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Abstract: The work describes a model to predict the elastic constants of unidirectional carbon 

fiber reinforced shape memory polymer composites (SMPCs) with different fiber volume fractions 

within the temperature range of 293 K to 393 K. The model is based on a theoretical description of 

the phase transition of the shape memory polymer (SMP). Two glassy phase volume fraction 

functions are developed, one based on the Eyring equation, the other based on the normal 

distribution equation. The longitudinal and transverse moduli, axial and transverse shear moduli, 

and axial Poisson’s ratio are derived by using the glassy phase volume fraction function and 

modified rule of mixture. The axial Poisson’s ratio increases with the temperature increase, while 

the other four constants decrease nonlinearly with rising temperatures. An inverse identification of 

the elastic constants at different temperature via numerical and experimental modal analysis from 

a flat SMPC laminate shows that the model proposed is adequate to describe the temperature 
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dependence of the elastic constants of the laminate.  

Keywords: shape memory polymer composite, carbon fiber, temperature dependence, elastic 

constants  



 

 

1. Introduction 

Polymeric composites have been widely used in civil, automotive, and aerospace applications 

due to their easy processing, high specific strength and stiffness, tunable properties, good 

corrosion resistance and low cost [Feng and Guo, 2016; Gibson et al., 2006; Guo et al., 2013]. 

Their properties can be tailored by varying the type, content and distribution of the matrix and 

reinforcement [Feng and Guo, 2016; Gibson et al., 2006; Guo et al., 2013]. These composites 

possess temperature-dependent mechanical properties due to the viscoelastic nature of the 

polymeric matrix [Feng and Guo, 2016; Haque et al., 1991; Odegard and Kumosa, 2000; Yoon and 

Kim, 2000]. With the increase in temperature the matrix becomes compliant, resulting in a 

decrease of the magnitude of the stiffness within the glass transition temperature range. This is 

particularly evident for matrix-dominated constants such as the transverse and shear moduli 

[Mahieux and Reifsnider, 2001]. It is therefore essential to possess a systematic and reliable 

database of mechanical properties for composites at different temperatures. In that sense, a 

significant body of work has been devoted to characterizing the relationship between mechanical 

properties and temperature of different composites.  

Gibson et al. have investigated the use of laminate theory for composites subjected to load in 

fire conditions [Gibson et al., 2006]. In that work the Authors carried out tensile and compression 

tests on polyester/woven E-glass laminates and found that the longitudinal, transverse and in-plane 

shear moduli, the tensile and compressive strengths show a hyperbolic-type dependence versus the 

temperature. Gou et al. have analyzed the static and dynamic behavior of cross-ply and 

unidirectional glass/epoxy laminates by using dynamic mechanical analyzer (DMA) techniques 

[Guo et al., 2013]. The storage and static moduli showed a similar sensitivity to temperatures with 

a severe drop occurring during the glass transition. Feng et al. further studied the temperature and 

frequency-dependent mechanical properties of glass/epoxy composites [Feng and Guo, 2016]. The 

loss factor, storage and loss moduli were measured between 310 K and 390 K at 1, 5, 10, 40, 100, 

and 160 Hz. The modulus-temperature curves measured in that work are similar to the ones 

obtained by Gou et al. but shift to the right with the frequency increase. Haque et al. have 
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evaluated the temperature and moisture-induced degradation of the uniaxial (longitudinal) 

mechanical properties in Kevlar 49 and T-300 reinforced epoxy-based single or hybrid fiber 

composites [Haque et al., 1991]. This study showed that the degradation of the tensile modulus of 

these composites was mainly due to the temperature. The tensile modulus decreased with the 

temperature increase, on the opposite the Poisson’s ratio tended to increase with higher 

temperatures. Yoon et al. have evaluated the change of the elastic properties in carbon/epoxy 

composites with 58% of fiber volume fraction and a glass transition temperature ( gT ) of 110 oC 

[Yoon and Kim, 2000]. In that case, the longitudinal modulus and the Poisson’s ratio remained 

nearly constant when the temperature increased from 25 oC to 140 oC, whereas the transverse and 

shear moduli linearly decreased with the increase of temperature. These elastic parameters were 

fitted as linear functions of the temperature for formulation convenience. Odegard et al. have 

studied mechanical properties of a unidirectional carbon/PMR-15 composite ( gT  310 oC) by 

using tensile tests [Odegard and Kumosa, 2000]. Significant reductions of longitudinal, transverse, 

and shear moduli were observed with temperatures between 27 oC and 316 oC. Although the 

Poisson’s ratio has been approximated as a constant by linear curve fitting, the results still showed 

that the average Poisson’s ratio at room temperature was lower than the one at 316 oC.  

Shape memory polymer composites (SMPCs) are polymeric composites that possess shape 

memory due to their matrix. Shape Memory Polymers (SMPs) can be transferred from a 

temporarily deformed shape to the original shape under external stimuli [Leng et al., 2011; Lu et 

al., 2018; Yang and Li, 2016]. The fundamental mechanism behind the shape memory behavior is 

the activation and freeze of the motion of the SMP chains above and below the gT  [Lu et al., 

2018; Yang and Li, 2016]. In recent years, smart materials and structures have been developed and 

applied to aerospace due to their intrinsic advantages in terms of lightweight, high specific 

strength and stiffness, large recoverable deformation and high recovery rate [Herath et al., 2018; 

Li et al., 2019b]. The use of SMPCs in space structures such as deployable solar arrays, trusses, 

antennas, and intelligent release devices is also increasing [Barrett et al., 2006; Dao et al., 2018; Li 

et al., 2016]. Most of the SMPCs in aerospace applications are continuous fiber reinforced 

composites, normally carbon fiber or fabric, and this is due to their good chemical and 
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physico-mechanical properties [Barnes and Cogswell, 1989; Dao et al., 2018; Herath et al., 2018; 

Li et al., 2016; Li et al., 2019b]. Any spacecraft in orbit must withstand large temperature 

differences because the spacecraft needs to move in and out of the earth’s shadow [Barnes and 

Cogswell, 1989; Li et al., 2019a]. The temperature variation affects the mechanical behavior of 

SMPCs due to the temperature-dependent mechanical properties of the matrix [Feng and Guo, 

2016; Gibson et al., 2006; Guo et al., 2013; Haque et al., 1991; Mahieux and Reifsnider, 2001; 

Odegard and Kumosa, 2000; Yoon and Kim, 2000]. In particular, the modulus of SMPCs could 

vary at least one order of magnitude at low and high temperatures, if the temperature change 

covers the glass transition range of the matrix [Leng et al., 2011; Li et al., 2019a; Li et al., 2019b]. 

Therefore, it’s important to determine the relationship between elastic constants and temperature 

in the full range of glass transition. 

Although most of the models used to predict the modulus of polymeric composites are not 

specifically developed for SMPCs, we can still draw inspiration from previous studies since the 

SMP matrix is a polymer. This study aims at providing a model to predict the elastic constants of 

the unidirectional fiber reinforced SMPCs and therefore to determine the laminate stiffness at 

various temperatures for different fiber volume fractions. Section 2 reviews existing studies 

related to the description of the relationship between elastic constants and temperature in 

polymeric composites. The model for the unidirectional fiber reinforced SMPC is developed in 

section 3. Two glass phase volume fraction equations, one based on the Eyring equation and the 

other based on the normal distribution function, are established for the temperature dependence of 

the SMP matrix. Five independent elastic constants (longitudinal modulus 11E , transverse 

modulus 22E , axial shear modulus 12G , axial Poisson’s ratio 12 , transverse shear modulus 

23G ) are then derived since the unidirectional fiber reinforced laminate possesses transverse 

isotropy. Section 4 shows the validation of the model. Validations using experimental and other 

theoretical data are here limited to the glass phase volume fraction equations and longitudinal 

modulus. Other elastic constants are parametrically investigated. Comparisons of the elastic 

constants with different glass phase volume fraction equations are also presented. Section 5 

presents the inverse identification of the elastic constants via numerical and experimental modal 
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analysis of a plain weave carbon fabric reinforced SMPC laminate at elevated temperatures. 

Conclusions are reported in Section 6. 

2. Relationship between the composites elastic constants and 

the temperature 

Several theoretical models with different complexity and variable accuracy have been 

developed to predict the Young’s modulus in composites as a function of temperature. These 

models usually are developed or benchmarked for the longitudinal modulus (i.e., the 0o angle in a 

unidirectional laminate). Most existing thermal mechanical models involve temperature-dependent 

elastic constants developed as empirical functions by fitting experimental results at specific 

collected points. Gibson et al. established a hyperbolic tanh function to compute the elastic 

constants in terms of resin content and temperature [Gibson et al., 2006].       
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where RE  and UE  are the relaxed (at high temperature) and unrelaxed (at low temperature) 

moduli,   is the constant describing the abruptness of the modulus transition, 
'T  is the glass 

transition temperature.  

    Guo et al. devised a relatively simple temperature-dependent model to estimate the dynamic 

storage and static flexural moduli [Guo et al., 2013]. Only the longitudinal modulus of glass/epoxy 

laminates are presented there:  
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In Eq. (2), gE  and rE  are the modulus of the composite in glassy and rubbery phases, gT  is 

the glass transition temperature,   is the rate of increase of the amount of molecules per unit 

temperature in rubbery phase.  
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Gu et al. also proposed an empirical model of the temperature-dependent Young’s modulus in 

a phenomenological form [Gu and Asaro, 2005]. The model is suitable for simple temperature 

field. When the temperature field is in a complex form, it is impossible to theoretically evaluate 

the modulus variation:  


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−
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TT

TT
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                          (3) 

where 0E  is the modulus at ambient temperature, rT  is the room temperature, refT  is the 

reference temperature at which the modulus vanishes,   is the power law index. 

3. Theory 

In our model, the SMP in the composite is characterized by using the phase transition concept, 

for which the rubbery and glassy phases can transform into each other upon temperature change 

[Lu et al., 2018; Volk et al., 2010; Yang and Li, 2016]. Fig. 1 shows the schematics of the phase 

transition schematic in a long fiber reinforced unidirectional aligned and uniformly distributed 

SMPC. Besides the rubbery and glassy phases, the fiber is considered as a phase in the model. 

Although the fiber properties are assumed to be temperature independent, the SMPC possesses 

temperature-dependent properties due to the SMP matrix, and the transition between the rubbery 

phase and the glassy phase provides the temperature variation of the elastic constants. 

 

Fig. 1. Schematic of the phase transition model for the unidirectional fiber reinforced SMPC 

 

To model the elastic constants of the unidirectional fiber reinforced SMPC we impose the 
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following assumptions [Mendels et al., 1999]:  

· The fiber is continuous and extends to the length of the composite; 

· The fiber is aligned in the longitudinal direction only; 

· Fiber properties are independent of temperature; 

· The mechanical properties of the matrix are temperature-dependent; 

· The temperature is homogeneous at every location of the composite; 

· Only linear elastic and small deformations for the matrix and the fiber are allowed (i.e., 

tensile and compressive modulus coincide).  

The longitudinal direction of the fiber reinforced composite is the direction parallel to the 

fibers (i.e., the 1-direction). The transverse direction is perpendicular to the longitudinal direction. 

Since there are two mutually perpendicular transverse directions, they are denoted as 2 and 3, 

respectively.  

3.1 Glassy phase volume fraction function 

3.1.1 Glassy phase volume fraction function based on Eyring 

equation 

The glassy phase volume fraction )(Tg  is often introduced to describe the phase 

transition upon temperature changes [Leng et al., 2011; Lu et al., 2018; Volk et al., 2010; Yang and 

Li, 2016]. The function )(Tg is equal to 0 when the SMP is at rubbery phase and to 1 in glassy 

phase. We use the symbol   to describe the probability of the phase transition. The )(Tg  can 

be therefore written as: 

)(1)( TTg  −=                                 (4) 

The probability )(T
 
is a modified Eyring equation, as shown in Eq. (5). The modification 
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is performed because the activation of the polymer chains under an external stress field reduces 

the total activation energy (i.e., the energy required from the glassy phase to the rubbery phase), 

which equals to the product of the volume activated by the effective stress and the effective stress 

[Dotsenko, 1979]:  








 −
−=

RT

VTG
kTT




)(
exp)(                       (5) 

In Eq. (5), k  is the correction constant, T  is the absolute temperature, )(TG  is the change 

of activation energy (Gibbs energy),   is the effective stress, V  is the activation volume, R  

is the gas constant which equals 8.314 J/(molˑK). The change of the Gibbs activation energy 

)(TG  is calculated following the Williams-Landel-Ferry (WLF) relation [Lu et al., 2018]: 

g

g

TTC

TTC

gTGTG
−+

−−

= 2

1 )(

10)()(                        (6) 

where )( gTG  is the activation energy, 1C  and 2C  are the WLF constants for the glass 

transition temperature gT .  

The stress   is the difference between the applied stress and the internal stress i . 

During a free recovery process, the applied stress equals to zero and i = . An empirical 

equation of the effective stress versus the external applied one is [Dotsenko, 1979]:  

p

i A )( =−                                  (7)
 

where A  and p  are parameters.  

The activation volume V  can be obtained by plotting the logarithm of the stress relaxation 

rate versus stress at a specific temperature and a constant m  [Dotsenko, 1979]: 

Ti
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Substituting the logarithm of Eq. (7) into Eq. (8) we obtain: 



p
mTV =                              (9) 

Substituting Eqs. (5, 6, 9) to Eq. (4), the new glassy phase volume fraction function is: 
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where 
R

mp
n = . This new glassy phase volume fraction function (10) can be used to represent 

SMPCs since the temperature dependence is dominated by the SMP matrix. The parameters k , 

)( gTG , 1C , 2C  and n  used for adjusting the shape of the curve can be got by curve fitting. 

To simplify the determination of k , )( gTG  and 2C  we recommend to adopt the values of 

1C  and n  close to the empirical values of 16 and 1, respectively [Angell, 1997; Lu et al., 2018]. 

3.1.2 Glassy phase volume fraction function based on a normal 

distribution function 

Most glassy phase volume fraction functions are empirical formulas with different forms [Lu 

et al., 2018; Volk et al., 2010; Yang and Li, 2016]. Unlike equations with physical meaning, such 

as the glass transition function based on the Eyring equation above, empirical functions are 

simpler but more specific to certain situations. An example is Eq. (11), which is based on a normal 

distribution function:   
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
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In Eq. (11),   is a scaling factor for adjusting the shape of the hyperbolic curve, which is 
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obtained from curve fitting. The lower limit of the integration minT  is the minimum temperature 

during the experiments. It could also be set to negative infinity, the same as in the normal 

distribution function. For reducing the computational cost, the lower limit is here set to be minT . 

As it will be shown in section 4.1, the value of   assumes slightly different values hether using 

the negative infinity or a finite temperature. 

3.2 Longitudinal modulus 

The glass transition of the composite can be correlated to the variation of its modulus versus 

the temperature. The glassy phase volume fraction is derived in Eq. (12) from [Bai et al., 2008; 

Guo et al., 2013]:  

HL

H

TT

T

g
EE

ETE
T

−

−
=

)(
)(                            (12) 

In Eq. (12), )(Tg  is the glassy phase volume fraction of the temperature-dependent modulus 

)(TE ; 
HTE and 

LTE  are the moduli at high temperature HT  ( HT  > gT ) and low temperature 

LT  ( LT  < gT ), respectively. When the composite is at LT  the matrix of the SMPC is in glassy 

phase ( ) 1=Lg T . When the matrix is in rubbery phase, the glass transition function becomes 

0)( =Hg T . By placing )(TE  to the left side of Eq. (12), the instantaneous modulus in a 

function of temperature is given by the following expression: 

HHL TgTT ETEETE +−= )()()(                     (13) 

 

3.2.1 Longitudinal modulus at low temperature (below gT ) 

The modulus of a SMP tends to differ by two orders of magnitude at temperatures below and 

above the gT  [Li et al., 2019a]. At a low temperature LT  (the room temperature in our case), 
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the modulus of the SMP has a magnitude of 100 GPa [Li et al., 2019a]. Although the modulus of 

the matrix is also two orders of magnitude lower than the the one of carbon fibers, the rule of 

mixture (ROM) to estimate the modulus of the overall composite can still be used [Subramanian, 

1994]. To calculate the modulus along the longitudinal direction, the classical ROM assumes that 

the matrix and fiber have the same strain, but the displacement of the fiber cannot be equal to the 

one of the matrix unless a perfect bond is present. We use here a refined ROM model as proposed 

by Subramanian by introducing a efficiency factor   to describe the load transfer from the 

matrix to the fiber [Subramanian, 1994]: 

mf

1111  =                                  (14) 

The longitudinal modulus of the SMPC at low temperature is then obtained as: 

fm

ffm_Tm

_T
VV

EVEV
E L

L 



+

+
=11                        (15) 

In (15) 
L_TE11 and 

Lm_TE  are the longitudinal modulus of the composite and the matrix at 

temperature LT  and fE  is the fiber modulus. When 0=  (i.e., no transfer between matrix 

and fiber)  we have m_T EE
L
=11 ; when 1=  (i.e., perfect bonding) 

ffm_Tm_T EVEVE
LL
+=11 . 

3.2.2 Longitudinal modulus at high temperature (above gT ) 

At high temperature (above gT ) the matrix is in a rubbery phase, and its modulus varies 

between 100-101 MPa, which is significantly lower than that of the carbon fiber [Li et al., 2019a]. 

The load at HT  is mainly supported by the carbon fiber in tension. When 1→fV , the modulus 

of composite 
HTE _11  is approximately equal to fiber one ( f_T EE

H
11 ). When 0→fV , the 

modulus is 
HH m_T_T EE 11 . The modulus of the composite at HT  can be therefore assumed as: 

 ffm_TT VEEE
HH
+=_11                        (16) 
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where  ,   are the fiber-dominated efficiency factors, serving as curve-fitting coefficients for 

experimental results. 

3.2.3 Longitudinal modulus 11E  

Substituting (15), (16) into Eq. (13), the volume fraction and temperature-dependent 

longitudinal modulus of the unidirectional fiber reinforced SMPC can be written as: 

)()()()(11

 



ffm_Tgffm_T

fm

ffm_Tm
VEETVEE
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L ++











+−

+

+
=       (17) 

This equation involves the identification of three fitting parameters ( ,  ,  ), for which 

tests on several fiber volume fraction composites at both low and high temperatures are needed. If 

the fiber volume fraction is not considered, one can use Eqs. (10, 11, 13) to evaluate the 

temperature dependence of the modulus for a certain type of composite. In that case, only the 

modulus of the matrix is needed as a function of temperature (examples are presented in the 

Appendix. A). 

3.3 Other independent elastic constants ( 22E , 12G , 12 , 23G ) 

The transverse modulus 22E and the shear modulus 12G  are derived by replacing the 

constant modulus with the temperature-dependent modulus of the matrix in Halpin-Tsai equations 

[Pegoretti et al., 2002]: 

f

f

m
V

V
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=
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21
)(22                           (18a) 
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−
=                               (18b) 

HHL m_Tgm_Tm_Tm ETEETE +−= )()()(              (18c) 

where   is the effective factor, )(TEm  is the modulus of the matrix calculated by Eq. (13). 
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where )(TGm  is the shear modulus of the matrix,   is the effective factor, fG  is the shear 

modulus of the fiber and )(Tm  is the matrix’s Poisson’s ratio. We consider here the Poisson’s 

ratio of the epoxy-based SMP with values ranging between 0.35 and 0.5 at low and high 

temperatures [McClung et al., 2012]. An interpolation between the two extremes is defined as a 

sigmoidal form [McClung et al., 2012; Mott et al., 2008; Pandini and Pegoretti, 2008]: 

)())()())((1()( LmLmHmgm TTTTT  +−−=                  (20) 

where )( Hm T  and )( Lm T  are the Poisson’s ratios of the matrix at high and low temperatures, 

respectively.  

The axial Poisson’s ratio of the SMPC )(12 T , is calculated using the ROM approach: 

ffmm VVTT  += )()(12                            (21)

 

where f  is the Poisson’s ratio of fiber. 

The transverse shear modulus 23G  is obtained by replacing the elastic constants 11E , 22E , 

and 12
 

with temperature-dependent terms in the equation proposed by Christensen [Christensen, 

1988]: 
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4. Validation 

Here we use the results from isothermal three-point bending tests carried out on 

unidirectional carbon fiber reinforced epoxy-based SMPCs with fiber mass fractions of 23%, 30%, 

37% in reference [Li et al., 2019b]. We calculate the relation between mass fraction and volume 

fraction as: 

)1( fffm

fm

f





−+
=                          (23) 

where f , f  are the fiber volume fraction and fiber mass fraction, respectively; m  is the 

density of the epoxy-based SMP matrix (1.2 g/cm3) and f  is the density of carbon fiber (1.8 

g/cm3). By calculation, the fiber mass fractions of 23%, 30%, and 37% correspond to fiber volume 

fractions of 17%, 22%, and 28%.  

Table 1. Mechanical properties of the carbon fiber and epoxy-based SMP [Li et al., 2019b; 

Miyagawa et al., 2005] 

Materials 11E
   

(MPa) 

22E
  

(MPa) 

12G
    

(MPa) 
12

 
13G

  
(MPa) 

23G
  

(MPa) 

Carbon fiber (T300) 230000 8000 27300 0.256 27300 3080 

Epoxy resin (293 K) 1950 \ 720 0.35 \ \ 

Epoxy resin (393 K) 8.17 \ 2.81 0.5 1 1 

 

The mechanical properties of the T300 carbon fiber and the epoxy based SMP matrix are 

listed in Table 1. And the carbon fiber maintains constant mechanical properties over the 

temperature range of 293 K to 393 K [Miyagawa et al., 2005; Sauder et al., 2004].  
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4.1 Glassy phase volume fraction transformation 

The temperature-dependent characteristics of the SMPC are intrinsic to the behavior of its 

modulus. Here we use the flexural modulus in reference [Li et al., 2019b] to empirically obtain the 

glassy phase volume fraction transformation with the change of temperature. By substituting the 

modulus in Eq. (12), the normalized flexural modulus is obtained, and it can be used to determine 

the parameters in Eqs. (10, 11). The normalized experimental data of the SMPCs with different 

fiber volume fractions are substantially identical (Fig. 2), indicating that the matrix dominates the 

temperature-dependent characteristics. Eqs. (10, 11) obtained from user defined functions from the 

Origin software are used to fit the scatters.  

In Eq. (10), the values of )( gTG , 1C , 2C
 
are 1312 J/mol, 16, and 571 K at the glass 

transition temperature K333=gT , respectively. The parameters k , R  and n  are equal to 

0.001 K-1, 8.314 J/(molˑK) and 1, respectively. Fig. 2 (a) shows the fitting curve with the 

coefficient of determination (R2) of 97.6%. The residuals with a confidence level of 95% are also 

presented in Fig. 2 (a). 

With  , minT  are equal to 33.1 and 293 in Eq. (11); the fitting curve is plotted in Fig. 2 (b) 

with the R2 of 99.0%. When minT  tends to - , the value of   changes to 33.05 for obtaining 

the same previous R2 and curve shape. The difference in values of   in these two lower 

integration limit cases is ~0.15%. The finite value K293min =T  is finally chosen to reduce the 

computational cost.  
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(a) 

 

(b) 

Fig. 2. Glassy phase volume fraction transformation,  

(a) )(Tg  by Eq. (10), (b) )(Tg  by Eq. (11) 

 

Fig. 2 (a) shows some discrepancies between the numerical data from the experimental 

results at temperatures above gT . The poor fitting at high temperature can affect the subsequent 
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prediction of the elastic constants. The predicted glassy phase volume fraction transformation 

curve in Fig. 2 (b) fits well with the experimental results in the whole temperature range. The 

curve obtained by Eq. (11) inherits the characteristics of the normal distribution function, with the 

slopes at temperatures being symmetrical to the gT  value. The Eyring-based Eq. (10) is however 

more suitable for curves with unsymmetrical slopes around the gT .  

4.2 Longitudinal modulus 

The flexural modulus in Fig. 5 (a) of reference [Li et al., 2019b] is used to verify the 

accuracy of the model related to the longitudinal (axial) modulus. The modulus has an almost 

linear dependency versus the fiber volume fraction around 293 K. The parameter   obtained by 

inserting the values of 
Lm_TE and fE  from Table 1 into Eq. (15) is equal to 0.63. The 

longitudinal modulus of the SMPCs at 393 K are one order of magnitude lower than the one at 293 

K. By fitting the data using Eq. (16), the parameters   and   are identified as 52.0=  and 

3.1= . The temperature-dependent modulus for various fiber volume fractions shown in Fig. 3 

is obtained by inserting the values of  ,   and  , and substituting the glassy phase volume 

fraction Eqs. (10, 11) into Eq. (17).  

Fig. 3 (a) shows the curve based on the glassy phase volume fraction Eq. (10) agrees well 

with the experimental data related to the 22 vol.% and 28 vol.% SMPCs at 293 K, 313 K, 333 K 

and 373K. The error however exceeds 45% at 353 K and 393 K. The curve for the 17 vol.% 

SMPC case follows the same trend as the experimental data; the errors at 293 K, 313 K and 373 K 

are lower than 5% and over 21% at other temperatures. The longitudinal modulus is obviously 

directly proportional to the fiber fraction. The modulus of the 22 vol.% SMPC at 293 K is 34 % 

higher than the one of 17 vol.%. The modulus of the 28 vol.% SMPC is however 69% higher than 

the one with 17 vol.% at 293 K. 
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(a)                                     (b) 

 

(c)                                    (d) 

 

  (e) 

Fig. 3. The flexural moduli 11E  of SMPCs with different fiber volume fractions at different 

temperatures, (a) prediction based on Eq. (10), (b) prediction based on Eq. (11), (c) prediction 

based on Eq. (1), (d) prediction based on Eq. (2), (e) prediction based on Eq. (3) 
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Fig. 3 (b) shows the curve with the glassy phase volume fraction obtained by Eq. (11) 

features a hyperbolic tangent decrease with the temperature. The numerical results fit well to the 

experimental data for the 22 vol.% and 28 vol.% SMPCs, with error being less than 10% at all 

specified temperatures. The numerical results for the 17 vol.% SMPC at 293 K, and 313 K are 

significantly higher than the experimental ones, but lower at 333 K. The discrepancy is never 

higher than 15%. At 293 K, the moduli for the 22 vol.% and 28 vol.% SMPCs are 34% and 69% 

higher than the analogous value for 17vol.%; at 393 K, the increases are 45% and 94%, 

respectively. 

The predicted longitudinal modulus based on the normal distribution equation shows better 

compliance to the experimental results than the one based on the Eyring equation. The difference 

between the two predictions is similar to the difference of the glassy phase volume fraction 

transformation curves (Fig. 2) obtained by Eqs. (10, 11). We have also compared the longitudinal 

modulus predicted by Eqs. (1-3) with material parameters listed in Table 2. It’s worth noticing that 

the model proposed in this study is determined solely by matrix and fiber parameters; Eqs. (1-3) 

however necessitate the knowledge of the moduli of the composite at 293 K or 393 K. Although 

the curves calculated by Eqs. (1-2) provide a good fit (Figs. 3 (c) and (d)), the model used in this 

study could also provide a similar accuracy by using the modulus at extreme temperatures in Eq. 

(13). Curves obtained by using Eq. (3) do not show a hyperbolic trend (Fig. 3 (e)). 

Table 2. The material parameters in Eqs. (1-3, 16) 

Material parameters Values Units Description 

UE , gE , 0E  

17 vol.% 24669 [MPa] 

Longitudinal modulus at 293 K in Eqs. 

(1-3). 
22 vol.% 38618 [MPa] 

28 vol.% 47927 [MPa] 

RE , rE  

17 vol.% 1218 [MPa] 

Longitudinal modulus at 393 K in Eqs. (1, 

2). 
22 vol.% 1679 [MPa] 

28 vol.% 2377 [MPa] 

Hm_TE
 

8.17 [MPa] Epoxy resin modulus at 393 K. 

Lm_TE
 

1950 [MPa] Epoxy resin modulus at 293 K. 
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fE
 

230000 [MPa] Modulus of the carbon fiber. 

'T  330.5 [K] Glass transition temperature in Eqs. (1, 2). 

rT
 

293 [K] Room temperature in Eq. (3). 

refT
 

393 [K] Reference temperature in Eq. (3). 

  0.63 [-] Transfer factor in this work. 


 

0.52 [-] Efficiency factor in this work. 


 1.3 [-] Efficiency factor in this work. 

  0.052 [-] Sharpness constant in Eq. (1). 

  0.11 [-] Growth rate in Eq. (2). 


 1.88 [-] Power law index in Eq. (3). 

 

4.3 Other elastic constants 

The transverse modulus 22E and the axial shear modulus 12G  are calculated by using Eqs. 

(18, 19) and related parameters in Table 1. The 22E  and 12G  with the two glassy phase volume 

fraction functions (10) and (11) are substantially the same at temperatures below gT . These two 

elastic constants based on the Eyring equation however exhibit negative values above 379 K (Figs. 

4 (a) and 5 (a)). This is a direct consequence of the )(Tg  in Eq. (10) being negative above 379 

K. The two elastic constants based on Eq. (11) show hyperbolic tangent trends (Figs. 4 (b) and 5 

(b)). The 22E  and 12G  terms for the 28 vol.% SMPC at 293 K are 17% and 25% higher than 

the values of the 17 vol.% composite, and 8% and 12% higher than the 22 vol.% SMPC. The rate 

of increase of the transverse and shear moduli as a function of the fiber fraction is lower compared 

to the case of the longitudinal modulus. Since the matrix dominates both transverse and axial 

moduli, the effect of the reinforcement is smaller.  
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(a)                                     (b) 

Fig. 4. Transverse moduli 22E  of SMPCs at different temperatures, (a) results based on Eq. (10), 

(b) results based on Eq. (11) 

  

(a)                                    (b) 

Fig. 5. Axial shear moduli 12G  of SMPCs at different temperatures, (a) results based on Eq. (10), 

(b) results based on Eq. (11) 

 

The axial Poisson’s ratio is determined by Eq. (21) and the parameters in Table 1. The 

Poisson’s ratio increases monotonically with the temperature. Because when the matrix is heated, 

the SMPC becomes softer, resulting in a increase of the Poisson’s ratio. The value of the 12v  of 

the SMPC with a lower fiber volume fraction is relatively high, since the matrix contributes more 

to the mechanical response and the Poisson’s ratio of the matrix is higher than that of the fiber.  
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(a)                                    (b) 

Fig. 6. Axial Poisson’s ratios 12v  of SMPCs at different temperatures, (a) results based on Eq. 

(10), (b) results based on Eq. (11) 

  

(a)                                    (b) 

Fig. 7. Transverse shear moduli 23G  of SMPCs at different temperatures, (a) results based on Eq. 

(10), (b) results based on Eq. (11) 

 

The transverse shear modulus 23G  is obtained by Eq. (22), and follows a temperature 

dependence similar to the one shown by the in-plane shear modulus, although with lower 

magnitudes. As the temperature increases through the glass transition region, the distance between 

the molecules in the matrix increases; the slope of the interatomic potential decreases and 

therefore results in a reduction of bulk modulus. With the consequent increase of the volume, the 

molecular mobility becomes larger, leading to a decrease of the shear resistance.  
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5. Benchmark of the model 

To verify the validity of the proposed model we have performed an inverse identification of 

the elastic constants via numerical and experimental modal analysis of a flat SMPC laminate at 

temperatures of 293 K, 313 K, 333 K, 353 K, and 373 K. The temperature has been controlled by 

a resistance heater attached to the laminate. The SMPC laminate is composed of two layers of 

plain weave carbon fabric (CO6343B, TORAY) with a -45o/45o stacking sequence, and the 

epoxy-based SMP resin as in reference [Li et al., 2019b]. The laminate has been manufactured via 

a Vacuum Assisted Resin Infusion (VARI) following the same process as described in reference 

[Li et al., 2019a]. The fiber volume fraction is ~40.5%. The dimensions of the SMPC laminate are 

0.6 mm×50 mm×180 mm. The laminate is partitioned into two portions along the length, the 

constrained portion has a length of 40 mm, and the outer extension is 140 mm (Fig. 8).  

 

Fig. 8 The finite element model of the flat SMPC laminate 

 

Modal tests are performed using an electro-dynamic shaker with the SMPC laminate fixed on 

an aluminum base (same as in reference [Li et al., 2019b]). Two thermo couples located at red 

points in Fig. 8 are used to monitor of the temperature. The dynamic excitation is applied after the 

temperature stabilized for 5 minutes. A laser doppler velocimetry is used to collect the structural 

velocity. The setup is shown in Fig. 9. The base vibration acceleration is 0.5 g (1 oct/min) within 

the 5-500 Hz band. For each temperature, the vibration measurement is performed three times.  
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Fig. 9 The modal test setup 

 

The Abaqus Finite Element package has been used to perform the numerical modal analysis. 

The flat laminate is represented by shell elements. The thickness of the laminate is 0.74 mm with a 

stacking sequence shown in Fig. 8. The first ply is a polyimide (PI) membrane (Young’s modulus 

of 3.4 GPa, and Poisson’s ratio of 0.34) that represents the resistance heater. The elastic constants 

of a single SMPC layer at varying temperatures are calculated using the proposed analytical model 

(Table 3). The densities of the PI and the SMPC are 1420 kg/m3 and 1500 kg/m3, respectively. The 

constrained portion is fixed in all directions. 

Table. 3 Elastic constants of the unidirectional carbon fiber reinforced epoxy-based SMPC 

Temperature 

(K) 

11E  (MPa) 22E  (MPa) 12v
 12G  (MPa) 23G  (MPa) 

)(Tg  

by Eq. 

(10) 

)(Tg  

by Eq. 

(11) 

)(Tg  

by Eq. 

(10) 

)(Tg  

by Eq. 

(11) 

)(Tg  

by Eq. 

(10) 

)(Tg  

by Eq. 

(11) 

)(Tg  

by Eq. 

(10) 

)(Tg  

by Eq. 

(11) 

)(Tg  

by Eq. 

(10) 

)(Tg  

by Eq. 

(11) 

293 70419 70428 3459 3459 0.31 0.31 1617 1618 1196 1196 

313 62106 62183 3173 3176 0.32 0.32 1407 1409 1080 1081 

333 32825 33338 1940 1966 0.36 0.36 687 700 623 632 

353 14121 9701 837 515 0.39 0.39 246 144 259 158 

373 5291 4436 161 89 0.40 0.40 43 23 49 27 
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The mode shapes of the flat SMPC laminate are similar to the ones of a cantilever beam 

during the whole temperature interval considered. The first mode is the bending along the axis X 

(Fig. 10). Table 4 shows the numerical and experimental natural frequencies at different 

temperatures. With the temperature increases, the natural frequency decreases. In experimental 

results, the first natural frequency is 13.5 Hz at 293 K. That resonance drops by ~18% to 11.1 Hz 

at 333 K, and ~64% to 4.8 Hz at 373 K. 

 

Fig. 10 The first mode shape of the flat SMPC laminate 

 

Table 4. The first order natural frequencies of the laminate at elevated temperatures 

Temperature 

(K) 

Natural frequencies (Hz) 

Numerical 

Experimental  )(Tg  by 

Eq. (10) 

)(Tg  by 

Eq. (11) 

293 14.1 14.1 13.5 

313 13.4 13.4 12.9 

333 10.6 10.7 11.1 

353 7.8 6.8 7.5 

373 4.9 4.3 4.8 

 

The numerical results with elastic constants based on Eq. (10) are slightly higher than the 

experimental ones, except at 333 K. The error between numerical and experimental results is less 

than 4.5% at these temperatures. Small deviations at 293 K and 313 K might due to the fact that 
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the constraints of actual testings do not perfectly have a clamped condition as in the simulation. 

The reason behind the higher values predicted by the simulations compared to the experiments is 

due to the more approximated glassy phase volume fraction estimation at 353 K, 373 K. 

Similarly to the simulation results with )(Tg  by Eq. (10), the data obtained with )(Tg  

by Eq. (11) also show higher values compared to the experiments at 293 K and 313 K. The reason 

is the same as outlined above. The larger than predicted experimental results above 333 K are 

likely due to the uneven thermal distribution over the laminate. The temperature close to the base 

is ~5 K lower than the rest of the laminate, which means that the actual stiffness of the laminate is 

slightly higher compared to the simulation case that relates to a uniform thermal distribution. In all, 

the numerical results fit well to the experimental ones, and substantially prove the accuracy of the 

model proposed in this study. 

6. Conclusion 

A model has been developed to predict the temperature-dependent elastic constants of 

SMPCs with various fiber volume fractions. The matrix of the SMPC is here considered to possess 

both rubbery and glassy phases, and the transition between them provides the temperature 

dependence of the SMPC elastic constants. The glassy phase volume fraction function has been 

established by two methods, one based on the Eyring equation, the other based on the normal 

distribution equation. Parameters of the two glassy phase volume fraction functions are derived by 

fitting the normalized modulus as a function of temperature. The longitudinal moduli at low and 

high temperatures are calculated by modifying the basic rule of mixture. The final longitudinal 

modulus as a function of temperature is obtained by combining the moduli at the two ends of the 

temperature spectrum with the glassy phase volume fraction function. The transverse and axial 

shear moduli are derived by substituting the matrix’s modulus with the glassy phase volume 

fraction function term into the Halpin-Tsai equation. The transverse shear modulus is obtained by 

replacing the elastic constants with temperature-dependent terms in the Christensen equation. 

These moduli decrease monotonically with the temperature increase. For a specific temperature, 

the higher the fiber volume fraction, the larger the modulus of composite. The axial Poisson’s ratio 
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is obtained by using the rule of mixture. Unlike the modulus dependence over temperature, the 

Poisson’s ratio gradually closes to the value associated with an incompressible configuration due 

to the high proportion of the matrix. Modal tests of a flat SMPC laminate at various temperatures 

have been performed for the inverse identification of the composite properties. There are small 

deviations between the simulation and experimental results, and these errors are acceptable due to 

differences in boundary and thermal distribution conditions between the simulation and actual 

experiment. The inverse identification from the modal analysis shows that the proposed prediction 

model is adequate to describe the temperature-dependent elastic constants of the laminate and can 

be used to design SMPCs laminate configurations. The model proposed in this work is also 

suitable for any similar transverse isotropic composites with a glass transition matrix and a 

reinforcement represented by continuous long fibers. The modulus of the reinforcement must also 

be independent of the temperature and higher than that of the matrix within the specific 

temperatures range. 

Appendix A. Storage modulus prediction of SMPCs 

The dynamic properties of the unidirectional carbon fiber reinforced SMPCs with fiber 

volume fractions of 17 vol.%, 22 vol.% and 28 vol.% have been measured using the dynamic 

mechanical analyzer DMA 242 C (NETZSCH Instruments, Germany) in dual cantilever mode for 

the longitudinal modulus, and tensile mode for the transverse one. The temperature increased from 

298 K to 418 K at a heating rate of 3 K/min and a frequency of 1 Hz. For the longitudinal modulus 

testing the specimens had dimensions of 1.9 mm×4 mm×60 mm with the fiber direction along the 

main length. The support span was 50 mm, and the amplitude was 20 µm. For the transverse 

modulus testing, the specimen was 1.9 mm×5 mm×30 mm with fiber direction perpendicular to 

the main length.  

The gT  given by either the maximum slope of the storage modulus or the peak of the loss 

factor (Tan delta) is higher than the one obtained by using the Zwick three-point bending tests 

facility mentioned in the main part of the paper. We take the average temperature corresponding to 

the maximum slope of the storage moduli in both longitudinal and transverse directions as the 
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final gT , 350.7 K, which would be used in Eqs. (10, 11, 13) to fit the storage modulus. Although 

the gT  obtained by the DMA tests varies with the fiber fraction and the testing mode, the 

difference corresponding to the average gT  is less than 4%. The parameters gT , k , )( gTG , 

1C , 2C , R  and n  in Eq. (10) are 340.7 K, 0.001 K-1, 800 J/mol, 16, 500 K, 8.314 J/(molˑK), 

0.966, respectively. The parameters  , minT , gT  in Eq. (11) are 30.4 K, 298 K, and 340.7 K, 

respectively. The values of 
LTE  and 

HTE  in Eq. (13) are the experimental results of the SMPCs 

at 298 K and 418 K. The numerical results based on the Eyring equation do not fit well above 390 

K. While the numerical results are better and fit well in the whole temperature range based on the 

normal distribution equation.   

    

(a)                                      (b) 

   

(c)                                      (d) 

Fig. A.1. DMA results of SMPCs with fiber direction along the specimen’s length, (a) normalized 
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longitudinal storage moduli, (b) longitudinal storage moduli (prediction based on Eq. (10) ), (c) 

longitudinal storage moduli (prediction based on Eq. (11) ), (d) tan delta 

    

(a)                                      (b) 

    

(c)                                      (d) 

Fig. A.2. The DMA results of SMPCs with fiber direction perpendicular to the specimen’s length, 

(a) normalized transverse storage moduli, (b) transverse storage moduli (prediction based on Eq. 

(10) ), (c) transverse storage moduli (prediction based on Eq. (11) ), (d) tan delta 

Appendix B. Storage modulus prediction of SMPs 

Three SMPs have been selected to calibrate the storage modulus model. The polymers are 

MMA-co-PEGDMA (with rubbery modulus of 12.8 MPa, and gT  of 76 oC [Yakacki et al., 

2008]), an epoxy-based SMP [Liu et al., 2006] and a styrene-based SMP [Du et al., 2018]. The 

temperature corresponding to the maximum slope of the storage modulus is identified as the gT . 
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Glassy temperature values for these SMPs are 280 K, 317 K and 329 K, respectively. The modulus 

LTE  is extracted from the experimental data at the lowest temperature of the corresponding curve 

in Fig. B.1. The values of that modulus are 4250 MPa for the MMA-co-PEGDMA polymer, 1701 

MPa for the epoxy-based SMP and 2141 MPa for the styrene-based SMP. The values of 
HTE  

(experimental data at the highest temperature) for these SMPs are 12.8 MPa, 8.5 MPa and 8.3 

MPa, respectively. The parameters used in Eqs. (10, 11) are shown in Table B.1. Substituting 
LTE , 

HTE  and )(Tg  into Eq. (13) the numerical storage moduli with a R2 above 95% are shown in 

Fig. B.1. The numerical moduli show a monotonically decrease with the temperature increase. The 

numerical moduli identified using the normal distribution equation have a better fit than the ones 

based on the Eyring equation within the whole temperature range.  

Table B.1. The values of the parameters in Eqs. (10, 11) 

Parameters Units 

Values 

MMA-co-PEG

DMA polymer 

Epoxy-based 

SMP 

Styrene-based 

SMP 

k  [1/K] 0.001 0.001 0.001 

)( gTG
 

[J/mol] 815.5 1356.7 2057.9 

1C
 

[-] 16 16 16 

2C
 

[K] 1062 860 206 

n  [-] 1 1 1 

  [K] 68 44 18 

minT
 

[K] 200 273 297 
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(a)                                      (b) 

Fig. B.1. Experimental and numerical results related to the storage moduli of SMPs, (a) prediction 

based on Eq. (10), (b) prediction based on Eq. (11) 
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