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ABSTRACT: Platelet activation results in the generation of
thromboxane A2 (TxA2), which promotes thrombus formation by
further amplifying platelet function, as well as causing vaso-
constriction. Due to its role in thrombus formation and
cardiovascular disease, its production is the target of antiplatelet
drugs such as aspirin. However, the study of TxA2-stimulated
cellular function has been limited by its instability (t1/2 = 32 s, pH
= 7.4). Although more stable analogues such as U46619 and
difluorinated 10,10-F2-TxA2 have been prepared, we targeted a
closer mimic to TxA2 itself, monofluorinated 10-F-TxA2, since the
number of fluorine atoms can affect function. Key steps in the
synthesis of F-TxA2 included α-fluorination of a lactone bearing a
β-alkoxy group, and a novel synthesis of the strained acetal. F-TxA2
was found to be 105 more stable than TxA2, and surprisingly was only slightly less stable than F2-TxA2. Preliminary biological studies
showed that F-TxA2 has similar potency as TxA2 toward inducing platelet aggregation but was superior to F2-TxA2 in activating
integrin αIIbβ3.

1. INTRODUCTION

Thromboxane A2 (TxA2) is produced enzymatically from
arachidonic acid through the action of several enzymes including
cyclooxygenase (COX) and thromboxane synthase in response
to tissue injury, promoting hemostasis, vasoconstriction, and
wound healing.1−3 However, these necessary features for
survival can also cause death to those susceptible to or suffering
from cardiovascular disease (CVD).4−9 Current first-line
therapy involves the use of nonsteroidal anti-inflammatory
drugs (NSAIDs) which block >95% of COX1 activity and
therefore TxA2 production.10 However, the treatment suffers
from side effects associated with shutting down the whole
prostanoid cascade and with resistance in some patient groups.11

The study of TxA2 has been limited by its high instability (t1/2
= 32 s, pH = 7.4)1 and so a number of more stable analogues
have been prepared in which one or both oxygens of the strained
acetal have been replaced by carbon,12 sulfur,13 or a less strained
bicyclic structure (e.g., U46619, Figure 1).14,15 A different
strategy is to retain the strained acetal but reduce the rate of
hydrolysis by incorporating either bromine16 or, more
importantly, fluorine17−20 atoms at the C-10 position (Figure
1). Although the synthesis21,22 of monofluorinated F-TxA2 1 has
been attempted,23 only the difluoro analogue 2 has succumbed
to total synthesis,17 which showed similar potency in platelet
aggregation to the parent compound.20 The stability of 2 has
only been investigated using a model compound (3), which, as

expected, showed much higher stability than TxA2 (t1/2 > 30
days, pH = 7.4).20 We were interested in targeting F-TxA2 1
since the number of fluorine atoms can have a significant impact
on function. For example, in a comparative study of the CHF-
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Figure 1. Thromboxane A2 and its analogues.
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and CF2- phosphonate analogues of sn-glycerol-3-phosphate,
O’Hagan found that the monofluorinated was better than the
difluorinated substrate for the dehydrogenase enzyme.24−26 We
now report the first synthesis of F-TxA2 1 and compare its
stability and biological activity with that of F2-TxA2 2.

2. RESULTS AND DISCUSSION
Our retrosynthetic analysis of F-TxA2 is shown in Scheme 1. We
envisioned forming the strained acetal by an intramolecular

cyclization and introducing the upper side chain by a Wittig
reaction on the corresponding fluorinated lactol. Lactone 6
could be obtained by fluorination of the enolate of lactone 7,
which itself could be synthesized by Baeyer−Villiger oxidation
of ketone 8. Ketone 8 could then be obtained from conjugate
addition of the lower side chain 9 to our key enal intermediate

10 followed by ozonolysis. At the outset, the main challenges
presented in the synthesis were formation of the strained acetal
and fluorination of the enolate bearing a potential leaving group
at the β-position.

Synthesis of Fluorinated Thromboxane A2. Our syn-
thesis began from PMB-acetal 12, available in 3 steps in high er
using our established proline-catalyzed aldol dimerization of
succinaldehyde (Scheme 2).27,28 Initially, we elected to carry
through the major β-isomer of the acetal to simplify analysis.
Conjugate addition of the mixed vinyl cuprate 13 followed by
trapping with TMSCl and ozonolysis27 gave ketone 14 which
was converted into the key lactone intermediate 15 through a
Baeyer−Villiger oxidation29,30 (64% yield, over 3 steps).
With a scalable synthesis of lactone 15 in hand, we embarked

on the fluorination reaction. Lactones bearing siloxy and
benzyloxy groups in the β-position are particularly prone to
elimination upon deprotonation and have to be trapped by
reactive electrophiles at low temperature.31−35 Initial inves-
tigation showed that NFSI was a sufficiently reactive electro-
phile, and after optimization we found that the reaction
proceeded with good selectivity (10:1 dr) and yield (51%)
using 1.2 equiv KHMDS and 2.5 equiv NFSI in Et2O. Following
PMB deprotection with DDQ, we explored the Wittig reaction
with (4-carboxybutyl)triphenyl-phosphonium bromide (18),
but this invariably led to intractable mixtures. We suspected that
the lactone was interfering in this step and so converted lactone
16 into siloxyacetal. This time, following PMB deprotection,
Wittig reaction using phosphonium salt 18 with t-BuOK
surprisingly gave the corresponding epoxide in 67% yield.36

To avoid epoxide formation, we screened alternative conditions
and found that using LiHMDS with a ratio of hemiacetal
(17):Wittig salt:LiHMDS of 1:4:8 at 0 °C gave the
corresponding alkene in 82% yield as a separable 5:1 mixture
of Z/E isomers after esterification with TMSCHN2. Selective
desilylation of the TIPS group with TBAF/AcOH gave the
required lactol 19 in 98% yield.37−41

Scheme 1. Retrosynthesis of Fluorinated Thromboxanes
from Bicyclic Enal

Scheme 2. Synthesis of Key Lactone Precursor and Completion of the Synthesis of the Monofluorinated Thromboxane A2
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To complete the synthesis of 10-F-TxA2, we required a
method for the construction of the strained acetal. Owing to its
known sensitivity and the low yields previously obtained for the
construction of this motif, we decided to explore this key step on
model substrate 23. This was prepared from D-arabinal-derived
glycal 22 by fluorination with selectfluor (Scheme 3).42−44 Two

methods for making the strained acetal had been reported
previously, Still’s Mitsunobu reaction45,46 and Fried’s displace-
ment of the mesylate,17−20 but neither was successful on
hemiacetal 23 as shown in Scheme 3. These synthetic hurdles
required us to find a new method to make the strained acetal.
Shoda reported that treatment of unprotected glycopyranoses
with 2-chloro-1,3-dimethylimidazolinium chloride (DMC) gave
the corresponding 1,6-anhydro sugars directly.47,48 This reagent
was tested on hemiacetal 23, but although we did not obtain the
desired acetal 24 directly, we did isolate chloride 26 with
complete chemoselectivity. The fortuitous formation of the
(unstable) chloride presented another opportunity, since
glycosyl chlorides can be activated by silver salts to promote
their displacement.49 Indeed, treatment with Ag2O promoted
cyclization giving the acetal 24 in 40% yield, providing a novel
solution to the synthesis of strained acetals.
Moving onto the real target, brief optimization of the

chlorination/cyclization steps was again required but optimum
conditions were quickly established. Treatment of hemiacetal 19
with 6 equiv of each of the chlorination reagent, DIPEA, and
Ag2O gave the desired acetal 21 in 52% yield (Scheme 2).
Finally, hydrolysis of 21 with 1.0 N NaOH in 50% 1,4-dioxane/
water followed by deprotection with TBAF furnished F-TxA2 1
in 78% yield.
We also tried to prepare the other diastereoisomer 10α-F-

TxA2 from the minor diastereomer formed in the fluorination of
lactone 15. While we were able to carry this diastereoisomer
through to the corresponding diol (hydroxy hemiacetal,
diastereomer of 19), attempts to prepare the chloride and the
subsequent cyclization were thwarted by competing elimination
and hydrolysis.
By adapting this strategy, we were able to prepare F2-TxA2

(see Supporting Information), so that its stability and biological
activity could also be assessed. With both fluorinated TxA2
analogues in hand, we were then able to compare their stabilities
with the parent TxA2 and study their biological activity.

Stability Studies of Fluorinated Thromboxane A2 and
Model Compounds.The hydrolytic stability of TxA2 at pH 7.4
(37 °C) was measured and found to have a t1/2 of 32 s.1 Fried
measured the stability of his F2-TxA2 model compound 3, which
is similar in structure to F2-TxA2, at pH 1.27 (22 °C) to have a
t1/2 of 86 min. While this 108 difference in rate constant is
interesting to note, the difference in pH and temperature of
these measurements renders a direct comparison of stability, and
an assessment of the effect of fluorine, very difficult. Hence, we
sought to compare the stability of TxA2 with its fluorinated
analogues by measuring the kinetics of hydrolysis under the
same conditions. Using 19F NMR to monitor the decay of the
acetal moiety, we determined pseudo first-order rate constants
for the hydrolysis of 1 and 2 (Table 1) under buffered

conditions. At pH 7.4, we found that F-TxA2 (1) has a half-life of
20 days, which is 105 more stable than TxA2. Interestingly, F2-
TxA2 (2) was only 1 order of magnitude more stable at pH 7.4
with a half-life of over 40 weeks. We then measured hydrolysis
rates of 1 and 2 at lower pHs (Table 1), where, as expected,
decreasing the pH decreased the stability. The rate of hydrolysis
we measured for F2-TxA2 (2) at pH 1.25 (t1/2 = 64 min) was in
good agreement with that of Fried’s model compound 3 at pH
1.27 (t1/2 = 86 min).20,50

Themarginal increase in stability of 2 compared to 1 at pH 7.4
was unexpected, as the increase in stability caused by inductive
effects of the electronegative fluorine atoms is usually
additive.51,52 Thus, we speculated that there might be a strong
stereoelectronic effect governing the stability of the strained
acetal. Unfortunately, we were not able to prepare 10α-F-TxA2
to test this, so we compared the stability of the two
diastereoisomers of model compound 24 (3α-24 with 3β-24,
Scheme 4). Indeed, we measured a very substantial difference in
hydrolysis rate between the isomers: 3β-24 was ca. 200× more
stable than 3α-24. The greater lability of 3α vs 3β-24 presumably
originates from having a better σ-donor (C−H vs C−F bond)
aligned to the incipient oxocarbenium ion, as supported by DFT
calculations on a model substrate (Scheme 4; see Supporting
Information for further discussion). Our inability to make 10α-
F-TxA2 could therefore be due to its greater instability.
Furthermore, as 3a-24 exhibited a half-life of just 15 h at pH
7.4, it is likely that 10α-F-TxA2 would not have been suitable for
biological studies (see Supporting Information for full details).
These studies therefore reveal that the stability derived from the

Scheme 3. Formation of Strained Acetal on Model Hemi-
acetal 23

Table 1. Kinetics of Hydrolysis.a

compound pH k1′ (s−1) t1/2

F-TxA2 (1) 7.40 3.93 × 10−7 20 days
2.42 8.93 × 10−5 2.2 h

F2-TxA2 (2) 7.40 2.5 × 10−8 46 weeks
2.42b 1.01 × 10−6 190 h
1.80 5.46 × 10−5 3.5 h
1.25 1.80 × 10−4 64 min

aHydrolyses of 1 and 2 were measured under buffered conditions (50
mM), using 19F NMR to monitor the decay of the ketal. k1′ = pseudo
first-order rate constants. t1/2 = half-life. bAverage of two runs.
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stereoelectronic effect of an antiperiplanar fluorine is very
significant compared to a syn-periplanar fluorine and provides a
rationale for the nonadditive inductive effect of fluorine atoms
on acetal hydrolysis.
Biological Studies.To evaluate the biological activity of the

fluorinated thromboxanes 1 and 2, concentration−response
experiments were performed on human platelets, and platelet
aggregation was recorded by light transmission aggregometer.
The stable PGH2 analogue U46619 has been used widely as a
standard of comparison for evaluating TxA2-like activity and so
was included in this study.53−56 Concentration−response curves
were fitted (Figure 2) and EC50 values were calculated (Table

2). The data show that F-TxA2 has similar activity as U46619 in
inducing platelet aggregation but is almost 3-fold less potent
than F2-TxA2. While F2-TxA2 was more potent, the EMax was
significantly lower than U46619 and F-TxA2, suggesting partial
agonism at TxA2 receptors. As platelet amplification pathways
such as ADP release and integrin αIIbβ3 outside-in signaling can
potentially mask a weaker agonist response in aggregation
experiments, we were also interested to study a more direct
functional readout of platelet activation: integrin αIIbβ3
activation. Interestingly, we found that, in contrast to F-TxA2
and U46619, F2-TxA2 induced only weak integrin αIIbβ3

activation (Figure 3). Since both F-TxA2 and U46619 have
similar activity in both aggregation and integrin αIIbβ3 activation

experiments and U46619 has comparative activity to TxA2,
23

our data strongly indicates that F-TxA2 is a closer mimic to TxA2

than F2-TxA2. Further biological and pharmacological studies
are ongoing.

3. CONCLUSIONS

In summary, we have developed novel syntheses of chemically
stable fluorinated thromboxanes, utilizing our key enal
intermediate, which is readily available in high ee. The total
synthesis of the F-TxA2 and F2-TxA2 were completed in 17 and
18 steps, respectively, from 2,5-dimethoxytetrahydrofuran. The
scalable route enabled >100 mg of advanced material (e.g., 21)
to be prepared for chemical and biological screening. In addition
to overcoming some unexpected challenges associated with
incorporating and carrying fluorine through a synthesis, we have
also developed a new method for constructing the highly
strained acetal. As expected, F-TxA2 does indeed possess
markedly greater stability than TxA2, enabling it to be further
studied in biological assays. Preliminary biological studies
showed that F-TxA2 is the closest mimic to date of TxA2 having
similar potency toward inducing platelet aggregation, and is
considerably superior to F2-TxA2 in activating integrin αIIbβ3.

Scheme 4. Investigations into Hydrolysis of Model
Compound 24

Figure 2. TxA2-like properties of mono- and difluorinated TxA2
analogues on platelet aggregation. Aggregation of human platelet-
rich-plasma induced byU46619, F-TxA2, and F2-TxA2 (average± SEM,
n = 3).

Table 2. Concentration of TxA2 Analogues Which Produces
50% Of Maximal Aggregation

compound
pEC50

a ± SEM,
n = 3

EC50
b (μM),
n = 3

EMax
c (%) ± SEM,
n = 3

U46619 5.85 ± 0.06 1.4 84.1 ± 2.7
F-TxA2 (1) 5.80 ± 0.18 1.6 77 ± 13.1
F2-TxA2 (2) 6.30 ± 0.12 0.5 69.3 ± 4.5
apEC50, the negative logarithm of EC50.

bEC50, the concentration of
agonist that produces 50% of maximum response. cEMax, the
maximum aggregation in platelet-rich plasma.

Figure 3. TxA2-like properties of mono and difluorinated TxA2
analogues on platelet integrin αIIbβ3 activation. Washed platelets were
stimulated with U46619, F-TxA2, and F2-TxA2 in the presence of 1 μM
ADP for 15 min and integrin αIIbβ3 activation was determined using
FITC-PAC1 by FACS analysis. Data is expressed as a percentage of the
maximal α-thrombin (0.5 U/mL) response (average ± SEM, n = 5).
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