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Abstract—Computational offloading is a strategy by which
mobile device (MD) users can access the superior processing
power of a Multi-Access Edge Computing (MEC) server network.
In this paper, we contribute a model of a system that consists
of multiple MEC servers and multiple MD users. Each MD has
multiple computational tasks to perform, and each task can either
be computed locally on the MD, or it can be offloaded to one of the
MEC servers. For this system and having global knowledge, we
compute the theoretical optimal allocation that minimises the time
required to complete the computation of all tasks. Subsequently,
we contribute a distributed heuristic algorithm that allows each
MD to independently, and using local knowledge only, decide
how to handle each individual job. Furthermore, we propose
three approaches to decide whether to offload each individual
job, and three mechanisms to determine which MEC server
each task should be offloaded to. We use simulations to evaluate
those approaches in terms of how well they can approximate the
theoretical optimum. The proposed heuristic algorithm is tested
on a range of experiments, and the results demonstrate that the
heuristic algorithm can produce reasonable quality solutions.

Keywords—Multi-Access Edge Computing, computation of-
floading, heuristic algorithm, theoretical optimal.

I. INTRODUCTION

AS IT developed after 2000, the reliance on mobile devices
(MDs) are increased as they can provide convenient

services such as the ability to communicate with people almost
anytime anywhere, greater access to modern apps and services
and the ability to accept payments wirelessly. However, due to
limitations of MDs in terms of battery life, limited computing
power and requirement for executing complex application is
continuously increasing. Therefore, recent research advances
in computational sciences are looking into ways to optimize the
mobile users’ Quality of Experience. Computational offloading
is a problem-solving technique that addresses the limitation
of available resources in MDs. The key advantages of using
computational offloading are efficient power management,
fewer storage requirements and enhanced user experience [1].

Several computational offloading approaches exist in the

literature, and some of these have been demonstrated in real-
life applications. One of the well-known strategies is Cloud
Computing [2]. This approach has its merits and limitations.
For example, a fundamental flaw of the Cloud paradigm is
the remote location, which resulted in excessive latency and
low bandwidth issues. As a result, latency-sensitive mobile
applications, such as augmented reality, facial recognition,
interactive gaming and natural language processing, so on
offload to the far-off cloud may not be the ideal solution [3].

Recent approaches to computational offloading are focus-
ing on bringing computational services closer to the mobile
user in the form of MEC. MEC networks offer improved
solutions to real-time and delay-sensitive mobile applications
as the proximity of cellular networks [4]. A key challenge in
making use of the MEC paradigm is determining an optimal
schedule of offloading the computational jobs to MEC servers.
The schedule needs to strike a balance between available
MD resources, MEC computational capabilities as well as
the capacity of the network. Published work on offloading
between MDs and Edge Computing or Mobile Cloud Com-
puting servers has not fully considered optimal scheduling of
multiple jobs from a single MD or multiple MDs offloaded or
processed locally [5]–[17]. Previous work from the authors on
MEC computation offloading focused on how the advantages
of offloading from MDs were determined by investigation
of relationships between several important parameters: the
computing power of MDs and MECs, communication links,
size and complexity of jobs to be offloaded [18].

In this paper, we propose a computational offloading algo-
rithm wherein we seek to minimise the completion time of all
jobs in a multi-user multi-MEC set up. The contributions of
this paper are twofold:

• A heuristic algorithm is proposed, which is suitable
for distributed deployment at the MDs, uses local
knowledge to handle each individual job and is able
to approach a good quality solution.

• Different approaches to determining whether to of-
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Figure 1. The model of computation offloading in a MEC network.

fload each job and selection mechanisms for the MEC
server to which a job is offloaded are proposed and
evaluated.

The remainder of the paper is organised as follows. Sec-
tion II presents the problem formulation that has been devel-
oped to minimizing the global completion time for multiple
offloaded tasks. Section III shows the outline scheme for the
heuristic algorithm for computation offloading and all the
different approaches that were developed with three strate-
gies to allocating offloading probabilities. Section IV shows
numerical results simulations on job completion times with
single or multiple MDs offloading to multiple MEC servers.
Section V discusses the performance of the algorithms. Finally,
Section VI concludes the work and explores possible fur-
ther developments of MEC networks offloading computational
tasks from MDs.

II. PROBLEM FORMULATION

This section presents a mathematical model for computa-
tional offloading. A typical multi-user MEC network with a set
of MDs, each with a given number of job requests, is shown
in Fig. 1. The connections between mobile devices and the
MEC servers represent the transmission channels that are used
for communicating requests. The symbols used in Sections II
and III are defined in Table I. Let MD denote the set of mobile
devices. Let Jk

i denote the ith job on the mobile device k,
respectively. Also, let MEC represent the set of MEC devices
available for the data requests from the given set of mobile
users. Note that every MD is independent of the other and
computation tasks offloaded on the MEC servers are processed
on first in, first out basis.

Let uj,c be the binary variable that models the offloading of
a job j on MEC c, respectively. The binary variable is defined
as follows:

uj,c =

{
1 if job j is offloaded to c,
0 otherwise

(1)

Table I. NOTATIONS USED IN THE PAPER.

Symbol Definition

i ∈M {i = 1, . . . , k} set of mobile devices

j ∈ J i
s {s = 1, . . . ,mi} set of jobs on mobile

device s

c ∈ C {c = 1, . . . , n} set of MECs

mi Number of jobs submitted by MD i (bits)

Xi
j Data size of job j on MD i in bits

Xc
j Data size of job j on MEC c in bits

λij An application on the MD i in
bits/instructions

λcj An application on the MEC c in
bits/instructions

αi The computing capability of MD i in in-
structions/sec

βc The computing capability of MEC c in
instructions/sec

TMD
i Total computational time to execute job j

on MD i in sec

Ti,c,j Transmission time of offloading job j from
MD i to MEC c in sec

TMEC
c Total computational time to execute jobs on

MEC c in sec

π Proportion of data size reduction after pro-
cessing on MEC c

Tc,i,j Receiving time of offloading job j from
MEC c to MD i in sec

T Total
c Total offloading time of job j in sec

Γi,c The link speeds between MD i and MEC c
in bits/second

Lc Loading on MEC c in bits

Tc Computational time on MEC c in sec

P i
j Probability of job j on MD i

ODD Offloading decision based on data size

ODFP Offloading decision based on fixed proba-
bility

ODPD Offloading decision based on probability
distribution

MR Random allocation of MECs

M J MECs allocation based on job size

MT MECs allocation based on computational
time



where Ji ∩ Ji′ = φ ∀ i, i′ ∈ M i 6= i′.

From Eqs. 2a, 2b, 2c, 2d, we can get the absolute values
for all the sets J , M , C and Γi,c for the MD i and the MEC
c are denoted as follows:

m =| J |=
k∑

i=1

mi (2a)

|M |= k (2b)

| C |= n (2c)

| L |= 2(i× c) (2d)

Let Xi
j denote the computational data (in bits) as the size

of input data that needs to be processed from an application
that is running on MD i at λij (bits per instruction). In the
following, we provide equations for calculating the local and
remote computation time of a job.

1) Computational processing time on a mobile device: Let
αi be the on-board processor speed of MD i in instructions
per second (IPS). The time to compute the job on MD i is
given as follows:

TMD
i =

∑
j∈JiX

i
j(1−

∑
c∈C uj,c)

αiλij
(3)

2) Computational processing time on a MEC: Let Xc
j

denote the computational data (in bits) as the size of input
data that needs to be processed from an application that is
running on MEC c at λcj (bits per instruction). Let βc be the
on-board processor speed of MEC c in instructions per second
(IPS). The computational time to process a job on MEC c
server is given as follows:

TMEC
c =

∑
j∈J X

c
jUj,c

βcλcj
(4)

Let γUL be the up-link speed in bits/second. The following
equation gives the time to send the job to the MEC server:

Ti,c,j =

∑
j∈Ji

Uj,cX
i
j

γUL (5)

Let π be the proportion of data size reduction after process-
ing on MEC c. Let γDL be the downlink speed in bits/second.
The links between MD i and MEC c are symmetric, which
means device i can send and receive data to and from MEC c
at the same rate. The receiving time of the processed data can
be calculated as follows:

Tc,i,j =

∑
j∈Ji

πXc
j

γDL (6)

γUL = γDL = Γi,c (7)

Eqs. 4, 5 and 6 can be represented as:

T Total
c =

∑
j∈J X

c
jUj,c

βcλcj
+∑

j∈Ji
Uj,cX

c
j

γUL +∑
j∈Ji

πXc
j

γDL

(8)

A binary variable should respect the following constraint:

∑
j∈Ji

Uj,c ≤ 1 ∀ i ∈M, c ∈ C (9)

When the job is processed locally, the right-hand side of
the equation is equal to zero. When the task is offloaded on a
server, the constraint ensures that it is not offloaded on more
than one MEC server.

III. HEURISTIC ALGORITHM FOR COMPUTATION

OFFLOADING

This section presents a heuristic algorithm that is aimed at
finding a near-optimal scheduling solution for a given number
of job requests from MDs to a given set of MECs. It is assumed
that the MDs communicate key statistics for their requests,
including the number of jobs, job sizes and their computing
power. The scheduling algorithm then proposes a solution for
solving these jobs while minimizing the overall computational
time.

Fig. 2 presents a flowchart of the proposed heuristic
method. J represents the set of all jobs. Following are the
two key decision-making steps in the algorithm:

• Whether to offload a job to a MEC or compute locally
on the MD?

• If the decision from the above step is to offload, then
determine each job to offload on which MEC.

In this paper, a total of nine policies (3 each for the above
two decision questions) are tested. These versions differed for
the allocation of an offloading probability for an individual
job on each MD as shown by (“j ≤ | J |”) in the flowchart)
and the allocation of a MEC server in the network to process
an individual job as (indicated by “Determine the MEC to
offload” in the flowchart). The detail regarding these policies
is provided in the following subsections.

A. The offloading decision

Three different strategies were adopted for allocating the
offloading probability of individual jobs on a MD.



j = 1

j ≤ | J |

Offload job j Mark for local
computation

Determine
the MEC
to offload

j=j+1

Start local
computations

Yes

No

NoYes

Figure 2. Flowchart of the heuristic algorithm for computation offloading.

1) Probability calculations for job offloading based on
data file size (“ODD”): The algorithm follows the formula
of job probability. The algorithm uses the following method
to determine the offloading probability of individual jobs:

P i
j =

Xi
j∑

j∈Ji
Xi

j

(10)

where Ji is a set of all jobs on MD i and Xi
j is the data

size of job j. The motivation here was to bias the algorithm
to preferentially offload the larger job sizes, which would be
most advantageous to reduce completion time on the faster
server processors.

2) Offloading based on a fixed probability (“ODFP”): Each
job has the same probability of being offloaded regardless of
data size; in our experiments, we used a fixed probability of
0.5. The motivation here was to test how giving each job the
same possibility would impact on the total tasks offloaded by
the algorithm.

3) Offloading based on a known probability distribution
(“ODPD”): In this policy, the probability of offloading is kept
fixed for each job on the individually MD. The probability
may be obtained by pre-solving job allocation as a local sub-
problem on an or each MD. A further weighting added that
includes the number of MDs and MECs a system to influence
the probability. The main aim of this policy is that a mobile
device may have a preference for offloading a certain number
of jobs to the MEC server. The resulting probability can be
derived as follows:

P i
j =

OJ
i

T J
i

× TMEC

TMDs
(11)

where OJ
i is the total number of jobs offloaded, TJ

i is the total
number of jobs on the MD i, respectively. TMEC denotes the
total number of MECs and TMDs is the total number of MDs.

In the case when the number of MDs is less than the
number of MEC servers, the formula in Equation (11) is
simplified as follows:

P i
j =

OJ
i

T J
i

(12)

B. MEC allocation of offloaded jobs

1) Random allocation of MEC (“MR”): After a job offload
decision is made, the job is allocated to a random MEC server
{c = 1, . . . , n} in the network without knowledge of how busy
the MEC is.

2) Offloading based on the job size (“M J”): In this of-
floading policy, the jobs are assigned to MECs based on their
current loading. This policy ensures that the next offloading job
is assigned to the MEC that has the least loading. Mathemati-
cally, the offloading is achieved using the following equation:

MECL,Offload = min{L1, L2, . . . , Ln} (13)

where Lc is the loading on MEC c, and is defined as follows:

Lc =
∑
j∈J

Xj,cUj,c

3) Minimum MEC computational time (“MT”): After a job
offload decision is made, the job is allocated to the MEC server
which is calculated to complete job processing quickest. This
policy requires knowledge of a MEC processing capability to
calculate the minimum computational time.

MECT,Offload = min{T1, T2, . . . , Tn} (14)

where Tc is the computational time on MEC c, and is defined
as follows:

Tc = Xc
j × (

1

βcλcj
)

C. Computation of the benchmark theoretical optimum

To validate and to provide a comparison benchmark for
results generated by the heuristic algorithms, linear program-
ming optimization was performed using CPLEX1. Using this

1IBM CPLEX Linear programming problem solver:
https://www.ibm.com/pt-en/products/ilog-cplex-optimization-studio



Table II. PARAMETERS SELECTED FOR THE SIMULATIONS IN ( CASE
1,2 & 3)

Entity Parameter Value Unit

Jobs Xi
j 2-9 (1), 1-7 (2), 1-6 (3) MB

MDs αi 3.60× 109 IPS

MEC1 β1 1.40× 1011 IPS

MEC2 β2 1.40× 1011 (1), IPS

3.68× 1010 (2 & 3)

MEC3 β3 1.40× 1011 (2) IPS

3.68× 1010 (1 & 3)

Network

MD - MEC 1 15 Mbps

MD - MEC 2 28 Mbps

MD - MEC 3 25 Mbps

mathematical model, we compute the theoretical optimum
job allocation. Sub-optimal job allocations generated by the
heuristic algorithms were then compared to this theoretical
optimal allocation to assess the performance of the heuristic
under different combinations of MDs and MEC servers.

IV. NUMERICAL RESULTS

In this section, we investigate the performance of the
heuristics under systems consisting of various numbers of
MDs, jobs and MECs. This explored the scalability of the algo-
rithms and how the methods for assigning the probabilities of
offloading individual jobs varied with increasing job numbers
and total data sizes. Using the estimates of bits per instruction
for nine scientific applications quoted in [19] a value of
2.27×10−3 instructions per bit was chosen for the simulations.
Numerical simulations were performed in this study to explore
the performance of different algorithms before direct testbed
experimentation is performed, as has been demonstrated for
facial recognition and mobile gaming [20], [21]. The model
presented in Section III assumes low memory and CPU usages
because job sizes are small and job numbers per MD are low.

A. Offloading from a single MD (Case 1)

The parameters for this simulation are included in Table II;
the processor speeds were taken from [19]. In the simulations,
fixed link speeds are assumed to be valid for the short times
in which the linear optimization or heuristic algorithms gather
information and identify optimal or sub-optimal schedules for
immediate offloading. Fig. 3 shows combined results from 20
jobs on the single MD. The algorithm was assumed to be run
on the MD or (on a one-to-one basis) server-side.

Offloading based on a fixed probability (ODFP) and offload-
ing based on known probability distribution (ODPD) with three
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Figure 3. Cumulative Distribution Function graphs for heuristic algorithm
outputs of schedule times for Case 1 (1 MD, 3 MEC servers, 20 jobs).

different mechanisms for server allocation (random (MR),
job size (M J) or minimum remaining computational time
(MT) performed far better than the calculating the probability
for job offloading based on data file size (ODD). The best
version of the algorithm with offloading based on probability
distribution with minimum remaining MEC computation time
reached least-time schedules within 1% of the optimum time
as identified by linear programming.

B. Offloading from multiple MDs (Case 2)

The parameters for this network simulation are included
in Table II. In this simulation, 10 MDs attempted to offload a
total of 72 jobs to 3 MEC servers. Fig. 4 shows that the three
different approaches in the algorithms yielded different best
schedule times but that offloading based on known probability
distribution (ODPD) with minimum remaining MEC computa-
tion time (MT) could reach a schedule time only 13% greater
than the optimum value as identified by linear programming.
The variation in performance between the nine versions of the
algorithm was less pronounced than in the scenario of case
1 and all schedules were within 55% longer times than the
optimum as deduced by linear programming.

C. Offloading from multiple MDs (Case 3)

The parameters for this larger network simulation are
included in Table II. In this simulation, 13 MDs attempted
to offload a total of 115 jobs to 3 MEC servers. Fig. 5 shows
that calculating the probability for job offloading based on
data file size (ODD) was much inferior to offloading based
on a fixed probability (ODFP) and offloading based on known
probability distribution (ODPD). Offloading based on known
probability distribution (ODPD) with minimum remaining MEC
computation time (MT) could reach a schedule time within
20% of the optimum value as identified by linear programming.
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Figure 5. Cumulative Distribution Function graphs for heuristic algorithm
outputs of schedule times for Case 3 (13 MDs, 3 MEC servers, 115 jobs).

V. DISCUSSION

With different approaches to determining whether to of-
fload each job combined with selection mechanisms for the
MEC server to which a job is offloaded, a heuristic approach
has been constructed which can closely rival optimum schedule
times deduced by linear programming. In numerical simula-
tions, the best performing algorithm used random probabilities
for job offloading with MEC server allocation according to
minimum-time server availability.

This is the first successful combining of schedule identi-
fication with heuristic approaches. We believe this represents
an advance on previous approaches because it focuses on how
best to partition computation capacity between MEC server
and MD processors. With total task completion time as the
criterion for success, the heuristics now developed can be
flexibly deployed to optimize offloading from a single MD

or optimally use resources in a heterogeneous MEC network.
The heuristic algorithms can be run on individual MDs to
allocate resources efficiently when multiple MDs attempt to
offload simultaneously. It is anticipated that MEC networks
will rely on multiple servers and have back-up processing
power available in case of network overloads. In general, users
of MDs with faster on-board processors will expect to offload
fewer jobs if total completion time is the sole criterion. If link
speeds decrease because of network congestion, an intuitive
deduction is that fewer jobs will be successfully offloaded.
As link speeds increase with the further development of 5G
networks, the advantages of offloading to users of MDs will
significantly increase because data transfer times in 3G and
4G networks greatly exceed server processing times.

The model presented here has simplifications built into the
mathematics so that the performance of different algorithms
was clearly testable. Conclusions drawn from work with sin-
gle offloaded jobs can be readily transferred to multiple-job
schedules when variable link speeds, computational complex-
ity, network congestion and latency are considered [6]. In
general, faster MD processor speeds will not favour offloading
to shorten task completion times but offloading can still be
beneficial from the MD with reduced energy consumption and
increased battery life [6].

Our model “quantizes” the offloading process to either
local or offloaded processing. This is a viable implementation
of a Service-level Agreement (SLA) on a contractual basis
between a user and a service provider. An individual user
would run the heuristic to define an best-option schedule
for that user communicating with a network. A centralized
allocation of tasks could limit job offloading differentially
between MD users but would be compatible with SLA clauses
relating to fair-usage and network congestion avoidance.

VI. CONCLUSIONS AND FUTURE WORK

A heuristic framework is presented in this paper for com-
putational offloading of tasks from one or more MDs to MECs.
In total, nine approaches were devised, which differed in how
the offloading probability for an individual job was calculated
and in which MEC server was then selected for offloading.
Numerical testing of the algorithms explored scenarios with up
to 115 multiple jobs from different numbers of MDs offloading
to MEC servers. Our numerical simulations suggest that the
solution obtained by our heuristic approach is between 1%
and 20% of the global optimal solution obtained by a linear
programming model. It was observed that the best solutions
are obtained by using a known probability distribution for
the offloading decision (ODPD) and choosing a MEC with
minimum solution time (MT).

The heuristic approach presented in this paper only con-
sidered minimisation of the overall computational time. Our
future work is looking into ways of incorporating energy use



and the price cost of offloading to the user to explore multi-
objective optimization, including the impact of running the
heuristic itself algorithms on time and MD energy factors.
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