [−0.079, 0.191] [−0.018, 0.042]

e/p
′′
t 0.010 [−0.080, 0.180] [−0.021, 0.040]

Quarterly d/pt 0.119 [0.159,0.899] [−0.001, 0.238]

e/p
′
t 0.089 [0.042,0.632] [−0.018, 0.197]

e/p
′′
t 0.084 [0.058,0.697] [−0.026, 0.194]

Panel C: 1980-2019
Monthly d/pt 0.002 [−0.041, 0.069] [−0.006, 0.010]

e/p
′
t 0.0003 [−0.021, 0.049] [−0.007, 0.007]

e/p
′′
t 0.0001 [−0.039, 0.061] [−0.008, 0.008]

Quarterly d/pt 0.136 [−0.094, 0.146] [−0.017, 0.044]

e/p
′
t 0.008 [−0.099, 0.121] [−0.020, 0.036]

e/p
′′
t 0.009 [−0.113, 0.147] [−0.023, 0.041]

Note: This table presents the coefficient estimates, as well as the 95% confidence intervals for
the variables considered in our study, by inverting the proposed 10% SS-POS-based tests and the
T-test based on White (1980) variance correction. The alternatives for the 10% SS-POS tests are
obtained by running OLS regressions of the excess returns against the dividend-price, smoothed
earnings-price and the total return smoothed earnings-price ratios. The regressions assume the
form

rmt − r
f
t = β0 + β1xt−1 + εt (1.19)

where rt is the ex-post excess returns and xt−1 is the ex-ante predictor. The projection-based 95%
confidence intervals for the 10% SS-POS tests are obtained by testing H0(β∗) : β = β∗ on a grid
for β∗ = (β∗0 , β

∗
1), where the grid dimension is found by solving the optimization problem (1.15)

for each parameter β0 and β1 using the simulated annealing algorithm, and consequently equally
dividing each interval and finding their Cartesian product. The intervals in bold do not contain
the value of zero and imply significance at the 5% level.
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1.7 Conclusion

In this chapter, we proposed simple point-optimal sign-based tests for inference in linear and

non-linear predictive regression models in the presence of stochastic (or fixed) regressors. One

motivation of the paper is to build valid (control the size whatever the sample size) tests for

linear and non-linear predictability of stock returns. The most popular predictors of stock returns

(e.g. dividend-price ratio, earning-price ratio, etc.) are known to be persistent with residuals that

are correlated with the shock in the stock returns. This makes the classical predictability tests

not valid, especially when the sample size is small or moderate. In addition, the proposed sign-

based tests are exact, distribution-free, and robust against heteroskedasticity of unknown form

and allow for serial (non-linear). Additionally, they may be inverted to build confidence regions

for the parameters of the regression function. Since the point-optimal sign tests depend on the

alternative hypothesis, an adaptive approach based on the split-sample technique was suggested

in order to choose the appropriate alternative that controls the size and maximizes the power.

We presented a Monte Carlo study to assess the performance of the proposed “quasi”-point-optimal

sign test by comparing its size and power to those of certain existing tests which are supposed to

be robust against heteroskedasticity. We considered different DGPs to illustrate different contexts

that one can encounter in practice. The results show that the 10% split-sample point-optimal sign

test is more powerful than the T-test, Campbell and Dufour (1995) sign-based test, and the T-test

based on White (1980) variance correction.

Finally, the proposed tests were used to assess the predictive power of some financial predictors,

such as the dividend-price ratio, earnings-price ratio and the smoothed earnings-price ratio of

Campbell and Shiller (1988, 2001) on the annualized monthly excess stock returns. Our study

suggests predictability in favor of all the predictors for the quarterly data in the period spanning

from 2002 to 2009. which is consistent with the findings of Campbell and Yogo (2006), Our findings

are in line with those of Campbell and Yogo (2006) who do not find any evidence of predictability

in favor of any of the predictors in the period spanning from 1952-2002.
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1.8 Appendix: Proofs

Proof of Theorem 1. From Assumption (1.2), the following two equalities are derived

P [εt ≥ 0 | X] = E (P [εt ≥ 0 | εt−1, X]) =
1

2

with

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}, for t ≥ 2

and

P [εt ≥ 0 | S
¯
ε
t−1, X] = P [εt ≥ 0 | εt−1, X] =

1

2
,

with

S
¯
ε
0 = {∅} , S

¯
ε
t−1 = {s(ε1) = s1, ..., s(εt−1) = st−1} , for t ≥ 2,

We define the vector of signs U(n) = (s(y1), · · · , s(yn))′, where s(yt) = 1R+∪0{yt}. Thus, the

likelihood function of the sample in terms of signs under the null hypothesis is

L(U(n), 0) = P [s(y1) = s1, · · · , s(yn) = sn | X]

= P [s(ε1) = s1, · · · , s(εn) = sn | X]

=
n∏
t=1

P [εt ≥ 0 | εt−1, X]s(εt) (1− P [εt ≥ 0 | εt−1, X])1−s(εt)

=
n∏
t=1

(
1

2

)s(εt)(
1− 1

2

)1−s(εt)

=

(
1

2

)n

Hence, it can be concluded that conditional on X and under the null hypothesis of orthogonality

s(y1), · · · , s(yn)
i.i.d∼ Bi(1, 0.5).

Proof of Proposition 1. The likelihood function of sample in terms of signs s(y1), ..., s(yn)

L (U(n), β) = P [s(y1) = s1, ..., s(yn) = sn | X] =
n∏
t=1

P (s(yt) = st | S
¯t−1, X) ,
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for

S
¯0 = {∅} , S

¯t−1 = {s(y1) = s1, ..., s(yt−1) = st−1} , for t ≥ 2,

and

P [s(y1) = s1 | S
¯0, X] = P [s(y1) = s1 | X] ,

where each si, for 1 ≤ t ≤ n, takes two possible values 0 and 1. According to model (1.1)

and assumption (1.2), under the null hypothesis the signs s(y1), · · · , s(yn) are i.i.d according to

Bi(1, 0.5),

P [s(yt) = 1 | X] = P [s(yt) = 0 | X] =
1

2
, for t = 1, ..., n.

Consequently, under H0

L0 (U(n), 0) =
n∏
t=1

P [s(yt) = st | X] =

(
1

2

)n

and under H1 we have

L1 (U(n), β1) =
n∏
t=1

P [s(yt) = st | S
¯t−1, X]

where now, for t = 1, ..., n,

yt = β′1xt−1 + εt

The log-likelihood ratio is given by

ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
=

n∑
t=1

ln {P [s(yt) = st | S
¯t−1, X]} − n ln

{
1

2

}
.

According to Neyman-Pearson lemma [see e.g. Lehmann (1959), page 65], the best test to test H0

against H1, based on s(y1), ..., s(yn), rejects H0 when

ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
≥ c

or when
n∑
t=1

ln {P [s(yt) = st | S
¯t−1, X]} ≥ c,
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The critical value, say c, is given by the smallest constant c such that

P

(
ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
> c | H0

)
≤ α.

Notice that, for t = 1, ...n,

P [s(yt) = st | S
¯t−1, X] = P [yt ≥ 0 | S

¯t−1, X]s(yt) P [yt < 0 | S
¯t−1, X](1−s(yt)) , for t = 1, ...n.

(1.20)

From (1.20), we have

ln

{
n∏
t=1

P [s(yt) = st | S
¯t−1, X]

}
= ln

{
n∏
t=1

P [yt ≥ 0 | S
¯t−1, X]s(yt)P [yi < 0 | S

¯t−1, X](1−s(yt))

}

=
n∑
t=1

s(yt) ln {P [yt ≥ 0 | S
¯t−1, X]}

= +
n∑
t=1

(1− s(yt)) ln {P [yt < 0 | S
¯t−1, X]}

ln

{
n∏
t=1

P [s(yt) = st | S
¯t−1, X]

}
=

n∑
t=1

s(yt) ln {P [yt ≥ 0 | S
¯t−1, X]}+

n∑
t=1

ln {P [yt < 0 | S
¯t−1, X]}

−
n∑
t=1

s(yt) ln {P [yt < 0 | S
¯t−1, X]}

=
n∑
t=1

s(yt) ln

{
P [yt ≥ 0 | S

¯t−1, X]

P [yt < 0 | S
¯t−1, X]

}
+

n∑
t=1

ln {P [yt < 0 | S
¯t−1, X]}

Thus, the best test to test H0 against H1, based on s(y1), ..., s(yn), rejects H0 when

ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
=

n∑
t=1

s(yt) ln

{
P [yt ≥ 0 | S

¯t−1, X]

P [yt < 0 | S
¯t−1, X]

}
+

n∑
t=1

ln {P [yt < 0 | S
¯t−1, X]}−n ln

{
1

2

}
≥ c

or when

ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
=

n∑
t=1

s(yt) ln

{
P [yt ≥ 0 | S

¯t−1, X]

P [yt < 0 | S
¯t−1, X]

}
≥ c1(β1)
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where the critical value c1(β1) is chosen so that

P [Sn(β1) > c1(β1) | H0] ≤ α

α is an arbitrary significance level.

Proof of Assumption 1.

Let y1, · · · , yt be linearly explained by a vector variable xt

yt = β′1xt−1 + εt

and suppose yt follows a Markov process of order one, such that

yt, yt−1 | X ∼ N


β′xt−1

β′xt−2


︸ ︷︷ ︸

µ

,

 σ2
εt σεtεt−1

σεt−1εt σ2
εt−1


︸ ︷︷ ︸

Σ

 , t = 2, · · · , n.

where it is assumed, without loss of generality, that εt and εt−1 are serially correlated with σεt−1εt 6=

0. Then the signs s(y1), · · · , s(yt) are Bernoulli variables with conditional joint distributions fully

determined by Ps(yt)|X , Ps(yt−1)|X , and either Ps(yt)|s(yt−1),X or Ps(yt),s(yt−1)|X , where

Ps(yt)|s(yt−1),X := P [s(yt) = 1 | s(yt−1) = 1, X]

Ps(yt),s(yt−1)|X := P [s(yt) = 1, s(yt−1) = 1 | X],

which may alternatively be expressed as

P [s(yt) = 1 | s(yt−1) = 1, X] = P [yt ≥ 0 | yt−1 ≥ 0 | X] = P [εt ≥ −β′xt−1 | εt−1 ≥ −β′xt−2, X]

P [s(yt) = 1, s(yt−1) = 1 | X] = P [yt ≥ 0, yt−1 ≥ 0 | X] = P [εt ≥ −β′xt−1, εt−1 ≥ −β′xt−2 | X].

As the dependence in the pair-wise probabilities is determined by the covariance matrix Σ, with

σεt,εt−1 6=0, this in turn implies that the signs s(yt), s(yt−1) for t = 1, · · · , n are dependent and follow
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a Markov process of order one. These findings are extended to the case where the signs exhibit

non-linear serial dependence.

Proof of Corollary 1. From test statistic Sn(β1) in Proposition 1 and under assumption A1,

we have:

S̃n(β1) =
n∑
t=1

s(yt) ln

{
P [yt ≥ 0 | S

¯t−1, X]

P [yt < 0 | S
¯t−1, X]

}
=

n∑
t=1

s(yt) {ln {P [yt ≥ 0 | S
¯t−1, X]} − ln {P [yt < 0 | S

¯t−1, X]}}

=
n∑
t=1

s(yt)

 ln
{
P [yt ≥ 0 | yt−1 ≥ 0, X]s(yt−1) P [yt ≥ 0 | yt−1 < 0, X]1−s(yt−1)

}
− ln

{
P [yt < 0 | yt−1 ≥ 0, X]s(yt−1) P [yt < 0 | yt−1 < 0, X]1−s(yt−1)

}


=
n∑
t=1

s(yt)

 s(yt−1) ln {P [yt ≥ 0 | yt−1 ≥ 0, X]}+ (1− s(yt−1)) ln {P [yt ≥ 0 | yt−1 < 0, X]}

−s(yt−1) ln {P [yt < 0 | yt−1 ≥ 0, X]} − (1− s(yt−1)) ln {P [yt < 0 | yt−1 < 0, X]}


Observe that:

ln

{
P [yt ≥ 0 | S

¯t−1, X]

P [yt < 0 | S
¯t−1, X]

}
= ln

{
P [yt ≥ 0 | yt−1 ≥ 0, X]s(yt−1) P [yt ≥ 0 | yt−1 < 0, X]1−s(yt−1)

}
− ln

{
P [yt < 0 | yt−1 ≥ 0, X]s(yt−1) P [yt < 0 | yt−1 < 0, X]1−s(yt−1)

}
= s(yt−1) ln {P [yt ≥ 0 | yt−1 ≥ 0, X]}

+ (1− s(yt−1)) ln {P [yt ≥ 0 | yt−1 < 0, X]}

−s(yt−1) ln {P [yt < 0 | yt−1 ≥ 0, X]}

− (1− s(yt−1)) ln {P [yt < 0 | yt−1 < 0, X]}

ln

{
P [yt ≥ 0 | S

¯t−1, X]

P [yt < 0 | S
¯t−1, X]

}
= s(yt−1) ln {P [yt ≥ 0 | yt−1 ≥ 0, X]}+ ln {P [yt ≥ 0 | yt−1 < 0, X]}

−s(yt−1) ln {P [yt ≥ 0 | yt−1 < 0, X]} − s(yt−1) ln {P [yt < 0 | yt−1 ≥ 0, X]}

− ln {P [yt < 0 | yt−1 < 0, X]}+ s(yt−1) ln {P [yt < 0 | yt−1 < 0, X]}
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ln

{
P [yt ≥ 0 | S

¯t−1, X]

P [yt < 0 | S
¯t−1, X]

}
= s(yt−1)

{
ln

{
P [yt ≥ 0 | yt−1 ≥ 0, X]

P [yt < 0 | yt−1 ≥ 0, X]

}
− ln

{
P [yt ≥ 0 | yt−1 < 0, X]

P [yt < 0 | yt−1 < 0, X]

}}
+ ln

{
P [yt ≥ 0 | yt−1 < 0, X]

P [yt < 0 | yt−1 < 0, X]

}

Hence,

S̃n(β1) =
n∑
t=1

s(yt) ln

{
P [yt ≥ 0 | S

¯t−1, X]

P [yi < 0 | S
¯t−1, X]

}

=
n∑
t=1

s(yt)

 s(yt−1)
{

ln
{
P [yt≥0|yt−1≥0,X]
P [yt<0|yt−1≥0,X]

}
− ln

{
P [yt≥0|yt−1<0,X]
P [yt<0|yt−1<0,X]

}}
+ ln

{
P [yt≥0|yt−1<0,X]
P [yt<0|yt−1<0,X]

}


=
n∑
t=1

s(yt) ln

{
P [yt ≥ 0 | yt < 0, X]

P [yt < 0 | yt < 0, X]

}
+

n∑
t=1

s(yt)s(yt−1)

 ln
{
P [yt≥0|yt−1≥0,X]
P [yt<0|yt−1≥0,X]

}
− ln

{
P [yt≥0|yt−1<0,X]
P [yt<0|yt−1<0,X]

}


=
n∑
t=1

at s(yt) +
n∑
t=1

bt s(yt)s(yt−1)

where

ã1 = ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
= ln

{
1− P [ε1 < −β′1x0 | X]

P [ε1 < −β′1x0 | X]

}

b̃1 = ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
− ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
= 0

and for t = 2, ..., n

at = ln

{
P [yt ≥ 0 | yt < 0, X]

P [yt < 0 | yt < 0, X]

}
,

bt = ln

{
P [yt ≥ 0 | yt−1 ≥ 0, X]

P [yt < 0 | yt−1 ≥ 0, X]

}
− ln

{
P [yt ≥ 0 | yt−1 < 0, X]

P [yt < 0 | yt−1 < 0, X]

}
.
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Observe that:

P [yt ≥ 0 | yt−1 < 0, X] = 1− P [yt < 0 | yt−1 < 0, X]

= 1− P [yt < 0, yt−1 < 0 | X]

P [yt−1 < 0 | X]

= 1− P [εt < −β′1xt−1, εt−1 < −β′1xt−2 | X]

P [εt−1 < −β′1xt−2 | X]
,

P [yt < 0 | yt−1 < 0, X] =
P [yt < 0, yt−1 < 0 | X]

P [yt−1 < 0 | X]

=
P [εt < −β′1xt−1, εt−1 < −β′1xt−2 | X]

P [εt−1 < −β′1xt−2 | X]

P [yt ≥ 0 | yt−1 ≥ 0, X] = 1− P [yt < 0 | yt−1 ≥ 0, X]

= 1− P [yt < 0, yt−1 ≥ 0 | X]

P [ yt−1 ≥ 0 | X]

= 1− P [yt < 0 | X]

P [ yt−1 ≥ 0 | X]
(P [ yt−1 ≥ 0 | yt < 0, X])

= 1− P [yt < 0 | X]

P [ yt−1 ≥ 0 | X]
(1− P [ yt−1 < 0 | yt < 0, X])

= 1−
(

P [yt < 0 | X]

P [ yt−1 ≥ 0 | X]
− P [ yt−1 < 0, yt < 0 | X]

P [ yt−1 ≥ 0 | X]

)
= 1−

(
P [yt < 0 | X]

1− P [yt−1 < 0 | X]
− P [ yt−1 < 0, yt < 0 | X]

1− P [yt−1 < 0 | X]

)
= 1−

[
P
[
εt < −β

′
1xt−1 | X

]
1− P

[
εt−1 < −β

′
1xt−2 | X

] − P
[
εt−1 < −β′1xt−2, εt < −β

′
1xt−1 | X

]
1− P

[
εt−1 < −β

′
1xt−2 | X

] )

P [yt < 0 | yt−1 ≥ 0, X] =
P [yt < 0, yt−1 ≥ 0 | X]

P [yt−1 ≥ 0 | X]

=
P [yt−1 ≥ 0 | yt < 0, X]P [yt < 0 | X]

P [yt−1 ≥ 0 | X]

=
P [yt < 0 | X]

P [yt−1 ≥ 0 | X]
(1− P [yt−1 < 0 | yt < 0, X])

=
P [yt < 0 | X]

1− P [yt < 0 | X]
− P [yt−1 < 0, yt < 0 | X]

1− P [yt < 0 | X]

= 1− P [yt ≥ 0 | yt−1 ≥ 0, X]
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We also have:

ã1 = ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
= ln

{
1− P [y1 < 0 | X]

P [y1 < 0 | X]

}
= ln

{
1− P

[
ε1 < −β

′
1x0 | X

]
P [ε1 < −β′1x0 | X]

}

b̃1 = ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
− ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
= 0

The simulated annealing algorithm. In this Section, we adapt the global numerical optimiza-

tion search algorithm of Goffe et al. (1994) to obtain valid confidence intervals for the parameters

βj in (1.8) by solving the problem

min
β∈Rk

βj s.c. ŜNn(β0 | β1) < c̃1(β0, β1), max
β∈Rk

βj s.c. ŜNn(β0 | β1) < c̃1(β0, β1)

where the critical value c̃(β0, β1) at level α, is computed using B replications of the statistic

ŜN
(i)

n (β0 | β1) under the null hypothesis and finding its (1−α) quantile. In what follows, we only

consider the maximization problem, noting that the minimization algorithm is almost identical:

(I) set C ← 0.25 as the speed of adjustment of V ;

(II) set β0 ← [0 ... 0︸ ︷︷ ︸
k

] starting vector of parameters;

(III) set V ← [0.5 ... 0.5︸ ︷︷ ︸
dim(β0)

], which must cover the entire range of interest in parameter β0;

(IV) set ε← 0.01 as the convergence criteria;

(V) set rT ← 0.75 as the temperature reduction factor;

(VI) set T0 ← 50 as the initial temperature;

(VII) set Nε ← 10 as the number of times through function before termination;

(VIII) set NS ← 20 as the number of times through function before V adjustment;
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(IX) set NT ← 20 as the number of times through NS loops before T reduction;

The algorithm is as follows

1. Calculate the alternative hypothesis β1 using the 10% split-sample technique;

2. Let βopt ← β0 and fopt ← βopt;

3. do until convergence

4. do NT times

5. do NS times

6. for j = 1, ..., dim (β0) do

7. Allocate a dim(β0)× 1 vector to β′;

8. βj
′

0 ← βj0 + U × Vj where U is uniformly distributed on [−1, 1];

9. Let f ′ ← β′0;

10. Evaluate the test statistic ŜNn(β′0 | β1);

11. Simulate the distribution of the test statistic ŜNn(β′0 | β1) under β′0 and

find the critical value c̃1(β′0, β1);

12. if ŜNn(β′0 | β1) < c̃1(β′0, β1) then

13. if f ′ ≤ f then

14. p← exp ((f ′ − f)/T0);

15. p′ ← rand ∼ U [0, 1];

16. if p > p′ then

17. β0 ← β′0, f ← f ′, βopt ← β′0, fopt ← f ′;

18. end if
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19. end if

20. end if

21. if f ′ > f then

22. β0 ← β′0, f ← f ′;

23. end if

24. if f ′ > fopt

25. β0 ← β′0, f ← f ′, βopt ← β′0, fopt ← f ′;

26. end if

27. end if

28. end for

29. end do

30. Adjust V such that half of all trials are accepted;

31. end do

32. if ∆fopt < ε last Nε iterations |f − f ′|< ε then

33. Report βopt, fopt & V ;

34. stop

35. else

36. β0 ← βopt (start on current best optimum);

37. T ← rT × T (reduce T );

38. end if
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39. continue

Additional simulations.

Figure 1.10: Power comparisons: different tests. Normal distributions with contemporaneous

correlation of ρ = 1, in (1.18) and local-to-unity autoregression parameter θ = 0.999, in (1.17) for

different sample sizes.
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Note: These figures compare the power function of the 10% SS-POS test with: (1) the T-test; (2)

the sign-based test proposed by Campbell and Dufour (1995) [CD (1995) test]; and (3) the T-test

based on White’s (1980) variance correction [WT-test].
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Chapter 2

Pair copula constructions of

point-optimal sign-based tests for

predictive linear and non-linear

regressions

2.1 Introduction

The disturbances of regressions often exhibit non-normal distributions and heteroskedasiticty of

unknown form, in the presence of which parametric tests perform poorly in terms of size control

and power in finite samples. In an extensive simulations exercise, Dufour and Taamouti (2010a)

show that the heteroskedasticity and autocorrelation corrected tests developed by White (1980)

(more commonly referred to as “HAC”procedures) are plagued with low power when the errors

follow GARCH structures or there is a break in the variance. To address these issues, Dufour

and Taamouti (2010a) propose point-optimal sign-based inference to test whether the conditional

median of a response variable is zero against a linear regression alternative, where this procedure is

further extended to non-linear models. These tests are constructed by considering fixed regressors

and error terms that are independent with zero median conditional on the explanatory variables.
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The first chapter of this thesis is an extension of the sign tests developed by Dufour and Taamouti

(2010a), in which we propose exact point-optimal sign-based tests (POS-based tests hereafter)

to test for predictability in the presence of highly persistent stochastic regressors for both linear

and non-linear models. However, in order to obtain feasible POS-based test statistics, we had to

impose a Markovian assumption on the sign process. The aim of this paper is to relax the Marko-

vianity assumption for the POS-based tests. This can be achieved using the models introduced by

Panagiotelis et al. (2012) for multivariate discrete data based on pair copula constructions (PCC

hereafter). These models would allow us to build feasible test statistics that are robust against

heavy-tailed and asymmetric distributions, provided that the errors have zero median conditional

on their own past and the explanatory variables, without the necessity to impose any additional

(and potentially restrictive) assumptions.

As noted earlier, when the predictors follow a local-to-unity autoregression, there is a high degree

of contemporaneous correlation between the errors in the regressors and the disturbances of the

predictive regresssion. In such situation, least-squares based T-type tests possess a non-standard

distribution and inference using asymptotic critical values is no longer valid [see Mankiw and

Shapiro (1986) and Stambaugh (1999) among others]. As the POS-based type tests such as those

introduced by Dufour and Taamouti (2010a) are randomized tests with a randomized distribution

under the null hypothesis [see Pratt and Gibbons (2012)], the said procedures do not suffer from the

issues encountered by T-type statistics in finite samples. Therefore, by relaxing the independence

assumption on the error terms and by allowing the disturbances to exhibit serial (non-linear)

dependence, the POS-based tests are easily extended to a predictive regression framework. The

POS-based tests are shown to be robust against non-standard distributions and heteroskedasticity

of unknown form and to have the highest power among parametric and nonparametric tests that are

supposed to be robust against heteroskedasticity. Moreover, as in Dufour and Taamouti (2010a)

they can be inverted to produce a confidence region for the vector (sub-vector) of parameters.

Although, the literature surrounding sign-based and sign-ranked inference is vast [see Taamouti

(2015) and Boldin et al. (1997) among others], the focus of the POS-based tests constructed

by Dufour and Taamouti (2010a) is to maximize power at a nominated point in the alternative
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parameter space. As such, the power of the POS-based test is close to that of the power envelope

- i.e. maximum attainable power for a given testing problem [see King (1987)]. Therefore, the

POS-based tests in Dufour and Taamouti (2010a) and those developed in this chapter using the

pair copula construction of discrete data (PCC-POS-based tests hereafter) are Neyman-Pearson

type tests based on the signs, and as in Dufour and Taamouti (2010a) a practical problem concerns

finding an alternative at which the power of the PCC-POS-based tests is close to that of the power

envelope. By conducting an intensive simulations exercise, Dufour and Taamouti (2010a) find that

when 10% of the sample is used to estimate the alternative and the remaining portion is used to

calculate the test-statistic, the power of the POS-based test traces out the power envelope. Our

simulations results using the 10% split-sample PCC-POS-based tests confirm these findings.

Many studies have developed distribution-free sign and sign-ranked statistics that are exact and

robust against different forms of heteroskedasticity. These range from the procedures proposed

for bivariate regressions [see. Campbell and Dufour (1991, 1995, 1997) and Luger (2003) among

others], to those for multivariate regressions [see Dufour and Taamouti (2010a)]. In the context

of dependent data, Coudin and Dufour (2009) extend the procedures proposed by Boldin et al.

(1997) to further consider serial dependence, as well as discrete distributions. The work in this

chapter, as well as the first chapter of this thesis fall within the latter category (i.e. sign-based

testing procedures for dependent data), and they are particularly motivated by the regressions

capturing the predictability of stock returns. Predictors of stock returns, such as earnings-price

and dividend price ratios often possess relatively static numerators and contain the non-stationary

price series in their denominator; hence, as noted earlier, these predictors are shown to be highly

persistent, with innovations that are correlated with the residuals of the predictive regressions,

which lead to invalid inference [see Mankiw and Shapiro (1986) and Stambaugh (1985, 1999)].

Due to the non-linear nature of the signs, there is inherent uncertainty regarding the structure

of sign dependence. Therefore, it is important to consider the entire dependence structure of

the signs. One approach for computing the joint distribution of the signs s(y1), ..., s(yn), where

s(yi) = 1R+∪{0}{yi}, entails taking advantage of copula functions [see Sklar (1959)], which express

the joint distribution of the signs in terms of the i) marginal distributions of the individual signs;
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and ii) copula models capturing the dependence of the n signs. As the signs are discrete, the

likelihood function of the POS-based tests under the alternative hypothesis can then be calculated

using rectangle probabilities and in turn estimated using copulae with closed analytical form.

However, this approach would not yield feasible test statistics, as the number of multivariate

copulae that need to be evaluated increase at an exponential rate as the sample size n increases.

As a result of this curse of dimensionality, the literature surrounding calculating probability mass

functions (p.m.f hereafter) using discrete data is limited to low-dimensional data and copulae that

are fast to calculate [see Nikoloulopoulos and Karlis (2008, 2009) and Li and Wong (2010)].

To propose feasible test statistics, we build POS-based tests in the context of stochastic regres-

sors for linear and non-linear models, using a discrete analogue of the vine PCCs proposed by

Panagiotelis et al. (2012). The likelihood function of the signs under the alternative hypothesis

can be decomposed as a vine PCC under a set of conditions that are later outlined in the paper.

The most important advantage of the latter method is that for a sample of size n, only 2n(n− 1)

bivariate copula evaluations are required, as opposed to 2n multivariate copula evaluations using

the rectangle probabilities approach. Another advantage of the vine PCC methodology is that

model selection techniques can be used to identify the conditional independence in the process of

signs in order to create more parsimonious PCC models.

An issue that needs considerable attention is whether estimating 2n(n − 1) parameters for eval-

uating the bivariate copulae in the PCC-POS-based tests is feasible as n tends to infinity. Even

when more parsimonius PCC models are selected, this approach is only feasible in finite samples.

However, in a strict stationarity framework, the parameters are invariant to time shifts and as

such this number drastically reduces to n−1 parameter estimates, which may further reduce to as

small as one parameter in the case of truncated PCC models. A Monte Carlo study reveals that

pair copula constructions of POS-based tests are valid. Furthermore, under most distributional

assumptions, they possess the maximum power among tests that are intended to be robust against

non-standard distributions and heteroskedasticity of unknown form.

The outline of the paper is as follows: in Section 2.2, we motivate the use of the discrete analogue

of the vine PCC for building POS-based tests. In Section 2.3, we outline the conditions under
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which vine PCCs can be implemented and we also discuss the choice of the PCC model. We

then propose PCC-POS-based tests for linear and non-linear models. In secion 2.4, we discuss the

estimation approach implemented for the vine PCCs. In Section 2.5, we discuss the choice of the

alternative hypothesis for computing the PCC-POS-based test statistic. In Section 2.6, we discuss

the problem of finding a confidence set for a vector (subvector) of parameters using the projection

techniques. In Section 2.7, we assess the performance of the proposed tests in terms of size and

power. Finally, in Section 2.8 we conclude the findings of the paper.

2.2 Framework

Consider a stochastic process Z = {Zt = (yt, x
′
t) : Ω → R(k+1) : t = 0, 1, · · · } defined on a

probability space (Ω,F , P ). Suppose that yt can linearly be explained by a vector variable xt

yt = β′xt−1 + εt, t = 1, ..., n, (2.1)

where xt−1 is an (k+1)×1 vector of stochastic explanatory variables, say xt−1 = [1, x1,t−1, ..., xk,t−1]′,

β ∈ R(k+1) is an unknown vector of parameters with β = [β0, β1, ..., βk]
′ and

εt | X ∼ Ft(. | X)

where Ft(. | X) is an unknown conditional distribution function and X=[x0, · · · , xn−1]′ is an

n× (k + 1) matrix.

As in the first chapter, we follow Coudin and Dufour (2009) by considering the median as an

alternative measure of central tendency. This implies imposing a median-based analogue of the

martingale difference sequence (MDS) on the error process - namely we suppose that εt is a strict

conditional mediangale

P [εt > 0 | εt−1, X] = P [εt < 0 | εt−1, X] =
1

2
, (2.2)
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with

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}, for t ≥ 2

Note (2.2) entails that εt | X has no mass at zero for all t, which is only true if εt | X is a contin-

uous variable. Model (2.1) in conjunction with assumption (2.2) allows the error terms to possess

asymmetric, heteroskedastic and serially dependent distributions, so long as the conditional me-

dians are zero. Assumption 1.2 allows for many dependent schemes, such as those of the form

ε1 = σ1(x1, · · · , xt−2)ε1, εt = σ1(x1, · · · , xt−2, ε1, · · · , εt−1)εt ,t = 2, · · · , n, where ε1, · · · , εn are in-

dependent with a zero median. In time-series context this includes models such as ARCH, GARCH

or stochastic volatility with non-Gaussian errors. Furthermore, in the mediangale framework the

disturbances need not be second order stationary.

Suppose, we wish to test the null hypothesis

H0 : β = 0, (2.3)

against the alternative

H1 : β = β1. (2.4)

Define the vector of signs as follows

U(n) = (s(y1), ..., s(yn))′,

where for t = 1, ..., n

s(yt) =

 1, if yt ≥ 0

0, if yt < 0
.

We consider Neyman-Pearson type test based on the signs. Thus, to build POS-based tests for

testing the null hypothesis (2.3) against the alternative (2.4), we first define the likelihood function

of the sample in terms of signs s(y1), ..., s(yn)

L(U(n), β) = P [s(y1) = s1, ..., s(yn) = sn | X] =
n∏
t=1

P [s(yt) = st | S
¯t−1 = s

¯t−1, X] , (2.5)
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with

S
¯0 = {∅}, S

¯t−1 = {s(y1), ..., s(yt−1)}, for t ≥ 2,

and

P [s(y1) = s1 | S
¯0 = s

¯0, X] = P [s(y1) = s1 | X],

where each st for 1 ≤ t ≤ n takes two possible values of 0 and 1. Under model (2.1) and

assumption (2.2), the variables s(ε1), · · · , s(εn) and in turn s(y1), · · · , s(yn) are i.i.d conditional

on X, according to the distribution

P [s(ε1) = 1 | X] = P [s(ε1) = 0 | X] =
1

2
, t = 1, · · · , n

This results holds true iff for any combination of t = 1, · · · , n there is a permutation π : i → j

such that the mediangale assumption holds for j. Then the signs s(ε1), · · · , s(εn) are i.i.d. [see

Theorem 2]. Therefore, under the null hypothesis we have

P [s(yt) = 1 | X] = P [s(yt) = 0 | X] =
1

2
, t = 1, ..., n. (2.6)

Consequently, under the null hypothesis of orthogonality, the log-likelihood function is given by

L0(U(n), 0) =
n∏
t=1

P [s(yt) = st | X] =

(
1

2

)n
.

On the other hand, under the alternative we have

L1(U(n), β1) =
n∏
t=1

P [s(yt) = st | S
¯t−1 = s

¯t−1, X],

where now for t = 1, .., n

yt = β′1xt−1 + εt.

In the first chapter, we considered optimal sign-based tests (in the Neyman-Pearson sense), which

maximize power under the constraint P [Reject H0 | H0] ≤ α, where α is an arbitrary significance

level [see Lehmann and Romano (2006)]. Let H0 and H1 be defined by (2.3) and (2.4) respectively.
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Then under the assumptions (2.1) and (2.2), the log-likelihood ratio

SLn(β1) = ln

{
L1(U(n), β1)

L0(U(n), 0)

}
> c, (2.7)

is most powerful for testing H0 against H1 among level α tests based on the signs (s(y1), ..., s(yn))′,

where c is the smallest constant such that

P [SLn(β1) > c | H0] ≤ α,

where α is an arbitrary significance level and where L0(U(n), 0) is the likelihood function under

H0.

In chapter one, it has been shown that in the presence of stochastic regressors, the test statistic

requires the calculation of P [yt ≥ 0 | S
¯t−1 = s

¯t−1, X] and P [yt < 0 | S
¯t−1 = s

¯t−1, X]. The latter

is not easy to compute, as it involves the distribution of the joint process of signs s(y1), ..., s(yn),

conditional on X which is unknown. Therefore, to obtain feasible test statistics, we made an

assumption that the sign process {s(yt)}∞t=0 follows a Markov process of finite order; in our study,

we considered a Markov process of order one. However, it may be important to capture the

dependence structure of the entire process.

An approach by which we may consider the entire dependence structure of the vector of signs is

to take advantage of copulae. The Theorem of Sklar (1959) states that there exists a copula C

such that

F (s1, ..., sn | X) = C(F1(s1 | X), ..., Fn(sn | X)), (2.8)

where F is a conditional joint cumulative distribution function (CDF hereafter) of the vector of

signs S
¯

= (s(y1), ..., s(yn))′ with conditional marginal distribution functions Fj for j = 1, 2, ..., n.

Copula C is unique for continuous variables, but for discrete variables it is unique only on the set

Range(F1)× ...× Range(Fn),

which is the Cartesian product of the ranges of the marginal distribution functions. To illustrate
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an example of non-uniqueness in the discrete case, let us consider a sample of two discrete binary

variables, say s(y1) and s(y2), with corresponding marginal distribution functions F1 and F2. We

know that Fj ∼ Bernoulli(pj) for j = 1, 2, such that

Fj(sj | X) =


0, for sj < 0

1− pj, for 0 ≤ sj < 1

1, for sj ≥ 1

(2.9)

Thus, Range(F1) = {0, 1−p1, 1} and Range(F2) = {0, 1−p2, 1}, with the copula only being unique

for C(1−p1, 1−p2), noting that C(0, 1−pj) = 0 and C(1, 1−pj) = 1−pj for j = 1, 2. However, this

non-uniqueness does not preclude the use of parametric copulae for modelling discrete data [see.

Joe (1997), Song et al. (2009)]. Considering this bivariate example, the p.m.f can be expressed in

terms of rectangle probabilities,

P [s(y1) = s1, s(y2) = s2 | X] = P [s1 − 1 < s(y1) ≤ s1, s2 − 1 < s(y2) ≤ s2 | X]

= F (s1, s2 | X)− F (s1 − 1, s2 | X)

−F (s1, s2 − 1 | X) + F (s1 − 1, s2 − 1 | X)

and in turn in terms of copulae as follows

P [s(y1) = s1, s(y2) = s2 | X] = F (s1, s2 | X)− F (s1 − 1, s2 | X)

−F (s1, s2 − 1 | X) + F (s1 − 1, s2 − 1 | X)

= C(F1(s1 | X), F2(s2 | X))− C(F1(s1 − 1 | X), F2(s2 | X))

= −C(F1(s1 | X), F2(s2 − 1 | X)) + C(F1(s1 − 1 | X), F2(s2 − 1 | X)),

which implies that the n-variate likelihood function (2.5) can be expressed in terms of 2n finite
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differences

P [s(y1) = s1, ..., s(yn) = sn | X] =
∑
i1=0,1

...
∑
in=0,1

(−1)i1+...+inP [s(y1) ≤ s1 − i1, ..., s(yn) ≤ sn − in | X]

=
∑
i1=0,1

...
∑
in=0,1

(−1)i1+...+inC(F1(s1 − i1 | X), ..., Fn(sn − in | X)).

Evidently, the calculation of likelihood function (2.5) using this approach would require 2n multi-

variate copula evaluations, which is not computationally feasible. However, by employing the

vine PCC introduced later in the paper, we will show that this number can be reduced to only

2n(n − 1) bivariate copula evaluations. The latter method provides us with flexibility, since any

multivariate discrete distribution can be decomposed as a vine PCC under a set of conditions that

are discussed in the following Section.

2.3 Pair copula constructions of point-optimal tests

In this Section, we expand on the first chapter by deriving POS-based tests in the context of

linear and non-linear regression models based on vine PCC decomposition. Following a structure

similar to Dufour and Taamouti (2010a), we first consider the problem of testing whether the

conditional median of a vector of observations is zero against a linear regression alternative. We

further consider the conditions under which the likelihood function under the alternative can be

decomposed as a vine PCC, and as such, choose an appropriate vine model. These results are

later generalized to test whether the coefficients of a possibly non-linear median regression function

have a given value against an alternative non-linear median regression.

2.3.1 Testing independence (zero coefficients) hypothesis in linear reg-

ressions

Consider the problem of testing the null hypothesis (2.3) against the alternative (2.4), using the

test statistic (2.7) and given the assumptions (2.1) and (2.2). As it was shown in Section 2.2,
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under the alternative hypothesis the likelihood function can be expressed as

L1(U(n), β1) =
n∏
t=1

P [s(yt) = st | S
¯t−1 = s

¯t−1, X] . (2.10)

Let s(yj) be a scalar element of S
¯t−1, with S

¯
\j
t−1 = S

¯t−1\s(yj) such that

S
¯
\j
t−1 = {s(y1), s(y2), ..., s(yj−1), s(yj+1), ..., s(yt−1)}

and s(yt) /∈ S
¯t−1. By choosing a single element of S

¯t−1, say s(yj), we would have

P [s(yt) = st | S
¯t−1 = s

¯t−1, X] =
P [s(yt) = st, s(yj) = sj | S

¯
\j
t−1 = s

¯
\j
t−1, X]

P [s(yj) = sj | S
¯
\j
t−1 = s

¯
\j
t−1, X]

=
∑
kt=0,1

∑
kj=0,1

(−1)kt+kj×

=
{
P [s(yt) ≤ st − kt, s(yj) ≤ sj − kj | S

¯
\j
t−1 = s

¯
\j
t−1, X]

}
=/P [s(yj) = sj | S

¯
\j
t−1 = s

¯
\j
t−1, X],

(2.11)

where the bivariate conditional probability in (2.11) can be expressed in terms of copulae as follows

P [s(yt) = st | S
¯t−1 = s

¯t−1, X] =
∑
kt=0,1

∑
kj=0,1

(−1)kt+kj
{

=C
s(yt),s(yj)|S

¯
\j
t−1

(
F
s(yt)|S

¯
\j
t−1

(st − kt | s
¯
\j
t−1, X), F

s(yj)|S
¯
\j
t−1

(sj − kj | s
¯
\j
t−1, X)

)}
=/P [s(yj) = sj | S

¯
\j
t−1 = s

¯
\j
t−1, X].

(2.12)
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Further, let S
¯
\i,j
t−1 = S

¯
\j
t−1\s(yi), such that s(yi) is a scalar element of S

¯
\j
t−1. Then the arguments

F
s(yt)|S

¯
\j
t−1

and F
s(yj)|S

¯
\j
t−1

in copula expression (2.12) can be expressed by the general form

F
s(yt)|s(yi),S

¯
\i,j
t−1

(st − kt | si, s
¯
\i,j
t−1, X) ={

C
s(yt),s(yi)|S

¯
\i,j
t−1

(
F
s(yt)|S

¯
\i,j
t−1

(st − kt | s
¯
\i,j
t−1, X), F

s(yi)|S
¯
\i,j
t−1

(s(yi) | s
¯
\i,j
t−1, X)

)
−

= C
s(yt),s(yi)|S

¯
\i,j
t−1

(
F
s(yt)|S

¯
\i,j
t−1

(st − kt | s
¯
\i,j
t−1, X), F

s(yi)|S
¯
\i,j
t−1

(s(yi)− 1 | s
¯
\i,j
t−1, X)

)}
/P [s(yi) = si | S

¯
\i,j
t−1 = s

¯
\i,j
t−1, X].

(2.13)

Thus, decomposition (2.12), and in turn (2.13) can be applied recursively to the elements of the

likelihood function (2.5), such that it is expressed in terms of bivariate copulae. Let S
¯t−1 =

{s(y1), ..., s(yt−1)} be the variables that s(yt) for t = 2, ..., n is conditioned on. We follow Joe

(2014), by letting σt−1 = {σ(1, t), ..., σ(t−1, t)} be a permutation of S
¯t−1, such that s(yt) is paired

sequentially, first to σ(1, t), then σ(2, t) and finally σ(t−1, t), where in the rth step (2 ≤ r ≤ t−1),

σ(r, t) is paired to t conditional on σ(1, t), ..., σ(r − 1, t). For n ≤ 3 (i.e. t = 2, 3) there are only

three possible permutations with σ1 = {s(y1)} for t = 2, and σ2 = {s(y1), s(y2)}, as well as

σ2 = (s(y2), s(y1)) for t = 3 respectively. Therefore, under assumptions (2.1) and (2.2), and with

n ≤ 3, let H0 and H1 be defined by (2.3) - (2.4), then the Neyman-Pearson type test-statistic

based on the signs (s(y1), ..., s(yn))′ can be expressed as

SLn(β1) = lnP [s(y1) = s1 | X] +
n∑
t=2

ln ∆
s+t
s−t

∆
s+t−1

s−t−1

Ct,t−1|t−2

−
n∑
t=2

lnP [s(yt−1) = st−1 | S
¯t−2 = s

¯t−2, X]− n ln

{
1

2

}
,

for t = 2, ..., n, where

∆
s+t
s−t

∆
s+t−1

s−t−1

Ct,t−1|t−2 =
∑
kt=0,1

∑
kt−1=0,1

(−1)kt+kt−1

× ×
(
Cs(yt),s(yt−1)|S

¯t−2

(
Fs(yt)|S

¯t−2
(st − kt | s

¯t−2, X), Fs(yt−1)|S
¯t−2

(st−1 − kt−1 | s
¯t−2, X)

))
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and such that

lnP [s(y1) = s1 | S
¯0 = s

¯0, X] = s(y1) ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
+ lnP [y1 < 0 | X].

where X = [x0, ..., xn−1]′ is a n× (k + 1) matrix of stochastic explanatory variables.

Proof: See Appendix.

For n > 3, the permutations σt−1 are dependent on the choice of the permutations at stages

3, ..., t − 1. Therefore, an issue that requires considerable attention is whether there exists a

decomposition such as the one considered in the earlier example, for n > 3. Furthermore, the like-

lihood function expressed in terms of bivariate copulae using by recursively using (2.12) and (2.13),

assumes that a single copula is specified for each conditional bivariate distribution F
s(yt),s(yj)|S

¯
\j
t−1

in decomposition (2.10) over all possible values of S
¯
\j
t−1, which implies that the copula is unique

for the Cartesian product of the ranges of conditional CDFs F
s(yt)|S

¯
\j
t−1

and F
s(yj)|S

¯
\j
t−1

. Therefore,

the decomposition must be such that each conditional bivariate distribution in the said vine has a

constant conditional copula [see Panagiotelis et al. (2012)]. For a constant conditional copula to

exist, the following conditions outlined by Panagiotelis et al. (2012) must be satisfied.

Existence of constant conditional copula: Consider the bivariate distribution function

F
s(yt),s(yj)|S

¯
\j
t−1

. We say that a copula C = C
s(yt),s(yj)|S

¯
\j
t−1

is constant over all possible values of

S
¯
\j
t−1 if

∑
m=0,1

∑
n=0,1

(−1)m+nC(ak−m, bl−n) ≥ 0, ∀k, l ∈ {1, 2} × {1, 2},

where a0 < a1 < a2 and b0 < b1 < b2, are the distinct points corresponding to the ranges of

the conditional Bernoulli CDFs F
s(yt)|S

¯
\j
t−1

and F
s(yj)|S

¯
\j
t−1

respectively, such that a0 = b0 = 0 and

a2 = b2 = 1, and where further, the following constraints are satisfied:

C
s(yt),s(yj)|S

¯
\j
t−1

(
a
s(yt)|S

¯
\j
t−1
, b
s(yj)|S

¯
\j
t−1

)
= P [s(yt) ≤ st, s(yj) ≤ sj | S

¯
\j
t−1 = s

¯
\j
t−1, X],

C
s(yt),s(yj)|S

¯
\j
t−1

(
1, b

s(yj)|S
¯
\j
t−1

)
= b

s(yj)|S
¯
\j
t−1
, C

s(yt),s(yj)|S
¯
\j
t−1

(
a
s(yt)|S

¯
\j
t−1
, 1
)

= a
s(yt)|S

¯
\j
t−1
,
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where a
s(yt)|S

¯
\j
t−1

:= P [s(yt) ≤ st | S
¯
\j
t−1 = s

¯
\j
t−1, X] and b

s(yj)|S
¯
\j
t−1

:= P [s(yj) ≤ sj | S
¯
\j
t−1 = S

¯
\j
t−1, X].

To satisfy the above conditions, the vine decomposition must be such that the strength of the

dependence of the conditional bivariate distribution does not vary much across different values of

the conditioning set [see Panagiotelis et al. (2012)]. As we are dealing with time-series data, the

D-vine decomposition yields a constant dependence structure over different values of S
¯
\j
t−1, and is

thus, the most appropriate and intuitive choice for the decomposition of the likelihood function

(2.10).

The D-vine PCC (which is depicted in figure 2.1) is constructed by n − 1 trees, say D =

{T1, ..., Tn−1}, comprised of the edges ξ(D) = ξ(T1) ∪ ... ∪ ξ(Tn−1), where ξ(Tl) refers to the edges

of the tree Tl. In the first tree T1, the marginals F (s1), F (s2), ..., F (sn), are arranged as nodes in

consecutive order, say N(T1) := {1, 2, ..., n − 1, n}, where the nodes are of degree two, meaning

that no more than two edges is connected to each node. The corresponding edges join the adjacent

nodes, such that ξ(T1) := {12, 23, ..., (n−1, n)}. Next, the edges of the first tree ξ(T1) become the

nodes of T2, a process which is completed in a recursive manner, such that N(Tl+1) = ξ(Tl), with

the edges of each tree joining the adjacent nodes, and with the mutual elements between the nodes

becoming the conditioning set. To express likelihood function (2.10) as a D-vine decomposition,

we begin by calculating the marginals F1, ..., Fn, where Ft ∼ Bernoulli(pt), for t = 1, ..., n, with

CDFs that are expressed as (2.9). Therefore, under assumptions (2.1) and (2.2), we have

Ft(st | X) =


0, for st < 0

1− P [εt ≥ −β′xt−1 | X], for 0 ≤ st < 1

1, for st ≥ 1

, t = 1, ..., n. (2.14)

Once the marginals are obtained, the next step consists of evaluating the copulae in the

first tree (i.e. C12(F1, F2), ..., Cn−1,n(Fn−1, Fn), corresponding to the edges ξ(T1)). In the

second tree, the copulae C13|2(F1|2, F3|2), ..., Cn−2,n|n−1(Fn−2|n−1, Fn|n−1) are evaluated, next

C14|23(F1|23, F4|23), ..., Cn−3,n|n−2,n−1(Fn−3|n−2,n−1, Fn|n−2,n−1) in the third tree, and so on.

In the case of continuous variables, say {s∗(yt) ∈ R, t = 1, ..., n}, the construction of the D-vine

involves an iterative copula evaluation process for the trees T1, ..., Tn−1. This leads to n(n− 1)/2
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Figure 2.1: D-vine PCC for the n-variate case

1 2 n− 1 n T1
12 n− 1, n

12 23 n− 1, n
T2

13 | 2

1, n− 1 | S
¯\j−

2, n | S
¯\j+

Tn−1

1, n | S
¯\j

Note: D-vine for a sample size n consists of n−1 trees. The first tree consists of the marginals or-

dered consecutively as nodes, with the edges connecting the adjacent nodes, and with the elements

shared by the two nodes going in the conditioning set. The edges of each tree Tl become the nodes

of the tree Tl+1. In this figure, S
¯\i−

and S
¯\j+

correspond to the elements S
¯\j−

:= {2, 3, ..., n − 2}

and S
¯\j+

:= {3, ..., n− 1} respectively, with S
¯\j

:= {2, 3, ..., n− 1}.

67



copula evaluations, which corresponds to one copula evaluation for each edge [see Appendix]. On

the other hand, for discrete variables, the conditional p.m.fs are expressed as in (2.12), which

requires the evaluation of the following four copulae

C++
t,j|\j(F

+
t|\j, F

+
j|\j), C+−

t,j|\j(F
+
t|\j, F

−
j|\j),

C−+
t,j|\j(F

−
t|\j, F

+
j|\j), C−−t,j|\j(F

−
t|\j, F

−
j|\j),

where F+
t|\j = P [s(yt) ≤ st | S

¯
\j
t−1 = s

¯
\j
t−1, X] and F−t|\j = P [s(yt) ≤ st − 1 | S

¯
\j
t−1 = s

¯
\j
t−1, X].

Henceforth, 4× n(n− 1)/2 bivariate copulae need to be evaluated in the case of discrete data.

Let us express the joint p.m.f of the signs as follows

P1[s(y1) = s1 | X]×
n∏
t=2

Pt|1:t−1[s(yt) = st | s(y1) = s1, ..., s(yt−1) = st−1, X], (2.15)

where following the result by Stoeber et al. (2013), if the D-vine is expressed as a vine-array

A = (σlt)1≤l≤t≤n, where l = 2, ..., n− 1 is the row with tree Tl, and column t has the permutation

σt−1 = (σ(1, t), ..., σ(t− 1, t)) of the previously added variables, such that



− 12 23 34 · · · n− 1, n

− 13 | 2 24 | 3 · · · n− 2, n | n− 1

. . . · · · · · · ...

− 1, n− 1 | S
¯\j−

2, n | S
¯\j+

− 1, n | S
¯\j

−


, A =



1 1 2 3 · · · n− 1

2 1 2 · · · n− 2

. . . · · · · · · ...

n− 2 1 2

n− 1 1

n


then

Pt|1:t−1[s(yt) = st | s(y1) = s1 : s(yt−1) = st−1, X] =

{
2∏

l=t−1

cσltt,|σ1t,...,σt−1,t

}
×cσltt×Pt[s(yt) = st | X],

(2.16)
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where following Joe (2014), the copula densities in expression (2.16) are calculated by

ct,j|\j =
C++
t,j|\j(F

+
t|\j, F

+
j|\j)− C

−+
t,j|\j(F

−
t|\j, F

+
j|\j)− C

+−
t,j|\j(F

+
t|\j, F

−
j|\j) + C−−t,j|\j(F

−
t|\j, F

−
j|\j)

Pt|\j[s(yt) = st | S
¯
\j
t−1 = s

¯
\j
t−1, X]Pj|\j[s(yj) = sj | S

¯
\j
t−1 = s

¯
\j
t−1, X]

, (2.17)

which results in the following proposition.

Proposition 3 Let A = (σlt)1≤l≤t≤n be a D-vine array for the signs s(y1), ..., s(yn). Under as-

sumptions (2.1) and (2.2), let H0 and H1 be defined by (2.3) - (2.4),

SLn(β1) =
n∑
t=2

2∑
l=t−1

ln cσltt,|σ1t,...,σt−1,t +
n∑
t=2

ln cσ1tt +
n∑
t=1

s(yt)at(β1) > c1(β1),

where

at(β1) = ln

{
1− Pt[εt ≤ −β′xt−1 | X]

Pt[εt ≤ −β′xt−1 | X]

}
,

and suppose the constant c1(β1) satisfies P [SLn(β1) > c1(β1)] = α under H0, with 0 < α < 1.

Then the test that rejects H0 when

SLn(β1) > c1(β1) (2.18)

is most powerful for testing H0 against H1 among level-α tests based on the signs
(
s(y1), ..., s(yn)

)′
.

Proof and algorithm: See Appendix.

As with the first chapter, under the null hypothesis the signs s(y1), ..., s(yn) are i.i.d. according to

BernoulliBi(1, 0.5), with the distribution of SLn(β1) only depending on the weights at(β1), without

the presence of any nuisance parameters. Assumption (2.2) implies that tests based on SLn(β1),

such as the test given by (2.27), are distribution-free and robust against heteroskedasticity of

unknown form. On the other hand, under the alternative hypothesis, the power function of the test

depends on the form of the distribution of εt. A special case is where ε1, ..., εn are independently

distributed according to N(0, 1), which leads to the optimal test statistic assuming the following

form

SLn(β1) =
n∑
t=2

2∑
l=t−1

ln cσltt,|σ1t,...,σt−1,t +
n∑
t=2

ln cσ1tt +
n∑
t=1

s(yt)at(β1) > c1(β1),
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where

at(β1) = ln

{
Φ(β′xt−1)

1− Φ(β′xt−1)

}
,

where Φ(.) is the standard normal distribution function. The distibution of SLn(β1) can be

simulated under the null hypothesis with sufficient number of repliciations, and the critical values

can be obatined to any degree of precision.

2.3.2 Testing general full coefficient hypothesis in non-linear regres-

sions

We now consider a non-linear regression model

yt = f(xt−1, β) + εt, t = 1, ..., n, (2.19)

where xt−1 is an observable (k + 1) × 1 vector of stochastic explanatory variables, such that

xt−1 = [1, x1,t−1, ..., xk,t−1]′, f( · ) is a scalar function, β ∈ R(k+1) is an unknown vector of parameters

and

εt | X ∼ Ft(. | X)

where as before Ft(. | X) is a distribution function and X = [x0, ..., xn−1] is an n× (k+ 1) matrix.

Once again, we suppose that the error terms process {εt, t = 1, 2, · · · } is a strict conditional

mediangale, such that

P [εt > 0 | εt−1, X] = P [εt < 0 | εt−1, X] =
1

2
, (2.20)

with

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}, for t ≥ 2

and where (2.20) entails that εt | X has no mass at zero, i.e. P [εt = 0 | X]=0 for all t. We do not

require that the parameter vector β be identified.
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We consider the problem of testing the null hypothesis

H(β0) : β = β0, (2.21)

against the alternative hypothesis

H(β1) : β = β1, (2.22)

We construct a test for H(β0) against H(β1) in a similar manner to Section 2.3.1, by first trans-

forming model (2.19) to

ỹt = g(xt−1, β, β0) + εt, t = 1, ..., n

where ỹt = yt− f(xt−1, β0) and g(xt−1, β, β0) = f(xt−1, β)− f(xt−1, β0). Notice that testing H(β0)

against H(β1) is equivalent to testing

H̄0 : g(xt−1, β, β0) = 0, for t = 1, ..., n

against the alternative

H̄A : g(xt−1, β, β0) = f(xt, β1)− f(xt, β0), for t = 1, ..., n

For Ũ(n) = (s(ỹ1), ..., s(ỹn))′, where for 1 ≤ t ≤ n

s(ỹt) =

 1, if ỹt ≥ 0

0, if ỹt < 0
.

As before, the joint p.m.f of the process of signs is expressed by

P1[s(ỹ1) = s̃1 | X]×
n∏
t=2

Pt|1:t−1[s(ỹt) = s̃t | s(ỹ1) = s̃1, ..., s(ỹt−1) = s̃t−1, X]. (2.23)

Furthermore, the D-vine-array Ã = (σ̃lt)1≤l≤t≤n, is such that l = 2, ..., n−1 is the row with tree Tl,
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and column t has the permutation σ̃t−1 = (σ̃1t, ..., σ̃t−1,t) of the previously added variables. Then

Pt|1:t−1[s(ỹt) = s̃t | s(ỹ1) = s̃1, ..., s(ỹt−1) = s̃t−1, X] =

{
2∏

l=t−1

cσ̃ltt,|σ̃1t,...,σ̃t−1,t

}
×cσ̃ltt×Pt[s(ỹt) = s̃t | X],

(2.24)

which leads to the following corollary.

Corollary 3 Let Ã = (σ̃lt)1≤l≤t≤n be a D-vine array for the signs s(ỹ1), ..., s(ỹn). Under assump-

tions (2.19) and (2.2), let H(β0) and H(β1) be defined by (2.21) - (2.22),

SNn(β0 | β1) =
n∑
t=2

2∑
l=t−1

ln cσ̃ltt,|σ̃1t,...,σ̃t−1,t +
n∑
t=2

ln cσ̃1tt +
n∑
t=1

s(yt − f(xt−1, β0))ãt(β0 | β1) > c1(β0, β1),

where

ãt(β0 | β1) = ln

{
1− pt[xt−1, β0, β1 | X]

pt[xt−1, β0, β1 | X]

}
, pt[xt−1, β0, β1 | X] = Pt[εt ≤ f(xt−1, β0)−f(xt−1, β1) | X]

and suppose the constant c1(β0, β1) satisfies the constraint P [SNn(β0 | β1) > c1(β0, β1)] = α under

H(β0), with 0 < α < 1. Then the test that rejects H(β0) when

SNn(β0 | β1) > c1(β0, β1) (2.25)

is most powerful for testing H(β0) against H(β1) among level-α tests based on the signs(
s(ỹ1), ..., s(ỹn)

)′
.

Consider a linear function f(xt−1, β) = β′xt−1, and assume that under the alternative hypothesis

εt for t = 1, ..., n follows a standard normal distribution (i.e. εt ∼ N(0, 1)). Then the statistic for

testing H(β0) against the alternative H(β1) is given by

SNn(β0 | β1) =
n∑
t=2

2∑
l=t−1

ln cδ̃ltt,|δ̃1t,...,δ̃t−1,t
+

n∑
t=2

ln cδ̃1tt +
n∑
t=1

s(yt − β′0xt−1)δ̃t(β0 | β1) > c1(β0, β1),

where

ãt(β0 | β1) = ln

{
Φ((β1 − β0)′xt−1)

1− Φ((β1 − β0)′xt−1)

}
,
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such that Φ(.) is the standard normal distribution function. As in Section 2.3, the distribution

of SNn(β0 | β1) can be simulated under the null hypothesis with sufficient number of replications

and the relevant critical values can be obtained to any degree of precision.

2.4 Estimation

In this Section, we first consider the issue of estimating the bivariate copulae in the D-vine decom-

position and suggest a sequential estimation strategy for the parameters of the copulae. We then

turn our attention to the problem of selecting a class of parametric bivariate copulae. The choice

of the latter has an important implication on introducing dependence to the vector of signs.

2.4.1 Sequential estimation of the D-vine

The calculation of the test statistics in Section 2.3 requires four bivariate copula evaluations at

n(n−1)/2 distinct points, leading to a total of 2n(n−1) copula evaluations. The estimation of the

D-vine is often facilitated with the maximum likelihood (MLE). However, as the latter requires

optimization with respect to at least 2n(n−1) copula parameters, sequential estimation procedures

are favored for faster computation times, with the caveat that the increased speed comes at the

cost of efficiency. Furthermore, the sequential estimates may be provided as starting points for the

simultaneous numerical optimization using MLE [see Czado et al. (2012); Haff (2012); Dissmann

et al. (2013)]. We assume that the copulae are specified parametrically, given by an appropriate

parameter (vector). More specifically, let θθθl = (θ′1,k, ..., θ
′
n−l,k)

′ be the set of all the parameters to be

estimated for tree l, l = 1, ..., n−1 of the D-vine, with k = l−1 conditioning variables. Therefore,

θθθ = (θθθ′1, ..., θθθ
′
n−1)′ is the entire set of the parameters that needs to be estimated for the D-vine

decomposition. To estimate the parameter vector θθθ, we follow a sequential estimation strategy

proposed by Czado et al. (2012), whereby first, the parameters of the unconditional bivariate

copulae are estimated. These parameters are then utilized as means of estimating the parameters

of bivariate copulae with a single conditioning variable. The latter are then used to estimate the

pair-copulae with two conditioning variables, and so on. This bivariate copula estimation approach
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is continued sequentially until all parameters have been estimated.

In the first step, the marginals are obtained by computing the Bernoulli CDFs (2.14) using an

arbitrary distribution, such as the standard normal distribution considered in Section 2.3. The

second step of the process involves estimating the parameters of the unconditional copula, by

fixing the marginals with their aforementioned estimates and maximizing the bivariate likelihood

corresponding to each copula in each tree l to obtain θ̂̂θ̂θl = (θ̂′1,k, ..., θ̂
′
n−l,k) for l = 1, ..., n − 1 and

k = l− 1 . As all the variables are discrete, the log-likelihood function, say, for the unconditional

copula Ct,t+1 for t = 1, ..., n− 1 for the signs (s(yi,t), s(yi,t+1)), i = 1, ..., n− 1 is expressed as

L(θt,0) =
n−1∑
i=1

log

 ∑
{a1,a2}∈{−,+}2

(−1)ajCt,t+1

(
Ft(s

a1
i,t | X; β̂1), Ft+1(sa2

i,t+1 | X; β̂1); θt,0

) .

The estimate of the copula parameter, θ̂t,0 for t = 1, ..., n− 1, is then obtained as follows

θ̂t,0 = arg max
θt,0

L(θt,0),

which under regularity conditions solves

∂L(θt,0)

∂θt,0
= 0.

Let us illustrate this process with an example: once the marginals have been obtained, the next

step involves estimating the parameters θt,0 for t = 1, ..., n− 1 of the unconditional copulae. Next,

we are interested in estimating θt,1 for t = 1, ..., n− 2. Define

ût|t+1 = Ft|t+1

(
st | st+1, X; θ̂t,0

)
,

and

v̂t+2|t+1 = Ft+2|t+1

(
st+2 | st+1, X; θ̂t+1,0

)
,

for t = 1, ..., n − 2. The data ût|t+1 and v̂t+2|t+1 is then used to estimate the parameters θt,1

for t = 1, ..., n − 2, denoted by θ̂t,1. This procedure is repeated sequentially until all parameters
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have been estimated. Haff et al. (2010) show that under regularity conditions, the sequential

estimates are asymptotically normal; however, as noted earlier their asymptotic covariance is

“intractable”and the faster computation time comes at the cost of efficiency. Therefore, the

sequential estimates can be utilized as the starting values of the high-dimensional MLE.

It is worth mentioning that although estimating the parameters for each of the 2n(n−1) bivariate

copulae does not present any significant issues in finite samples, this approach is not feasible as n→

∞, since the estimation procedure, especially using the MLE approach becomes computationally

burdensome in large samples. However, it is immediately evident that when the process yt is

stationary, the parameters of the copulae for each tree l are invariant to time shifts and the problem

of obtaining θ̂̂θ̂θl = (θ̂′1,k, ..., θ̂
′
n−l,k) for l = 1, · · · , n− 1 and k = l− 1, reduces to computing a single

parameter vector θ̂′k. In other words, we would only have to estimate θ̂̂θ̂θl = θ̂′k for l = 1, ..., n − 1

and k = l − 1, which reduces the problem to n − 1 parameter vector estimations. This number

can further be reduced to one parameter, if we consider a 1-truncated D-vine [see Section 2.4.3].

Another approach for estimating one-parameter pair-copulae in the sequential estimation proce-

dure for copula families with a known relationship to Kendall’s τ consists of inverting the empirical

Kendall’s τ based on, say, ût and ût+1 for t = 1, ..., n− 1 for the edges of the first tree. However,

we provide a caveat that the Kendall’s τ of discrete data does not correspond to the Kendall’s

τ of the bivariate copulae [see Denuit and Lambert (2005)]. Denuit and Lambert (2005) show

that by continuous extension of the discrete variables with a perturbation with values in [0, 1], the

continuous features of Kendall’s τ are adaptable to discrete data. In other words

τ(s∗(yt), s
∗(yt+1)) = 4

∫ ∫
[0,1]2

C∗t,t+1 (ût, ût+1) dC∗t,t+1 (ût, ût+1)− 1

for t = 1, ..., n− 1, such that ût = F
(
s∗t ; β̂1

)
,

s∗(yt) = s(yt) + U − 1

where U is a continuous random variable in [0, 1]. A natural choice for U is the uniform distribution.
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2.4.2 Selection of the copula family

Many different classes of parametric bivariate copulae have extensively been studied and reviewed

by Joe (2014) and others that can fit within the framework of the PCC POS-based tests. These

include the Archimedean, elliptical, extreme value or max-id copula families that can specify

the dependence structure of the vector of signs. As the dependence is introduced by the copula

family, the type and the degree of the dependence between the signs depends on the choice of

the copula. The literature surrounding the goodness-of-fit of copulae is extensive and has been

analyzed by Genest et al. (2006), Genest et al. (2009), and Berg (2009), among many others.

Genest et al. (2009) categorize goodness-of-fit tests into three broad categories: procedures for

testing particular dependence structures such as Gaussian or Clayton family; procedures that may

be used for any classes of copulae, but require a strategic choice for their implementation; and

finally, the so-called “blanket tests”that apply to all classes of copulae and require no strategic

choice for their use. A simple procedure proposed by Joe (1997) involves specifying the Akaike

information critetion (AIC) to different copulae and using it as a copula selection criterion, which

is particularly attractive as it allows for the automation of the copula selection process [see. Czado

et al. (2012)]. The AIC specified to the copulae of, say, the first tree of the D-vine, can be expressed

as follows

AIC = −2
t∑
i=1

log ct,t+1(ûi,t, ûi,t+1; θ̂1,k) + 2l

for t = 1, ...., n− 1 and k = 1, ..., n− 1, and where l is the number of parameters θ1,k. Panagiotelis

et al. (2012) suggest that while dependence structures such as tail dependence are weak in discrete

data, the choice of the copulae could still have a significant effect on the joint pmf of the signs.

They considered Gaussian, Clayton and Gumbel copulae in constructing the D-vines for Bernoulli

margins by keeping the marginal probabilities and dependence constant, and have found that

in the case where the probabilities of zero marginals and joint probabilities in the data is high,

preference goes to the use of the Gumbel copula over the other two alternatives.

In the earlier Section, we had considered standard normal distribution as the marginals. We further

choose the Gaussian copula for the computation of the PCC-POS-based tests, due to its desirable

properties, such as probabilistic interpretability, flexibility, and a wide range of dependence [see
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Durante and Sempi (2010)]. Our simulation results show that the use of the Gaussian copula for

the PCC-POS-based tests under different distributions and heteroskedasticities yields power that

is superior to the other tests considered in our study in most circumstances. The normal copula

model is equivalent to the bivariate normal distributions, as

F (st, st+1) = CΦ
ρ (Φ(st),Φ(st+1))

= Φ2

(
Φ−1 (Φ(st)) ,Φ

−1 (Φ(st+1)) ; ρt,t+1

)
= Φ(st, st+1),

for the first tree, and where ρt,t+1 is the correlation coefficient of the bivariate standard normal

distribution. In other words

CΦ
t,t+1 (Φ(st),Φ(st+1); ρt,t+1) =

1

2π
√

(1− ρ2
t,t+1)

×

=

Φ−1(Φ(st))∫
−∞

Φ−1(Φ(st+1))∫
−∞

e

{
−

Φ(st)
2−2ρt,t+1Φ(st)Φ(st+1)+Φ(st+1)2

2(1−ρ2t,t+1)

}
dΦ(st)dΦ(st+1).

2.4.3 Truncated D-vines

Following Joe (2014), we refer to a D-vine as a p-truncated D-vine, if the copulae in the trees

Tp+1, ..., Tn are C⊥, where by definition

C⊥ (u1, ..., un) =
n∏
t=1

ut, with (U1, ..., Un) ∼ U(0, 1),

implying U1 ⊥ U2 ⊥ ... ⊥ Un. The POS-based tests in Chapter 1 can be regarded as a special

case of the PCC-POS based tests, whereby the former can be constructed by a 1-truncated D-

vine, which only depends on C12, C23, ..., Cn−1,n, or rather C12, Cσ133, ..., , Cσ1nn in a vine array
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representation, given the following vine array



− 12 23 34 · · · n− 1, n

− 13 | 2⊥ 24 | 3⊥ · · · n− 2, n | n− 1⊥

. . . · · · · · · ...

− 1, n− 1 | S
¯
⊥
\j− 2, n | S

¯
⊥
\j+

− 1, n | S
¯
⊥
\j

−


, A =



1 1 2 3 · · · n− 1

2 1⊥ 2⊥ · · · n− 2⊥

. . . · · · · · · ...

n− 2 1⊥ 2⊥

n− 1 1⊥

n


Similarly, a 2-truncated D-vine, depends on the copulae C12, C23, ..., Cn−1,n and C13|2, C24|3, ..., Cn−2,n|n−1

or Cσ1tt for t = 2, ..., n and Cσ2tt|σ1t for t = 3, ..., n using the vine array representation. Therefore,

for a p-truncated D-vine, (2.24) is modified to

Pt|1:t−1[s(ỹt) = s̃t | s(ỹ1) = s̃1, ..., s(ỹt−1) = s̃t−1, X] = Pt|1:p[s(ỹt) = s̃t | s(ỹ1) = s̃1, ..., s(ỹp) = s̃p, X]

=


2∏

l=p∧(t−1)

cσ̃ltt,|σ̃1t,...,σ̃t−1,t

× cσ̃ltt × Pt[s(ỹt) = s̃t | X],

(2.26)

for t− 1 ≥ p.

Corollary 4 Let Ã = (σ̃lt)1≤l≤t≤n be a D-vine array for the signs s(ỹ1), ..., s(ỹn), where the signs

{s(ỹt)}∞t=0 follow a Markov process of order p. Under assumptions (2.19) and (2.2), let H(β0) and

H(β1) be defined by (2.21) - (2.22),

SNn(β0 | β1) =
n∑
t=2

2∑
l=p∧(t−1)

ln cσ̃ltt,|σ̃1t,...,σ̃t−1,t +
n∑
t=2

ln cσ̃1tt +
n∑
t=1

s(yt − f(xt−1, β0))ãt(β0 | β1) > c1(β0, β1),

where

ãt(β0 | β1) = ln

{
1− pt[xt−1, β0, β1 | X]

pt[xt−1, β0, β1 | X]

}
, pt[xt−1, β0, β1 | X] = Pt[εt ≤ f(xt−1, β0)−f(xt−1, β1) | X]
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and suppose the constant c1(β0, β1) satisfies the constraint P [SNn(β0 | β1) > c1(β0, β1)] = α under

H(β0), with 0 < α < 1. Then the test that rejects H(β0) when

SNn(β0 | β1) > c1(β0, β1) (2.27)

is most powerful for testing H(β0) against H(β1) among level-α tests based on the signs
(
s(ỹ1), ..., s(ỹn)

)′
.

2.5 Choice of the optimal alternative hypothesis

In this Section, we follow Dufour and Taamouti (2010a) by first showing the analytical derivation

of the power envelope function of the PCC-POS-based tests. We then suggest using simulations as

means of approximating the said function, by showing the difficulty of inverting the latter to find

the optimal alternative. Thereafter, we propose an adaptive approach based on the split-sample

technique to choose an alternative which has a power function close to that of the power envelope.

2.5.1 Power envelope of PCC-POS tests

We make the assertion that point-optimal tests trace out the power envelope (i.e. the maximum

attainable power) for any given testing problem [see King (1987)]. However, in practice the

alternative hypothesis β1 is unknown and a problem consists of finding an approximation for it,

such that the power function is maximized and is close to that of the power envelope. Following

Dufour and Taamouti (2010a) and Dufour and Jasiak (2001), we propose an adaptive approach

based on the split-sample technique to choose an alternative β1 that yields the greatest power

function. The details of the split-sample technique can be found in Section 2.5.2. We follow

Dufour and Taamouti (2010a) by showing the analytical derivation of the power envelope of the

PCC-POS tests for predictive regressions, which can be purposed as a benchmark for comparing

the power functions of the PCC-POS tests for different sample splits.
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We have shown in Section 2.3.2 that the PCC-POS test is a function of β1. In other words,

SNn(β0 | β1) =
n∑
t=2

2∑
l=t−1

ln cσ̃ltt|σ̃1t,...,σ̃t−1,t+
n∑
t=2

ln cσ̃1tt+
n∑
t=1

ln

{
1− pt[xt−1, β0, β1 | X]

pt[xt−1, β0, β1 | X]

}
s(yt−f(xt−1, β0)).

which in turn implies that its power function, say Π(β0, β1), is also a function of β1

Π(β0, β1) = P [SNn(β0 | β1) > c1(β0, β1) | H(β1)]

where c1(β0, β1) is the smallest constant that satisfies P [SNn(β0 | β1) > c1(β0, β1) | H(β0)] ≤ α,

and where α is an arbitrary significance level. Theorem 2 provides the theoretical results for the

power function of the PCC-POS tests.

Theorem 2 Under assumption (2.2) and and given model (2.19), and further under the condition

that s(ỹ1), ..., s(ỹt) follow a Regularity Markov Type process, the power function of SNn(β0 | β1) is

given by

Π(β0, β1) = P [SNn(β0 | β1) > c1(β0, β1) | X] =
1

2
+

1

π

∫ ∞
0

Im{exp(iuc1(β0, β1))φSNn(u)}
u

du

∀u ∈ R, i =
√
−1, and with Im{z} denoting the imaginary part of the complex number z. φSNn(u)

is given by

φSNn(u) =
n∏
t=1

(
EX
[
exp

(
iu

{
Rt,t−1 + ln

{
1− pt[xt−1, β0, β1 | X]

pt[xt−1, β0, β1 | X]

}
s(ỹt)

})]
+ ρt(u)

)
,

where R1,0 = 0, Rt,t−1 =
2∑

l=t−1

ln cσ̃ltt|σ̃1t,...,σ̃t−1,t + ln cσ̃1tt for t = 2, ..., n, such that for D-vine-

array Ã = (σ̃lt)1≤l≤t≤n, l = 2, ..., n − 1 is the row with tree Tl, and column t has the permutation

σ̃t−1 = (σ̃1t, ..., σ̃t−1,t) of the previously added variables, pt[xt−1, β0, β1 | X] = Pt[εt ≤ f(xt−1, β0)−

f(xt−1, β1) | X], S̃
¯ t−1 = s(yt−1 − f(xt−2, β0)), ..., s(y1 − f(x0, β0)) and

pt[xt−1, β0, β1 | S̃
¯ t−1 = s̃

¯ t−1, X] =

{
2∏

l=t−1

cσ̃ltt,|σ̃1t,...,σ̃t−1,t

}
× cσ̃ltt × Pt[s(yt − f(xt−1, β0)) = j | X]
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Finally, c1(β0, β1) is the smallest constant that satisfies P [SNn(β0 | β1) > c1(β0, β1) | H(β0)] ≤ α,

where α is an arbitrary significance level.

Proof: See Appendix.

Under the assumption that the signs follow an RMT-process, ρt(u) can be estimated using the

results from Theorem 2 of Heinrich (1982). Given that point-optimal tests are optimal at a specific

point in the alternative parameter space, the power envelope of the PCC-POS tests, say Π̄(β1), is

obtained for values of β, such that {β : β = β1,∀β1 ∈ R(k+1)}. Finding values of β1 for a PCC-

POS test at level α, with a power function that is close to the power envelope can be achieved

by inverting the power envelope function. However, in a much simpler case of POS tests for

i.n.i.d data, Dufour and Taamouti (2010a) show that the inversion of the power function is not

a straightforward task and obtaining an exact solution is not feasible. Therefore, simulations are

used as means of approximating the power envelope function and finding the optimal alternative

for the PCC-POS test.

2.5.2 Split-sample technique for choosing the optimal alternative

As we have noted in the earlier Section, the power function of the PCC-POS test statistic depends

on the alternative β1, which in practice is unknown and needs to be approximated. To make

size control easier and to choose an approximation to β1 such that the power function of the

test statistic is close to that of the power envelope, we follow Dufour and Taamouti (2010a) by

proposing an adaptive approach based on the split-sample technique for choosing the alternative.

For an extensive review of adaptive statistical methods, we refer the reader to O’Gorman (2004).

Furthermore, the application of the split-sample technique in parametric settings can be studied

by consulting Dufour and Taamouti (2003) and Dufour et al. (2008). The split-sample technique

involves splitting a sample of size n into two independent subsamples, say n1 and n2, such that

n = n1 + n2. The first subsample is then used to estimate the alternative β1, while the other

is purposed for computing the PCC-POS test statistic. Assuming that f(xt−1, β) = x′t−1β, the
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Figure 2.2: Power comparisons: different split-samples. Normal error distributions with different

values of ρ in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-

samples: 10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.

alternative β1 can be estimated using OLS

β̂(1) = (X ′(1)X(1))
−1X ′(1)y(1).

We provide a caveat that the OLS estimator is sensitive to extreme outliers, which motivates the

use of robust estimators [see. Maronna et al. (2019) for a review of robust estimators]. Using

β̂(1) and the observations in the second independent subsample, we compute the test-statistic as

follows

SNn(β0 | β(1)) =
n∑

t=n1+2

2∑
l=t−1

ln cσ̃ltt|σ̃(n1+1)t,...,σ̃t−1,t +
n∑

t=n1+2

ln cσ̃(n1+1)tt +

=
n∑

t=n1+1

ln

{
1− pt[xt−1, β0, β(1) | X]

pt[xt−1, β0, β(1) | X]

}
s(yt − x′t−1β0).

where for t = n1+2, ..., n and D-vine-array Ã = (σ̃lt)1≤l≤t≤n, l = n1+1, ..., n−1 is the row with tree

Tl, and column t has the permutation σ̃t−1 = (σ̃(n1+1)t, ..., σ̃t−1,t) of the previously added variables,

pt[xt−1, β0, β(1) | X] = Pt[εt ≤ x′t−1(β0−β1) | X], and S̃
¯t−1 = s(yt−1−x′t−2β0), ..., s(yn1+2−x′n1+1β0).
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The choices for the subsamples n1 and n2 can be arbitrary. However, our simulations show that

Figure 2.3: Power comparisons: different split-samples. Cauchy error distributions with different

values of ρ in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-

samples: 10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.

the proportions of observations retained for estimating the alternative and computing the PCC-

POS test statistic has an impact on the power of the test. We find that the power function of the

split-sample PCC-POS test (SS-PCC-POS test hereafter) is closest to that of the power envelope,

when a relatively small number of observations is retained for estimating the alternative, with the

rest used for computing the test statistic . These findings are in line with Dufour and Taamouti

(2010a). Specifically, by considering all the DGPs in our simulations study, we find that the

subsamples n1 and n2 must in turn contain roughly 10% and 90% of the observations of the entire

sample respectively.

2.6 PCC-POS confidence regions

In this Section, we lay out the theoretical framework for building confidence regions for a vector

(sub-vector) of the unknown parameters β, say Cβ(α), at a given significance level α, using the

proposed PCC-POS tests. Consider model (2.19) such that f(xt−1, β) = x′t−1β. Suppose we wish
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Figure 2.4: Power comparisons: different split-samples. Student’s t error distributions with 2

degrees of freedom [i.e t(2)] with different values of ρ in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-

samples: 10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.

Figure 2.5: Power comparisons: different split-samples. Normal error distributions with break in

variance, with different values of ρ in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power envelope the PCC-POS test statistic using different split-

samples: 10%, 30%, 50%, 70%. “PE”refers to the power envelope of the PCC-POS test.
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to test the null hypothesis (2.21) against the alternative hypothesis (2.22). Formally, this implies

finding all the values of β0 ∈ Rk such that

SNn(β0 | β1) =
n∑
t=2

2∑
l=t−1

ln cσ̃ltt,|σ̃1t,...,σ̃t−1,t +
n∑
t=2

ln cσ̃1tt +
n∑
t=1

s(yt − β′0xt−1)ãt(β0 | β1) < c1(β0, β1).

(2.28)

where the critical value is given by the smallest constant c(β0, β1) such that

P [SNn(β0| β1) > c(β0, β1)|β = β0] ≤ α

Thus, the confidence region of the vector of parameters β can be defined as follows:

Cβ(α) = {β0 : SNn(β0| β1) < c(β0, β1)|P [SNn(β0| β1) > c(β0, β1)|β = β0] ≤ α} .

Given the confidence region Cβ(α), confidence intervals for the components and sub-vectors of

vector β can be derived using the projection techniques. For a review of the projection technique

with a numerical illustration, the reader is referred to the first chapter of the thesis [see also

Dufour and Taamouti (2010a) and Coudin and Dufour (2009)]. Confidence sets in the form of

transformations T of β ∈ Rm, for m ≤ (k + 1), say T (Cβ(α)), can easily be found using these

techniques. Since, for any set Cβ(α)

β ∈ Cβ(α) =⇒ T (β) ∈ T (Cβ(α)), (2.29)

we have

P [β ∈ Cβ(α)] ≥ 1− α =⇒ P [T (β) ∈ T (Cβ(α))] ≥ 1− α (2.30)

where

T (Cβ(α)) = {δ ∈ Rm : ∃β ∈ Cβ(α), T (β) = δ}.

From (2.29) and (2.30) , the set T (Cβ(α)) is a conservative confidence set for T (β) with level 1−α.
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If T (β) is a scalar, then we have

P [inf{T (β0), for β0 ∈ Cβ(α)} ≤ T (β) ≤ sup{T (β0), for β0 ∈ Cβ(α)}] > 1− α.

2.7 Monte Carlo study

In this Section, we assess the performance of the proposed 10% SS-PCC-POS tests (in terms of size

control and power) by comparing it with other tests that are intended to be robust against non-

standard distributions and heteroskedasticity of unknown form. We consider DGPs under different

distributional assumptions and heteroskedasticities. For each DGP, we further consider different

correlation coefficients between the residuals of the predictive regressions and the disturbances

of the regressors. In the first subsection, the DGPs are formally introduced and in the following

subsection, the performance of the proposed 10% SS-PCC-POS tests are compared with that of

the other tests considered in our study.

2.7.1 Simulation setup

We assess the performance of the proposed 10% SS-PCC-POS tests in terms of size and power,

by considering various DGPs with different symmetric and asymmetric distributions and forms

of heteroskedasticity. The DGPs under consideration are supposed to mimic different scenarios

that are often encountered in practical settings, the motivation for which have extensively been

discussed in the first chapter. The performance of the 10% SS-PCC-POS tests is compared to

that of a few other tests, by considering the following linear predictive regression model

yt = βxt−1 + εt (2.31)

where β is an unknown parameter and

xt = θxt−1 + ut (2.32)
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where θ = 0.9 and

ut = ρεt + wt
√

1− ρ2 (2.33)

for ρ = 0, 0.1, 0.5, 0.9 and εt and wt are assumed to be independent. The initial value of x is given

by: x0 = w0√
1−θ2 and wt are generated from N(0, 1). The residuals εt are i.n.i.d and are categorized

by two groups in our simulation study. In the first group, we consider DGPs where the residuals

εt possess symmetric and asymmetric distributions:

1. normal distribution: εt ∼ N(0, 1);

2. Cauchy distribution: εt ∼ Cauchy;

3. Student’s t distribution with two degrees of freedom: εt ∼ t(2);

4. Mixture of Cauchy and normal distributions: εt ∼| εCt | −(1 − st) | εNt |, where εCt follows

Cauchy distribution, εNt follows N(0, 1) distribution, and

P (st = 1) = P (st = 0) =
1

2

The second group of DGPs represents different forms of heteroskedasticity:

5. break in variance:

εt ∼

 N(0, 1) for t 6= 25
√

1000N(0, 1) for t = 25
;

6. GARCH(1, 1) plus jump variance:

σ2
ε(t) = 0.00037 + 0.0888ε2

t−1 + 0.9024σ2
ε(t− 1) ,

εt ∼

 N(0, σ2
ε(t)) for t 6= 25

50N(0, σ2
ε(t)) for t = 25

;

We consider the problem of testing the null hypothesis H0 : β = 0. Our Monte Carlo simulations

compare the size and power of the 10%-PCC-POS test to those of T-test, T-test based on White
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(1980) variance-correction (WT-test hereafter), and the sign-based test proposed by Campbell

and Dufour (1995). Due to computational constraints, we perform only M1 = 1, 000 simulations

to evaluate the probability distribution of the 10% SS-PCC-POS test statistic and M2 = 1, 000

iterations for approximating the power functions of the proposed PCC-POS test and other tests.

In all simulations, we have considered a sample size of n = 50. As the sign-based statistic of

Campbell and Dufour (1995) has a discrete distribution, it is not possible to obtain test with a

precise size of 5%; therefore, the size of the test is 5.95% for n = 50.

2.7.2 Simulation results

The results of the Monte Carlo study corresponding to DGPs described in Section 2.7.1 are pre-

sented in figures 2.6-2.11. These figures compare the performance of the 10% SS-PCC-POS test in

terms of size and power, to those of the T-test, T-test based on White’s (1980) variance-correction,

as well as the sign-based procedure proposed by Dufour and Taamouti (2010a). The results are

descirbed in detail below.

First, figure 2.6 considers the case where the residuals εt are normally distributed. At first glance,

we note that all tests control size. Evidently, our test is outperformed by the T-test, as well

as the T-test based on White’s (1980) variance-correction. The former is expected, since for

normally distributed residuals, the T-test is the most powerful test. However, the 10% SS-PCC-

POS test outperforms the sign-based procedure porposed by Campbell and Dufour (1995) [CD

(1995) hereafter]. Furthermore, changing the correlation coefficient ρ does not seem to lead to

visually significant differences in the performance of the tests.

Second, figure 2.7 presents the results of the performance of the aforementioned tests, when the

residuals εt follows Cauchy distribution. It is evident that the 10% SS-PCC-POS test outperforms

all other tests. Moreover, the T-test and WT-test do not possess much power for low correlation

coefficient (0 and 0.1) values of ρ. However, as the correlation between ut and wt increases, the

gap between the power functions narrows significantly.

Third, in figures 2.8 and 2.9, we have considered the cases where the residuals in turn follow t(2)

and mixture distributions. In the former case of t(2) distributed residuals, the 10% SS-PCC-POS

88



test outperforms the rest; however, for almost all correlation coefficients ρ, the gap between the

power functions is rather small, albeit it is narrowest for ρ = 0.9. In the case of residuals with

mixture distribution, our 10% SS-PCC-POS test is still the most powerful test. On other hand,

it is evident that the T-test and WT-test do not possess much power for small values (0 and 0.1)

of correlation coefficient ρ. However, the power functions increase and converge to those of the

other tests, as the correlation increases.

An interesting observation is the stark contrast between the power of the 10% SS-PCC-POS test

and the T-test, when the errors follow the Cauchy, t(2) and normal distributions respectively.

As it has been discussed in the first chapter, the Cauchy and t(2) distributions possess heavy

tails, in the presence of which the standard error of the regression coefficients is inflated, which in

turn leads to low power when the mean is used as a measure of central tendency. For instance,

the Cauchy distribution has the heaviest tails among the considered DGPs, as a result of which

the T-test and WT-test have very low power. By noting that a Student’s t distribution with ν

degrees of freedom converges to the Cauchy distribution for ν = 1 and to the normal distribution

as ν →∞, it would be interesting to see at which degree of freedom the 10% SS-PCC-POS test is

outperformed by the T-test and WT-tests. Figures 2.12-2.15 suggest that for different values of ρ

in (2.33) the T-test and WT test outperform the 10% SS-PCC-POS test for ν = 4. Interestingly,

figure 2.16 shows that the tails of the t(2) distribution are substantially heavier than that of the

t(4), which may explain the transition.

Finally, in figures 2.8 and 2.9, the residuals are normally distributed with different forms of het-

eroskedasticity. In the first case [see figure 2.8], there is a break in variance, in the presence of

which, our test outperforms the other tests. Furthermore, the T-test and WT-test do not possess

any power for low correlation (0 and 0.1) values of ρ. However, with greater values of the correla-

tion coefficient the power curves of all test appear to converge. In the other case [see figure 2.9],

the variance follows a GARCH(1,1) model with a jump in variance. In this case, our test is only

outperformed by the CD (1995) test, which has the greatest power function. Nevertheless, the

10% SS-PCC-POS test still outperforms the T-test and WT-test.
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Figure 2.6: Power comparisons: different tests. Normal error distributions with different values of

ρ in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-

PCC-POS test] with: (1) the T-test; (2) the sign-based test proposed by Campbell and Dufour

(1995) [CD (1995) test]; and (3) the T-test based on White’s (1980) variance correction [WT-test].
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Figure 2.7: Power comparisons: different tests. Cauchy error distributions with different values of

ρ in (2.33) and θ = 0.9 in (2.32)

0 0.1 0.2 0.3 0.4 0.5

Parameter value

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Cauchy distribution, =0.9, =0

10% SS-PCC-POS test

CD (1995) test

T-test

WT-test

0 0.1 0.2 0.3 0.4 0.5

Parameter value

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Cauchy distribution, =0.9, =0.1

10% SS-PCC-POS test

CD (1995) test

T-test

WT-test

0 0.1 0.2 0.3 0.4 0.5

Parameter value

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Cauchy distribution, =0.9, =0.5

10% SS-PCC-POS test

CD (1995) test

T-test

WT-test

0 0.1 0.2 0.3 0.4 0.5

Parameter value

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r

Cauchy distribution, =0.9, =0.9

10% SS-PCC-POS test

CD (1995) test

T-test

WT-test

Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-

PCC-POS test] with: (1) the T-test; (2) the sign-based test proposed by Campbell and Dufour

(1995) [CD (1995) test]; and (3) the T-test based on White’s (1980) variance correction [WT-test].
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Figure 2.8: Power comparisons: different tests. Student’s t error distributions with 2 degrees of

freedom [i.e t(2)], with different values of ρ in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-

PCC-POS test] with: (1) the T-test; (2) the sign-based test proposed by Campbell and Dufour

(1995) [CD (1995) test]; and (3) the T-test based on White’s (1980) variance correction [WT-test].
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Figure 2.9: Power comparisons: different tests. Mixture error distributions with different values

of ρ in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-

PCC-POS test] with: (1) the T-test; (2) the sign-based test proposed by Campbell and Dufour

(1995) [CD (1995) test]; and (3) the T-test based on White’s (1980) variance correction [WT-test].
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Figure 2.10: Power comparisons: different tests. Normal error distributions with break in variance,

with different values of ρ in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-

PCC-POS test] with: (1) the T-test; (2) the sign-based test proposed by Campbell and Dufour

(1995) [CD (1995) test]; and (3) the T-test based on White’s (1980) variance correction [WT-test].
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Figure 2.11: Power comparisons: different tests. Normal error distributions GARCH(1,1) plus

jump invariance, with different values of ρ in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-

PCC-POS test] with: (1) the T-test; (2) the sign-based test proposed by Campbell and Dufour

(1995) [CD (1995) test]; and (3) the T-test based on White’s (1980) variance correction [WT-test].
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2.8 Conclusion

In this chapter, we extended the exact point-optimal sign-based procedures proposed in the first

chapter by relaxing the Markovian assumption. We had earlier provided a caveat that to obtain

feasible test statistics, an assumption must be imposed on the dependence structure of process

of signs; specifically, we assumed that the signs follow a finite order Markov process. In this

chapter, we showed that by implementing the procedures for pair copula constructions of discrete

data, we can derive exact and distribution-free sign-based statistics for dependent data in the

context of linear and non-linear regressions, without any potentially restrictive assumptions. The

proposed tests are valid, distribution-free and robust against heteroskedasticity of unknown form.

Furthermore, they may be inverted to produce a confidence region for the vector (sub-vector) of

parameters of the regression model.

We further suggested a sequential estimation strategy for the vine PCC and discussed the choice

of the copula family. As the proposed sign-statistics depend on the alternative hypothesis, another

problem consists of finding an alternative that controls size and maximizes the power. In line with

Dufour and Taamouti (2010a), we find that when 10% of sample is used to estimate the alternative

and the rest to compute the test-statistic, our procedures have the optimal power and are closest

to the power envelope.

Finally, we presented a Monte Carlo study to assess the performance of the proposed tests in

terms of size control and power, by comparing it to some other tests that are supposed to be

robust against heteroskedasticity. We considered DGPs similar to those in the first chapter and

we showed that the 10% split-sample point-optimal sign-test based on pair copula constructions

is more superior to the T-test, Campbell and Dufour (1995) sign-based test, and the T-test based

on White (1980) variance correction in most cases.
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2.9 Appendix

Derivation of the Neyman-Pearson type test-statistic for testing the orthogonality

hypothesis for n ≤ 3. The likelihood function of sample in terms of signs s(y1), ..., s(yn)

conditional on X is

L (U(n), β) = P [s(y1) = s1, ..., s(yn) = sn | X] =
n∏
t=1

P [s(yt) = st | S
¯t−1 = s

¯t−1, X] ,

for

S
¯0 = {∅} , S

¯t−1 = {s(y1), ..., s(yt−1)} , for t ≥ 2,

and

P [s(y1) = s1 | S
¯0 = s

¯0, X] = P [s(y1) = s1 | X] ,

where each si, for 1 ≤ t ≤ n, takes two possible values 0 and 1. Given model (2.1) and assumption

(2.2), under the null hypothesis the signs s(εt), for 1 ≤ t ≤ n, are i.i.d conditional on X according

to Bi(1, 0.5). Then, the signs s(yt), for 1 ≤ t ≤ n, will also be i.i.d conditional on X with

P [s(yt) = 1 | X] = P [s(yt) = 0 | X] =
1

2
, for t = 1, ..., n.

Consequently, under H0

L0 (U(n), 0) =
n∏
t=1

P [s(yt) = st | X] =

(
1

2

)n

and under H1 we have

L1 (U(n), β1) =
n∏
t=1

P [s(yt) = st | S
¯t−1 = s

¯t−1, X]

where now, for t = 1, ..., n,

yt = β′1xt−1 + εt
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The log-likelihood ratio is given by

ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
=

n∑
t=1

ln {P [s(yt) = st | S
¯t−1 = s

¯t−1, X]} − n ln

{
1

2

}
.

According to Neyman-Pearson lemma [see e.g. Lehmann (1959), page 65], the best test to test H0

against H1, based on s(y1), ..., s(yn), rejects H0 when

SLn(β1) = ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
≥ c

or when
n∑
t=1

ln {P [s(yt) = st | S
¯t−1 = s

¯t−1, X]} ≥ c1 ≡ c+ n ln

(
1

2

)
,

The critical value, say c1 is given by the smallest constant c1 such that

P

(
n∑
t=1

ln {P [s(yt) = st | S
¯t−1 = s

¯t−1, X]} > c1 | H0

)
≤ α.

Let X = [x0, ..., xn−1] be a n × (k + 1) matrix of fixed or stochastic explanatory variables, from

(2.10), we get

ln {P [s(y1) = s1 | S
¯0 = s

¯0, X]} = ln {P [s(y1) = s1 | X]}

= s(y1) ln

{
P [y1 ≥ 0 | X]

P [y1 < 0 | X]

}
+ lnP [y1 < 0 | X]

and for t = 2, ..., n, with n ≤ 3 we have

n∑
t=2

lnP [s(yt) = st | S
¯t−1 = s

¯t−1, X] =
n∑
t=2

ln

(
P [s(yt) = st, s(yt−1) = st−1 | S

¯t−2 = s
¯t−2, X]

P [s(yt−1) = st−1 | S
¯t−2 = s

¯t−2, X]

)

=
n∑
t=2

ln

( ∑
kt=0,1

∑
kt−1=0,1

(−1)kt+kt−1

= ×{P [s(yt) ≤ st − kt, s(yt−1) ≤ st−1 − kt−1 | S
¯t−2 = s

¯t−2, X]}

= /P [s(yt−1) = st−1 | S
¯t−2 = s

¯t−2, X]

)
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{P [s(yt) = st | S
¯t−1 = s

¯t−1]} =
n∑
t=2

ln

( ∑
kt=0,1

∑
kt−1=0,1

(−1)kt+kt−1

= ×
{
Cs(yt),s(yt−1)|S

¯t−2

(
Fs(yt)|S

¯t−2
(st − kt | s

¯t−2, X),

= Fs(yt−1)|S
¯t−2

(st−1 − kt−1 | s
¯t−2, X)

)}
= /P [s(yt−1) = st−1 | S

¯t−2 = s
¯t−2, X]

)

=
n∑
t=2

ln

{ ∑
kt=0,1

∑
kt−1=0,1

(−1)kt+kt−1

= ×
{
Cs(yt),s(yt−1)|S

¯t−2

(
Fs(yt)|S

¯t−2
(st − kt | s

¯t−2, X),

= Fs(yt−1)|S
¯t−2

(st−1 − kt−1 | s
¯t−2, X)

)}}

= −
n∑
t=2

ln {P [s(yt−1) = st−1 | S
¯t−2 = s

¯t−2, X]}

Each argument Fs(yt)|S
¯t−2

(st − kt | s
¯t−2, X) and Fs(yt−1)|S

¯t−2
(st−1 − kt−1 | s

¯t−2, X) in the copula

expression above can be evaluated as follows

Fs(yt)|S
¯t−2

(st − kt | s
¯t−2, X) ={

Cs(yt),s(yt−2)|S
¯t−3

(F (st − kt | s
¯t−3, X), F (st−2 | s

¯t−3, X))

−Cs(yt),s(yt−2)|S
¯t−3

(F (st − kt | s
¯t−3, X), F (st−2 − 1 | s

¯t−3, X))
}
/P [s(yt−2) = st−2 | S

¯t−3 = s
¯t−3, X]

and similarly

Fs(yt−1)|S
¯t−2

(st−1 − kt−1 | s
¯t−2, X) ={

Cs(yt−2),s(yt−1)|S
¯t−3

(F (st−2 | s
¯t−3, X), F (st−1 − kt−1 | s

¯t−3, X))

−Cs(yt−2),s(yt−1)|S
¯t−3

(F (st−2 − 1 | s
¯t−3, X), F (st−1 − kt−1 | s

¯t−3, X))
}
/P [s(yt−2) = st−2 | S

¯t−3 = s
¯t−3, X]
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Thus, for n ≤ 3 the Neyman-Pearson type test statistic based on s(y1), ..., s(yn), can be expressed

as

ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
= lnP [s(y1) = s1 | S

¯0 = s
¯0, X] +

n∑
t=2

ln

{ ∑
kt=0,1

∑
kt−1=0,1

(−1)kt+kt−1

=×
(
Cs(yt),s(yt−1)|S

¯t−2

(
Fs(yt)|S

¯t−2
(st − kt | s

¯t−2, X), Fs(yt−1)|S
¯t−2

(st−1 − kt−1 | s
¯t−2, X)

))}

=−
n∑
t=2

ln {P [s(yt−1) = st−1 | S
¯t−2 = s

¯t−2, X]} − n ln

{
1

2

}

Vine decomposition in the continuous case. In Section 2.4, it has been shown that the

signs s(y1), ..., s(yn) may have a continuous extension with a perturbation in [0, 1] [see Denuit

and Lambert (2005)]. This can be achieved by employing a transformation of the form s∗(yt) =

s(yt) + U − 1 for t = 1, ..., n, where a natural choice for U is the uniform distribution. Thus, for

{s∗(yt) ∈ R, t = 1, ..., n} consider the continuous equivalent of the conditional probability mass

function (2.11) - i.e. the conditional density function. Further, by letting S
¯
∗
t−1 be the continuous

extension of S
¯t−1, the conditional density function may be expressed as

f
s∗(yt)|S

¯
∗\j
t−1∪s∗(yj)

=
f
s∗(yt),s∗(yj)|S

¯
∗\j
t−1

f
s∗(yj)|S

¯
∗\j
t−1

. (2.34)

From the Theorem of Sklar (1959), we know that

f
s∗(yt),s∗(yj)|S

¯
∗\j
t−1

(s∗t , s
∗
j | s¯

∗\j
t−1, X) = c

s∗(yt),s∗(yj)|S
¯
∗\j
t−1

(
F
s∗(yt)|s

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X), F

s∗(yj)|S
¯
∗\j
t−1

(s∗j | s¯
∗\j
t−1, X)

)
×=f

s∗(yt)|S
¯
∗\j
t−1
f
s∗(yj)|S

¯
∗\j
t−1
,

(2.35)

where c() is the copula density function. Thus,

f
s∗(yt)|S

¯
∗\j
t−1∪s∗(yj)

= c
s∗(yt),s∗(yj)|S

¯
∗\j
t−1

(
F
s∗(yt)|s

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X), F

s∗(yj)|S
¯
∗\j
t−1

(s∗j | s¯
∗\j
t−1, X)

)
f
s∗(yt)|S

¯
∗\j
t−1
,

(2.36)
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with

c
s∗(yt),s∗(yj)|S

¯
∗\j
t−1

(
F
s∗(yt)|S

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X), F

s∗(yj)|S
¯
∗\j
t−1

(s∗j | s¯
∗\j
t−1, X)

)
=

c
s∗(yt),s∗(yj)|S

¯
∗\j
t−1

(F
s∗(yt)|S

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X)

∂2C
s∗(yt),s∗(yj)|S

¯

∗\j
t−1

(
F
s∗(yt)|S¯

∗\j
t−1

(s∗t |s¯
∗\j
t−1,X),F

s∗(yj)|S
¯

∗\j
t−1

(s∗j |s¯
∗\j
t−1,X)

)
∂F

s∗(yt)|S¯
∗\j
t−1

(
s∗t |s¯
∗\j
t−1,X

)
∂F

s∗(yj)|S
¯

∗\j
t−1

(
s∗j |s¯
∗\j
t−1,X

)
(2.37)

can express (2.34), and the arguments of the copulae, say, F
s∗(yt)|S

¯
∗\j
t−1

(s∗t | s
¯
∗\j
t−1, X) are obtained

using the expression by Joe (1996), such that

F
s∗(yt)|S

¯
∗\j
t−1

(s∗t | s¯
∗\j
t−1, X) =

∂C
s∗(yt),s∗(yi)|S

¯
∗\j,i
t−1

(
F
s∗(yt)|S

¯
∗\j,i
t−1

(s∗t | s¯
∗\j,i
t−1 , X), F

s∗(yi)|S
¯
∗\j,i
t−1

(s∗i | s¯
∗\j,i
t−1 , X)

)
∂F

s∗(yi)|S
¯
∗\j,i
t−1

(s∗i | s¯
∗\j,i
t−1 , X)

.

(2.38)

Therefore, when the data is continuous, the marginals in the copula expressions of, say, the third

tree, Ft|t+1,t+2 for t = 1, ..., n− 2 and Ft+3|t+1,t+2 for t = 1, ..., n− 3 are obtained by

Ft|t+1,t+2 =
∂Ct,t+1|t+2(Ft|t+2(s∗t | s∗t+2, X), Ft+1|t+2(s∗t+1 | s∗t+2, X))

∂Ft+1|t+2(s∗t+1 | s∗t+2, X)
, (2.39)

where Ft+3|t+1,t+2 is obtained in a similar way.

Proof of Proposition 3. The likelihood function of sample in terms of signs s(y1), ..., s(yn)

L (U(n), β) = P [s(y1) = s1, ..., s(yn) = sn | X]

where each si, for 1 ≤ t ≤ n, takes two possible values 0 and 1. Given model (2.1) and assumption

(2.2), under the null hypothesis the signs s(εt), for 1 ≤ t ≤ n, are i.i.d conditional on X according

to Bi(1, 0.5). Then, the signs s(yt), for 1 ≤ t ≤ n, will also be i.i.d conditional on X

P [s(yt) = 1 | X] = P [s(yt) = 0 | X] =
1

2
, for t = 1, ..., n.
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Consequently, under H0 we have

L0 (U(n), 0) =
n∏
t=1

P (s(yt) = st | X) =

(
1

2

)n

and under H1 the likelihood function can be expressed as

L1 (U(n), β1) = P1[s(y1) = s1 | X]×
n∏
t=2

Pt|1:t−1[s(yt) = st | s(y1) = s1 : s(yt−1) = st−1, X].

which can further be decomposed using the D-vine array A = (σlt)1≤l≤t≤n to obtain

L1 (U(n), β1) = P1[s(y1) = s1 | X]×
n∏
t=2

2∏
l=t−1

cσltt,|σ1t,...,σt−1,t × cσ1tt × Pt[s(yt) = st | X]

where now for t = 1, ..., n,

yt = β′1xt−1 + εt

Under assumption (2.1) and (2.2), the likelihood function under the alternative can be expressed

as

L1 (U(n), β1) = (1− P1[ε1 < −β1x0 | X])s(y1) × P1[ε1 < −β1x0 | X]1−s(y1)

= ×
n∏
t=2

2∏
l=t−1

cσltj,|σ1t,...,σt−1,t × cσ1tt × (1− Pt[εt < −β1xt−1 | X])s(yt)

= ×Pt[εt < −β1xt−1 | X]1−s(yt)

The log-likelihood ratio is given by

ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
= s(y1) ln

{
1− P1[ε1 < −β1x0 | X]

P1[ε1 < −β1x0 | X]

}
+ ln (1− P1[ε1 < −β1x0 | X])

= +
n∑
t=2

2∑
l=t−1

ln cσltt,|σ1t,...,σt−1,t +
n∑
t=2

ln ca1tt +
n∑
t=2

s(yt) ln

{
1− Pt[εt < −β1xt−1 | X]

Pt[εt < −β1xt−1 | X]

}

= +
n∑
t=2

ln (1− Pt[εt < −β1xt−1 | X])− n ln

(
1

2

)

According to Neyman-Pearson Lemma [see e.g. Lehmann (1959), page 65], the best test to test
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H0 against H1, based on s(y1), ..., s(yn), rejects H0 when

ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
≥ c

or when

ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
=

n∑
t=2

2∑
l=t−1

ln cσltt,|σ1t,...,σt−1,t +
n∑
t=2

ln cσ1tt

= +
n∑
t=1

st ln

{
1− Pt[εt < −β1xt−1 | X]

Pt[εt < −β1xt−1 | X]

}
> c1(β1)

The critical value, say c1(β1) is given by the smallest constant c1(β1) such that

P

(
ln

{
L1 (U(n), β1)

L0 (U(n), 0)

}
> c1(β1) | H0

)
≤ α.

Algorithm for the likelihood function of the signs under the alternative hypothesis.

In this Section, we adapt the algorithm for the joint pmf for D-vine for discrete variables of Pana-

giotelis et al. (2012) and Joe (2014) to the context of our study. Let U(n) = (s(y1), s(y2), ..., s(yn))′

be a binary valued n-vector. Furthermore, for a vector of integers i, let Si = {s(yi), i ∈ i}, where

si is a mass point of Si and sg is a mass point of s(yg). Let

F+
g|i := P [s(yg) ≤ sg | Si = si, X] , F−g|i := P [s(yg) < sg | Si = si, X] ,

fg|i := P [s(yg) = sg | Si = si, X].

noting that when i = {∅}, these conditional probabilities, correspond to marginal probabilities.

Furthermore, let Cgh|i be a bivariate copula for the conditional CDFs Fg|i and Fh|i, and denote

C++
gh|i := Cgh|i

(
F+
g|i, F

+
h|i

)
, C+−

gh|i := Cgh|i

(
F+
g|i, F

−
h|i

)
,

C−+
gh|i := Cgh|i

(
F−g|i, F

+
h|i

)
, C−−gh|i := Cgh|i

(
F−g|i, F

−
h|i

)
.

The main elements of the algorithm is the following recursions:
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(I) F+
j−t|(j−t+1):(j−1) =

[
C++
j−t,j−1|(j−t+1):(j−2) − C

+−
j−t,j−1|(j−t+1):(j−2)

]
/fj−1|(j−t+1):(j−2);

(II) F−j−t|(j−t+1):(j−1) =
[
C−+
j−t,j−1|(j−t+1):(j−2) − C

−−
j−t,j−1|(j−t+1):(j−2)

]
/fj−1|(j−t+1):(j−2);

(III) fj−t|(j−t+1):(j−1) = F+
j−t|(j−t+1):(j−1) − F

−
j−t|(j−t+1):(j−1);

(IV) F+
j|(j−t+1):(j−1) =

[
C++
j−t+1,j|(j−t+2):(j−1) − C

−+
j−t+1,j|(j−t+2):(j−1)

]
/fj−t+1|(j−t+2):(j−1);

(V) F−j|(j−t+1):(j−1) =
[
C+−
j−t+1,j|(j−t+2):(j−1) − C

−−
j−t+1,j|(j−t+2):(j−1)

]
/fj−t+1|(j−t+2):(j−1);

(VI) fj|(j−t+1):(j−1) = F+
j|(j−t+1):(j−1) − F

−
j|(j−t+1):(j−1);

(VII) The values based on Cj−t,j|(j−t+1):(j−1) is computed;

(VIII) t is incremented by 1 and back to (I).

The identity employed in the recursions is

P [s(yg) ≤ sg | s(yh) = sh,Si = si, X] =

P [s(yg) ≤ sg | s(yh) = sh,
P [s(yg)≤sg ,s(yh)≤sh|Si=si,X]−P [s(yg)≤sg ,s(yh)<sh|Si=si,X]

P [s(yh)=sh|Si=si,X]
.

The algorithm is as follows

1. Input sn = (s1, ..., sn).

2. Allocate an n× n matrix π, where πtj = f(j−t+1):j for t = 1, ..., n and j = t+ 1, ..., n and the

likelihood function P [s(y1) = s1, ..., s(yn) = sn] under the alternative will appear as πnn.

3. Allocate C++, C+−, C−+, C−−, U
′+, U

′−, U+, U−, u′, u, w′, w, as vectors of length n.

4. Evaluate F+
j , F−j , and fj = F+

j − F−j using (2.14) and let π1j ← fj for j = 1, ..., n;

5. Let C++
j ← Cj−1,j

(
F+
j−1, F

+
j

)
, C+−

j ← Cj−1,j

(
F+
j−1, F

−
j

)
, C−+

j ← Cj−1,j

(
F−j−1, F

+
j

)
, and

C−−j ← Cj−1,j

(
F−j−1, F

−
j

)
for j = 2, ..., n;

6. Set P2j ← C++
j − C+−

j − C−+
j + C−−j for j = 2, ..., n;

7. for j = 2, ..., n : (T1) do
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8. U
′+
j ← F+

j−1|j =
(
C++
j − C+−

j

)
/fj, U

′−
j ← F−j−1|j =

(
C−+
j − C−−j

)
/fj, and u′j ←

fj−1|j = F+
j−1|j − F

−
j−1|j;

9. U+
j ← F+

j|j−1 =
(
C++
j − C−+

j

)
/fj−1, U−j ← F−j|j−1 =

(
C−+
j − C−−j

)
/fj−1, and uj ←

fj|j−1 = F+
j|j−1 − F

−
j|j−1;

10. end for

11. for t = 2, ..., n− 1 : (T2, ..., Tn−1) do

12. let Cαβ
j ← Cj−t,j|(j−t+1):(j−1)

(
U
′α
j−1, U

β
j

)
, for j = t+ 1, ..., n and α, β ∈ {+,−};

13. let w′j ← u′j, wj ← uj for j = t, ..., n;

14. for j = t+ 1, ..., n : do

15. U
′+
j ←

(
C++
j − C+−

j

)
/wj, U

′−
j ←

(
C−+
j − C−−j

)
/wj and u′j ← U

′+
j − U

′−
j ;

16. U+
j ←

(
C++
j − C−+

j

)
/w′j−1, U−j ←

(
C+−
j − C−−j

)
/w′j−1 and uj ← U+

j − U−j ;

17. end for

18. let πt+1,j ← πt,j−1 × uj for j = t+ 1, ..., n.

19. end for

20. Return the likelihood function πnn.

Proof of Theorem 2. The characteristic function of the test statistic SNn(β0 | β1) conditional

on X is given by

φSNn(u) = EX [exp(iuSNn(β0 | β1))]

= EX

[
exp

(
iu

(
n∑
t=1

Rt,t−1 +
n∑
t=1

ln

{
1− pt[xt−1, β0, β1 | X]

pt[xt−1, β0, β1 | X]

}
s(ỹt)

))]
,

which may be expressed as

φSNn(u) = EX

[
n∏
t=1

exp

(
iu

(
Rt,t−1 + ln

{
1− pt[xt−1, β0, β1 | X]

pt[xt−1, β0, β1 | X]

}
s(ỹt)

))]
,

105



with R1,0 = 0, and Rt,t−1 =
2∑

l=t−1

ln cσ̃ltt|σ̃1t,...,σ̃t−1,t + ln cσ̃1tt for t = 2, ..., n, for the D-vine-array

Ã = (σ̃lt)1≤l≤t≤n, such that l = 2, ..., n−1 is the row with tree Tl, and column t has the permutation

σ̃t−1 = (σ̃1t, ..., σ̃t−1,t) of the previously added variables, pt[xt−1, β0, β1 | X] = Pt[εt ≤ f(xt−1, β0)−

f(xt−1, β1) | X], and s(ỹt) = s(yt− f(xt−1, β0)). Furthermore, u ∈ R and the complex number i =
√
−1. Unlike Dufour and Taamouti (2010a), ỹt for t = 1, ..., n are no longer necessarily independent

conditional on X. Therefore, we follow Heinrich (1982) by expressing the characteristic function

φSNn(u) as follows

φSNn(u) =
n∏
t=1

ϕt(u)

where ϕ1(u) = EX
[
exp
(
iu
(

ln
{

1−p1[x0,β0,β1|X]
p1[x0,β0,β1|X]

}
s(ỹ1)

))]
and for t = 2, ..., n

ϕt(u) =
ft(u)

ft−1(u)
, where, ft(u) = EX [exp(iuSNt(β0 | β1))]

Heinrich (1982) shows that ϕt(u) can alternatively be expressed as

ϕt(u) = EX
[
exp

(
iu

{
Rt,t−1 + ln

{
1− pt[xt−1, β0, β1 | X]

pt[xt−1, β0, β1 | X]

}
s(ỹt)

})]
+ ρt(u)

where

ρt(u) =

{
EX [exp (iu {SNt (β0 | β1)})]−

= =EX
[
exp

(
iu

{
Rt,t−1 + ln

{
1− pt[xt−1, β0, β1 | X]

pt[xt−1, β0, β1 | X]

}
s(ỹt)

})]
×

= =EX [exp (iu {SNt−1 (β0 | β1)})]
}/

EX [exp (iu {SNt−1 (β0 | β1)})] .

Therefore, the characteristic function for the PCC-POS test statistic can be expressed as

φSNn(u) =
n∏
t=1

ϕt(u)

=
n∏
t=1

(
EX
[
exp

(
iu

{
Rt,t−1 + ln

{
1− pt[xt−1, β0, β1 | X]

pt[xt−1, β0, β1 | X]

}
s(ỹt)

})]
+ ρt(u)

)
,

(2.40)
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where ρ1(u) = 0, R1,0 = ρ1(u) = 0.

Let Zt = Rt,t−1 + ln
{

1−pt[xt−1,β0,β1|X]
pt[xt−1,β0,β1|X]

}
s(ỹt) for t = 1, ..., n. Then following Heinrich (1982), and

by assuming that Z1, ..., Zn are weakly dependent, the term ρt(u) can further be factorized. For

instance, a case of such weakly dependent random variables for which a Theorem exists is the

regularity Markov type process (i.e. RMT-process). Let Bs+ms = σ(Zs, ..., Zs+m) be the Borel σ-

field generated by {Zt, t = s, ..., s+u}. The process {Zt}t=1,2,... is an RMT-process, if for 1 ≤ s ≤ t,

the uniform mixing coefficient φ(m) ≤ γ(s, t) with probability one, where

φ(m) ≡ sup
s≥1

φ(Bs1,B∞s+m)

and where φ(Bs1,B∞s+m)

φ(Bs1,B∞s+m) ≡ sup
G∈B∞s+m,H∈Bs1

|P [H | G]− P [H]|,

with sups≥1 γ(s, s + m) → 0 as m → ∞. Given such dependence, ρt(u) can be factorized using

the results of Theorem 2 of Heinrich (1982). The conditional CDF of SNn(β0 | β1) evaluated at a

constant c1(β0, β1), where c1(β0, β1) ∈ R, given by the conditional characteristic functions φSNn(u)

can then be obtained using the Fourier-inversion formula [see Gil-Pelaez (1951)] as follows

P [SNn(β0 | β1) ≤ c1(β0, β1)] =
1

2
− 1

π

∫ ∞
0

Im{exp(−iuc1(β0, β1))φSNn(u)}
u

du

where ∀u ∈ R, the conditional characteristic function φSNn(u) is expressed by (2.40) and Im{z}

denotes the imaginary part of the complex number z. Therefore, the power function can be

obtained as follows

Π(β0, β1) = P [SNn(β0 | β1) > c1(β0, β1)] =
1

2
+

1

π

∫ ∞
0

Im{exp(−iuc1(β0, β1))φSNn(u)}
u

du
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Additional simulations.

Figure 2.12: Power comparisons: different tests. Student’s t(ν) error distributions, with different

degrees of freedom ν, ρ = 0 in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-

PCC-POS test] with: (1) the T-test and (2) the T-test based on White’s (1980) variance correction

[WT-test].
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Figure 2.13: Power comparisons: different tests. Student’s t(ν) error distributions, with different

degrees of freedom ν, ρ = 0.1 in (2.33) and θ = 0.9 in (2.32)
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Note: These figures compare the power curves of the 10% split-sample PCC-POS test [10% SS-

PCC-POS test] with: (1) the T-test and (2) the T-test based on White’s (1980) variance correction

[WT-test].
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Figure 2.14: Power comparisons: different tests. Student’s t(ν) error distributions, with different

degrees of freedom ν, ρ = 0.5 in (2.33) and θ = 0.9 in (2.32)
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Figure 2.15: Power comparisons: different tests. Student’s t(ν) error distributions, with different

degrees of freedom ν, ρ = 0.9 in (2.33) and θ = 0.9 in (2.32)
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PCC-POS test] with: (1) the T-test and (2) the T-test based on White’s (1980) variance correction

[WT-test].
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Figure 2.16: Comparison of the student’s t distribution with various degrees of freedom to the

normal distribution
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Note: In this figure, we compare the Normal and Student’s distribution with two, four and six
degrees of freedom - i.e. ν = 2, ν = 4, ν = 6.
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Chapter 3

Sign-based Kullback measures and tests

of Granger causality

3.1 Introduction

This chapter concerns the study of Wiener (1956) and Granger (1969) causality, which analyses

the causal relationship between time-series. The said concept has paved the path for constructing

tests and measures of Granger non-causality, where the latter has recently attracted much more

attention. Earlier studies surrounding this topic concern the issue of testing Granger non-causality

in parametric settings, and the measures of Granger causality initially proposed are in the context

of parametric mean linear regression models [see Geweke (1982, 1984) and Dufour and Taamouti

(2010b)]. Furthermore, as far as nonparametric inference is concerned, Diks and Panchenko (2006)

show that the commonly used tests proposed by Hiemstra and Jones (1994) are invalid in large

sample sizes and further highlight the lack of power of their own nonparametric tests against certain

alternatives. Our contribution in this paper is twofold: first, we propose sign-based Granger

causality measures based on the Kullback-Leibler distance to assess the strength of the causal

relationships; and second, we show that by using bound-type procedures to address the nuisance

parameters problem, Granger non-causality tests can be developed as a byproduct of the sign-based

causality measures. These tests are exact, distribution-free and robust against heteroskedasticity

of unknown form.
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Wiener (1956) and Granger (1969) causality studies the predictability of, say, a (vector) variable

Y from its own past and the past of another (vector) variable, say X. Granger (1969) shows

that the dynamic relationship between two time-series X and Y can be broken down into three

distinct types: from X to Y , from Y to X, and instantaneous causality, where all these forms of

causality may coexist, reinforcing the importance of measuring the degrees of causality. Although

numerous nonparametric tests of Granger non-causality have been developed to date1, these studies

only test for Granger non-causality, as opposed to measuring the degree of causality. Dufour and

Taamouti (2010b) have particularly noted the study by McCloskey et al. (1996), which highlights

cases where a causal effect may be large but not statistically significant, while a statistically

significant effect may not have a significant impact from an economic point of view. As it has

already been mentioned, measures of Granger causality have attracted much more attention in

the past few decades. Measures of causality in mean have been introduced by Geweke (1982,

1984) using the mean-squared forecast errors; Polasek (1994, 2000) proposed computation of the

causality measures using the Akaike and the Bayesian information criteria; Dufour and Taamouti

(2010b) further expanded on the work of Geweke (1982, 1984) and introduced short and long run

measures of causality in mean for vector autoregressive and moving average models; Gourieroux

et al. (1987) have proposed causality measures based on the Kullback information criterion that

are estimated parametrically, while Taamouti et al. (2014) use the same criterion, but estimate

the measures nonparametrically using Bernstein approximation to the copula density functions to

measure causality in the distribution. In a more recent study, Song and Taamouti (2018) have

introduced measures of non-linear Granger causality in mean that are estimated consistently using

nonparametric regression.

We introduce sign-based measures of Granger causality based on the Kullback-Leibler distance,

where our measures quantify the degree of causalities. These sign-based measures are particularly

attractive in cases where there is no evidence of forecastability in the mean, and a model may

have better predictability power in the median rather than the upper or lower quantiles [see Furno

1See Hiemstra and Jones (1994), Su and White (2008), Su and White (2014), and Bouezmarni et al. (2012)
for tests of causality in the distribution, and Lee and Yang (2012), Jeong et al. (2012), Hong et al. (2009) and
Candelon et al. (2013) for tests of causality in quantiles.
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(2014)]. However, as it has been noted by Furno (2014), in the case where the conditional distribu-

tions are symmetric, there are no significant differences between predictability in the mean and the

median. As the signs exhibit serial dependence, the estimation of the sign-based measures requires

the calculation of joint distribution of the signs, which is computationally infeasible. Therefore, to

estimate the measures, we first impose an assumption on the sign process. Thereafter, we employ

the vector autoregressive sieve bootstrap to compute the bias in finite samples and to obtain the

bootstrap bias-corrected estimators of the Granger causality measures, where the validity of the

vector autoregressive sieve boostrap is also discussed [see Meyer and Kreiss (2015) for the issue of

the validity of the VAR Sieve bootstrap, and Dufour and Taamouti (2010b) and Taamouti et al.

(2014) for examples of bootstrap bias-corrected estimators of causality measures]. To test the null

hypothesis of Granger non-causality between random variables, we utilize the bound-type proce-

dures as in Dufour (1990) and Campbell and Dufour (1997) to overcome the nuisance parameters

hurdle and develop tests of Granger non-causality as a byproduct of the sign-based measures.

The proposed tests are exact, distribution-free and robust against heteroskedasticity of unknown

form. A Monte Carlo simulation study reveals that the bootstrap bias-corrected estimator of the

sign-based Granger causality measures produce the desired outcome. Furthermore, the tests of

Granger non-causality control size and have good power properties in finite samples. Finally, an

empirical application of the measures is considered by studying the causal relationship between

stock returns and the growth of the exchange rates, to illustrate the practical relevance of the

sign-based causality measures and tests. Our results comprise of mixed findings; however, a bidi-

rectional causal relationship is found between the returns of the S&P500 index and the growth of

the USD/CAD exchange rates.

The structure of the paper is as follows: in Section 3.2, we outline the underlying stochastic process

and define the vector of signs, as well as different hypotheses and the joint p.m.fs associated with

each hypothesis. In Section 3.3, we follow Gourieroux et al. (1987) to derive the sign-based Granger

causality measures. Furthermore, we present the sign-based measures by considering linear models.

To simplify the calculations, we impose an assumption on the dependence structure of the sign

processes. Finally, we present the estimation procedure of the sign-based measures and show the
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consistency of the estimators. In Section 3.4, we present the transformed model and show the

bound-type testing procedure that is used for exact inference. In Section 3.5, we first evaluate

the sign-based measures using long simulations. We then propose bootstrap to reduce the bias in

finite samples in order to obtain a bias-corrected estimator of the measures; moreover, we discuss

the asymptotic validity of the said bootstrap procedure. Finally, a Monte Carlo simulation study

is conducted to show the performance of the bootstrap bias-corrected estimator of the causality

measures, and the size and power properties of the proposed tests in finite samples. Section 3.6

provides an empirical application of the proposed measures. Finally, in Section 3.7 the findings of

the paper are summarized.

3.2 General framework

Consider the multivariate stochastic process Zt = {(Z1
t , · · · , ZN

t )′ : Ω→ RN , t ≥ −p + 1} defined

on a probability space (Ω,F , P ). To explain the concept of Granger causality within the context

of our study, we first introduce the notion of weak and strong cases of Markovian consistency [see

Bielecki et al. (2008)].

Definition 2 The stochastic process Zt is said to satisfy the “weak”Markovian consistency of

order p with respect to Zn, if for every B ∈ B(R)

P
[
Zn
t ∈ B | FZ

n

t−1

]
= P

[
Zn
t ∈ B | Zn

t−1, · · · , Zn
t−p
]
, t ≥ p

for each n = 1, · · · , N , where B(R) is a Borel set on R.

In other words, P [Zn
t ≤ znt | Zn

t−1] depends on Zn
t−1 only through Zn

t−1, · · · , Zn
t−p, for each n =

1, · · · , N , where

Zn
t−1 = {Zn

0 , · · · , Zn
t−1}.

Now let us consider the more strict case of the Markovian consistency of order p, which is defined

as follows:

Definition 3 The stochastic process Zt is said to satisfy the “strong”Markovian consistency of
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order p with respect to Zn, if for every B ∈ B(R)

P
[
Zn
t ∈ B | FZt−1

]
= P

[
Zn
t ∈ B | Zn

t−1, · · · , Zn
t−p
]
, t ≥ p

or equivalently

P [Zn
t ∈ B | Zt−1, · · · , Z0] = P

[
Zn
t ∈ B | Zn

t−1, · · · , Zn
t−p
]
, t ≥ p

for each n = 1, · · · , N , where B(R) is a Borel set on R.

In relation to Granger causality, it can be said that when Zt satisfies strong Markovian consistency,

the collection {Zi : i 6= n} does not Granger cause Zn.

For a more specific example, let {Zt = (yt, xt)
′ ∈ R× R ≡ R2, t ≥ −p+ 1} be a joint stationary

stochastic process following a Markov process of order p (in the weak sense). Say, the first element

of Zt, which constitutes the process {xt : t ≥ −p+ 1}, has a distribution defined by the probability

distribution of the initial scalar x0, which has a density function f(x0), and the conditional prob-

ability distribution of xt given x1, · · · , xt−1, which has a conditional density function f(xt | xt−1).

Therefore. the weak case of Markovian consistency suggests that

f(xt | xt−1) = f(xt | xt−pt−1), t ≥ p

whereas the strong form of Markovian consistency further suggests

f(xt | yt−1,xt−1) = f(xt | xt−pt−1), t ≥ p.

with

xt−1 = {x0, · · · , xt−1}, and xt−pt−1 = {xt−p, · · · , xt−1}.

and where xt−1 and xt−pt−1 are defined identically. Hence, following Gourieroux et al. (1987) and

as a consequence of the strong Markovian consistency case above, the hypotheses of Granger
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non-causality from X to Y and from Y to X can be expressed as

f(yt | yt−1,xt−1) = f(yt | yt−1), t ≥ p

f(xt | yt−1,xt−1) = f(xt | xt−1), t ≥ p

The aim of this chapter is to derive sign-based measures and tests of Granger causality. In order

to accomplish this, let the signs, {St : t ≥ 1}, be a univariate process of binary (0 − 1) random

variables, such that

Syt =


1, yt ≥ 0

0, yt < 0

, and Sxt =


1, xt ≥ 0

0, xt < 0

, for 1 ≤ t ≤ T. (3.1)

Let the unknown true joint probability mass functions (p.m.f hereafter) of the vector of signs

conditional on Y and X, under the “general”hypotheses Hx→y and Hy→x satisfy,

P [SyT | Y,X] = P1[Sy1 = sy1 | S
y
0, Y,X]×

T∏
t=2

Pt[S
y
t = syt | S

y,t−p
t−1 , Y,X]

P [SxT | Y,X] = P1[Sx1 = sx1 | Sx0 , Y,X]×
T∏
t=2

Pt[S
x
t = sxt | S

x,t−p
t−1 , Y,X]

(3.2)

with

Sy0 = {∅}, and P1[Sy1 = sy1 | S
y
0, Y,X] = P0,1[Sy1 = sy1 | Y,X]

and where X and Y are two (T − 1)× p matrices, such that

X =



xT−1 xT−2 · · · xT−p
...

...
. . .

...

x2 x1 · · · x−p+2

x1 x0 · · · x−p+1


, Y =



yT−1 yT−2 · · · yT−p
...

...
. . .

...

y2 y1 · · · y−p+2

y1 y0 · · · y−p+1


. (3.3)

For the rest of the paper, we mainly focus our attention on the case of causality from X to Y ,

noting that the procedures are identical for causality from Y to X.
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Implicit in the Markovian assumption is that the p.m.f Pt[S
y
t = syt | Syt−1, Y,X] depends on

Syt−1 through Syt−1, ..., S
y
t−p for all t ≥ 1, which can alternatively be expressed as Pt[S

y
t = syt |

Sy,t−pt−1 , Y,X], where Sy,t−pt−1 = (Syt−1 = syt−1, ..., S
y
t−p = syt−p). The joint p.m.f P [SxT | Y,X] belonging

to Hy→x is symmetrical and can be expressed in a similar manner. The hypothesis of Granger

non-causality from X to Y (say Hx→y
0 ) implies that SyT and X are independent conditional on Y .

Under this hypothesis, the joint p.m.f of SyT is expressed as

P [SyT | Y ] = P1[Sy1 = sy1 | S
y
0, Y ]×

T∏
t=2

Pt[S
y
t = syt | S

y
t−1, Y ]

= P1[Sy1 = sy1 | S
y
0, Y ]×

T∏
t=2

Pt[S
y
t = syt | S

y,t−p
t−1 , Y ].

(3.4)

Therefore, the null hypothesis of Granger non-causality from X to Y , Hx→y
0 , can be expressed as

Hx→y
0 : P [SyT | Y,X] = P [SyT | Y ]. (3.5)

Similarly, the null hypothesis of Granger non-causality from Y to X, Hy→x
0 , can be written as

Hy→x
0 : P [SxT | Y,X] = P [SxT | X]. (3.6)

The sign-based Granger causality measures define the discrepancies between the left and right

hand sides of the null hypotheses (3.5) and (3.6).

3.3 Sign-based causality measures

In this Section, we derive sign-based measures of Granger causality using the Kullback-Leibler

distance metric, where these derivations are inspired by Gourieroux et al. (1987). Let us assume

that the unknown true probability mass function based on the signs, P , belongs to the general

hypothesis Hx→y defined in Section 3.2 and is denoted as PH . The Kullback-Leibler distance can

be used to define the distance between the maintained and the null hypotheses - in other words, the

discrepancy between the left and right hand side of (3.5). The p.m.f in H0, by which the minimum
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distance is achieved is referred to as the 'pseudo-true'p.m.f. In other words, the distance between

the maintained and the non-causality hypotheses can be expressed as

D(H/H0) =
1

T
min
PH0

KL(H,H0), (3.7)

where KL(., .) denotes the Kullback-Leibler distance.

Definition 4 Let PH and PH0 be the joint p.m.f of the signs under the maintained and the null

hypotheses respectively. The Kullback-Leibler distance is defined as

KL(H,H0) = EH
{

log

(
PH
PH0

)}
,

where the expectation operator is taken on the joint p.m.f PH .

The sign-based measure of Granger causality from X to Y , say C(X → Y ), can be calculated

as the difference between the discrepancies associated with the maintained hypothesis Hx→y and

the Granger non-causality hypothesis Hx→y
0 , and with Hx→y itself [see Gourieroux et al. (1987)].

Formally, this may be expressed as

C(X → Y ) = D(H/H0)−D(H/H)

=
1

T
min
PH0

KL(H,H0)− 1

T
min
PH

KL(H,H)

=
1

T
min
PH0

KL(H,H0)− 0

=
1

T
min
PH0

EH
{

log

(
PH [SyT | Y,X]

PH0 [SyT | Y ]

)}
,

(3.8)

where the sign-based measures of causality from Y to X are derived in an indentical manner.

Given relationships (3.2) and (3.4), we can write the sign-based causality measure (3.8) as

C(X → Y ) = 1
T

minPH0
EH
{

log

[
T∏
t=1

(
Pt[S

y
t =syt |S

y
t−1,Y,X]

Pt[S
y
t =syt |S

y
t−1,Y ]

)]}
(3.9)

= 1
T

minPH0
EH
{

T∑
t=1

log
(
Pt[S

y
t =syt |S

y
t−1,Y,X]

Pt[S
y
t =syt |S

y
t−1,Y ]

)}
, (3.10)
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or alternatively, as

C(X → Y ) =
1

T
min
PH0

T∑
t=1

EH
{

log

(
Pt[S

y
t = syt | S

y
t−1, Y,X]

Pt[S
y
t = syt | S

y
t−1, Y ]

)}
. (3.11)

The minimization of the Kullback-Leibler distance can be regarded as maximizing PH0 [SyT | Y ] in

(3.8), or put differently as maximizing

max
T∑
t=1

EH
{

log
(
Pt[S

y
t = syt | S

y
t−1, Y ]

)}
(3.12)

in equation (3.11). The p.m.f Pt[S
y
t = syt | Syt−1, Y ] is maximized only when it is equal to the

’pseudo-true’ p.m.f under the null hypothesis [see Appenfix 2 of Gourieroux et al. (1987)]. As a

result, the sign-based causality measure can be written as follows

C(X → Y ) =
1

T

T∑
t=1

EH
{

log

(
PH [Syt = syt | S

y
t−1, Y,X]

PH0 [Syt = syt | S
y
t−1, Y ]

)}
. (3.13)

From the results derived above, we make the following proposition:

Proposition 4 Assuming that under the general hypothesis, HX→Y , the process of signs follow a

stationary process, then the Bernoulli process Syt is time invariant, and the sign-based measure of

Granger causality from X to Y (3.13) can be expressed as

C(X → Y ) = EH
{

log

(
PH [Syt = syt | S

y
t−1, Y,X]

PH0 [Syt = syt | S
y
t−1, Y ]

)}
. (3.14)

where similar results can be obtained for the sign-based measures of causality from Y to X.

Two important properties of the Kullback-Leibler distance that make it a desirable metric for

constructing measures of Granger causality (such as measure (3.14)) are as follows:

i) The measure is non-negative; in other words

EH
{

log

(
PH [Syt = syt | S

y
t−1, Y,X]

PH0 [Syt = syt | S
y
t−1, Y ]

)}
≥ 0
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ii) It cancels out if and only if there is no causality.

Observe that the null hypotheses of Granger non-causality (3.5) and (3.6) can alternatively be

expressed as

Hx→y
0 : P [Syt = syt | S

y
t−1, Y,X] = P [Syt = syt | S

y
t−1, Y ], ∀t, (3.15)

Hy→x
0 : P [Sxt = sxt | Sxt−1, Y,X] = P [Sxt = sxt | Sxt−1, X], ∀t, (3.16)

which implies C(X → Y ) = 0 or in other words that the distance between the left and right

hand side of the null hypotheses (3.15) and (3.16) is zero. Therefore, large values of the measures

C(X → Y ) and C(Y → X) would suggest strong causality from X to Y and Y to X respectively.

3.3.1 Sign-based causality measures for linear models

Let {Zt = (yt, xt)
′ ∈ R × R ≡ R2, t ∈ Z} be a pair of covariance stationary stochastic process,

such that Zt = (yt, xt)
′ is a causal linear process with a Wold representation given by

Zt = µ+
∞∑
k=1

ψkεt−k + εt, t ∈ Z, (3.17)

where µ ∈ R2 and {εt : t ∈ Z} are assumed to be bivariate and finite second moment white noise

residuals, such that E(εt) = 0 and E(εtε
′
t) = Σ, where Σ is a symmetric and positive definite matrix.

Under additional mild assumptions, such as the absolute summability condition of the coefficients

ψ ∈ R2×2 with respect to the matrix norm ‖.‖ (i.e.
∑∞

k=0 ‖ψk‖ <∞ with ‖ψk‖ =
√

tr(ψkψ′k)) and

det{ψ(z)} 6= 0 for all z ∈ C, such that |z| ≤ 1, with ψ(z) = I +
∑∞

k=1 ψkz
k and where I denotes

a 2× 2 idenitity matrix, it can be shown that Zt is invertible and can be expressed as an infinite

autoregressive process (i.e. VAR(∞)) as follows

Zt = c+
∞∑
k=1

φkZt−k + εt, t ∈ Z, (3.18)

where
∑∞

k=0 ‖φk‖ <∞ and the roots of the lag polynomial det{φ(z)} 6= 0 for all z ∈ C, such that

|z| > 1, and where φ(z) = I−
∑∞

k=1 φkz
k = ψ(z)−1. Letting p ∈ N and considering the realizations
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{Z0, ..., ZT}, (3.18) can be approximated by a finite-order VAR(p) model, such that the order p

depends on the sample size T + 1 - i.e. p = p(T + 1). In other words

Zt = c+

p∑
k=1

φkZt−k + εt, t = p, ..., T, (3.19)

As we are interested in measuring causality from Y to X or from X to Y , we define the marginal

processes yt and xt which satisfy linear models of the form

yt = m1 +

p∑
k=1

akyt−k +

p∑
k=1

bkxt−k + εyt , t = p, ..., T, (3.20)

xt = m2 +

p∑
k=1

ckyt−k +

p∑
k=1

dkxt−k + εxt , t = p, ..., T, (3.21)

where εyt and εxt are error processes satisfy the strict conditional mediangale assumption, such that

εyt | Y,X ∼ F (. | Y,X)

and

P [εyt > 0 | εyt−1, Y,X] = P [εyt < 0 | εyt−1, Y,X] =
1

2
, (3.22)

with

εy0 = {∅}, εyt−1 = {εy1, · · · , ε
y
t−1}, for t ≥ 2

where Y and X are defined similarly to the matrices (3.3), with a caveat that now the processes

yt and xt start at t = 0. Furthermore, note that the strict conditional mediangale assumption is

identical for process xt. Let θ = (m1, a1, ..., ap, b1, ..., bp)
′ and π = (m2, c1, ..., cp, d1, ...dp)

′ be (2p+

1)× 1 vectors containing the coefficients of the regression equations (3.20) and (3.21) respectively,

then the regressions can be expressed as

yt = θ′Jpt−1 + εyt , t = p, ..., T, (3.23)

xt = π′V p
t−1 + εxt , t = p, ..., T, (3.24)
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where Jpt−1 = (1, yt−1, ..., yt−p, xt−1, ..., xt−p)
′ and V p

t−1 = (1, yt−1, ..., yt−p, xt−1, ..., xt−p)
′ are (2p +

1) × 1 vectors of regressors (denoted Jt−1 and Vt−1 hereafter). As the p.m.f of the signs now

depends on the parameter vectors θ and π, it is possible to define the log-likelihood functions

l(Uy(T ), θ) =
T∑
t=p

logPθ[S
y
t = syt | S

y
t−1, Y,X], (3.25)

l(Ux(T ), π) =
T∑
t=p

logPπ[Sxt = sxt | Sxt−1, Y,X]. (3.26)

where

Uy(T ) = (Syp , ..., S
y
T )′,

is the vector of signs for {yt}Tt=p, with Ux(T ) defined in an identical manner for {xt}Tt=p. In Section

3.3, we have shown that the sign-based Granger causality measure from X to Y can be regarded

as the discrepancy between the maintained hypothesis Hx→y with true p.m.f Pθ[S
y
T | Y,X] and

the Granger non-causality hypothesis Hx→y
0 , which can formally be expressed as

C(X → Y ) =
1

T − p+ 1
min

θ∈Hx→y
0

EH
{

log

(
Pθ[S

y
T | Y,X]

PθR [SyT | Y ]

)}
, (3.27)

where θR is the pseudo-true value of θ and where the measure of causality from Y to X is expressed

conversely.

3.3.2 Estimation

Let us denote the unconstrained and constrained finite-sample OLS estimates of θ, by θ̂ and θ̂R

respectively, such that θ̂ = (m̂1, â1, ..., âp, b̂1, ..., b̂p)
′ and θ̂R = (m̂R

1 , â
R
1 , ..., â

R
p , 0, ..., 0︸ ︷︷ ︸

p

)′ is the OLS

estimate of the restricted model

yt = mR
1 +

p∑
k=1

aRk yt−k + εyt , t = p, ..., T, (3.28)

respectively. For convenience Dufour and Taamouti (2010b) recommend estimating the con-

strained and the unrestricted models with the same lag order p. Then a natural estimator for
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C(X → Y ) is

Ĉ(X → Y ) =
1

T − p+ 1

[
l(Uy(T ), θ̂)− l(Uy(T ), θ̂R)

]
. (3.29)

From (3.25) it is clear that the estimator of the sign-based measure of causality from X to Y

(3.29) can alternatively be expressed as

Ĉ(X → Y ) =
1

T − p+ 1

T∑
t=p

{
logPθ̂[S

y
t = syt | S

y
t−1, Y,X]− logPθ̂R [Syt = syt | S

y
t−1, Y ]

}
, (3.30)

where as in the first chapter

logPθ̂[S
y
t = syt | S

y
t−1, Y,X] = Syt log

{
Pθ̂[yt ≥ 0 | Syt−1, Y,X]

Pθ̂[yt < 0 | Syt−1, Y,X]

}
+logPθ̂[yt < 0 | Syt−1, Y,X], (3.31)

and such that logPθ̂R [Syt = syt | S
y
t−1, Y,X] for the constrained regression is expressed identically.

As before, the estimator of the sign-based measures requires the calculation of the joint distribution

of the signs, which is computationally infeasible. Therefore, we impose the following assumption:

Assumption A3: Let {yt, t = p, p+ 1, · · · } follow a Markov process of order one. Then the signs

{St}∞t=p follow a Markov process of the same order and the p.m.fs associated with the unrestricted

and constrained regressions can be expressed as


P [yt ≥ 0 | St−1, .] = P [yt ≥ 0 | yt−1 ≥ 0, .]St−1P [yt ≥ 0 | yt−1 < 0, .]1−St−1

P [yt < 0 | St−1, .] = P [yt < 0 | yt−1 ≥ 0, .]St−1P [yt < 0 | yt−1 < 0, .]1−St−1

Given this assumption, we introduce the following corollary.

Corollary 5 From proposition 4 and given assumption A3, it follows that the estimator of the

sign-based Granger causality measure from X to Y under the assumptions (3.24) and (3.22) can

be calculated by

Ĉ(X → Y ) =
1

T − p+ 1

T∑
t=p

{
Syt S

y
t−1αt(θ̂/θ̂

R) + Syt β̂t(θ̂/θ̂
R) + Syt−1γt(θ̂/θ̂

R) + δt(θ̂/θ̂
R)
}
, (3.32)
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where

αp(θ̂/θ̂
R) = 0, γp(θ̂/θ̂

R) = 0

and

βp(θ̂/θ̂
R) = log

{
(1− P [εp < −θ̂′J0 | Y,X])P [εp < −θ̂′RJ0 | Y ]

(1− P [εp < −θ̂′RJ0 | Y ])P [εp < −θ̂′J0 | Y,X]

}

δp(θ̂/θ̂
R) = log

{
P [εp < −θ̂′J0 | Y,X]

P [εp < −θ̂′RJ0 | Y ]

}

and where for t = p+ 1, ..., T

αt(θ̂/θ̂
R) =

log

1−
(

P [εt<−θ̂′Jt−1|Y,X]

1−P [εt−1<−θ̂′Jt−2|Y,X]
− P [εt<−θ̂′Jt−1,εt−1<−θ̂′Jt−2|Y,X]

1−P [εt−1<−θ̂′Jt−2|Y,X]

)
P [εt<−θ̂′Jt−1|Y,X]

1−P [εt−1<−θ̂′Jt−2|Y,X]
− P [εt−1<−θ̂′Jt−2,εt<−θ̂′Jt−1|Y,X]

1−P [εt−1<−θ̂′Jt−2|Y,X]


− − log

1− P [εt<−θ̂′Jt−1,εt−1<−θ̂′Jt−2|Y,X]

P [εt−1<−θ̂′Jt−2|Y,X]

P [εt<−θ̂′Jt−1,εt−1<−θ̂′Jt−2|Y,X]

P [εt−1<−θ̂′Jt−2|Y,X]




− −

log

1−
(

P [εt<−θ̂′RJt−1|Y ]

1−P [εt−1<−θ̂′RJt−2|Y ]
− P [εt−1<−θ̂′RJt−2,εt<−θ̂′RJt−1|Y ]

1−P [εt−1<−θ̂′RJt−2|Y ]

)
P [εt<−θ̂′RJt−1|Y ]

1−P [εt−1<−θ̂′RJt−2|Y ]
− P [εt−1<−θ̂′RJt−2,εt<−θ̂′RJt−1|Y ]

1−P [εt−1<−θ̂′RJt−2|Y ]


− − log

1− P [εt<−θ̂′RJt−1,εt−1<−θ̂′RJt−2|Y ]

P [εt−1<−θ̂′RJt−2|Y ]

P [εt<−θ̂′RJt−1,εt−1<−θ̂′RJt−2|Y ]

P [εt−1<−θ̂′RJt−2|Y ]




βt(θ̂/θ̂
R) =

log

1− P [εt<−θ̂′Jt−1,εt−1<−θ̂′Jt−2|Y,X]

P [εt−1<−θ̂′Jt−2|Y,X]

P [εt<−θ̂′Jt−1,εt−1<−θ̂′Jt−2|Y,X]

P [εt−1<−θ̂′Jt−2|Y,X]


− − log

1− P [εt<−θ̂′RJt−1,εt−1<−θ̂′RJt−2|Y ]

P [εt−1<−θ̂′RJt−2|Y ]

P [εt<−θ̂′RJt−1,εt−1<−θ̂′RJt−2|Y ]

P [εt−1<−θ̂′RJt−2|Y ]
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γt(θ̂/θ̂
R) =

log


P [εt<−θ̂′Jt−1|Y,X]

1−P [εt−1<−θ̂′Jt−2|Y,X]
− P [εt−1<−θ̂′Jt−2,εt<−θ̂′Jt−1|Y,X]

1−P [εt−1<−θ̂′Jt−2|Y,X]

P [εt<−θ̂′Jt−1,εt−1<−θ̂′Jt−2|Y,X]

P [εt−1<−θ̂′Jt−2|Y,X]


− − log


P [εt<−θ̂′RJt−1|Y ]

1−P [εt−1<−θ̂′RJt−2|Y ]
− P [εt−1<−θ̂′RJt−2,εt<−θ̂′RJt−1|Y ]

1−P [εt−1<−θ̂′RJt−2|Y ]

P [εt<−θ̂′RJt−1,εt−1<−θ̂′RJt−2|Y ]

P [εt−1<−θ̂′RJt−2|Y ]




δt(θ̂/θ̂
R) = log


P [εt<−θ̂′Jt−1,εt−1<−θ̂′Jt−2|Y,X]

P [εt−1<−θ̂′Jt−2|Y,X]

P [εt<−θ̂′RJt−1,εt−1<−θ̂′RJt−2|Y ]

P [εt−1<−θ̂′RJt−2|Y ]


Proof: See Appendix.

A special case is where ε1, ε2, · · · , εT−1, εT are distributed according to N(0, 1). As suggested

before, since the form of the serial dependence of the errors is non-linear, we may calculate the

bivariate probabilities using “jointly-symmetric”copulae introduced in Chapter 1, by considering

the Archimedean Frank, Clayton or Gumbel as the copula family [see Joe (2014)]. Alternatively,

we may evaluate the bivariate probabilities P [ εt−1 < ·, εt < · | X] using a multivariate Student’s

t distribution by imposing the identity matrix I. Then the estimated weights αt(θ̂/θ̂
R), βt(θ̂/θ̂

R),

γt(θ̂/θ̂
R), and δt(θ̂/θ̂

R) for the sign-based Granger causality measure from X to Y (3.32) are given

by

αp(θ̂/θ̂
R) = 0, γp(θ̂/θ̂

R) = 0

and

βp(θ̂/θ̂
R) = log

{
Φ(θ̂′J0)(1− Φ(θ̂′RJ0))

Φ(θ̂′RJ0)(1− Φ(θ̂′J0))

}
, δp(θ̂/θ̂

R) = log

{
1− Φ(θ̂′J0)

1− Φ(θ̂′RJ0)

}
and where for t = p+ 1, ..., T

αt(θ̂/θ̂
R) =

log

1−
(

1−Φ(θ̂′Jt−1)

Φ(θ̂′Jt−2)
− CJS(Φ(−θ̂′Jt−1),Φ(−θ̂′Jt−2))

Φ(θ̂′Jt−2)

)
1−Φ(θ̂′Jt−1)

Φ(θ̂′Jt−2)
− CJS(Φ(−θ̂′Jt−2),Φ(−θ̂′Jt−1))

Φ(θ̂′Jt−2)

− log

1− CJS(Φ(−θ̂′Jt−1),Φ(−θ̂′Jt−2))

1−Φ(θ̂′Jt−2)

CJS(Φ(−θ̂′Jt−1),Φ(−θ̂′Jt−2))

1−Φ(θ̂′Jt−2)




− −

log

1−
(

1−Φ(θ̂′RJt−1)

Φ(θ̂′RJt−2)
− CJS(Φ(−θ̂′RJt−2),Φ(−θ̂′RJt−1))

Φ(θ̂′RJt−2)

)
1−Φ(θ̂′RJt−1)

Φ(θ̂′RJt−2)
− CJS(Φ(−θ̂′RJt−2),Φ(−θ̂′RJt−1))

Φ(θ̂′RJt−2)


− − log

1− CJS(Φ(−θ̂′RJt−1),Φ(−θ̂′RJt−2))

1−Φ(θ̂′RJt−2)

CJS(Φ(−θ̂′RJt−1),Φ(−θ̂′RJt−2))

1−Φ(θ̂′RJt−2)
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βt(θ̂/θ̂
R) =

log

1− CJS(Φ(−θ̂′Jt−1),Φ(−θ̂′Jt−2))

1−Φ(θ̂′Jt−2)

CJS(Φ(−θ̂′Jt−1),Φ(−θ̂′Jt−2))

1−Φ(θ̂′Jt−2)

− log

1− CJS(Φ(−θ̂′RJt−1),Φ(−θ̂′RJt−2))

1−Φ(θ̂′RJt−2)

CJS(Φ(−θ̂′RJt−1),Φ(−θ̂′RJt−2))

1−Φ(θ̂′RJt−2)




γt(θ̂/θ̂
R) =

log


1−Φ(θ̂′Jt−1)

Φ(θ̂′Jt−2)
− CJS(Φ(−θ̂′Jt−2),Φ(−θ̂′Jt−1))

Φ(θ̂′Jt−2)

CJS(Φ((−θ̂′Jt−1),Φ(−θ̂′Jt−2))

1−Φ(θ̂′Jt−2)


− log


1−Φ(θ̂′RJt−1)

Φ(θ̂′RJt−2)
− CJS(Φ(−θ̂′RJt−2),Φ(−θ̂′RJt−1))

Φ(θ̂′RJt−2)

CJS(Φ(−θ̂′RJt−1),Φ(−θ̂′RJt−2))

1−Φ(θ̂′RJt−2)




δt(θ̂/θ̂
R) = log


CJS(Φ(−θ̂′Jt−1),Φ(−θ̂′Jt−2))

1−Φ(θ̂′Jt−2)

CJS(Φ(−θ̂′RJt−1),Φ(−θ̂′RJt−2))

1−Φ(θ̂′RJt−2)


where Φ(.) is the standard normal distribution function and CJS(u1, u2) is the “jointly-symmetric”bivariate

copula with uniformly distributed marginals. To prove the consistency of the above estimator some

regularity conditions are needed. We present a set of assumptions considered by White (2014)

and Andrews (1992) among others, which has been adopted by Coudin and Dufour (2004) in the

context of sign-based estimators. The following conditions are satisfied:

Assumption A4:

(1) Mixing. Let {(J ′t, ε
y
t ) ∈ R×R×R ≡ R3, t = 0, 1, 2, ...}. Then {(J ′t, ε

y
t )} is α-mixing of size

−r/(r − 1) with r > 1.

(2) Exogeneity. E(Jt−1ε
y
t ) = 0 t = 1, 2, ....

(3) Boundedness. i) E | xt |r+δ< ∆ <∞ for some δ > 0 and ∀t ∈ N ii) E | yt |r+δ< ∆ <∞

for some δ > 0 and ∀t ∈ N iii) E | xt−1ε
y
t |r+δ< ∆ < ∞ for some δ > 0 and ∀t ∈ N iv)

E | yt−1ε
y
t |r+δ< ∆ <∞ for some δ > 0 and ∀t ∈ N v) E | x2

t |r+δ< ∆ <∞ for some δ > 0

and ∀t ∈ N. vi) E | y2
t |r+δ< ∆ <∞ for some δ > 0 and ∀t ∈ N.

(4) Positive definiteness. Let J = (yT−1, xT−1, ..., yp, xp)
′ ∈ R(T−p+1)×2p. Then Mn ≡ E(J′J/n)

is uniformly positive definite, where n = T − p+ 1.

(5) Compactness. Parameter space Θ is compact.

Proposition 5 Under assumptions A4, the estimator Ĉ(X → Y ) converges in probability to

C(X → Y ).

130



Proof: See Appendix.

3.4 Inference

Exact tests of Granger non-causality between random variables can be developed as a byproduct

of the sign-based measures proposed in Section 3.3.2. Many exact parametric tests assume that

the residuals follow a Gaussian distribution, which is unrealistic in the presence of data with heavy

tailed and asymmetric distributions. As a result, these tests may not perform well in terms of size

control and power [see. Dufour and Taamouti (2010a)].

We propose exact and distribution-free tests of Granger non-causality that are robust against het-

eroskedasticity of unknown form. We first consider the testing problem with known nuisance pa-

rameters. Then the results are extended to scenarios where the nuisance parameters are unknown.

To address the latter, we adopt the bound-type procedure as in Dufour (1990) and Campbell and

Dufour (1997) to remedy the nuisance parameter problem under the null hypothesis of Granger

non-causality.

Once again we focus on the causality from X to Y and consider the regression equation

yt = θ′Jpt−1 + εyt , t = p, ..., T, (3.33)

where as before θ = (m1, a1, ..., ap, b1, ..., bp)
′ and Jt−1 = (1, yt−1, ..., yt−p, xt−1, ..., xt−p)

′. Assume

we wish to test the null hypothesis

Hx→y
0 : C(X → Y ) = 0, (3.34)

We know that under the null hypothesis of Granger non-causality the regression model is con-

strained with θR = (mR
1 , a

R
1 , ..., a

R
p , 0, ..., 0︸ ︷︷ ︸

p

)′. Therefore, testing the null hypothesis (3.34) in the

context of regression (3.33) is equivalent to testing

H0 : θ = θR. (3.35)
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Notice that the estimator (3.29) of the sign-based measures based on log-likelihood functions for

the regression equation (3.33) can be expressed as

Ĉ(X → Y ) =
1

T − p+ 1

{
l(Uy(n), θ̂)− l(Uy(n), θ̂R)

}
,

which is of similar form to the Neyman-Pearson type tests based on the signs introduced in the

previous chapters. Therefore, a test based on the signs for testing the Granger non-causality

hypothesis (3.35) against an alternative

H1 : θ = θ1, θ1 6= 0, (3.36)

can be constructed in a similar manner to the previous chapters. However, we provide a caveat that

the test statistic that corresponds to this testing problem allows for unknown nuisance parameters

θR under the null hypothesis of Granger non-causality; hence, unlike the preceding chapters the

test statistic is not a pivotal function, as it depends on the distribution of the residuals εt. On the

other hand, if the model is transformed such that there are no nuisance parameters under the null

hypothesis, then the test statistic is distribution-free. Therefore, we propose a transformation such

that the test is distribution-free and the dependent variable has zero median under the null. In

what follows, we first consider making inference in the case where the vector of nuisance parameters

θR is known. We then proceed to show how by using Bonferroni-type tests, it is possible to make

provably valid inference with unknown nuisance parameters.

3.4.1 Inference with known nuisance parameters

Let us rewrite regression equation (3.33) as

yt = A′y
t−1

+ β′xt−1 + εt, t = p, ..., T, (3.37)

such that y
t−1

= (1, yt−1, ..., yt−p)
′ and xt−1 = (xt−1, ..., xt−p), are in turn (p + 1) × 1 and p × 1

vector of regressors, and A = (m1, a1, ..., ap)
′ and β = (b1, ..., bp)

′ are (p+ 1)×1 and p×1 vector of
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unknown parameters. Finally, εt for p ≤ t ≤ T are the error terms with conditional distribution

function

εt | Y,X ∼ Ft(. | Y,X), (3.38)

where Ft(. | Y,X) is a distribution function, where the process εt satisfies the strict conditional

mediangale assumption

P [εt > 0 | εt−1, Y,X] = P [εt < 0 | εt−1, Y,X] =
1

2
. (3.39)

where

ε0 = {∅}, εt−1 = {ε1, · · · , εt−1}

Notice that regression (3.37) can be transformed as follows

ỹt = βxt−1 + εt, t = p, ..., T, (3.40)

where

ỹt = yt − Ayt−1
, t = p, ..., T. (3.41)

such that A is taken to be AR = (mR
1 , a

R
1 , ..., a

R
p ) when the coefficient AR is known under the

restricted model. Based on the transformation, we now define a new vector of signs

S ỹt =


1 if ỹt ≥ 0

0 if ỹt < 0

, t = p, ..., T. (3.42)

Therefore, testing the null hypothesis of Granger non-causality (3.35) is equivalent to testing the

null hypothesis

H̃x→y
0 : β = 0, (3.43)

against the alternative

H̃x→y
1 : β = β1, β1 6= 0. (3.44)
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Under the assumption (3.39), and given the transformation (3.40), the estimator of the sign-based

measure from X to Y for the regression equation (3.37) can now be written as

Ĉ(X → Y ) =
1

T − p+ 1
[l(Uỹ(T ), β1)− l(Uỹ(T ), 0)]

=
1

T − p+ 1

T∑
t=p

{
logPβ1 [S ỹt = sỹt | S

ỹ
t−1, Y,X]− logP0[S ỹt = syt | S

ỹ
t−1, Y ]

}
,

(3.45)

where as before

Sỹp = {∅}, Sỹt−1 = (S ỹt−1 = sỹt−1, ..., S
ỹ
t−p = sỹt−p), for t ≥ p+ 1

and

P [S ỹp+1 = sỹp+1 | Sỹp, Y,X] = P [S ỹp+1 = sỹp+1 | Y,X],

such that Pβ1 [S ỹt = sỹt | S
ỹ
t−1, Y,X] and P0[S ỹt = sỹt | S

ỹ
t−1, Y ] are in turn the p.m.fs of the signs for

the transformed unrestricted and constrained regression models. Under the alternative hypothesis

we have for t = p, ..., T

log
(
Pβ1 [S ỹt = sỹt | S

ỹ
t−1, Y,X]

)
= S ỹt logPβ1 [ỹt ≥ 0 | Sỹt−1, Y,X]+(1−S ỹt ) logPβ1 [ỹt < 0 | Sỹt−1, Y,X],

(3.46)

which can be expressed as

log
(
Pβ1 [S ỹt = sỹt | S

ỹ
t−1, Y,X]

)
= S ỹt log

{
Pβ1 [ỹt ≥ 0 | Sỹt−1, Y,X]

Pβ1 [ỹt < 0 | Sỹt−1, Y,X]

}
+ logPβ1 [ỹt < 0 | Sỹt−1, Y,X].

(3.47)

Since under the null hypothesis the signs S ỹt , for p ≤ t ≤ T , are independent for the transformed

regression (see Theorem 2), then

P [S ỹt = 1 | Y ] = P [S ỹt = 0 | Y ] =
1

2
, t = p, ..., T.
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Therefore, the sign-based Granger causality measure (3.45) can be expressed in the following

manner

C̃(X → Y ) =
1

T − p+ 1

T∑
t=p

{
S ỹt log

{
Pβ1 [ỹt ≥ 0 | Sỹt−1, Y,X]

Pβ1 [ỹt < 0 | Sỹt−1, Y,X]

}
+ logPβ1 [ỹt < 0 | Sỹt−1, Y,X]− log

{
1

2

}}
(3.48)

Proposition 6 Under assumptions (3.38) and (3.39)), let Hx→y
0 and Hx→y

1 be defined by (3.43)

- (3.44),

SGT (A, β1) =
T∑
t=p

S ỹt wt(β1), (3.49)

where for t = p, ..., T

wt(β1) = log

{
Pβ1 [ỹt ≥ 0 | Sỹt−1, Y,X]

Pβ1 [ỹt < 0 | Sỹt−1, Y,X]

}
,

and suppose for any 0 ≤ α ≤ 1, c1(α, β1) is the critical value of the corresponding test with nominal

level α, where c1(α, β1) is the smallest point such that

P [SGT (A, β1) > c1(α, β1) | Hx→y
0 ] ≤ α. (3.50)

Then the test that rejects Hx→y
0 when

SGT (A, β1) > c1(α, β1)

is most powerful for testing Hx→y
0 against Hx→y

1 among level-α tests based on the signs (S ỹp , ..., S
ỹ
T ).

Under the null hypothesis of Granger non-causality, S ỹp , ..., S
ỹ
T are i.i.d according to a Bernoulli

Bi(1, 0.5). Henceforth, the distribution of the test statistic depends on the weights wt(β1) and does

not involve any nuisance parameter. Thus, it is distribution-free and robust against heteroskedas-

ticity of unknown form, or as noted by Dufour and Taamouti (2010a) it is a pivotal function of

nonparametric nature. On the other hand, under the alternative hypothesis, the power function

depends on the form of the distribution of εt.

As it had been discussed in Section 3.3.1, the calculation of wt(β1) depends on the joint distri-
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bution of process of signs which is computationally infeasible. Therefore, an assumption on the

dependence structure of the process of signs is needed.

Assumption A5: Let the signs {S ỹt }∞t=p follow a Markov process of order one. Then


P [ỹt ≥ 0 | Sỹt−1, Y,X] = P [ỹt ≥ 0 | ỹt−1 ≥ 0, Y,X]S

ỹ
t−1P [ỹt ≥ 0 | ỹt−1 < 0, Y,X]1−S

ỹ
t−1

P [ỹt < 0 | Sỹt−1, Y,X] = P [ỹt < 0 | ỹt−1 ≥ 0, Y,X]S
ỹ
t−1P [ỹt < 0 | ỹt−1 < 0, Y,X]1−S

ỹ
t−1

Assumption A5 simplifies the calculations of the the probabilities P [ỹt ≥ 0 | Sỹt−1, X] and P [ỹt <

0 | Sỹt−1, Y,X], and in turn, the calculation of the test statistic SGT (A, β1).

Corollary 6 Under the assumptions (3.38) and (3.39), and given transformation (3.40), the sign-

based test of Granger non-causality from X to Y (3.49), rejects the null-hypothesis H̃x→y
0 when

S̃GT (A, β1) =
T∑
t=p

S ỹt S
ỹ
t−1α̃t(β1) +

T∑
t=p

S ỹt w̃t(β1) > c1(β1), (3.51)

where

w̃p(β1) = log

{
1− P [εp < −β′1x0 | Y,X]

P [εp < −β′1x0 | Y,X]

}
, α̃p(β1) = 0

and for t = p+ 1, ..., T we have

w̃t(β1) = ln


1−P [εt<−β

′
1xt−1, εt−1<−β

′
1xt−2|Y,X]

P[εt−1<−β′1xt−2|Y,X]
P[εt<−β′1xt−1, εt−1<−β′1xt−2|Y,X]

P[εt−1<−β′1xt−2|Y,X]



α̃t(β1) = ln


1−
(

P [εt<−β
′
1xt−1|Y,X]

1−P[εt−1<−β′1xt−2|Y,X]
−P [ εt−1<−β

′
1xt−2, εt<−β

′
1xt−1|Y,X]

1−P[εt−1<−β′1xt−2|Y,X]

)
P[εt<−β′1xt−1|Y,X]

1−P[εt−1<−β′1xt−2|Y,X]
−
P[ εt−1<−β′1xt−2, εt<−β′1xt−1|Y,X]

1−P[εt−1<−β′1xt−2|Y,X]

− ln


1−P [εt<−β

′
1xt−1, εt−1<−β

′
1xt−2|Y,X]

P[εt−1<−β′1xt−2|Y,X]
P[εt<−β′1xt−1, εt−1<−β′1xt−2|Y,X]

P[εt−1<−β′1xt−2|Y,X]


The test statistic S̃GT (A, β1) can be simulated under the null hypothesis and the relevant critical

values can be estimated with sufficient number of replications [see Dufour and Taamouti (2010a)].

The confidence set with level (1 − α), are set of values β0, for which we cannot reject the null

hypothesis of Granger non-causality. In other words, the confidence set for β0 can be expressed
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as follows

J(α,A) =
{
β0 : S̃GT (A, β1) ≤ c1(α, β1)

}
(3.52)

where by construction

P [β ∈ J(α,A)] ≥ 1− α (3.53)

3.4.2 Inference with unknown nuisance parameters

If the nuisance vector A is unknown, one natural approach for dealing with the nuisance param-

eter problem may appear to be the estimation of the unknown coefficients Â. Then given the

estimated value, we may construct Granger non-casuality tests using transformation (3.40) and

considering the test statistic S̃GT (Â, β1) - this apporach has been considered in the simulations

section. However, provably valid procedures for testing Granger non-causality in the presence

of unknown nuisance parameters can be obtained using the simultaneous inference approach im-

plemented by Dufour (1990) and Campbell and Dufour (1997) [see Cavanagh et al. (1995) and

Campbell and Yogo (2006) among others for use in different settings]. This is accomplished as

follows: first we construct an exact (1−α1) confidence set, say CSA(α1), for the vector of nuisance

parameters, A, such that 0 ≤ α1 ≤ α ≤ 1 and

P [A ∈ CSA(α1)] ≥ 1− α1. (3.54)

Second, as shown before, given the true value of A, it is possible to obtain an exact confidence

set for β. Therefore, once a confidence set for A is available, sign-based Granger non-causality

tests corresponding to each value A in the confidence set CSA(α1) are constructed at level α2 (i.e.

S̃G(A, β1;α2)), where 0 ≤ α2 ≤ 1. Finally, the conditional sign-based tests S̃G(A, β1;α2) and the

confidence set for A are combined to obtain a simultaneous confidence set for A and β. Then an

intersection-union method is used to obtain confidence sets and valid tests for β, irrespective of

the true value of A.

The confidence set for A can be constructed in a variety of different ways; however, preference goes

to more powerful testing procedures, as they result in a tighter confidence set [see Campbell and
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Yogo (2006)]. The issue of constructing the confidence set for the nuisance vector A is addressed

later on in this Section. In what follows, we first consider the case of constructing a simultaneous

confidence set for A and β, before turning our attention to making inference only on β. In what

follows, we follow Dufour (1990) by first considering the problem of constructing a confidence set

for (A, β), which in turn allows us to test joint hypotheses of the form H̄0 : A = A0, β = β0.

Let us co+struct a confidence set for (A, β), say K(α1, α2), with 0 ≤ α1, α2 ≤ 1, such that

K(α1, α2) = {(A, β) : A ∈ CSA(α1) ∩ β ∈ J(α2, A)} (3.55)

=
{

(A, β) : A ∈ CSA(α1) ∩ S̃GT (A, β1) ≤ c1(α2, β1)
}
. (3.56)

which naturally implies that

P [(A, β) ∈ K(α1, α2)] = P
[
A ∈ CSA(α1) ∩ S̃GT (A, β1) ≤ c1(α2, β1)

]
. (3.57)

Finally, by employing De Morgan’s law and Bonferroni inequality, we obtain

P [(A, β) ∈ K(α1, α2)] = 1− P [A /∈ CSA(α1) ∪ β /∈ J(α1, A)]

= 1− P
[
A /∈ CSA(α1) ∪ S̃GT (A, β1) > c1(α2, β1)

]
≥ 1− P [A /∈ CSA(α1)]− P [S̃GT (A, β1) > c1(α2, β1)]

≥ 1− α1 − α2,

(3.58)

where K(α1, α2) is a confidence set for (A, β) with level (1− α) ≡ 1− α1 − α2. The values of α1

and α2 can be chosen such that the desired level α is achieved. With the setup above, it is clear

that the joint null hypothesis H̄0 : A = A0, β = β0 gets rejected when (A0, β0) /∈ K(α1, α2). In

turn, given (3.58), this would imply

P [(A, β) /∈ K(α1, α2)] ≤ α1 + α2 ≡ α,

which is the desired level α.

The issue with the earlier result is that it considers testing the joint null hypothesis H̄0 : A =
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A0, β = β0, as opposed to only testing the null hypothesis of Granger non-causality (i.e. H̃x→y
0 :

β = 0). In other words, we obtained simultaneous confidence set K(α1, α2), where the test is only

rejected when (A0, β0) /∈ K(α1, α2); although, conservative confidence sets for the vector β0 can

then be obtained using the projection technique.

To make inference only on the parameter vector β, we adapt Proposition 2 of Dufour (1990)

to the context of our study. To do this, we first introduce some statistical terminology: Let

S̃G
A∈CSA(α1)

(A, β1) ∈ S, where S ⊂ R. Denote (R,A) as parititions of S, such that if S̃G
A∈CSA(α1)

(A, β1) ∈

R, the null hypothesis Hx→y
0 is rejected, and if S̃G

A∈CSA(α1)
(A, β1) ∈ A, the null hypothesis is ac-

cepted. A test for the null hypothesis Hx→y
0 : β = 0 with nominal level α is conservative if

P

[
S̃G

A∈CSA(α1)
(A, β1) ∈ R | β = 0

]
≤ α, and it is liberal if P

[
S̃G

A∈CSA(α1)
(A, β1) ∈ R | β = 0

]
≥ α.

For a conserative test if the critical region is expanded to its nominal level α, the conclusion of

the test remains the same. Similarly, for a liberal test if the critical region is contracted to its

nominal level, the conclusion is unchanged. Now if for a null hypothesis Hx→y
0 , we can construct

both liberal and conservative tests with partitions (R1,A1) and (R2,A2) respectively, such that

R1 ⊆ R2, then the test is rejected if S̃G
A∈CSA(α1)

(A, β1) ∈ R1 and accepted if S̃G
A∈CSA(α1)

(A, β1) ∈ A2;

otherwise, if S̃G
A∈CSA(α1)

(A, β1) ∈ R2−R1, both tests are inconlusive. Hence, unlike the ”traditional

bound-type procedures” which rely only on one test-statistic, tests surrounding parameter vector

β are based on two test statistics with nested critical regions, such that the smaller and the larger

regions in turn yield conservative and liberal tests, with the difference between the two regions

being considered as an inconclusive region. Corresponding to the conservative and libral tests

with nominal level α for the null hypothesis H̃x→y
0 : β = 0, we may also construct conservative

and liberal confidence sets for β, such that P [β ∈ U ] ≥ 1 − α and P [β ∈ L] ≤ 1 − α, where U

and L are in turn conservative and liberal confidence sets.

According to the earlier definitions, inference on the null hypothesis H̃x→y
0 : β = 0 with nominal

level α, with 0 ≤ α ≤ 1, requires the construction of conservartive and liberal tests with a

nested critical region, such that paritions R1 and R2 in S satisfy R1 ⊆ R2. For this to hold, the

conservative test must have level α2 with 0 ≤ α2 ≤ α, while the liberal test must have level α3,

with α3 ≥ α ≥ α2 ≥ 0. Thus, consider model (3.40) and let CSA(α1) be the confidence set for A.
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Following Dufour (1990), α1, α2 and α3 are chosen such that

α1 = α− α2, α3 = α + α1, 0 ≤ α1 < α ≤ 1− α1. (3.59)

In turn, conservative and liberal sets for β are defined as

U(α1, α2) = {β : (A, β) ∈ K(α1, α2), for some A ∈ CSA(α1)}, (3.60)

L(α1, α3) = {β : (A, β) ∈ K(α1, α2),∀A ∈ CSA(α1)}. (3.61)

If (3.59) holds, U(α1, α2) and L(α1, α3) are in turn conservative and liberal sets for β with the

same level 1− α, such that P [β ∈ U(α1, α2)] ≥ 1− α and P [β ∈ L(α1, α3)] ≤ 1− α [see proof in

Appendix A.1. of Dufour (1990)]. Therefore, with these sets, conservative and liberal tests can

be constructed. Let

QL(β) = inf
{
S̃GT (A, β1) : A ∈ CSA(α1)

}
, (3.62)

QU(β) = sup
{
S̃GT (A, β1) : A ∈ CSA(α1)

}
. (3.63)

Then β /∈ U(α1, α2) is equivalent to QL(β) ≥ S(α2), while β ∈ L(α1, α3) is equivalent to QU(β) ≤

S(α3). Thus, the bounds test for testing H̃x→y
0 : β = 0


Rejects H̃x→y

0 when QL(β) > c1(α2, β1),

Accepts H̃x→y
0 when QU(β) ≤ c1(α3, β1),

Inconclusive otherwise.

(3.64)

The issue of choosing the value of α1, and hence α2 and α3 is discussed in the next Section.

To find an exact confidence set for the vector of unknown nuisance parameters, which must at

least be true under the null hypothesis of Granger non-causality [see. Campbell and Dufour

(1997)], we take advantage of the exact estimation procedure proposed by Andrews (1993), based

on median-bias correction for AR(1) models with an intercept. The extension to AR(p) processes

can be achieved with slight modifications [see. Andrews and Chen (1994), Rudebusch (1992), and
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Stock (1991)]. However, the adjusted methodology will no longer yield exact results, but rather

“approximate” confidence intervals.

For the simplicity of exposition let us consider a process with lag order p = 1. Then we can express

the constrained regression equation (3.37) under the null hypothesis of Granger non-causality as

follows

yt = m1 + a1yt−1 + εt, t = 1, ..., T (3.65)

with a1 ∈ (−1, 1], and where it is now assumed that εt are independent and identically distributed

error terms, such that εt ∼ N(0, σ2). If | a1 |< 1, then an assumption regarding the initial

condition is made -e.g. y0 ∼ N(m1, σ
2/(1− a1

2)); otherwise, when a1 = 1 and the process is non-

stationary, y0 has an arbitrary initial condition. Andrews (1993), suggests that in the presence of

an intercept (such as m1), the least squares estimator of parameter a1 in the AR(1) model (3.65)

has downward bias, particularly when a1 is close to unity. Therefore, he proposes a bias-correction

strategy based on the median-bias (i.e. the difference between the median of the estimator and

its true value) of the LS estimator of a1, where the same strategy can also be utilized to obtain

exact confidence intervals. The estimator â1 is median-unbiased, when the true parameter a1 is

the median of â1. In other words,

Ea1 | â1 − α1 |≤ Ea1 | â1 − a′1 |, ∀a1, a
′
1 ∈ Θ, (3.66)

where Θ is the parameter space for a1. Property (3.66) implies that on average the distance

between â1 and the true parameter value a1, is less than the distance between â1 and any other

parameter. Let qp(a1) denote the pth quantile function of â1, where the distribution of â1 depends

only on a1 [see appendix A of Andrews (1993) for the proof of the invariance property of â1]. By

definition, for p ∈ (0, 1), P [â1 ≤ qp(a1)] = p. The (1− p) confidence interval for a1 is given by the

set

{a1 ∈ [−1, 1] : qp1(a1) ≤ â1 ≤ qp2(a1)} , (3.67)
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where p1 ≥ 0, p2 ≥ 0 and since

P [qp1(a1) ≤ â1 ≤ qp2(a1)] = P [â1 ≤ qp2(a1)]− P [â1 ≤ qp1(a1)]

= (p2 − p1)

= 1− p,

it is evident that p = 1 + p1 − p2. Quantile functions qp1(a1) and qp2(a1) correspond to interval

{a1 : L̂ ≤ a1 ≤ Û} as shown in Andrews (1993), they are both increasing in a1. Andrews (1993)

defines L̂ and Û as follows:

L̂ =


> 1 if â1 > qp2(1)

q−1
p2

(â1) if q(−1) < â1 ≤ q(1)

−1 if â1 ≤ qp2(−1)

, Û =


> 1 if â1 > qp1(1)

q−1
p1

(â1) if q(−1) < â1 ≤ q(1)

−1 if â1 ≤ qp1(−1)

, (3.68)

where by definition for j = 1, 2, qpj(−1) = limα1→−1 qpj(a1) and q−1
pj

: (qpj(−1), qpj(1)]→ (−1, 1] is

the inverse function of qpj(.), such that q−1
pj

(
qpj(a1)

)
= a1.

Evidently, the shortcoming of this procedure is that for the interval to be exact, the distribution

of the residuals must be specified as normal. However, Andrews (1993) provides clear numerical

evidence that the aforementioned procedures based on normal distribution are robust against

non-normal distributions - results which are reaffirmed by our simulations exercise in Section 3.5.

3.5 Monte Carlo simulations

In this Section, we assess the finite sample bias of the estimator of the proposed sign-based

Granger causality measures and recommend a VAR Sieve bootstrap procedure to estimate the

bias-corrected causality measures. Thereafter, we examine the performance of the sign-based

Granger non-causality tests in finite samples. To assess the empirical size and power of the

tests, we consider a variety of different DGPs which correspond to symmetric and asymmetric

distributions often encountered in practice.
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3.5.1 Bootstrap bias-corrected estimation of sign-based causality mea-

sures

In theory it may be possible to derive analytical expressions for the sign-based Granger causality

measures. For instance, in the case of Granger non-causality from X to Y , it is immediately

evident from the law of large numbers that ĈT (X → Y ) → 0 as T → ∞. However, in more

complex cases, theoretical derivation of the causality measure values may not be practical. As

noted by Dufour and Taamouti (2010b), the root of the bias in autoregressive coefficients is finite

sample sizes. Thus, where theoretical derivations are infeasible, the causality measure values can

be simulated. The idea consists of simulating a large sample from an unrestricted model with

known parameters, and in turn using the simulated sample to estimate the parameters of the

constrained (i.e. in the case of Granger non-causality) model. The large simulation algorithm of

Dufour and Taamouti (2010b) is tailored to fit the sign-based Granger causality measures proposed

in our study as follows:

1. Simulate a large sample of T observations using the unrestricted model with known param-

eters and initial values, under the assumption that the distribution of the residuals εt is

specified. As it will be shown in Section 3.5.1.1, and as noted by Dufour and Taamouti

(2010b), the choice of the distribution of the residuals does not have a significant impact on

the value of the causality measures. In our study, we consider a sample size of T = 1, 000, 000;

however, Dufour and Taamouti (2010b) have shown that sample sizes as small as 600, 000

yield results consistent with the theoretical values of the causality measures.

2. Use the simulated large sample to estimate the parameters of the constrained model.

3. Obtain the signs Syt , such that Syt = 1R+∪{0}{yt}, for t = 0, ..., T , where 1 is an indicator

function, and calculate the CDFs and the joint CDFs of the residuals {εt}Tt=1 corresponding

to the unrestricted and constrained regressions as shown in Section 3.3.2.

4. Calculate the sign-based Granger causality measure derived in corollary 5.

To reduce bias, we follow Dufour and Taamouti (2010b) and Taamouti et al. (2014) and use
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bootstrap to compute the small sample bias in the estimator of the sign-based Granger causality

measures. The bias-term is then subtracted to obtain the bootstrap bias-corrected estimates.

Taamouti et al. (2014) approximate the bootstrap bias term Bias = E
[
Ĉ(X → Y )− C(X → Y )

]
by

Biasboot = Eboot
[
Ĉboot(X → Y )− Ĉ(X → Y )

]
, (3.69)

where Eboot is the expectation with respect to the distribution of the bootstrap sample Ĉboot(X →

Y ), and Ĉ(X → Y ) is the estimate of the sign-based causality measure using the original sample.

In practice, the expectation operator of the bias estimator (3.69) can be replaced with its empirical

counterpart, - i.e. the sample mean. This implies that the bias term is estimated as follows

B̂iasboot =
1

B

B∑
k=1

Ĉ
(k)
boot(X → Y )− Ĉ(X → Y ). (3.70)

A bootstrap procedure based on simple sampling with replacement does not preserve the condi-

tional dependence structure of the data. Therefore, we suggest the vector autoregressive sieve

bootstrap procedure proposed by Meyer and Kreiss (2015), which is simply an extension of the

AR sieve bootstrap for multivariate time-series. In other words, this bootstrap procedure fits a

VAR process to the data, as opposed to a an AR process. To obtain the asymptotic validity of

the VAR sieve bootstrap, the conditions outlined in Theorem 4.1 of Meyer and Kreiss (2015) must

hold - these conditions are discussed in detail in the Appendix. The process of estimating the bias

using the vector autoregressive sieve bootstrap is then as follows

1. Select an order p of a VAR model for the bivariate vector {Zt : t = 0, 1, ..., T} such that

p << T . An appropriate lag order p can be selected using a criterion, such as the Akaike

information criterion (AIC) or the Bayesian information criterion (BIC).

2. Fit the vector autoregressive model to the simulated observations using the multivariate

least squares (LS) or the Yule-Walker estimator. We follow Meyer and Kreiss (2015) and

Bühlmann et al. (1997) by estimating the parameters using the latter approach, where

the parameter estimates for the VAR(p) model are denoted by Φ̂1(p), ..., Φ̂p(p) and are the
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solution to the following linear system

(
Φ̂1(p), ..., Φ̂p(p)

)
Ĝ(p) =

(
Γ̂(1), ..., Γ̂(p)

)

where for each lag −p ≤ τ ≤ p, Γ̂(τ) is the sample autocovariance matrix of Z0, ..., ZT and

Ĝ(p) ∈ R2p×2p is defined by Ĝ(p) =
(

Γ̂(s− r)
)
r,s=1,...,p

.

3. Let ε′t = Zt − ĉ −
p∑
j=1

Φ̂j(p)Zt−j, t = p, ..., T be the underlying residuals of the fitted vector

autoregressive model and F̂T be the empirical distribution function of the centered residuals

ε̂t = ε′t − ε̄, where ε̄ = (T − p+ 1)−1
∑T

t=p ε
′
t.

4. Generate T + p independent residuals ε∗1, ε
∗
2, ..., ε

∗
T+p from the distribution F̂T by random

sampling with replacement. Using these generated residuals ε∗t along with the Yule-Walker

coefficient estimates Φ̂, we generate a bootstrap sample (Z∗p , ..., Z
∗
T ) according to the equation

Z∗t =

p∑
j=1

Φ̂j(p)Z
∗
t−j + ε∗t ,

The first p data points are later discarded.

5. Estimate the least-squares estimates of the unconstrained and constrained marginal processes

y∗t and x∗t based on the pseudo time-series Z∗1 , ..., Z
∗
T .

6. Calculate the causality measure Ĉ
(k)
boot(X → Y ) based on the pseudo time-series Z∗1 , ..., Z

∗
T .

7. Repeat steps 2− 6, B times.

8. Calculate the bias term b̂iasboot, using relationship (3.70).

9. Calculate the bias-corrected estimate of the sign-based Granger causality measure as follows:

ĈBC(X → Y ) = Ĉ(X → Y )− B̂iasboot (3.71)

Since in practice the bias-corrected causality measure ĈBC(X → Y ) can be negative for some
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bootstrap samples, we follow Taamouti et al. (2014), by imposing the following non-negativity

truncation

ĈBC(X → Y ) = max
{
ĈBC(X → Y ), 0

}
(3.72)

The bias-corrected sign-based causality measure from Y toX can be estimated in the same manner.

It is crucial to point out that the bias-corrected estimator of sign-based causality measures is

a raw measure of causality, in the sense that while it is useful for comparing and assessing the

strength of the causal relationship, hypotheses tests cannot be made on the value of the measure

itself to infer on its significance. Therefore, in what follows, we show that by performing slight

modifications to the sign-based measures, Granger non-causality tests can be constructed to assess

the presence of a causal relationship or lack thereof. The Bias-corrected estimators of sign-based

measures in conjunction with the sign-based Granger non-causality tests equip us with the means

of both assessing the strength of the causal relationship and testing for its presence.

3.5.1.1 Simulation study

The aim of this Section is to run a Monte Carlo experiment to investigate the possible bias in

the estimator of the sign-based Granger causality measures proposed in Section 3.3.2. The data

generating processes considered represent linear regression models under different distributional

assumptions and forms of heteroskedasticity. Table 3.1 presents the DGPs that have been uti-

lized in our simulation study, with the last column showing the direction of causality. First let

us consider DGP1: it is evident that by construction X and Y are independent - i.e. there is no

causality from X to Y , nor from Y to X. Therefore, it can be deduced that the sign-based causal-

ity measures possess known true values of zero, and as such C(X → Y ) = C(Y → X) = 0. The

same goes for DGP2 in which X and Y are independent conditional on their past values. These

two processes are therefore good benchmarks by which the bias in the estimators of the sign-based

causality measures can be evaluated. On the other hand, the case for Granger non-causality from

X to Y is not present in DGPs 3 and 4, which in turn are of unidirectional and bidirectional causal

natures. In DGP3, for instance, X Granger causes Y , while Y is independent of X conditional

on the past value of X. Therefore, in this case the true measure of causality from X to Y is
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unknown and non-zero. Finally referring to DGP4, it is evident that the causality relationship

between Y and X is bidirectional, where in addition X and Y exhibit simultaneous causality.

Despite the fact that the true values of the sign-based Granger causality measures from X to Y is

unknown for DGPs 3 and 4, we still have the means of evaluating the finite sample bias of the es-

timators by employing the large simulation algorithm proposed by Dufour and Taamouti (2010b),

introduced in Section 3.5.1. We have chosen T = 1, 000, 000 for the aforementioned algorithm,

which is significantly greater than the minimum sample size (i.e. 600,000) proposed by Dufour

and Taamouti (2010b); this is to ensure that the sample size related coefficient bias is minimized.

In addition to DGPs 1 to 4, which all possess bivariate normally distributed disturbances, we have

further considered the marginal processes of DGP3 under different distributional assumptions and

forms of heteroskedasticity [see table 3.2]. As it has been noted by Dufour and Taamouti (2010b),

different distributional assumptions should not lead to different values of causality measures, and

these additional assumptions are imposed merely for assessing the robustness of the exact Granger

non-casuality test. Nevertheless, for the sake of rigor, the bias in the estimators of the sign-based

Granger causality meausres for DGP3(I)-(VIII) have been considered and evaluated as well.

We consider sample sizes of T = 50, 150, 250 and 500 to simulate the bias-corrected estimators

of the sign-based Granger causality measures, and T = 50 and 150 to examine the finite sample

properties of the exact sign-based inference procedure in terms of size and power. The smaller

sample sizes for the latter exercise is due to limitations in computational power, since the Imhof

(1961) algorithm used for finding the exact confidence set for the vector of nuisance parameters

performs very slowly in samples greater than 100 observations. Tables 3.3 and 3.4 present the

results for the bootstrap bias-corrected estimators of the sign-based Granger causality measures

for different sample sizes. The bias term B̂iasboot used for calculating the bias-corrected measures

has been estimated by considering B = 500 sample estimates of the causality measure based on

the VAR sieve bootstrapped data - these are presented in rows labeled ’Bias corrected’, with

their corresponding standard errors shown in brackets. On the other hand, the rows labeled

’True’ present the values of the causal measures that are known, either due to clearly evident

independence (conditional independence) of the variables X and Y , or because they have been
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Table 3.1: Data-generating processes (DGPs) considered in the Monte Carlo study to assess the

finite sample bias of the estimator of the sign-based Granger causality measures

DGPs Variables Direction of Causality
yt xt

DGP1 εyt {white noise} εxt {white noise} Y 9 X,X 9 Y

DGP2 yt = 0.5yt−1 + εyt xt = 0.5xt−1 + εxt Y 9 X,X 9 Y

DGP3(I-VIII) yt = 0.5yt−1 + 0.5xt−1 + εyt xt = 0.9xt−1 + εxt Y 9 X,X → Y(
yt
xt

)
=

(
0.2
0.3

)
+

[
0.1 0.8
0.7 0.15

](
yt−1

xt−1

)
+

DGP4

(
εyt
εxt

)
, with Y → X,X → Y(

εyt
εxt

)
∼
[(

0
0

)
,

(
1 0.2

0.2 1

)]
Y ↔ X

Note: This table contains the different data generating processes considered in our study for

investigating the bias in the estimation of the sign-based of Granger causality measures, as well as

the empirical size and power of the Granger non-causality test. The process (yt, xt) is simulated

for t = 1, ..., T with the assumption that (εyt , ε
x
t ) are i.i.d from N(0,Σ2). DGP3(I)-DGP(VIII)

further consider different distributional assumptions and forms of heteroskedasticiy.
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simulated by employing the large simulation algorithm in cases where causal relationships are in

fact present.

First, let us consider DGPs 1 and 2: it is evident that for the cases of Granger non-causality, the

bias-corrected estimators of the sign-based causality measures are close to zero. Furthermore, the

estimator appears to be consistent, since increases in sample size leads to the convergence of the

bias-corrected estimator of the causality measure to its true value of zero. Similar phenomenon

can be observed for DGPs 3(I-VIII) and DGP4, where cases of Granger causality from X to Y and

Y to X are present. For instance, there is inherent causality from X to Y in DGP3(I), whereas X

is independent of Y conditional on the past value of X. Therefore, the bias-corrected estimator of

the sign-based Granger causality measure from X to Y is non-zero, and it approaches its simulated

true value of 0.0771 as the sample size increases; however, due to the conditional independence of

Y and X in DGP3(I), the estimator converges to zero. Under different distributional assumptions,

Table 3.2: Residuals of DGP3 with different distributional assumptions and forms of heteroskedas-

ticity

DGP3
I εyt , ε

x
t ∼ N(0, 1)

II εyt , ε
x
t ∼ Cauchy

III εyt , ε
x
t ∼ t(2)

IV εyt , ε
x
t ∼ st | εCt | −(1− st) | εNt | where P (st = 1) = P (st = 0) = 1

2

V εyt , ε
x
t ∼

{
N(0, 1) for t 6= 25√

1000N(0, 1) for t = 25

VI εyt , ε
x
t ∼ N(0, σ2

ε(t)) and σε(t) = exp(0.5t)

VII εyt , ε
x
t ∼

{
N(0, σ2

ε(t)) for t 6= 25

50N(0, σ2
ε(t)) for t = 25

σ2
ε(t) = 0.00037 + 0.0888ε2

t−1 + 0.9024σ2
ε(t− 1)

VIII εyt , ε
x
t ∼ N(0, σ2

ε(t)) σ2
ε(t) = 0.45ε2

t−1 + 0.45σ2
ε(t− 1)

Note: This table summarizes different symmetric and asymmetric distributions and the forms of

heteroskedasticity for the marginal processes Y and X of DGP3: (I) Normal distribution; (II)

Cauchy distribution; (III) Student t distribution with two degrees of freedom; (IV) Mixture of

Normal and Cauchy distributions where εCt follows a Cauchy distribution, εNt follows a N(0, 1)

distribution; (V) Break in variance; (VI) exponential variance; (VII) GARCH(1,1) plus jump in

variance; (VIII) GARCH(1,1) variance.
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our results for DGP3(I-VIII) mostly agree with Dufour and Taamouti (2010), in that the values of

the causality measures are not sensitive to the form of the distribution. However, this is evidently

not the case for DGP3(II), which is generated by a Cauchy distribution (with an undefined mean),

and DGP3(VIII) which is based on a normal distribution with GARCH(1,1).

3.5.2 Empirical size and power of Granger causality tests

In this Section, we assess the finite sample performance of the sign-based Granger non-causality

tests introduced in Section 3.4. The empirical size and the power of the tests are examined using

the DGPs in tables 3.1 and 3.2. The marginal processes Y in DGPs 1 and 2 and X in DGPs 1-3

are used to examine the size of the test, since by construction these satisfy the null hypothesis of

Granger non-causality. On the other hand, marginal processes Y in DGPs 3 and 4, and X in DGP 4

are used to investigate the power of the sign-based Granger non-causality tests. Our main interest

lies in examining the performance of the said tests within the domains of DGP3(I-VIII), as these

data are generated under different distributional assumptions and forms of heteroskedasticy; hence,

they would reveal whether the proposed tests are robust against non-normal and heteroskedastic

distributions.

As noted earlier, the confidence set for the vector of nusiance parameters is obtained by finding the

exact median-biased corrected quantiles using the Imhof (1961) algorithm. In order to keep the

computation of the simulations within a reasonable time frame, only sample sizes of T = 50, 150

are considered, as the Imhof (1961) algorithm performs very slowly for samples of greater than

100 observations. The distribution of the test statistic of the transformed regression is simulated

under the null hypothesis of Granger non-causality, where the critical values are then estimated to

any degree of precision with sufficient number of replications. In our study, we considered 1,000

replications for simulating the distribution and 500 iterations for simulating the size and power of

the test.

The implementation of the bound-type procedure suggested in Section 3.4.2 entails fixing an

arbitrary significance level, say α, and choosing the width of the confidence set CSA(α1) for the

vector of nuisance parameters such that the power of the test is maximized. Once α1 is chosen, α2
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Ĉ
B
C

(Y
→

X
)

0.0012
(0
.0

0
1
8
)

0.0011
(0
.0

0
1
8
)

0.0004
(0
.0

0
1
2
)

0.0003
(0
.0

0
1
1
)

0.0004
(0
.0

0
1
2
)

0.0003
(0
.0

0
1
2
)

0.0004
(0
.0

0
1
3
)

0.0003
(0
.0

0
1
2
)

0.0004
(0
.0

0
1
3
)

0.0003
(0
.0

0
1
2
)

0.1258
(0
.0

3
3
5
)

N
ote:

T
h
is

tab
le

sh
ow

s
th

e
valu

es
of

th
e

b
ias-corrected

estim
ators

of
G

ran
ger

cau
sality.

T
h
e

valu
es

in
th

e
”T

ru
e”

row
s

corresp
on

d
to

th
e

th
eoretical

(in
th

e
case

of
G

ran
ger

n
on

-cau
sality

)
valu

es,
as

w
ell

as
th

e
valu

es
of

th
e

cau
sality

m
easu

res
th

at
h
ave

b
een

ob
tain

ed

u
sin

g
th

e
large

sim
u
lation

s
algorith

m
.

”N
o”

in
d
icated

s
th

e
ab

sen
ce

of
a

cau
sal

relation
sh

ip
,

w
h
ile

”Y
es”

im
lies

th
e

p
resen

ce
of

a

cau
sal

relation
sh

ip
.

T
h
e

u
p
p

er
p

ortion
of

th
e

tab
le

sh
ow

s
th

e
valu

e
of

th
e

cau
sality

m
easu

res
for

a
sam

p
le

size
of
T

=
250

an
d

th
e

b
ottom

p
ortion

for
T

=
500.

T
h
e

valu
es

in
th

e
p
aran

th
esis

are
th

e
stan

d
ard

d
ev

iation
of

th
e

estim
ated

valu
es.

152



and α3 which correspond to the level of the tests based on the elements in CSA(α1) are obtained by

α2 = α−α1 and α3 = α+α1 respectively. In our study, we fix α at 0.05 for a Sample size of T = 200,

and consider the values of 0.028, 0.014, 0.008 and 0.004 for α1. The bounds type procedure entails

rejecting the null hypothesis of Granger non-casuality, if S̃GT (A, β1) is significant for each A in

CSA(α1) at level α− α1, and accepting the null hypothesis if no S̃GT (A, β1) is significant at level

α + α1; otherwise, the test is inconclusive. It is evident from figure 3.1 that a wider confidence

set for the vector of nuisance parameters CSA(α1) leads to a more powerful test, albeit there are

diminishing gains in terms of power as the width of the confidence set is increased wider than a

threshold -e.g. by choosing α1 at 0.004. These results are consistent with the findings of Campbell

and Dufour (1997). Therefore, in our simulation study, we assign a value of 0.008 to α1.

Tables 3.6 and 3.7 present the results of the power simulations of the sign-based Granger non-

causality tests in turn using the bound-type procedure and the estimation of the nuisance pa-

rameter vector approach. The latter involves first estimating the nuisance parameter vector,

A, under the null hypothesis of Granger non-causality using the OLS or a robust estimator of

choice. Once Â is obtained, the model is transformed and the test rejects the null hypothesis if

S̃GT (Â, β1) > c1(α, β1), where c1(α, β1) is the α = 5% significance level. First, let us consider

DGPs 1 and 2: in both cases there is no causality from X to Y or from Y to X. Evidently, for

both samples and both testing procedures the sign-based tests control the size.

Second, for DGPs 3(I)-4(VIII) in which X Granger causes Y but not the converse, we have

considered different distributional assumptions for the marginal processes Y and X. In case of

the marginal process X, our simulations show that the proposed bound-type tests and those

based on the estimation of the nusiance vector, A, control size whatever the sample size. For the

marginal process Y and a sample size of T = 50, the bound-type procedure possesses good power

properties regardless of the distribution; however, DGPs 3(II) and 3(VIII) which correspond to

the Cauchy distribution and Normal distribution with GARCH(1,1) variance seem to have the

least power among all the different distributional assumptions and forms of heteroskedasticity.

Once the sample size is increased to T = 150, the power of the test is unity regardless of the

distribution.
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Figure 3.1: Power simulations for the bound-type procedure with different values of α1 and α2
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, εt | yt, xt ∼ N(0,Σ)

with a sample size of T = 200 and a significance level α = 0.05. As it is evident, under all

combinations of α1 and α2 size is controlled, with the power curve being traced out when a wider

confidence set of α1 = 0.008 is considered. However, there appears to be diminishing returns in

terms of power as α1 is reduced to 0.004.
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Finally, in DGP4 we have bidirectional causality, as well as instantaneous causality. Evidently in

this case the power of both test is almost at unity regardless of the sample size.

3.6 Empirical application: exchange rates and stock mar-

ket returns

Numerous studies have investigated the causal linkages between stock market prices and exchange

rates with mixed conclusions regarding the direction of causality. Exchange rates are said to have

a causal impact on stock market prices, since theoretically speaking, changes in the former af-

fects the firms’ profits, which in turn has an impact on the stock market returns [see Aggarwal

(1998)]. On the other hand, cases in support of the causal impact of the stock market returns on

exchange rates argue that exogenous appreciation of the domestic stock prices increases wealth

and consumption, which lead to higher interest rates. This results in higher capital inflows and

the appreciation of the domestic currency [See Krueger (1983)]. Therefore, assessing the causal

relationship between exchange rates and stock market prices is of great importance for policy mak-

ers. If exchanges rates are found to have a causal impact on stock market prices, then government

policies on exchange rates may have great ramifications on their stock markets. Furthermore, as

suggested by Muhammad et al. (2002), controlling the exchange rates may be used as means of cir-

cumventing future stock market crises, or as tools for attracting foreign portfolio investments. If,

however, unidirectional causality is found to be stretched from stock prices to exchange rates, pol-

icy makers can implement strategies to stabilize the domestic stock markets. Finally, the presence

of bidirectional causality could be exploited by investors to make strategic investment decisions,

given the information on the other market.

Early studies of the causal linkages between exchange rates and stock market prices include the

study by Aggarwal (1998), who found a positive and significant relationship between US stock

prices and the trade-weighted US dollar; Soenen and Hennigar (1988), found a negative and

significant correlation between the two variables in the monthly data spanning from 1980 to 1986,

and Soenen and Aggarwal (1989), obtained mixed results. More recent studies that have utilized
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more sophisticated econometric tools include the study of Bahmani-Oskooee and Sohrabian (1992),

who employed the Granger causality concept to discover a bidirectional relationship between the

stock prices of the S&P500 index and the effective exchange rate of the US dollar, and no long-

run relationship using cointegration analysis. Abdalla and Murinde (1997), investigated the said

relationship in the emerging financial markets in India, Korea, Pakistan and Philippines, using

bivariate vector autoregression on monthly data spanning from 1985 to 1994. Their findings

suggests unidirectional causality from exchange rates to stock prices. On the other hand, Hatemi-

J and Irandoust (2002), by employing the Granger non-causality testing procedure of Toda and

Yamamoto (1995) in a vector autoregressive framework, studied the relationship between the

Swedish stock market prices and the Swedish Krona, and found evidence of unidirectional causality

from stock market prices to exchange rates. In addition, papers with data spanning throughout

the financial crisis, have mostly found a bidirectional causal relationship between the two variables:

Olugbenga (2012), found a bivariate relationship using the Johansen integration tests for monthly

data spanning from 1985 to 2009; Cakan and Ejara (2013) employed monthly data for twelve

emerging markets for the period 1990-2013 and found linear and non-linear bi-directional causality;

and Zeren and Koç (2016), specifically studied the dynamic relationship between exchange rates

and stock market prices during crises and also gathered evidence in favor of two-way causality.

Most studies of the Granger causality relationship between the stock market prices and exchange

rates that have been conducted to date may be biased in finite samples due to non-standard distri-

butions and high persistency of the variables. Furthermore, asymptotic approximations are inap-

propriate in the presence of integrated or cointegrated data [see Hatemi-J and Irandoust (2002)].

Therefore, we utilize the proposed bias-corrected estimator of the sign-based Granger causality

measures and the exact sign-based non-causality tests, to assess the strength and significance of

the causal relationship between the two variables.

3.6.1 Data description

The monthly prices of the value-weighted S&P500 index and the exchange rates for the US dollars

to Canadian dollars, British pounds and the Japanese yen have been retrieved from the Wharton
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Research Data Services (WRDS) platform for the period spanning from January 1990 to January

2019 for a total of 348 observations. In order to assess the stationarity of the variables in loga-

rithmic form, we follow the sequential testing strategy of Phillips and Perron (1988) proposed in

the first chapter, on both level and first differenced variables using the Augmented Dickey Fuller

(ADF) test. Our results suggest that the variables are integrated of the first order, I(1), meaning

that they are non-stationary in levels, but stationary when the first differences are calculated.

Henceforth, following Taamouti et al. (2014), we will conduct our Granger causality analysis

within the framework of returns and growth rates.

Figure 3.2: Monthly S&P500 stock returns and the growth of the USD/CAD, USD/GBP, and

USD/JPY exchange rates.

1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017 2020

Time

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

R
e
tu

rn

1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017 2020

Time

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

G
ro

w
th

 r
a
te

 o
f 
U

S
D

/C
A

D

1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017 2020

Time

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

G
ro

w
th

 r
a
te

 o
f 
U

S
D

/G
B

P

1990 1992 1995 1997 2000 2002 2005 2007 2010 2012 2015 2017 2020

Time

-0.1

-0.05

0

0.05

0.1

0.15

G
ro

w
th

 r
a
te

 o
f 
U

S
D

/J
P

Y

Note: The sample spans from January 1990 to January 2019 for a total of 348 monthly observa-
tions. The dashed lines separate the horizon under consideration to three periods: A) January
1990 - January 2000, B) January 2000 - January 2010, and C) January 2010 - January 2019.
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3.6.2 Results

We follow Hatemi-J and Irandoust (2002) by combining the Akaike’s information criterion (AIC),

Bayesian information criterion, and the likelihood ratio (LR) test to choose the order of the VAR(p)

model. This strategy involves determining the lag order p by first assessing the outcome of the AIC

and BIC. If the results are contradictory, then the LR test is used to choose between the two lag

orders. Both criteria using the bivariate VAR(p) process for different combinations of the S&P500

returns and growth of the exchange rates are minimized at a lag order of p = 1. Therefore, we

consider a VAR(1) model of the form

 ∆ lnPt

∆ lnFX i
t

 =

m1

m2

+

a1 b1

c1 d1


 ∆ lnPt−1

∆ lnFX i
t−1

+

 εrt

εFXt


for i = GBP, JPY, CAD. Table 3.8 provides the results of the bias-corrected estimators of the

sign-based measures and the exact tests of Granger non-causality for the relationship between

the growth in the exchange rates and the stock market returns. We reject the null hypotehsis of

Granger non-causality when

QL(β) > c1(α2, β1) (3.73)

and accept it when

QU(β1) ≤ c1(a3, β1) (3.74)

otherwise the test is inconclusive. In more simple terms, relationship (3.73) implies that the

null hypothesis of Granger non-causality is rejected at the 5% level, if and only if all the tests

corresponding to each A ∈ CSA(α1) are rejected at the α2 level, where CSA(α1) is the 1 − α1

confidence set for the vector of nuisance parameters that is obtained using the exactly median

unbiased estimation procedure of Andrews (1993). Similarly, (3.74) is accepted, if and only if all

the tests corresponding to each A ∈ CSA(α1) are accepted at the α3 level, where α1, α2 and α3

are chosen according to relationship (3.59).
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Table 3.8: Results of the causality analysis between the growth of the exchange rates and stock

market returns

Direction of causality Bias-corrected estimate
of sign-based measure

[QL(β), QU (β)] [c1(α2, β1), c1(α3, β1)]

Panel A: 1990-2000
USD/CAD→ r 0.0000 [0.0425, 0.0548] [0.0473, 0.0457]
USD/JPY→ r 0.0000 [0.0390, 0.0600] [0.0980, 0.0931]
USD/GBP→ r 0.0003 [0.0167, 0.0308] [0.0317, 0.0296]

r→ USD/CAD 0.0002 [0.0893, 0.1022] [0.1064, 0.1038]
r→ USD/JPY 0.0005 [−0.1865,−0.1645] [−0.1152,−0.1222]
r→ USD/GBP 0.0000 [−0.1341,−0.0887] [−0.0689,−0.0764]

Panel B: 2000-2010
USD/CAD→ r 0.0003 [0.0979, 0.1449] [0.1460, 0.1404]
USD/JPY→ r 0.0001 [−0.0292, 0.0113] [0.0610, 0.0521]
USD/GBP→ r 0.0010 [0.0195, 0.0668] [0.0590, 0.0538]

r→ USD/CAD 0.0018 [0.1172,0.2346] [0.1054, 0.0977]
r→ USD/JPY 0.0000 [0.0007, 0.0101] [0.0192, 0.0179]
r→ USD/GBP 0.0008 [0.0621, 0.1175] [0.0741, 0.0685]

Panel C: 2010-2019
USD/CAD→ r 0.0009 [−0.0666,−0.0056] [0.0134, 0.0042]
USD/JPY→ r 0.0000 [−0.0107,−0.0040] [0.0035, 0.0029]
USD/GBP→ r 0.0003 [0.0511, 0.0739] [0.0758, 0.0723]

r→ USD/CAD 0.0000 [0.0256, 0.0343] [0.0387, 0.0377]
r→ USD/JPY 0.0003 [−0.0481,−0.0215] [−0.0212,−0.0247]
r→ USD/GBP 0.0003 [0.0649, 0.0991] [0.0776, 0.0755]

Note: This table summarizes the bootstrap bias-corrected estimates of the sign-based Granger

causality measure and employs the bound-type sign-based inference procedure to test for Granger

non-causality between the variables of growth in exchange rates and the returns on the S&P500

value-weighted index. We reject the null hypothesis, H0, at the α = 5% level, when the tests for all

A ∈ CSA(α1) are significant at the α2 = 0.042 level (QL(β) > c1(α2, β1)) and accept H0 if none are

significant at the α3 = 0.058 level (QU(β) ≤ c1(α3, β1)). Otherwise the test is “inconclusive”. We

consider B = 500 sample estimates of the causality measure based on the VAR sieve bootstrapped

data to calculate the bias term, B̂iasboot. Furthermore, we set α1 at 0.008 for the confidence set

A ∈ CSA(α1), to maximize power. The brackets in bold imply the test is significance of the test

at the 5% level, while the rest are either inconclusive or accept H0.
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Panels A and C, which correspond to the periods (January 1990 - January 2000) and (January

2010 - January 2019) respectively, suggest lack of any evidence in favor of a causal relationship

between the growths of the exchange rates and the returns on the S&P500 index. The bias-

corrected estimates of the sign-based Granger causality measures reveal a relatively weak degree

of causality between the said variables, and the sign-based tests fail to reject the null hypothesis

of Granger non-causality, either by accepting the null hypothesis or by providing inconclusive

results. These findings also generally hold true for the period spanning from January 2000 to

January 2010 in panel C. However, the bias-corrected estimate the of sign-based measures is

considerably (almost ten-fold) greater than other periods for the returns on the S&P500 index

to the USD/CAD exchange rates. Furthermore, the sign-based Granger non-causality test shows

significance at the 5% level. However, there is no reverse causality in the same period for these

two variables, which implies only the presence of unidirectional causality.

3.7 Conclusion

In this chapter, we propose sign-based Granger causality measures based on the Kullback-Leibler

distance to assess the strength of the causal relationship between random variables. These mea-

sures are distribution-free and are particularly attractive in case of asymmetric distributions, in

which there is no evidence of causality in the the mean. Thereafter, we show that a VAR(p)

model can be fitted to the data and propose a consistent estimator for the sign-based measure.

In finite samples, we suggested the use of the vector autoregressive sieve bootstrap to calculate

the finite sample bias and the bootstrap bias-corrected estimate of the causality measures. In a

simulation study, we considered different DGPs that are commonly encountered in practice. The

bootstrap bias-corrected estimator of the causality measure performs well and provides evidence

in favor of the desired outcome. We then showed that by using the bound-type procedures as in

Dufour (1990) and Campbell and Dufour (1997) to address the nuisance parameter problem under

the null hypothesis of Granger non-causality, tests of Granger non-causality can be developed as

byproduct of the sign-based causality measures. The tests are exact, distribution-free and robust

against heteroskedasticity. In a simulation study our procedures are shown to be valid (control size
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whatever the sample size), robust against heteroskedasticity and possess good power properties.

Finally, using the monthly data on the growth in the USD/CAD, USD/GBP and USD/JPY

exchange rates and the returns on the S&P500 index, we consider an empirical application to

assess the causal linkages between the stock market returns and the growth in the exchange rates.

Our results indicate the presence of a unidirectional causality for the returns on the S&P500 index

to the USD/CAD exchange rates, as the bias-corrected estimate the of sign-based measures is

considerably greater than other periods. Furthermore, the sign-based Granger non-causality test

reveal significance at the 5% level.
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3.8 Appendix

Proof of Corollary 5. For the unrestricted likelihood function, we have

log
{
Pθ[S

y
t = syt | S

y
t−1, Y,X]

}
= Syt log

{
Pθ[yt ≥ 0 | Syt−1, Y,X]

Pθ[yt < 0 | Syt−1, Y,X]

}
+ logPθ[yt < 0 | Syt−1, Y,X]

= Syt
{

logPθ[yt ≥ 0 | Syt−1, Y,X]− logPθ[yt < 0 | Syt−1, Y,X]
}

= + logPθ[yt < 0 | Syt−1, Y,X]

= Syt



log
{
Pθ[yt ≥ 0 | yt−1 ≥ 0, Y,X]S

y
t−1×

log{Pθ[yt ≥ 0 | yt−1 < 0, Y,X]1−S
y
t−1

}
−

log
{
Pθ[yt < 0 | yt−1 ≥ 0, Y,X]S

y
t−1×

log{Pθ[yt < 0 | yt−1 < 0, Y,X]1−S
y
t−1

}


= + logPθ[yt < 0 | yt−1 ≥ 0, Y,X]S

y
t−1Pθ[yt < 0 | yt−1 < 0, Y,X]1−S

y
t−1

which may further get extended to

log
{
Pθ[S

y
t = syt | S

y
t−1, Y,X]

}
= Syt



Syt−1 logPθ[yt ≥ 0 | yt−1 ≥ 0, Y,X]+

(1− Syt−1) logPθ[yt ≥ 0 | yt−1 < 0, Y,X]−

Syt−1 logPθ[yt < 0 | yt−1 ≥ 0, Y,X]−

(1− Syt−1) logPθ[yt < 0 | yt−1 < 0, Y,X]


= +Syt−1 logPθ[yt < 0 | yt−1 ≥ 0, Y,X]

= +(1− Syt−1) logPθ[yt < 0 | yt−1 < 0, Y,X]

= Syt

 Syt−1

{
log
{
Pθ[yt≥0|yt−1≥0,Y,X]
Pθ[yt<0|yt−1≥0,Y,X]

}
− log

{
Pθ[yt≥0|yt−1<0,Y,X]
Pθ[yt<0|yt−1<0,Y,X]

}}
+ log

{
Pθ[yt≥0|yt−1<0,Y,X]
Pθ[yt<0|yt−1<0,Y,X]

}


= +Syt−1 log

{
Pθ[yt < 0 | yt−1 ≥ 0, Y,X]

Pθ[yt < 0 | yt−1 < 0, Y,X]

}
+ logPθ[yt < 0 | yt−1 < 0, Y,X]

log
{
Pθ[S

y
t = syt | S

y
t−1, Y,X]

}
= Syt S

y
t−1

 log
{
Pθ[yt≥0|yt−1≥0,Y,X]
Pθ[yt<0|yt−1≥0,Y,X]

}
−

log
{
Pθ[yt≥0|yt−1<0,Y,X]
Pθ[yt<0|yt−1<0,Y,X]

}


= +Syt log

{
Pθ[yt ≥ 0 | yt−1 < 0, Y,X]

Pθ[yt < 0 | yt−1 < 0, Y,X]

}
= +Syt−1 log

{
Pθ[yt < 0 | yt−1 ≥ 0, Y,X]

Pθ[yt < 0 | yt−1 < 0, Y,X]

}
+ logPθ[yt < 0 | yt−1 < 0, Y,X]
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for t = 2, ..., T we have

Pθ[yt ≥ 0 | yt−1 < 0, Y,X] = 1− Pθ[yt < 0 | yt−1 < 0, Y,X]

= 1− Pθ[yt < 0, yt−1 < 0 | Y,X]

Pθ[yt−1 < 0 | Y,X]

= 1− P [εt < −θ′Jt−1, εt−1 < −θ′Jt−2 | Y,X]

P [εt−1 < −θ′Jt−2 | Y,X]

Pθ[yt < 0 | yt−1 < 0, Y,X] =
Pθ[yt < 0, yt−1 < 0 | Y,X]

Pθ[yt−1 < 0 | Y,X]

=
P [εt < −θ′Jt−1, εt−1 < −θ′Jt−2 | Y,X]

P [εt−1 < −θ′Jt−2 | Y,X]

Pθ[yt ≥ 0 | yt−1 ≥ 0, Y,X] = 1− Pθ[yt < 0 | yt−1 ≥ 0, Y,X]

= 1−
[
Pθ[yt < 0 | Y,X]

Pθ[yt−1 ≥ 0 | Y,X]
Pθ[yt−1 ≥ 0 | yt < 0, Y,X]

]
= 1−

[
Pθ[yt < 0 | Y,X]

Pθ[yt−1 ≥ 0 | Y,X]
(1− Pθ[yt−1 < 0 | yt < 0, Y,X])

]
= 1−

(
Pθ[yt < 0 | Y,X]

Pθ[yt−1 ≥ 0 | Y,X]
− Pθ[yt−1 < 0, yt < 0 | Y,X]

Pθ[yt−1 ≥ 0 | Y,X]

)
= 1−

(
Pθ[yt < 0 | Y,X]

1− Pθ[yt−1 < 0 | Y,X]
− Pθ[yt−1 < 0, yt < 0 | Y,X]

1− Pθ[yt−1 < 0 | Y,X]

)
= 1−

(
P [εt < −θ′Jt−1 | Y,X]

1− P [εt−1 < −θ′Jt−2 | Y,X]

= 1− (− P [εt−1 < −θ′Jt−2, εt < −θ′Jt−1 | Y,X]

1− P [εt−1 < −θ′Jt−2 | Y,X]

)
Pθ[yt < 0 | yt−1 ≥ 0, Y,X] =

Pθ[yt < 0 | Y,X]

Pθ[yt−1 ≥ 0 | Y,X]
Pθ[yt−1 ≥ 0 | yt < 0, Y,X]

=
Pθ[yt < 0 | Y,X]

Pθ[yt−1 ≥ 0 | Y,X]
(1− Pθ[yt−1 < 0 | yt < 0, Y,X])

=
Pθ[yt < 0 | Y,X]

Pθ[yt−1 ≥ 0 | Y,X]
− Pθ[yt−1 < 0, yt < 0 | Y,X]

Pθ[yt−1 ≥ 0 | Y,X]

=
Pθ[yt < 0 | Y,X]

1− Pθ[yt < 0 | Y,X]
− Pθ[yt−1 < 0, yt < 0 | Y,X]

1− Pθ[yt < 0 | Y,X]

=
P [εt < −θ′Jt−1 | Y,X]

1− P [εt < −θ′Jt−1 | Y,X]
− P [εt−1 < −θ′Jt−2, εt < −θ′Jt−1 | Y,X]

1− P [εt < −θ′Jt−1 | Y,X]
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Similarly for the restricted case we have

PθR [Syt = syt | S
y
t−1, Y ] = Syt S

y
t−1

{
log

{
PθR [yt ≥ 0 | yt−1 ≥ 0, Y ]

PθR [yt < 0 | yt−1 ≥ 0, Y ]

}
− log

{
PθR [yt ≥ 0 | yt−1 < 0, Y ]

PθR [yt < 0 | yt−1 < 0, Y ]

}}
= +Syt log

{
PθR [yt ≥ 0 | yt−1 < 0, Y ]

PθR [yt < 0 | yt−1 < 0, Y ]

}
+ Syt−1 log

{
PθR [yt < 0 | yt−1 ≥ 0, Y ]

PθR [yt < 0 | yt−1 < 0, Y ]

}
= + logPθR [yt < 0 | yt−1 < 0, Y ]

where for t = 2, ..., T

PθR [yt ≥ 0 | yt−1 < 0, Y ] = 1− P [εt < −θ′RJt−1, εt−1 < −θ′RJt−2 | Y ]

P [εt−1 < −θ′RJt−2 | Y ]

PθR [yt < 0 | yt−1 < 0, Y ] =
P [εt < −θ′RJt−1, εt−1 < −θ′RJt−2 | Y ]

P [εt−1 < −θ′RJt−2 | Y ]

PθR [yt ≥ 0 | yt−1 ≥ 0, Y ] = 1−
(

P [εt < −θ′RJt−1 | Y ]

1− P [εt−1 < −θ′RJt−2 | Y ]
− P [εt−1 < −θ′RJt−2, εt < −θ′RJt−1 | Y ]

1− P [εt−1 < −θ′RJt−2 | Y ]

)
PθR [yt < 0 | yt−1 ≥ 0, Y ] =

P [εt < −θ′RJt−1 | Y ]

1− P [εt−1 < −θ′RJt−2 | Y ]
− P [εt−1 < −θ′RJt−2, εt < −θ′RJt−1 | Y ]

1− P [εt−1 < −θ′RJt−2 | Y ]

therefore

log

(
Pθ[S

y
t = syt | S

y
t−1, Y,X]

PθR [Syt = syt | S
y
t−1, Y ]

)
= Syt S

y
t−1

 log
{
Pθ[yt≥0|yt−1≥0,Y,X]
Pθ[yt<0|yt−1≥0,Y,X]

}
−

log
{
Pθ[yt≥0|yt−1<0,Y,X]
Pθ[yt<0|yt−1<0,Y,X]

}


= +Syt log

{
Pθ[yt ≥ 0 | yt−1 < 0, Y,X]

Pθ[yt < 0 | yt−1 < 0, Y,X]

}
= +Syt−1 log

{
Pθ[yt < 0 | yt−1 ≥ 0, Y,X]

Pθ[yt < 0 | yt−1 < 0, Y,X]

}
+ logPθ[yt < 0 | yt−1 < 0, Y,X]

= −Syt S
y
t−1

 log
{
P
θR

[yt≥0|yt−1≥0,Y ]

P
θR

[yt<0|yt−1≥0,Y ]

}
−

log
{
P
θR

[yt≥0|yt−1<0,Y ]

P
θR

[yt<0|yt−1<0,Y ]

}


= −Syt log

{
PθR [yt ≥ 0 | yt−1 < 0, Y ]

PθR [yt < 0 | yt−1 < 0, Y ]

}
= −Syt−1 log

{
PθR [yt < 0 | yt−1 ≥ 0, Y ]

PθR [yt < 0 | yt−1 < 0, Y ]

}
− logPθR [yt < 0 | yt−1 < 0, Y ]
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log

(
Pθ[S

y
t = syt | S

y
t−1, Y,X]

PθR [Syt = syt | S
y
t−1, Y ]

)
= Syt S

y
t−1


(

log
{
Pθ[yt≥0|yt−1≥0,Y,X]
Pθ[yt<0|yt−1≥0,Y,X]

}
− log

{
Pθ[yt≥0|yt−1<0,Y,X]
Pθ[yt<0|yt−1<0,Y,X]
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−(

log
{
P
θR

[yt≥0|yt−1≥0,Y ]

P
θR

[yt<0|yt−1≥0,Y ]

}
− log

{
P
θR

[yt≥0|yt−1<0,Y ]

P
θR

[yt<0|yt−1<0,Y ]

})


= +Syt

 log
{
Pθ[yt≥0|yt−1<0,Y,X]
Pθ[yt<0|yt−1<0,Y,X]

}
−

log
{
P
θR

[yt≥0|yt−1<0,Y ]

P
θR

[yt<0|yt−1<0,Y ]

}


= +Syt−1

 log
{
Pθ[yt<0|yt−1≥0,Y,X]
Pθ[yt<0|yt−1<0,Y,X]

}
−

log
{
P
θR

[yt<0|yt−1≥0,Y ]

P
θR

[yt<0|yt−1<0,Y ]

}
+ log

{
Pθ[yt < 0 | yt−1 < 0, Y,X]

PθR [yt < 0 | yt−1 < 0, Y ]

}

which may further expand to

log

(
Pθ[S

y
t = syt | S

y
t−1, Y,X]

PθR [Syt = syt | S
y
t−1, Y ]

)
= log

(
Pθ[S

y
t = syt | S

y
t−1, Y,X]

)
− log

(
PθR [Syt = syt | S

y
t−1, Y ]

)
= Syt S

y
t−1αt(θ/θ

R) + Syt βt(θ/θ
R)

= +Syt−1γt(θ/θ
R) + δt(θ/θ

R)

where for t = 2, ..., T

αt(θ/θ
R) =

log

1−
(

P [εt<−θ′Jt−1|Y,X]
1−P [εt−1<−θ′Jt−2|Y,X]

− P [εt<−θ′Jt−1,εt−1<−θ′Jt−2|Y,X]
1−P [εt−1<−θ′Jt−2|Y,X]

)
P [εt<−θ′Jt−1|Y,X]

1−P [εt−1<−θ′Jt−2|Y,X]
− P [εt−1<−θ′Jt−2,εt<−θ′Jt−1|Y,X]

1−P [εt−1<−θ′Jt−2|Y,X]


= − log

{
1− P [εt<−θ′Jt−1,εt−1<−θ′Jt−2|Y,X]

P [εt−1<−θ′Jt−2|Y,X]

P [εt<−θ′Jt−1,εt−1<−θ′Jt−2|Y,X]
P [εt−1<−θ′Jt−2|Y,X]

})

= −

log

1−
(

P [εt<−θ′RJt−1|Y ]
1−P [εt−1<−θ′RJt−2|Y ]

− P [εt−1<−θ′RJt−2,εt<−θ′RJt−1|Y ]
1−P [εt−1<−θ′RJt−2|Y ]

)
P [εt<−θ′RJt−1|Y ]

1−P [εt−1<−θ′RJt−2|Y ]
− P [εt−1<−θ′RJt−2,εt<−θ′RJt−1|Y ]

1−P [εt−1<−θ′RJt−2|Y ]


= − log

1− P [εt<−θ′RJt−1,εt−1<−θ′RJt−2|Y ]
P [εt−1<−θ′RJt−2|Y ]

P [εt<−θ′RJt−1,εt−1<−θ′RJt−2|Y ]
P [εt−1<−θ′RJt−2|Y ]
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βt(θ/θ
R) =

[
log

{
1− P [εt<−θ′Jt−1,εt−1<−θ′Jt−2|Y,X]

P [εt−1<−θ′Jt−2|Y,X]

P [εt<−θ′Jt−1,εt−1<−θ′Jt−2|Y,X]
P [εt−1<−θ′Jt−2|Y,X]

}

= − log

1− P [εt<−θ′RJt−1,εt−1<−θ′RJt−2|Y ]
P [εt−1<−θ′RJt−2|Y ]

P [εt<−θ′RJt−1,εt−1<−θ′RJt−2|Y ]
P [εt−1<−θ′RJt−2|Y ]




γt(θ/θ
R) =

[
log

{ P [εt<−θ′Jt−1|Y,X]
1−P [εt−1<−θ′Jt−2|Y,X]

− P [εt−1<−θ′Jt−2,εt<−θ′Jt−1|Y,X]
1−P [εt−1<−θ′Jt−2|Y,X]

P [εt<−θ′Jt−1,εt−1<−θ′Jt−2|Y,X]
P [εt−1<−θ′Jt−2|Y,X]

}

= − log


P [εt<−θ′RJt−1|Y ]

1−P [εt−1<−θ′RJt−2|Y ]
− P [εt−1<−θ′RJt−2,εt<−θ′RJt−1|Y ]

1−P [εt−1<−θ′RJt−2|Y ]

P [εt<−θ′RJt−1,εt−1<−θ′RJt−2|Y ]
P [εt−1<−θ′RJt−2|Y ]




δt(θ/θ
R) = log

{ P [εt<−θ′Jt−1,εt−1<−θ′Jt−2|Y,X]
P [εt−1<−θ′Jt−2|Y,X]

P [εt<−θ′RJt−1,εt−1<−θ′RJt−2|Y ]
P [εt−1<−θ′RJt−2|Y ]

}

and

α1(θ/θR) = 0,

β1(θ/θR) =

[
log

{
1− P [ε1 < −θ′J0 | Y,X]

P [ε1 < −θ′J0 | Y,X]

}
= − log

{
1− P [ε1 < −θ′RJ0 | Y ]

P [ε1 < −θ′RJ0 | Y ]

}]
= log

{
[1− P [ε1 < −θ′J0 | Y,X]P [ε1 < −θ′RJ0 | Y ]

(1− P [ε1 < −θ′RJ0 | Y ])P [ε1 < −θ′J0 | Y,X]

}
γ1(θ/θR) = 0,

δ1(θ/θR) = log

{
P [ε1 < −θ′J0 | Y,X]

P [ε1 < −θ′RJ0 | Y ]

}

Proof of Proposition 5. Consider the stochastic process {Jt = (yt, xt) : Ω → R × R ≡

R2}t=0,1,2,... defined on the probability space (Ω,F , P ). Let us denote

qt(Jt−1, θ̂, θ̂
R) =

{
Syt S

y
t−1αt(θ̂/θ̂

R) + Syt βt(θ̂/θ̂
R) + Syt−1γt(θ̂/θ̂

R) + δt(θ̂/θ̂
R)
}
, t = 1, ..., T.

Assumption A4 (1) allows the data to possess temporal dependence and be heterogeneously dis-

tributed. Furthermore, as a consequence of this assumption, {Jt−1ε
y
t } and {Jt−1J

′
t−1} are also

α-mixing sequences of size −r/r − 1 for r > 1 [see Proposition 3.50 of White (2014)]. Finally,
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given the moment conditions A4 (2ii)-(2iii), J′εy/n
a.s.−−→ 0 and J′J/n−Mn

a.s.−−→ 0, where Mn = O(1)

and is uniformly positive definite as per assumption A4 (4). Therefore, given Theorem 2.18 of

White (2014)

θ̂
a.s.−−→ θ, (3.75)

and similarly

θ̂R
a.s.−−→ θR, (3.76)

as a result of which

qt(Jt−1, θ̂, θ̂
R)

a.s.−−→ qt(Jt−1, θ, θ
R), t = 1, ..., T. (3.77)

To prove the consistency of the estimator of the sign-based measures, we follow Coudin and

Dufour (2004) by first showing pointwise convergence, followed by proving the uniform con-

vergence of the estimator. To achieve the former, we must show that T−1
T∑
t=1

qt(Jt−1, θ, θ
R) −

E
[
qt(Jt−1, θ, θ

R)
]

converges in probability to zero for all θ, θR ∈ Θ. The mixing assumption A4

(1) for J is exported to qt(Jt−1, θ, θ
R) meaning that qt(Jt−1, θ, θ

R)t=1,2,... is a mixing sequence of α

of size −r/(r − 1), r > 1. Hence, in conjunction with assumption A4 (2i) and in accordance to

Corollary 3.48 of White (2014)

1

T

T∑
t=1

qt(Jt−1, θ.θ
R)− E

[
qt(Jt−1, θ, θ

R)
] p−−−→
T→∞

0, ∀θ, θR ∈ Θ. (3.78)

Next step consists of proving uniform convergence - i.e. we wish to show that

supθ,θR∈Θ

∣∣∣∣T−1
T∑
t=1

qt(Jt−1, θ, θ
R)− E

[
qt(Jt−1, θ, θ

R)
]∣∣∣∣ converges in probability to zero. To accom-

plish this, following Andrews (1987): let B(θ̃, ρ) be an open ball around θ̃ with radius ρ, where

θ̃ = (θ, θR) - in other words, B(θ̃, ρ) = {θ̃′ ∈ Θ : d(θ̃′, θ̃) < ρ}, where θ̃′ = (θ′, θ′R) and d(.) is a

metric on Θ. Furthermore, we define

q+
t (Jt−1, θ̃, ρ) = sup

θ̃′∈B(θ̃,ρ)

qt(Jt−1, θ̃
′),

q−t (Jt−1, θ̃, ρ) = inf
θ̃′∈B(θ̃,ρ)

qt(Jt−1, θ̃
′).

Assumptions A1 and B1 of Andrews (1987) correspond to the compactness assumption A4 (5)
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and mixing assumption A4 (1) respectively. Assumption B2 of Andrews (1987) on the other hand,

first requires q+
t (Jt−1, θ̃, ρ), q−t (Jt−1, θ̃, ρ) and qt(Jt−1) to be random variables and q+

t (., θ̃, ρ) and

q−t (., θ̃, ρ) to be measurable functions from (Ω,F , P ) to (R,B), ∀t, θ̃ ∈ Θ and ρ, where B is Borel

σ-algebra on R. Furthermore, this assumption requires that supt Eqt(Jt−1)r+δ <∞ for some δ > 0.

The mixing condition A4 (1) ensures measurability, and the boundedness condition A4 (3) satisfies

the second requirement of this assumption.

Finally, let µ be a σ-finite measure that dominates the marginal distributions of Jt−1, t = 1, 2, ...

and denote pt(j) as the density of Jt−1 w.r.t µ. Assumption A6 of Andrews (1987) then requires

that qt(Jt−1, θ̃)pt(j) is continuous in θ̃ = θ̃∗ uniformly in t a.e. w.r.t. µ, for each θ̃∗ ∈ Θ, and

qt(Jt−1, θ̃) is measerable w.r.t. to the Borel measure for each t and each θ̃ ∈ Θ and

∫
sup

t≥1,θ̃∈Θ

|qt(Jt−1, θ̃)|pt(j)dµ(j) <∞.

Note that assumptions (3.22) implies that the residuals εyt have no mass at zero, i.e. P [εyt = 0 |

Y,X] = 0 ∀t, an assumption that is satisfied when εyt is continuous. Thus, P [εyt = −θ′Jt−1 |

Y,X] = 0, ∀θ uniformly in t, satisfying the requirement that qt(Jt−1, θ̃) is continuous in θ̃ ev-

erywhere. Finally, qt(Jt−1, θ̃) is L1 bounded and uniformly integrable, satisfying condition A6 of

Andrews (1987). Hence, according to the main Theorem and Corollaries 1 and 3 of Andrews

(1987), since assumptions A1, B1, B2 and A6 hold

a) 1
n

n∑
t=1

E
[
qt(Jt−1, θ̃)

]
is continuous on Θ uniformly over n ≥ 1,

b) supθ̃∈Θ

∣∣∣∣n−1
n∑
t=1

qt(Jt−1, θ̃)− E
[
qt(Jt−1, θ̃)

]∣∣∣∣ p−−−→
n→∞

0, where n = (T − p) + 1.

Exact confidence interval algorithm. To calculate the quantiles, qpj(â1) of â1 for j = 1, 2,

Andrews (1993) proposes a number of approaches. The objective of each approach is to find the

value of c that corresponds to

P [â1 ≤ c] = qpj(â1), j = 1, 2. (3.79)
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We know that due to the invariance propeties of the least squares estimator â1 discussed in Section

2 of Andrews (1993), we may consider the case where m1 = 0 and σ2 = 1. Secondly, the AR(1)

process Yt for t = 1, ..., T can be inverted and be expressed in terms of residuals. In matrix format,

this expression can be presented as follows

Y = Ψε,

with

Ψ =



δ 0 0 · · · 0 0

δâ1 1 0 · · · 0 0

δâ2
1 â1 1 · · · 0 0

...
...

...
...

...
...

δâT1 âT−1
1 âT−2

1 · · · â1 1


,

where the vector Y = (y0, ..., yT )′ is expressed in terms of the residuals ε = (ε0, ..., εT )′, with

ε ∼ N(0,ΣT+1), such that 0 is (T + 1)× 1 zero vector and Σ is a T + 1 identity matrix. With such

representation, we can now express probability (3.79) as

P [â1 ≤ c] = P [ε′Wâ1,cε ≤ 0] = qpj(â1), (3.80)

where Wâ,c is a symmetric weight matrix such that

W = Ψ′ [∆′0(I − P )∆T/2 + ∆′T (I − P )∆0/2− c∆′T (I − P )∆T ] Ψ. (3.81)

with ∆0 = (0
...I) ∈ RT×(T+1), ∆T = (I

...0) ∈ RT×(T+1), and I is a T dimensional identity matrix,

and finally P = X(X ′X)−1X ′ with X = (1T ,T) ∈ RT×2, where 1T = (1, ..., 1)′ ∈ RT and

T = (1, 2, 3, ..., T )′ ∈ RT . Considering that ε′Wâ,c is a quadratic form in normal standard variates,

the probabilities P [â1 ≤ c] can be computed using the Imhof (1961) approximation in an iterative

process involving different values of c, until the desired quantile is obtained.

Other approaches suggested by Andrews (1993) for calculating the quantile of â1 are based on
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simulations and numerical complex integration. These methods are much more suitable when the

sample size is greater than T > 100, as the probabilities are calculated very slowly by the Imhof

(1961) approximation in large sample sizes.

The Imhof (1961) algorithm. The Imhof (1961) algorithm concerns evaluating expressions of

the form (3.80) - i.e.

P [ε′Wâ1,cε ≤ 0]

where as before ε is a (T + 1)× 1 vector of residuals which are normally distributed with mean 0

and variance ΣT+1, and Wâ1,c is a (T + 1) × (T + 1) symmetric weight matrix defined by (3.81).

Let Q(ε) = ε′Wâ1,cε, we know from Scheffé (1959) that if Σ is non-singular, by using a non-singular

linear transformation, Q(ε) can be expressed as

Q(ε) =
T∑
j=0

λjε
2
j (3.82)

or more generally

Q(ε) =
T∑
j=0

λjχ
2(mj, νj), (3.83)

where λ0, ..., λT s are the non-zero characteristic roots of WΣ, mj is the order of multiplicity of

the λjs and νj is the non-centrality parameter. Finally, χ2(mj, νj) are independent χ2 variables,

with mj degree of freedom. The variable χ2(mj, νj) = (ε0 + ν)2 +
∑h

i=1 εi, where ε0, ..., εh are

independent unit normal variates. Therefore, evaluating (3.80) is equivalent to evaluating

P

[
T∑
j=0

λjχ
2(mj, νj) ≤ 0

]
, (3.84)

where the linear combination of the non-central χ2 variables has characteristic function

φ(u) =
T∏
j=0

(1− 2iuλj)
−mj/2 exp

(
T∑
j=0

iumjλjνj
1− 2iuλj

)
, (3.85)

where given the characteristic function φ(u), the CDF (3.84) can be evaluated using the Fourier-
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inversion formula [see Gil-Pelaez (1951)] as follows

P

[
T∑
j=0

λjχ
2(mj, νj) ≤ 0

]
= F (0) =

1

2
− 1

π

∫ ∞
0

Im{exp(−iu0)φ(u)}
u

du

=
1

2
− 1

π

∫ ∞
0

Im{φ(u)}
u

du,

(3.86)

where Im{z} denotes the imaginary part of the complex number z. Expression (3.86) is evaluated

using the CompQuadForm package, which includes a translation of Koerts and Abrahamse (1969)

FORTRAN code in the statistical programming language R. The algorithm evaluates expression

(3.86) involves two steps: in the first step, the integral must be truncated by replacing the upper

infinite limit with a suitable replacement; and in the second step, the (now) definite integral

is evaluated using the Simpson’s rule. The Simpson’s rule requires splitting the grid into n even

intervals, for which a discretization error tolerance level must be specified, while for the truncation,

a truncation error tolerance level should be specified.

Asymptotic validity of the VAR sieve bootstrap.

(a) To satisfy condition (A) of Meyer and Kreiss (2015), the residuals {εt : t ∈ Z} are assumed

to be a strictly stationary ergodic process, such that E(εt) = 0 and E(εtε
′
t) = Σ, where Σ

is a symmetric and positive definite matrix, and E(‖εt‖8) < ∞. Furthermore, we assume

that the spectral density function P (.) of Zt is bounded -i.e. the eigen values of the spectral

density matrix Zt are uniformly bounded away from zero for all frequencies (−π, π]. Under

additional mild assumptions discussed in Section 3.3.1, it can be shown that Zt is invertible

and can be expressed as an infinite autoregressive process.

(b) Let p ∈ N, such that the order p depends on the sample size -i.e. p = p(T ), and

let Φ̂1(p), ..., Φ̂p(p) be the Yule-Walker estimators of Φ1(p), ...,Φp(p). We assume that

the convergence rate of Yule-Walker estimators towards the finite sample coefficients is

p(T )2
∑p(T )

j=1 ‖Φ̂(p(T ))− Φ(p(T ))‖ = Op(1) as T →∞.

(c) Finally, condition (C) of Meyer and Kreiss (2015), requires the functional form the functional
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form of the Granger causality measure to be of the form

C(X → Y ) = f

(
1

T − p+ 1

T−p+1∑
t=1

g(Zt, ..., ZT+p−1)

)

for some p ∈ {1, ..., T} and functions g : Rpq → Rd and f : Rd → R, where d ≥ 1, with

function f fulfilling smoothness assumptions.

Evidently, assumption (a) is necessary to ensure that a one-sided representation of the underlying

process as a VAR(∞) exists, and assumption (b) which concerns the convergence rate of the

estimated parameters to the underlying autoregressive coefficients is needed to obtain asymptotic

validity of the VAR sieve bootstrap. These assumptions have already been fulfilled and discussed

earlier in Section 3.3.1. Moreover, the functional form of the estimator of the Granger causality

measure is clearly satisfied and the Lipschitz condition is a consequence of the proof of Proposition

5.
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