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Decentralised Probabilistic Consensus Control
for Stochastic Complex Dynamical Networks

Randa Herzallah

Abstract— This paper is concerned with the consensus
analysis and control problems for a class of stochastic
complex dynamical networks (SCDNs) that consists of a
large number of interconnected nodes. In particular, a uni-
fied probabilistic decentralised consensus control frame-
work is established where decentralised randomised con-
trollers are designed such that the individual subsystems
in a network synchronise their states with each other to
achieve consensus of the whole network. The proposed
framework is quite general, where all the components
within this framework including local controllers, systems’
models, and communications between the subsystems of a
complex system are modelled using probabilistic models.
The general solution for arbitrary probabilistic models of
the framework components is obtained then demonstrated
on a class of linear Gaussian complex systems, thus ob-
taining the desired results. Furthermore, a numerical ex-
ample is presented to illustrate the effectiveness and the
usefulness of the theoretical development.

Index Terms— Fully Probabilistic Design, coupled
stochastic complex systems, consensus control,
decentralised control.

I. INTRODUCTION

DURING the past years, coordinated consensus has been
investigated for multi-agent systems. The goal there is

to establish consensus protocols for the design of distributed
controllers for a group of dynamic agents such that the
network reaches an agreement of certain quantity of interest
that depends on the states of all agents. Thereupon, consensus
has become a comprehensive interdisciplinary subject where
it addresses several research topics such as finite-time con-
sensus for networks of dynamic agents [1], [2] networks with
fixed topologies [3] networks with switching topologies [4],
formation control [5], [6], and asynchronous consensus [7].
Examples of pioneering results in the field are, the Vicsek
model [8], which considered a decentralised control approach
and showed that alignment can be achieved through the
heading of each agent, and the work by Jadbabaie [9], which
provided a detailed mathematical proof of the Vicsek model
and presented the jointly connected condition for networks
with switching topology.

An important element to designing and analysing consensus
control systems is the information exchange between an agent
and all of its neighbours in the network. This accessibility to
limited and local information by the network agents makes
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the design of local controllers, that can achieve network
consensus without an intervention of a central controller, very
challenging. Therefore, graph theory has been proposed in
the literature for characterising the connection between the
network subsystems [10]–[12]. In particular, the Laplacian
matrix is used in [13] to study the consensus problem of
first-order integrator multi agent systems. In addition, the
importance of the communication topology has been discussed
in [14] and demonstrated on second-order integrator multi
agent systems. Since then, the exploitation of graph theory
has enabled the transition of the research on consensus to
consider other important aspects such as convergence and
equilibrium [15]–[18].

The aforementioned results, however, have several disad-
vantages. They are mostly based on the assumption of linear
system dynamics, assume that the dynamics of the agents are
known exactly, and assume that the agents are decoupled.
These assumptions on the other hand are unrealistic in real
world situations. For example, many real-world systems are
characterised by nonlinearities and perform badly under linear
control. Therefore, recent advances studied and developed
the robust analysis for nonlinear networks consensus [19],
[20]. These approaches mainly considered consensus control
for a class of Lipschitz nonlinear systems. A Kalman filter
based nonlinear consensus approach is also developed in [21].
To consider the uncertainty in the evolution of the system
dynamics and in signals transmissions and communications,
a rich body of the literature has discussed the consensus
problem of stochastic complex dynamical networks [22]–[24].
The coupling between the network subsystems, however, has
been addressed through synchronisation methods [25]–[27], a
topic which is closely related to the consensus of multi-agent
systems. For a comprehensive discussion on consensus control,
the readers are referred to the surveys [23] and [28] and the
references therein.

In spite of that, up until now general results on the design of
consensus control for stochastic nonlinear and uncertain com-
plex systems are still lacking. Consequently, this paper will
consider the development of a fully probabilistic decentralised
control framework for uncertain complex coupled dynamical
systems. The main objective of the proposed framework is to
design decentralised randomised controllers for the individual
subsystems in a complex system such that the divergence
between the probabilistic descriptions of neighbouring sub-
systems is minimised, and at the same time consensus is
achieved for the controlled complex system. In particular,
the Kullback-Leibler divergence will be employed here to
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characterise the divergence between the probabilistic descrip-
tion of the states of neighbouring subsystems and design the
decentralised randomised controllers. The uncertainty of the
system dynamics is considered by modelling the stochastic and
uncertain dynamical behaviour of the individual subsystems
using probabilistic models. To provide coordination between
the subsystems’ components, the probabilistic message passing
proposed in [29] will be adopted here, thus allowing each
subsystem to be controlled purely based on local information.

The main contributions of this paper are highlighted as
follows: Firstly, a unified probabilistic framework is estab-
lished where all the components within this framework includ-
ing local controllers, systems models, and communications
between the subsystems of a complex system are modelled
using probabilistic models. This probabilistic characterisation
of the individual components provides complete descriptions
of their behaviours and depicts the inherent uncertainty in
their dynamics. Secondly, the proposed framework is more
appropriate for application to real world problems, it is for
general stochastic, nonlinear and uncertain dynamical systems.
Thirdly, the subsystems pass only partial and local information
about the states of their dynamics. This partial information is
communicated between neighbouring nodes as probabilistic
messages and treated as external signals.

The remainder of this paper is organized as follows: Sec-
tion II formulates the proposed decentralised consensus control
problem and presents its general control solution. Section III
demonstrates the obtained general solution on linear and Gaus-
sian systems and discusses the probabilistic message passing.
These two sections, II and III, include the main results in
the paper. To demonstrate the effectiveness of the proposed
framework, a numerical example is provided in Section IV.
Finally, the conclusion is stated in Section V.

II. DECENTRALISED RANDOMISED CONSENSUS
CONTROL

This paper will develop pedagogical solutions for decen-
tralised consensus control of stochastic complex dynamical
networks (SCDNs), that consist of a large number of inter-
connected nodes. Here, we consider a complex dynamical
network consisting of a collection of N mutually interact-
ing nodes, that are coupled to neighbouring nodes through
probabilistic message passing. Within our formulation, the
individual nodes are assumed to be described by probabilistic
state space models, which can more realistically represent the
dynamical behaviour of stochastic systems that are affected
by noises and uncertainties. Individual nodes then exchange
information with their neighbouring nodes on their states,
so that all nodes can work collaboratively to synchronise
their behaviours with each other and achieve consensus of
the network. Because of the stochastic nature of the nodes
constituting a complex dynamical network, the nodes will each
be controlled individually by local randomised controllers,
c(ut;i|zt−1;i), where ut;i represents a sequence of multivariate
control inputs that is designed to synchronise the dynamics of
node i with its neighbours. In particular, the dynamics of the

nodes in a SCDN are described by,

s(xt;i, x̃t;i, ut;i|xt−1;i, . . . , x0;i, x̃t−1;i, . . . , x̃0;iut−1;i, . . . , u0;i)
= s(xt;i|ut;i, zt−1;i)s(x̃t;i|x̃t−1;i)c(ut;i|zt−1;i), (1)

where zt;i = [xt;i, x̃t;i]
T represents the state vector of sub-

system i with xt;i being the multivariate internal state of
subsystem i, and x̃t;i being the observed external multivariate
state received from neighbouring nodes through probabilistic
message passing. Also, s(xt;i|ut;i, zt−1;i), and c(ut;i|zt−1;i)
represent the probability density functions (pdfs) of the multi-
variate state and randomised controller of the local subsystem
i respectively, and s(x̃t;i|x̃t−1;i) represents the pdf of the
external multivariate state to subsystem i.

Remark 1: As can be seen from the pdf that characterises
the internal state of subsystem i, s(xt;i|ut;i, zt−1;i), the in-
ternal state of subsystem i is in fact coupled to the states
of its neighbouring nodes and is affected by their values. On
the other hand, the conditioning of the external multivariate
state, s(x̃t;i|x̃t−1;i) on the previous external state only stems
from our assumption that the inherent dynamics of these
external variables cannot be influenced by the inputs ut;i, or
internal state xt;i of the ith local subsystem. The assumed
form of Equation (1) provides the probabilistic description of
stochastic coupled dynamical systems with an example given
later in the paper in Equation (12) on linear coupled dynamical
systems.
To solve this decentralised consensus control problem such
that all subsystems in the network synchronise their behaviours
with each other and achieve consensus of the network, the
individual randomised controllers need to be derived, such that
they meet the constraints imposed by neighbouring subsystems
on the states of their corresponding subsystems. Within the
fully probabilistic decentralised consensus framework pro-
posed in this paper, these constraints are described through the
specification of ideal pdfs from neighbouring subsystems. In
particular, the constraint imposed by subsystem j ∈ Ni, j 6= i,
is specified by the following ideal pdf,

Isj(xt;i, x̃t;i, ut;i|xt−1;i, . . . , x0;i, x̃t−1;i, . . . , x̃0;i
, ut−1;i, . . . , u0;i)

= Isj(xt;i|ut;i, zt−1;i)sj(x̃t;i|x̃t−1;i) Ic(ut;i|zt−1;i), (2)

where here the superscript I is used to denote the ideal pdf of
the corresponding factors of pdfs in Equation (1), and Ni is
the neighbour set of node i with cardinality |Ni|. Also, note
that since x̃t;i enters subsystem i as an external signal, its
corresponding ideal pdf is taken to be equal to its actual pdf
given in Equation (1). This emphasises that the values and
pdf of this external signal should not be influenced by the
optimised controller of node i.

To achieve the consensus of the network objective, ran-
domised controllers need to be derived such that all subsystems
in the network synchronise their behaviours with each other.
Consequently, the randomised controller of subsystem i is
derived such that it minimises the discrepancy between the
probabilistic description of the dynamics of its subsystem as
given by Equation (1) and the probabilistic description of
the dynamics of neighbouring subsystems imposed as ideal
distributions, as stated in Equation (2), thus synchronising
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the behaviour of its subsystem with neighbouring subsystems.
This discrepancy is measured by the Kullback-Leibler diver-
gence (KLD) as shown in Equation (3) below. Intuitively, if
the probabilistic description of the dynamics of subsystem i
and the dynamics of its neighbours perfectly match, the value
of − ln(γ(zt−1;i)) will be zero. The lower the − ln(γ(zt−1;i))
value, the better.

− ln(γ(zt−1;i)) = min
c(ut;i|zt−1;i)

T∑
τ=t

∫
f(Zt;i|Zt−1;i)

× ln

( ∏
j∈Ni,j 6=i

s(xt;i|ut;i, zt−1;i)c(ut;i|zt−1;i)
Isj(xt;i|ut;i, zt;i) Ic(ut;i|zt−1;i)

)
dZt;i,

= min
c(ut;i|zt−1;i)

T∑
τ=t

∑
j∈Ni,j 6=i

∫
f(Zt−1;i)

× ln

(
s(xt;i|ut;i, zt−1;i)c(ut;i|zt−1;i)

Isj(xt;i|ut;i, zt−1;i) Ic(ut;i|zt−1;i)

)
dZt;i, (3)

where − ln(γ(zt−1;i)) is the expected minimum cost-to-go function,
f(Zt;i) =

∏T
t=1 s(xt;i|ut;i, zt−1;i)s(x̃t;i|x̃t−1;i)c(ut;i|zt−1;i) is

the joint distribution of the closed loop dynamic of node i, Zt;i =
{zt;i, . . . , zT ;i, ut;i, . . . , uT ;i} is the closed loop observed data se-
quence, and T ≤ ∞ is a given control horizon. In addition, note
that since the ideal distribution of the external state as specified in
Equation (2) is taken to be equal to their corresponding actual pdf
given in Equation (1), the pdf of the external state, s(x̃t;i|x̃t−1;i) has
disappeared from the argument of the ln function in Equation (3).
This is due to our realistic assumption that the values and pdfs of
these external signals should not be influenced by the optimised
controller of node i.

Following the same procedure of the conventional centralised
FPD [30], using this new definition of the expected cost-to-go
function as given in Equation (3), minimisation is then performed
recursively to give the following recurrence functional equation,

− ln(γ(zt−1;i)) =
∑

j∈Ni,j 6=i

∫
s(xt;i|ut;i, zt−1;i)s(x̃t;i|x̃t−1;i)

× c(ut;i|zt−1;i)
[

ln

(
s(xt;i|ut;i, zt−1;i)c(ut;i|zt−1;i)

Isj(xt;i|ut;i, zt−1;i) Ic(ut;i|zt−1;i)

)
− γ(zt;i)

]
dxt;idx̃t;idut;i. (4)

The above equation constitutes the recurrence equation of the dy-
namic programming solution to the consensus decentralised control
problem. Its derivation can be obtained following the same procedure
discussed in [30].

A. General solution to the randomised decentralised
consensus control

Following the above representations, the general solution for the
optimal randomised controller as can be obtained from the recurrence
functional equation defined in Equation (4), is given in the following
proposition.

Proposition 1: The optimal randomised controller that can be
obtained from the recurrence functional equation defined in Equa-
tion (4), subject to the joint distribution of the stochastic system given
in Equation (1), and its ideal distribution given in Equation (2), is
given by,

c(ut;i|zt−1) =

Ic(ut;i|zt−1;i) exp

[
− 1
|Ni|

∑
j∈Ni,j 6=i

βj(ut;i, zt−1;i)

]
γ(zt−1;i)

,

(5)

γ(zt−1;i) =

∫
Ic(ut;i|zt−1;i)

× exp

[
− 1

|Ni|
∑

j∈Ni,j 6=i
βj(ut;i, zt−1;i)

]
dut;i, (6)

βj(ut;i, zt−1;i) =

∫
s(xt;i|ut;i, zt−1;i)

×
{

ln

(
s(xt;i|ut;i, zt−1;i)
Isj(xt;i|ut;i, zt−1;i)

)
− ln γ̃(xt;i; x̃t−1;i)

}
dxt;i, (7)

ln(γ̃(xt;i, x̃t−1;i)) =

∫
s(x̃t;i|xt−1;i) ln(γ(zt;i))dx̃t;i. (8)

Proof: The derivation of the above result can be reached by
evaluating the recurrence equation defined in Equation (4). Using
Fubini’s theorem, the definitions stated in Equations (7) and (8) can
be obtained. Substituting Equations (7) and (8) in Equation (4) yields,

− ln γ(zt−1;i) =

∫ ∑
j∈Ni,j 6=i

c(ut;i|zt−1;i)
[
βj(ut;i, zt−1;i)

+ ln
c(ut;i|zt−1;i)
Ic(ut;i|zt−1;i)

]
dut;i,

=

∫
c(ut;i|zt−1;i)

[ ∑
j∈Ni,j 6=i

βj(ut;i, zt−1;i)

+ |Ni| ln
c(ut;i|zt−1;i)
Ic(ut;i|zt−1;i)

]
dut;i,

=

∫
|Ni|c(ut;i|zt−1;i)

×
[

ln
c(ut;i|zt−1;i)

Ic(ut;i|zt−1;i) exp

[
− 1
|Ni|

∑
j∈Ni,j 6=i

βj(ut;i,zt−1;i)

]
γ(zt−1;i)

− ln γ(zt−1;i)

]
dut;i. (9)

To clarify, the randomised control solution given in Equation (5)
provides the general solution for any arbitrary pdf of the subsys-
tems’ dynamics given the constraints imposed by the neighbouring
subsystems specified by any arbitrary ideal distributions. However,
the evaluation of the analytic solution for this randomised controller
is not possible except for the special case of linear and Gaussian
pdfs. Therefore, to facilitate the understanding of the proposed
decentralised consensus control framework, the solution obtained in
Equation (5) will be further demonstrated and obtained for stochastic
systems that consist of subsystems, that are characterised by linear
and Gaussian distributions.

III. RANDOMISED CONTROLLERS FOR GAUSSIAN
PROBABILISTIC MODELS

The development in this section will demonstrate the analytic
solution for the special case of linear and Gaussian pdfs.

Assume that the stochastic dynamics of subsystem i is given by
the following Gaussian conditional pdf,

s(xt;i
∣∣zt−1;i ) ∼ N(µt;i,Σi), (10)

s(x̃t;i
∣∣x̃t−1;i ) ∼ N(µ̃t;i, Σ̃i), (11)

where,

µt;i = A1;ixt−1;i +
∑

j∈Ni,j 6=i
hlijxt−1;j +Biut;i,

= A1;ixt−1;i +A2;ix̃t−1;i +Biut;i, (12)
µ̃t;i = A3;ix̃t−1;i, (13)
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and where µt;i, and µ̃t;i are the means of the multivariate internal
and external states respectively, lij corresponds to the elements of the
Laplacian matrix that specifies the connections between the individual
subsystems, and h represents the coupling strength matrix between
the connected subsystems. Also, A1;i is the internal state matrix, Bi
is the control input matrix, Σi, and Σ̃i are the covariances of the
internal and external states respectively. Additionally, the coupling
from neighbouring subsystems,

∑
j∈Ni,j 6=i

hlijxt−1;j in Equation (12)

has been rewritten in compact form to explicitly state that the states
from neighbouring subsystems, xt−1;j enter subsystem i as external
states, x̃t−1;i. Specifically, A2,i is a matrix whose elements are hli,j
such that A2,i =

[
hlij

]
j∈Ni,j 6=i

, and x̃t−1;i is a transpose vector
whose elements are the states of neighbouring subsystems, xt−1;j

such that x̃t−1;i =
[
xTt−1;j

]T
j∈Ni,j 6=i

.

As discussed before, to achieve the control objective of the
considered decentralised consensus problem, all subsystems have to
synchronise their behaviours with each other. Therefore, each sub-
system in the network imposes constraints on its neighbours through
the specification of an ideal distribution. Because the objective is for
neighbouring subsystems to synchronise their behaviours or states,
the ideal distribution of subsystem j on subsystem i is specified as,

Isj(xt;i
∣∣zt−1;i ) ∼ N(µt;j ,Σ2), (14)

Isj(x̃t;i
∣∣x̃t−1;i ) ∼ N(µ̃t;i, Σ̃i), (15)

where Σ2 specifies the desired fluctuations of subsystem i around
the mean value of the state of subsystem j that subsystem i needs to
synchronise with. Also, note that Isj(x̃t;i

∣∣x̃t−1;i ) is taken to be the
same as subsystem i distribution of the external signals, emphasising
that the external signals should not be governed or even affected by
subsystem i’s state. Similarly, the ideal distribution of the controller
as specified collectively from all neighbouring subsystems is assumed
to be given by,

Ic(ut;i
∣∣zt−1;i ) ∼ N(νt;i,Γi), (16)

where Γi specifies the admissible range of control inputs of subsys-
tem i that are centred around a mean value, νt;i, and where both, Γi
and νt;i, being tuning parameters which need to be tuned to achieve
the optimal results. The next theorem specifies the solution to the
optimised randomised controller based on (4), for subsystems with
observed external signals.

Theorem 1: The optimal randomised controller for the subsystem
described by Equations (10) and (11) and ideal distributions of system
dynamics and control inputs described by Equations (14)-(16) is given
by,

c(ut;i
∣∣zt−1;i ) = N(ūt;i, Γ̄t;i), (17)

where

ūt;i = −Kt;ixt−1;i + Lt;i,

Γ̄t;i = (Γ−1i +BTi St;iBi)
−1,

Kt;i = Γ̄t;iB
T
i St;iA1;i,

St;i = (Σ−12 +M1t;i),

Lt;i = −Γ̄t;i

[
− Γ−1i νt;i +BTi St;iA2;ix̃t−1;i + 0.5BTi g1t;i

−BTi Σ−12
1

|Ni|
∑

j∈Ni,j 6=i
µt;j +BTi M2t;iA3;ix̃t−1;i

]
, (18)

and where,

− ln(γ(zt−1;i)) = 0.5[zTt−1;iMt;izt−1;i + gt;izt−1;i + ωt;i],
(19)

with,

M1t−1;i = AT1;iSt;iA1;i −AT1;iSt;iBiΓ̄t;iB
T
i St;iA1;i, (20)

M2t−1;i = AT1;iSt;iA2;i −AT1;iSt;iBiΓ̄t;iB
T
i M2t;iA3;i

+AT1;iM2t;iA3;i −AT1;iSt;iBiΓ̄t;iB
T
i St;iA2;i, (21)

M3t−1;i = AT2;iSt;iA2;i + 2AT2;iM2t;iA3;i +AT3;iM3t;iA3;i

− (AT2;iSt;i +AT3;iM2t;i)BiΓ̄t;iB
T
i (St;iA2;i +M2t;iA3;i), (22)

g1t−1;i = g1t;iA1;i − 2

[
− Γ−1i νt;i −BTi Σ−12

1

|Ni|
∑

j∈Ni,j 6=i
µt;j

+ 0.5BTi g1t;i

]T
Γ̄t;iB

T
i St;iA1;i −

2

|Ni|
∑

j∈Ni,j 6=i
µTt;jΣ

−1
2 A1;i,

(23)

g2t−1;i = g2t;iA3;i − 2

[
− Γ−1i νt;i −BTi Σ−12

1

|Ni|
∑

j∈Ni,j 6=i
µt;j

+ 0.5BTi g1t;i

]T
Γ̄t;i

[
BTi St;iA2;i +BTi M2t;iA3;i

]
+ g1t;iA2;i

− 2

|Ni|
∑

j∈Ni,j 6=i
µTt;jΣ

−1
2 A2;i, (24)

ωt−1;i =
1

|Ni|
∑

j∈Ni,j 6=i
µTt;jΣ

−1
2 µt;j + tr(M1t;iΣi)

−
[
− Γ−1i νt;i −BTi Σ−12

1

|Ni|
∑

j∈Ni,j 6=i
µt;j + 0.5BTi g1t;i

]T
× Γ̄t;i

[
− Γ−1i νt;i −BTi Σ−12

1

|Ni|
∑

j∈Ni,j 6=i
µt;j

+ 0.5BTi g1t;i

]
+ νTt;iΓ

−1
i νt;i + tr(M3t;iΣ̃i) + ωt;i

+ ln |I + (BiΓ
0.5
i )TSt;i(BiΓ

0.5
i )|, (25)

is the quadratic cost function. We have also introduced the following

partitioning of the matrices Mt;i =

[
M1t;i M2t;i

MT
2t;i M3t;i

]
, and gt;i =[

g1t;i g2t;i
]
. In addition, ūt;i and Γ̄t;i are the mean and covari-

ance of the optimal randomised controller of subsystem i respectively,
Kt;i is the controller feedback gain, and Lt;i is a linear shift which
manifests from the considered consensus problem. Furthermore, Mt;i
represents the discrete Riccati equation, gt;i, which also manifests
from the considered consensus problem, is referred to in this paper
as the consensus equation, and ωt−1;i is some positive constant that
does not depend on the system state.

Proof: The proof of this theorem can be obtained following the
same procedure in [31]. It can be easily achieved by evaluating the
elements given in Equation (5) using the corresponding pdfs specified
in Equations (10)-(16).
As can be seen from Equation (17), only the two blocks defined in
Equations (20) and (21) of the full Riccati matrix Mt;i need to be
solved. The third block defined in (22) of the Riccati equation does
not need to be solved. Similarly, only g1t;i specified in Equation (23)
needs to be solved. This decreases the computational efforts in
obtaining the optimal randomised control law compared to the global
solution.

A. Probabilistic message passing
This subsection briefly discusses the probabilistic message pass-

ing methodology. For more details and the general results of the
probabilistic message passing methodology, the readers are referred
to [29].
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As discussed in previous sections, external signals are received as
messages from neighbouring nodes to provide coordination between
the subsystems and keep them informed about the states of each
other. Thus, they play central role in achieving the global consensus
control objective of the complex system. To be more specific, consider
the complete description of the interacting variables of subsystem j,
s(xt;j , x̃t;iut;j |zt−1;j). This subsystem will then send a message to
its neighbouring subsystem i specifying the probabilistic description
of its own internal state, xt;j . This probabilistic message from
subsystem j to i is obtained as follows,

Mi←j =

∫
s(xt;j , x̃t;jut;j |zt−1;j)dx̃t;jdut;j ,

=

∫
s(xt;j |ut;j , zt−1;j)s(x̃t;j |x̃t−1;j)c(ut;j |zt−1;j)dx̃t;jdut;j ,

= N(µt;i←j ,Σi←j), (26)

where,

µt;i←j = A1;jxt−1;j +A2;j x̃t−1;j +Bj ūt;j ,

Σi←j = BjΓt;jB
T
j + Σj . (27)

Note that we have integrated over all variables of subsystem j
except its internal state. This information about the internal state of
subsystem j is then passed to subsystem i and fused with the prior
information, that subsystem i retains, in the form of external signals
about the state of subsystem j. To be more specific, Equation (26)
and Equation (11) are fused using Bayes’ rule by multiplying the two
together, yielding,

s(x̃t,i,fused) = N(µt;i←j ,Σi←j)N(µ̃t;i, Σ̃i),

= N(µ̃t;i;fused, Σ̃t;i;fused), (28)

where,

µ̃t;i;fused = µ̃t;i +Kt;i(µt;i←j − µ̃t;i),
Σ̃t;i;fused = Σ̃i −Kt;iΣ̃i, (29)

and where,

Kt;i = Σ̃i(Σ̃i + Σi←j)
−1. (30)

These equations can then be used to update the parameter A3;i in
Equation (13) based on linear optimisation methods. For more details
on this message passing approach please refer to [29].

B. Algorithm of Theorem one
The implementation of the controller (17) requires the evaluation

of the solutions of the Riccati and consensus equations. For infinite
control problems, the solutions of these equations become steady state
(SS) solutions and the controller feedback gain becomes a constant
matrix. We start by finding the SS solution of Equation (20). One
way to achieve this is to reverse the direction of time. Using the
definition of St;i from Equation (18) and reversing the direction of
time, Equation (20) is modified to read,

M1t;i = AT1;i(Σ
−1
2 +M1t−1;i)A1;i

−AT1;i(Σ
−1
2 +M1t−1;i)BiΓ̄t−1;iB

T
i (Σ−12 +M1t−1;i)A1;i.

(31)

Starting the solution with M10;i = 0, iterate the equation until a
SS solution, M1;i is obtained. Using the obtained SS solution, M1;i
in Equations (21) and (23), the same time reversal procedure can
be applied to obtain the SS solutions, M2;i and g1;i, of these two
equations. The key steps of the proposed algorithm are summarised
as pseudocode in Algorithm 1.

Algorithm 1 Pseudo-code
1: Initialize:

M10;i ← 0, M20;i ← 0, g10;i ← 0, x0;i ← 0,
x̃0;i ← 0, A3;i, i = 1, . . . , N

2: for t = 1 to T do
3: for i ∈ N do
4: Compute the SS matrix, M1;i using (31).
5: Si ← Σ−12 +M1;i

6: Γ̄i ← (Γ−1i +BTi SiBi)
−1

7: Use Si and Γ̄i from steps 5-6 in (21) and (23) to
compute the SS solutions of M2;i and g1;i.

8: Use the SS values from steps 4-7 in (18), to obtain
the SS solutions of Ki and Li. Calculate ūt;i.

9: end for
10: for i ∈ N do
11: Evaluate Mi←j using (26) and (27).
12: Update the prior distribution of the external states

using (28)-(30).
13: Update the external states matrices A3;i.
14: end for
15: end for

IV. SIMULATION EXAMPLE

In order to illustrate the validity of the theoretical development of
the proposed probabilistic decentralised consensus control, the theory
developed in Section III is applied here to a group of eight stochastic
coupled oscillators described by linear and Gaussian pdfs according
to Equations (10) and (11) with the following parameters,

µt;i = A1;ixt−1;i −
∑

j∈Ni,j 6=i
hlijxt−1;j +Biut;i,

µ̃t;i = A3;ix̃t−1;i, (32)

where A1;i = A − hlii, A =

[
1 0.015

−0.015 1

]
, Bi =[

0 0.015
]T , h = 0.03I2×2, Σi = Σ2 = 0.001I2×2, I is the

identity matrix, and where the lij correspond to the elements of the
Laplacian matrix, L which is specified as,

L =



1 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 1


.

Also, note that A3;i is initialised randomly at the beginning and then
updated according to the probabilistic message passing discussed in
Section III-A. A typical example of the network of oscillators of the
form defined in Equation (32) is the mass-spring systems [32] with
control input being the driving force on the mass.

As stated previously, randomised controllers are designed here
such that the discrepancy, as measured by the KLD (3), between
the pdf of the state of subsystem i whose parameters are given in
Equation (32), and the pdfs of its neighbours is minimised; thus
reaching consensus of the whole network. In the current experiment,
the initial values of the states of the eight oscillators were set to,

x0 =

[
−0.8 1.2 −0.9 −1.2 0.7 −2.1 −1.5 −1.7

1.1 −0.8 −1.4 0.4 −1.6 1.2 −2.2 −1.4

]
.

Following Algorithm 1, the states of the system are evaluated and
shown in Figures 1, (a) and (b). From these Figures, it can be seen
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that all the states of the eight coupled oscillators are synchronised
with each other and that the designed probabilistic controllers have
been effective in achieving consensus of the whole network.
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Fig. 1. The system of eight coupled oscillators. (a) the first state of the
eight oscillators. (b) the second state of the eight oscillators.

V. CONCLUSION

This paper presented a pedagogic solution for the consensus con-
trol of complex stochastic dynamical and coupled systems that consist
of a large number of nodes. The obtained solution is quite general,
where the stochastic subsystems constituting a complex system are
modelled using arbitrary probability density functions. Furthermore,
complete information about the states of neighbouring subsystems
are passed between the subsystems as probabilistic messages. This
consideration of probabilistic models yielded a unified probabilistic
framework where randomised controllers are designed, thus account-
ing for the stochasticity and uncertainty that characterise many real
world systems. To facilitate the understanding of the theoretical
development, the general solution of the proposed framework is
demonstrated on a class of linear and Gaussian dynamical systems
and the analytic results are obtained. Finally, a numerical example has
been provided to emphasise the effectiveness of theoretical results.
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