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Data fusion of multi-view ultrasonic imaging for
characterisation of large defects

Rhodri L.T. Bevan!, Nicolas Budyn!, Jie Zhang!, Anthony J. Croxford!, So Kitazawa® and Paul D. Wilcox!

Abstract—The multi-view total focusing method (TFM) enables
a region of interest within a specimen to be imaged using
different ray paths and wave mode combinations. For defects
larger than the ultrasonic wavelength, different portions of the
same defect may manifest in a number of views. For a crack,
the tip diffraction response may be evident in certain views and
the specular reflection in others. Accurate characterisation of
large defects requires the information in multiple views to be
combined. In this work, three data fusion methodologies are
presented: a simple sum over all views, a sum weighted according
to the inverse of the noise in each view and a matched filter
approach. Four large defects are examined, one stress corrosion
crack (SCC), two weld cracks and a pair of slagline defects in
a weld. The matched filter (matched to a small circular void)
provided significant improvement over the best individual view.
The data fusion process incorporates artefact removal, where
non-defect artefact signals within each image view are identified
and masked, using a single defect-free dataset for training. The
matched filter was able to accurately visualise the full 3D extent
of the four defects, allowing characterisation via the decibel drop
method. When compared to x-ray CT and micrograph data in
the case of the SCC, the matched filter fusion provided excellent
agreement. Its performance was also superior to any individual
view while providing a single fused image that is easier for an
operator to interpret than a set of multi-view images.

Index Terms—Data fusion, matched filter, ultrasonic imaging,
ultrasonic transducer arrays

I. INTRODUCTION

The aim of any non-destructive evaluation (NDE) inspection
is to reliably detect and accurately characterise defects within
the inspected specimen. In an ultrasonic inspection, this can
be achieved through use of a phased array system [1]. This is
enabled in this work through the full matrix capture (FMC)
approach [2], in which time-domain data from all possible
combinations of transmitter and receiver in the phased array
is stored. Post-processing of the time-domain data into a
spatial ultrasonic image is then undertaken using synthetic
focusing. A common algorithm to achieve this is the total
focusing method (TFM) [3]-[5] with synthetic focusing on
both transmission and reception using the linear delay-and-
sum beamforming approach to achieve full focusing at each
pixel within the image.

Use of mode conversions and ray paths involving reflections
of specimen surfaces enables multi-view TFM images to be
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formed of the same physical region of interest (ROI) in a
specimen from one FMC dataset [6]. Multi-mode reconstruc-
tion has also been incorporated in the plane-wave imaging
algorithm [7], and extended to the Fourier domain in [8].
Modelling can be utilised to select the appropriate ray paths
and modes to form the views [9]. Multi-view imaging provides
more information, but human interpretation of these images is
challenging. If a defect is visible in its entirety in a single
view, the view in which this occurs depends on the location
and type of defect. For large defects, different aspects of
the defect response may manifest in different views: in some
views, portions of specular reflection may be evident, while
in other views only tip diffraction effects may be observed.
In general, no one specific view can be expected to provide a
complete picture of any defect. It is therefore desirable to apply
some form of data fusion [10], [11] to combine information
from multiple views into a single image. Data fusion enables
the information that can be extracted to be maximised whilst
minimising the data presented.

To avoid the data fusion procedure reducing resolution
and detectability, it is essential to take into account multiple
factors. It is necessary to recognise that the noise level is
different between views. All the fusion methods considered
here involve the combination of ultrasonic intensities from
multiple views, and it is therefore also necessary to recognise
that the expected signal amplitude from a defect is view-
dependent. For this reason, information on both the expected
noise and signal levels is needed. Micro-structural (grain)
noise within a specimen is typically the limiting factor in
detecting a defect hence significant effort has been placed into
its characterisation. Early experimental work on the statistical
properties of grain noise was undertaken by Wagner et al.
[12]. Previous work [13] has provided an efficient and robust
method of quantifying both random and coherent grain noise
in multi-view TFM images. Expected signal intensities can be
determined through the use of finite element modelling (FEM)
or analytical models. Simulations must encompass defect
responses at locations throughout the ROI as the location of
real defects is not known a priori.

In this paper, the fusion of multi-view TFM images is
examined with the specific aim of characterising large defects
(defined as greater than 2\, where A denotes the longitudinal
wavelength in the specimen at the nominal centre frequency of
the ultrasonic inspection. The longitudinal wavelength was se-
lected to ensure that the defect was large, even for the longest
wavelength). Four large defects are examined within industrial
steels exhibiting various levels of grain noise to provide a
representative measure of the fusion methodology. The results



obtained from one of these industrial samples are compared
to both X-ray computed tomography and microphotographic
images.

In the following section, the experimental framework and
process for the creation of data for fusion is outlined. Section
IIT details the procedure for data fusion. The remaining sec-
tions examine the accuracy of the approach for two industrial
samples and explore how to apply it in practice to characterise
the four defects therein.

II. EXPERIMENTAL FRAMEWORK AND CREATION OF DATA
FOR FUSION

A. Experimental configuration

In this paper, an immersed oblique inspection is considered
as it is a common configuration for the inspection of welds
in safety-critical components and it also enables multi-view
approaches where more information can be extracted. This
configuration is shown in figure 1, with the seven properties
employed to quantitatively describe the experimental setup.
The instrument delay, ¢4, refers to the delay between the time
origin of A-scans in raw FMC data and the time at which
the centre of a transmitted pulse can be regarded as leaving a
transmitting array element. It is assumed that ¢, is uniform for
all elements in the array. The couplant is water with ultrasonic
velocity vy .

Cartesian axes xyz are defined as shown in 1 with the z
axis normal to the specimen surface. In this work, a 1D linear
array is used and the zx-axis direction is defined such that
the array lies in the xz plane. Experimentally, it is necessary
to ensure that the out-of-imaging-plane angle, i.e. the array
angle relative to the y-axis, is zero. After this adjustment, the
y-dimension of the array elements is parallel to the specimen
surface. These constraints mean that the array orientation is
completely defined by a single orientation angle, 6, relative
to the x-axis as shown in the figure. The stand-off of the
array is specified by Z, the distance of the centre of the
closest element to the specimen surface. In this work, all
specimens are assumed to be isotropic plates of thickness d,
with longitudinal and shear ultrasonic velocities denoted by
vr, and vy respectively.

These properties were calculated after measuring the water
temperature and material thickness. vy was obtained from a
published relationship between velocity and temperature [14],
while vy, and vy were calculated from the back surface signal
response. For all experimental configurations, a 5 MHz, lin-
ear, 1D array (manufactured by Imasonic, Voray-sur-1’Ognon,
France) with 128 elements and pitch of 0.3 mm was used. The
element width in the xz plane was 0.2 mm and the element
length in the y-direction was 15 mm. Data was acquired from
the array using a array controller (MicroPulse 5 manufactured
by Peak NDT, Derby, UK) at a sampling frequency of 25 MHz.
The values of the seven parameters depend on the particular
experiment and are presented in the relevant results in section
V.

To image in three dimensions with a 1D array, it is
necessary to combine a sequence of 2D cross-sectional (zz

plane) images. This y direction translation between cross-
sectional locations was controlled via a motorised rig, capable
of incremental steps of 0.0125 mm.

Water
vW
Frontwall

Fig. 1. Immersed oblique inspection setup

B. Creation of multi-view images

Prior to generating multi-view TFM images, the FMC data
is filtered and Hilbert transformed in the frequency domain
using a Gaussian window function (centred at the phased
array centre frequency of SMHz and -40dB half-bandwidth
of 90% relative to the centre frequency). The TFM images are
then generated using the summation of time-delayed data. The
image for the 7' view is

N N

Li(r) = ap(t) fyh (rrR(r)) (1)
T=1 R=1

where r is the image position, agf}% is an optional apodisation
term and frp is the post Hilbert-transformed FMC data. The
subscript T' denotes the transmitter element, R the receiver
element and N is the number of elements in the array. The
time delay 7'1(} 1)3 depends on the total travel time between
transmitter 7', r and the receiver R. The TFM algorithm,
as given in Eq. 1, incorporates a weighting term, which
can be employed to represent beam directivity. However, the
standard TFM algorithm does not utilise this term, with each
contribution treated equally, i.e. aé%(r) = 1. It is worth
noting that with the immersed setup employed, the impact
of beam directivity is minimal, with attenuation and beam
spread dominating the spatial variation of response within
the region of interest. This is accounted for using the spatial
correction mentioned in Section II-C of the paper, with the
detail provided in reference [13]. Lanczos interpolation (using
the 3-lobed Lanczos-windowed sinc function) was used to
interpolate the discretely-sampled FMC data [15] to the correct
delay given by Eq. 1.

The multi-view TFM algorithm [6] utilises a ray-based
model of wave propagation to generate different views of
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Fig. 2. Examples of direct (L-T), half-skip (L-LT) and full-skip (TL-LT)
views. The view name denotes only the modes utilised within the specimen
for each leg within the respective transmission or reception path.

the same physical region from a single FMC dataset. These
views aim to utilise ray paths which maximise the viewing
angle of any particular defect, making visible defect responses
across these views more likely. By increasing the viewing
angle range through considering multiple ray paths, this can
avoid the need to physically relocate the array to achieve a
similar viewing range. Not only does this increased viewing
range make a small defect more likely to be seen, but it also
enables a large defect to be examined from multiple angles,
with features which may be invisible due to an insignificant
reflection (or shadowing from a different part of the defect)
in one view appearing in another. The terminology used to
represent the different ray paths and wave modes (transverse,
T, and longitudinal, L) is taken from [13], [16]. Views can
be considered as direct, half-skip and full-skip, as shown in
figure 2. A skip path denotes a single reflection off of the
specimen backwall, either for the transmission ray path or
reception ray path. A full-skip view is one whereby both the
transmission and reception paths are via the backwall, whereas
in half-skip views only 1 of the 2 paths have travelled via
the backwall. For the dual medium setup considered, there
are 6 potential outbound paths to arrive at a point within the
specimen interior since a mode conversion (between 7' and
L modes and vice versa) can occur at a solid/fluid boundary.
Since the same holds true for the reception paths, this results
in 36 combinations of transmission and reception, representing
36 views. However, due to reciprocity, only 21 are unique
and only these 21 views are considered in this paper with
the notation of [16]. A representative example of multi-view
TFM images obtained from a single FMC dataset captured on
a stainless steel sample (the full details of which are provided
in section IV-A) is shown in figure 3. Two key points are

evident from this example. Under the array (z <40 mm) many
views are contaminated by artefacts. Artefacts are due to a
signal response from another ray path appearing in the current
view and reconstructing at the wrong point. They may occur
throughout the image extent, but are most prevalent under
the array in half-skip and full-skip views, where the direct
path backwall reconstructs. Thus, any data fusion process
using these views must consider artefacts as contamination to
be avoided or eliminated otherwise the fusion algorithm will
simply combine the noisy artefacts and pollute the information
from cleaner views. The example presented in figure 3 contains
a stress corrosion crack. This crack is V-shaped and located at
approximately x =65 mm (see figure 4). The second point to
observe from this example is that the defect response varies
between views due to the ray paths for different modes being
shadowed or visible. In the example views such as LT-T and
TL-LT having a good response towards the leftmost fork whilst
the direct views L-L and T-T have the strongest response to the
rightmost fork. Indeed in T-T the response to the leftmost fork
is barely detectable above the background noise. As such, no
single view provides a complete picture of the defect, making
the sizing of the defect from a single view problematic and
highlighting the need for data fusion.

C. Creation of input data for fusion

Information-based data fusion requires knowledge of the
signal-to-noise ratio (SNR) at every point in each multi-view
image to merge the individual views in an advantageous man-
ner. The noise level varies both between views and spatially
within individual views, due to factors such as attenuation and
beam spreading. An efficient procedure for the quantification
of both random and grain noise was presented in [13] and is
only briefly summarised here. Following the method outlined
in that paper, random noise was found to be significantly lower
in amplitude than coherent grain noise and is not discussed
further. A single FMC dataset obtained from a pristine region
of a component is utilised for grain noise quantification and
artefact masking. A mask function for the i*" view, m;(r), is
defined as 0 in artefact regions and 1 in artefact-free regions. In
a pristine specimen, the image in the m;(r) =1 region should
contain only grain noise, and this is the hypothesis behind the
automated process to identify artefacts and characterise grain
noise. The basic principle (applied separately to each view) is
the iterative growth of the m;(r) =0 region until the statistical
properties of the image in the m;(r) =1 region are those
expected from speckle noise. The spatial variation in mean
speckle amplitude within each view, which is predominantly
caused by attenuation and beam spreading, is approximated
by a log-linear function of position. At each iteration, the
image intensities in the m;(r) =1 region are fitted to such
a function and then multiplied by its reciprocal, ¢;(r). If no
artefacts are present, the result of this multiplication should
be speckle with a Rayleigh distribution of intensity that is
spatially uniform with Rayleigh parameter o;; if this is not the
case, the m;(r) =0 region is expanded to include the highest
normalised intensities and the process repeated. Once c¢;(r)
and m;(r) have been determined from the pristine dataset, the
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Fig. 3. Experimental example of the 21 unique TFM views (in dB) for a stainless steel sample containing a stress corrosion crack, considering only direct,
half-skip and full-skip ray paths. The backwall is denoted by the red dashed line in each view. The defect is located at approximately x = 65mm and the

black box outlines the region of interest for this sample.

masked and corrected images for subsequent measurements
are calculated as z;(r) = c¢;(r)m;(r)|;(r)]. The number
of views contributing data to each point is also recorded as
n(r) =3, m;(r).

In addition to the noise level, the expected signal level in
each view is also required. Thus it is necessary to model
a representative defect to achieve a suitable expected signal
intensity. Since TFM image reconstruction is undertaken in
2D, only 2D defects (infinitely long in the out-of-plane direc-
tion) are considered. This defect response must be modelled
at a number of positions within the imaging domain so that
a predictable response intensity at all points in the image
can be achieved. Whilst signal prediction can be targeted

towards a specific defect type, this presents two difficulties.
It can significantly increase the complexity of the problem,
for instance a crack-like defect, having a particular length
and orientation, would add two additional parameters to be
investigated, along with its location. Secondly, if a very
specific defect is considered then the sensitivity to alternative
types of defects will be potentially reduced, especially when
defects are large.

Defect modelling can be achieved using analytical models
such as the commercial software CIVA [17]. Here, a single-
frequency ray-based model previously developed by the cur-
rent authors is used [16]. This 2D based model incorporates
directivity, transmission & reflection coefficients and beam-



spread along with attenuation. The attenuation coefficients
are determined from the experimental data for each sample.
The model is used to produce sensitivity maps, F;(r), for
each view, 7, that show the expected amplitude response to
a specified type of defect. Note that the sensitivity output by
the model is scaled within each view by c¢;(r) so that it is
consistent with the experimental data, x;(r). It was shown
that this approximate model predicted the peak amplitude
of the response of small defects to within £3 dB of those
measured experimentally or predicted by a multi-frequency
model (requiring 3 orders of magnitude greater computational
load). The defect modelled for the sensitivity map used here
is a very small side-drilled hole (SDH) with a radius of
0.001 mm. The implicit assumption behind this choice is that
larger defects can be considered as the superposition of the
responses from many such holes. The analytical model utilised
to construct the scattering matrices for a SDH is outlined in
[18]. The use of a scattering matrix corresponding to a small
physical scatterer ensures appropriate scaling between the four
different inbound-outbound modalities (i.e. LL, LT, TL, TT).

The inputs to the data fusion process are E;(r), n(r), o;
and either I;(r) or z;(r) depending on the method.

III. DATA FUSION

With an understanding of the predicted signal intensities,
removal of artefacts and grain noise quantified, different fusion
approaches may be investigated. From a single FMC dataset,
21 multi-view images are obtained. To examine the effect of
the fusion algorithm on combining these 21 views into a single
fused image, three approaches are considered. The first and
most basic fusion approach is to simply take the average of
the uncorrected image intensity values using

In(e) = 5 3010 @)

where N, =21 is the total number of views. Two informed

fusion methods are also considered, firstly fusion based on

equalisation of the noise levels between images and the second

is a matched filter tuned to the representative defect response.
The noise-weighted fusion approach is defined as

IRER (L)
_n(r)zi: o 3)

where the division by n(r) ensures a consistent amplitude
because the number of views with unmasked regions that
contribute to the summation varies by pixel.

The matched filter approach correlates the representative
defect response, F;(r), to the measurement, z;(r), in order
to detect the presence of the former within the latter. This
approach is the optimal linear filter for maximising the SNR.
The matched filter fusion approach is given by

Iy (r)

1 Z xz(r)é?l(r) @

T (r) = n(r) - o;

X 40mm
P A A
A
35mm 30mm
y v
z 29mm
80mm 90mm
Cut Extent
. t | J—L‘L
Micrograph A A
A
X-Ray CT i Y
Defect 35mm 30mm
« o
300mm

Fig. 4. Sample A schematic showing the corroborating data collection zones
surrounding the V-shaped crack. The centreline is located at x = 65mm
relative to the reference element.

TABLE I
SAMPLE A: EXPERIMENTAL SETUP PROPERTIES.

Probe vertical standoff, Z¢ 50.2 mm
Probe inclination angle, 6 15.3°

Water velocity, vy 1485 m/s
Instrument delay, ¢4 580 ns

Specimen thickness, d 29.0 mm
Specimen longitudinal velocity, vy, 5833 m/s
Specimen shear velocity, v 3181 m/s
Specimen longitudinal attenuation, oy, 2 Np/m
Specimen shear attenuation, ay, 8 Np/m

IV. RESULTS

In this section, the three fusion approaches described are
applied to two industrial samples containing large (greater than
2)\) defects. Sample A is a stainless steel plate containing a
stress corrosion crack which has also been investigated using
X-ray computed tomography (CT) and microphotographic
observation. Sample B is a ferritic steel plate with a weld
containing three manufactured defects of specified dimensions
(two cracks and a pair of slag lines).

A. Sample A: Stress Corrosion Crack

The stress corrosion crack (SCC) was grown in a JIS
SUS304 austenitic 150x300%x29 mm thick stainless steel
plate. A schematic is provided in figure 4, showing the
defect location within the sample. For comparison analysis, the
sample was reduced in size as shown in the figure (by the grey
cut extent) before inspection with an X-ray CT machine which
obtained sections along a 90mm region. Finally, destructive,
micrographs were obtained along an 80 mm region, with
21 cross-sections at an interval spacing of 4 mm. During
ultrasonic data collection, the phased array was located to the
left-hand side of the sample centreline (illustrated in figure 4
as Array), with the centreline occurring at x = 65mm relative
to the reference element. The experimental setup parameters
are provided in table I. 84 FMC datasets were collected along
a 126 mm traverse in the y-direction in 1.5 mm increments.
This data collection took 90 minutes.

A representative set of multi-view TFM images for this
sample was shown previously in figure 3. In these images it is



TABLE II
GRAIN NOISE LEVELS PER VIEW (IN DB), NORMALISED BY THE
MAXIMUM LEVEL WITHIN EACH RESPECTIVE SAMPLE.

View Sample A Sample B
L-L -9.5 -6.2
L-T -8.0 -9.8
T-T 0.0 -3.7
LL-L -8.6 -5.6
LL-T -4.0 -4.1
LT-L -6.6 -4.7
LT-T 24 0.0
TL-L -8.8 -6.2
TL-T -14 -5.3
TT-L -6.7 <14
TT-T -3.2 -5.1
LL-LL -5.8 -5.8
LL-LT -12.2 -11.6
LL-TL -9.3 9.2
LL-TT -11.3 -12.0
LT-LT -11.8 -10.2
LT-TL -6.2 -6.0
LT-TT -9.1 -10.1
TL-LT -10.0 -8.3
TL-TT -11.9 -10.9
TT-TT <13 -8.5

clear that getting an unambiguous understanding of the defect
extent is challenging. For the results presented below, the ROI
in the zz-plane extends from = =[45,75] mm (or [-20, 10] mm
with respect to the sample centreline) and z =[5,30] mm with
a pixel size of 0.05 mm.

In order to determine the grain noise parameters, a single
FMC dataset from a pristine defect-free region was utilised
to determine the spatial variation correction and the Rayleigh
parameter per view. This parameter is used to assess the
relative grain noise between each view, and is presented (in
dB) in table II for both Sample A and B.

Using a density of 7850 kg/m?, an equivalent sensitivity
map is constructed for the 0.001 mm radius SDH defect within
the region of interest and is shown in figure 5. In the figure, it
is evident that the T-T view has the strongest expected signal
intensities, although from table II, this is also the view with
the highest noise level.

With the noise and expected signal sensitivity determined,
the three data fusion approaches are now examined. The fusion
of the 21 multi-view TFM images are shown in figure 6.
From the figure, it can be seen that due to lack of significant
artefacts in the ROI, the basic fusion method produces an
acceptable result. If the ROI was extended this would not
necessarily be true. In the basic data fusion method, the right-
hand fork of the V-shaped SCC is less well defined than the
left-hand one. The same is true in the case of the noise-
weighted fusion algorithm. However, the matched filter fusion
algorithm demonstrates a clear improvement, with both forks
displaying similar intensities. The SNR of the matched filter
is also better than the other two fusion approaches as shown
in figure 6e. The L-L view is the best individual view for
this particular defect. It has a better SNR than any of the
fused images but does not provide good definition of the left
fork of the SCC, highlighting that a single view is poor for
characterising large defect extent. Also, the selection of the L-
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Fig. 5. Sample A sensitivity map (in dB) for a 0.001 mm radius SDH. These
expected value maps have been scaled by ¢;(r). Values are normalised to the
overall maximum scaled sensitivity.

L view requires it to be manually identified as the best view.
All three of the fusion algorithms can be adversely impacted
by defect-based artefacts, as shown in figure 6e, which has
resulted in a 3rd peak at x = 52mm. This defect-based artefact
is most evident in the corresponding region of the basic fusion
method (figure 6a). The right-fork artefact originates from
the TL-T view, with the weaker left-fork artefact originating
from the TT-T view. The matched filter has performed better
by suppressing the left-fork artefact of the V-shaped SCC.
However, the intensity of the bottom right fork in the matched
filter case compared to the other fusion methods is lower.
This is due to some relevant defect information being masked.
Masking is also evident in the top left corner of figure 6d.
Thus, where the artefact suppression corresponds to a defect
location, the fusion process relies on other views providing
sufficient information. Also, if the number of views is limited
in part of the image, the masking transition may be evident.
As the results in figure 6 are representative for the three fusion
algorithms, only the matched filter is examined hereafter.
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A representative subset of cross-sectional micrograph ob-
servations of the V-shaped crack are presented in figure 7, to-
gether with the corresponding ultrasonic matched filter fusion
and L-L view images. The ultrasound data has been normalised
based on the maximum intensity present in the respective 2D
cross-section. The X-ray data for the same locations are also
included. For y locations where the cross-sectional micrograph
lies between ultrasonic data points, Lanczos interpolation is
again utilised to interpolate the ultrasonic data. The datasets
from the three modalities were approximately co-registered by
manually translating each dataset as a whole until a reasonable
match was obtained. From the figure, it is evident that both
the X-ray CT and ultrasound are managing to qualitatively
image the full crack extent, at least for the matched filter
fused images. The leftmost fork of the V-shaped crack is
unreliably detected with the L-L view. The X-ray CT data
has been processed to improve defect visibility. A moving
average (in the y direction) was utilised to reduce noise, with
a window size of =1 mm. Finally, the pixel intensities were
normalised by their average value when no defect was present
in the image, to remove spatial variation within the image. This
average value was determined by using the initial and final
Smm of data, where no defect was visible. Qualitatively, the
X-ray CT data is still extremely noisy, making determination
of the crack extent challenging at best. From the figure, the
L-L view is clearly outperformed by the matched filter and
it is therefore no longer considered suitable for quantitative

analysis of this sample. This clearly demonstrates the benefit
of fusing all views and not relying on a single best view.
The crack sizes, measured ultrasonically using the dB drop
methodology [19] for selected dB thresholds is presented
for the matched filter in table III. To determine the crack
extent for each threshold, the left and right forks are analysed
independently. To separate the two forks, the data is split at
the midpoint, approximately £ = 65 mm. Prior to splitting,
the intensity values are normalised per image, thus treating
each 2D slice as an independent snapshot of the complete
crack. For each fork, the smallest possible rectangular box
in a certain orientation is then fitted that encloses values
exceeding the threshold (relative to the overall image peak)
in the fork. This is repeated as the box orientation of the box
is changed. The length of the longest box across all angles
is used as the measure of fork length. From the table, it is
apparent that both the —12 dB and —18 dB thresholds can
provide good agreement. The root-mean-square (RMS) error,
compared to the micrograph data, is 6.5, 3.3 and 3.4 mm for
the —6, —12 and —18 dB thresholds respectively. However,
whilst this absolute error metric is similar for the —12 and
—18 dB thresholds, it is necessary to consider their respective
bias and scatter. The standard deviation error (relative to the
micrograph data) is 3.4 mm for the —12 dB threshold and
1.7 mm for the —18 dB threshold. There is no significant
bias for the —12 dB threshold, with a mean error of 0.2 mm.
The —18 dB threshold has a mean of 3.0 mm, displaying an



TABLE III
SCC DEFECT CHARACTERISATION, USING THE MICROGRAPH (MG) FOR
COMPARISON BETWEEN THE RESULTS OBTAINED FROM THE MATCHED

FILTER.
Left fork (mm) Right fork (mm)
Slice | MG -6dB -12dB -18dB | MG -6dB -12dB -18 dB
B 5.9 0.5 5.7 8.8 6.8 9.1 10.7 11.9
E 112 74 12.4 13.5 [ 123 11.6 13.3 15.4
G 122 11.7 13.7 17.3 | 13.5 132 16.1 17.3
I 109 64 10.1 142 | 129 144 16.3 17.0
M 108 1.2 7.5 109 | 152 0.0 15.2 16.1
(0] 11.7 55 11.9 13.1 141 9.8 16.0 17.1
Q 10.5 1.1 5.1 11,5 | 11.3 0.0 3.0 13.0
T 5.5 53 6.7 9.1 4.7 0.5 8.9 11.0

oversizing bias. However, the micrograph data itself cannot
be seen as a ground truth, as it likely underestimates the
crack extent. Therefore, since some apparent conservativism
would be preferential from a structural integrity perspective
to an increased scatter and undersizing (e.g. slice Q), the
—18 dB threshold provides the best compromise. Decreased
characterisation accuracy is observed at the crack extremities
(along y axis). This is believed to be due to the 15 mm
length of the array elements in the y-direction; the size of
the crack in the xz plane varies rapidly in the y-direction
near its extremities resulting in blurring of the response in the
ultrasonic imaging plane and inaccurate sizing. Still generally
excellent performance is seen from the fused ultrasound data.

B. Sample B

The second specimen, Sample B, is an approximately
40 mm thick ferritic steel plate, containing a double V weld
with three embedded defects. A drawing of the defect locations
is shown in figure 8. Defects a and c are cracks in the weld,
whilst defect b is a pair of slaglines, one above the other.

The surface of the double V weld has been dressed to level
it, relative to the overall plate surface, in an attempt to produce
a smooth continuous flat frontwall and backwall. However,
ultrasonically significant surface variation is still present, with
local deviation present in the block close to the weld. In
practice, real components may not have perfectly flat, planar
surfaces and it may not be permissible to machine flat surfaces
to aid inspection. Sample B is inspected in its as-supplied state
and is used to demonstrate that the procedure can adapted
to accommodate non-planar surfaces. As neither surface can
be adequately modelled as a flat plane, it is necessary to
determine the actual surface profiles prior to their use in
multi-view imaging. As for Sample A, the specimen properties
are determined in a region of the plate where the front and
back surfaces are parallel with a known (measured) thickness
between surfaces. These experimental setup properties are
provided in table IV.

The procedure for curved surface determination is as fol-
lows. The front surface is extracted from a single-medium
TFM image generated based on the water velocity vy, with
the image covering the region immediately below the array. At
each x-position within the TFM image, the maximum ampli-
tude response from a 1D convolution kernel is calculated and

TABLE IV
SAMPLE B: EXPERIMENTAL SETUP PROPERTIES

Probe vertical standoff, Zg 50.1 mm
Probe inclination angle, 6 12.8°

Water velocity, vy 1473 m/s
Instrument delay, ¢4 425 ns

Specimen thickness, d 40 mm
Specimen longitudinal velocity, vy, 5877 m/s
Specimen shear velocity, v 3227 m/s
Specimen longitudinal attenuation, oy, 3 Np/m
Specimen shear attenuation, o 8 Np/m

denotes a potential frontwall location at that z-position. The
triangular kernel is utilised as a smoothing operator, producing
an average weighted response along the z-axis. Using this
kernel approach provides control over the level of smoothing
and locality, through use of a single parameter, namely the
length of the filter. For a z location zj, with a support radius
of 0.lmm, the kernel is defined by K(u) = (1 — |[u]),
with bounded support for |ju]| < 1 and u = z(r) — z).
Spurious surface points are removed by only considering those
with an amplitude within 12dB of the image peak intensity.
This is intended to remove points which have a limited
signal response due to either the surface geometry or element
directivity. In the single-medium images of the front surface,
the TFM resolution in the x and z-directions were 0.05 mm
and 0.025 mm respectively, with the increased z resolution to
provide improved accuracy whilst minimising computational
cost. A traverse of the sample in the x direction provides a
series of (possibly overlapping) potential front surface points.
These surface points are combined with a smoothing function
based on robust local regression (RLOESS) with a 10% span.
To ensure good coverage, the overlap between consecutive
imaging positions was no less than 50%. A similar method
has been presented in [20]. With the front surface defined, the
back surface is now characterised in a similar manner, with the
single-medium TFM replaced by the longitudinal direct mode
TFM image (L-L) calculated using the measured front surface
position. As before, only the region under the array is imaged
at each location. An example of this procedure is illustrated
in figure 9 for the front surface. For 3D imaging, data was
collected at an interval of y =1.5 mm along a 270 mm scan
traverse. The 3D surfaces can be seen in figure 10. From the
figure, although each y position is extracted independently,
agreement is evident between consecutive positions for both
surfaces, suggesting the process is working effectively. The
ultrasonically measured thickness of Sample B was found to
deviate from -1 mm and +0.2 mm to the nominal thickness,
d, within the region considered.

Due to the high-resolution in y and the secondary traverse
in x for surface extraction, the total number of FMC datasets
captured for Sample B exceeded 3,500. At each position, two
FMC datasets were obtained, using adaptive gain to avoid
over-saturation of the front surface and round-off error for
the back surface. In total, data collection required 34 hours,
therefore an additional FMC dataset was periodically acquired
every 15 mm along y traverse with a known Az =10 mm
to monitor the speed of sound changes in water due to
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with their locations indicated in (a).

temperature. This velocity varied between 1467-1473 m/s
over the collection period, with linear interpolation between
monitored points used in the 3D reconstruction.

The relative grain noise parameters obtained from a single
FMC dataset on a pristine, defect-free region are presented
in table II for a ROI of z =[80,120] mm and z =[2,
37.4] mm. A representative set of multi-view TFM images
from one FMC dataset is presented in figure 11 for y =57 mm
with defect crack a present. As for Sample A, the L-L view
appears to provide a reasonable image of the full extent of
the crack, although indications from the crack are present
in the majority of views. Again, understanding the extent of
the defect by manually interpreting information from multiple
views is challenging.

The interior of Sample B is shown in figure 12. In the
figure two images are presented. The first is the fused view
obtained from the matched filter algorithm, and the second is

the L-L view. Both images are normalised to their respective
peak defect intensity within the 3D ROI, and three isosurfaces
at 6dB intervals are utilised to visualise the interior (i.e. -6,-
12 and -18 dB). From the figure, it is evident that the three
defects would have all been detected using the matched filter
fusion algorithm, while in the L-L view the lower slagline is
not detected. For defect a, the matched filter has excellent
visualisation of the crack whilst the L-L view has a less
obvious response which could be misinterpreted as a smaller
void like feature rather than a crack. For defect ¢, the lower
tip diffraction response dominates, with the expected specular
response not evident in either the matched filter result or the
L-L view.

By examining the three defects in isolation, and normalising
based on each local defect amplitude, as shown in figure 13
for a representative vertical cross-section of each defect, it
is possible to clearly see the improvement that the matched
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Fig. 8. Schematic of Sample B, a ferritic block containing three defects.
Defects a and c are vertical cracks 8-10mm in length and defect b is twin
slaglines

filter provides. In two of the three defects, the matched filter
outperforms the L-L view by improving the signal response
along the full defect profile. From the figure, the profile for
defect a has typically 6-10 dB improvement whilst for defect
b the lower slagline peak intensity has been improved by
15 dB. The performance improvement of the matched filter
fusion for defect c is negligible, but equally importantly it is
not degraded. This is due to other views making a limited
contributions to the final image as a result of their poor
SNR. These other views however do have some backwall
artefacts which are not masked as the back surface has differed
sufficiently from the training dataset to render the masking less
effective. This is responsible for the minor increase in noise
present in the matched filter beyond z =25 mm.
Characterisation of the crack length in the xz plane, based
on the dB drop method, is impacted by the strong diffraction
response. In the case of defect a elevated signal responses
occur along this crack length. For defect c, the signal response
is more dependent upon the chosen y location, as evidenced
in figure 12. The true nature of these manufactured defects,
especially the two cracks, is unknown. However, because their
tip diffraction responses in direct views are strong compared to
their specular responses in half skip views, it is believed that
they are rough. This again highlights the additional insights
that the data fusion can provide on the nature of large defects.
Quantitative characterisation of the three defects is pre-
sented in tables V and VI for the size and centroid location
respectively when compared to the specified manufactured
values as given in figure 8. These properties are determined in
the same manner as for Sample A, with the rectangular box
fitted around the values exceeding the specified threshold. The
centroid of this box is used for the calculated defect centroid.
From table VI, there is very good agreement between the
measured defect centroid location and its expected position.
The twin slagline locations have been examined by their con-

TABLE V
SAMPLE B DEFECT CHARACTERISATION: SIZE (MM) IN 2z PLANE. FOR
DEFECT b, THE SIZE IS THE CENTROID TO CENTROID SPACING BETWEEN
THE TWIN SLAGLINES IN THE zz PLANE. EXPECTED (E) VALUES ARE
TAKEN FROM FIGURE 8.

L-L Matched Filter
Defect | E | -6dB -12dB -18dB | -6dB -12dB -18 dB
a 10 2.8 3.7 4.9 2.9 3.7 10.4
b 10 - - 12.0 10.5 10.9 11.1
c 10 2.0 2.9 44 1.8 2.7 4.5
TABLE VI

SAMPLE B DEFECT CHARACTERISATION: DEPTH OF DEFECT CENTROID
(MM). FOR DEFECT b DEPTHS ARE REPORTED FOR THE TWO SLAGLINES
(UPPER, by, AND LOWER, by,). EXPECTED (E) VALUES ARE TAKEN FROM

FIGURE 8.
L-L Matched Filter
Defect E -6dB -12dB -18dB | -6dB -12dB -18 dB
a 25.5 25.5 25.5 25.7 25.6 25.6 28.8
by 20.0 20.9 20.9 20.8 20.8 20.6 20.6
by, 30.0 - - 32.8 31.3 31.5 31.6
c 20.0 20.9 20.9 21.4 20.6 20.7 21.4

stituent parts. From table V the 18 dB drop best corresponds
to the defect size for defect a for the matched filter. As noted
previously, the L-L view does poorly in sizing and detecting
defects a and b. Rather than sizing the slaglines, which are
of unknown size, the centre-to-centre spacing is reported. The
matched filter shows excellent agreement with the expected
value of 10mm for all three dB values, although accuracy
decreases marginally as the dB value decreases as the extent
of the slagline is no longer captured as cleanly.

V. DISCUSSION

Two industrial samples, with four defects, have been studied
to examine the advantages offered by data fusion in char-
acterising large defects. The matched filter fusion method,
with its generic targetting of defects through use of a very
small SDH defect for the expected signal, has shown that
the combining of multi-view TFM images can significantly
improve the quality and ease of visualisation of the whole
defect profile. Obviously, as this is aiming generically, there is
further potential for improving the matched filter response by
tailoring the fusion process to the expected defect. However,
an additional complication would then be introduced. Consider
a non-circular defect (say a generic short crack segment), for
each orientation angle used an expected defect, would result
in a different fused image. This would then require a strategy
to fuse the fused images for each orientation to obtain a single
image.

The time required to undertake the fusion component in
this current generic case is trivial (less than 1%) compared
to the current rate-determining step which is the time taken
to produce 21 TFM images from one frame of FMC data.
This assumes that the sensitivity maps can be produced a
priori. Otherwise, the sensitivity images require the same
computation as TFM images, introducing an additional burden.
However, since an inspection is typically specified in advance,
this would not normally be an issue.
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The noise quantification procedure described in section II-C
assumes that the material microstructure is spatially uniform.
In the case of Sample B, the ROI contains both parent and
weld material, which have different microstructures leading to
different image noise levels. This effect is visible in the T-T
view in figure 11, where the weld region has lower noise than
the parent material. If necessary, a more sophisticated noise
estimate can be made that takes into account known material
heterogeneity. In this particular example where all defects are
in the lower noise region, the measurable effect of doing this
is negligible, but it would be potentially significant if defects
in both parent and weld material were present in the sample.

Noise quantification also relies on the use of a representative
defect free dataset(s). Only a single dataset has been employed
in this work, although Sample B with its varying specimen
surfaces may have benefited from updating of the mask. This
surface variation also impacts on the sensitivity map. For
the results presented, the sensitivity map was constructed
once, at the same location as the noise calibration sample.
Sensitivity maps can be readily constructed for each local 2D
surface profile. However, since these sensitivity functions are
smooth and slowly varying, a slight change in geometry is not
going to make much difference. Whilst this was investigated,
the 3% thickness variation in Sample B had a negligible
impact on the results and is therefore not presented. With

the mask, the slight geometry changes result in expected
artefact locations varying slightly. A practical solution to
this issue is to measure/estimate the expected deviations in
specimen geometry and then dilate the mask to accommodate
the resulting expected variation in artefact positions.

Image registration plays a key role in the abilities of a data
fusion algorithm to combine relevant data in a manner which
improves detection capabilities. Whilst this work has assumed
that the image registration has been achieved to an acceptable
degree through ultrasonically measuring variables such as the
specimen velocities, it is possible to account for image regis-
tration issues through combining nearby pixel information into
resolution elements (resels). This would degrade the apparent
fused image resolution, although that resolution is illusory in
situations of poor registration. Combining pixels into resels
should only enhance detection although it may degrade overall
SNR [11], leading to decreased overall detection performance
(e.g. worse probability of false alarm for given probability of
detection or vice versa). This resel combining could be an
additional step when image registration is less than ideal.

Since characterisation of the defects is the focus in this
work, the data fusion approach here has focused on image-
based filtering. An alternative probabilistic approach is one
whereby the TFM images are converted to probability values
(p-values) prior to fusing. Using the statistical noise distribu-
tion (section II-C), signal-like intensities are then examined
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Fig. 10. Extracted 3D surfaces along y = 270mm traverse: (a) front wall;
(b) back wall. The black line denotes the centreline of the double V weld
along which the defects are located relative to z =0 mm in (a) and z = d in
(b) using the black dashed line.

on the likelihood of not being noise, i.e. novelty detection.
Methodologies for combining p-values have been widely
studied [21], [22]. However, the limitation of equating p-
values based on a noise response rather than a signal response
introduces complexities when sizing the defects themselves as
established sizing methodologies can no longer be used and
thus is not examined in this work.

VI. CONCLUSION

Maximising the visualisation of large defects through data
fusion of multi-view TFM images has been outlined. Three
data fusion methodologies were examined, namely the naive
sum, the micro-structural noise-weighted sum and the matched
filter. In the first method, no prior knowledge is utilised
when combining the data. In the second, only micro-structural
noise information is included whilst the matched filter uses
a priori knowledge on the expected signal response together
with the noise information. Increasing the foreknowledge was
shown to provide meaningful benefit, with the matched filter
providing the best results, with significant improvements over
a single view for three of the four defects examined. Whilst a
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Fig. 11. Multi-view TFM images (in dB relative to the peak back wall
response in the L-L view) of defect a (at y =57 mm) within Sample B.

priori knowledge of a defect’s signal response can be tailored
to a specific defect type and orientation, this work utilised
an analytical model for a small radius (0.00lmm) SDH,
representative of a generic omni-directional point scatterer
whilst maintaining relative scattering between the LL, LT, TL
and TT inbound-outbound modalities from the scatterer. This
enabled each TFM view to be combined on a pixel-by-pixel
basis, weighted by its expected SNR in each view. To avoid
non-defect signals contaminating the fused image, a masking
process, based on a single defect-free training dataset, was
also employed for the two fusion methodologies utilising noise
information. This mask is a useful by-product of the micro-
structural noise quantification procedure.

Obtaining the necessary a priori knowledge for the matched
filter required only a single dataset for the noise parameters
and a single simulation for the expected signal, per experimen-
tal setup. Even for the second sample, which demonstrated



z (mm)

-18

z (mm)

(b)

Fig. 12. 3D images of Sample B interior: (a) fused result using matched
filter; (b) L-L view. Isosurfaces are plotted at -6, -12 and -18dB relative to
the peak defect response in each image.

irregular surface geometry and a 3% thickness variation, a
single dataset was sufficient, with the biggest (yet still minor)
impact evident on the mask effectiveness for defect c of
Sample B.

The proposed method has been described as a characteri-
sation rather than a detection tool. However, since the fused
image can be generated rapidly from FMC data, it may also
be used for defect detection. An obvious practical example
is weld inspection in a configuration similar to that used
for Sample B. Here the array is configured so that the ROI
encompasses the complete weld cross-section and the fused
multi-view images from a scan provide complete volumetric
coverage of the weld. This means that the same data can be
used for both the detection of defects and their subsequent
characterisation. This is particularly relevant in cases such
as weld inspection, where an oblique incidence scan is often
performed along the length of the weld anyway.

Image registration was controlled in this work through
determination of the experimental setup parameters, e.g. lon-
gitudinal specimen velocity, using the training dataset rather
than relying on book values. For the second sample, it was
also necessary to accurately measure the front and back
surfaces prior to forming the multi-view TFM images. Without
accounting for this surface geometry there was a significant
mislocation of defect responses and it was observed that this
degraded the matched filter considerably. This impact varied
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throughout the imaged region of interest and primarily affected
the two weld crack defects in this case due to the weaker
specular components.

The matched filter approach to data fusion outlined in this
paper is shown to be particularly useful when dealing with
large defects, as the whole of the defect extent is typically not
fully visible from one particular imaging modality, as shown
for the SCC in Sample A, where one fork of the V shaped
crack produced a weaker response (figure 7). Overall, data
fusion provides a systematic and robust way of combining
information from multiple views into a single image that
provides a better representation of the true extent of a defect.
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