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Abstract— Android, being the most widespread mobile oper-

ating systems is increasingly becoming a target for malware. Ma-

licious apps designed to turn mobile devices into bots that may 

form part of a larger botnet have become quite common, thus 

posing a serious threat. This calls for more effective methods to 

detect botnets on the Android platform. Hence, in this paper, we 

present a deep learning approach for Android botnet detection 

based on Convolutional Neural Networks (CNN). Our proposed 

botnet detection system is implemented as a CNN-based model 

that is trained on 342 static app features to distinguish between 

botnet apps and normal apps. The trained botnet detection model 

was evaluated on a set of 6,802 real applications containing 1,929 

botnets from the publicly available ISCX botnet dataset. The 

results show that our CNN-based approach had the highest over-

all prediction accuracy compared to other popular machine 

learning classifiers. Furthermore, the performance results ob-

served from our model were better than those reported in previ-

ous studies on machine learning based Android botnet detection. 

  Keywords—Botnet detection; Deep learning; Convolutional 

Neural Networks; Machine learning; Android Botnets   

I.  INTRODUCTION 

Android is now the most widespread mobile operating system 

worldwide. Over the years the volume of malware targeting 

Android has continued to grow [1]. This is because it is easier 

and more profitable for malware authors to target an operating 

system that is open-source, more prevalent, and does not re-

strict the installation of apps from any possible source. As a 

matter of fact, numerous families of malware apps that are 

capable of infecting Android devices and turning them into 

malicious bots have been discovered in the wild. These An-

droid bots may become part of a larger botnet that can be used 

to perform various types of attacks such as Distributed Denial 

of Service (DDoS) attacks, generation and distribution of 

Spam, Phishing attacks, click fraud, stealing login credentials 

or credit card details, etc.  

 

A botnet consists of a number of Internet-connected devices 

under the control of a malicious user or group of users known 

as botmaster(s). It also consists of a Command and Control 

(C&C) infrastructure that enables the bots to receive com-

mands, get updates and send status information to the mali-

cious actors. Since smartphones and other mobile devices are 

typically used to connect to online services and are rarely 

switched off, they provide a rich source of candidates for op-

erating botnets. Thus, the term ‘mobile botnet’ refers to a 

group of compromised smartphones and other mobile devices 

that are remotely controlled by botmasters using C&C chan-

nels [2], [3]. 

 

Nowadays, malicious botnet apps have become a serious 

threat. Additionally, their increasing use of sophisticated eva-

sive techniques calls for more effective detection approaches. 

Hence, in this paper we present a deep learning approach that 

leverages Convolutional Neural Networks (CNN) for Android 

botnet detection. The CNN model employs 342 static features 

to classify new or previously unseen apps as either ‘botnet’ or 

‘normal’. The features are extracted through automated re-

verse engineering of the apps, and are used to create feature 

vectors that feed directly into the CNN model without further 

pre-processing or feature selection.  

 

We present the design of our CNN-based model for Android 

botnet detection and evaluate the model on a dataset of real 

Android apps consisting of 1,929 botnets samples and 4,873 

clean samples. Also, we compare the performance of our CNN 

model to other popular machine learning classifiers including 

Naïve Bayes, Bayes Net, Decision Tree, Support Vector Ma-

chine (SVM), Random Forest, Random Tree, Simple Logistic 

and Artificial Neural Network (ANN) on the same dataset.  

The results show that the CNN-based model achieved a botnet 

detection performance of 98.9% with an F1-score of 0.981, 

thus outperforming all the other machine learning classifiers. 

Furthermore, our CNN model shows better performance re-

sults compared to other existing studies focusing on Android 

botnet detection. Some of these studies utilized the same ISCX 

botnet apps employed in this paper.  

 

The rest of the paper is organized as follows: Section II dis-

cusses related works in Android botnet detection; Section III 

presents the overall system and gives some background on 

CNN, including a discussion of 1D CNN which is adopted in 

this study; Section IV presents methodology and the experi-

ments performed; Results of experiments are given in Section 

V and finally Section VI presents the conclusions of the study 

and possible future work. 
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II. RELATED WORK  

In the study conducted by Kadir et al. [4], the objective was to 

address the gap in understanding mobile botnets and their 

communication characteristics. Thus, they provided an in-

depth analysis of the Command and Control (C&C) and built-

in URLs of Android botnets. By combining both static and 

dynamic analyses with visualization, relationships between the 

analysed botnet families were uncovered, offering insight into 

each malicious infrastructure. It is in this study that a dataset 

of 1929 samples of 14 Android botnet families were compiled 

and released to the research community. This dataset is known 

as the ISCX Android botnet dataset and is available from [5]. 

This paper and several previous works on Android botnets 

have utilized the full dataset or a subset of it to evaluate pro-

posed Android botnet detection techniques.  

 

Anwar et al. [6] proposed a static approach towards mobile 

botnet detection where they utilized MD5 hashes, permissions, 

broadcast receivers, and background services as features. 

These features were extracted from Android apps to build a 

machine learning classifier for detecting mobile botnet attacks. 

They conducted their experiments on 1400 apps from the 

UNB ISCX botnet dataset together with 1400 benign apps. 

Their best result was 95.1% classification accuracy with a 

recall value of 0.827 and a precision value of 0.97. 

 

Paper [7] used machine learning to detect Android botnets 

based on permissions and their protection levels. The authors 

initially used 138 features and then added novel features 

known as protection levels to increase the number of features 

to 145. Their approach was evaluated on four machine learn-

ing algorithms: Random Forest, MLP, Decision Trees and 

Naïve Bayes. They performed their study on 3270 app in-

stances (1635 benign and 1635 botnets). The botnet apps used 

were also obtained from the ISCX botnet dataset. The best 

results came from Random Forest with 97.3% accuracy, 0.987 

recall, and 0.958 precision. 

 

In [8] a method was proposed to detect Android botnets based 

on Convolutional Neural Networks using permissions as fea-

tures. Applications are represented as images that are con-

structed based on the co-occurrence of permissions used with-

in the applications. The proposed CNN is a binary classifier 

that is trained using the images. The authors evaluated their 

proposed method on 5450 Android applications consisting of 

1800 botnet applications from the ISCX dataset. Their results 

show an accuracy of 97.2% with a recall of 0.96, precision of 

0.955 and f-measure of 0.957, which is a promising result con-

sidering that only permissions were used in the study.  

 

Paper [9] proposed an Android Botnet Identification System 

(ABIS) for checking Android applications in order to detect 

botnets. ABIS utilized both static and dynamic features from 

API calls, permissions and network traffic. The system is 

evaluated by using several machine learning algorithms with 

Random Forest obtaining a precision of 0.972 and a recall of 

0.969. In [10], a method is proposed for Android botnet detec-

tion based on feature selection and classification algorithms. 

The paper used ‘permissions requested’ as features and ‘In-

formation gain’ to select the most significant permissions. 

Afterwards, Naïve Bayes, Random Forest and Decision Trees 

were used to classify the Android apps. Results show Random 

Forest achieving the highest detection accuracy of 94.6% with 

the lowest false positive rate of 0.099.  

 

Karim et al [11] proposed DeDroid, a static analysis approach 

to investigate botnet-specific properties that can be used to 

detect mobile botnets. They first identified ‘critical features’ 

by observing the coding behaviour of a few known malware 

binaries having C&C features. They then compared these ‘crit-

ical features’ with features of malicious applications from the 

Drebin dataset [12]. Through this comparison, 35% of the ma-

licious apps in the dataset qualified as botnets. However, clos-

er examination revealed that 90% were confirmed as botnets. 

 

Bernardeschia et al. [13] proposed a method to identify bot-

nets in Android environment through model checking. Model 

checking is an automated technique for verifying finite state 

systems. This is accomplished by checking whether a structure 

representing a system satisfies a temporal logic formula de-

scribing their expected behaviour. In [14], Jadhav et al. pro-

pose a cloud-based Android botnet detection system which 

exploits dynamic analysis by using a virtual environment with 

cluster analysis. The toolchain for the dynamic analysis pro-

cess within the botnet detection system is composed of strace, 

netflow, logcat, sysdump, and tcpdump. However, the authors 

did not provide any experimental results to evaluate the effec-

tiveness of their proposed solution. Moreover, botnets may 

easily employ different techniques to evade the virtual envi-

ronment, and code coverage could limit the system’s effec-

tiveness [15], [24].   

 

Paper [16] proposed an approach to detect mobile botnets us-

ing network features such as TCP/UDP packet size, frame 

duration, and source/destination IP address. The authors used 

a set of ML box algorithms and five machine learning classifi-

ers to classify network traffic. The five supervised machine 

learning approaches include Naïve Bayes, Decision Tree, K-

nearest neighbour, Neural Network, and Support Vector Ma-

chine. In [17], a method to detect Android botnets based on 

source code mining and source code metric was proposed. 

There are also a number of works that have proposed signature 

based methods for Android botnet detection. These include 

[18-20]. However, these solutions are likely to suffer from the 

drawbacks of signature based systems which includes the ina-

bility to effectively detect previously unseen botnets. 

  

Unlike most existing studies, our paper proposes a deep learn-

ing based Android botnet detection system, using Convolu-

tional Neural Networks. Also, unlike previous studies that 

utilize only the app permissions, our system is based on 342 

features that represent Permissions, API calls, Commands, 

Extra Files, and Intents. Furthermore, different from the study 

in [9] which utilized only permissions, we do not convert fea-
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ture vectors into images prior to model training. Instead our 

feature vectors are used directly to train 1D CNN models. This 

makes our approach computationally less demanding. 

III. BACKGROUND 

A. The CNN-based classification system   

The classification system is built by extracting static features 

from the corpus of botnet and clean samples. To achieve this, 

we used our bespoke tool built in Python for automated re-

verse engineering of APKs. With the help of the tool, we ex-

tracted 342 features consisting of five different types (see Ta-

ble 2) from all the training apps. The five feature types in-

clude: API calls extracted from the executable; Permissions 

and Intents from the manifest file; Commands and Extra Files 

from the APK. These features are represented as vectors of 

binary numbers with each feature in the vector represented by 

a ‘1’ or ‘0’. Each feature vector (corresponding to one applica-

tion) is labelled with its class. The feature vectors are loaded 

into the CNN model and used to train the model. After train-

ing, an unknown application can be predicted to be either 

‘clean’ or ‘botnet’ by applying its own extracted feature vector 

to the trained model. The process is depicted in Figure 1. 

 

Figure 1: Training and prediction with the CNN-based botnet 

detection system. 

B. Convolutional Neural Networks (CNN) 

A CNN is a deep learning technique that belongs to the family 

of Artificial Neural Networks. It works well for identifying 

simple patterns in the data which will then be used to form 

more complex patterns in higher layers. Two types of layers 

are typically used for building CNNs; convolutional layers and 

pooling layers. The role of the convolutional layer is to detect 

local conjunctions of features from the previous layer, while 

the role of the pooling layer is to merge semantically similar 

features into one [21]. 

 

Generally, the convolutional layer extracts the optimal fea-

tures while the pooling layer reduces the dimensions of those 

features that it receives from the convolutional layer (or an-

other preceding pooling layer). At the tail end of the model, 

fully connected (dense) layer(s) are typically used for classifi-

cation. Depending on the characteristics of the dataset, the 

performance of the CNN may be influenced by the number of 

layers, number of filters (kernels) or the size of the filters. 

Generally, more and more abstract features are extracted in the 

deeper layers of the CNN, hence, the number of layers re-

quired depends on the complexity and non-linearity of the data 

being analysed. Furthermore, the number of filters in each 

stage determines the number of features extracted. Computa-

tional complexity increases with more layers and higher num-

bers of filters. Also, with more complex architectures, there is 

the possibility of training an overfitted model which results in 

poor prediction accuracy on the testing set(s). To reduce over-

fitting, techniques such as ‘dropout’ [22] and ‘batch regulari-

zation’ are implemented during training of our models. 

C. One Dimensional Convolutional Neural Networks  

Although CNN is more commonly applied in a multi-

dimensional fashion and has thus found success in image and 

video analysis-based problems, they can also be applied to 

one-dimensional data. Datasets that possess a one-dimensional 

structure can be processed using a one-dimensional convolu-

tional neural network (1D CNN). The key difference between 

a 1D and a 2D or 3D CNN is the dimensionality of the input 

data and how the filter (feature detector) slides across the data. 

For 1D CNN, the filters only slide across the input data in one 

direction. A 1D CNN is quite effective when you expect to 

derive interesting features from shorter (fixed-length) seg-

ments of the overall feature set, and where the location of the 

feature within the segment is not of high relevance.  

 

The use of 1D CNN can be commonly found in NLP applica-

tions. Similarly, 1D CNN is applicable to datasets containing 

vectorised data being used to characterize the items to be pre-

dicted (e.g. an Android application). The 1D CNN could be 

used to extract potentially more discriminative feature repre-

sentations that describe any existing patterns or relationships 

within segments of the vectors characterizing each entity in 

the dataset. These new features are then fed into a classifier 

(e.g. a fully connected neural network layer) which will in turn 

use the derived features in making a final classification deci-

sion. Hence, in this scenario, the convolutional layers can be 

considered as a feature extractor that eliminates the need for 

feature ranking and selection. The CNN model developed in 

this paper is applied to vectorised data characterizing the An-

droid applications, in order to derive a trained model that can 

detect new Android botnet apps with very high accuracy.  

D. Key elements of our proposed CNN architecture 

Our proposed CNN architecture is a 1D CNN consisting of 

two convolutional layers and two max pooling layers. These 

are followed by a fully connected layer of N units, which is in 

turn connected to a final classification layer containing one 

neuron with a sigmoid activation function.  

The sigmoid activation function is given by:  𝑆 =
1

1+ 𝑒−𝑥  

The final classification layer generates an outcome corre-

sponding to the two classes i.e. ‘botnet’ or ‘normal’. The con-

volutional layers utilize the ReLU (Rectified Linear Units) 

activation function given by: 𝑓(𝑥) =  max(0, 𝑥). ReLU helps 

to mitigate vanishing and exploding gradient issues [23]. It has 

been found to be more efficient in terms of time and cost for 

training huge data in comparison to classical non-linear activa-

App samples 
(Botnets and Normal)

f1    f2    f3    f4   f5   f6   ………………………………………………………………f342  Class
0       1     0     1    1    0     ………………………………………………………………  1        N
1       1     0     0    1    0     ………………………………………………………………  1        N
1       0     0     1    0    1     ………………………………………………………………  0        B
0       1     0     0    1    0     ………………………………………………………………  1        N
0       1     0     1    1    1     ………………………………………………………………  0        B
1       1     0     0    1    0     ………………………………………………………………  0        N
0       1     0     1    0    1     ………………………………………………………………  1        N
1       0     0     0    0    0     ………………………………………………………………  1        B
0       0     0     1    0    0     ………………………………………………………………  0        N
1       1     0     0    0    0     ………………………………………………………………  1        N
0      0     0     1    1    1     ………………………………………………………………  0        B
0       1     0     0    1    0     ………………………………………………………………  1        B
0       1     0     1    1    1     ………………………………………………………………  1        N
.         .     .      .      .     .                                                                                .       .   
.         .     .      .      .     .                                                                                .          .

Trained CNN model

Prediction
Unclassified 
application

Feature vectors

Train a CNN based classifier

Botnet app

Normal app
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tion functions such as Sigmoid or Tangent functions [24]. A 

simplified view of our architecture is shown in Figure 2. 

 

 Figure 2: Overview of the implemented 1D CNN model for 

Android application classification to detect botnets. 

IV. METHODOLOGY AND EXPERIMENTS 

In this section we present the experiments undertaken to eval-

uate the CNN models developed in this paper. Our models 

were implemented using Python and utilized the Keras library 

with TensorFlow backend. Other libraries used include Scikit 

Learn, Seaborn, Pandas, and Numpy. The model was built and 

evaluated on an Ubuntu Linux 16.04 64-bit Machine with 

4GB RAM.  

A. Problem definition 

Let A ={a1, a2, … an} be a set of apps where each ai is repre-

sented by a vector containing the values of  n features (where 

n=342). Let  a ={f1,f2,f3 …fn, cl} where 𝑐𝑙 ∈ {𝑏𝑜𝑡𝑛𝑒𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙} 

is the class label assigned to the app.  Thus, A can be used to 

train the model to learn the behaviours of botnet and normal 

apps respectively. The goal of a trained model is then to clas-

sify a given unlabelled app Aunknown = { f1,f2,f3 …fn, ?} by as-

signing a label cl, where 𝑐𝑙 ∈ {𝑏𝑜𝑡𝑛𝑒𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙}. 

 

B.  Dataset 

In this study we used the Android dataset from [5], which is 

known as the ISCX botnet dataset. The ISCX dataset contains 

1,929 botnet apps (from 14 different families) and has been 

used in previous works including [4], [7-10], and [17]. The 

botnet families are shown in Table 1. A total of 4,873 clean 

apps were used for the study in this paper and these were la-

belled under the category ‘normal’ to facilitate supervised 

learning when training the CNN and other machine learning 

classifiers. The clean apps were obtained from different cate-

gories of apps on the Google Play store and verified to be non-

malicious by using VirusTotal.  

 

The 342 static features extracted from the apps for model 

training were of 5 types: (a) API calls (b) commands (c) per-

missions (d) Intents (e) extra files. The ‘API calls’ and ‘per-

missions’ accounted for most of the features. From Table 2, it 

can be seen that there were 135 ‘API calls’ related features 

and 130 ‘permissions’ features, while intents accounted for 53 

features. Some of the features are shown in Table 3. 

Table 1: Botnet dataset composition. 

Botnet Family Number of samples 

Anserverbot 244 

Bmaster 6 

Droiddream 363 

Geinimi 264 

Misosms 100 

Nickyspy 199 

Notcompatible 76 

Pjapps 244 

Pletor   85 

Rootsmart 28 

Sandroid 44 

Tigerbot 96 

Wroba 100 

Zitmo 80 

Total 1929 

 
Table 2: The five different types of features used to train the CNN 

model. 
Feature type Number  

API calls 135 

Permissions 130 

Commands 19 

Extra files 5 

Intents 53 

Total 342 features 

 

Table 3: Some of the prominent static features extracted from Android 
applications for training the CNN model to detect Android Botnets. 

Feature name Type 

TelephonyManager.*getDeviceId API  

TelephonyManager.*getSubscriberId API 

abortBroadcast API 

SEND_SMS Permission 

DELETE_PACKAGES Permission 

PHONE_STATE Permission 

SMS_RECIVED Permission 

Ljava.net.InetSocketAddress API 

READ_SMS Permission 

Android.intent.action.BOOT_COMPLETED Intent 

io.File.*delete( API 

chown Command 

chmod Command 

Mount Command 

.apk Extra File 

.zip Extra File 

.dex Extra File 

.jar Extra file 

CAMERA Permission 

ACCESS_FINE_LOCATION Permission 

INSTALL_PACKAGES Permission 

android.intent.action.BATTERY_LOW Intent 

.so  Extra File 

android.intent.action.POWER_CONNECTED Intent 

System.*LoadLibrary API 
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Fully connected
layer

o
u

tp
u

t laye
r

Convolutional
layer 2

Sl
id

in
g 

fi
lt

e
r

Sl
id

in
g 

fi
lt

e
r

filter
Sl

id
in

g 
fi

lt
e

r

filter

0 = normal
1= botnet

L = 342



International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2020), 15-19 June 2020 (Accepted version) 

C. Experiments to evaluate the proposed CNN based model 

In order to investigate the performance of our proposed model, 

we performed different sets of experiments. Table 4 shows the 

configuration of the CNN model. The 1D CNN model consists 

of two pairs of convolutional and maxpooling layers as shown 

in Figure 2. The output of the second max pooling layer is 

flattened and passed on to a fully connected layer with 8 units. 

This is in turn connected to a sigmoid activated output layer 

containing one unit.   

 

The first set of experiments was aimed at evaluating the im-

pact of number of filters on the model’s performance. The 

second set of experiments was performed to evaluate the effect 

of varying the length of the filters. In the third, we investigate 

the impact of the maxpooling size on performance.  

Table 4: Summary of model configurations. 

Model design summary -1D CNN 

Input layer: Dimension = 342   (feature vector size) 

1D Convolutional layer: 4, 8, 16, 32, 64 filters,  
size = 4, 8, 16, 32, 64 (with number of filters =32) 

MaxPooling layer: Size =2, 4, 8, 16 (with number of filters =32) 

1D Convolutional layer: 4, 8, 16, 32, 64 filters,  
size = 4, 8, 16, 32, 64 (with number of filters =32) 

MaxPooling layer: Size  =2, 4, 8, 16 (with number of filters =32) 

Fully Connected (Dense) layer: 8 units, activation=ReLU 

Output layer: Fully Connected  layer; 1 unit, activa-
tion=sigmoid 

 

In order to measure model performance, we used the follow-

ing metrics: Accuracy, precision, recall and F1-score. The 

metrics are defined as follows (taking botnet class as positive):  

 

 Accuracy: Defined as the ratio between correctly pre-

dicted outcomes and the sum of all predictions. It is 

given by:  
TP+TN

TP+TN+FP+FN
 

 Precision: All true positives divided by all positive 

predictions. i.e. Was the model right when it predict-

ed positive? Given by:  
TP

TP+FP
 

 Recall: True positives divided by all actual positives. 

That is, how many positives did the model identify 

out of all possible positives? Given by: 
TP

TP+FN
 

 F1-score: This is the weighted average of precision 

and recall, given by: 
2 x Recall x Precision

Recall+Precision
  

 

Where TP is true positives; FP is false positives; FN is false 

negatives, while TN is true negatives (all w.r.t. the botnet 

class). All the results of the experiments are from 10-fold 

cross validation where the dataset is divided into 10 equal 

parts with 10% of the dataset held out for testing, while the 

models are trained from the remaining 90%.  This is repeated 

until all of the 10 parts have been used for testing. The average 

of all 10 results is then taken to produce the final result. Also, 

during the training of the CNN models (for each fold), 10% of 

the training set was used for validation.    

V.  RESULTS AND DISCUSSIONS 

A. Varying the numbers of filters. 

In this section, we examine the results from experimenting 

with different numbers of filters. In our model, we kept the 

number of filters in both convolutional layers the same.  Table 

5 shows the results from running the 1D CNN model with 

different numbers of filters. From the table, it is evident that 

the number of filters had an effect on the performance of the 

model. When increased from 4 to 8, there is an improvement 

in performance. The performance does not improve until we 

reach 32 filters. It then drops again when we increase this to 

64. Based on these results we select 32 filters as the optimal 

configuration parameter for the model’s number of filters. 

Notice the increase in the number of training parameters as the 

number of filters is increased, and for 32 filters, the training of 

25,625 parameters is required. With 32 filters we obtain a 

classification accuracy of 98.9% compared to 98.6% that is 

obtained with 4 filters. Nevertheless, the results obtain with 4 

filters were still acceptable.  

1) Training epochs, loss and accuracy graphs. 

Figures 3 and 4 shows the typical outputs obtained with the 

validation and training sets during the training epochs. From 

Fig. 3, it can be seen that the validation loss is generally fluc-

tuating from one training epoch to another after an initial drop. 

During each epoch, a model is trained and the validation loss 

and accuracy are recorded. Our goal is to obtain the model 

with the least validation loss because we assume this will be 

the ‘best’ model that fits the training data. Thus, at every 

epoch, the validation loss is compared to previous ones and if 

the current one is lower, the corresponding model is saved as 

the best model. We implemented a ‘stopping criterion’ which 

will stop the training once no improvement in performance is 

observed within 100 epochs. For example in Figure 3, the best 

model was obtained with the least validation loss of 0.00531 at 

epoch 45. For the next 100 epochs validation loss did not im-

prove, hence the training was stopped. Figure 4 shows the 

corresponding accuracy behaviour observed from epoch to 

epoch.  

Table 5: Number of filters vs. model performance. Length of 

filters used= 4 for first layer and =4 for second layer; dense 

layer = 8 units; validation split=10%. 

Number of 

Filters 
4 8 16 32 64 

Accuracy 0.986 0.988 0.988 0.989 0.987 

Precision 0.978 0.980 0.980 0.983 0.980 

Recall 0.974 0.977 0.976 0.978 0.975 

F1-score 0.976 0.978 0.978 0.981 0.977 

Num. training 

parameters 
2777 5,657  11,801 25,625 59,417 
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Figure 3: Training and validation losses at different epochs up 

to 145. A stopping criterion of 100 is used to obtain the model 

with the least validation loss. 

 

 
Figure 4: Training and validation accuracies at different 

epochs up to 145. These plots correspond to the training and 

validation losses depicted in Figure 3. 

 

B. Varying the length of the filters. 

In this section we examine the effect of the length of filters on 

the performance of the model while the number of filters is 

fixed at 32 in each convolutional layer. The length is varied 

from 4, 8, 16, 32, to 64 respectively (as shown in Table 6). 

The number of units in the dense layer was fixed at 8. The 

results indicate that the length of the filters does not appear to 

have much of an impact on the overall classification accuracy 

and F1-score performance, when increased.  However, the 

least filter length of 4 achieves the highest accuracy and F1-

score. Note that as we increase the length of the filters, the 

number of parameters to be trained increases (from 25,652 for 

length=4 to 77,465 for length=64).  

 

The lack of improvement with the length of filters may be 

attributed to larger number of parameters leading to overfitting 

the model to the training data thereby reducing its generaliza-

tion capability. This in turn leads to degraded performance 

when tested on new data. Basically, what these results show is 

that when the training parameters increase beyond a certain 

limit, the model becomes too complex for the data and this 

leads to overfitting. This becomes evident in lack of improve-

ment or degradation in performance when tested on previously 

unseen data.   

Table 6: Length of filters vs. model performance. Number of 

filters used= 32 in both first and second convolutional layers; 

dense layer = 8 units; validation split=10%. 

Length of 

filters 
4 8 16 32 64 

Accuracy 0.989 0.988 0.988 0.988 0.988 

Precision 0.983 0.979 0.980 0.981 0.983 

Recall 0.978 0.977 0.978 0.979 0.974 

F1-score 0.981 0.978 0.979 0.979 0.978 

Training  

parameters 
25,625 29,081 35,993 49,817 77465 

C. Varying the Maxpooling parameter 

The results of the third set of experiments are discussed here. 

The goal is to investigate the effect of changing the maxpool-

ing parameter. This corresponds to a subsampling ratio of 2, 4, 

6, and 8 respectively as shown in Table 7. A value of 2 means 

the next layer will be half the dimension of the previous one, 

etc. Note that the maxpooling layer can be considered a fea-

ture reduction layer that also helps to alleviate overfitting 

since it progressively reduces the number of parameters that 

need to be trained. The other parameters were fixed as fol-

lows: Number of filters in both convolutional layers = 32; 

Length of convolutional filters = 4; number of units in dense 

layer=8. 

It can be seen from Table 7 that as we increase the maxpool-

ing parameter, the total number of training parameters is re-

duced. At the same time, we witness a progressive decline in 

overall performance. Therefore, for our CNN model designed 

to classify applications into ‘botnet’ and ‘normal’, the optimal 

subsampling ratio for both layers is 2.  

Table 7: Maxpooling parameter vs. model performance. 

Length of filters used=4 for both convolutional layers; number 

of filters =32 for both layers; dense layer = 8 units; validation 

split=10%. 

Maxpooling parame-

ter/Subsampling ratio 
2 4 6 8 

Accuracy 0.989 0.987 0.983 0.978 

Precision 0.983 0.982 0.974 0.971 

Recall 0.978 0.973 0.967 0.948 

F1-score 0.981 0.978 0.970 0.959 

Training 

Parameters 
25,625 9497 6,425 5,401 

D. CNN performance vs. other machine learning classifiers: 

10 fold cross validation results. 

In Table 8, the performance of the CNN model developed in 

this paper is compared to other machine learning classifiers: 

Naïve Bayes, SVM, Random Forest, Artificial Neural Net-

work, J48, Random Tree, REPtree, and Bayes Net. Figure 5 

shows the F1-scores of the classifiers, where CNN has the 
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highest F1-score (0.981), followed by SVM (0.976), SL 

(0.973), ANN (0.973) and Random Forest (0.973). Bayes Net 

had the least F1-score of 0.781. Table 8 shows that the recall 

of CNN is 0.978 which indicates that it has the best botnet 

detection performance than the other classifiers. Note that the 

ANN was a back propagation neural network built with a sin-

gle hidden layer consisting 32 units (neurons). The sigmoid 

activation function was used within the neurons. This ANN 

represented the application of a neural network without deep 

learning. The ANN showed no significant improvement in the 

results when the number of units in the hidden layer was in-

creased beyond 32.   

 

Table 8: Comparison of our CNN results with results from 

other ML classifiers. 

 ACC Prec. Rec. F1 

Naïve Bayes 0.872 0.728 0.874 0.795 

SVM 0.987 0.980 0.973 0.976 

RF 0.985 0.982 0.965 0.973 

ANN 0.985 0.982 0.965 0.973 

SL 0.984 0.983 0.963 0.973 

J48 0.981 0.974 0.958 0.966 

Random Tree 0.972 0.948 0.955 0.951 

REPTree 0.979 0.973 0.954 0.963 

Bayes Net 0.867 0.736 0.832 0.781 

CNN 0.989 0.983 0.978 0.981 

 

Figure 5: F1-score of CNN vs other ML classifiers. 

E. Comparison with other works on Android botnet detection. 

In Table 9, we present a comparison of our results with those 
reported in other papers that focus on Android botnet detection. 
Note that all the papers mentioned in the table have used the 
ISCX botnet dataset for their work. In our study we utilized the 
entire 1929 samples within the dataset. In the second column of 
the table, the numbers of botnet samples and benign samples 
used in the papers are shown, while the other columns contain 
the performance results. Not all of the performance metrics we 

have used are reported in every paper. Nevertheless, it is clear 
that our CNN model obtained better overall accuracy, F1 and 
recall than the other works.  

Table 9: performance comparisons with other works. Note that 
all of the papers used botnets samples from the ISCX dataset. 

Paper reference Botnets 
/Benign 

ACC 
(%) 

Rec. Prec. F1 

Hojjatinia et al. [8] 1800/3650 97.2 0.96 0.955 0.957 

Tansettanakorn et al. [9] 1926/150 - 0.969 0.972 - 

Anwar et. al [6] 1400/1400 95.1 0.827 0.97 - 

Abdullah et al. [10] 1505/850 - 0.946 0.931 - 

Alqatawna & Faris [7] 1635/1635 97.3 0.957 0.987 - 

This paper 1929/4873 98.9 0.978 0.983 0.981 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a deep learning model based on 1D 
CNN for the detection of Android botnets. We evaluated the 
model through extensive experiments with 1,929 botnet apps 
and 4,387 clean apps. The model outperforms several popular 
machine learning classifiers evaluated on the same dataset. The 
results (Accuracy: 98.9%; Precision: 0.983; Recall: 0.978; F1-
score: 0.981) indicate that our proposed CNN based model can 
be used to detect new, previously unseen Android botnets more 
accurately than the other models. For future work, we will aim 
to improve the model training process by automating the search 
and selection of the key influencing parameters (i.e. number of 
filters, filter length, and number of fully connected (dense) 
layers) that jointly result in the optimal performing CNN 
model.    
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