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Abstract 
Most nonlinear identification problems often require prior knowledge or an initial assumption of the 

mathematical law (model structure) and data processing to estimate the nonlinear parameters present in 

a system, i.e. they require the functional form or depend on a proposition that the measured data obey 

a certain nonlinear function. However, obtaining prior knowledge or performing nonlinear 

characterisation can be difficult or impossible for certain identification problems due to the 

individualistic nature of practical nonlinearities. For example, joints between substructures of large 

aerospace design frequently feature complex physics at local regions of the structure, making a 

physically motivated identification in terms of nonlinear stiffness and damping impossible. As a result, 

black-box models which use no prior knowledge can be regarded as a proficient method, this paper 

explores the pragmatism of a black-box approach based on Polynomial Nonlinear State Space (PNLSS) 

models to identify the nonlinear dynamics observed in a large aerospace component. As a first step, the 

Best Linear Approximation (BLA), noise and nonlinear distortion levels are estimated over different 

amplitudes of excitation using the Local Polynomial Method (LPM). Next, a linear state space model 

is estimated on the non-parametric BLA using the frequency domain subspace identification method. 

Nonlinear model terms are then constructed in the form of multivariate polynomials in the state 

variables while the parameters are estimated through a nonlinear optimisation routine. Further analyses 

were also conducted to determine the most suitable monomial degree and type required for the nonlinear 

identification procedure. Practical application is carried out on an Aero-Engine casing assembly with 

multiple joints, while model estimation and validation is achieved using measured sine-sweep and 

broadband data obtained from the experimental campaign.   

Keywords: Nonlinear systems; System identification; Black-box model; State-space models and 

Aircraft structures 

 

1. Introduction  

The levels of nonlinearities encountered during the vibration test of aerospace structures is ever 

increasing and becoming more significant as attested by the literature [1]. Over the last few years, 

evidence of nonlinear phenomena has been reported during the Ground Vibration Testing (GVT) of 

large aircraft structures [2-4]  and it is now evident that these cases require profound investigation to 

understand and identify the nonlinearities observed in such test data. In addition, the use of developed 

linear tools and theories to perform identification on nonlinear test data often produces undesirable 

results or in most cases fail to predict the structural response within the acceptable levels [5, 6] which 

are required for validation and industrial certification purpose. Hence the development of effective 

system identification techniques applicable to nonlinear systems is a major demand by many structural 

dynamic engineers and researchers. 
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In most cases, the detection of nonlinearity from measured data can easily be achieved by using simple 

techniques such as the superposition principle, observation of distorted peaks at the resonances and 

recognition of jumps between low and high response amplitudes. After nonlinearity has been detected 

in measured data, identification of parametric or non-parametric models from such data is often a 

challenging task. The last two decades have witnessed the development of several procedures and 

methods for nonlinear system identification. These methods can mostly be grouped into three different 

categories namely white-box [7], black-box [8] and grey-box [9] identification.  

Black-box modelling has proven to be a successful way of tackling nonlinear system identification, 

especially for case studies where the functional forms and mathematical law governing the 

nonlinearities are challenging to obtain prior to the final parameter estimation. In this case the only 

available information about the system is given by the measured inputs and outputs. A black-box 

approach uses model structures that are adequate and rich to capture all the appropriate physics and 

dynamics governing the nonlinearities of a given system. Examples of black-box models available in 

the literature are: nonlinear autoregressive network (NARX) and nonlinear autoregressive moving 

average (NARMAX) with exogenous inputs models [10, 11], the Volterra models [12-14], neural 

networks [8, 15] and state space models [16-18]. Although, results obtained from black-box models can 

be challenging to interpret in terms of nonlinear stiffness or damping parameters for the system under 

investigation, the advantage of their flexible mathematical and model structures can be used to capture 

significant nonlinear behaviours observed in measured data. 

Obtaining a prior knowledge of the nonlinear functional form or nonlinear characteristics of large 

assembled structures with joints can be very challenging due to their specific nonlinear behaviour such 

as stick-slip behaviour at macro- and microscopic levels and hysteretic damping behaviour. As such, 

black-box identification methods are often considered as a reasonable approach to capture relevant 

information about the characteristics and nature of nonlinearities in the system based on measured input 

and output data. An emerging black-box modelling method utilised in nonlinear system identification 

is based on the state space modelling approach. These state space models have a non-specific 

representation that can be used to model a variety of mechanical and control systems. Most importantly, 

nonlinear state space models have the flexibility and capacity to capture different types of nonlinear 

phenomena. Recent work and contributions in this research area including applications are 

demonstrated in [17, 19-21].  

In this paper, a black-box data driven approach based on the Polynomial Nonlinear State Space 

(PNLSS) model [16] is applied to develop a state-space representation of the measured data and capture 

relevant nonlinearities observed during the experimental campaign of a large aero-engine casing. In this 

case, a physical interpretation of the structure under test is not pursued, rather a PNLSS model capable 

of describing a Single Input Multiple Output (SIMO) representation of the system and its corresponding 

nonlinearity is developed. A benefit of using state space models is the suitability for modelling a variety 

of system configurations such as Multiple-Inputs and Multiple-Outputs (MIMO), Single-Input and 

Multiple-Output (SIMO) and Single Input and Single Output (SISO) systems. The approach adopted in 

this paper exploits the great flexibility of the PNLSS model to investigate the nonlinear characteristics 

observed at measured local regions of the structure. Furthermore, a major challenge in black-box 

modelling or nonlinear experimental identification is the concern between the flexibility of the fitted 

model and its parsimony [1]. For this study, flexibility is defined here as the ability of the derived model 

to capture nonlinearities observed across multiple vibration modes while parsimony is the ability for 

the fitted model to have the lowest possible number of parameters. In this paper, more attention is drawn 

towards developing a PNLSS model capable of modelling and identifying the nonlinearities observed 

across three consecutive vibration modes of an aero-engine casing whilst maintaining the lowest 

number of possible parameters. The PNLSS identification was conducted on measured sine-sweep data, 

while the validity of the derived model is tested on broadband data. 



                                                                                                                 

3 
 

A preliminary investigation on the effect of nonlinearities was conducted on the test structure with some 

initial results published in a conference proceeding in [32]. Compared to [32], this paper includes a pre-

test analysis with a finite element model, identification in a larger frequency range with more 

nonlinearly distorted modes, broadband validation experiments, and a study on identifying a suitable 

parsimonious model. In addition, this paper addresses one of the challenging task of the Highly 

Innovative Technonlogy Enabler for Aeropsace (HiTEA) research program funded by Innovation UK 

funding scheme. One of the objective of this project was to design and validate experimental test rig up 

to Technology Readiness Level 6 (TRL6) capable of being used for smart Structural Health Monitoring 

(SHM) methods through the integration of experimental test and simulation. This objective required 

understanding and identifying the effects of nonlinearities triggered by joints and bolted assemblies on 

an aerospace structure provided by Rolls-Royce. This paper presents results obtained for the nonlinear 

experimental campaign and identification.   

This paper is structured as follows. A brief discussion on black-box identification based on state space 

modelling is presented in section 2. The entire identification procedure including the implemented 

techniques such as the Best Linear Approximation (BLA) and the full nonlinear identification based on 
the Levenberg-Marquardt (LM) algorithm is described in section 3. In section 4, the PNLSS 

identification is implemented on measured data obtained from a test campaign conducted on an aero-

engine casing. A parametric and non-parametric study of the total distortions (noise and nonlinear 

distortions) observed in the test data are presented. In addition, further analysis on deriving a flexible 

PNLSS model capable of capturing the observed nonlinearities is presented based on sine-sweep and 

Frequency Response Function (FRF) data. The validity of the identified model using an independent 

set of measured sine-sweep and broadband data is tested and illustrated in section 5 while discussions 

and concluding remarks are presented in section 6.  

2. Black-box Identification Based on State Space Models 

To identify or model nonlinear systems, one often needs to examine the device under test thoroughly 

and develop a befitting model using first principles derived from physics and nonlinear dynamics laws 

[7]. However, developing a fully understood physics-based model is time consuming and sometimes 

impossible for devices or systems with multiple sources and types of nonlinearities originating from 

bolted connections and joints as in the case of the aero-engine casing assembly under study. In the 

present case the only available information about the device under test is the measured inputs and 

outputs. Considering the nonlinear structure, in this case the aero-engine casing assembly, as a black-

box, a flexible data-driven model can be developed to capture the principle nonlinearities without 

utilising significant physical or internal information about the aero-engine casing assembly.   

2.1. State Space Models 

A state space representation can conveniently model a system with multiple inputs and multiple outputs 

[1]. In this case, discrete-time models are adopted as opposed to continuous-time models which are 

computationally intensive due to calculations of time derivatives and integrals of nonlinear functions. 

Furthermore, a continuous-time model is not essential when using black-box approach since the 

estimation of physical parameters is not the main pursuit. A discrete-time state space model in a general 

form is expressed as: 

{
𝑥(𝑡 + 1) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

        𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡))
                                                                                  (1)   

where 𝑢(𝑡)  ∈  ℝ𝑛𝑢 is a vector containing the 𝑛𝑢 input values at time instant 𝑡, note that 𝑛𝑢 = 1 in this 

study, while  𝑦(𝑡)  ∈  ℝ𝑛𝑦 is the vector of the 𝑛𝑦 outputs. The state vector 𝑥(𝑡)  ∈  ℝ𝑛𝑎 represents the 

memory of the system and stores the collective dynamics present in the different outputs. The first line 

of equation (1) represents the state equation which describes the evolution of the states as a function of 
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the inputs and the previous states. The second line of equation (1) is called the output equation and it 

relates the system’s output with the states and the inputs.  

Here, the state space model equation will be defined as a classical linear state space model (with state 

space matrices 𝐴 ∈  ℝ𝑛𝑎×𝑛𝑎, 𝐵 ∈  ℝ𝑛𝑎×𝑛𝑢, 𝐶 ∈  ℝ𝑛𝑦×𝑛𝑎, and 𝐷 ∈  ℝ𝑛𝑦×𝑛𝑢) with the addition of 

nonlinear functions 𝑓NL and 𝑔NL to the state and output equations. Equation (2) describes a discrete time 

model of a nonlinear state space model [16].   

{
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑓NL(𝑥(𝑡), 𝑢(𝑡))

        𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑔NL(𝑥(𝑡), 𝑢(𝑡))
                                                         (2) 

The functions 𝑓NL and 𝑔NL can use a set of basis functions of different types such as wavelets, sigmoid 

functions, polynomials, hyperbolic tangents, or radial basis functions [16]. In this paper, polynomial 

nonlinear state space models are selected based on their ability to provide enough flexibility to cover 

the problem of interest. 

2.2. Polynomial Nonlinear State Space Models 

In a Polynomial Nonlinear State Space (PNLSS) model, the nonlinear functions 𝑓NL and 𝑔NL in Eqs (2) 

are expanded using basis functions by extending the linear state and the output equation with 

polynomials in the state and the input variable [16]: 

                                                      𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝜁(𝑥(𝑡), 𝑢(𝑡))                                          (3) 

                                                 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝐹𝜂(𝑥(𝑡), 𝑢(𝑡))                                               (4) 

where the vectors 𝜁 and 𝜂 contain all nonlinear monomials with user-chosen degrees larger than one, 

and the matrices 𝐸 ∈  ℝ𝑛𝑎×𝑛𝜁 and 𝐹 ∈  ℝ𝑛𝑦×𝑛𝜂 contain the corresponding monomial coefficients. The 

matrices 𝐵 and 𝐷 have 𝑛𝑢 = 1 column for SIMO models, and 𝐸 and 𝐹 have a number of columns that 

corresponds to the total number of monomials of the user-chosen degrees. Nonlinear dynamics is 

captured through the inclusion of the nonlinear terms 𝐸 𝜁 and 𝐹 𝜂. In particular, assuming a SIMO 

model, the monomials 𝜁(𝑡) and 𝜂(𝑡) are formed by all possible products of the input and the state 

variables raised to a chosen degree, e.g. for an element in 𝜁(𝑡), [16]  

𝜁𝑘,𝑙1,…,𝑙𝑛𝑥   (𝑡) = 𝑢𝑘(𝑡) ∏ 𝑥𝑖
𝑙𝑖(𝑡)

𝑛𝑎

𝑖=1

                                                               (5) 

where the total degree of monomial fulfills the condition: 𝑘 + ∑ 𝑙𝑖 ∈ {0,2,3, . . . , 𝑑}
𝑛𝑎
𝑖=1 . Polynomial 

expansions are useful because they are linear in parameters, hold universal approximation properties, 

and can easily be extended to multivariate cases [16, 19]. 

2.3. Model Structure 

A data driven nonlinear black-box modelling often requires a flexible model structure capable of 

representing all the nonlinearities observed in an interested case study. In this paper, the SIMO 

configuration is used in deriving a data driven nonlinear model for the assembled engine casing. 

Although a PNLSS model can capture wide range of nonlinear effects, it is important that an appropriate 

model structure is selected to reduce and manage the effects of the increasing number of parameters 

based on a combination of the polynomial degree and number of input and state variables. The model 

structures considered here are classified as full model and state only model [20]. For a full model 

structure all elements in the matrices 𝐸 and 𝐹 of equations (3) and (4) are taken into consideration 

during the optimization process, while a state only model structure only considers the elements in 

𝐸𝜁(𝑥(𝑡)) and 𝐹𝜂(𝑥(𝑡)) i.e. no input terms are considered. 
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For a full PNLSS model where all monomials of degree 𝑑1, 𝑑2, … , 𝑑𝐾  are present, the number of 

elements in the matrices 𝐸 and 𝐹 combined can be computed using the following expression  

𝑠 = (∑
(𝑛𝑎 + 𝑛𝑢 − 1 + 𝑑𝑖)!

(𝑛𝑎 + 𝑛𝑢 − 1)! 𝑑𝑖!

𝐾

𝑖=1

) (𝑛𝑎 + 𝑛𝑦)                                                      (6) 

For a full PNLSS model with consecutive polynomial degrees 2, 3, …, d, the sum in (6) could be worked 

out explicitly:  

𝑠full = (
(𝑛𝑎 + 𝑛𝑢 + 𝑑)!

(𝑛𝑎 + 𝑛𝑢)! 𝑑!
− (𝑛𝑎 + 𝑛𝑢) − 1) (𝑛𝑎 + 𝑛𝑦)                                            (7) 

The number of terms in a polynomial with 𝑛𝑎 + 𝑛𝑢 inputs and consecutive degrees 0, 1, …, d is given 

by 
(𝑛𝑎+𝑛𝑢+𝑑)!

(𝑛𝑎+𝑛𝑢)!𝑑!
. Removing the number of linear terms (𝑛𝑎 + 𝑛𝑢) and constant terms (one) and 

multiplying with the number of polynomials (𝑛𝑎 + 𝑛𝑦) results in the expression in (7).   

For a state only model, the number of parameters is reduced with 𝑛𝑢 in (7) being considered to be zero: 

𝑠state = (
(𝑛𝑎 + 𝑑)!

𝑛𝑎! 𝑑!
− 𝑛𝑎 − 1) (𝑛𝑎 + 𝑛𝑦)                                                      (8) 

Solving the governing nonlinear equations of motion for large industrial scale structure with 

substructures and jointed interfaces can easily become computationally intensive due to the large 

amount of data processing involved, hence selecting an appropriate model structure is of major 

importance. Since the main application of this paper is demonstrated on a large aircraft-engine casing, 

the state only model structure is utilised to reduce the computational burden and the number of 

parameters during the identification process. The state only model structure is utilised based on the 

assumptions that there are no nonlinearities observed in the input signal or excitation. This leads to 

disregarding the input variables in the monomial combinations. 

3. Identification Procedure   

This section of the paper describes the identification procedure that is implemented for a data driven 

nonlinear state space model for the casing assembly based on experimental data. The state space 

identification approach used in this paper is fundamentally based on four different steps. These steps 

are listed below with a brief description and summarised schematically in Figure 1.  

1) To obtain the PNLSS model of a system, it is often beneficial when the initial linear state space 

parameters (A, B, C, D) of the nonlinear system are identified first. To do this, a non-parametric 

Best Linear Approximation (BLA) of the system is determined here using the Local Polynomial 

Method (LPM) [22]. Additionally, an estimate of the total variance (i.e. the sum of the noise 

and nonlinear variance) is obtained. 

 

2) A linear state space parametric model (A, B, C, D) is identified from the BLA using a frequency 

domain subspace method [23]. The weighted mean square difference between the estimated 

FRF of the BLA and the FRF of the linear state space model is minimised. This weighting is 

used to select a frequency band of interest and is typically the inverse of the total variance 

estimated in the previous step.   

 

3) The linear state space model is then extended with polynomial terms in the states. The 

corresponding polynomial coefficients, together with those of the linear state space model are 

optimised using the Levenberg-Marquardt method [24]. The linear parameters are optimised 
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again because the initial guess is biased due to nonlinear distortions. Re-estimating the linear 

coefficients improves the input/output fit. A cost function is defined to minimise the weighted 

mean square difference between the measured and the modelled output spectra of the 

Polynomial Nonlinear State Space (PNLSS) model. The weighting is used here to focus on a 

frequency band of interest. A fixed number of Levenberg-Marquardt iterations is performed. 

The models obtained after a successful Levenberg-Marquardt iteration (i.e. one for which the 

cost function evaluated on the estimation data decreases) are retained as candidate models. 

Models obtained after an unsuccessful iteration are discarded. 

 

4) This last step involves validating the identified nonlinear model on a new data set that was not 

used in the identification process. This cross-validation step is done to avoid over-fitting. The 

model among the candidate models (see step 3) that achieves the lowest cost on the validation 

data is selected as the final model estimate.  Here, new swept-sine and broadband data are 

introduced to measure the performance of the identified nonlinear model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Non-parametric Analysis of Nonlinear Distortions and parametric BLA 

In this section, the Best Linear Approximation (BLA) framework [25, 26] and the Local Polynomial 

Method (LPM) [22, 27] are employed to gain useful insight into the level of nonlinear distortions 

                      Figure 1: Schematic of the identification procedure   
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observed in the measured data. These methods are introduced in this section. The estimated BLA is 

used in the next section as an initialisation for the nonlinear model.  

3.1.1. Best Linear Approximation 

The BLA of a nonlinear system for a given class of input signals is defined as the linear model 𝐺BLA(𝑘) 

which produces the best approximation of the system’s output in least-square sense [26]: 

                                             𝐺BLA(𝑘) = arg min
𝐺(𝑘)

𝐸𝑢{‖𝑌(𝑘) − 𝐺(𝑘)𝑈(𝑘)‖2
2}                                            (9) 

where 𝐺BLA is the frequency response function (FRF) of the BLA, 𝐸𝑢{⋅} is an ensemble average over 

the considered class of input signals, 𝑌(𝑘) and 𝑈(𝑘) are the discrete Fourier spectra of the output and 

the input at frequency line 𝑘, and 𝐺 is the FRF of a linear system. The BLA generally varies with the 

input frequency content and the Root Mean Square (RMS) values of the input signals. It can be 

identified by performing several experiments and acquiring the steady-state responses of the input-

output data. To keep the notation simple, the single input single output case of the BLA estimation 

procedure is described in this section while a generalisation for multiple input and multiple output 

nonlinear systems is presented in [28, 29].  

Usually, the BLA framework is introduced for Period In Same Period Out (PISPO) systems [26], which 

means that the response of the system to a periodic input is itself periodic with the same period length, 

and for (extended) Gaussian input signals [26]. With this condition obeyed, then the BLA of such 

system exist. The output spectrum of the system can then be written as: 

                                                    𝑌(𝑘) = 𝐺BLA(𝑘)𝑈(𝑘) + 𝑌S(𝑘) + 𝑉(𝑘) + 𝑇(𝑘)                                           (10) 

where the term 𝑌S(𝑘) accounts for nonlinear distortions, 𝑉(𝑘) accounts for additive measurement noise, 

and 𝑇(𝑘) accounts for leakage due to system and noise transients. 

To estimate the BLA and to significantly reduce the effect of leakage, the Local Polynomial Method 

(LPM) [22, 27] is adopted. The LPM exploits the smoothness over frequencies of 𝐺BLA(𝑘) and 𝑇(𝑘), 

and the roughness over frequencies of 𝑈(𝑘), 𝑌S(𝑘), and 𝑉(𝑘). When applying the LPM method the 

assumption is that the input is random. In that case, the input spectrum is also random, hence does not 

vary smoothly from one frequency to the other. Similarly, the nonlinear distortions are input dependent 

(so they are also non-smooth (=rough) over frequency), and 𝑉 the noise spectrum (so also rough over 

frequency). The basic idea of the LPM is to model the 𝐺BLA(𝑘) and 𝑇(𝑘) as polynomials in a local 

frequency band around frequency line 𝑘: 

             𝑌(𝑘 + 𝑟) = 𝐺BLA(𝑘 + 𝑟)𝑈(𝑘 + 𝑟) + 𝑌S(𝑘 + 𝑟) + 𝑉(𝑘 + 𝑟) + 𝑇(𝑘 + 𝑟)                                            (11) 

with 

                                      𝐺BLA(𝑘 + 𝑟) = 𝐺̂BLA(𝑘) + ∑ 𝛼𝑠𝑟𝑠𝑅
𝑠=1                                                                  (12) 

                                         𝑇(𝑘 + 𝑟) = 𝑇̂(𝑘) + ∑ 𝛽𝑠𝑟𝑠𝑅
𝑠=1                                                                             (13) 

for 𝑟 = −𝑛, −𝑛 + 1, … , 0, … , 𝑛 − 1, 𝑛  with 𝑛 ≥ 𝑅 + 1. With the LPM method, 𝐺BLA varies smoothly 

from one frequency to the other since it is the frequency response function of a linear system that is 

assumed to have a transfer function with a rational form. 𝑇(𝑘) is the transient spectrum and has a 

rational form (with the same denominator as 𝐺BLA). 

Putting all unknown coefficients 𝐺BLA(𝑘), 𝑇̂(𝑘), 𝛼1, …, 𝛼𝑅, 𝛽1, …, 𝛽𝑅 in a parameter vector 𝜃LPM, and 

rearranging Equations (11) for 𝑟 = −𝑛, −𝑛 + 1, … , 0, … , 𝑛 − 1, 𝑛 results in a linear regression 

formulation: 

                                                      𝑌𝑛 = 𝐾𝑛𝜃LPM + 𝑉𝑛                                                                           (14) 
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Solving for 𝜃LPM in least squares sense provides an estimate 𝐺BLA(𝑘) of the FRF of the BLA. From the 

residuals, the LPM can also provide an estimate of the covariance matrix of the noise 𝑉𝑛 (see for 

example [22, section 3.1]), which in this case includes the random noise and the nonlinear distortions. 

The sum of the random noise and the nonlinear distortions are referred to as total distortions later on in 

the paper. 

3.1.2. Parametric BLA 

Once a non-parametric FRF model has been estimated, a parametric model is often required to get better 

understanding of the system’s behaviour. To achieve this, a linear state space parametric model with 

matrices (𝐴, 𝐵, 𝐶, 𝐷) is fitted to the estimated non-parametric 𝐺BLA(𝑘) in Equation (12). The fitted 

linear state space model is attained using the frequency domain subspace identification summarised in 

[35]. In addition, the quality of the fit for the subspace identification is assessed by introducing a 

weighted least-squares cost function in the form:  

  𝑉L = ∑ 𝜖L
𝐻(𝑘)𝑊L(𝑘)𝜖L(𝑘)

𝑓

𝑘=1

                                                                                 (15) 

where 𝑓 is the number of processed frequencies, superscript 𝐻 represents the Hermitian transpose while 

the weighting function is 𝑊L(𝑘), 𝜖L = 𝐺BLA(𝑘) − 𝐺L(𝑘) is the difference between the non-parametric 

FRF 𝐺BLA(𝑘) and the model transfer function 𝐺L(𝑘) that is parameterised in terms of its state-space 

matrices 𝐴, 𝐵, 𝐶, 𝐷. The transfer function of the linear subspace model used to represent the FRF of 

the parametric BLA is calculated using the expression [30]: 

𝐺L(𝑘) = 𝐶(𝑧𝑘  𝐼𝑛 − 𝐴)−1𝐵 + 𝐷                                                                              (16) 

where 𝑧𝑘 = 𝑒𝑗
2𝜋𝑘

𝑁  represents the Z-transform variable, 𝐼𝑛 ∈ ℝ𝑛×𝑛 is an identity matrix with n being the 

most suitable model order required to achieve the lowest fitting error from the cost function 

minimisation. Further minimising the cost function with respect to all the linear state space parameters 

in (𝐴, 𝐵, 𝐶, 𝐷) with a Levenberg-Marquardt optimisation method often improves the quality of the 

fitting results obtained for the linear model.  The total number of linear parameters is equal to the 

number of elements in the matrices (𝐴, 𝐵, 𝐶, 𝐷) which is equal to (𝑛𝑎 + 𝑛𝑢)(𝑛𝑎 + 𝑛𝑦). In addition, 

physical interpretation can also be obtained from optimised model of (𝐴, 𝐵, 𝐶, 𝐷) based on a 

transformation of the discrete-time model result to a continuous-time model. This can be achieved under 

the assumption of a zero-order hold inter-sample behaviour of the input signal. Under this assumption, 

the relationship between the state-space matrices (𝐴, 𝐵, 𝐶, 𝐷) of the discrete-time model and the state-

space matrices (𝐴CT, 𝐵CT, 𝐶CT, 𝐷CT) of the continuous-time model is summarised in [30]. The natural 

frequencies and damping ratios of the optimised model are computed from the poles of the continuous-

time model, where the poles are the eigenvalues of 𝐴CT. In particular, the natural frequencies are the 

imaginary parts of the poles. The damping ratios can be calculated by dividing the absolute value of the 

real parts of the poles by the modulus of the poles. 

3.2. Initialisation of the nonlinear model 

The parameters of the PNLSS model are the elements in the matrices 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹, and the 

initial conditions 𝑥(0) and 𝑢(0). They are stacked up in a vectorised format as 

𝜃NL = [vec(𝐴); vec(𝐵); vec(𝐶); vec(𝐷); vec(𝐸); vec(𝐹); vec(𝑥(0)); vec(𝑢(0))]        (17) 

and estimated by minimizing the difference between the measured output 𝑦measured and the modelled 

output 𝑦model in (weighted) mean-square sense. That is, the cost function (19) is minimized. 
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Since the modelled output is nonlinear in its parameters, the minimization problem is a nonlinear 

optimization problem that requires a good initial estimate of the parameters. The best linear 

approximation method, as described in Sections 3.1.1 and 3.1.2, will be used to initialise the full 

nonlinear model. The matrices 𝐴, 𝐵, 𝐶, and 𝐷 are initialised with the matrices of the linear model 

obtained in section 3.1.2. The other parameters are initialised as zeros. 

 

3.3. Identification of the full PNLSS model based on optimisation 

To improve the results obtained based on the BLA initialisation, a full nonlinear model is required to 

identify the final nonlinear state-space parameters (A, B, C, D, E, and F). This step involves identifying 

the appropriate nonlinear terms and parameters in matrices E and F that would capture the nonlinear 

dynamics in the measured data. In this case the matrices E and F are intialised as zero value matrices of 

the appropriate dimension. The full nonlinear model is then parameterized by a parameter vector 𝜃NL, 

where:  

𝜃NL = [vec(𝐴); vec(𝐵); vec(𝐶); vec(𝐷); vec(𝐸); vec(𝐹); vec(𝑥(0)); vec(𝑢(0))]        (18) 

An estimate of these parameters is found by minimizing the second weighted least-squares cost function 

𝑉WLS(𝜃NL) = ∑ 𝐸𝐻(𝑘, 𝜃NL)𝑊(𝑘)𝐸(𝑘, 𝜃NL)

𝑁𝐹

𝑘=1

                                                     (19) 

with respect to 𝜃NL. Here 𝑊(𝑘) is a user chosen frequency domain weighting matrix. It is selected to 

put more weight in a frequency bandwidth of interest or bandwidth where nonlinearities are assumed 

to be more evident. The accuracy of the final optimised nonlinear model is evaluated based on the model 

error which is given by:  

𝐸(𝑘, 𝜃NL) = 𝑌model(𝑘, 𝜃NL) − 𝑌measured(𝑘)                                                              (20) 

where 𝑌model(𝑘, 𝜃NL) and 𝑌measured(𝑘) are the Discrete Fourier Transform (DFT) spectra of the 

modelled and the measured output (the modelled output 𝑦model(𝑡) is denoted 𝑦(𝑡) in (4)). It is worth 

noting that the variables such as 𝐸 and 𝑌 are expressed in uppercase letters to distinguish the frequency 

domain error computation from the time domain errors which are in expressed in lower case. The final 

optimised parameters are obtained as the minimising argument of the cost function 𝑉WLS(𝜃NL)   

𝜃NL = arg min
𝜃NL

𝑉WLS (𝜃NL)                                                                                       (21) 

This unconstrained optimisation is performed using the Levenberg-Marquardt (LM) algorithm [24, 26]. 

Minimizing the cost function corresponds to solving a nonlinear minimisation problem and can be 

sensitive to the starting values, especially when using a gradient based algorithm such as LM.  

The LM algorithm is an iterative algorithm that can be seen as a mixture of the gradient-descent and 

the Gauss-Newton algorithm where the trade-off is determined by the Levenberg-Marquardt parameter 

λ. The limiting cases λ = +∞ and λ = 0 correspond to gradient-descent with a zero step-size (the step-

size decreases for increasing values of λ) and Gauss-Newton, respectively. Close to a local minimum, 

the Gauss-Newton method can converge faster, but there is no guarantee of convergence if the current 

parameter guess is far away from a local minimum. In contrast, the gradient-descent method is more 

robust where under some conditions, it is guaranteed to converge to a local minimum of the cost 

function, but convergence in the vicinity of a local minimum can be slow. Technicalities and further 

discussions related to this optimisation algorithm are elaborated in [24] and [31]. 
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To avoid the optimisation getting stuck in a local minimum, appropriate starting parameters are 

required. A systematic way to get an initial parameter is to start from the initial values obtained from 

the Best Linear Approximation. This does not always guarantee that the optimisation will find a global 

minimum, however this strategy has been adopted for different applications and examples with 

succesful results as demonstrated in [14,15,19]. In addition, starting from the Best Linear 

Approximation guarantees that the result of the optimised nonlinear model cannot be worse than the 

best linear model on the estimation data.  

 

4. Description of the Test Structure  

The study presented in this paper was performed on an aero-engine casing assembly structure presented 

in Figure 2. This type of aircraft engine casing assembly is often used for powering a typical commercial 

aircraft. The structural configuration of the casing assembly considered in this paper is a three-layer 

architecture without any internally attached accessories such as blades, shafts and other rotating 

components. The aero-engine casing assembly is made of three components comprising of casing A, 

casing B, and casing C as shown in Figure 2. The entire assembled casing has structural features that 

are typical of a full-size assembled system e.g. multiple body sections and bolted joints. The total mass 

of this casing assembly is 461kg. 

The first cylindrical section of the casing (Casing A) has an aluminium plate with four low stiffness 

shaped steel blocks mounted on it as shown in Figure 2. As demonstrated in [32], the mounted plate 

forms an additional source of non-linear behaviour in the entire casing assembly. It introduces localised 

nonlinearities from the bolted joints and large deformation of the plate depending on the mode of 

interest and also reflects on typical operational measurement limitations. To study the nonlinear 

phenomena exhibited by the entire assembly in a rather simplified approach, only the first cylindrical 

section of the casing (Casing A) was instrumented to obtain measured data during the experimental 

campaign as shown in experimental set-up in Figure 4a. 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 2: Aero-engine casing and the attached aluminium plate in the bottom right corner   

Casing A 
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4.1. Linear Finite Element Modal Analysis 

Pre-test analysis is a vital step of experimental modal testing and analysis, it often has direct effect on 

the accuracy and results of test and analysis. A detailed Finite Element (FE) model of the casing 

assembly was developed using the commercial ABAQUS FE package, all parts of the casing and the 

plates were modelled using shell elements. The bolts and joints were modelled with tie constraints and 

fasteners with specific spring coefficients. A linear FE modal analysis was conducted to extract the FE 

mode shapes. The linear FE analysis was conducted with the aim of getting better insight into the 

selection of appropriate measurement locations, sensor placement and the test excitation point. In 

addition, the initial FE analysis was used to determine the number of expected modes in a given 

frequency range. Most importantly, since the test was being conducted on a large aerospace structure 

with multiple joints and localised nonlinearities, the results from the FE mode shapes were used to 

quickly and reliably identify the frequency ranges where the joints and additional localised nonlinear 

source were actively excited. The FE analysis highlighted 20 mode shapes between 0-350 Hz. A 

complete summary of the FE modal analysis is not included in this paper. However, it is sufficient to 

state that the modes of vibration that engaged the entire casing assembly and the plate were calculated 

to have FE natural frequencies of 83.95 Hz and 87.12 Hz as shown in Figure 3a and 3b.       

(a) Mode 1:83.95 Hz (b) Mode 2: 87.12 Hz 

                            (c) Mode11: 233.27 Hz                         (d) Mode 14: 246.85 Hz 

           Figure 3: Selected mode shapes obtained from the 3D FE modal analysis 

In addition, an area of interest on the casing assembly is the bolted connection between casing A and 

the aluminium plate. One of the main reasons for this interest is to understand the influence of connected 

devices on the casing and their potential introduction of local and geometrical nonlinearities to entire 

structure. The FE model was also able to highlight the modes of vibration of casing A and plate with 

natural frequencies ranging between 180 to 300 Hz. Of all modes of vibration highlighted by the FE 

model, only those that are prone to stimulate all joints and plate connections are further investigated in 
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the nonlinear identification section of this paper. Figure 3c and 3d illustrate a selection of modes of 

vibration where the joints and local nonlinear sources are stimulated.       

4.2. Experimental Setup and Linear Modal Analysis 

The casing was suspended horizontally from a test frame using four elastic chords as shown in Figure 

4a. The test frame used in this research is classified as a Technology Research Level (TRL6) structure 

developed under the Highly Innovative Technology Enablers for Aerospace (HiTEA) project while the 

elastic chords are used to represent a free-free boundary test condition. The experimental set-up was 

designed to replicate the traditional horizontal configuration of such component when attached to an 

aircraft. A total of 32 Integrated Circuit Piezoelectric (ICP) type single-axis acceleration sensors were 

employed to instrument the structure. For this investigation, only the first subassembly section casing 

A where the plate is bolted to the engine casing, as illustrated in Figure 4b, was fully instrumented. A 

large shaker visible in Figure 4a was used to apply the excitation inputs to the casing in a vertical 

direction. 

                                          a                           b 
Figure 4: Experimental set-up of the engine casing suspended on a TRL-6 frame: (a) Test set-up, (b) 

Instrumented section of the casing.  

The first stage of the experimental investigation involved conducting a set of traditional modal tests on 

the casing and plate assembly to obtain the natural frequencies and damping ratios at low amplitude of 

vibration. In addition, a force controlled stepped-sine test at high excitation levels was carried out on 

the assembly to check for the symptoms of nonlinearity that could be present in the instrumented section 

of the casing. A preliminary experimental study highlighting nonlinearities observed at the high 

amplitude of vibration was already conducted on the engine casing assembly in [32]. There, the linear 

FE mode shapes were used to gain an insight into the regions of the assembly that could potentially 

show some form of nonlinear behaviour.  The first measurements obtained from the test comprised of 

several low-amplitude responses which were acquired based on the broadband random excitation. The 

choice of the broadband excitation was made based on its conventional use in modal testing. The low 

level random excitation test was performed using the Spectral Test module in LMS Test Lab. The test 

structure was excited near the flange connecting the casing B with casing A as shown in Figure 4a. The 

structure was excited using burst random excitation ranging between 30 and 320Hz and the applied 

random excitation had an RMS value of 45N. The Frequency Response Functions (FRFs) obtained from 

the test were used to identify the linear modal parameters of the entire assembly. Figure 5 shows a 

selection of the FRFs obtained from the low-level test. 

A linear modal analysis based on the FRFs obtained from the low-level random test was conducted 

using the PolyMAX method [33]. Table 1 presents the corresponding natural frequencies and damping 

ratios of the casing A with the aluminium plate bolted to it. 

Casing C  

Drive Point Shaker  
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Table 1: Estimated natural frequencies and damping ratios based on the low-level excitation 

 

                                          (a)                                              (b) 
Figure 5: Acceleration FRFs obtained from the low-level broadband excitation test (a) Mnode2 FRF (b) Drive 

point FRF. 

 

4.2.1. Non-Linear Detection Based on Distortions of Measured Data 

To check for the symptoms of nonlinear behaviour in the casing and plate assembly, several tests were 

conducted on the entire assembly using two different types of excitation signals. In this paper, stepped 

and swept-sine excitation signals were used for investigating the nonlinear effects observed in the 

measured responses of the assembly from low to higher excitation levels. Stepped and swept sine signals 

were selected based on their deterministic nature. For a linear system or structure, the output response 

would produce a pure sine wave and for a nonlinear case, distortions are easily detected by visualising 

the output response to the sine wave input. In Figure 6, the stepped-sine FRFs are presented for the test 

concentrated around the vibration modes that proved to stimulate the connections between the plate and 

casing A as illustrated in Figure 3. Input excitation force was ranged from the lowest (10N) to the 

highest level (100N) and a frequency resolution of 0.1Hz was selected for the measured FRFs. These 

stepped-sine FRFs only consider the first harmonic and neglect all other higher-order harmonic 

components in both input and output [34]. Figure 6 shows the lack of homogeneity in the measured 

FRFs over different excitation levels, indicating thus a clear breakdown of the superposition principle. 

Evidence of nonlinearity is observed based on the shift in the maximum amplitude and its corresponding 

frequency for the measured frequency bandwidth of 230-241Hz and 282-296Hz. In addition to the 

observed frequency and amplitude shifts, the resonant peaks also lean to the left as shown in Figure 6 a 

and b, causing a sudden transition (jump) down to a lower energy state when decreasing the excitation 

frequency. This is most evident in the FRFs illustrated in Figure 6a and b for the frequency bandwidth 

of 237-241Hz.  

Mode 

Number 

Natural Frequency 

(Hz) 

Damping 

Ratio (%) 

 Mode 

Number  

Natural Frequency 

(Hz)  

Damping 

Ratio (%) 

         1       82.17       0.29           9     179.68     0.19 

         2       84.34       0.19          10     237.51     0.34 

         3       87.17       0.09          11     238.68     0.12 

         4       158.42       0.13          12     243.45     0.28 

         5       163.41       0.39          13     247.01     0.39 

         6       167.29       0.57          14     285.51     0.42 

         7       169.98       0.46          15     287.72     0.37 

         8       172.05       0.46          16     312.51     0.29 
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                                 (a)                                    (b) 

                                 (c)                                   (d) 
Figure 6: Force controlled stepped sine acceleration response: (a) Mnode 2 FRF for frequency range 230-242Hz, 

(b) Drive point FRF for frequency range 230-242Hz (c) Mnode 2 FRF for frequency range 282-296Hz (d) Drive 

point FRF for frequency range 282-296Hz. 

                                            a                                            b 
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                                           c                                          d 
Figure 7: Sine-sweep acceleration responses measured on two different locations of the assembly. a and b 

(Drive point) b and d  (Mnode2). 

Sine-sweep test was also conducted on the casing assembly at multiple excitation levels to gain some 

insight into the time series data. The sine-sweep test was conducted to cover a frequency bandwidth of 

200-260 Hz. Accelerations at two selected locations of the assembly shown in Figure 4 were measured 

at 20N, 50N, 100N, 300N and 450N RMS excitation levels. Figure 7 shows selected plots of the 

measured acceleration against the sweeping frequency for the modes of the assembly in that bandwidth. 

Symptoms of nonlinearity are visible in the plots presented in Figure 6 where a frequency shift is 

observed for all modes when the amplitude of vibration is increased. The lack of symmetry feature is 

also observed around the resonance peak of 238Hz for high amplitude of vibration, this is more obvious 

in Figure 7b and 7d. Skewness of the signal envelope is also observed around the resonance peaks at 

high excitation level resulting from a jump phenomenon. In practice, many nonlinearities exhibit a 

degree of amplitude dependence and most of these become more prominent at higher levels of vibration 

rather than low levels. In this case of the aero-casing assembly, nonlinear behaviour is clearly observed 

at higher excitation amplitude using a variety of excitation signals. Therefore, it is important to conduct 

further analysis on the casing assembly to explore the type of nonlinearities detected from the measured 

data. 

4.3. BLA estimation of the casing assembly   

To calculate the BLA of the measured data for the casing assembly, sine-sweep input and output data 

acquired during the nonlinear detection phase were used for the calculation. The sine-sweep data were 

focused around frequency bands of 70-93Hz and 200-260Hz. These frequency bands were chosen based 

on the linear FE mode shapes illustrated in Figure 3 where the joints and connections between casing 

A and the plate are activated. The aim of the BLA estimation is to explore the evolution of the nonlinear 

distortions observed in the measured sine-sweep data across a range force excitation levels. Although a 

sine-sweep is a deterministic signal instead of a random one, the initial linear state space and the FRF 

of the BLA can still be obtained using the expression given by: 

                                                           𝐺BLA(𝑘) =
𝑌(𝑘)

𝑈(𝑘)
                                                                             (22) 

at the excited frequency lines 𝑘. The fact that the spectrum 𝑈(𝑘) of a sine-sweep is not rough at all 

frequencies could pose a challenge in the calculation [27], however the LPM can still be applied based 

on calculating the difference between the input at two consecutive frequencies i.e., (𝑈(𝑘) − 𝑈(𝑘 − 1)). 

The specific assumption made in [27, section 2.3] is that 𝑈(𝑘) − 𝑈(𝑘 − 1) should not vanish to zero 

(it should remain in the same order of magnitude as |𝑈(𝑘 − 1)| with probability 1). The intuition behind 
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𝑈(𝑘) − 𝑈(𝑘 − 1) characterizing the smoothness of the input spectrum is as follows. If the input 

spectrum is constant over frequency (globally or in a local frequency band), it is extremely smooth, and 

𝑈(𝑘) − 𝑈(𝑘 − 1) vanishes to zero. On the other hand, if the input spectrum is rough over frequency 

(i.e. it varies a lot), then the difference 𝑈(𝑘) − 𝑈(𝑘 − 1) does not vanish to zero (relative to 𝑈(𝑘)). The 

results obtained from the difference in spectrum calculation are presented in  Figure 8 for frequency 

bandwidth of interest. As shown in Figure 8, the spectrum  (𝑈(𝑘) − 𝑈(𝑘 − 1)) remains the same or at 

least within the same order of magnitude as 𝑈(𝑘) in a large part of the frequency band of interest and 

only approaches to zero at 70Hz and 93Hz for Figure 8a and 200 Hz and 260 Hz for Figure 8b. This 

means that the spectrum 𝑈(𝑘)  is sufficiently rough in the frequency band of interest. Therefore, this 

indicates that the LPM will be able to locally smooth the FRF for the BLA estimation.  

                                         (a)                                               (b) 
 Figure 8: The difference of the sine sweep input spectrum (U(k)-U(k-1)) of the interested bandwidth. (a) 

Frequency range 70-93Hz, (b) frequency range 200-260Hz, 

Figure 9 shows the estimated FRFs and amplitude of total distortions for the non-parametric BLA for 

two main frequency bandwidths of interest 70-93Hz and 200-260Hz. The selected FRFs and total 

distortion (which include noise and nonlinear) levels are based on excitation levels ranging from 20N 

to 100N. The noise and nonlinear distortion levels across the input band mostly lie below -20dB. Slight 

shift in the resonance peaks and reduction in amplitude is observed across the FRFs obtained from the 

multiple forcing level BLA estimations when the excitation level increases. Similarly, it is evident that 

the total distortion also affects the response of the structure. One can observe that the level of total 

distortions increases as the forcing changes from 20N (blue) to 100N (red) for each frequency 

bandwidth of interest. The increase in total distortion response at higher excitation levels in this figure 

is a clear indication of the presence of nonlinearities in the measured sine-sweep data. Therefore, linear 

approach can no longer be used to produce a sufficiently accurate representation of the characteristics 

observed in the measured data. 
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                                            a                                                   b 

                                         (c)                                           (d) 

Figure 9: Non-parametric FRFs and total distortions: a (Mnode 2 for 70-93Hz) b (Drive point for 70-93Hz) 

c(Mnode2 for 200-260Hz) d (Drive point for 200-260Hz).   

4.3.1. Linear State Space Model  

Before developing a PNLSS model, a linear state space model of the system under consideration is 

required. In this paper, the linear state space model for the casing assembly is identified from the 

previously estimated BLA using the frequency domain subspace method described in [23, 35]. The 

accuracy of the fitted state space model is evaluated using a similar weighted least squares cost function 

expressed in Equation (15). In this case, the inverse of the estimated total variance of 𝐺𝐵𝐿𝐴(𝑘) is chosen 

as a weighting function.  

𝑉L = ∑
|𝐺BLA(𝑘) − 𝐺̂BLA(𝑘)|

2

𝜎BLA
2 (𝑘)

𝐹

𝑘=1

                                                                   (23) 

where 𝜎BLA
2 (𝑘) represents the total distortions observed in the model. The model fitting error is then 

calculated based on the difference between the parametric and non-parametric BLA: 

                                                            𝜖L = 𝐺L(𝑘) − 𝐺BLA(𝑘)                                                                              (24) 

The parametric and non-parametric BLA models were estimated for different excitation levels ranging 

from an RMS value of 20N to 100N (see Figure 9). A sufficiently accurate fit is observed between the 

parametric and non-parametric estimation of the BLA based on a selected model order of 6. 

Discrepancies are only noticed at the start and end frequencies of the bandwidth of interest. 



                                                                                                                 

18 
 

A time domain least squares cost function which calculates the squared error between the simulated 

model outputs and the measured data was implemented to evaluate the accuracy of the linear state space 

model. The cost function expressed in Equation (23) is introduced to assess the quality of the fit for the 

linear subspace identification. Figure 10 depicts the comparison between the simulated results obtained 

from the linear state space identification and the measured data. 

                                               a                                             b 

                                              c                                               d 

Figure 10: Comparison of initial linear model against measured data: a (time domain for drive point), b 

(frequency domain for drive point), c (time domain for Mnode), d (frequency domain for Mnode). 

Judging from the time and frequency domain results presented in Figure 10, the results show that the 

initial identified linear model has a reasonable agreement with the measured data. However large errors 

and discrepancies are observed mainly around the resonance regions which show a clear indication that 

the nonlinear dynamics are not yet captured. The acceleration values at the resonance region are larger 

and, in this case, may mean that the nonlinearities are stronger in those sections of the measured data. 

It is therefore evident that the nonlinear behaviour cannot be captured by a linear model and as such a 

full identification is required to accurately capture the nonlinear dynamics in the measured data. The 

normalized Root Mean Squared (RMS) error of the linear model on the estimation dataset was 52.6%. 

Such a relatively high RMS percentage value is also an indication that the proposed linear model is not 

sufficient and thus requires further identification and minimisation of the selected cost function. 
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4.4. Nonlinear Identification of the Casing Assembly 

This section focuses on developing a data driven nonlinear model to represent the nonlinearities 

observed in the aero-engine casing assembly based on PNLSS model. Here, the sine-sweep excitation 

at 100N RMS is used as the estimation data set, while the nonlinear identification is focused around the 

frequency bandwidth of 200-260 Hz. Furthermore, a study on using different monomial combination 
shown in Table 2 for the polynomial degrees selection such as consecutive, non-consecutive, even, and 

odd was conducted.  

Table 2: Overview of the polynomial order implemented in the PNLSS identification 

PNLSS Model study  Polynomial Degrees  

1 2-3  

2 2-3-4-5 

3 2-3-4-5-6-7 

4 2-4 

5 2-4-6 

6 3-5 

7 3-5-7 

                  

4.4.1. Full Nonlinear Model 

To begin this stage, the linear state space model characterised by the matrices 𝐴, 𝐵, 𝐶, and 𝐷 estimated 

in the previous section was used as an initial starting value while the elements of the matrices 𝐸 and 𝐹 

in Equation (18) are initialized as zero. The PNLSS model is evaluated by defining the weighted least-

squares cost function 𝑉WLS(𝜃NL) expressed in Equation (19). The final estimates of the nonlinear state 

space parameters (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹) are obtained by minimising the cost function 𝑉WLS(𝜃NL). Here, the 

parameters in the matrices 𝐸 and 𝐹 that correspond to a term in which the input is raised to a non-zero 

power, is not optimized, but kept at its initial zero value. In other words, polynomial terms in the states 

only are considered. A unit weighting 𝑊(𝑘) is applied as shown in Equation (19) for focusing on the 

frequency band 200-260 Hz during the minimisation of the weighted least-squares cost function in the 

frequency domain. Unit weights are chosen in the frequency band of interest, while weights of 0.05 are 

chosen outside this band. It is important to give a non-zero weight to the data outside the frequency 

band of interest, since not using the information at those frequencies would lead to an ill-conditioned 

optimization problem (with more unknown parameters than data samples used). The cost function is 

minimised with the Levenberg-Marquardt algorithm.  

In this research, the Levenberg-Marquardt method is initialised with 𝜆 =  200. This relatively large 

number is selected to make the optimisation process more robust. When an iteration is successful, (i.e. 

the cost function decreased on the estimation data), the Levenberg-Marquardt parameter 𝜆 is adjusted 

to half of its previous value in order to make the optimisation algorithm to lean more towards the Gauss-

Newton method. This approach further improves the speed of the iterative process. In the case of an 

unsuccessful iteration, the Levenberg-Marquardt parameter 𝜆 is multiplied with a factor √10 to lean the 

method more towards a gradient-descent algorithm with a decreased step-size for further optimisation 

improvement and increased robustness. For all simulated PNLSS cases in this paper, a fixed number of 

150 iterations of the Levenberg-Marquardt method was selected. This number signifies a trade-off 

between the convergence and computational time. The sine sweep data obtained at the 100N level of 

excitation were used for the PNLSS model estimation. The estimated PNLSS model was developed 

using a state only model structure with a model order of 6 while polynomial degrees of the order 2, 3, 

4, 5, 6, and 7 were used for this PNLSS estimation. The results obtained from running the optimisation 

problem are presented in Figure 11.  
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                                              a 
                                               b 

                                                  c                                                d 

Figure 11: Comparison of the identified PNLSS model against measured data: a (time domain for drive point), 

b (frequency domain for drive point), c (time domain for Mnode), d (frequency domain for Mnode). 

Comparing the full PNLSS results with the initially estimated results in Figure 10, one can observe a 

significant improvement in the PNLSS model compared to the initial linear model. The optimised 

PNLSS model improves on the results of the initial linear model, in particular around the resonant 

frequencies as shown in Figure 11. This is a clear indication that the PNLSS model has successfully 

been able to capture a large portion of the nonlinear responses that were not captured in the initial linear 

model presented in Figure 10.  A significant improvement was also observed in the RMS percentage 

value after running the optimisation. Compared to the initial estimated model, a much lower time 

domain RMS value of 7.2% was obtained for the PNLSS model. This shows a significant reduction of 

about 45% in the RMS error between the identified linear state space model and the final estimated 

PNLSS model. A subsequent validation of the identified PNLSS model on a new set of sine sweep data 

yields a comparably small time domain RMS error of 9.1%. With this important improvement, it is 

evident that a PNLSS model that describes the nonlinear dynamics observed in the measured data has 

been successfully implemented without imposing any prior knowledge about the nonlinearities in the 

measured data.   
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4.4.2. Identifying a Parsimonious Data Driven PNLSS Model  

Although the results achieved in section 4.4.1 indicated high degree of accuracy where the full identified 

PNLSS model was able to capture the nonlinear phenomena observed in the measured data, the total 

number of the estimated parameters for the identified model is 13728. The large number of estimated 

parameters can be narrowed down to the order of the polynomial degree which was used for the full 

PNLSS model. In addition, the combination of both even and odd monomial degrees in developing a 

suitable PNLSS model can be disadvantageous for some cases where the nonlinear phenomena 

exhibited by the system are dominated by either even or odd polynomial degrees. Hence, in this section, 

a study on identifying a suitable PNLSS model using a series of different reduced monomial 

combinations is conducted. The aim is to develop the best PNLSS model with the lowest number of 

parameters capable of modelling the nonlinearities observed in the measured data of the aero-engine 

casing. Seven different 6th-order PNLSS models were developed based on the monomial combination 

shown in Table 2. The same sine sweep data at 100N were utilised as the data set for the estimation of 

each PNLSS model while another set of sine sweep data at 50N was used for the validation of each 

estimated PNLSS model. Each monomial combination simulation experiment was based on measured 

sine sweep data with signal sample sizes of 1474561 × 1 for the input and 1474561 × 2 for the output. 

The signal sizes are based on the Single Input Multiple Output (SIMO) configuration which is being 

considered in this paper.  As quality measures, the relative RMS error in the time and frequency domain 

and the NRMSE of each successful iteration of the LM optimisation were computed for each estimated 

PNLSS model. The performance of each simulated PNLSS model structure in Table 2 is calculated 

based on the following expression:  

NRMSE =
√

1
𝑁t

∑ (𝑦model(𝑡) − 𝑦measured(𝑡))𝑇(𝑦model(𝑡) − 𝑦measured(𝑡))
𝑁t
𝑡=1

√
1
𝑁t

∑ (𝑦measured(𝑡))𝑇(𝑦measured(𝑡))
𝑁t
𝑡=1

                             (25) 

where 𝑦model and 𝑦measured are the PNLSS output and measured output, while 𝑁t is the total number 

of data points. Transforming the error to the frequency domain was also another criterion used in 

judging the performance of each simulated monomial degree combination, the amplitude plot of the 

frequency domain error helps to show in which frequency bands the model performs well, and in which 

frequency bands it performs poor. 

Table 3: Estimation results for different monomial combination experiments 

Polynomial Degrees Estimation RMS Error 

(%) 

Total Number of 

Parameters 

Simulation Time 

(Hours) 

2-3 15.91 672 8.37 

2-3-4-5 4.89 3696 41.52 

2-3-4-5-6-7 1.72 13728 121.29 

2-4 16.04 1232 11.74 

2-4-6 11.87 4928 63.81 

3-5 5.01 2520 34.26 

3-5-7 1.58 8856 101.65 

 

Figure 12 shows the time and frequency domain error plots obtained for two PNLSS simulation results 

out of the seven PNLSS simulations that were conducted. For all the different PNLSS models that were 

estimated, the RMS error of the time and frequency domain is seen to decrease for increasing model 

complexity, in particular within the frequency band where nonlinear distortions are observed as shown 

in Figure 12 and Figure 14. The estimation errors for each PNLSS simulated model are presented in 

Table 3 with an approximate value of the time taken to compute each simulated PNLSS model. 
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                                      (a)                                       (b) 

                                     (c)                                      (d) 
Figure 12: Time and Frequency domain estimated model error for simulated PNLSS model using monomial 

combination of 2,4 and 3, 5,7: a (time domain error of the drive point), b (frequency domain error of the drive 

point), c (time domain error of Mnode), d (frequency domain error of Mnode).  

The lowest RMS error value of 1.58% is achieved for the monomial combination of the order (3, 5, and 

7) as shown in Table 3. In addition, judging from the time and frequency domain error comparisons in 

Figure 12, it is possible to conclude that the monomial combinations with odd degrees can be used to 

produce better fitting PNLSS models compared to the PNLSS model with even monomial degree 

combination. In terms of obtaining a parsimonious model, Table 3 shows how the effect of increasing 

the complexity of the monomial degrees can cause a drastic growth in the total number of parameters 

estimated by each PNLSS model. In this case, a parsimonious model is defined as a monomial 

combination with the lowest RMS percentage error value between the PNLSS models and the measured 

data whilst using the least number of parameters or variables to obtain the best prediction. From a 

performance perspective, selecting the monomial degrees 3, 5, and 7 yields the estimation error of 1.58 

% with the total number of 8856 estimated parameters. 

Compared to the identified PNLSS model with monomial combination of 2-3-4-5-6-7 and 13728 

parameters, which took just over 5 days on a standard desktop to complete all the computations, one 

can conclude that a PNLSS model with monomial degrees of 3-5 or 3-5-7 can be used to correctly 

reproduce or model the nonlinearities observed in the measured data to a high degree of accuracy. Using 

either of these two proposed PNLSS model configurations has not only shown an advantage in terms 

of obtaining a reasonable parsimonious model, the computational burden and time involved in 

minimising the cost functions for these two models were considerably lower than the initial identified 

PNLSS model in Figure 11. Figure 13 shows the behaviour of the NRMSE for all simulated PNLSS 
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cases, it is worth stating that for Figures 13 and 16, there are more than 120 Levenberg-Marquardt 

iterations completed. However, only the successful iterations (i.e. the iterations for which the cost 

function decreased during the optimisation process) are plotted.            

 

 

 

 

 

 

 

 

 

 

 

By plotting the normalised root mean squared error against the successful iterations of the LM 

optimisation, it is also possible to get useful information on the monomial degree combination that 

produces the best PNLSS model capable of modelling the nonlinearities based on the error magnitude 

and convergence rate during optimisation. From Figure 13, the NRMSE with odd monomial degrees 

generally show significantly better and faster convergence compared to the ones with even and odd 

monomial degree combinations. The model with monomial degrees 3, 5, and 7 reaches the second best 

NRMSE after the full model with monomial degrees 2, 3, 4, 5, 6, and 7, but it converges faster and uses 

significantly less parameters. Since the obtained NRMSE values for both models are fairly close, the 

model with monomial degrees 3, 5, and 7 is retained because of the trade-off between the performance 

and parameter parsimony as illustrated in the results presented in Table 3. 

Comparing the measured data and the simulated PNLSS model in the time domain for monomial degree 

3-5-7 as shown in Figure 14, it is evident that the model was practically able to accurately reproduce 

the maximum amplitude of each mode in the envelope of the time series. In Figure 14b and 15d, the 

simulated PNLSS model was able to replicate correctly the frequency spectrum and also the 

characteristics for each considered nonlinear mode of the measured data. The nonlinear distortions 

observed in the envelope of the time series at higher excitation level was also well captured by the 

simulated PNLSS model as shown in Figure 14a and 14c. Based on all these observations it is possible 

to draw a conclusion that the nonlinearities observed during the experimental campaign of the aero-

engine casing assembly are best modelled using the polynomial representation with odd degrees. Both, 

the error values and the LM iteration curves demonstrate how useful the PNLSS models can be when 

modelling the nonlinearities observed in the experimental data without prior assumptions. 

Figure 13: NRMS estimation error over successful Levenberg-Marquardt iterations for the seven simulated 

PNLSS models based on different monomial degree combinations.    
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Most importantly, this section of the paper has also shown some advantages and the possibility of 

obtaining an optimal parsimonious model suitable for modelling the nonlinearities with a low 

percentage error by running several simulation studies using different monomial degree combinations.   

 

4.5.   PNLSS Model Validation Under Sine-Sweep and Broadband Excitations 

To examine the domain of validity for the different simulated PNLSS models, each model is subjected 

to a validation experiment by introducing new measured data. In the estimation step, the models 

obtained after a successful Levenberg-Marquardt iteration are retained as candidate models. In the 

validation step, the model among the candidate models that achieves the lowest cost on the validation 

data is selected as the final model. Note that there is no optimization in this validation step (no 

computation of Jacobians, step sizes, et cetera), just an evaluation of all the candidate models by 

simulating the candidate models with the validation input and comparing the measured validation output 

with the simulated output. The validation experiment was intended to measure the performance of the 

identified PNLSS models under similar practical conditions based on the frequency and amplitude range 

of interest. However, since the system under consideration is nonlinear, then in this validation stage, it 

is advisable to use experimental data with lower excitation levels to avoid extrapolation. In this case, 

the measured sine-sweep data at 50N were introduced to each identified PNLSS model in Table 3. The 

RMS error in the time and frequency domain were used as quality measures to judge the performance 

                                     (a)                                    (b) 

                                   (c)                                     (d) 
Figure 14: Time and Frequency domain comparison of the best estimated PNLSS model against measured data 

based on polynomial order 3, 5 and 7: a (Time domain response of  the drive point ),b (Frequency domain 

response of the drive point) c (Time domain response of Mnode 2), d (Frequency domain response of Mnode 2). 



                                                                                                                 

25 
 

of each validation experiment. Seven different PNLSS model validation experiments were conducted 

and a comparison between the measured data and the reconstructed PNLSS model at excitation level of 

50N was used to visualise the performance of each validation experiment.  

Table 4: Validation results for different monomial combination experiments 

Polynomial Degrees  Validation Error (%) 
2-3           10.83 
2-3-4-5          4.71 
2-3-4-5-6-7          1.67 
2-4          11.69 
2-4-6          6.34 
3-5          2.13 
3-5-7          1.44 

 

The percentage error of the nonlinear PNLSS model for each validation experiment is illustrated in 

Table 4, where the RMS errors for the validation experiment were generally lower than the errors for 

the estimation results.  

                                      a                                        b 

                                    c                                       d 
Figure 15: Validation of PNLSS model against measured data for 3-5-7 monomial combinations. a (Time 

domain response of the drive point), b (Frequency domain response of the drive point)  c (Time domain 

response of Mnode 2) d (Frequency domain response of Mnode 2). 
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As shown in the table, amongst all the PNLSS models in the validation study, the PNLSS model with 

the monomial degrees of 3-5-7 has the lowest RMS error value. Figure 15 illustrates the corresponding 

time series envelope and the spectrum for this PNLSS model compared with experimental data at 50N 

for two different locations on the aero-engine casing. The PNLSS results presented in Figure 15 show 

good agreement with the measured data, in particular around the regions of the three dominant 

resonance peaks.  

 

   

 

 

 

 

 

 

 

 

 

 

Although minor discrepancies are still observed between the PNLSS model and measured data, these 

discrepancies are outside the resonances and frequencies of interest and can be narrowed to errors 

generated from the flexibility of the PNLSS models. Similar to the identification results, the normalised 

root mean squared error (NRMSE) for the evolution of the candidate models was plotted for each model 

in the validation study. Results of the NRMSE curve for the seven validation models are illustrated in 

Figure 16. For all the models, the final NRMSE is less than 10%, indicating that the PNLSS model 

structure represents a reasonable representation of the nonlinear dynamics of the aero-engine casing. 

Moreover, the NRMSE reaches near optimum only after 20 iterations. The performance of the model 

is thus robust to the model selection process as it does not seem to matter too much which of the model 

realisations between iterations 20 and 120 actually gets selected as the best one on the estimation data.   

Figure 16: NRMS validation error over the successful Levenberg-Marquardt iterations for the seven simulated 

PNLSS models based on different monomial degree combinations.                                                                               



                                                                                                                 

27 
 

                                   (a)                                 (b) 

                                   (c)                                     (d)  

Figure 17: Time-domain performance of the validated model for the monomials of degree 3-5-7 based on the 

measured broadband data. a (Time domain response of the drive point), b (Zoomed-in time domain response of 

the drive point), c (Time domain response of Mnode 2) d (Zoomed-in time domain response of Mnode 2). 

To further test the domain of validity of the best performing PNLSS model, the PNLSS model was 

subjected to another validation test. In this case, the broadband data measured at 40N RMS excitation 

level was introduced to the PNLSS model with the monomial degree combinations of (3-5-7). Figure 

17 shows a short window time domain comparison of the measured and predicted data by the optimal 

PNLSS model. The RMS value of the error on this validation data set is 0.05𝑚𝑚/𝑠2. Figure 17 

agreeably demonstrates the significance and validity of the PNLSS model using a different type of 

excitation signal, where the achieved small RMS value indicates the predictive confidence of the 

PNLSS model with the monomial degree combinations of (3-5-7). From a user point of view, having 

minor errors between the measured data and the reconstructed PNLSS models is in many cases 

acceptable, given that a good estimate of the maximum amplitude, the frequency of the response and 

other important features of the predicted responses are obtained. Most importantly, for this black-box 

application, the results have shown a good degree of accuracy based on the various error measures 

discussed in this work. Finally, it is also worth stating that a price to pay for the large modelling 

flexibility achieved in this case of nonlinear state space models is the presence of systematic and 

variance errors which are sometimes unavoidable depending on the problem which is being 

investigated. 
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5. Conclusion     

In this paper, a black-box identification method has been used to gain useful insights into the 

nonlinearities observed in an aero-engine casing during an experimental campaign. A discrete-time 

PNLSS model was used for the identification and validation of the nonlinear phenomena observed in 

the measured data obtained from the vibration tests conducted on a large aerospace structure. The 

PNLSS models were investigated using the sine-sweep data. The full PNLSS model was initialised 

using the Best Linear Approximation and a Local Polynomial Method for local smoothing of the FRFs. 

Subsequently, a weighted least-square minimisation approach was used to identify the PNLSS model 

parameters in the time domain. The success of the PNLSS model was judged based on the RMS and 

NRMSE error measures between the data simulated from the PNLSS model and the true measured data. 

Based on the achieved RMS values of 1.58% and 1.44% obtained from the identification and validation 

models respectively, one can conclude that the PNLSS method was able to successfully model the 

nonlinear dynamics observed in the measured data without any prior knowledge or physical insight to 

the nature of the nonlinearities. Several drawbacks are associated with polynomial nonlinear state space 

application, one of which is the explosive behaviour of polynomials outside the estimated region. A 

polynomial tends to attain large numerical values when its arguments are large, compared to the 

behaviour of other basis functions when used in similar application. However, it should also be noted 

that extrapolating with an estimated model is generally never a good idea for nonlinear systems. To 

overcome the limitation of the great number of parameters involved in the construction of the 

multivariate polynomials, tensor techniques can be used to prune the nonlinear parameters in the state 

space identification. Based on linearisations of the multivariate polynomial in a PNLSS model and a 

tensor decomposition, the nonlinear functions 𝐸𝜁(𝑥(𝑡), 𝑢(𝑡)) and 𝐹𝜂(𝑥(𝑡), 𝑢(𝑡)) in the state space 

equation can be represented by decoupled polynomials [19]. This representation further helps to reduce 

the number of parameters to be estimated by removing the cross-terms in the multivariate polynomials. 

In summary, results presented in this paper have shown the strength of using a black-box method to 

model the nonlinearities observed in a large aerospace structure. 
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