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Abstract 12 

Atmospheric water-soluble organic gases such as pyruvic acid are produced in large quantities by 13 

photochemical oxidation of biogenic and anthropogenic emissions and undergo water-mediated 14 

reactions in aerosols and hydrometeors. These reactions can contribute to aerosol mass by forming 15 

less volatile compounds. While progress is being made in understanding the relevant aqueous 16 

chemistry, little is known about the chemistry that takes place during droplet evaporation. Here we 17 

examine the evaporation of aqueous pyruvic acid droplets using both the Vibrating Orifice Aerosol 18 

Generator (VOAG) and an electrodynamic balance (EDB). In some cases pyruvic acid was first 19 

oxidized by OH radicals. The evaporation behavior of oxidized mixtures was consistent with 20 

expectations based on known volatilities of reaction products. However, independent VOAG and 21 

EDB evaporation experiments conducted without oxidation also resulted in stable residual 22 

particles; the estimated volume yield was 10–30% of the initial pyruvic acid. Yields varied with 23 

temperature and pyruvic acid concentration across cloud, fog, and aerosol-relevant concentrations. 24 

The formation of low volatility products, likely cyclic dimers, suggests that pyruvic acid accretion 25 

reactions occurring during droplet evaporation could contribute to the gas-to-particle conversion 26 

of carbonyls in the atmosphere.   27 

1. Introduction 28 

Aerosols affect global climate and impact air quality, human health, and visibility. A substantial 29 

fraction of aerosol mass is organic, much of which is formed in-situ in the atmosphere. Despite its 30 

ubiquity, predictions of secondary organic aerosol (SOA) formation rely on incomplete 31 

mechanisms unlikely to capture aerosol production over a wide range of precursors and 32 

conditions.1–3 Water-mediated reactions, occurring in humidified aerosols, fogs, and cloud 33 

droplets, play an important role in converting water-soluble organic gases (WSOGs) to SOA 34 
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mass.4–6 However, the contribution of aqueous reactions to SOA mass remains uncertain due in 35 

part to a limited understanding of precursors and limited laboratory results to parameterize 36 

models.1,7–11 Quantifying the impacts of aqueous and multiphase chemistry on aerosol mass 37 

remains challenging, and a more detailed understanding of product volatility is needed.  38 

A significant fraction of low molecular weight acids, aldehydes and carbonyls dissolve into 39 

cloud or fog droplets. In the absence of additional reactions, these WSOGs largely evaporate 40 

during water evaporation; the trace amounts that remain in the aerosol phase are determined by 41 

their partial pressure in the gas phase and activity in the aerosol matrix. However, multiphase 42 

reactions can generate low-volatility products that are retained in the equilibrated aerosol. Several 43 

important criteria determine whether aqueous processing can appreciably increase SOA mass: (1) 44 

the precursor must be abundant, (2) it must have a high vapor pressure before aqueous reactions, 45 

(3) it must have a high Henry’s law coefficient and thus strongly partition into water, and (4) it 46 

must react in the aqueous phase to form less volatile products.  47 

To date many cloud- and fog-relevant studies have focused on the aqueous OH oxidation of a 48 

limited number of compounds meeting the above criteria, such as glyoxal,12–14 glycolaldehyde,15,16 49 

methacrolein,17 acetic acid,18 methylglyoxal,19–21 methyl vinyl ketone,22 phenolic compounds,23 50 

and pyruvic acid,24,25 as well as studies focusing on oxidation by singlet molecular oxygen23 and 51 

triplet excited states of oxygen,23,26 photosensitization,27 and photoinitiation.28 The volatility of the 52 

products, or the extent to which products remain in the particle phase after water evaporation, has 53 

been determined for some of these systems but not for pyruvic acid. Studies have also shown that 54 

non-radical reactions can yield low-volatility compounds in deliquescent aerosols,29–32 especially 55 

for glyoxal, methylglyoxal, and isoprene-derived epoxydiols.29–32 Because these systems rely on 56 

catalysis, formation of oligomers is sometimes reversible; irreversible formation of low-volatility 57 
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products are generally associated with radical4,33,34 or ring-opening31 reactions due to their higher 58 

activation energy. Nevertheless, glyoxal and methylglyoxal form stable products in evaporating 59 

solutions with or without inorganic catalysts30,32,35 due to the reactive dicarbonyl group.35 These 60 

and other accretion reactions occurring in the absence of photooxidation have been recognized as 61 

an important contributor to organic aerosol.36 Evaporation of droplets concentrates solutes, shifts 62 

the solution pH, and can allow enhanced surface partitioning of surface-active compounds over 63 

short timescales, enhancing reaction rates.32,37–41 The droplet air-liquid interface may also 64 

accelerate reactions by confining molecules to specific orientations, enhancing their reactivity or 65 

acidity,42–46 and molecular partitioning to the air-liquid interface and self-organization in the 66 

surface layer can affect gas uptake and reaction rates.47,48  67 

Pyruvic acid is abundant in aerosols, fogs, and clouds, and is produced19,24,25,49,50 68 

photochemically in the atmosphere50,51 mainly through gas-phase oxidation of aromatic 69 

hydrocarbons,52–54 biomass burning,55 and aqueous OH oxidation of methylglyoxal.49,56 Pyruvic 70 

acid has an intermediate volatility34 and partitions between the gas and aerosol phases.51,53,57 71 

Studies of aqueous pyruvic acid processing have focused on photolysis26,56,58 and OH-radical 72 

initiated photooxidation.24,25,59 Evidence for dark pyruvic acid accretion reactions from 73 

environmental chamber studies shows that partitioning of pyruvic acid and other acids or carbonyls 74 

to SOA exceeds expectations based on their high vapor pressures.52,60 Here we extend these studies 75 

to include dark processing of pyruvic acid in evaporating cloud droplets.  76 

In this work we examine an aspect of cloud/fog processing – the evolving volatility distribution 77 

of aqueous pyruvic acid with droplet evaporation. We also investigate changes in volatility after 78 

OH oxidation of the aqueous pyruvic acid solutions.  79 
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2. Method 80 

Pyruvic acid evaporation experiments followed two methods and spanned concentration ranges 81 

from 10 µM to 2 M. Vibrating Orifice Aerosol Generator (VOAG)61 Evaporation and Residual 82 

Analysis (VERA) was performed for a series of solutions between 10 µM (cloud relevant) and 20 83 

mM, a concentration range that reflects cloud concentrations and concentrations as cloud droplets 84 

evaporate. Additional pyruvic acid evaporation experiments were performed using an 85 

electrodynamic balance (EDB) at 2 M. The EDB concentration is relevant to deliquescent aerosols 86 

rather than clouds; the choice of concentrations for EDB experiments was dictated by instrumental 87 

constraints. For comparison, VERA experiments were also performed for other organic acids (10 88 

µM–20 mM) and for aqueous pyruvic acid after OH-radical oxidation (300 µM pyruvic acid; fog-89 

relevant concentration). An evaporation model was used to aid in the interpretation of data. VERA 90 

and EDB techniques, oxidation experiments, and modeling are described in the following 91 

paragraphs.  92 

2.1 VOAG Evaporation and Residual Analysis (VERA) 93 

Droplet evaporation experiments were performed for aqueous solutions of pyruvic acid (with 94 

and without OH oxidation) or other organic acids/carbonyls using VERA as described 95 

previously.16 VERA emulates cloud droplet evaporation by generating micron-scale droplets with 96 

very narrow size distributions (monodispersed and near cloud-relevant sizes),62 and evaporating 97 

them in a turbulent flow tube. Briefly, a VOAG (TSI 3450) was used to generate monodisperse 98 

droplets. Water evaporated rapidly and size distributions of the organic residuals were detected in 99 

real time downstream by an aerosol spectrometer (GRIMM Aerosol Technik Ainring GmbH; 100 

model 1.109). Evaporation of the organic served as a metric of its vapor pressure. Modifications 101 

to the instrument liquid feed, orifice, and flow tube following Barr et al.63–65 are described in the 102 
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Supporting Information (SI) alongside the measurement schematic (Figure S1); analysis is 103 

described below. A 20 μm orifice was used and produced 35±0.053 μm droplets under typical 104 

conditions. For an involatile solute, solutions of 9.4 μM to 19 mM result in dry residual diameters 105 

(hereafter referred to as “nominal diameters”) of 0.30 to 3.9 μm. Equilibrium water retention was 106 

estimated from molar volume66,67 and did not exceed 2–5% of nominal particle volume. 107 

Calculation details and spectrometer calibration are described in the SI. Observed residual 108 

diameters were taken as the peak of the measured size distribution. The evaporation process and 109 

the influence of physicochemical properties are described in the Evaporation Modeling section 110 

below.  111 

2.2 Evaporation in the Electrodynamic Balance (EDB) 112 

Pyruvic acid solutions were evaporated in an EDB as described previously.68–70 Aqueous 113 

solutions of 2 M pyruvic acid in ultrapure water were prepared. The higher concentration was 114 

necessary due to experimental constraints and is comparable to total organic carbon (TOC) in 115 

deliquescent aerosols.71 Droplets were produced using a piezoelectric droplet-on-demand 116 

generator and trapped in an electrodynamic potential well generated from two pairs of concentric 117 

cylindrical electrodes. Trapped droplets evaporated in a 3 cm s-1 N2 gas flow at constant 118 

temperature and relative humidity (RH). A green laser (532 nm) illuminated the droplet and the 119 

scattered diffraction pattern was used to determine droplet size with a time resolution of 10 ms. 120 

Experiments were performed at 10, 20, and 25°C. Additional tests included variable RH or a 121 

different initial solvent. EDB experiments were conducted at the University of Bristol. Each 122 

experiment was repeated 4–9 times.  123 
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2.3 Oxidation and Product Quantification for Pyruvic Acid + OH(aq) 124 

Aqueous solutions of 300 μM (10.8 ppm-C) pyruvic acid were oxidized via OH radicals using 125 

a water-jacketed 1 L photochemical batch reactor at 25°C as described previously and products 126 

were quantified by ion chromatography.19,72 The pyruvic acid concentration is similar to the total 127 

organic carbon found in fog water or polluted cloud water.73,74 Estimated steady-state [OH] was 128 

~5.5×10-12 M during pyruvic acid oxidation.75 Additional experimental details are provided in the 129 

SI. Typical cloudwater [OH] is believed to be 10-13 M or lower.76,77 We used higher concentrations 130 

to focus on OH initiated reactions and to access a wide range of equivalent atmospheric oxidation 131 

timescales from minutes to days.76  132 

Aliquots of 10–12 mL were withdrawn at increasing time intervals and offline analysis was 133 

performed within one day. Samples were analyzed for organic acids using ion chromatography 134 

(IC; Dionex ICS-3000) and for TOC (Sievers M9). Evaporation experiments using VERA were 135 

performed for a subset of aliquots directly and after serial dilution.  136 

3. Evaporation Model 137 

Evaporation of pyruvic acid solution droplets in VERA was estimated following Su et al.70,78 138 

and Bilde et al.79,80 A model description is included in the SI. Particle velocity relative to the gas 139 

was assumed to be the terminal settling velocity80 and the gas-phase concentration of organic was 140 

assumed to be zero in the flow tube (we estimate it was < 2% saturated). Pyruvic acid diffusivity 141 

in air was estimated to be 8.1×10-2 cm2 s-1 via the Hirschfelder equation.79,81,82 VERA was 142 

emulated by modeling water evaporation from the droplet until reaching the organic nominal 143 

residual diameter, then modeling organic evaporation until the time of observation by the 144 

spectrometer. Modeled RH was 11% and measured RH was 10–13%. In addition to modeling 145 

binary water-organic solutions, we modeled scenarios introducing a second solute with lower 146 
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vapor pressure (10-4 Pa) into the droplet. The modeled residual diameter is mainly controlled by 147 

aqueous solution concentration, organic vapor pressure, evaporation time and RH.  148 

Figure S2 shows the evaporation model for the VERA technique. After water evaporation the 149 

“nominal diameter” of the residual organic particle is calculated from the initial solution 150 

concentration assuming no evaporation of the organic (x-axis). However, because the organic 151 

matter partially evaporates, the “observed diameter” (residual diameter observed by the 152 

spectrometer), on the y-axis, is dependent on the organic vapor pressure. Panel A shows the 153 

expected observation for a pyruvic acid-like compound with different assigned vapor pressures. 154 

The line spacing shows the vapor pressure resolution for organics of similar size and functionality. 155 

Vapor pressures (𝑝𝑜) between 3 and 0.3 Pa are resolved under current operating conditions. Panel 156 

B shows the result of adding an involatile second solute to the modeled droplets, simulating the 157 

conversion of some of the pyruvic acid to a less volatile compound. The inset is a three-bin 158 

volatility basis set for this setup, where bin 1 (𝑝𝑜 ≤ 0.3 Pa) describes compounds that do not 159 

evaporate, bin 2 (0.3 ≤ 𝑝𝑜 ≤ 3 Pa) describes compounds that partially evaporate, and bin 3 (𝑝𝑜 ≥ 3 160 

Pa) describes compounds evaporating completely before detection.  161 

Figure S2 shows the droplet size after 4.9 s of evaporation (the flow tube residence time), to 162 

simulate what is measured by VERA. It does not show the time-resolved evaporation of multiple 163 

solution components because VERA uses a fixed observation time and multiple experiments with 164 

different concentrations to generate a plot of nominal vs observed diameter. The model is therefore 165 

helpful in interpreting the data. The presence or absence of curvature in the observations is an 166 

indication of the volume fraction of solute in each of the volatility bins shown in Panel B. If 167 

observations include curvature, some component falls in bin 2 and its vapor pressure can be 168 

determined with greater precision. In the absence of curvature, all components are in bins 1 and 3, 169 

Page 8 of 33

ACS Paragon Plus Environment

ACS Earth and Space Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Manuscript for submission to ACS Earth and Space Chemistry 

9 

with the fraction in bin 1 shown by the angle of the line of observed diameters. For example, if the 170 

angle is 0° (x-axis), all compounds are in bin 3 (evaporated), and if the angle is 45° (1:1 line), all 171 

compounds are in bin 1 (did not evaporate). Evaporation data (nominal vs observed residual 172 

diameter) falling on a line between 0° and 45° in Figure S2 panel B are fitted and the slope of the 173 

fit line is indicative of the fraction of organic that did not evaporate.  174 

4. Results and Discussion 175 

In the following paragraph we show that OH oxidation of pyruvic acid slowly produces acetic 176 

and oxalic acids, consistent with known mechanisms, and that oxidation reduces the volatility of 177 

the mixture. Then we present the dark evaporation of aqueous pyruvic acid using VERA and EDB 178 

techniques. Despite expectations based on the vapor pressure of pyruvic acid, droplet evaporation 179 

resulted in the formation of stable residual particles. A possible oligomerization mechanism and 180 

atmospheric implications are discussed.  181 

4.1 Oxidation Experiments 182 

Figure 1 shows the evolving composition of 300 µM aqueous pyruvic acid undergoing OH 183 

radical-initiated oxidation over 150 min, as determined by ion chromatography. Oxidation 184 

converts pyruvic acid mainly to oxalic and acetic acid. This delayed formation of oxalic acid is 185 

consistent with the known multistep oxidation mechanisms.19,75,83 Evaporation of these solutions 186 

and their volatility is discussed below.  187 
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 188 

Figure 1. Oxidation products of pyruvic acid + OH(aq) as quantified by ion chromatography. 189 

4.2 VERA Evaporation Experiments 190 
Figure 2 shows the results of VERA experiments for oxidized pyruvic acid and for (dark) 191 

standard solutions of pyruvic acid or other organics. As oxidation converts pyruvic acid to oxalic 192 

acid, the net result is lower volatility, as seen by an increase in the slope of Figure 2A. By 193 

comparing the slope of the observations with the modeled lines we estimate that the volume 194 

fraction of organics in volatility bin 1 (  < 0.3) was ~60% after 150 min of oxidation. The 195 

remaining 40% was likely unreacted pyruvic acid and volatile products such as acetic and formic 196 

acids. Panel B shows evaporated standard solutions. Most organics longer than 3 carbons did not 197 

evaporate before observation and thus fall in bin 1 and are observed on the 1:1 line. Additional 198 

experiments falling on the 1:1 line were omitted for clarity (oxalic, tartaric, and malic acids). 199 

Compounds evaporating completely fall in bin 3 (  > 3) and are observed on the x-axis. Pyruvic 200 

acid solutions evaporated partially (dark blue). As described in section 3, the lack of curvature in 201 

the observation indicates that some of the solute was volatile (pyruvic acid falls in volatility bin 3) 202 

and some of the solute did not evaporate (unknown compound falling in volatility bin 1). Assuming 203 
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volume additivity, ~10±5% of the pyruvic acid by volume was converted to a lower volatility 204 

product. The volume conversion is likely lower when accounting for solvation effects.  205 

 206 
Figure 2. VERA evaporation of (A) oxidized pyruvic acid solutions (background subtracted) and 207 

(B) aqueous pyruvic acid and other compounds. Observed diameter is by spectrometer and 208 

nominal diameters are involatile-equivalent diameters from solution concentration. Grey lines 209 

show estimated fraction with lower volatility (volatility bin 1;  < 0.3 Pa). (C) Percentage of 210 

solute in bin 1 (  < 0.3) estimated independently from VERA slope (circles; data from panel A) 211 

and from IC data (line; data from Figure 1).  212 

Figure 2C shows that oxidation shifted products into the lower-volatility bin (bin 1). Colored 213 

circles indicate the fitted slope of VERA experiments in Panel A and the black line is an 214 

independent estimate of non-evaporating compounds for the same mixtures using ion 215 

chromatography, shown in Figure 1. The close agreement between these two estimates of 216 

evaporation corroborates the VERA model. The exception is near 0 minutes of oxidation, where 217 

evaporation of the pyruvic acid produced a 10% unknown residual (see blue circles, Figure 2C). 218 

Further experiments investigating this phenomenon were performed using the EDB and are 219 

detailed below.  220 
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4.3 EDB Evaporation Experiments 221 
Figure 3 shows the evaporation of pyruvic acid solutions in the EDB. The sequential 222 

evaporation of water, pyruvic acid, and an unknown low-volatility substance is clearly delineated 223 

by two sharp changes in evaporation rate (Panel A). Evaporation rate slowed as remaining droplet 224 

constituents became less volatile. Abruptly raising the RH did not change the final residual 225 

diameter (Panel B). In the evaporation of pyruvic acid + isopropanol (Panel C) the sequential 226 

evaporation of solvent and pyruvic acid is also observed, again resulting in a less volatile residual. 227 

The volume conversion of pyruvic acid to low-volatility residual (assuming volume additivity and 228 

constant density equal to that of pyruvic acid) was ~15–30% across all EDB experiments.  229 

 230 

Figure 3. Evaporation of 0.1 mass fraction pyruvic acid solution droplets as observed by the EDB. 231 

(A) aqueous pyruvic acid evaporating in dry N2 at three gas-phase temperatures. (inset) residual 232 

volumes at different temperatures. (B) aqueous pyruvic acid response to abruptly increasing RH 233 

during evaporation (at different times as indicated), (C) pyruvic acid in isopropanol evaporating at 234 

20°C.  235 

Varying experimental conditions affected the production of the low-volatility component. 236 

Figure 3A shows that the residual mass of low-volatility product increases at colder temperatures, 237 

demonstrating that the sustained period of high pyruvic acid concentration in the evaporating 238 

droplet has a greater effect on the reaction rate than the reduction in molecular collisions expected 239 
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at low temperatures. The volatility of the residual remained below the limit of quantification by 240 

EDB (<5×10-3 Pa) at all temperatures. Additional experiments operating on much longer 241 

timescales would have been necessary to quantify the evaporation of the formed particles. 242 

Although vapor pressure increases with increasing temperature, the effect of temperature-243 

dependent vapor pressure on the evaporation of a single compound would result in different 244 

evaporation rates and not different yields. Comparison at different initial droplet concentrations 245 

(VERA vs EDB) shows a modest enhancement in volumetric yield at higher initial concentration. 246 

When RH was increased from 0% to 90% at different times during droplet evaporation (Figure 247 

3B), the observed residual diameter was unchanged. Note that the residual here is larger due to 248 

equilibrium water uptake (hygroscopicity estimate of κ ~ 0.015,84 which comparable to that of 249 

larger molecules found in SOA85). This indicates that changing the hygroscopically-bound water 250 

in the evaporating pyruvic acid solution does not speed up the low-volatility product formation. In 251 

Panel C, evaporating the pyruvic acid in pure isopropanol resulted in evaporation rates and 252 

residuals similar to those of aqueous solutions. Because carbonyls do not undergo hydration 253 

reactions to form gem-diols as readily in isopropanol as they do in water, this suggests that the 254 

reaction producing the residual is not accelerated by the formation of a gem-diol as observed for 255 

glyoxal.35  256 

4.4 Proposed Mechanism for Self-Reaction of Pyruvic Acid 257 

Potential formation mechanisms and structures of a low-volatility residual are now discussed. 258 

The residual volume is larger than the stated pyruvic acid impurity of 2% (all EDB experiments 259 

used brand-new stock), and several independent sources of pyruvic acid standards produced 260 

similar results. Some of this residual may form in the stock solution prior to use; however, the 261 

changing volumetric yields with changing temperatures suggests that reactions occur during 262 
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evaporation experiments. Evaporation rates of the low volatility residual were below detection, 263 

thus the influence of temperature on vapor pressure did not affect the observed yield. Gas-phase 264 

impurities are ruled out with the EDB and are unlikely with VERA.  265 

Pyruvic acid exists as several species in solution and these equilibria are shifted by the changing 266 

pH during evaporation. The carboxylic acid group can deprotonate to form the pyruvate anion and 267 

the keto group can hydrate to form a gem-diol or tautomerize to form an enol. At room temperature, 268 

roughly 10% of pyruvate, or 60% of pyruvic acid, forms a diol.86 Equilibrium between these forms 269 

of pyruvic acid is complicated by the high surface-to-volume ratio and rapid removal of both water 270 

and the volatile carboxylic acid form of pyruvic acid during evaporation of droplets.37,42,44  271 

The formation of C–O–C bonds by attack of an ROH group on the double bond of either the 272 

carboxyl group or the keto group of pyruvic acid is plausible. For example, acid-catalyzed 273 

esterification may convert the carboxyl group to an ester. In this reaction, the gem-diol of a 274 

hydrated pyruvic acid molecule attacks the double bond of the carboxyl group of another pyruvic 275 

acid molecule. In isopropanol, the isopropanol can attack the carboxyl double bond, producing a 276 

similar ester (Figure 3C). Either isopropanol or the pyruvic gem-diol may attack the hydrated keto 277 

group of another pyruvic acid molecule, forming a hemiacetal and potentially repeating to form an 278 

acetal, as has been reported for glyoxal.87 An acetal may be stable against hydrolysis upon the 279 

removal of pyruvic acid and water from the droplet.  280 

Aldol addition and condensation reactions occur by the attack of the enol tautomer of pyruvic 281 

acid on a protonated keto group of another molecule. Figure S3 shows a proposed mechanism with 282 

a cyclic dimer as a potential end product of the aqueous evaporation experiments in this work. 283 

Pyruvic acid tautomerizes readily in solution,88 and aldol addition can proceed without hydration 284 

of the keto group to a gem-diol. Self-reactions by aldol addition have been reported for 285 
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methylglyoxal and glyoxal30 and for pyruvic acid in both dark and photochemical reaction 286 

systems.56,89  287 

4.5 Atmospheric Implications 288 

Pyruvic acid has diverse removal processes in the atmosphere, where it can partition between 289 

aerosol, aqueous, and gas phases and can dissociate, hydrate, or tautomerize in solution. The 290 

primary source of pyruvic acid outside of urban areas is the aqueous phase OH oxidation of 291 

isoprene oxidation products such as methylglyoxal and lactic acid,19,57,90 and under dry conditions 292 

it is found largely in gas phase (rather than the aerosol), where it is removed by direct photolysis 293 

and dry deposition.51,53,91 In the presence of fogs and clouds pyruvic acid can be retained by (or 294 

re-partition back into) the aqueous phase due to its high water solubility (Henry’s law constant of 295 

3.1×105 M atm-1).92 The aqueous phase photochemistry is then competitive with the gas-phase 296 

direct photolysis as a sink for pyruvic acid.93 In clouds and fogs, some pyruvic acid undergoes OH 297 

oxidation to yield acetic acid, CO2, and oxalic acid through a glyoxylic acid intermediate.19 298 

Because of the multistep chemistry, conversion of pyruvic to oxalic acid takes hours and occurs 299 

over multiple cloud cycles or in a persistent fog. Aqueous dehydrated pyruvic acid is light-300 

absorbing and can undergo direct photolysis or photosensitized reactions resulting in acetoin, lactic 301 

and acetic acid, and oligomers through the excited triplet state of the carbonyl oxygen.26,28 302 

However, dark reactions in clouds and fogs can also occur. Dicarbonyls similar to pyruvic acid 303 

such as glyoxal and methylglyoxal can oligomerize in evaporating droplets.29,30,32,35,94 This work 304 

shows the potential for pyruvic acid to oligomerize during cloud and fog droplet evaporation.  305 

Figure 4 depicts the volatility evolution of aqueous solutions of pyruvic acid. The box in the 306 

upper left-hand corner shows volatile and semivolatile carboxylic acids that are highly water 307 

soluble, often result from aqueous oxidation, and partition readily into droplets. Processes reducing 308 
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the volatility of these compounds can increase the fraction of organic mass that remains in the 309 

particle phase after water evaporation. Among these is pyruvic acid, with a vapor pressure of ~102 310 

Pa at 20°C.95,96 Aqueous OH-radical initiated oxidation, dark acid-catalyzed accretion reactions 311 

and, salt formation of pyruvic acid (not shown) have the potential to reduce the volatility of pyruvic 312 

acid. Aqueous OH oxidation of pyruvic acid forms acetic acid, glyoxylic acid, and subsequently 313 

oxalic acid, whose vapor pressure is in the semivolatile range (𝑝𝑜 = 10-2 to 10-4 Pa).97,98 The 314 

preference of oxalic acid for the particle phase in the atmosphere is likely due to the formation of 315 

low volatility oxalate salts or complexes.4,12,99 This work suggests that evaporating pyruvic acid 316 

solution droplets at aerosol, fog, cloud-relevant concentrations and atmospheric temperatures (10–317 

25°C), in the absence of an inorganic catalyst, leads to formation of acetals and/or cyclic dimers 318 

with estimated vapor pressures of 4×10-5 Pa100 and 10–30% volumetric yields. This mechanism 319 

could compete with photochemical sinks for pyruvic acid during cloud cycling under dark 320 

conditions.  321 

Although the vapor pressure of dimers of pyruvic acid is significantly lower than that of pyruvic 322 

acid, they are still considered semivolatile. Dimerization enhances the partitioning of monomers 323 

to the condensed phase.36 The formed dimers, especially those with unsaturated double bonds, can 324 

participate in additional condensed-phase reactions. For example, the pyruvic acid dimers shown 325 

in Figure S5 have been shown to partition to the air-water interface,101 where they may have 326 

enhanced reactivity for subsequent reactions.38 The formation of surface active unsaturated dimers 327 

from carbonyls such as pyruvic acid during cloud or fog evaporation is one way in which carbon 328 

can be transformed in the atmosphere and influence atmospheric chemistry.  329 
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 330 

Figure 4. Vapor pressures of pyruvic acid reaction products compared to past organic 331 

measurements (20°C),102 SIMPOL.1100 -estimated vapor pressures, and volatility ranges defined 332 

by Donahue et al.34 Pyruvic dimers include several multifunctional cyclic acids (Figure S3). 333 
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