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ABSTRACT 

The effects of alkaline-earth metal cation (AMC: Mg2+, Ca2+, Sr2+ and Ba2+) substitution on the 

photoelectrochemical properties of phase-pure LaFeO3 (LFO) thin-films are elucidated by X-ray 

Photoemission Spectroscopy (XPS), X-ray Diffraction (XRD), diffuse reflectance and electrochemical 

impedance spectroscopy (EIS). XRD confirms the formation of single-phase cubic LFO thin films, with 

a rather complex dependence on the nature of the AMC and extent of substitution. Interestingly, 

subtle trends in lattice constant variations observed in XRD are closely correlated with shifts in the 

binding energies of Fe 2p3/2 and O 1s orbitals associated with the perovskite lattice. We establish a 

scaling factor between these two photoemission peaks, unveiling key correlation between Fe 

oxidation state and Fe-O covalency. Diffuse reflectance shows that optical transitions are little 

affected by AMC substitution below 10%, which are dominated by a direct bandgap transition close 

to 2.72 eV. Differential capacitance data obtained from EIS confirm the p-type characteristic of pristine 

LFO thin-films, revealing the presence of sub-bandgap electronic state (A-states) close to the valence 

band edge. The density of A-states is decreased upon AMC substitution, while the overall capacitance 

increases (increase in dopant level) and the apparent flat-band potential shifts towards more positive 

potentials. This behaviour is consistent with the change in the valence band photoemission edge. In 

addition, capacitance data of cation-substituted films show the emergence of deeper states centred 

around 0.6 eV above the valence band edge (B-states). Photoelectrochemical responses towards the 

hydrogen evolution and oxygen reduction reactions in alkaline solutions show a complex dependence 

on alkaline-earth metal incorporation, reaching incident-photon-to-current conversion efficiency 

close to 20% in oxygen saturated solutions. We rationalise the photoresponses of the LFO films in 

terms of the effect sub-bandgap states on majority carrier mobility, charge transfer and recombination 

kinetics.  

Keywords: LaFeO3 thin-films, photocathodes, Alkaline-earth metal cations, lattice substitution, oxygen 

photoreduction, surface states 

 

 

 

 

 

 

 

 



 

Page 2 of 18 

 

INTRODUCTION 

Transition metal oxide absorbers have attracted widespread attention in fields such as water-

remediation, water-splitting and photovoltaic devices, primarily due to their chemical stability and 

tunability of electronic properties.1,2 Efforts have been devoted primarily to oxide photoanodes, such 

as TiO2,3 Fe2O3,4,5 and BiVO4,6–8 which exhibit excellent chemical stability but poor light-harvesting, 

very short carrier-lifetime and fast surface recombination rate in comparison to the oxygen evolution 

reaction. On the other hand, significantly less is known about transition metal oxide photocathodes. 

Copper-based electrodes such as  Cu2O,9 and CuBi2O4
10,11 show attractive external quantum efficiency 

(EQE) for hydrogen evolution (HER), but chemical stability remains a significant challenge. Current 

strategies, including coating a protective layer (e.g. TiO2) onto semiconductor surfaces and metal 

doping have extended their lifetime under operational conditions.10,12–14 On the other hand, ferrite 

materials including LaFeO3,15–17 YFeO3,18
 BiFeO3,19 PrFeO3,20 CuFeO2,21 and CaFe2O4

22 are chemically 

stable, but their EQE values are significantly lower.  

LaFeO3 (LFO) is a p-type semiconductor exhibiting high photovoltages towards the HER, but 

low EQE values, regardless of the synthesis methods.15–17,23,24 In a recent publication, we identify that 

EQE can be substantially enhanced by depositing a thin TiO2 film which acts as a hole-blocking layer at 

the LFO/water interface.15 EQE enhancement has also been reported by depositing a thin Au interlayer 

between the FTO and LFO films.25 Metal cation substitution has also been put forward as a potential 

strategy to improve photoelectrochemical responses. Wheeler et al. reported an increase in 

photoelectrochemical responses upon 3% K+ substitution at the A-site, which was primarily linked to 

changes in the light capture cross-section.26 Substitution by Mg2+ and Zn2+ has also shown 

improvement in photocurrent responses,27 although it remains to be fully elucidated which sites are 

being replaced and how these affect the electronic properties of LFO. 

In this study, we uncover complex trends in the photoelectrochemical responses of thin LFO 

films upon alkaline-earth metal cation (AMC: Mg2+, Ca2+, Sr2+ and Ba2+) substitution of up to 10%. The 

AMCs are introduced in the sol-gel precursor, keeping the Fe(III) precursor concentration constant. 

XRD shows a complex dependence of the lattice constant with the type and extent of AMC substitution. 

Interestingly, the Fe 2p3/2 and O 1s binding energies extracted from quantitative XPS analysis show a 

qualitatively similar compositional dependence, revealing a direct correlation between Fe oxidation 

state and Fe-O covalency. Electrochemical Impedance Spectroscopy (EIS) unveils the presence of sub-

bandgap states generated upon AMC substitution, which play key roles in the kinetics of 

photoelectrochemical oxygen and water reduction reactions, surface recombination kinetics and 

dynamics of majority carrier transport.  

 

EXPERIMENTAL 

Thin-film preparation. All chemicals were purchased commercially with the highest purity available. 

Solutions were prepared with ultrapure Milli-Q water (18 M resistance). Thin films were deposited 

using sol-gel methods in the presence of citric acid as a chelating agent.21,27 La(NO3)3·6H2O (0.116 M), 

Fe(NO3)3·9H2O (0.116 M) and citric acid (0.232 M) were dissolved into 4.3 mL water and ethanol (5:4) 

and stirred for 2 hours, forming a clear solution. Ethylene glycol (0.06mL) was added into the mixture 

and further stirred for 20 hours. The solution was spin-coated onto F: doped SnO2 (FTO) substrates 

with a rotation speed of 3000 rpm for 30 seconds. The film was dried at 100 oC for 10 minutes, followed 

by heating to 400 oC for 1 hour. Subsequently, the same procedure was repeated three times to 

generate thin-films with a thickness of approximately 95 nm. The films were finally calcined at 600 oC 
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for 3 hours. In the case of AMC thin-films, the La3+ precursor was stoichiometrically substituted with 

either Mg(NO3)2·6H2O, Ca(NO3)2·4H2O, Sr(NO3)2 and Ba(NO3)2, keeping the concentration of Fe 

precursor and citric acid constant. SEM images in Figure S1a (Supporting Information) show no specific 

morphological features upon AMC substitution, while the film morphology is dominated by the F-

doped SnO2 (FTO). EDX Energy-dispersive X-ray (EDX) analysis (Figure S1b) confirms that the AMC 

content in the films is very close to the composition in the sol-gel precursor.  

Instrumentation. Powder XRD was recorded with a Bruker AXS D8 Advance diffractometer using a Ni-

filtered Cu-K source ( = 1.54016 Å). Thin-film morphology and composition were analysed by 

scanning electron microscopy (SEM, Jeol iT300) and with energy-dispersive X-rays analysis – EDX 

(Oxford Xmax-80 detector coupled to SEM), respectively. Diffuse-reflectance data in the visible range 

was measured with a Shimadzu UV-2600 spectrophotometer. Photoelectrochemical experiments 

were performed in 0.1 M Na2SO4 pH 12 solution, with an Ivium Compactstat potentiostat, employing 

a glassy carbon counter-electrode and Ag/AgCl (KCl saturated) reference electrode. Photocurrent 

transient measurements were measured with a 405 nm LEDs (Thorlabs) driven by a waveform 

generator (Stanford Research Systems). Measurement of external quantum efficiency (EQE) spectra 

was performed by a 100 W quartz halogen lamp (Bentham ILD-D2-QH) and a monochromator 

(Bentham TMc 300). Photon flux was referenced against a Si photodiode (Newport corporation, NREL 

calibrated). The electrolytes were Ar-purged or O2-purged 0.1 M Na2SO4 pH 12 aqueous solutions. All 

potentials are referred to against the reversible hydrogen electrode (RHE). Electrochemical Impedance 

Spectra (EIS) were recorded with Modulab potentiostat and frequency response analyser with 13 mV 

RMS amplitude of modulation between 1.7 Hz and 11.7 kHz. The X-ray photoelectron spectroscopy of 

as-received LaFeO3 samples was carried out at the Bristol NanoESCA Facility. The spectra were 

acquired employing an excitation from a non-monochromatic Al K line in a chamber with a base 

pressure of 4 x 10-11 mbar. The emitted photoelectrons are analysed with an ARGUS spectrometer with 

an overall energy resolution of 0.9 eV. The detail scans of the core levels and survey scans are collected 

with pass energies 20 eV and 50 eV, respectively. Charge-correction was performed against the 

adventitious C 1s peak assumed at 284.8 eV. The deconvolution of the core bands is done using 

Gaussian-Lorentzian composite functions after Shirley background subtraction using XPSPEAK code. 

 

RESULTS AND DISCUSSION                                         

Thin-film structure and optical properties. Figure 1 illustrates XRD patterns of pristine and AMC 

substituted LFO thin films deposited onto glass. Figure 1a contrasts the pristine and 3% Ba2+ 

substituted LFO films, exhibiting the pattern associated with the pm-3m cubic phase. Figure S2 

(supporting information) shows the XRD patterns of the pristine LFO and 7% AMC substituted films 

refined to the JCPDS-ICDD database file 01-075-0541, confirming the phase purity of the thin films.  

Figure 1b focuses on the position of the (110) diffraction peak for 7% substituted LFO, revealing that 

the extent of lattice distortion depends on the nature of AMC. The complex dependence of the 

diffraction angle with the extent of Ba2+ substitution is illustrated in Figure 1c, where an initial shift 

toward slightly higher 2 values is then reversed to values closer to the pristine LFO.  

The evolution of the structural parameters upon AMC substitution were investigated by 

Pawley refinement of the XRD pattern as described in Figure S2. The analysis shows a decrease in the 

lattice constant by approximately 2 pm upon 7% AMC substitution, although the absolute values 

should be considered cautiously given the broadening induced by the small crystalline domains (less 

than 100 nm). This is an interesting trend considering, for example, that the lattice constant of the 

cubic BaFeO3 is reported as 3.971 Å.28 We rationalise this behaviour in terms of the promotion of 
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higher Fe oxidation states, which feature smaller ionic radius, as a result of charge compensation upon 

La3+ substitution by the divalent AMC. Although Sr2+ and Ba2+ have larger ionic radius than La3+, the net 

change in the unit-cell size is dominated by the decrease in the Fe ionic radius at this low substitution 

levels. The trend in Figure 1c shows that as Ba2+ substitution increases over 5%, the shrinking in lattice 

constant induced by the higher oxidation state in the B-site is partially compensated by the larger A-

site cation. Although the behaviour observed in the XRD upon AMC substitution is highly reproducible, 

comparison with previous studies should be considered cautiously. Aspects such as nanocrystalline 

domain size, temperature and substrate induce strain can all play a role in the trends observed. 

  

Figure 1. XRD of alkaline-earth metal cation (AMC) substituted LaFeO3 (LFO) thin-films: (a) 

XRD patterns of pristine and 7% Ba2+ substituted LFO thin films, along with Bragg 

reflections (pink bars) from the JCPDS-ICSD standard 01-075-0541, showing the key 

features associated with the pm-3m cubic phase. (b) Evolution of the (110) peak upon 7% 

substitution of the various AMC and (c) as a function of the extent of Ba2+ substitution.  

 

 Semi-Quantitative XPS analysis was carried out across the whole range of AMC substituted 

LFO thin-films, with representative deconvolutions of the La 3d, Fe 2p and O 1s photoemission bands 

shown in Figure S3 (Supporting Information). The La 3d region contains two photoemission peaks with 

binding energies (BE) at 833.9 and 850.9 eV associated with La 3d5/2 and La 3d3/2, respectively.29–31 

These peak positions confirm the La3+ oxidation state, which is also supported by the 17 eV spin-orbit 

component separation between the doublet. Three different components were presented in the 

deconvolution of the O 1s peak, with the lowest BE (529.2 eV) linked to oxygen in the perovskite lattice, 
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and the other two components assigned to hydroxyl group and carbonated species.29 The 

predominant Fe3+ oxidation state can be described by the peak positions of Fe 2p3/2 at around 709.6-

710.6 eV and Fe 2p1/2 at 722.8-724.2 eV, with a spin-orbit splitting of around 13.6 eV and satellite 

peaks at approximately +8.6 eV from each doublet. The deconvolution of the broad Fe 2p 

photoemission is not straightforward given the complexity introduced by multiple-splitting, multiple 

oxidation states and charge transfer effects.32–34 In this study, we have implemented a simple 

approximation based on previous photoemission studies of Fe oxides, supported by highly sensitive 

Mossbauer spectroscopy.35,36 The Fe 2p peak can be deconvoluted into three components, with the 

most prominent being assigned to Fe3+ species. The smaller peaks at higher binding energies 

correspond to higher iron oxidation states, with some studies linking these features to Fe4+,26,35–38 

although this would require systematic analysis of other Fe core levels.39  

Figure 2 displays the dependence of the binding energies of Fe 2p3/2 and O 1s orbitals 

associated with the perovskite lattice as a function of AMC substitution (7%), as well as various Ba2+ 

substitution levels. The BEs of Fe 2p3/2 and O 1s show similar non-monotonic trends to those observed 

in the (110) XRD peak upon AMC substitution (Figure 1). This remarkable observation suggests that 

the interplay between changes in Fe site oxidation state and lattice distortion introduced by the AMC 

substitution affects the surface electronic structure of the thin-film.  

 

Figure 2. Evolution of the XPS spectra in the regions of Fe 2p (a,c) and O 1s (b,d) upon 7% 

AMC substitution and extent of Ba2+ substitution. Deconvolution analysis of the XPS 

features is exemplified in Figure S3. 

 

The scaling relation between Fe oxidation state and bond covalency is displayed by the linear 

correlation between Fe 2p3/2 and O 1s binding energies in Figure 3. This trend shows that the increase 

in the oxidation state of Fe sites promoted by AMC substitution manifests itself by a shift of the Fe 

2p3/2 peak towards higher BE, a subtle decrease in the perovskite lattice constant and an increase in 

the degree of covalency, which in turns drives the O 1s binding energy towards higher values. No such 

correlation is observed between O 1s and La 3d. The thin-film nature of our material, as well as the 
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processing temperatures used, may also play a role in the trends observed, although  Shen et al.40 

have also postulated that Fe4+ sites can lead to a stronger Fe-O bond. 

 

 

Figure 3. Correlation between binding energies (BEs) of Fe 2p3/2 and O 1s (perovskite 

lattice) in pristine and AMC substituted LFO films. This trend strongly suggests that Fe 

oxidation state and covalency of the Fe-O bond are strongly correlated.  

 

 

Figure 4. Optical properties of 95 nm pristine and 7% AMC substituted LFO thin films: (a) 

transmittance and reflectance spectra in the visible range; (b) Tauc plots showing the 

main absorption edge at 2.72 eV. 
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concentration range investigated, have little influence on the optical properties of the thin-film. 

Furthermore, the virtually identical values demonstrate the reproducibility of our deposition method 

in terms of thickness and film morphology, which strongly affect the film optical parameters. Tauc 

plots in Figure 4b shows the optical bandgap energy of pristine and all AMC substituted films are all 

close to 2.72 eV. LFO shows two distinctive sub-bandgap transitions which do not generate free charge 

carriers.15 It should be mentioned that Wheeler et al. reported more substantial changes in the optical 

properties upon 3% K+ substitution.26 We have also observed spectral changes at AMC substituted LFO 

powders processed at temperatures above 800 ˚C.  

 

Photoelectrochemical responses. Cyclic voltammograms of pristine and 7% AMC substituted LFO 

films in 0.1 M Na2SO4 pH 12 in the dark are displayed in Figure 5a. The voltammograms, recorded at 

100 mV s-1, show an increase in the capacitive current in the range of 0.4 to 1.5 V vs RHE with respect 

to the pristine LFO films. The onset of oxygen evolution can be seen at potentials beyond 1.4 V, 

indicating the transition from reverse to forward bias. A broad pseudo-capacitive feature can be seen 

at potentials around 1.3 V in the case of pristine LFO while a more significant response can be seen at 

less positive potential upon 7% AMC substitution. Figure 5b shows that the pseudo-capacitive 

response between 0.8 and 1.0 V increases upon the increasing concentration of Ba2+ in the film. Plots 

of differential capacitance as a function of the applied potential in Figure 5c further emphasise the 

trends observed in cyclic voltammetry. Each capacitance point shown in Figure 5c was calculated from 

electrochemical impedance spectra as described in Experimental. Indeed, AMC substitution promotes 

a significant increase in the capacitance across the whole potential range, suggesting a significant 

increase in the density of acceptor states (doping density). We also see an increase in the capacitance 

of the pristine LFO films from 1.2 eV and a prominent shoulder at 1.4 eV, which are linked to sub-

bandgap surface states (A-states). The transition from reverse to forward bias in the AMC substituted 

films occurs about 0.2 V more positive than in the pristine LFO films, with a broad pseudo-capacitive 

feature in the range of 0.8 to 1.1 eV (B-states) depending on the AMC. The data in Figure 5 clearly 

show that the density of B-states depends on the extent of AMC substitution, while A-states appears 

to dampen by all AMC substantially.   

Based on the link between the emergence of B-states and AMC substitution, these states are 

likely to involve a combination of Fe 3d and O 1s states as a result of the presence of higher Fe 

oxidation states.26,41 On the other hand, A-states are linked to intrinsic defects which tend to generate 

states closer to the valence band edge. Indeed, Taylor et al. concluded that Schottky disorder 

compensated by cation vacancies could generate intrinsic sub-bandgap states near the valence 

band.42 In principle, the position of these states probed by electrochemical methods can be strongly 

influenced by the hydration energy.43 Consequently, we could have a rather complex picture in which 

these states may have different energies in bulk and at the surface. Further below, we will 

demonstrate that these states have a strong effect on the photoelectrochemical responses of LFO 

films. 
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Figure 5. Electrochemical responses in 0.1 M Na2SO4 pH 12: (a) cyclic voltammograms of 

pristine and 7% AMC substituted LFO films at 0.1 V s-1; (b) cyclic voltammograms as a 

function of the Ba2+ substitution extent at 0.1 V s-1; (c) Capacitance voltage curves 

extracted from electrochemical impedance spectra of pristine and 7% AMC substituted 

films, highlighting the pseudo-capacitive elements associated with A and B sub-bandgap 

states 
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Figure 6. Valence band edge position: (a-b) Mott-Schottky plots of the pristine and 7% 

AMC substituted LFO films in 0.1 M Na2SO4 pH 12; (c) valence band edge calculated from 

XPS analysis of the pristine and AMC substituted films. Both approaches appear to show 

a valence band edge shift of approximately 300 meV upon AMC substitution.  
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onset of the AMC substituted films are all shifted by approximately 300 meV with respect to the 

pristine films, further confirming the lowering of the Fermi energy upon AMC substitution. 

Figure 6c also shows a sharper increase in photoemission intensity at the valence band edge 

of the AMC substituted with respect to the pristine film. Based on the Fermi-Dirac Distribution, this 

trend suggests an increase in acceptor states (conductivity) upon AMC substitution. A similar trend 

can be extracted from the Mott-Schottky analysis (Figures 6a and 6b), although quantification of the 

majority carrier density is rather complex due to the FLP induced by the surface states and the acute 

dependence of the relative permittivity on parameters such as grain size and annealing temperature.44 

A rough estimation based on the linear portions highlighted in Figure 6a and 6b, suggest that pristine 

LFO would be in the range of 2.3×1017 cm-3. At the same time, AMC substituted LFO in the range 

investigated is approximately 10 times larger. This observation is also consistent with the strong 

dependence of LFO conductivity on the extent of Sr2+ substitution reported by Shen et al.40 On the 

other hand, the valence band spectrum of the pristine LFO appears to show a higher density of states 

at Ef. We link this density of states to the sub-bandgap A-states which are not well resolved in the 

energy scale due to the small cross-section of these states under the X-ray excitation used. Thus, a 

consistent picture of the density of states near the valence band edge is emerging from the differential 

capacitance-voltage curve (Figure 5c) and the valence band spectra (Figure 6c).  

Figure 7a and 7b show linear sweep voltammograms (LSV) of various 7% AMC substituted LFO 

photocathodes and as a function Ba2+ content recorded at 5 mV s-1 in O2-saturated 0.1M Na2SO4 

aqueous solution at pH 12, under a square wave 405 nm light perturbation and a photon flux of 

3.25×1015 cm-2 s-1. The responses for all AMC substituted films are significantly higher than for pristine 

LFO, with all showing a similar photocurrent-voltage dependence and an onset potential close to 1.2 

V. Interestingly, Figure 7b shows that the photocurrent response as a function of the Ba2+ content goes 

through a maximum at around 7%. A similar trend is observed for all AMC, except Mg2+, as shown in 

Figure 7c (LSV of the films as a function of AMC substitution levels can be found in Figure S4). Indeed, 

photocurrent responses show a weak increase upon increasing Mg2+ substitution up to 17%. We 

rationalise this behaviour in terms of the affinity of Mg2+ to the B-site of the perovskite lattice as 

predicted by Taylor et al.45 Diez-Garcia and Gomez has also reported photocurrent enhancement in 

the presence of Mg2+, although they only assume B-site substitution which is not entirely supported 

by our XPS observations.27 

Figures 7d shows the external quantum efficiency (EQE) spectra of the pristine and 7% AMC 

substituted films in O2-saturated 0.1M Na2SO4 aqueous solutions at pH 12. EQE values closed to 20% 

is obtained in the case of 7% Ba2+ substituted at a wavelength close to 360 nm and potential bias of 

0.45 V vs RHE, which is one of the highest EQE value reported for LFO photocathodes. Linear sweep 

voltammetry carried out under the same conditions as in Figure 7a but after 1 hr of continuous 

illumination and after 45 days show identical trends and values, confirming the strong chemical 

stability of these films (Figure S4). Tauc plots constructed from EQE data (Figure 7e) clearly 

demonstrate that charge carriers are only generated upon excitation above 2.72 eV, which we have 

identified as the effective bandgap of the material (Figure 4b). This observation is in contrast with the 

Wheeler et al. study, which concluded that photocurrent enhancement upon K+ substitution is linked 

to a decrease in the bandgap conclusion.26   
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Figure 7. Photoelectrochemical responses in O2-saturated 0.1M Na2SO4 aqueous solution 

pH 12: (a-b) 5 mV s-1 linear sweep voltammetry under a square wave 405 nm light 

perturbation and photon flux of 3.25×1015 cm-2 s-1; (c) Photocurrent response at 0.45 V vs 

RHE as a function of the type and extent of AMC substitution; (d) External quantum 

efficiency spectra for the pristine and 7% AMC substituted thin films; (e) Tauc plot 

representation of the EQE demonstrating that charge carriers are generated only above 

the 2.72 eV edge for all LFO thin films. Photocurrent transients for different substitution 

levels of Mg2+, Sr2+ and Ca2+ are shown in Figure S4. 

 

To rationalise the photocurrent enhancement mechanism, we explore the behaviour in Ar-

saturated solution as displayed in Figure 8. LSV curves for all 7% AMC substituted films (Figure 8a) and 

as a function of Ba2+ content (Figure 8b) were recorded under the same conditions as in Figure 7a and 

7b after purging the solution with Ar for over 30 min. In all cases, a significant improvement in the 

magnitude of the photoresponses is observed, although there is clear evidence of fast surface 

recombination. Indeed, there is a sharp increase in the initial photocurrent (displacement current) 

followed by a substantial relaxation to a low quasi-stationary photocurrent. The off-transient is a 

positive photocurrent overshot and a relaxation with a similar time constant, which is clearly 

illustrated in Figure S6. This behaviour is somewhat different from those observed in pristine highly 

crystalline LFO nanoparticle thin-films, which are characterised by a highly asymmetric photocurrent 

transient responses associated with hindered minority carrier transfer rather than surface 
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recombination.15,17 Consequently, AMC substitution has a strong effect on carrier mobility leading to 

high displacement current, but also promotes surface carrier recombination in Ar-saturated solution. 

 

 

Figure 8. Transient photocurrent responses in Ar-saturated 0.1M Na2SO4 aqueous solution 

pH 12 of (a) pristine LFO thin films and 7% AMC substituted, and (b) for different extents 

of Ba substituted LFO films. Transients were recorded at 5 mV s-1 linear sweep 

voltammetry and square wave light perturbation (405 nm and 3.25×1015 cm-2 s-1 photon 

flux). Photocurrent transients of LFO films with different substitution levels of Mg2+, Sr2+ 

and Ca2+ are shown in Figure S5. 

 

The role of sub-bandgap states in photoelectrochemical responses. The effect of AMC substitution 

in electronic states near the valence band can be schematically illustrated in Figure 9, showing the 

dampening of intrinsic A-states and the emergence of B-states. With regards to A-states, these are 

located close to the valence band, remaining fully populated across most of the potential range 

investigated. These states behave as hole-traps, slowing down the transport of the majority carriers. 

This can be observed in the normalised photocurrent transients shown in Figure S6, where the 

photocurrent rise time in the on-transient and decay in the off-transient are slower in pristine LFO 

than AMC substituted LFO films. As demonstrated by Zhang et al., surface states probed 

electrochemically act as majority carriers trap states, leading to transient photocurrent responses 

significantly slower than the RC time constant.46 Consequently, the dampening of A-states upon AMC 
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substitution is responsible for the sharpening of instantaneous (displacement) photocurrent shown in 

Figure S6. 

The enhancement of the photocurrent responses towards oxygen reduction is not only 

associated with an improvement in majority carrier transport (dampening of A-states) but crucially 

with increasing kinetics of electron transfer assisted via B-states. The Gerischer formalism for electron 

transfer is based on the isoelectronic nature of the interfacial process, i.e. heterogeneous electron 

transfer involves density of states in the solid and the redox species located at the same energy.47–50 

As shown in Figure 9, B-states are located close to the standard oxygen redox energy; therefore, these 

states can mediate electron transfer from LFO. This is supported by the substantial increase in dark 

current in O2 saturated solutions upon AMC substitution, as shown in Figure S7. Indeed, our previous 

works have shown that O2 reduction kinetics at perovskite oxides are strongly linked to the density of 

states in the potential range between 0.5 and 1.2 V vs RHE.30,51 The data show a systematic increase 

in the dark current at potentials more negative than 0.8 V vs RHE, i.e. once the density of B-states is 

fully populated. Under illumination, B-states are populated at all potentials accelerating the oxygen 

reduction kinetics (photocurrent).  

 

 

Figure 9. Schematic representation of the position of valence band edge as well as of the 

hydrated A- and B-states for pristine and AMC substituted LFO thin films. A-states are 

linked to intrinsic defects linked to cation disorder, while B-states are a combination of O 

1s and Fe 3d states associated with high Fe-oxidation states. 

 

The role of the sub-bandgap states in the photoelectrochemical hydrogen evolution reaction 

is somewhat less clear. We could postulate that in the absence of O2, B-states can act as recombination 

centres as the charge transfer kinetics will be nominally zero. However, surface recombination can 

also occur in sub-band-gaps states closer to the conduction band edge, which is inaccessible to 

electrochemical experiments (e.g. oxygen vacancies). In this respect, it is important to raise a note of 
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caution on rationalising experimental trends employing DFT based electronic structure calculations. 

Most studies reporting changes in electronic structures as a result of cation substitution correlate their 

findings with optimised stoichiometric structures, disregarding the variety of intrinsic defects present 

in these complex materials (particularly those synthesised under O2-rich environment).26,40 

Consequently, our understanding of electronic states associated with extrinsic and intrinsic defect 

structures remain rather shallow. Our study only provides a partial picture into these complex issues 

which are crucial to our understanding of this class of high-correlated electron systems in 

electrocatalysis, photocatalysis and artificial photosynthesis. 

 

CONCLUSION 

Divalent alkaline-earth metal cations (AMC) Mg2+, Ca2+, Sr2+ and Ba2+ substitution into LaFeO3 thin-

films prepared by sol-gel methods leads to changes in the electronic structure close to the valence 

band edge with a strong impact in photoelectrochemical performance. XRD and XPS analysis reveal a 

complex picture where parameters such lattice constant and covalency are affected by the type and 

extent of AMC substitution. At very low substitution levels (below 5%), sites featuring higher Fe 

oxidation states promote the contraction of the lattice constant, which is partially compensated at 

higher substitution levels by strain effects arising from the larger AMC. XPS analysis reveals a linear 

correlation between the BE of Fe 2p3/2 and O 1s associated with the perovskite lattice, suggesting that 

the Fe oxidation state and covalency of the Fe-O bond are strongly correlated regardless of the AMC 

nature. The structural and electronic effects of AMC substitution also confirm that substitution takes 

place at the A-site, except for Mg2+, which can also occupy B-sites. 

The structural and electronic changes promoted by AMC substitution are probed by current-

voltage curves and electrochemical impedance spectroscopy in alkaline solutions. Pristine LFO films 

exhibit states located around 100 to 200 meV above the valence band edge (A-states), which are linked 

to intrinsic defects such as cation vacancies. AMC substitution attenuates these states (while 

substantially increasing the density of majority carriers), as well as promoting deeper states centred 

at 600 meV above the valence band edge (B-states). Dynamic photoelectrochemical studies show that 

A-states acts as hole-traps, decreasing the mobility of charge carriers. On the other hand, B-states 

promotes the photoelectrochemical reduction of oxygen. In the absence of oxygen, AMC substitution 

increases in the displacement (transient) photocurrent but the photostationary values are strongly 

affected by surface recombination. Currently, it remains to be fully elucidated whether surface 

recombination occurs at B-states or higher sub-bandgap states under oxygen-free solutions. These 

observations strongly point forwards to a significant improvement of LFO as photocatalysts for water 

remediation upon AMC substitution below 10%. With regards to photoelectrochemical hydrogen 

generation, new approaches are required in order to minimise intrinsic hole-trap states while 

promoting density of states near the conduction band, which can facilitate interfacial electron transfer.  
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