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Abstract 

The physical, chemical, and biological properties of an aerosol droplet/particle are dependent on the 

morphology of the droplet/particle itself; for example, a liquid droplet will be processed by oxidants 

in the gas phase in a fundamentally different way than a solid particle. Additionally, given their small 

size, aerosol droplets may change phase over timescales in the order of milliseconds (e.g. 

deliquescence or crystallisation). Thus, ability to rapidly and easily estimate the morphology of a 

droplet/particle is critical, especially in the interpretation of complex aerosol processes such as spray 

drying and dissolution. To be reported here is a novel method that uses the forward scattered light 

(~32o < θ < ~58o) passed through a droplet to determine the droplet/particles morphology. The 

algorithm was developed through the qualitative analysis of over one million individual phase 

functions of various particle morphologies. The algorithm can differentiate between four different 

morphologies: homogeneous, core/shell, with inclusions, and non-spherical/inhomogeneous. The 

algorithm is applicable to droplets between ~5 to ~30 m in radius. The rate of phase analysis is 

dependent on the rate in which the light scatter can be collected, in the data presented here a particle’s 

morphology is reported every 10 milliseconds. The accuracy of the phase identification with the 

algorithm proposed in this work is very high (>90%); its utility is strengthened by the high frequency 

of the collection of scattered light, which allows an individual droplet to be probed upwards of over 

100 times per second. Although not absolute on every phase function analysis, when coupled with 
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repetition and high throughput, the algorithm presented here can be a valuable tool to easily and 

readily determine particle morphology in dynamic aerosol systems. 

 

1.0 Introduction 

The importance of understanding the phase behaviour of aerosols for modelling climate (aerosol 

radiative forcing) (Kellogg 1992; Service 2008), health (particulate air pollution/healthcare)(Farkas et 

al. 2017; Haddrell et al. 2017; Hadiwinoto et al. 2018) and industrial applications (spray 

drying)(Amstad et al. 2015; Hadiwinoto et al. 2018) is well appreciated. Sources and environmental 

conditions (e.g. temperature and relative humidity (RH)) dictate the size, composition, and physical 

phase and structure of aerosol particles (Adachi et al. 2010; Adachi et al. 2011). In turn, the interplay 

between these characteristics influences the role of the aerosol in atmospheric processes (scattering 

and absorption of radiation (Adachi et al. 2011; Lambe et al. 2013)) activity as ice nucleating particles 

(Ignatius et al. 2016; Lambe et al. 2011) and human health (deposition, dissolution dynamics, 

hygroscopic growth (Haddrell et al. 2014; Haddrell et al. 2015; Haddrell et al. 2017)).  

The morphology of an individual aerosol particle depends on its chemical composition and on the 

properties of the gas phase surrounding it. For example, inorganic salt particles can be found either in 

a liquid or crystalline state depending on the gas phase RH and on their crystallisation/deliquescence 

RHs (Pandis et al. 1995), and organic particles containing viscous material can be in a liquid, semi-

solid (viscosity above 102 Pa s) or solid state depending on the surrounding RH and temperature (Reid 

et al. 2018). Given their small size and high surface-to-volume ratio, the size and chemical 

composition of individual aerosol particles are dynamic and constantly evolving through interactions 

with the gas phase (Damschen and Martin 1983; Rovelli et al. 2017). For example, this may occur 

through the uptake and loss of water or other semi-volatile organic and inorganic species, and 

heterogeneous chemical reactions with oxidants in the gas phase (Damschen and Martin 1983). 

Indeed, the physical state of a particle itself will affect how it is processed (Wadia et al. 2000), such as 

how the presence of an organic monolayer or shell on the surface of a droplet can affect the mass flux 

of volatile components to and from the particle (Davies et al. 2013). Additionally, heterogenous 

reactivity between the gas phase and the aerosol condensed phase differs for liquid, semisolid and 

solid particles (Wadia et al. 2000). The diffusion rates of molecules within a viscous matrix, such as 

that of secondary organic aerosols, can span over eight orders of magnitude (Price et al. 2014) and 

therefore result in inhomogeneities in chemical composition within a particle (Marshall et al. 2018; 

Song et al. 2016).  Furthermore, the presence of an organic-rich shell or of a monolayer of organic 

surfactants will affect the surface tension of aerosol droplets and their ability to act as cloud 

condensation nuclei (Bzdek et al. 2016). Thus, to fully understand the dynamic behaviour of aerosol 
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particles in these many varied and complex situations, one must have a good understanding of their 

physical structure and the way their morphology changes with time. 

The goal of this work is to provide high time resolution of 10 ms, long time scale measurements of 

evolving morphology for a single particle in response to a change in composition. To do this, the 

dynamic behaviour of individual trapped droplets in the gas phase is probed using elastic light 

scattering. 

Single aerosol particle techniques have been used in the laboratory for refined investigations of the 

chemical-physical properties (i.e. viscosity, hygroscopicity, optical properties, volatility) and 

chemical reactivity of aerosol (Krieger et al. 2012; Marsh et al. 2017b). The ability to track the 

evolution of the morphology of a single particle could provide essential insights into complex 

processing and evolution of particles in all the fields of aerosol science. In a recent study, holographic 

imaging has been used to image the three-dimensional structure of a single levitated particle (David et 

al. 2018). The images collected from this technique are detailed with a spatial resolution of 770nm, 

accurate and can be used to infer much about the physical properties of a particle, but a dedicated 

experimental setup for holography is required. Furthermore, if the droplet is spherical but has multiple 

phases, such as core-shell type structure or with inclusions, holography does not identify the presence 

of these internal structures.  Raman spectroscopy on optically tweezed droplets has been used to 

detect the deviation from a spherical geometry upon coalescence of two aerosol particles (Power et al. 

2013) and to identify spherical droplets with a core-shell morphology (Gorkowski et al. 2017; 2018; 

Stewart et al. 2015). The frequency of these analysis are typically around 1 Hz and up to 0.5 Hz 

(Gorkowski et al. 2017). Despite these examples, there is a clear need for new approaches that allow a 

more comprehensive classification of the morphology of single aerosol particles in a simple, cost 

effective, rapid and reliable way during rapid transformation processes, such as the evaporation of 

water, that can lead to changes in particle morphology. 

There are many ways to trap an individual droplet in the gas phase (with controlled temperature and 

relative humidity conditions) for subsequent probing, such as optical, acoustic and electrodynamic 

(Krieger et al. 2012). The ability to trap an individual droplet in an electrodynamic field and probe 

both its relative mass and absolute radius has been possible for decades, one such trap is the 

comparative kinetic electrodynamic balance (CK-EDB) (Rovelli et al. 2016). The approach utilizes 

droplet on demand dispensers to produce aerosol droplets whose initial diameter ranges from ~60 µm 

to ~30 µm; the starting solution is known, thus allowing control over starting size and composition. 

Once trapped, a laser illuminates the droplet/particle and the light scattering pattern in the near-

forward direction (at a central viewing angle of 45°) is typically recorded. If the droplet is spherical 

and homogeneous, a characteristic elastic light scattering pattern, referred to as “phase function”, is 

produced and it can be described by Mie theory (Mie 1908) (Figure 1A). In the literature, collected 
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phase functions (or the angular positions of the peaks in the phase function) (Davies 2019) are usually 

fitted with a library of Mie theory simulations and the best-fit provides information on the size and 

refractive index of a spherical homogeneous particle.(Reid and Mitchem 2006)  

 

 

Figure 1: Example phase functions for four different particle types. For both A and B, fitted 

phase functions from Mie theory and experimental data are shown. The composition of the 

individual droplets is: (A) water, (B) dodecanol-water, (C) ethylene glycol with polystyrene 

nanospheres and (D) dry sodium chloride. 

The morphology of a particle has also been qualitatively inferred from phase functions (Archer et al. 

2017; Jakubczyk et al. 2004; Kramer et al. 1999; Krieger and Meier 2011; Riefler et al. 2007; Tong et 

al. 2015). If a particle is non-spherical and/or inhomogeneous, the basic assumptions underlying Mie 

theory are not satisfied and the light scattering patterns from such aerosol particles are markedly 

different from the case of a homogeneous sphere (Mie 1908) (Figure 1A). The qualitative form of the 

phase function is characteristic of the morphology of the particle considered (Figure 1B-D). 

Specifically, spherical droplets characterised by a core-shell morphology show peaks in the scattering 

patterns that are similar to the homogeneous case, but a secondary and predictable structure is 

observed in the overall scattering pattern, represented by the evident periodic fluctuations in the 

intensity of these oscillations. In the case of spherical droplets containing inclusions, the intensity of 

the scattered light at a certain angle can be either enhanced or suppressed by the random positioning 
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of the inclusions within the droplet volume. In this case, the resulting phase function presents equally-

spaced peaks that is similar to the homogeneous sphere case but characterised by a less regular 

intensity pattern. Finally, the light scattering pattern arising from a non-spherical/inhomogeneous 

particle (e.g. crystalline salt particles from crystallisation processes) is less structured and intense 

depending on the degree of ‘sphericity’ maintained by the particle during and after the crystallisation 

process. 

In this manuscript, starting from these qualitative observations of the different features that 

characterise the elastic light scattering associated to particles with known and variable morphology, 

we present a robust semi-quantitative protocol to determine the morphology of an individual aerosol 

particle based solely on the form of the phase function. The algorithm presented is based on 

experimental observations of over one million individual light scattering patterns and is capable of 

categorizing the morphology of aerosol particles into four groups: homogeneous spherical, core-shell 

spherical (or spherical with a concentration gradient), spherical with inclusions, or 

inhomogeneous/non-spherical. 

 

2.0 Methods 

2.1 Comparative Kinetic Electrodynamic Balance (CK-EDB) 

The ability to study the dynamic behaviour of an individual droplet with a CK-EDB has been reported 

extensively in the literature (Marsh et al. 2017a; Rovelli et al. 2016; 2017). A drawing of the 

experimental setup can be found in Supplementary Information (Figure S1). 

The reservoir of a droplet-on-demand dispenser (MicroFab) is filled with a solution of chosen 

composition. The application of a square waveform to the piezoelectric crystal results in a 

compression wave that passes through the dispenser’s orifice and initiates the formation of a jet which 

forms droplets of uniform size with each pulse. A DC voltage applied to an induction electrode, 

positioned 2-3 mm from the dispenser tip, which leads to an ion imbalance in the jet, resulting in a 

droplet with a net charge. The presence of this net charge interacting with the electrodynamic field of 

the CK-EDB leads to confinement of the droplet within the null field point. Once confined, 

approximately 100 ms after droplet formation, the droplet is illuminated by a 532 nm laser (Laser 

Quantum, Ventus continuous wave (CW)). A nitrogen gas flow of 200 mL/min at a temperature of 

20oC and a set RH (range from ~0% to >90%) is passed directly over the droplet. As the droplet 

changes size/phase, the electrodynamic field is manipulated to account for these changes and ensure 

that it remains confined within the centre of both the trap and laser beam. 

A CCD camera (Thorlabs) collects the light scattered from the droplet in the near-forward direction at 

a scattering angle of 45o. Images of the phase function, with an angular range from 32o to 58o, are 
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collected every ~10 ms providing high time resolution measurements of particle size and morphology. 

This range was selected as for two reasons: it is  readily accessible to numerous other individual 

droplet analysis devices and the central viewing angle of 45° allows to access the region of the near-

forward scattering that corresponds to the range of applicability of the geometric optics approximation 

(up to 60°) for particle sizing. (Glantschnig and Chen 1981) 

When a droplet is spherical and homogeneous, the absolute radius and refractive index of the droplet 

(using a prescribed relationship between droplet radius and refractive index)(Preston and Reid 2015) 

can be estimated by fitting a collection of time-dependent phase functions with a library of Mie theory 

simulations (as seen in Figures 1A). This method is computationally demanding. Alternatively, the 

absolute radius of the droplet can be inferred from the average angular difference between the maxima 

within the phase function using the geometrical optics approximation (Glantschnig and Chen 1981). 

This approach allows for rapid analysis of each collected frame in real-time. 

2.2 Collective phase function features for different particle morphologies 

As mentioned, changes in the morphology of the particle lead to changes in the light scattering pattern 

(Figure 1). Figure 2 provides a more extensive set of time-dependent examples of how the phase 

function of various particle types evolves during a dynamic change in droplet size (e.g. during 

evaporation). 
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Figure 2: ~2,000 individual phase functions of single particles collected over ~20 seconds for: (A) 

homogeneous sphere (H2O droplet into 94% RH), (B) core-shell sphere (dodecanol-water 

mixture into 50% RH at T=0C), (C) droplet with inclusions (H2O-ethylene glycol mixture with 

450 nm diameter polystyrene beads into dry nitrogen) and (D) inhomogeneous non-spherical 

particle (crystallised NaCl in dry air). While the phase functions shown in Figure 1 are the 

primary structures phase functions for droplets of a given morphology, these cumulative scans 

are referred to as the tertiary structure of the phase functions. In panels A-C, the droplets are 

shrinking, hence the shift of the peaks in the phase functions over time. The colour scale 

indicates the intensity of the scattering in arbitrary units. 

As a homogenous spherical droplet evaporates (Figure 2A, pure water droplet), the reduction in 

droplet size leads to a decrease in the overall scattered light intensity in the phase function. This is 

accompanied by both shifts in the angular positions and separations between the interference fringes 

in the phase function. When considered collectively, these 2,000 phase functions of an evaporating 

homogeneous droplet present a smooth evolution in structure with no irregularities.  

A similar general trend in the evolution of the phase function is observed for an evaporating droplet 

with a core-shell structure (Figure 2B, an evaporating dodecanol-water droplet). This is to be expected 

given that the morphology of a core-shell droplet preserves a spherical geometry; it consists of two 

concentric spheres (water core with a dodecanol shell) with a single interface between them, each 
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with a different refractive index. Like a homogeneous droplet, there is smooth shifts in both peak 

location and width in the phase functions. However, unlike the homogeneous droplet case, 

irregularities in the cumulative structure is observed. These periodic fluctuations in intensity result 

from the irregular structure observed in an individual phase function (Figure 1B). This cumulative 

structure is unique to droplets with a core-shell morphology. 

Droplets that contain inclusions produce complicated and less predictable phase functions (Figure 1C, 

an evaporating water-ethylene glycol droplet containing 450 nm diameter polystyrene beads) as a 

result of the random motion of the inclusions within the droplet volume (Gu et al. 1993; Ngo and 

Pinnick 1994). However, when the time-evolution of phase functions is considered, a semblance of 

regularity in the tertiary structure is observed (Figure 2C); despite the noise caused by the presence of 

inclusions, regular peaks are still present in the light scattering pattern and a coherent evolution is 

seen with time. During the evaporation of water from the droplet (at times <5 seconds), the peak 

position shifts in a similar manner to the homogeneous sphere case. In this particular example, the 

droplet reaches a constant size after ~5 s and the positions of the peaks in the phase function do not 

change. Thus, it is possible to both identify spherical droplets with inclusions from their phase 

function while simultaneously estimating the overall droplet radius, with the angular position of the 

peaks unaltered by the presence of inclusions. An example of how the presence of polystyrene beads 

(450 nm in diameter, initial concentration of 0.014 vol%) within an evaporating water droplet affects 

light scattering is shown in the Supplemental Information (Figure S2), together with further 

discussion on the presence of spherical inclusion on the applicability of geometric optics. 

Non-spherical/inhomogeneous particles, such as a crystalline sodium chloride particle, will 

indiscriminately scatter laser light (Figure 1D) that results in a phase function of no regularity over 

time (Figure 2D), with significant scattering from image to image. This characteristic lack of any 

significant structure in phase function indicates the morphology of the particle, but also makes it near 

impossible to extract its size (Piedra et al. 2019). 

The observation of these general trends for hundreds of individual droplets, collectively containing 

over a million phase functions, were the starting point used to develop an algorithm to predict droplet 

morphology. 

 

2.3 Assigning droplet/particle morphology from elastic light scattering patterns 

There are two components of a phase function that can be exploited to differentiate between different 

particle morphologies. First, the regularity in the angular separation between the peaks in the phase 

function (identified as the vertical red lines in phase functions shown in Figure 3), which we express 

in terms of relative standard deviation, RSD, of the average angular separation. Secondly, the relative 
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amplitudes of the peaks at the given angle, which is evaluated by fitting them with polynomial and 

quadratic curves (see, respectively, the blue and purple curves in the example phase function graphs in 

Figure 3) and by reporting the R2 for the two fits. The order of the polynomial chosen (Equation 1) is 

a function of the number of peaks present in the phase function (Equation 2).  

Eq. 1 Polynomial Fit: y = AxPO + Bx(PO-1) + ……. + Gx + H 

Eq. 2    if (Number of Peaks in Phase Function) > 18, then: 

Polynomial Order = (Number of Peaks in Phase Function)/3 

  if (Number of Peaks in Phase Function) < 18, then: 

Polynomial Order = 6 

These three parameters (correlation coefficients of the polynomial and quadratic fits and RSD) are 

utilized in the morphology assignment procedure defined in Figure 3 for each single collected frame. 

 

Figure 3: Flow chart of the algorithm used to differentiate between particle types. Starting from 

the top, if the given condition described in the diamond is true, the droplet structure is 

described by the term on the right; if the condition is false, the next parameter is considered 

(down). If none of the parameters are true, the droplet is described as a homogeneous sphere. 
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The sequence of the algorithm to assign particle phase is deliberately chosen as shown. The 

irregularities in the angular separation between the location of the peaks in the phase function 

(indicated by RSD > 0.4) is unique to the non-spherical/inhomogeneous morphology and supersedes 

all the other parameters. A poor polynomial fit through the amplitude and location of the peaks (R2 < 

0.98) is unique to the droplets with inclusions, which differentiates it from the remaining 

morphologies. The R2 for the polynomial fit through the amplitude and location of the peaks is high 

(R2 > 0.98) for both the homogeneous and core-shell droplet types and they can only be differentiated 

from the quadratic fit (threshold set at R2 = 0.945). When the overall number of peaks within the 

monitored angular range is below 10 (typically for droplets below ~6 microns in radius), there are 

insufficient features in the phase function to differentiate between a homogeneous and core-shell 

droplet. In this case, the algorithm automatically assigns the phase function to the homogeneous 

sphere category.  

The thresholds (R2 values) used to differentiate between the various particle types are identified 

through a survey of over a million individual phase functions collected for all particle types (Figure 

4A). Typical correlation plots for three particle types are shown in Figure 4B where each dot signifies 

the quadratic and polynomial fits collected from an individual phase function. 

 

Figure 4: (A) Relationship between particle morphology and the correlation coefficients of the 

quadratic and polynomial fits of the peaks amplitudes in the corresponding phase functions 

described in Figure 3; the colour indicates particle type: yellow (inclusions), blue (homogeneous) 

and green (core-shell). (B) Typical experimental data for three individual evaporating particles 

(water – blue, dodecanol-water – green and glycerol with nanospheres – yellow); the colour 

indicates the “real” morphology of each individual particle and rather than the morphology 

assigned with the proposed algorithm at any given point. 

The slight overlap of datapoints belonging to droplets with different morphologies in Figure 4B is 

indicative of the uncertainty associated to the proposed algorithm. In correspondence to the 

boundaries indicated in Figure 4A, there are some cases for which the proposed approach could result 

in an incorrect assignment of the droplet morphology. The data presented in the Results section 
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relative to well-defined model aerosol systems for the four considered droplets morphologies 

demonstrate that instances of misdiagnosis are far less common than the accurate assignments. Thus, 

collecting the phase functions at a frequency of 100 Hz helps to address this issue, as the majority of 

the assignments are accurately made (>90%) and far outweighs the instances of misdiagnosis. The 

accuracy is further improved by grouping the data in time bins and reporting the mode (e.g. the most 

frequently attributed morphology) for each of the specified bin, with a bin size of typically 5 

datapoints; note that binning the data reduces the time resolution (e.g., a bin size of 5 will reduce the 

frequency from 100Hz to 20Hz). The uncertainties associated to such instances of misdiagnosis are 

examined in the Results and Discussion sections. 

 

3.0 Results 

In this Section, data collected for single aerosol particles generated from solutions or suspensions of 

known chemical composition are presented. We use these well-characterised aerosol systems to 

demonstrate the capability of the algorithm discussed in Section 2.3 to discriminate between 

homogeneous spheres, core-shell/concentration gradient spheres, spheres with inclusions and non-

spherical/inhomogeneous particles. 

 

3.1 Homogeneous sphere 

The regularity of a phase function of an evaporating homogeneous droplet (e.g. Figure 2A) results in 

an accurate assignment of the droplet morphology (Figure 5). Data in Figure 5 refers to three systems 

that are expected to be completely homogeneous throughout the droplet evaporation: a pure water 

droplet, a water/NaCl droplet into high RH and a water/glycerol droplet. 
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 Figure 5: The assigned morphology of droplets during their evaporation from 3 different 

starting chemical composition as a function of time. (a) Pure water (RH = 94%), (b) NaCl 

solution (80% RH) and (c) Glycerol solution (0% RH). (d), (e) and (f) show the correlation 

coefficients of the polynomial and quadratic fits of the peaks of the phase function; the colour 

scale indicates time from the droplet generation. 

The phase function was collected at a frequency of ~100 Hz permitting an assignment of the 

morphology of the droplet ~100 times every second. In the experiments presented in Figures 5A and 

5B, this is equivalent to the characterisation of over 3000 individual phase functions each. A reduction 

in the time resolution was used for the evaporation of glycerol following the initial rapid evaporation 

of water (Figure 5C, 0.1 Hz, ~4000 individual phase functions), a consequence of the much slower 

evaporation and longer experimental timescale.  For the three homogeneous droplet cases considered, 

the instances of misattribution correspond to ~1% of the overall number of datapoints. 

As shown in Figure 4, the correlation coefficients of the polynomial and quadratic fits are critical for 

assigning the particle’s morphology (Figures 5D-5F). Collectively, the data shown in Figure 5 

demonstrate that the algorithm is readily capable of identifying homogenous droplets regardless of 

size, composition and dynamic behaviour (i.e. evaporation rate). 

 

3.2 Core-Shell/Concentration Gradient Droplets 

The morphology of a core-shell droplet ranges from a homogeneous droplet of unspecified radius 

with a surface monolayer to a droplet with a single inclusion of variable size. As shown in Figures 1B 

and 2B, droplets with a radius between ~5 and ~30 microns and a core-shell morphology produce a 
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distinct phase function in the near-forward scattering direction. In this section, the sensitivity of the 

phase function (in the near-forward scattering direction) to shell thickness is explored. 

A major advantage of using the CK-EDB to produce model droplets is that the complete composition 

of the droplet at generation is known; this is because of the short timescale (~100 ms) between the 

droplet generation and its confinement. Thus, the complete composition throughout the entire droplet 

history can be inferred. The evaporation of single droplets generated from a solution containing 

ethanol (47.5 vol%), water (23.9 vol%) and dodecanol (28.6 vol%) was studied using the CK-EDB. 

Figure 6A shows the evaporation profile of an individual dodecanol-ethanol-water droplet presenting 

three distinct stages during evaporation. In the first stage of the evaporation profile (<0.5 s) all the 

ethanol evaporates (Gregson et al. 2019). During and immediately following the evaporation of 

ethanol, the droplet appears to have inclusions for approximately one second before a core (water)-

shell (dodecanol) morphology is formed (around ~0.5 s). During and following ethanol evaporation, 

dodecanol forms distinct organic domains within the aqueous phase that migrate to the surface of the 

droplet, eventually forming a shell (inset, Figure 6A). It has been previously reported that the 

transition from a homogenous droplet to a core-shell morphology is mediated by surfactants first 

forming micelles that then leads to distinct liquid phases (Nandy and Dutcher 2018). The ability to 

observe this rapid transition period in the aerosol phase solely through the analysis of the phase 

function is a good example of the capability of this experimental approach, where the evolving 

morphology of a single particle can be probed at a high time resolution (in this case at a frequency of 

20 Hz). 

 

  

Figure 6: (A) The evaporation profile of a droplet initially composed of water, ethanol and 

dodecanol at an RH of ~80%. Included is a simulation (Kulmala et al. 1993) of the evaporation 
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of a pure water droplet with the same initial size into an airflow with an RH of 80%. (B) The 

correlation coefficients of the polynomial and quadratic fits of the peaks of the phase function; 

the colour scale indicates time from the droplet generation. (C) 2,400 individual phase functions 

of a dodecanol/water/ethanol droplet as a function of time. During this time, the morphology of 

the droplet goes from having inclusions, to core-shell to homogeneous. (D) Percent volume of the 

droplet that is water (core) as water and ethanol evaporates. (E) Droplet size against its shell 

thickness to core radius ratio, as the droplet evaporates; 4 different droplets shown. 

During the second portion of the evaporation profile (Figure 6A, after ~0.5 s), water slowly 

evaporates from the droplet over the course of ~12 seconds, at a slower rate than the case of a pure 

water droplet with similar initial size (shown in Figure 6A in black for comparison). This is common 

for any evaporating droplet with a significant mass fraction of solute.(Rovelli et al. 2016) It has been 

previously reported that dodecanol readily forms a monolayer on the droplet surface at 283 K that 

kinetically limits the evaporation of water, but not at 293 K (Davies et al. 2013). A similar process is 

observed here with a significant change in the evaporation rate of water observed. Notably, a core-

shell morphology is formed rather than a monolayer due to the substantial concentration of dodecanol 

in the droplet (28.6 vol%). The majority of the water is removed from the droplet within 15 seconds, 

after which dodecanol evaporates more slowly from the droplet.  

After about 8 seconds, even though the water content is clearly still not at equilibrium with the gas 

phase, the core-shell morphology is no longer detectable (Figure 6A), suggesting that the droplet is 

either homogenous, or the shell is too thick to lead to detectable irregularities in the light scatter, or 

possibly forming an engulfed structure (Reid et al. 2011). For example, in a 50:50 by volume mixture 

of octanol and water, while the water-rich phase is nearly pure (99.99% water), the octanol-rich layer 

is 20.7 mol% (3% by volume) water (Tse and Sandler 1994). The specific values for dodecanol is 

similar (3% by weight) (Stephenson and Stuart 1986). At the point where the droplet is detected as 

homogeneous, the droplet is composed of ~30% water by volume (Figure 6D). Thus, even though a 

fraction of the water in the droplet is dissolved in the organic phase, these data suggest that the 

morphology of the droplet is likely still core-shell where the shell is too large for the core to 

significantly affect the light scattering pattern. 

The structural change in the droplet is readily apparent when all the phase functions are observed 

simultaneously (Figure 6C). During the initial 12 seconds, the characteristic fluctuations in intensity 

of a core-shell droplet is apparent, similarly to what observed in Figure 2B. After 12 seconds, the 

cumulative phase functions become consistent and typical of a homogeneous droplet (Figure 2A). The 

utility of looking at dynamic changes in the phase functions to confirm the algorithm identification is 

clearly demonstrated here. 

Finally, the third portion of the evaporation profile of this water-ethanol-dodecanol droplet (after ~12 

seconds, Figures 6A) corresponds to the slow evaporation of dodecanol (together with the appropriate 

amount of solvation water to maintain an equilibrium composition) from a homogeneous droplet; after 
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~12 seconds, most of the water initially present had evaporated. Based on AIOMFAC (Zuend et al. 

2011) calculations, ~1.2% of the droplets mass is water in a dodecanol/water mixture at an RH of 

80%.  

Droplets studied with the CK-EDB have a known starting composition and size. Thus, the sensitivity 

of the algorithm to assign the particle morphology as a function of the shell thickness/core radius 

versus particle size can be quantified (Figure 6E). For the estimation of the core radius and the shell 

thickness (x-axis in Figure 6E), the assumption must be made that all the water in the droplet is in the 

core (Kwamena et al. 2010). While the complete chemical composition of the dodecanol/water 

droplets probed with the CK-EDB is known, its precise morphology is inferred to be completely 

phase separated. This assumption can be confirmed with the method by Kawamena et al. ( 2010), 

which predicts a core-shell morphology for a water/dodecanol droplet, based on the water/air, 

dodecanol/air and dodecanol/water surface tensions (72.8 nN/m, 29.4 nN/m(Daubert and Danner 

1989) and 7 nN/m,(Villers and Platten 1988) respectively). However, the degree of water uptake by 

the organic phase cannot be easily quantified. The data in Figure 6E shows that when the core radius 

is greater than half the shell thickness (shell thickness/core radius ratio <2), the phase function 

algorithm assigns the morphology as core-shell. As the shell thickness becomes comparable to the 

core radius (shell thickness/core radius ratio ~1, which corresponds to a volume of the core less than 

30% of the total droplet volume), the phase function is similar to that of a homogeneous droplet.  

The data shown in Figure 6C cannot be used to identify the lower limit of shell detection (i.e. how 

thin the shell can become and still be identifiable), due to the formation of micelles during the initial 

part of the evaporation. Consequently, to estimate the lower limit of shell detection, a very dilute 

droplet containing a surfactant was probed (Figure 7).  

 



16 
 

 

Figure 7: Evaporation of a droplet initially composed of ethanol, water and hexadecanol (0.35 

mM). (A) Radius of droplet injected into an airflow with a relative humidity of 77%. (B) The 

correlation coefficients of the polynomial and quadratic fits of the peaks of the phase function; 

the colour scale indicates time from the droplet generation. (C) Evolution of phase functions for 

the first 4 seconds of droplet evaporation. (D) Intensity and angle of peaks for five sequential 

phase functions. 1.808 s is identified as homogeneous while the rest are identified as core-shell. 

(E) Droplet size against its shell thickness to core radius ratio, as the droplet evaporates; 4 

droplets shown.  

A droplet initially composed of water and ethanol (1:1 volume ratio) and hexadecanol (0.35 mM) was 

trapped in the CK-EDB and the scattering phase function recorded over time providing an estimate of 

the evolving droplet size (Figures 7A and 7C). There are three distinct sections in the evaporation 

profile (Figure 7A): initial rapid loss of ethanol (under 1 second, inset in Figure 7A), followed by 

evaporation of water until a monolayer is formed (under 4 seconds, inset in Figure 7A) and finally 

slow evaporation of water whose flux is dramatically slowed by the hexadecanol monolayer at the 

surface of the droplet.(Davies et al. 2013) If compared to the water-ethanol-dodecanol mixture, it is 

notable that micelles are not observed in this case, likely because of the much lower concentration of 

hexadecanol in the starting solution. 

Figure 7C shows the characteristic cumulative evolving structure of the phase function associated 

with core-shell droplet (Figure 2B). Likewise, the distributions of the correlations of the quadratic and 

polynomial fits (Figure 7B) are similar to those expected for a droplet with a core-shell morphology 

(Figure 4). However, during the evaporation process the morphology of the droplet was less clearly 

defined by the algorithm (Figure 7A), since it periodically varies between core-shell and homogenous. 

This inconsistency in identification of the morphology from its phase functions can be attributed to 

how the oscillations of the phase function vary over time. These oscillations in the phase function are 

typical of droplets with a core-shell morphology (Figure 1). As the droplet dries, the relative 

amplitude of each oscillation will vary independently (Figure 7D). As a result, occasionally the peaks 

will line up such that their locations and amplitudes will be fitted with a good R2 (>0.945) by a 

quadratic curve (see Figure 3). This will cause the specific individual phase function to be attributed 

to the homogeneous droplet morphology. This alternation between phase functions identified as either 

homogeneous or core-shell is shown in Figure 7A; note that this only happens after the monolayer is 

clearly established, as shown in the inset of Figure 7A. 

The sensitivity of the algorithm was explored and was found to be sufficiently sensitive to detect a 

monolayer (~0.0025 µm, Figure 7E). This is evidenced by the shift in morphology identification, 

going from purely homogeneous (<0.001 µm to ~0.0025 µm) to alternating between core/shell and 

homogeneous (>0.0025 µm). Once the monolayer is established, 33±4% of the phase functions are 

identified as core-shell while the remainder identified as homogeneous; note that for homogeneous 

droplets >99% are correctly identified. This is attributed to a combination of the thinness of the 

monolayer and the phase function shifts, as shown in figure 7D. Once the overall size of the droplet is 
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too small, there are no longer enough peaks (less than 10) in the phase function to distinguish between 

homogenous and core-shell droplets (Figure 3). This limitation that prevents the discrimination from 

homogeneous particles is unique to the core-shell morphology and it does not apply to the two cases 

of a sphere with inclusions and to non-spherical inhomogeneous particles discussed in the next 

sections. 

In order to test the proposed algorithm against benchmark data of more precisely defined core-shell 

system, the angularly-resolved light scattering arising from core-shell droplets was simulated using a 

literature Mie scattering model for a coated sphere (Liu et al. 2007). Calculations of phase functions 

were performed for thousands of droplets with a known core-shell morphology where the composition 

of each phase is homogeneous and the ratios between the core radius and the shell thickness are 

known (Figure 8). These simulated phase functions are used to confirm the sensitivity of the 

algorithm to identify a core-shell morphology. Phase functions were calculated at a wavelength of 532 

nm for droplets with a water core (refractive index of 1.335) and an organic shell (refractive index of 

1.45). The radius at frame 0 was set at 30 microns, and the core:shell volume ratio was set to 5:1, 20:1 

and 100:1 (Figures 8A, 8B and 8C, respectively). As the frame number (i.e. time) is increased, the 

total radius is reduced by 10 nm (through loss of water from the core while the volume of the shell 

remains constant), resulting in a net decrease in the core:shell volume ratio. The characteristic 

cumulative structure associated with the core-shell morphology is observed throughout the droplet 

“evaporation” in the model (Figures 8A-8C). 
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Figure 8: Evolution of simulated phase functions for core-shell droplets with volume ratios of 

water:organic of (A) 5:1, (B) 20:1 and (C) 100:1. Assigned morphology of the droplets in (A-C) 

as a function of total droplet radius and (D) core size or (E) shell thickness. 

The precise morphologies of the modelled droplets are known and, therefore, the sensitivity of the 

algorithm to the relative size of the core of the droplet (Figure 8D) and absolute shell thickness 

(Figure 8E) can be quantified. Regardless of the starting organic:water volume ratio, when the core is 

less than 70-80% by volume of the total droplet’s volume the algorithm reports the droplet as 

homogeneous. This is far less sensitive than observed in the experimental data where the core had to 

be <30% of the total volume before assignment as homogeneous (Figure 6D). This discrepancy 

between the morphology assignments for the model and experimentally measured phase functions 

may be attributed to possible incorrect assumptions made about the refractive indexes of the two 

phases and possible eccentric positioning of the core in the trapped droplet. However, when the shell 

thickness is quite thin (<500 nm), the algorithm appears to be particularly sensitive to identifying a 

core-shell structure (Figure 8E). 

 

3.3 Droplets with inclusions 

The Mie solution to light scattering by a sphere assumes that the droplet is spherical and 

homogeneous (Mie 1908). The presence of inclusions (e.g. salt crystals, micelles or nanospheres) in a 

droplet undermines this assumption, leading to the large irregularities in the intensity of the peaks in 

the phase function (Figure 1), whereas the angles of the peaks remain unaltered by the presence of the 

inclusions (see discussion in Section S2 in the Supplementary Information). These irregularities in 

intensity are distinct and associated with the presence of inclusions only (Figure 2C), providing 

discrimination between spherical droplets with inclusions and a core-shell or homogenous 

morphology (Figures 1, 2 and 3). In order to test the ability of the algorithm to identify droplets with 

inclusions, the evaporation of water droplets with various concentrations of polystyrene nanospheres 

were probed with the CK-EDB (Figure 9). The sensitivity of the algorithm to the size of inclusions 

has been tested for glycerol droplets containing equal number concentrations of polystyrene 

nanosphere with variable diameter (300 and 700 nm) (Supplemental Information, Figure 2). No 

noticeable difference was observed for the two cases although data on more systems would be needed 

to assess the lower limit of the size of detectable inclusions. 
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Figure 9: The evaporation profile of water droplets containing 450 nm diameter polystyrene 

nanospheres (initial concentrations of nanospheres in solution (A) 0.0051 vol%, (B) 0.014 vol%, 

and (C) 0.076 vol%) trapped within a CK-EDB. (D-F) The correlation coefficients of the 

polynomial and quadratic fits of the peaks of the phase function; the colour scale indicates time 

from droplet generation. 

The characteristic cumulative structure associated with droplets with inclusions (Figure 2C) is present 

for the 0.076 vol% initial concentration of inclusions throughout most of the evaporation profile 

(Figure 10A).  

The sensitivity to the detection of inclusions is dependent on their concentration and not on their 

absolute number (Figure 9A, B and C, the absolute number of inclusions is constant within a single 

droplet, whereas their concentration increases as the droplet gets smaller as water evaporates and the 

overall droplet radius decreases). This is particularly evident in Figure 9B, where it is clear that the 

algorithm starts to consistently detect the presence of the nanospheres after ~25 s into the water 

evaporation. Since the absolute number of nanospheres per droplet trapped in the CK-EDB is known 

based on the initial solution concentration, the lower limit of detection can be calculated (Figure 10B). 

If the total volume fraction of the droplet is more than ~0.04% (for 450 nm spheres), the algorithm 

correctly identifies the particle as a sphere with inclusions. 
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Figure 10: (A) Evolution of phase functions for an evaporating droplet containing 0.076 vol% of 

450 nm polystyrene nanospheres. Note that these data are from the same droplet shown in 

Figure 9C; the time scale is focussed on the region where inclusions are measurable via the 

algorithm. (B) The assigned morphology of three droplets as a function of its size and 

composition.  

 

3.4 Crystalline/non-spherical particles 

As the shape of the droplet becomes less spherical (for example with crystallisation), the characteristic 

fringes in the light scattering pattern from a homogeneous sphere disappear because of the loss of 

spherical symmetry. If a certain degree of sphericity is maintained after the crystallization of an 

aqueous droplet, some peaks may still be observed in correspondence to some relative orientation of 

the non-spherical droplet and the laser light path (see for example the phase functions for the 

crystalline/non-spherical particles in Figures 1 and 3). However, the spacing between these irregular 

peaks is not consistent from time frame to time frame (with a correspondingly high RSD, Figures 11C 

and 11D). This is clearly demonstrated by the data in Figure 11, which shows data for NaCl and 

ammonium sulphate solution droplets evaporating into a dry nitrogen flow and eventually 

crystallizing. For completely non-spherical particles, such as cubic particles (crystalline NaCl), the 

phase function shows no equally-spaced fringes (Figures 1D and 2D) and for this reason the size 

retrieved from the geometric optics approximation (Figure 11A-B) appears noisy. This makes 

identifying crystalline/non-spherical particles relatively straightforward as the phase function is highly 

irregular and inconsistent from frame to frame (Figure 3).  
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Figure 11: (A, C, E) Droplet containing a solution of ammonium sulphate trapped at an RH of 

38% for 7 seconds, then the RH was changed to dry nitrogen. (B, D, F) Droplet containing a 

solution of NaCl trapped in dry nitrogen. (A, B) Radius change as function of time. Note that 

once the droplet is crystalized, accurate sizing of the particle from light scattering becomes 

impossible. (C, D) The relative standard deviation between the peaks in the phase functions over 

time. (E, F) Evolution of phase functions for the evaporating droplet. 

Unique to crystalline particles is the irregularity in the distance between the peaks in the phase 

function, providing clear justification for using the relative standard deviation  of the distance between 

the peaks in the phase function (RSD, calculated as the ratio between the standard deviation and the 

average peaks separation) for their identification (Figure 3). Occasionally, however, the relative 

distance between the peaks will be similar (through random chance). As a result, as per the algorithm 

described in Figure 3, the assigned morphology of an individual phase function may be misidentified. 

This problem can be addressed by the number of phase functions analysed per second (up to 100), 92-
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98% of the identifications are accurate.  When taken collectively, along with the cumulative images 

(Figures 11E and 11F), the morphology of the particle is clear.  

The RSD value of 0.4 was selected as a cut-off point through qualitative analysis of the over one 

million individual spectra. Phase functions from droplets with inclusions may have some 

accompanying noise as a result of scattering from the inclusions. Thus, an RSD of 0.4 was chosen as 

it achieved the balance of correctly identifying the maximum number of droplets whose radius is 

between 5 and 25 µm with inclusions while simultaneously correctly identifying crystalline droplet at 

an over 92% accuracy. Again, coupling the predicted morphology from the algorithm (Figures 11A 

and B) with the cumulative phase function images (Figures 11E and 11F), a clear assignment of the 

morphology of the particle becomes apparent.  

A beneficial aspect of using the proposed phase function analysis to identify particle morphology is 

provided in Figure 11B, allowing identification of the evolving morphology of a NaCl droplet during 

the crystallization process (Figure 11B, indicated by the highlighted rectangle between 1 and 2 

seconds). The droplet progresses from homogeneous to a droplet with inclusions (visually, the droplet 

would look like a snow globe), eventually fully crystallizing. This represents a clear example of how 

the rapid phase analysis presented in this work can be used to probe the fast dynamics of complex 

processes, such as efflorescence and deliquescence.  

 

4.0 Discussion 

Through the analysis of over a million individual phase functions of numerous experimentally 

collected and modelled aerosol particles with known chemical composition and morphology, the 

sensitivity of using phase functions to assign the morphology of a single particle has been assessed 

(Table 1). 
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Table 1: The morphology of an Individual Droplet/Particle Based Solely on Phase Function 

Analysis 

Assigned Morphology  

(from Phase function) 

Meaning / description 

Crystalline/Non-Spherical Solid particle, crystalline, amorphous, non-spherical 

Core-Shell Core-shell droplets (where the shell thickness is between a monolayer and 

equal to the core radius) and droplets with concentration gradient (e.g. bulk 

phase diffusion limited), with # of peaks in phase function > 10 

Inclusions Has inclusions/emulsions where their relative volume is >0.01%. The 

composition/structure of the inclusions can be spherical, non-spherical 

(inset square in Figure 11B) or an emulsion (Figure 6E)  

Homogeneous Homogeneous/well mixed 

 

In the previous sections, some of the advantages and drawbacks associated with the algorithm have 

already been mentioned and are summarised here below.  

The algorithm is currently limited to droplets with a radius between ~3 to ~30 µm in radius. This size 

range is most ideally suited to process studies such are accessible using single particle instruments. In 

particular, measurements of aerosol processes with industrial and health applications benefit most 

significantly from this approach, such as those used in spray drying and drug delivery to the lung. 

Although informing process models for atmospheric aerosols, the size range is clearly less relevant for 

actual ambient samples with <1 µm particle size. Furthermore, the phase transitions observed in the 

droplets sizes in this work may be used to inform observations made for aerosol across all size ranges.  

One key feature of the proposed approach is that examining dynamic changes in the light scattering 

from a droplet (rather than individual isolated frames) minimises the misassignment instances (>90% 

accurate identification). In addition, the high time resolution of the light scattering measurement (up 

to 100 Hz) allows an assessment of the dynamic changes in morphology of a particle with high time 

resolution.  

Some considerations related to the analysis of the phase functions for core-shell droplets are 

necessary. First, the current algorithm cannot discriminate between core-shell particles (two distinct 

phases with a clear interface) and droplets characterised by a radial concentration gradient (and 

therefore by a radial refractive index distribution). An example of this is given in Figure S5, where a 

comparison of simulated phase functions (using MiePlot, http://www.philiplaven.com/mieplot.htm) 

for droplets of the same overall size but different refractive index radial distributions is shown. In 

addition, it was found that the ability of the algorithm to detect a core-shell morphology is not very 
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dependent on the difference between the refractive indices of the two phases (see Figure S6 in the 

Supporting Information), whereas it is more influenced by the radial position of the interface between 

the core and the shell, as discussed in Section 3.2.  

A further caveat is that using the geometric optics approach to size individual droplets is valid for 

homogeneous droplets (Glantschnig and Chen 1981). If the droplet is homogeneous and its refractive 

index is known, geometric optics provides a good estimated of its size (within ± 100 nm,(Rovelli et al. 

2016) whereas it fails for crystalline/non-spherical particles. When the droplet has a core-shell 

morphology, a small shift in the location of the peaks is observed if compared to a homogeneous 

droplet of the same overall size, meaning that the reported radius may be in error by as much as a 

micrometre (Supplementary Information, Figure S4). For droplets with inclusions, while the relative 

intensity of the peaks may vary because of the presence of scattering inclusions, their location does 

not, meaning the reported size is accurate (see discussion in the Supplementary Information, section 

S2). Thus, correctly assigning the phase of the droplet is key to accurately characterise the uncertainty 

associated to radius values retrieved with the geometric optics approximation.  

Being able to rapidly get information about the morphology of a droplet based solely on its phase 

function has many applications when studying the dynamic processes occurring on individual 

particles in studies that can provide exquisite insight into the microphysics occurring in many 

industrial and environmental applications. For example, the pharmacokinetics of inhaled 

pharmaceuticals is governed in large part by the morphology of the particle/droplet at the point when 

it reaches the cell surface (Bhagwat et al. 2017). The rate at which an inhaled dry particle from a dry 

particle inhaler will transfer into the blood stream will be dependent on the degree to which it gets 

dissolved during inhalation. As a result, the opportunity to interrogate the rapid dissolution dynamics 

occurring in the aerosol phase directly may be used to improve drug efficacy and potency. 

Furthermore, the kinetics of heterogeneous/homogeneous processing of particulate air pollution and 

specifically of secondary organic aerosol (SOA) is highly dependent on the morphology and viscosity 

of the particle (Reid et al. 2018). The ability to probe the morphology dynamics of such complex organic 

aerosol systems directly in the aerosol phase is fundamental to understand the impact of SOA on 

climate, visibility and human health (Reid et al. 2018). Studying the dynamics of SOA (or their 

surrogates) in the laboratory under controlled conditions has provided some detailed information on 

their formation, equilibration timescales and heterogeneous reactivity (Marsh et al. 2017b). Single 

particles experiments on SOA (or their surrogates) could take great advantage from the simple semi-

quantitative characterisation of a particle’s morphology proposed in this work. For example, this 

algorithm could allow to readily probe inhomogeneities in chemical composition or changes in 

morphology due to slow diffusion rates of products in viscous droplets undergoing heterogeneous 

reactions in the lab (products may form a separate domain at the surface if they slowly diffuse to the 
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bulk of a droplet) and kinetic limitations associated to the evaporation of semivolatile components from 

viscous matrices. Moreover, the approach proposed in this work could allow further insight on some of 

the properties and behaviours of SOA particles, including their promotion of ice nucleation (Kramer et 

al. 1999) and the occurrence of liquid-liquid phase separation that has been observed to be possible in 

the form of both phase inclusions and core-shell morphology (Liu et al. 2018; Renbaum-Wolff et al. 

2016).. 

 

5.0 Summary 

The ability to readily report the morphology of an individual particle at a frequency of >100 Hz from 

the droplets/particles phase function has been reported. Through analysing over one million individual 

phase functions, a robust and rapid algorithm was written to differentiate between four distinct 

particle types: homogeneous, core/shell, with inclusions and crystalline/non-spherical. 
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