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Abstract

To understand the frequency lock-in mechanism of flow separation control of an

airfoil at low Reynolds number, a systematic analysis is performed by extracting

the Lagrangian Coherent Structures (LCSs) from the unsteady flow. The actu-

ation is considered via periodic morphing surface, and the dynamical behaviors

between morphing surface and unsteady flow are studied from the viewpoint

of fluid transport. Attention is drawn to fluid transport and lift improvement

when the actuation frequency is locked onto the vortex shedding frequency. The

results show that the fluid particle near the actuator is accelerated by the actu-

ation and interacts with the slow fluid particle in boundary layer on the airfoil

surface. The so-called stirring jet mechanism is observed, whereby a cusp struc-

ture is formed like a jet acting on the flow, which enhances the fluid transport

from main stream into separation zone by reducing dead air zone effectively.

The results also show that the actuation frequency is found to be the key factor

for lift enhancement and determines the cusp structures and the vortex strength

on the upper surface of the airfoil.
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Nomenclature

λmax Maximum eigenvalue of Cauchy-Green deformation tensor

µ∞ Freestream viscosity

ω Flow vorticity5

φt0+Tt0 (~x) Map of flow system for LCS extraction

ρ∞ Freestream density

σ Finite-time Lyapunov exponents

(̃·) Dimensional quantity of (·)

~(·) Vector of (·)10

A0 Dimensionless equilibrium amplitude of morphing surface

Am Dimensionless amplitude of morphing motion

c Airfoil chord length

Cp Pressure coefficient

E Dimensionless elastic modulus, E = Ẽ
ρU∞215

fexcit Dimensionless frequency of morphing motion

fref Dimensionless reference frequency of morphing motion

L Chordwise length of the morphing surface

R Lift ratio of the airfoil with morphing surface and the rigid airfoil

t Dimensionless time20

Texcit Dimensionless excitation time period
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U∞ Freestream velocity

w Displacement of morphing surface

w0 Equilibrium position of morphing surface

x Dimensionless coordinate25

Re Reynolds number

ALE Arbitrary Lagrangian Eulerian framework

CBS Characteristics Based Split scheme

FTLE Finite-time Lyapunov exponents

LCS Lagrangian Coherent Structure30

MAV Micro Air Vehicle

UAV Unmanned Air Vehicle

1. Introduction

The unmanned aerial vehicles (UAVs) and micro aerial vehicles (MAVs)

are ubiquitous and have increasing significance in commercial and military35

applications[1], such as surveillance, communication relay links, and detection.

However, these aerial vehicles are featured with small length scale and low

speed, and thus resulting in a low Reynolds number flight environment (i.e.

Re = 103 ∼ 105), whereby separated and vortical flow leads to low lift and

poor thrust efficiency mainly due to strong viscous effect. Flow control tech-40

niques have been developed to manipulate the boundary layer and delay the flow

separation, and therefore are desirable to improve aerodynamic performance of

UAVs and MAVs.

The small length scale and low Reynolds number flight characteristics render

the flow control techniques including slats, flaps [2], which are mainly designed45
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for conventional aircraft, less attractive for MAVs. These characteristics further

restricted the weight and energy consumption of the actuation system signifi-

cantly. Therefore, the control techniques such as blowing system and plasma

actuator are not feasible for the flow control of MAVs. Inspired by bio-flight,

flexible wing offers an alternative flow control strategy, which takes the ad-50

vantage of the aeroelastic effect of flexible wing made of thin-walled structure

with large deflection during the flight. It is expected that the deformation of

the flexible structure can adjust the aerodynamic shape to improve the aero-

dynamic performance. Shyy’s group primarily focused on the aerodynamics

and aeroelasticity of MAVs since Smith and Shyy computed a flexible mem-55

brane airfoil for aerodynamic performance improvement at Reynolds number

Re = 4000 [3]. Excellent reviews on flexible and flapping wing of MAVs can

be found in [4, 5] from viewpoint of aerodynamics. Taylor et al. [6] revealed

that the interaction between the flexible structure and flow delays the stall and

increases the lift significantly by investigating aerodynamic performance of a60

flexible nonslender delta wing experimentally. Lian et al.[7] presented a CFD-

based optimization for the membrane wing design. Gordnier et al.[8] employed

a high-order CFD method to further study the fine scale vortical features dur-

ing the interaction between the flow and flexible wing. Recently, Kang et al.

[9, 10, 11] proposed a locally flexible airfoil model, whereby the flexible struc-65

ture passively interacts with low Reynolds number flow. As the research on

flexible wing is further explored, the studies on flexible structure has been ex-

tended in aeronautical engineering. Majić et al. [12] demonstrated an adaptive

morphing inlet for turbofan-engine aerodynamic performance improvement. Su

et al. [13, 14] studied vibration control and loads improvement for high aspect70

ratio wings by considering structural flexibility. Burdette et al. [15] highlighted

the potential of adaptive morphing trailing edge for the improvement of fuel

efficiency of commercial aircraft using aerostructural optimization method. In

another recent work by Dan et al. [16], the state-of-art machine learning tech-

nique was adopted to optimize the morphing parameters of UAV wing. The75

aforementioned numerical and experimental work shows great potentials of flex-
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ible structures for aerodynamic performance enhancement. Notably, the results

[10, 11, 17] pointed out that the flow structures associated with the actuation

frequency have a crucial impact on aerodynamic performance.

From Lagrangian viewpoint, active flow control is to alter a natural flow state80

or path into a desired state (or path) by manipulating momentum and energy

transport of fluid system via external energy from an actuation. This idea paves

a way to reveal dynamic features of the coupling system between unsteady flow

and actuation systems, which can be used to evaluate the efficiency of flow con-

trol strategy. Recent work in dynamical system theory led to the development85

of tools for fluid transport analysis. As the flow is time-independent or time-

periodic, the stable and unstable manifolds of fixed point or periodic orbits in

the flow are the boundaries of the transport and mixing of fluids between differ-

ent flow regions. Furthermore, fluid transport between different flow regions can

be revealed by lobe dynamics, which can be visualized by the tangling between90

stable manifolds and unstable manifolds. Wiggins et al. [18, 19, 20] investi-

gated the transport and vortex shedding in the near wake of a circular cylinder

by using invariant manifolds theory, where the fluid transport in the near wake

of a circular cylinder is quantitatively described by lobe dynamics. However,

the invariant manifolds theory in their work was not applicable for transient dy-95

namical system in finite time, since the invariant manifolds are defined in time

domain [−∞,+∞]. To circumvent this restriction, Haller and Yuan [21] intro-

duced the concept of finite-time manifolds, i.e., Lagrangian coherent structures

(LCSs), which can be used to define the boundaries of transport in finite-time

flow. Shadden et al. [22] proposed a mathematical definition of LCSs using100

finite-time Lyapunov exponents (FTLEs) for two-dimensional aperiodic flows.

Eldredge and Chong [23] used LCSs to study the flow pattern of steadily trans-

lating and flapping foils, which connects the evolution of attracting LCS with

force generation qualitatively. Haller [24] presented a comprehensive review on

LCSs and its applications showing that the LCSs are the transport boundaries,105

and powerful for analyzing transport and mixture of periodic or aperiodic flow.

Chen et al.[25] investigated the leading edge vortex dynamics of plunging air-
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foil using LCSs. It is found that distinct flow patterns in LCSs are associated

with the formation of leading edge vortex in the slow and fast plunging motion,

respectively.110

In present study, the frequency lock-in mechanism of active flow control by

morphing surface is investigated from viewpoint of fluid transport in Lagrangian

framework. The influence of control actuation frequency on aerodynamic perfor-

mance and the flow separation patterns are highlighted. The paper is organized

as follows: Section 2 introduces the numerical formulation of the flow control115

system. Section 3 describes the definition of Lagrangian Coherent Structures for

fluid transport analysis. A systematic analysis of the frequency lock-in mech-

anism and effects of periodic actuation on fluid transport and separation is

provided in Section 4. Conclusions are drawn in Section 5.

2. Numerical Methodology120

2.1. Problem set-up

Fig. 1 and Fig. 2 show the schematic of the problem set-up and compu-

tational grid for active flow control by morphing surface, respectively. A local

coordinate is introduced by setting x′ axis along the chord of the morphing part,

which is located at the leading edge of the upper surface at x′ ∈ [0, 0.1] along125

chordwise direction as shown in Fig. 1. The length of the morphing surface is

referred to the dynamic deformed airfoil leading edge[26]. The vibration of the

morphing surface consists of the initial equilibrium position of the airfoil surface

and a periodic motion superimposed on it, which is written as,

w̃ = w̃0 + Ãm sin
(

2πf̃excitt̃
)

sin

(
πx′

l̃

)
, (1)

where l̃ is the length of the morphing surface along the local coordinates, w̃ is130

the oscillating displacement vertical to the chord at time t̃. w̃0 = Ã0 sin
(
πx′

l̃

)
,

Ãm and f̃excit are the equilibrium, amplitude and frequency of the morphing

surface, respectively.
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Figure 1: The problem set-up for active flow control by morphing surface.

(a) Full domain discretization (b) Close-up view of the morphing surface

Figure 2: A representative computational mesh for the flow domain.
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By choosing chord length of the airfoil c as the characteristic scale, and

freestream velocity U∞ as the characteristic velocity, dimensionless variables135

are defined as,

l = l̃
/
c, x = G(x′)/c, w = w̃/c, w0 = w̃0/c, A0 = Ã0

/
c, Am = Ãm

/
c,

fexcit = cf̃excit

/
U∞, t = U∞t̃

/
c

(2)

where G(x′) stands for the transform from local coordinate to global one.

By substituting Eq. (2) to Eq. (1), the vibration of the actuation is converted

into the following dimensionless form,

w = w0 +Am sin (2πfexcitt) sin
(πx
l

)
. (3)

2.2. ALE-CBS algorithm for unsteady viscous flow140

To study the active flow control, we consider ~x = (x, y)
T ∈ Ωt ⊂ R2

at time t ∈ (0, T ) as the spatial domain, and the governing equations for

two-dimensional unsteady incompressible flow in arbitrary Lagrangian Eulerian

(ALE) reference frame are used to solve fluid system and written as, ∇ · ~u = 0

∂~u
∂t + (~u− ~ug)∇~u = −p+ 1

Re∇
2~u

, (4)

where ~u, p and ~ug are the fluid density, fluid velocity and the ALE mesh velocity.

The Reynolds number Re = ρ∞U∞c
µ∞

, ρ∞ and µ∞ are the density and dynamic

viscosity of the freestream, respectively.

The boundary condition for the actuation in this problem is described as,

~u = ~ua, Γg ⊂ ∂Ωt, (5)

where ~ua is the velocity of actuation on the coupling boundary Γg.

A finite element method based on Characteristics Based Split scheme under145

ALE framework (ALE-CBS algorithm) is developed as a fluid solver to obtain

aerodynamic characteristics of the airfoil with periodic morphing surface. The
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method is a split procedure by introducing new coordinates along the char-

acteristics, where the convective terms can be eliminated by the coordinate

transformation. The resulting equations are only diffusion equations, which can150

be solved efficiently by standard finite element method. The algorithm can be

referred to [27, 28, 10] for more details. Herein only the split procedure of the

algorithm is given.

I. Prediction for intermediate velocities.

~U∗ − ~un = −∆t

[
(~u− ~ug)∇~Un +

1

Re
∇2~un

]
+

∆t2

2
(~u− ~ug)∇

(
(~u− ~ug)∇

(
~U
)n

+
1

Re
∇2~un

)
.

(6)

II. Solve the continuity equation implicitly.155

∇2pn =
1

∆t

[
θ1∇·~U∗ + (1− θ1)∇·~un

]
, (7)

where θ1 is relaxation factor. In this case, θ1 = 1.

III. Correct the velocities with obtained pressure.

~un+1 − ~U∗ = −∆t∇pn. (8)

Eqs. (6)-(8) are the temporal discretization form of NS equations with ALE-

CBS scheme. To solve the NS equations, a linear shape function is adopted for

the spatial discretization of fluid velocities and pressure. Spring analogy method160

[29, 30] is adopted to update the ALE mesh.

In the present study, the computational domain is discretized by unstruc-

tured triangular elements and the Reynolds number is chosen as Re = 5000 [10].

In order to quantify lift enhancement for the airfoil with morphing surface, lift

variation ratio R is defined as,

R =
CLexcit
CLrigid

, (9)

where CL is lift coefficient, the subscript ‘excit’ denotes the airfoil with morphing

surface, whereas ‘rigid’ denotes the rigid airfoil.
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(a) Open-cavity with flexible bottom (b) Harmonic in-line oscillation

Figure 3: Validation of ALE-CBS algorithm for fluid-structure interaction.

2.3. Numerical Methodology Validation

In order to validate the numerical methods outlined above, two benchmark165

cases, namely, driven open-cavity with flexible bottom [31] and harmonic in-

line oscillation of a circular cylinder in fluid at rest [32], are chosen for valida-

tion. Fig. 3 shows good agreement between present results and the available

literature[31, 32].

3. Lagrangian Coherent Structures (LCSs)170

Considering a time-dependent velocity field of fluid particles ~u(~x , t) defined

on an open set D ⊂ R2, the trajectory starts at point ~x0 ∈ D at time t0.

According to the definition of fluid particle velocity, the velocity field ~u is written

as,

~̇x = ~u (~x, t) ,

~x(t0, ~x0) = ~x0.
(10)

The solution of the system defined in Eq. (10) can be viewed as a map,

denoted by φtt0 , and satisfies

φtt0 : D → D : ~x0 7→ φtt0(~x0) = ~x(t, ~x0). (11)
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FTLEs is used to delineate the attracting or repelling structures in finite-time175

interval [t0, t0+T ], which is defined by the maximum eigenvalue of corresponding

Cauchy-Green deformation tensor given in Eq. (12).

σTt0 (~x) =
1

|T |
ln

√√√√λmax

((
dφt0+Tt0 (~x)

d~x

)∗
dφt0+Tt0 (~x)

d~x

)
, (12)

where ()∗ denotes the transpose of the tensor, σTt0 (~x) stands for the FTLEs,

φt0+Tt0 (~x) is the map of flow system. Accordingly, the repelling LCSs are de-

picted by the ridges of FTLE field with T > 0, and the attracting LCSs are180

depicted by the ridges of FTLE field with T < 0.

In this study, the motions of the fluid particles are computed by the ALE-

CBS algorithm shown in Eqs (6)-(8). The velocity field ~u(~x, t) is interpolated

using bicubic splines onto a fine structure quadrilateral mesh (1000 × 500 in

x ∈ [0, 1.5], y ∈ [−0.2, 0.2]) in the region near the airfoil. Trajectories of185

the passive tracers are integrated by solving Eq. (10) with fourth order Runge-

Kutta method. FTLEs are computed via the Cauchy-Green deformation tensor,

in which the derivative of the flow map is approximated by central difference

scheme. FTLEs then can be visualized by contour plot for Lagrangian analysis

of unsteady flow.190

4. Results and discussions

4.1. Effect of actuation frequency on lift enhancement

The reference position A0 = 0.00365 and amplitude of the morphing motion

Am = 0.00222 were chosen according to the primary mode shape and amplitude

of elastic structure with dimensionless elastic modulus E = 5 × 104, which195

achieves highest lift enhancement among passive flow control cases of locally

flexible structure [10]. The effect of actuation frequency is of particular interest

as it has great impact on aerodynamic performance and flow evolution [33, 34,

35]. Herein, actuation frequencies are selected as m×fref , m = 0.3 · · · 2, where
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the reference oscillating frequency fref = 1.3570 is the primary frequency of the200

structure with dimensionless elastic modulus E = 5× 104.

The variation ratio R for lift and lift-drag ratio is plotted in Fig. 4 as a

function of actuation frequency. The result suggests that the lift and lift-drag

ratio of the airfoil with local periodic morphing surface is improved except in the

case of fexit/fref ≈ 0.3. Specifically, the lift increases approximately more than205

20 % in the frequency range 0.5 < fexit/fref < 1.4, where the frequency lock-

in appears[36, 37]. The peak is found at fexit/fref ≈ 0.9 with approximately

69.86% lift improvement. However, the lift enhancement becomes marginal for

fexit/fref > 1.5 indicating that the effect of actuation decreases significantly. In

the lock-in region, the vortex shedding frequency begins to synchronize with the210

actuation frequency fexit at the lock-in onset (fexcit/fref ≈ 0.5) and gradually

recovers to its rigid airfoil counterpart as the actuation frequency increases,

which is elucidated in Fig. 5 by the first two dominate frequencies of the

flow. Notably, the primary frequency of the flow is locked on to the actua-

tion frequency, while the second frequency is twice higher than the primary215

frequency in the lock-in region. As the actuation frequency further increases

to fexcit/fref > 1.4 , the primary frequency recovers to the frequency of its

rigid airfoil counterpart, whereas the second frequency recovers to the actua-

tion frequency, and the lift enhancement gradually deteriorates and ceases at

fexcit/fref ≈ 2.8. To further understand the lock-in mechanism, flow patterns220

are investigated by LCSs at fexcit/fref = 0.5, 0.9, 1.3, 2.0 from the fluid trans-

port viewpoint in the next section.

4.2. Effect of actuation frequency on fluid transport

In this section, a set of four representative actuation frequencies is chosen to

elucidate the frequency lock-in regime from the fluid transport viewpoint. Fig. 6225

shows the FTLE fields of the airfoil at four representative actuation frequencies.

It is worth noting that it is not sufficient to use only a few level sets of FTLE field

to determine the LCSs. According to LCSs definition introduced by Shadden

[22], the LCSs are the ridges of FTLE field, which are defined as the zero level

12



V
6

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.8

1

1.2

1.4

1.6

1.8

2

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 4: Lift and lift-drag ratio of the airfoil as a function of the actuation

frequency (Length of Morphing surface = 0.1c).

set of inner product of FTLE gradient and eigenvector of FTLE Hessian matrix230

corresponding to the smallest eigenvalue. However, the ridges are considered to

be adequate as shown in Fig. 6 in the present study. The approach was also

used in [38, 39].

Attracting LCSs can be viewed as a boundary dividing the flow into two

regions, namely, the main stream and separation zone. It was well understood235

that the fluid transport can be manifested by the tangling between the repelling

and attracting LCSs [40]. For periodic flow, the repelling and attracting LCSs

are steady except near the trailing edge, where repelling and attracting LCSs

tangle together and vortices shed alternately into the flow wake, which suggests

no fluid transport exists until the trailing edge. In Fig. 6 (a)-(e), the so-240

called ”dead air zone”, where no fluid transport exists, is shaded in green color.

Fig. 6 (b) shows that repelling LCSs fold toward the main stream and start to

tangle with the attracting LCSs at fexcit/fref ≈ 0.5. A vortex is deduced as a
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Figure 5: The first two frequencies of the main stream as a function of the

actuation frequency.

result on the middle of the upper surface of the airfoil, moves downstream and

eventually sheds into the wake with a growing size. In addition, the dead air245

zone size is reduced compared with the rigid airfoil counterpart, which suggests

that the fluid transport from the main stream into the dead air zone starts to

be enhanced by the actuation at fexcit/fref ≈ 0.5. This is also evident from

pressure distribution, as shown in Fig. 7 (b), where the pressure on the upper

surface becomes lower than rigid airfoil and the resulting lift is enhanced. It is250

expected that the pressure fluctuates due to the vortices alternately shedding

near the trailing edge of the airfoil.

The smallest dead air zone is achieved at fexcit/fref ≈ 0.9 as shown in Fig. 6

(c), whereby both the fluid transport and the lift are most enhanced due to the

tangling between the attracting and repelling LCSs. This is further confirmed255

by the lower pressure on the upper surface of the airfoil in Fig. 7 (c). This

observation indicates that the lift amplification interlinks with the size of the

dead air zone. In other words, the lift enhancement increases as the size of
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dead air zone decreases. Similar to fexcit/fref = 0.5, a vortex is deduced as a

result, moves downstream and eventually sheds into the wake. Furthermore, a260

cusp structure is formed on the attracting LCSs near the leading edge, stretches

and folds toward the upper surface. To further elucidate the formation of the

cusp structure, the attracting LCSs and the direction of actuation velocity in a

period are plotted in Fig. 6 (f). The rectangular dash line in the figure clearly

shows that the fluid near the actuation is accelerated and moves downstream265

as the morphing surface vibrates upward to the mainstream. The accelerated

fluid interacts with boundary layer and a cusp structure is formed as a result,

which is referred to as stirring jet mechanism, since the actuation acts like a jet

flow and injects energy into the dead air zone. Furthermore, the fluid is faster

on the upper part of the cusp than the lower part due to the viscous effect in270

the boundary layer. As the morphing surface vibrates downward to surface, a

suction effect is introduced and causes the cusp structure fold toward the upper

surface of the airfoil, which is evident by the solid circle line in Fig. 6 (f). As

the actuation frequency further increases, the cusp structure is generated more

frequently as well as the vortices as shown in Fig. 6 (d) and (e). However,275

the dead air zone grows bigger and lift enhancement reduces significantly. This

is further evident by the pressure distribution in Fig. 7(d) and (e), where the

pressure gradually recovers to the rigid airfoil as actuation frequency increases.

This observation further confirms that the lift enhancement is explicitly linked

with the size of dead air zone. In contrast to fexcit/fref = 0.9, the attracting280

and repelling LCSs tends to overlap as frequency increases from 1.3 to 2.0, which

suggests the tangling between the two types of LCSs gradually ceases as well as

the fluid transport.

The actuation frequency alters the flow pattern significantly for active flow

control, resulting in different tangling effect between the attracting and repelling285

LCSs, and subsequently changing the size of the dead air zone. In the lock-in

regime, the dead air zone is reduced, and fluid transport is enhanced due to

the tangling between the two types of LCSs. The highest lift amplification

occurs at fexcit/fref ≈ 0.9, where the actuation frequency synchronizes with
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the frequency of the main stream and the tangling effect is most pronounced as290

well as the fluid transport. As the frequency further increases and the lock-in

terminates, the tangling deteriorates gradually and the lift recovers to the rigid

airfoil. To further generalize our finding, we next examine the flow separation

pattern under actuation.

4.3. Effect of the actuation on flow separation295

In this section, the influences of the actuation on separation pattern are

elucidated. Fig. 8 shows time history of separation and reattachment points

at the same four representative frequencies fexcit/fref = 0.5, 0.9, 1.3, 2.0 as

the section 4.2. The separation and reattachment points are computed from

instantaneous velocity field and identified by the following equation,300

ω |(x0,y0)
= 0,

∂ω

∂~n

 > 0, separation position,

< 0, reattachment position.
(13)

where ω is the vorticity at point (x0, y0), ~n is the unit normal vector to the

airfoil surface.

As shown in Fig. 8 (a), the separation point of the rigid airfoil is at x ≈

0.3745, and reattachment point is near the trailing edge and oscillates due to

alternate vortex shedding. It is evident from the figure that the number of305

separation bubbles increases as the frequency increases from 0.5 to 2.0, and

the size of the bubbles decreases in contrast, which is further elucidated by

the cusp structures in Fig. 6. In addition, the frequency of the birth of the

separation bubble is locked onto the actuation frequency in the lock-in regime

(0.9 < fexcit/fref < 1.3) and recovers to the frequency of main stream at310

fexcit/fref ≈ 2.0. The dash line in Fig. 8 also suggests that the horizontal

velocity (velocity in x direction) of the separation bubble remains unchanged

as the actuation frequency increases from 0.9 to 2.0. To further discern the

separation pattern, the amplitude of the fluctuation pressure near the trailing

edge is used to demonstrate the strength of the separation bubbles on the upper315

surface of the airfoil. Fig. 7 shows that the strength of the separation bubbles
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reaches the peak at fexcit/fref ≈ 0.9, where the lift enhancement also acquires

the maximum. As the actuation frequency fexcit/fref further increases from

1.3 to 2.0, the strength of the separation bubbles reduces significantly as well

as the amplitude of the fluctuation pressure near the trailing edge, and the lift320

recovers to the rigid airfoil.

(a) Rigid airfoil (b) fexcit/fref = 0.5 (c) fexcit/fref = 0.9

(d) fexcit/fref = 1.3 (e) fexcit/fref = 2.0 (f) Attracting LCSs with

fexcit/fref = 0.9

Figure 6: FTLE fields at the four representative actuation frequencies. ((a)-(e):Repelling

LCSs:Grayscale; Attracting LCSs: Red.)

5. Conclusions

To explore effective active flow control techniques, an airfoil with a periodic

morphing surface is considered in this study. The control mechanism is studied

from viewpoint of fluid transport in Lagrangian framework and the effect of325
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actuation frequency on lift enhancement is emphasized. Based on the systematic

study, the following conclusion can be drawn.

(i) The lift is enhanced at 0.5 < fexit/fref < 1.40, where the lock-in oc-

curs. The highest lift enhancement acquires at fexit/fref ≈ 0.9, where the

frequency of the main flow synchronizes with the actuation frequency.330

(ii) The tangling between attracting and repelling LCSs defines the dead air

zone, which determines fluid transport and the lift enhancement. As the

tangling between the two types of LCSs is pronounced, the dead air zone

is reduced and the lock-in appears. The two types of LCSs tend to overlap

as the actuation increases further to fexit/fref > 2.0, where the lock-in335

terminates. Cusp structures are observed and act like stirring jet flow,

which eventually evolve into separation bubble.

(iii) The number of separation bubbles increases as the actuation frequency

increases. However, the actuation frequency has no influence on the hori-

zontal velocity of the separation bubbles.340

Our future work is to find the connection between the stirring jet and fluid

transport via lobe dynamics, quantitatively.
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[12] F. Majić, G. Efraimsson, C. J. O’Reilly, Potential improvement of aerody-380

namic performance by morphing the nacelle inlet, Aerospace Science and

Technology 54 (2016) 122–131.

[13] J. R. Hammerton, W. Su, G. Zhu, S. S.-M. Swei, Optimum distributed wing

shaping and control loads for highly flexible aircraft, Aerospace Science and

Technology 79 (2018) 255–265.385

[14] N. Tsushima, W. Su, A study on adaptive vibration control and energy

conversion of highly flexible multifunctional wings, Aerospace Science and

Technology 79 (2018) 297–309.

[15] D. A. Burdette, J. R. Martins, Design of a transonic wing with an adaptive

morphing trailing edge via aerostructural optimization, Aerospace Science390

and Technology 81 (2018) 192–203.

[16] D. Xu, Z. Hui, Y. Liu, G. Chen, Morphing control of a new bionic morphing

uav with deep reinforcement learning, Aerospace Science and Technology.

[17] G. Papadakis, M. Santer, G. Jones, Control of low reynolds number flow

around an airfoil using periodic surface morphing: a numerical study, Jour-395

nal of Fluids and Structures 76 (2018) 95 – 115.

[18] J. Duan, S. Wiggins, Lagrangian transport and chaos in the near wake of

the flow around an obstacle: a numerical implementation of lobe dynamics,

Nonlinear Processes in Geophysics 4 (3) (1997) 125–136. doi:10.5194/

npg-4-125-1997.400

[19] N. Malhotra, S. Wiggins, Geometric structures, lobe dynamics, and la-

grangian transport in flows with aperiodic time-dependence, with applica-

tions to rossby wave flow, Journal of nonlinear science 8 (4) (1998) 401–456.

[20] S. Wiggins, The dynamical systems approach to lagrangian transport in

oceanic flows, Annual Review of Fluid Mechanics 37 (2005) 295–328.405

20

http://dx.doi.org/10.5194/npg-4-125-1997
http://dx.doi.org/10.5194/npg-4-125-1997
http://dx.doi.org/10.5194/npg-4-125-1997


[21] G. Haller, G. Yuan, Lagrangian coherent structures and mixing in two-

dimensional turbulence, Physica D: Nonlinear Phenomena 147 (3) (2000)

352–370.

[22] S. C. Shadden, F. Lekien, J. E. Marsden, Definition and properties of la-

grangian coherent structures from finite-time lyapunov exponents in two-410

dimensional aperiodic flows, Physica D: Nonlinear Phenomena 212 (3)

(2005) 271–304.

[23] J. D. Eldredge, K. Chong, Fluid transport and coherent structures of trans-

lating and flapping wings, Chaos: An Interdisciplinary Journal of Nonlinear

Science 20 (1) (2010) 017509.415

[24] G. Haller, Langrangian coherent structures, Annual Review of Fluid Me-

chanics 47 (1) (2015) 137–162.

[25] J. Chen, J. Zhang, S. Cao, Using lagrangian coherent structure to under-

stand vortex dynamics in flow around plunging airfoil, Journal of Fluids

and Structures 67 (2016) 142 – 155.420

[26] M. Sahin, L. N. Sankar, M. Chandrasekhara, C. Tung, Dynamic stall alle-

viation using a deformable leading edge concept-a numerical study, Journal

of aircraft 40 (1) (2003) 77–85.

[27] O. C. Zienkiewicz, R. Codina, A general algorithm for compressible and

incompressible flow .1. the split, characteristic-based scheme, International425

Journal for Numerical Methods in Fluids 20 (8-9) (1995) 869–885.

[28] O. C. Zienkiewicz, K. Morgan, B. V. K. S. Sai, R. Codina, M. Vasquez,

A general algorithm for compressible and incompressible-flow .2. tests on

the explicit form, International Journal for Numerical Methods in Fluids

20 (8-9) (1995) 887–913.430

[29] J. T. Batina, Unsteady euler algorithm with unstructured dynamic mesh

for complex-aircraft aerodynamic analysis, AIAA Journal 29 (3) (1991)

327–333.

21



[30] F. J. Blom, Considerations on the spring analogy, International Journal for

Numerical Methods in Fluids 32 (6) (2000) 647–668.435

[31] K. J. Bathe, H. Zhang, A mesh adaptivity procedure for cfd and fluid-

structure interactions, Computers & Structures 87 (11) (2009) 604–617.
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(a) Rigid airfoil (b) fexcit/fref = 0.5

(c) fexcit/fref = 0.9 (d) fexcit/fref = 1.3

(e) fexcit/fref = 2.0

Figure 7: Pressure distribution at the four representative actuation frequencies.
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(a) Rigid airfoil (b) fexcit/fref = 0.5

(c) fexcit/fref = 0.9 (d) fexcit/fref = 1.3

(e) fexcit/fref = 2.0

Figure 8: Time history of separation and reattachment points at the four representative

actuation frequencies. (RED: Separation position; BLUE: Reattachment position)
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