
International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2020), 15-19 June 2020 (Accepted version)

Mobile Botnet Detection: A Deep Learning Approach

Using Convolutional Neural Networks

 Suleiman Y. Yerima
1
 and Mohammed K. Alzaylaee

2

1
Cyber Technology Institute

Faculty of Computing, Engineering and Media

De Montfort University, Leicester, United Kingdom

syerima@dmu.ac.uk

2
Al-Qunfudah College of Computing

Umm Al-Qura University, Saudi Arabia

mkzaylaee@uqu.edu.sa

Abstract— Android, being the most widespread mobile oper-

ating systems is increasingly becoming a target for malware. Ma-

licious apps designed to turn mobile devices into bots that may

form part of a larger botnet have become quite common, thus

posing a serious threat. This calls for more effective methods to

detect botnets on the Android platform. Hence, in this paper, we

present a deep learning approach for Android botnet detection

based on Convolutional Neural Networks (CNN). Our proposed

botnet detection system is implemented as a CNN-based model

that is trained on 342 static app features to distinguish between

botnet apps and normal apps. The trained botnet detection model

was evaluated on a set of 6,802 real applications containing 1,929

botnets from the publicly available ISCX botnet dataset. The

results show that our CNN-based approach had the highest over-

all prediction accuracy compared to other popular machine

learning classifiers. Furthermore, the performance results ob-

served from our model were better than those reported in previ-

ous studies on machine learning based Android botnet detection.

 Keywords—Botnet detection; Deep learning; Convolutional

Neural Networks; Machine learning; Android Botnets

I. INTRODUCTION

Android is now the most widespread mobile operating system

worldwide. Over the years the volume of malware targeting

Android has continued to grow [1]. This is because it is easier

and more profitable for malware authors to target an operating

system that is open-source, more prevalent, and does not re-

strict the installation of apps from any possible source. As a

matter of fact, numerous families of malware apps that are

capable of infecting Android devices and turning them into

malicious bots have been discovered in the wild. These An-

droid bots may become part of a larger botnet that can be used

to perform various types of attacks such as Distributed Denial

of Service (DDoS) attacks, generation and distribution of

Spam, Phishing attacks, click fraud, stealing login credentials

or credit card details, etc.

A botnet consists of a number of Internet-connected devices

under the control of a malicious user or group of users known

as botmaster(s). It also consists of a Command and Control

(C&C) infrastructure that enables the bots to receive com-

mands, get updates and send status information to the mali-

cious actors. Since smartphones and other mobile devices are

typically used to connect to online services and are rarely

switched off, they provide a rich source of candidates for op-

erating botnets. Thus, the term ‘mobile botnet’ refers to a

group of compromised smartphones and other mobile devices

that are remotely controlled by botmasters using C&C chan-

nels [2], [3].

Nowadays, malicious botnet apps have become a serious

threat. Additionally, their increasing use of sophisticated eva-

sive techniques calls for more effective detection approaches.

Hence, in this paper we present a deep learning approach that

leverages Convolutional Neural Networks (CNN) for Android

botnet detection. The CNN model employs 342 static features

to classify new or previously unseen apps as either ‘botnet’ or

‘normal’. The features are extracted through automated re-

verse engineering of the apps, and are used to create feature

vectors that feed directly into the CNN model without further

pre-processing or feature selection.

We present the design of our CNN-based model for Android

botnet detection and evaluate the model on a dataset of real

Android apps consisting of 1,929 botnets samples and 4,873

clean samples. Also, we compare the performance of our CNN

model to other popular machine learning classifiers including

Naïve Bayes, Bayes Net, Decision Tree, Support Vector Ma-

chine (SVM), Random Forest, Random Tree, Simple Logistic

and Artificial Neural Network (ANN) on the same dataset.

The results show that the CNN-based model achieved a botnet

detection performance of 98.9% with an F1-score of 0.981,

thus outperforming all the other machine learning classifiers.

Furthermore, our CNN model shows better performance re-

sults compared to other existing studies focusing on Android

botnet detection. Some of these studies utilized the same ISCX

botnet apps employed in this paper.

The rest of the paper is organized as follows: Section II dis-

cusses related works in Android botnet detection; Section III

presents the overall system and gives some background on

CNN, including a discussion of 1D CNN which is adopted in

this study; Section IV presents methodology and the experi-

ments performed; Results of experiments are given in Section

V and finally Section VI presents the conclusions of the study

and possible future work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/326502989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2020), 15-19 June 2020 (Accepted version)

II. RELATED WORK

In the study conducted by Kadir et al. [4], the objective was to

address the gap in understanding mobile botnets and their

communication characteristics. Thus, they provided an in-

depth analysis of the Command and Control (C&C) and built-

in URLs of Android botnets. By combining both static and

dynamic analyses with visualization, relationships between the

analysed botnet families were uncovered, offering insight into

each malicious infrastructure. It is in this study that a dataset

of 1929 samples of 14 Android botnet families were compiled

and released to the research community. This dataset is known

as the ISCX Android botnet dataset and is available from [5].

This paper and several previous works on Android botnets

have utilized the full dataset or a subset of it to evaluate pro-

posed Android botnet detection techniques.

Anwar et al. [6] proposed a static approach towards mobile

botnet detection where they utilized MD5 hashes, permissions,

broadcast receivers, and background services as features.

These features were extracted from Android apps to build a

machine learning classifier for detecting mobile botnet attacks.

They conducted their experiments on 1400 apps from the

UNB ISCX botnet dataset together with 1400 benign apps.

Their best result was 95.1% classification accuracy with a

recall value of 0.827 and a precision value of 0.97.

Paper [7] used machine learning to detect Android botnets

based on permissions and their protection levels. The authors

initially used 138 features and then added novel features

known as protection levels to increase the number of features

to 145. Their approach was evaluated on four machine learn-

ing algorithms: Random Forest, MLP, Decision Trees and

Naïve Bayes. They performed their study on 3270 app in-

stances (1635 benign and 1635 botnets). The botnet apps used

were also obtained from the ISCX botnet dataset. The best

results came from Random Forest with 97.3% accuracy, 0.987

recall, and 0.958 precision.

In [8] a method was proposed to detect Android botnets based

on Convolutional Neural Networks using permissions as fea-

tures. Applications are represented as images that are con-

structed based on the co-occurrence of permissions used with-

in the applications. The proposed CNN is a binary classifier

that is trained using the images. The authors evaluated their

proposed method on 5450 Android applications consisting of

1800 botnet applications from the ISCX dataset. Their results

show an accuracy of 97.2% with a recall of 0.96, precision of

0.955 and f-measure of 0.957, which is a promising result con-

sidering that only permissions were used in the study.

Paper [9] proposed an Android Botnet Identification System

(ABIS) for checking Android applications in order to detect

botnets. ABIS utilized both static and dynamic features from

API calls, permissions and network traffic. The system is

evaluated by using several machine learning algorithms with

Random Forest obtaining a precision of 0.972 and a recall of

0.969. In [10], a method is proposed for Android botnet detec-

tion based on feature selection and classification algorithms.

The paper used ‘permissions requested’ as features and ‘In-

formation gain’ to select the most significant permissions.

Afterwards, Naïve Bayes, Random Forest and Decision Trees

were used to classify the Android apps. Results show Random

Forest achieving the highest detection accuracy of 94.6% with

the lowest false positive rate of 0.099.

Karim et al [11] proposed DeDroid, a static analysis approach

to investigate botnet-specific properties that can be used to

detect mobile botnets. They first identified ‘critical features’

by observing the coding behaviour of a few known malware

binaries having C&C features. They then compared these ‘crit-

ical features’ with features of malicious applications from the

Drebin dataset [12]. Through this comparison, 35% of the ma-

licious apps in the dataset qualified as botnets. However, clos-

er examination revealed that 90% were confirmed as botnets.

Bernardeschia et al. [13] proposed a method to identify bot-

nets in Android environment through model checking. Model

checking is an automated technique for verifying finite state

systems. This is accomplished by checking whether a structure

representing a system satisfies a temporal logic formula de-

scribing their expected behaviour. In [14], Jadhav et al. pro-

pose a cloud-based Android botnet detection system which

exploits dynamic analysis by using a virtual environment with

cluster analysis. The toolchain for the dynamic analysis pro-

cess within the botnet detection system is composed of strace,

netflow, logcat, sysdump, and tcpdump. However, the authors

did not provide any experimental results to evaluate the effec-

tiveness of their proposed solution. Moreover, botnets may

easily employ different techniques to evade the virtual envi-

ronment, and code coverage could limit the system’s effec-

tiveness [15], [24].

Paper [16] proposed an approach to detect mobile botnets us-

ing network features such as TCP/UDP packet size, frame

duration, and source/destination IP address. The authors used

a set of ML box algorithms and five machine learning classifi-

ers to classify network traffic. The five supervised machine

learning approaches include Naïve Bayes, Decision Tree, K-

nearest neighbour, Neural Network, and Support Vector Ma-

chine. In [17], a method to detect Android botnets based on

source code mining and source code metric was proposed.

There are also a number of works that have proposed signature

based methods for Android botnet detection. These include

[18-20]. However, these solutions are likely to suffer from the

drawbacks of signature based systems which includes the ina-

bility to effectively detect previously unseen botnets.

Unlike most existing studies, our paper proposes a deep learn-

ing based Android botnet detection system, using Convolu-

tional Neural Networks. Also, unlike previous studies that

utilize only the app permissions, our system is based on 342

features that represent Permissions, API calls, Commands,

Extra Files, and Intents. Furthermore, different from the study

in [9] which utilized only permissions, we do not convert fea-

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2020), 15-19 June 2020 (Accepted version)

ture vectors into images prior to model training. Instead our

feature vectors are used directly to train 1D CNN models. This

makes our approach computationally less demanding.

III. BACKGROUND

A. The CNN-based classification system

The classification system is built by extracting static features

from the corpus of botnet and clean samples. To achieve this,

we used our bespoke tool built in Python for automated re-

verse engineering of APKs. With the help of the tool, we ex-

tracted 342 features consisting of five different types (see Ta-

ble 2) from all the training apps. The five feature types in-

clude: API calls extracted from the executable; Permissions

and Intents from the manifest file; Commands and Extra Files

from the APK. These features are represented as vectors of

binary numbers with each feature in the vector represented by

a ‘1’ or ‘0’. Each feature vector (corresponding to one applica-

tion) is labelled with its class. The feature vectors are loaded

into the CNN model and used to train the model. After train-

ing, an unknown application can be predicted to be either

‘clean’ or ‘botnet’ by applying its own extracted feature vector

to the trained model. The process is depicted in Figure 1.

Figure 1: Training and prediction with the CNN-based botnet

detection system.

B. Convolutional Neural Networks (CNN)

A CNN is a deep learning technique that belongs to the family

of Artificial Neural Networks. It works well for identifying

simple patterns in the data which will then be used to form

more complex patterns in higher layers. Two types of layers

are typically used for building CNNs; convolutional layers and

pooling layers. The role of the convolutional layer is to detect

local conjunctions of features from the previous layer, while

the role of the pooling layer is to merge semantically similar

features into one [21].

Generally, the convolutional layer extracts the optimal fea-

tures while the pooling layer reduces the dimensions of those

features that it receives from the convolutional layer (or an-

other preceding pooling layer). At the tail end of the model,

fully connected (dense) layer(s) are typically used for classifi-

cation. Depending on the characteristics of the dataset, the

performance of the CNN may be influenced by the number of

layers, number of filters (kernels) or the size of the filters.

Generally, more and more abstract features are extracted in the

deeper layers of the CNN, hence, the number of layers re-

quired depends on the complexity and non-linearity of the data

being analysed. Furthermore, the number of filters in each

stage determines the number of features extracted. Computa-

tional complexity increases with more layers and higher num-

bers of filters. Also, with more complex architectures, there is

the possibility of training an overfitted model which results in

poor prediction accuracy on the testing set(s). To reduce over-

fitting, techniques such as ‘dropout’ [22] and ‘batch regulari-

zation’ are implemented during training of our models.

C. One Dimensional Convolutional Neural Networks

Although CNN is more commonly applied in a multi-

dimensional fashion and has thus found success in image and

video analysis-based problems, they can also be applied to

one-dimensional data. Datasets that possess a one-dimensional

structure can be processed using a one-dimensional convolu-

tional neural network (1D CNN). The key difference between

a 1D and a 2D or 3D CNN is the dimensionality of the input

data and how the filter (feature detector) slides across the data.

For 1D CNN, the filters only slide across the input data in one

direction. A 1D CNN is quite effective when you expect to

derive interesting features from shorter (fixed-length) seg-

ments of the overall feature set, and where the location of the

feature within the segment is not of high relevance.

The use of 1D CNN can be commonly found in NLP applica-

tions. Similarly, 1D CNN is applicable to datasets containing

vectorised data being used to characterize the items to be pre-

dicted (e.g. an Android application). The 1D CNN could be

used to extract potentially more discriminative feature repre-

sentations that describe any existing patterns or relationships

within segments of the vectors characterizing each entity in

the dataset. These new features are then fed into a classifier

(e.g. a fully connected neural network layer) which will in turn

use the derived features in making a final classification deci-

sion. Hence, in this scenario, the convolutional layers can be

considered as a feature extractor that eliminates the need for

feature ranking and selection. The CNN model developed in

this paper is applied to vectorised data characterizing the An-

droid applications, in order to derive a trained model that can

detect new Android botnet apps with very high accuracy.

D. Key elements of our proposed CNN architecture

Our proposed CNN architecture is a 1D CNN consisting of

two convolutional layers and two max pooling layers. These

are followed by a fully connected layer of N units, which is in

turn connected to a final classification layer containing one

neuron with a sigmoid activation function.

The sigmoid activation function is given by: 𝑆 =
1

1+ 𝑒−𝑥

The final classification layer generates an outcome corre-

sponding to the two classes i.e. ‘botnet’ or ‘normal’. The con-

volutional layers utilize the ReLU (Rectified Linear Units)

activation function given by: 𝑓(𝑥) = max(0, 𝑥). ReLU helps

to mitigate vanishing and exploding gradient issues [23]. It has

been found to be more efficient in terms of time and cost for

training huge data in comparison to classical non-linear activa-

App samples
(Botnets and Normal)

f1 f2 f3 f4 f5 f6 ………………………………………………………………f342 Class
0 1 0 1 1 0 ……………………………………………………………… 1 N
1 1 0 0 1 0 ……………………………………………………………… 1 N
1 0 0 1 0 1 ……………………………………………………………… 0 B
0 1 0 0 1 0 ……………………………………………………………… 1 N
0 1 0 1 1 1 ……………………………………………………………… 0 B
1 1 0 0 1 0 ……………………………………………………………… 0 N
0 1 0 1 0 1 ……………………………………………………………… 1 N
1 0 0 0 0 0 ……………………………………………………………… 1 B
0 0 0 1 0 0 ……………………………………………………………… 0 N
1 1 0 0 0 0 ……………………………………………………………… 1 N
0 0 0 1 1 1 ……………………………………………………………… 0 B
0 1 0 0 1 0 ……………………………………………………………… 1 B
0 1 0 1 1 1 ……………………………………………………………… 1 N
.
.

Trained CNN model

Prediction
Unclassified
application

Feature vectors

Train a CNN based classifier

Botnet app

Normal app

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2020), 15-19 June 2020 (Accepted version)

tion functions such as Sigmoid or Tangent functions [24]. A

simplified view of our architecture is shown in Figure 2.

 Figure 2: Overview of the implemented 1D CNN model for

Android application classification to detect botnets.

IV. METHODOLOGY AND EXPERIMENTS

In this section we present the experiments undertaken to eval-

uate the CNN models developed in this paper. Our models

were implemented using Python and utilized the Keras library

with TensorFlow backend. Other libraries used include Scikit

Learn, Seaborn, Pandas, and Numpy. The model was built and

evaluated on an Ubuntu Linux 16.04 64-bit Machine with

4GB RAM.

A. Problem definition

Let A ={a1, a2, … an} be a set of apps where each ai is repre-

sented by a vector containing the values of n features (where

n=342). Let a ={f1,f2,f3 …fn, cl} where 𝑐𝑙 ∈ {𝑏𝑜𝑡𝑛𝑒𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙}

is the class label assigned to the app. Thus, A can be used to

train the model to learn the behaviours of botnet and normal

apps respectively. The goal of a trained model is then to clas-

sify a given unlabelled app Aunknown = { f1,f2,f3 …fn, ?} by as-

signing a label cl, where 𝑐𝑙 ∈ {𝑏𝑜𝑡𝑛𝑒𝑡, 𝑛𝑜𝑟𝑚𝑎𝑙}.

B. Dataset

In this study we used the Android dataset from [5], which is

known as the ISCX botnet dataset. The ISCX dataset contains

1,929 botnet apps (from 14 different families) and has been

used in previous works including [4], [7-10], and [17]. The

botnet families are shown in Table 1. A total of 4,873 clean

apps were used for the study in this paper and these were la-

belled under the category ‘normal’ to facilitate supervised

learning when training the CNN and other machine learning

classifiers. The clean apps were obtained from different cate-

gories of apps on the Google Play store and verified to be non-

malicious by using VirusTotal.

The 342 static features extracted from the apps for model

training were of 5 types: (a) API calls (b) commands (c) per-

missions (d) Intents (e) extra files. The ‘API calls’ and ‘per-

missions’ accounted for most of the features. From Table 2, it

can be seen that there were 135 ‘API calls’ related features

and 130 ‘permissions’ features, while intents accounted for 53

features. Some of the features are shown in Table 3.

Table 1: Botnet dataset composition.

Botnet Family Number of samples

Anserverbot 244

Bmaster 6

Droiddream 363

Geinimi 264

Misosms 100

Nickyspy 199

Notcompatible 76

Pjapps 244

Pletor 85

Rootsmart 28

Sandroid 44

Tigerbot 96

Wroba 100

Zitmo 80

Total 1929

Table 2: The five different types of features used to train the CNN

model.
Feature type Number

API calls 135

Permissions 130

Commands 19

Extra files 5

Intents 53

Total 342 features

Table 3: Some of the prominent static features extracted from Android
applications for training the CNN model to detect Android Botnets.

Feature name Type

TelephonyManager.*getDeviceId API

TelephonyManager.*getSubscriberId API

abortBroadcast API

SEND_SMS Permission

DELETE_PACKAGES Permission

PHONE_STATE Permission

SMS_RECIVED Permission

Ljava.net.InetSocketAddress API

READ_SMS Permission

Android.intent.action.BOOT_COMPLETED Intent

io.File.*delete(API

chown Command

chmod Command

Mount Command

.apk Extra File

.zip Extra File

.dex Extra File

.jar Extra file

CAMERA Permission

ACCESS_FINE_LOCATION Permission

INSTALL_PACKAGES Permission

android.intent.action.BATTERY_LOW Intent

.so Extra File

android.intent.action.POWER_CONNECTED Intent

System.*LoadLibrary API

Input layer Convolutional
layer 1

Fully connected
layer

o
u

tp
u

t laye
r

Convolutional
layer 2

Sl
id

in
g

fi
lt

e
r

Sl
id

in
g

fi
lt

e
r

filter
Sl

id
in

g
fi

lt
e

r

filter

0 = normal
1= botnet

L = 342

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2020), 15-19 June 2020 (Accepted version)

C. Experiments to evaluate the proposed CNN based model

In order to investigate the performance of our proposed model,

we performed different sets of experiments. Table 4 shows the

configuration of the CNN model. The 1D CNN model consists

of two pairs of convolutional and maxpooling layers as shown

in Figure 2. The output of the second max pooling layer is

flattened and passed on to a fully connected layer with 8 units.

This is in turn connected to a sigmoid activated output layer

containing one unit.

The first set of experiments was aimed at evaluating the im-

pact of number of filters on the model’s performance. The

second set of experiments was performed to evaluate the effect

of varying the length of the filters. In the third, we investigate

the impact of the maxpooling size on performance.

Table 4: Summary of model configurations.

Model design summary -1D CNN

Input layer: Dimension = 342 (feature vector size)

1D Convolutional layer: 4, 8, 16, 32, 64 filters,
size = 4, 8, 16, 32, 64 (with number of filters =32)

MaxPooling layer: Size =2, 4, 8, 16 (with number of filters =32)

1D Convolutional layer: 4, 8, 16, 32, 64 filters,
size = 4, 8, 16, 32, 64 (with number of filters =32)

MaxPooling layer: Size =2, 4, 8, 16 (with number of filters =32)

Fully Connected (Dense) layer: 8 units, activation=ReLU

Output layer: Fully Connected layer; 1 unit, activa-
tion=sigmoid

In order to measure model performance, we used the follow-

ing metrics: Accuracy, precision, recall and F1-score. The

metrics are defined as follows (taking botnet class as positive):

 Accuracy: Defined as the ratio between correctly pre-

dicted outcomes and the sum of all predictions. It is

given by:
TP+TN

TP+TN+FP+FN

 Precision: All true positives divided by all positive

predictions. i.e. Was the model right when it predict-

ed positive? Given by:
TP

TP+FP

 Recall: True positives divided by all actual positives.

That is, how many positives did the model identify

out of all possible positives? Given by:
TP

TP+FN

 F1-score: This is the weighted average of precision

and recall, given by:
2 x Recall x Precision

Recall+Precision

Where TP is true positives; FP is false positives; FN is false

negatives, while TN is true negatives (all w.r.t. the botnet

class). All the results of the experiments are from 10-fold

cross validation where the dataset is divided into 10 equal

parts with 10% of the dataset held out for testing, while the

models are trained from the remaining 90%. This is repeated

until all of the 10 parts have been used for testing. The average

of all 10 results is then taken to produce the final result. Also,

during the training of the CNN models (for each fold), 10% of

the training set was used for validation.

V. RESULTS AND DISCUSSIONS

A. Varying the numbers of filters.

In this section, we examine the results from experimenting

with different numbers of filters. In our model, we kept the

number of filters in both convolutional layers the same. Table

5 shows the results from running the 1D CNN model with

different numbers of filters. From the table, it is evident that

the number of filters had an effect on the performance of the

model. When increased from 4 to 8, there is an improvement

in performance. The performance does not improve until we

reach 32 filters. It then drops again when we increase this to

64. Based on these results we select 32 filters as the optimal

configuration parameter for the model’s number of filters.

Notice the increase in the number of training parameters as the

number of filters is increased, and for 32 filters, the training of

25,625 parameters is required. With 32 filters we obtain a

classification accuracy of 98.9% compared to 98.6% that is

obtained with 4 filters. Nevertheless, the results obtain with 4

filters were still acceptable.

1) Training epochs, loss and accuracy graphs.

Figures 3 and 4 shows the typical outputs obtained with the

validation and training sets during the training epochs. From

Fig. 3, it can be seen that the validation loss is generally fluc-

tuating from one training epoch to another after an initial drop.

During each epoch, a model is trained and the validation loss

and accuracy are recorded. Our goal is to obtain the model

with the least validation loss because we assume this will be

the ‘best’ model that fits the training data. Thus, at every

epoch, the validation loss is compared to previous ones and if

the current one is lower, the corresponding model is saved as

the best model. We implemented a ‘stopping criterion’ which

will stop the training once no improvement in performance is

observed within 100 epochs. For example in Figure 3, the best

model was obtained with the least validation loss of 0.00531 at

epoch 45. For the next 100 epochs validation loss did not im-

prove, hence the training was stopped. Figure 4 shows the

corresponding accuracy behaviour observed from epoch to

epoch.

Table 5: Number of filters vs. model performance. Length of

filters used= 4 for first layer and =4 for second layer; dense

layer = 8 units; validation split=10%.

Number of

Filters
4 8 16 32 64

Accuracy 0.986 0.988 0.988 0.989 0.987

Precision 0.978 0.980 0.980 0.983 0.980

Recall 0.974 0.977 0.976 0.978 0.975

F1-score 0.976 0.978 0.978 0.981 0.977

Num. training

parameters
2777 5,657 11,801 25,625 59,417

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2020), 15-19 June 2020 (Accepted version)

Figure 3: Training and validation losses at different epochs up

to 145. A stopping criterion of 100 is used to obtain the model

with the least validation loss.

Figure 4: Training and validation accuracies at different

epochs up to 145. These plots correspond to the training and

validation losses depicted in Figure 3.

B. Varying the length of the filters.

In this section we examine the effect of the length of filters on

the performance of the model while the number of filters is

fixed at 32 in each convolutional layer. The length is varied

from 4, 8, 16, 32, to 64 respectively (as shown in Table 6).

The number of units in the dense layer was fixed at 8. The

results indicate that the length of the filters does not appear to

have much of an impact on the overall classification accuracy

and F1-score performance, when increased. However, the

least filter length of 4 achieves the highest accuracy and F1-

score. Note that as we increase the length of the filters, the

number of parameters to be trained increases (from 25,652 for

length=4 to 77,465 for length=64).

The lack of improvement with the length of filters may be

attributed to larger number of parameters leading to overfitting

the model to the training data thereby reducing its generaliza-

tion capability. This in turn leads to degraded performance

when tested on new data. Basically, what these results show is

that when the training parameters increase beyond a certain

limit, the model becomes too complex for the data and this

leads to overfitting. This becomes evident in lack of improve-

ment or degradation in performance when tested on previously

unseen data.

Table 6: Length of filters vs. model performance. Number of

filters used= 32 in both first and second convolutional layers;

dense layer = 8 units; validation split=10%.

Length of

filters
4 8 16 32 64

Accuracy 0.989 0.988 0.988 0.988 0.988

Precision 0.983 0.979 0.980 0.981 0.983

Recall 0.978 0.977 0.978 0.979 0.974

F1-score 0.981 0.978 0.979 0.979 0.978

Training

parameters
25,625 29,081 35,993 49,817 77465

C. Varying the Maxpooling parameter

The results of the third set of experiments are discussed here.

The goal is to investigate the effect of changing the maxpool-

ing parameter. This corresponds to a subsampling ratio of 2, 4,

6, and 8 respectively as shown in Table 7. A value of 2 means

the next layer will be half the dimension of the previous one,

etc. Note that the maxpooling layer can be considered a fea-

ture reduction layer that also helps to alleviate overfitting

since it progressively reduces the number of parameters that

need to be trained. The other parameters were fixed as fol-

lows: Number of filters in both convolutional layers = 32;

Length of convolutional filters = 4; number of units in dense

layer=8.

It can be seen from Table 7 that as we increase the maxpool-

ing parameter, the total number of training parameters is re-

duced. At the same time, we witness a progressive decline in

overall performance. Therefore, for our CNN model designed

to classify applications into ‘botnet’ and ‘normal’, the optimal

subsampling ratio for both layers is 2.

Table 7: Maxpooling parameter vs. model performance.

Length of filters used=4 for both convolutional layers; number

of filters =32 for both layers; dense layer = 8 units; validation

split=10%.

Maxpooling parame-

ter/Subsampling ratio
2 4 6 8

Accuracy 0.989 0.987 0.983 0.978

Precision 0.983 0.982 0.974 0.971

Recall 0.978 0.973 0.967 0.948

F1-score 0.981 0.978 0.970 0.959

Training

Parameters
25,625 9497 6,425 5,401

D. CNN performance vs. other machine learning classifiers:

10 fold cross validation results.

In Table 8, the performance of the CNN model developed in

this paper is compared to other machine learning classifiers:

Naïve Bayes, SVM, Random Forest, Artificial Neural Net-

work, J48, Random Tree, REPtree, and Bayes Net. Figure 5

shows the F1-scores of the classifiers, where CNN has the

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2020), 15-19 June 2020 (Accepted version)

highest F1-score (0.981), followed by SVM (0.976), SL

(0.973), ANN (0.973) and Random Forest (0.973). Bayes Net

had the least F1-score of 0.781. Table 8 shows that the recall

of CNN is 0.978 which indicates that it has the best botnet

detection performance than the other classifiers. Note that the

ANN was a back propagation neural network built with a sin-

gle hidden layer consisting 32 units (neurons). The sigmoid

activation function was used within the neurons. This ANN

represented the application of a neural network without deep

learning. The ANN showed no significant improvement in the

results when the number of units in the hidden layer was in-

creased beyond 32.

Table 8: Comparison of our CNN results with results from

other ML classifiers.

 ACC Prec. Rec. F1

Naïve Bayes 0.872 0.728 0.874 0.795

SVM 0.987 0.980 0.973 0.976

RF 0.985 0.982 0.965 0.973

ANN 0.985 0.982 0.965 0.973

SL 0.984 0.983 0.963 0.973

J48 0.981 0.974 0.958 0.966

Random Tree 0.972 0.948 0.955 0.951

REPTree 0.979 0.973 0.954 0.963

Bayes Net 0.867 0.736 0.832 0.781

CNN 0.989 0.983 0.978 0.981

Figure 5: F1-score of CNN vs other ML classifiers.

E. Comparison with other works on Android botnet detection.

In Table 9, we present a comparison of our results with those
reported in other papers that focus on Android botnet detection.
Note that all the papers mentioned in the table have used the
ISCX botnet dataset for their work. In our study we utilized the
entire 1929 samples within the dataset. In the second column of
the table, the numbers of botnet samples and benign samples
used in the papers are shown, while the other columns contain
the performance results. Not all of the performance metrics we

have used are reported in every paper. Nevertheless, it is clear
that our CNN model obtained better overall accuracy, F1 and
recall than the other works.

Table 9: performance comparisons with other works. Note that
all of the papers used botnets samples from the ISCX dataset.

Paper reference Botnets
/Benign

ACC
(%)

Rec. Prec. F1

Hojjatinia et al. [8] 1800/3650 97.2 0.96 0.955 0.957

Tansettanakorn et al. [9] 1926/150 - 0.969 0.972 -

Anwar et. al [6] 1400/1400 95.1 0.827 0.97 -

Abdullah et al. [10] 1505/850 - 0.946 0.931 -

Alqatawna & Faris [7] 1635/1635 97.3 0.957 0.987 -

This paper 1929/4873 98.9 0.978 0.983 0.981

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a deep learning model based on 1D
CNN for the detection of Android botnets. We evaluated the
model through extensive experiments with 1,929 botnet apps
and 4,387 clean apps. The model outperforms several popular
machine learning classifiers evaluated on the same dataset. The
results (Accuracy: 98.9%; Precision: 0.983; Recall: 0.978; F1-
score: 0.981) indicate that our proposed CNN based model can
be used to detect new, previously unseen Android botnets more
accurately than the other models. For future work, we will aim
to improve the model training process by automating the search
and selection of the key influencing parameters (i.e. number of
filters, filter length, and number of fully connected (dense)
layers) that jointly result in the optimal performing CNN
model.

REFERENCES

[1] S. Y. Yerima and S. Khan “Longitudinal Perfomance Anlaysis of
Machine Learning based Android Malware Detectors” 2019

International Conference on Cyber Security and Protection of Digital

Services (Cyber Security), IEEE

[2] H. Pieterse and M. S. Olivier, "Android botnets on the rise: Trends and

characteristics," 2012 Information Security for South Africa,
Johannesburg, Gauteng, 2012, pp. 1-5.

[3] Letteri, I., Del Rosso, M., Caianiello, P., Cassioli, D., 2018. Performance

of botnet detection by neural networks in software-defined networks, in:
CEUR WORKSHOP PROCEEDINGS, CEUR-WS.

[4] Kadir, A.F.A., Stakhanova, N., Ghorbani, A.A., 2015. Android botnets:
What urls are telling us, in: International Conference on Network and

System Security, Springer. pp. 78–91.

[5] ISCX Android botnet dataset. Available from

https://www.unb.ca/cic/datasets/android-botnet.html. [Accessed

03/03/2020]

[6] S. Anwar, J. M. Zain, Z. Inayat, R. U. Haq, A. Karim, and A. N. Jabir,

"A static approach towards mobile botnet detection," in 2016 3rd

International Conference on Electronic Design (ICED), 2016: IEEE, pp.
563-567.

[7] J. f. Alqatawna and H. Faris, "Toward a Detection Framework for
Android Botnet," in 2017 International Conference on New Trends in

Computing Sciences (ICTCS), 2017: IEEE, pp. 197-202.

[8] S Hojjatinia, S Hamzenejadi, H Mohseni, “Android Botnet Detection
using Convolutional Neural Networks” 28th Iranian Conferenc on

Electircal Engineering (ICEE2020).

[9] C. Tansettanakorn, S. Thongprasit, S. Thamkongka, and V.

Visoottiviseth, "ABIS: a prototype of android botnet identification

0.781

0.795

0.951

0.963

0.966

0.973

0.973

0.973

0.976

0.981

0.7 0.75 0.8 0.85 0.9 0.95 1

BAYES NET

NAÏVE BAYES

RANDOM TREE

REPTREE

J48

RF

SL

ANN

SVM

CNN

F1 Score

F1 Score

International Conference on Cyber Security and Protection of Digital Services (Cyber Security 2020), 15-19 June 2020 (Accepted version)

system," in 2016 Fifth ICT International Student Project Conference

(ICT-ISPC), 2016: IEEE, pp. 1-5.

[10] Z. Abdullah, M. M. Saudi, and N. B. Anuar, "ABC: android botnet

classification using feature selection and classification algorithms,"
Advanced Science Letters, vol. 23, no. 5, pp. 4717-4720, 2017.

[11] Karim, Ahmad & Salleh, Rosli & Shah, Syed. (2015). DeDroid: A

Mobile Botnet Detection Approach Based on Static Analysis.
10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.240.

[12] The Drebin Dataset. Available at: https://www.sec.cs.tu-
bs.de/~danarp/drebin/index.html [accessed 05/03/2020]

[13] Cinzia Bernardeschia, Francesco Mercaldo, Vittoria Nardonec,

Antonella Santoned, Exploiting Model Checking for Mobile Botnet
Detection. 23rd International Conference on Knowledge-Based and

Intelligent Information & Engineering Systems. Procedia Computer

Science 159 (2019) 963–972.

[14] Jadhav, S., Dutia, S., Calangutkar, K., Oh, T., Kim, Y.H., Kim, J.N.,

2015. Cloud-based android botnet malware detection system, in:
Advanced Communication Technology (ICACT), 2015 17th

International Conference on, IEEE. pp. 347–352.

[15] S. Y. Yerima, M. K. Alzaylaee, and S. Sezer. “Machine learning-based
dynamic analysis of Android apps with improved code coverage”
EURASIP Journal on Information Security, 4 (2019).
https://doi.org/10.1186/s13635-019-0087-1

[16] Meng, X. and Spanoudakis, G. (2016). MBotCS: A mobile botnet

detection system based on machine learning. Lecture Notes in Computer

Science, 9572, pp. 274-291. doi: 10.1007/978-3-319-31811-0_17

[17] B. Alothman and P. Rattadilok ‘Android botnet detection: An integrated

source code mining aproach’ 12th International Conference for Internet

Technology and Secured Transactions (ICITST),11-14 Dec.,Cambridge,
UK, 2017, IEEE, pp 111-115.

[18] A. J. Alzahrani and A. A. Ghorbani, "Real-time signature-based
detection approach for sms botnet," in 2015 13th Annual Conference on

Privacy, Security and Trust (PST), 2015: IEEE, pp. 157-164.

[19] D. A. Girei, M. A. Shah, and M. B. Shahid, "An enhanced botnet

detection technique for mobile devices using log analysis," in 2016 22nd

International Conference on Automation and Computing (ICAC), 2016:
IEEE, pp. 450-455.

[20] M. Yusof, M. M. Saudi, and F. Ridzuan, "A New Android Botnet

Classification for GPS Exploitation Based on Permission and API
Calls," in International Conference on Advanced Engineering Theory

and Applications, 2017: Springer, pp. 27-37.

[21] Y. LeCun, Y.Bengio, and G. Hinton, Deep learning, Nature 521 (2015),

no. 7553, 436-444

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Stuskever, and R.
Salakhutdinov. “Dropout: A simple way to prevent neural networks

from overfitting” The Journal of Machine Learning Research,

15(1):1929-1958, 2014.

[23] X. Glorot, A. Bordes, and Y. Bengio, ‘‘Deep sparse rectifier neural

networks,’’ in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011, pp. 315–
323.

[24] M. K. Alzaylaee, S. Y. Yerima, Sakir Sezer “DL-Droid: Deep learning

based android malware detection using real devices” Computers &
Security, Volume 89, 2020, 101663, ISSN 0167-4048,

https://doi.org/10.1016/j.cose.2019.101663.

